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Abstract: Accumulation of misfolded and mistrafficked rhodopsin on the endoplasmic reticulum of
photoreceptor cells has a pivotal role in the pathogenesis of retinitis pigmentosa and a subset of Leber’s
congenital amaurosis. One potential strategy to reduce rhodopsin misfolding and aggregation in these
conditions is to use opsin-binding compounds as chemical chaperones for opsin. Such molecules
have previously shown the ability to aid rhodopsin folding and proper trafficking to the outer cell
membranes of photoreceptors. As means to identify novel chemical chaperones for rhodopsin,
a structure-based virtual screening of commercially available drug-like compounds (300,000) was
performed on the main binding site of the visual pigment chromophore, the 11-cis-retinal. The best 24
virtual hits were examined for their ability to compete for the chromophore-binding site of opsin.
Among these, four small molecules demonstrated the ability to reduce the rate constant for the
formation of the 9-cis-retinal-rhodopsin complex, while five molecules surprisingly enhanced the
formation of this complex. Compound 7, 13, 20 and 23 showed a weak but detectable increase in the
trafficking of the P23H mutant, widely used as a model for both retinitis pigmentosa and Leber’s
congenital amaurosis, from the ER to the cell membrane. The compounds did not show any relevant
cytotoxicity in two different human cell lines, with the only exception of 13. Based on the structures
of these active compounds, a series of in silico studies gave important insights on the potential
structural features required for a molecule to act either as chemical chaperone or as stabiliser of the
11-cis-retinal-rhodopsin complex. Thus, this study revealed a series of small molecules that represent
a solid foundation for the future development of novel therapeutics against these severe inherited
blinding diseases.
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1. Introduction

In the healthy retina, light absorption triggers photoisomerisation of the visual pigment
chromophore 11-cis-retinal, covalently bound to opsin—forming rhodopsin—thus initiating the
phototransduction cascade. Photoisomerised all-trans-retinal is then released from opsin and recycled
into its 11-cis isomer through a series of enzymatic reactions called the visual cycle [1]. This process
is dependent upon rhodopsin folding and localisation from the endoplasmic reticulum (ER) to the
membranes, which are then incorporated into photoreceptor outer segments, where it acts as G-protein
coupled receptor and activates the G-protein transducin upon absorption of light [2]. Different inherited
blinding diseases are caused by opsin mutations, which impair its proper folding (retinitis pigmentosa,
RP), or by an inability to synthesise 11-cis-retinal (Leber’s congenital amaurosis, LCA), which acts as
a chemical chaperone for the protein and enables its folding and localisation to the outer segment
photoreceptor membrane.

RP and LCA are severe blinding diseases, which lead to irreversible progressive vision impairment
and ultimately blindness. RP is the most common congenital eye dystrophy and affects 1 in 4000
people; in 40% of cases of RP structurally destabilising mutations in the rhodopsin gene (RHO), such as
P23H, prevent the correct folding and trafficking of rhodopsin to the membrane [3]. LCA instead is the
most severe retinal dystrophy in infants: it causes blindness before one year of age, and in 30% cases
it is due to an inability to synthesise the visual pigment chromophore 11-cis-retinal, whose absence
also leads to opsin misfolding and mistrafficking [4]. In these conditions, unfolded opsin molecules
aggregate and accumulate in the ER, inducing ER stress and causing the death of photoreceptors,
leading to progressive vision loss [5]. A cure is currently not available for these protein conformational
diseases, and even if potential treatments such as gene therapy and 9- or 11-cis-retinal precursors are
under investigation, none of them can slow down the progression of retinal degeneration and the loss
of photoreceptive neurons [3]. One promising approach to prevent opsin misfolding and to induce it
proper trafficking to the outer photoreceptor cell membrane are chemical chaperones: small-molecule
compounds able to bind opsin by occupation of the main 11-cis-retinal binding site, thus inducing its
proper folding and correct trafficking [6]. Over recent years, different compounds on top of retinoid
analogues have been explored for their potential to bind wild-type and mutated opsins, and their
ability to induce their physiological trafficking and interfere with ER stress and photoreceptor cell
death. Figure 1 summarises the chemical structures of the most active non-retinoid structures reported
so far [6–8].
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The aim of this study was to apply computer-aided methods to identify novel small molecules able
to bind opsin and eventually act as chemical chaperones to induce opsin folding and enable its proper
trafficking in the absence of endogenous chromophore or in the presence of destabilising mutations.
Such compounds may ultimately lead to the development of novel treatments to prevent photoreceptor
death and vision loss in patients affected by RP and LCA. To attain this goal, a structure-based
virtual screening of commercial compounds was performed on the main chromophore-binding site of
rhodopsin, leading to the identification of different agents able to affect the rate constant (K) formation
of the 9-cis-retinal-rhodopsin complex. Some of these molecules were able to increase the trafficking
of P23H rhodopsin mutant from the ER to the cell membrane. A series of additional computational
studies elucidated key structural features that support two possible mechanisms by which chemical
chaperones can increase opsin structurally stability, both potentially relevant for the development of
novel therapeutic options for RP and LCA.

2. Results and Discussion

2.1. Structure-Based Virtual Screening

The crystal structure of bovine rhodopsin cocrystallised with 11-cis-retinal (PDB ID: 1U19,
93% identity with the human rhodopsin) was used to perform a structure-based virtual screening of
the SPECS library [9,10], a collection of 300,000 commercially available compounds with favourable
drug-like properties. 11-cis-retinal is bound to the chromophore active site by forming a Schiff base
with Lys296 and an H-bond with Glu113. Interactions between the ionone ring and the hydrophobic
portion of the binding site formed by Met207, Phe212, Phe261, Trp265 and Ala269 further stabilise
the 11-cis-retinal binding. The hydrophobic area is believed to be an essential recognition site for
the ionone ring and for the binding to the chromophore pocket, as also confirmed by the ability of
the shortened retinal derivative, β-ionone, to competitively inhibit the binding of 11-cis-retinal to
rhodopsin, but without causing any physiological effect on opsin trafficking (Figure 2) [11–13].
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The binding site area is represented as the molecular surface. Rhodopsin is represented as the lilac
ribbon. The ribbon for residues 261–271 and 289–295 is hidden for clarity.
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The glide high-throughput virtual screening tool (HTVS) [14], which uses the Glide-HTVS scoring
function, was employed to virtually screen the SPECS database against the selected binding area.
The best 24 compounds according to this initial screening were then redocked in the 11-cis-retinal
binding site using the more accurate standard-precision glide docking mode (GlideScore SP). In order
to avoid any potential bias associated with the use of a single docking program/scoring function,
the docking results (docking poses) were then rescored using three different scoring functions: Glide
XP, CHEMPLP (PLANTS) and FlexX Score (Seesar) [14–16]. After applying a consensus score procedure
(see Section 4.1.1) 1200 molecules were chosen and their potential interactions with the protein binding
site were visually inspected. Twenty-four virtual hits were selected (Figure 3), purchased and evaluated
in a competitive-binding assay (see Section 2.2). As an example, the potential binding for compound 5
is shown in Figure 4. The molecule perfectly overlaps with the cocrystallised 11-cis-retinal, placing
its sec-butylbenzene portion in the hydrophobic area and forming H-bonds with Glu181, Ser186 and
Lys296. The occupation of the chromophore pocket could reflect on the ability of 5 to act as potential
chaperone for rhodopsin folding in the absence of its endogenous ligand.
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2.2. Competitive Binding Assay

The 24 compounds selected in silico were evaluated for their ability to bind rhodopsin,
by monitoring the regeneration rate of bovine isorhodopsin through time-dependent UV–Vis
spectroscopy. As previously reported, the addition of 9-cis-retinal to rhodopsin, a chromophore
with similar photoactivation properties but more stable than 11-cis-retinal, resulted in a time-dependent
increase in optical density at 485 nm [1,17]. A compound able to compete with 9-cis-retinal for the
binding to rhodopsin should reduce the rate constant (K) of the rhodopsin-9-cis-retinal complex
formation. The compounds, tested at fixed concentration (Section 4.2.2), were preincubated for
30 min with freshly bleached isorhodopsin followed by addition of 9-cis-retinal. The rate constant
K of the complex regeneration was calculated and compared to mock preincubated samples with
vehicle only (DMSO, K = 0.48 ± 0.01 min−1, t1/2 = 1.52 ± 0.1 min, mean ± SEM). β-ionone, CF35EsC
and CF35Es were used as references. CF35EsC and CF35Es were synthesised as reported in the
(Supplementary Materials Figure S1). As expected, β-ionone significantly reduced the regeneration
kinetic (K = 0.20 ± 0.01 min−1, t1/2 = 3.52 ± 0.3 min), confirming its ability to occupy the chromophore
binding site (Figure 5 and Table S1).

Both standards, CF35EsC and CF35Es, have been previously reported as being able to induce
proper trafficking of P23H rhodopsin from ER to the cell surface, but their direct binding to the
chromophore active site has only been speculated and not directly confirmed [8]. Our data suggest
that while CF35Es, to some extent, competed for the occupation of the chromophore site, as shown
by the 10% decrease of K value (K = 0.42 ± 0.05 min−1) compared to DMSO, CF35EsC possessed an
unexpected ability to increase the K value by over 20% (K = 0.61 ± 0.09 min−1). Combining our data
with what was previously reported [8], CF35EsC could act as an allosteric modulator of rhodopsin,
either by facilitating the retinal access to the binding site enhancing and speeding up the formation of
the opsin-9-cis-retinal complex, or by stabilising the already formed complex. Previous studies have
reported β-ionone as an enhancer of the catalytic activity of different visual pigments, in which the
chromophore-binding site was already occupied, potentially acting as an allosteric modulator [18].
Ortega et al. described a series of flavonoids as potential allosteric modulators able to enhance opsin
stability by modulating its conformation [19]. In a similar way, CF35EsC could still occupy the binding
site of retinal, but the ability of facilitating/stabilising the rhodopsin-9-cis-retinal complex formation
appears to be predominant. In general, compounds able to stabilise rhodopsin (stabilisers) and prevent



Molecules 2020, 25, 4904 6 of 24

its degradation, in the absence of 11-cis-retinal (LCA) or in the presence of aberrant mutations that
impair its folding and structural stability (RP), could provide a novel therapeutic mechanism to further
explore, in addition to the desired chaperone function by occupation of the main chromophore binding
site. Of the 24 molecules tested, four compounds (6: K = 0.43 ± 0.01 min−1; 8: K = 0.40 ± 0.02 min−1;
20: K = 0.35 ± 0.02 min−1; 23: K = 0.37 ± 0.04 min−1) exhibited a promising decrease by 10% (or over)
of the rate constant K, showing the ability to bind the chromophore pocket and compete with 9-cis-retinal.
In particular, 20 presented the best activity profile reducing K by 20%. Interestingly, five molecules
(1: K = 0.64 ± 0.09 min−1; 4: K = 0.56 ± 0.06 min−1; 7: K = 0.61 ± 0.08 min−1; 10: K = 0.56 ± 0.06 min−1;
22: K = 0.66 ± 0.09 min−1) presented the same behaviour found for CF35EsC increasing the
K value by 10–20%, potentially possessing the ability to stabilise and enhance the opsin-9-cis-retinal
complex formation.Molecules 2020, 25, x FOR PEER REVIEW 7 of 29 
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Figure 5. Effect of compounds 1–24 (compound concentration 10 times 9-cis-retinal) on the rate
constant (K) of bovine isorhodopsin regeneration. After bleaching, compounds were preincubated
for 30 min followed by addition of 9-cis-retinal. β-ionone, CF35EsC and CF35Es were used as
positive controls. Compounds were considered ‘hit’ when K ≥ 10% decreased (dotted line) or ≥20%
increased (dashed line) compared to DMSO. Bars represent mean ± SEM of pooled data (at least
three independent measurements). Data were analysed using one-way ANOVA, followed by Fisher’s
LSD (Least Significant Difference) test versus DMSO controlled for false discovery rate (FDR) by the
two-stage step-up method of Benjamini, Krieger and Yekutieli # = discovery with q < 0.05. No data
were obtained for 5, 11 and 12 due to solubility issues at the tested concentration.

No pan-assay interference compounds (PAINS) were found on the molecules presenting activity
after checking their chemical structure in two different web servers [20,21], providing at this stage
two potential different classes of compounds with therapeutic potential for RP and LCA: molecules,
which compete for the binding to the chromophore pocket, which could act as chemical chaperones,
and molecules, which seem able to facilitate/stabilise the opsin-9-cis-retinal complex, which could act
as opsin stabilisers by binding to a different site. Both types of molecules were further explored both in
silico and in vitro, as detailed below.

2.3. Molecular Modelling Studies on the Chromophore Binding Pocket

In order to further explore the binding of our hit molecules to opsin, 100 ns molecular dynamic
(MD) simulations were performed on the rhodopsin structure, both free and in complex with the
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cocrystallised 11-cis-retinal, using the Desmond software package [22,23]. All simulations were run in
triplicate. Overall, after an initial 40 ns of equilibration, the presence of 11-cis-retinal seemed to confer
a higher stability to rhodopsin, with the simulation system converging around a fixed RMSD value,
as shown by the small C-alpha RMSD variation (Figure S2). On the contrary, the ligand-free opsin
was not able to reach stability after 40 ns and the RMSD value was still growing toward the end of
the simulation (Figure S2). Interestingly, this result seemed in line with the findings that 11-cis-retinal
is required to enhance rhodopsin intrinsic stability and it is an indication of the reliability of the
simulation system used [1,17,19]. In order to validate the binding mode suggested by the docking
program, and to find a rational discrimination between active and inactive molecules, a series of 100 ns
MD simulations were also carried out on selected compounds (6, 8, 9, 13, 17, 20, 21, 22, 23, CF35EsC
and CF35Es). The compounds’ relative binding free energies (∆Gbinding) were then calculated using
the Prime/MM-GBSA calculation method (Table 1) [24].

Table 1. Calculated ligand interaction energies for the compounds analysed after the molecular
dynamic simulations.

Compound ∆Gbinding (kJ/mol) a
± SD

6 −67.08 ± 9.93
8 −73.18 ± 6.43
9 n.c.

13 −68.12 ± 5.76
17 −63.93 ± 5.79
20 −77.93 ± 5.71
21 n.c.
22 n.c.
23 −74.30 ± 5.93

CF35EsC −60.53 ± 5.62
CF35Es −64.25 ± 4.51

a ∆Gbinding average values calculated as the mean from three independent molecular dynamic (MD) simulations
(triplicate) for each compound. For each replicate, the ∆Gbinding value was calculated excluding the first 40 ns
of MD, in which the system protein–ligand reached stability, except for compounds 9, 21 and 22. The ∆Gbinding
values were extracted every 0.33 ns for each replicate. Standard deviation (SD) is reported. n.c. = not calculated:
simulation systems that are not able to equilibrate due to the presence of the compounds are considered not reliable
for a rigorous analysis and ∆Gbinding calculation. New compounds defined as hits by the isorhodopsin regeneration
assay are printed in bold.

All the protein–ligand systems, with the exception of the ones with compounds 9, 21 and 22,
reached stability after 40 ns, in line with the 11-cis-retinal-rhodospin complex, and therefore only the
remaining 60 ns of the simulations were considered in our analysis (Figures S3 and S4). In general,
the four active molecules (6, 8, 20 and 23) tended to optimise their occupation of the active site,
maintaining a stable position during the entire MD simulation. In particular, the compounds seemed
to adjust their orientation toward the hydrophobic portion of the binding site, creating hydrophobic
contacts with the surrounding residues (i.e., Met207, Phe212 and Trp265), which were maintained for
the entire simulation. The stable occupation of this area could confer to these four molecules their
ability to compete for the chromophore-binding pocket. Moreover, the ∆Gbinding values obtained
further confirmed their potential to interact with the active site and appeared to be in line with the
competitive bidding assay results. The best ∆Gbinding was found for compound 20, in line with this
compound’s lowest observed K value. Binding of 20 and 23 is shown in Figure 6 as an example.
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Figure 6. Binding mode for 20 (carbon atoms in cyan) (A) and 23 (carbon atoms in orange) (B) after MD
simulation. The binding site area is represented as the molecular surface. Rhodopsin is represented as
the lilac ribbon. Ribbon for residues 261–271 and 289–295 is hidden for clarity.

Simulation systems for 9 and 21 were not able to equilibrate during the entire MD, indicating
that these molecules were not likely to bind the chromophore pocket. Both molecules presented
highly variable results in terms of occupation of the binding site in each simulation performed, further
confirming the inability of 9 and 21 to consistently occupy the chromophore pocket, in line with the
negative results obtained in the competitive binding assay (Figure 7A,B). Although the 17-rhodhopsin
complex does reach stability after 40 ns, as with the active molecules, variable binding modes were
obtained, indicating that 17 is also not likely to compete for binding to the active site (Figure 7C).

The MD results predict that 13 should bind to the chromophore active site, with its ∆Gbinding

suggesting it should provide a reduction of the K value similar to 6. This inconsistency between the
competitive binding assay and the molecular modelling prediction could be caused by the simultaneous
presence of both potential effects detected on the competitive binding assay, which could affect the
final read out of the assay itself. 13 may still occupy the main chromophore binding area, as predicted
by the MD simulations, but it may also be able to stabilise the formation of the rhodopsin-9-cis-retinal
complex, thus affecting the outcome of the competitive binding assay. The failure of the simulation
system to reach equilibration in all the three experiments for 22, associated with the highest increase
for the K value, suggests that this compound is not likely to compete for the chromophore active
site, and it may act purely as a stabiliser of the rhodopsin-9-cis-retinal complex. According to the
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calculated ∆Gbinding, carboxylic acid derivative CF35EsC seems to possess a limited ability to bind the
chromophore site, in line with the competitive binding assay results. On the other hand, the aldehyde
moiety on CF35Es could form a transient Schiff base with rhodopsin (∆Gbinding calculation cannot
predict covalent interactions), as also confirmed by the vicinity of this group to Lys296 during the MD
simulation (Figure 8), potentially making this compound much more stable in the binding site than
CF35EsC, thus potentially explaining its ability to reduce the K value.
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Figure 8. Binding mode for CF35Es (carbon atoms in light yellow) after MD simulation. The aldehyde
moiety of CF35Es is placed nearby Lys296 during the entire simulation. The binding site area is
represented as the molecular surface. Rhodopsin is represented as the lilac ribbon. Ribbon for residues
261–271 and 289–295 is hidden for clarity.
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In order to find possible common structural features among the compounds able to bind the
chromophore pocket, a pure ligand-based approach was performed. This approach uses a molecular
field points-based similarity method to generate a series of low-energy conformations for each
compound [25,26]. The molecular field points define the shape, electrostatic and hydrophobic
properties of a molecule and their spatial distribution. The lowest energy conformation and its
associated 3D electrostatic-hydrophobic and shape properties for 20 and 23, the compounds showing
the best activity profile, were then generated. These electrostatic and hydrophobic properties of the two
conformations obtained were then compared and used to derive a pharmacophore model to identify
common motifs between the two active molecules [26,27]. Figure 9 shows the resulting pharmacophore
model. Two well distinct and separated regions can be identified: a positive electrostatic region, in red,
and a negative electrostatic region, in cyan. The other compounds were then aligned with the identified
pharmacophore, using a field-based alignment approach, to identify potential differences between
active and inactive molecules. Interestingly, the best alignment results obtained for the inactive/weakly
active compounds present a quite different distribution of the two electrostatic regions in comparison
with the active pharmacophore query. The separation between the positive and the negative region
was less distinct, with the distribution of the negative filed area remarkably less wide (13 and 17), or in
a completely different orientation (9), for the inactive compounds (Figure 9). Compounds 6 and 8 are
characterised by a wide negative electrostatic region oriented correctly, matching the pharmacophore
model for the active molecules (Figure 9).
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Figure 9. 3D electrostatic–hydrophobic and shape properties. The pharmacophore model generated
from 20 and 23 presents two well distinct and separated regions: a positive electrostatic region,
in red, and a negative electrostatic region, in cyan. The rest of the compounds were aligned with the
pharmacophore, using a field-based alignment approach. Results for 6 and 8 are shown as an example
of compounds matching the pharmacophore.

A further calculation of the protein–ligand electrostatic complementarity for some of the active
molecules, comparing the protein and ligand electrostatic potential (ESP) values, revealed the presence
of a positive ESP surface on the binding pocket that could facilitate the binding of a ligand possessing
a large negative ESP [26,28,29]. Figure 10 displays compound 20 placing its large negative electrostatic
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area, having as the centre the thiazolidinedione ring, in correspondence to this positive portion of the
protein, showing a high electrostatic complementary with the binding pocket. According to these
findings, the presence of a well-defined negative electrostatic region on the compound appears to be
an essential feature, and its electrostatic complementarity with the positive portion of binding site a
critical factor, for the ligand–protein interaction.Molecules 2020, 25, x FOR PEER REVIEW 13 of 29 
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Figure 10. Electrostatic potential (ESP) of the binding pocket (A) and of compound 20 (B). Red colour
indicates a positive ESP region and blue colour negative ESP region. 20 places its large negative
electrostatic area (blue) in correspondence of the positive portion of the protein (red). Protein compound
20 electrostatic complementarity (C). Green colour indicates complementarity between protein and
ligand, while red indicates an electrostatic clash. Binding mode for compound 20 obtained after
MD simulation.

2.4. Molecular Modelling Studies to Investigate the Observed Stabilisation Effect of the Rhodopsin-9-cis-
Retinal Complex

According to our competitive binding assay, some of the selected molecules increase the rate
constant K for the formation of the rhodopsin-9-cis-retinal complex, and could therefore act as allosteric
modulators/stabilisers of rhodopsin structure, either by facilitating the retinal access to its main binding
site, or by stabilising its interaction with this site. Different alternative binding pockets on the opsin
structure have been previously suggested, but none of them has been directly confirmed through
cocrystallisation with any active molecule so far [19,30]. Although the exact mechanism behind the
ability of β-ionone to increase the catalytic activity of different visual pigments without interacting with
the chromophore-binding site is still not known [18], a crystal structure in complex with rhodopsin
in which the chromophore-binding pocket is already occupied by 11-cis-retinal has been resolved
by Makino et al. [13]. In this structure, β-ionone is bound to a small, surface-exposed and highly
hydrophobic pocket formed by Phe283, Gly284, Pro285, Ile286, Phe287, Met288 and Ile290, mainly
forming hydrophobic interactions with the surrounding residues (Figure 11). The pocket is not distant



Molecules 2020, 25, 4904 12 of 24

from the primary chromophore-binding site, and it is present in both bovine opsin-11-cis-retinal
complex and in ligand-free opsin crystal structures [9,31]. Furthermore, Behnen et al., studied the
effect of different mutations in weakening the network of native links that confers stability to opsin,
and some of these mutations weaken the network of interactions mainly in an area that is in close
proximity to the β-ionone binding pocket [32]. Binding of β-ionone or other small molecules in this
pocket could have a stabilising effect on this network, enhancing the intrinsic stability of native opsin.
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Figure 11. Crystal structure ofβ-ionone (carbon atoms in green) in complex with rhodopsin in which the
chromophore-binding pocket is already occupied by 11-cis-retinal (carbon atoms in garnet). β-ionone is
bound to a small, surface-exposed and highly hydrophobic pocket. The binding site area is represented
as the molecular surface. Rhodopsin is represented as the lilac ribbon. On the binding site cut out
rhodopsin is represented as a lilac tube for clarity.

The identified compounds able to increase K for the formation of the opsin-9-cis-retinal complex
could likely interact with the same secondary pocket, thus facilitating/stabilising the formation of the
opsin-11-cis-retinal complex. Molecular docking studies show that all compounds able to increase
K (1, 4, 7, 10, 13 and 22), on top of the two reference molecules included in our assay (CF35EsC and
CF35Es), have the potential to interact with this secondary pocket, placing one hydrophobic portion of
their structure inside the binding cavity, similarly to the binding of the β-ionone cyclohexenyl ring
found in the crystal structure. Predicted binding of CF35EsC, 4, 7, 13 and 22 to this secondary site
is shown in Figure 12. Compound 7 is also establishing multiple H-bonds with Asp282, which can
further stabilise the molecule on the binding site.

Interestingly, the chemical structure of all these compounds is characterised by either an extended
planar hydrophobic region, or by two hydrophobic areas with a spatial orientation, which is relatively
coplanar (Figure 13). Combination of hydrophobicity and coplanarity may be an essential feature to
correctly occupy this shallow hydrophobic pocket, and to act as potential allosteric modulators of
rhodopsin. Although 17 is characterised by two hydrophobic areas, the lack of coplanarity between
them does not allow the molecule to correctly interact with the pocket, in line with its inability to affect
K found in the competitive binding assay (Figure 14).
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Figure 13. Hydrophobic region of the potential allosteric compounds. Compounds present either an
extended planar hydrophobic region or two hydrophobic areas with a spatial orientation, which is
relatively coplanar. The best scored molecular docking pose for each compound on the secondary
binding pocket and the cocrystallised β-ionone were used for the hydrophobic surface calculation.
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their potential cytotoxicity using two different cell lines: HepG2 and ARPE-19. HepG2 cells are 
widely used as an in vitro model for the detection of liver toxicity [33], while ARPE-19 cells are models 
for human retinal pigment epithelial cells. Most compounds showed no toxic effect in both cell lines 
(Figure 15), with the only exception of 7 and 23, which reduced ARPE-19 and HepG2cell viability by 
around 20% respectively, and 13, which reduced cell viability by around 60% in both cell lines. 
Overall, the compounds can be considered as not having any relevant cytotoxic effect, except for 13, 
and were then evaluated for their pharmacologic potential in a more specific rhodopsin rescue cell-
based assay. 

Figure 14. Hydrophobic region for 17 and its potential binding mode on the secondary pocket.
The compound presents two hydrophobic areas, which are not coplanar. β-ionone carbon atoms are in
green. The binding site area is represented as molecular surface. Rhodopsin is represented as the lilac
tube for clarity.

2.5. Evaluation of Cytotoxic Effects for Selected Hit Compounds

The most interesting compounds, including the two standards and β-ionone, were tested for their
potential cytotoxicity using two different cell lines: HepG2 and ARPE-19. HepG2 cells are widely
used as an in vitro model for the detection of liver toxicity [33], while ARPE-19 cells are models for
human retinal pigment epithelial cells. Most compounds showed no toxic effect in both cell lines
(Figure 15), with the only exception of 7 and 23, which reduced ARPE-19 and HepG2cell viability by
around 20% respectively, and 13, which reduced cell viability by around 60% in both cell lines. Overall,
the compounds can be considered as not having any relevant cytotoxic effect, except for 13, and were
then evaluated for their pharmacologic potential in a more specific rhodopsin rescue cell-based assay.Molecules 2020, 25, x FOR PEER REVIEW 18 of 29 
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The cell viability was determined as a percentage of vehicle control-treated cells (DMSO). Bars represent
mean ± SEM of at least three independent measurements. Data were analysed using a one-way
ANOVA, followed by a Fisher’s LSD test versus DMSO controlled for false discovery rate (FDR) by the
two-stage step-up method of Benjamini, Krieger and Yekutieli. # = discovery with q < 0.05.

2.6. Immunofluorescence Microscopy

In this experiment, the localisation of P23H human rhodopsin His-tag (hRHO P23H
His-Tag) was evaluated by immunostaining under both cell membrane non-permeabilised and
membrane-permeabilised conditions. Rhodopsin trafficked to the cell membrane was detected with an
anti-rhodopsin antibody (RetP1, which recognise an extracellular epitope) under non-permeabilised
conditions. The total expressed rhodopsin was then detected with an anti-His-tag antibody after the
cell membrane was permeabilised. In U2OS cells transiently transfected with hRHO WT His-tag,
anti-rhodopsin staining (red) showed proper trafficking of rhodopsin with homogeneous distribution
on the cell membrane in the presence of 9-cis-retinal that was minimally affected by the absence of
9-cis-retinal, as expected for wild-type human rhodopsin in this assay (Figure S5). This is in line with
previous findings [34] and suggests that a small tag (His-tag) at the C-terminus of wild-type rhodopsin
does not affect its correct trafficking to the membrane. Additionally, in accordance with a previous
study [34], in the established cell line, P23H mutant rhodopsin failed to show proper trafficking and a
homogeneous cell surface distribution, which was substantially rescued when cells were incubated
with 9-cis-retinal (Figure 16A). Cells treated with the two standards CF35EsC and CF35Es also showed
a mild improvement in P23H mutant opsin localisation on the membrane (Figure 16B, red). Among our
hit compounds, only 7, 13, 20 and 23 elicited a detectable increase in the trafficking of P23H mutant from
the ER to the cell membrane (Figure 17A,B). For the remaining compounds, only reticular distribution
consistent with ER retention was detected (Figure 18). According to our molecular modelling studies,
7 and 13 are likely to act as rhodopsin stabilisers, with a stabilisation effect of rhodopsin 3D structure
by binding to a secondary site, whereas 20 and 23 are likely to act as chemical chaperones, competing
for the binding to the main chromophore pocket. In both cases, the correct folding of mutant P23H
rhodopsin was partially restored, allowing its proper trafficking to the membrane. Although 13 was
found to be toxic, its mild ability of increasing the trafficking of the P23H mutant can be considered a
very promising starting point for further development of its molecular scaffold.
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Figure 16. Subcellular localisation of hRHO P23H His-Tag in the presence of 9-cis-retinal (A),
CF35EsC and CF35Es (B). 9-cis-retinal was tested at 5 µM, whereas CF35EsC and CF35Es at 20 µM.
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3. Conclusions and Future Works

In the presented work, the chromophore-binding site of rhodopsin was selected to perform a
structure-based virtual screening of commercially available, drug-like compounds (300,000). Rhodopsin
is involved in the transmission of the visual signal in the retina and its misfolding/mistrafficking,
due to the absence of endogenous chromophore 11-cis-retinal or to structurally destabilising mutations,
causes different severe inherited eye diseases, ultimately leading to blindness. The development of
small molecules chemical chaperones for rhodopsin provides an attractive approach to promote its
proper folding and trafficking, which would allow to slow down photoreceptor cell death and vision
loss in patients affected by retinitis pigmentosa and Leber congenital amaurosis. Twenty-four virtual
hits selected with our in silico approach were examined for their ability to compete with 9-cis-retinal for
the binding of rhodopsin chromophore site, monitoring the regeneration rate of bovine isorhodopsin
through time-dependent UV–Vis spectroscopy. Four candidates were found to have a promising
ability to reduce the rate constant (K) for the formation of the 9-cis-retinal-opsin complex by 10–20%,
acting as potential chemical chaperones for opsin. Five molecules were found to facilitate/stabilise
the opsin-9-cis-retinal complex by increasing the rate constant for its formation, thus revealing their
potential to act as stabilisers of the protein 3D structure. Among these hits in the first assay, 7, 13, 20 and
23 were able to induce the correct folding of mutant P23H rhodopsin, allowing its proper trafficking to
the membrane in a fluorescent immunohistochemistry cell-based assay. These compounds did not
show any relevant cytotoxicity in two different human cell lines (HepG2 and ARPE-19), with the only
exception of 13.

Molecular modelling studies revealed that in order to compete for the chromophore-binding
pocket, a molecule requires a hydrophobic region to interact with the hydrophobic area of the active
site (the recognition site for the ionone ring of 11-cis-retinal and β-ionone), along with a well-defined
negative electrostatic region, electrostatically complementary with the positive portion of the binding
site. A secondary binding pocket, not distant from the primary chromophore-binding site and occupied
by β-ionone in one rhodopsin crystal structure, was revealed by our studies as a putative target for
compounds acting as potential allosteric stabilisers of the rhodopsin structure. Molecular modelling
investigations showed that a combination of hydrophobicity and coplanarity are essential features
for a molecule to interact with this surface-exposed and highly hydrophobic secondary pocket.

In conclusion, different novel scaffolds were found to act as potential rhodopsin chaperones or
stabilisers. Their effect to induce the correct folding of mutant P23H rhodopsin in a cell-based assay
was moderate. Poor cell membrane permeability of the compounds may have prevented a more
pronounced effect. Future structural optimisation will be performed to improve the physical–chemical
properties of these compounds, either to optimise their cell permeability, or to reduce any associated
toxicity, a priority for compound 13.

Important insights have been obtained on the structural features required for a molecule to act
either as a chaperone or stabiliser through in silico studies: these will guide further structure–activity
relationship optimisation efforts of the new hit molecules, and provide a valuable piece of information
to perform new ligand-based virtual screenings of larger compound libraries. These findings represent
a major starting point for the continued development of novel compounds that can act as rhodopsin
folding chaperones/stabilisers for the treatment of severe inherited eye diseases whose molecular basis
is opsin misfolding and mistrafficking. In particular, our newly developed pharmacophoric models for
the two possible binding modes to opsin lay the groundwork for these future studies.

4. Materials and Methods

4.1. Molecular Modelling

All molecular modelling experiments were performed on Asus WS X299 PRO Intel® i9-10980XE
CPU @ 3.00GHz × 36 running Ubuntu 18.04 (graphic card: GeForce RTX 2080 Ti). Molecular Operating
Environment (MOE, 2019.10, Montreal, QC, Canada) [35], Maestro (Schrödinger Release 2020-2, New



Molecules 2020, 25, 4904 19 of 24

York, NY, USA) [14], PLANTS [15], Seesar (version 9.2, containing FlexX, Sankt Augustin, Germany) [16]
and Cresset Inc. (2020, Litlington, UK)) [25,27,28] were used as molecular modelling software. A library
of commercially available compounds was downloaded from the SPECS website (www.specs.net)
in the sdf format and prepared using the Maestro LigPrep tool by energy minimising the structures
(OPLS_2005 force filed), generating possible ionisation states at pH 7 ± 2 (Epik), generating tautomers,
generating at most 3 stereoisomers per ligand and low-energy ring conformers. All the compounds
featuring chiral centres were purchased as racemic mixtures from SPECS. Up to 3 stereoisomers per
chiral compound were considered for the virtual screening process and only the best performing
stereoisomer per molecule has been selected for the visual inspection. Stereochemistry of the best
performing stereoisomer for chiral compounds is as follows: 2 (S), 3 (R), 5 (R), 15 (S, S) and 18 (R).

4.1.1. Molecular Docking

The crystal structure of bovine rhodopsin was downloaded from the PDB (http://www.rcsb.org/;
PDB code 1U19). The protein was prepared using the MOE Protein Preparation tools, the bond between
11-cis-retinal and Arg296 (Schiff base) was disconnected and the resulting protein–ligand complex
saved in three different format: pdb (to be used for FlexX rescore), mol2 (to be used for PLANTS
rescore after removing the 11-cis-retinal) and mae (to be used in Maestro to perform the HTVS study).

The protein in the mae format was preprocessed using the Schrödinger Protein Preparation Wizard
by assigning bond orders, adding hydrogens and performing a restrained energy minimisation of the
added hydrogens using the OPLS_2005 force field. A 9 Å docking grid (inner-box 10 Å and outer-box
19 Å) was prepared using as the centroid the cocrystallised 11-cis-retinal. An HTVS of the SPECS
library was performed using Glide HTVS precision keeping the default parameters and setting 1 as
the number of output poses per input ligand to include in the solution. The best 25,000 compounds
were then redocked using the more accurate Glide SP precision keeping the default parameters and
setting 3 as the number of output poses per input ligand to include in the solution. The docking results
obtained were then rescored using Glide XP, FlexX Score and CHEMPLP (PLANTS) scoring functions.
The values of the three different scoring functions for each docking pose were then analysed together
(consensus score) and only the docking poses falling in the top 25% of the score value range in all the
three scoring functions were selected for the final visual inspection.

The visual inspection process, conducted as last step of the structure-based virtual screening,
was performed using MOE 2019.10. The docking poses of the compounds obtained from the consensus
score procedure were evaluated considering the following criteria:

• Ability of a compound to overall occupy the binding site;
• Number of interactions formed between the compound and the target protein (H-bonds, pi–pi

interactions, etc.);
• Coverage of different chemical scaffolds, discarding similar chemical entities.

The crystal structure of bovine rhodopsin in complex with β-ionone was downloaded from the
PDB (http://www.rcsb.org/; PDB code 3OAX). The protein was preprocessed using the Schrödinger
Protein Preparation Wizard as reported above and a 12 Å docking grid (inner-box 10 Å and outer-box
22 Å) was prepared using as a centroid the cocrystallised β-ionone. Docking of the virtual hit molecules
and the two standards in the new potential secondary binding site was performed using Glide SP
precision keeping the default parameters and setting 5 as the number of output poses to include in
the solution. The docking output database was saved as the mol2 file and the docking poses visually
inspected for their binding mode in MOE. The hydrophobic surface of each compound was created in
Flare using the best scored molecular docking pose on the secondary binding pocket.

4.1.2. Molecular Dynamics

Molecular dynamics simulations were performed using the Desmond package for MD simulation,
employing OPLS_2005 force field in the explicit solvent and the TIP3 water model. The initial

www.specs.net
http://www.rcsb.org/
http://www.rcsb.org/
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coordinates for the MD simulation were taken from the best docking poses obtained for each single
compound in the structure-based virtual screening. A cubic water box was used for the solvation of
the system, ensuring a buffer distance of approximately 10 Å between each box side and the complex
atoms. The systems were neutralised adding 7 sodium counter ions. The system was minimised
and pre-equilibrated using the default relaxation routine implemented in Desmond. A 100 ns MD
simulation was performed, during which the equation of motion was integrated using a 2 fs time step
in the NPT ensemble, with a temperature (300 K) and pressure (1 atm) constant. All other parameters
were set using the Desmond default values. Data were collected every 8.5 ps (energy) and every 33.3 ps
(trajectory). Each simulation was performed in triplicate, every time using a random seed as a starting
point. Visualisation of the protein–ligand complex and MD trajectory analyses were carried out using
Maestro. RMSD, secondary structure and protein–ligand interactions analyses were performed using
the Simulation Event Analysis tool and the Simulation Interaction Diagram of Desmond. The ∆Gbinding

values of the protein–ligand complex were calculated using the MM/GBSA method as implemented in
the Prime module from Maestro using the default settings and the Maestro script termal_mmgbsa.py.
Briefly, the script takes in the MD trajectory from the last 60 ns of simulation, splits it into individual
frame snapshots (extracted every 0.33 ns, for a total of 181 frames), and runs each one through MMGBSA
(after deleting waters and separating the ligand from the receptor). For each simulation triplicate, an
average ∆Gbinding values for the final 60 ns was calculated.

4.1.3. Molecular Field-Based Similarity and Electrostatic Complementarity Studies

The 3D electrostatic and shape properties of compounds were constructed using Forge v3.0
software (Cresset Inc., Cambridgeshire, UK). Firstly, the FieldTemplater tool, implemented in Forge
software, was used to derive a pharmacophore model by comparing the electrostatic and hydrophobic
property of the active compounds 20 and 23. Consequently, each compound was subjected to a
field-based alignment to the pharmacophoric template. This method is based on a 3D-shape and
electrostatic potential similarity calculated by the alignment and superposition between the reference
compound and the compounds in the database according to their electrostatic distribution and volume
occupied. Field point-based descriptors were used to compare the electrostatic and hydrophobic
distribution of each molecule. Default settings were used.

The electrostatic complementarity was calculated using Flare v4.0 (Cresset Inc., Cambridgeshire,
UK). Electrostatic complementarity (EC) maps were based on a calculation of ESP value for the
ligand and the protein: regions of ligand surface are coloured green if there is perfect electrostatic
complementarity with the protein, while they are coloured red if there is an electrostatic clash. Default
settings were used.

4.2. Biological Assays

4.2.1. Retina Outer Segments (ROSs) Isolation from Bovine Eyes

Bovine eyes were obtained from a local abattoir and shipped on ice in light protective
containers. Isolation of ROS was performed under dim red light following a modified protocol
from Papermaster [36]. Briefly, an excised retina was gently homogenised in sucrose buffer (1.14 M
Sucrose, 1 M NaCl, 0.1 M MgCl2 and 1 M Tris-acetate in H2O) and separated through a sucrose density
gradient (0.77 M, 0.84 M and 1.14 M sucrose) through serial ultracentrifugation (at 4 ◦C). Isolated
ROS were resuspended in phosphate buffer (PBS) and quantified for opsin and rhodopsin content
with a UV–Vis spectrophotometer using the absorption coefficient ε280 nm = 81,200 M−1 cm−1 and
ε500 nm = 40,600 M−1 cm−1, respectively.

4.2.2. Competitive Binding Assay

ROS membranes containing opsin were suspended in PBS buffer containing 1%
N-dodecyl-b-maltoside (DM) at a final concentration of 20–25 µM. The compounds were incubated
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with the resuspended opsin for 30 min at room temperature at a concentration 10 times the
predetermined concentration of opsin. The mixture was then bleached with green laser pointer
light for 2 min. UV–visible spectra of the samples were measured before addition of 9-cis-retinal
(equimolar concentration of opsin) and after treatment at time points: 0, 1, 2, 3, 4, 9, 14, 19, 24 and
29 min. Compounds CF35EsC, CF35Es [8] and β-ionone were used as positive controls. The kinetics
of isorhodopsin regeneration were repeated at least three times for each condition. The time course of
isorhodopsin regeneration (at 485 nm) was fitted by a one-phase association equation and rate constant
(K) were calculated using GraphPad Prism 7.0 (Graphpad Software, (La Jolla, CA, USA)).

4.2.3. Cell Culture

Cells were maintained in DMEM (HepG2) or DMEM/F12 1:1 (ARPE-19 and U2OS), enriched with
10% foetal bovine serum (Sigma Aldrich and Gibco) and cultured under standard culture conditions
(in the dark, 37 ◦C, 5% CO2 and 95% relative humidity (rH)). All media (Gibco, Renfrew, UK and Pan
Biotech, Wimborne, UK) were supplemented with antibiotics (100 units/mL penicillin and 1 µg/mL
streptomycin, (Gibco, Renfrew, UK) and Glutamax (Gibco) as 1% of volume in a mixed solution.
U2OS cells were kindly gifted by Prof. Trevor Dale (Cardiff University) and used to generate the
stable cell line expressing—in the presence of tetracycline—the human rhodopsin gene bearing P23H
mutation and a 6 histidines tag (His-Tag, C-terminus). ARPE-19, human RPE cell line was purchased
from ATCC (CRL-2302), while the HepG2 cell line was kindly provided by Prof. Karl Hoffmann’s lab,
IBERS (Aberystwyth University).

4.2.4. Determination of Cell Viability Assessed by CellTiter-Blue

To quantify the amount of live and dead cells, CellTiter-Blue Cell Viability Assay (Promega,
Southampton, UK) was used as recommended by the manufacturer. Briefly, the day prior to the
assay cells were seeded in 96-well plates (1 × 104 per well) in culture media containing 1 g/L glucose
supplemented with 1× penicillin/streptomycin, 1×Glutamax and 2% FBS. The day after, the media was
replaced with fresh media (2% FBS and 1g/L glucose) containing 25 µM of tested compound. Cells were
incubated at 37 ◦C for 24 h. After 24 h, 20 µL of CellTiter Blue reagent was added to each well (100 µL
of cell culture media) and incubated for 4 h at 37 ◦C. Following this period, the fluorescence was
measured using excitation/emission wavelengths of 560/590 nm. Data were normalised to vehicle
control-treated cells (DMSO).

4.2.5. Plasmids and Generation of the Stable Cell Lines

The DNA of the human rhodopsin gene (hRHO, NCBI Ref. Sequence: NM_000539.2), purchased
from Genscript (Piscataway, NJ, USA), was cloned into pcDNA™5/FRT/TO (Flp-In™ T-REx™ Core kit,
Thermo Fisher Scientific (Waltham, MA, USA) through Gibson assembly according to the manufacturer’s
instructions (Gibson Assembly® Master Mix, New England Biolabs, Ipswich, MA, USA) with the
addition of 6× histidine at the C-terminus (hRHO WT His-Tag). 5′-TTGGTACCGAGCTCGGATCC
GCCACCATGAAT-3′ and 5′-TCAATGGTGATGGTGATGATGGGCCGGGGCCACCTGG-3′ were used
to PCR amplify the hRHO gene, 5′-TCTGTGCCATTCATGGTGGCGGATCCGAGCTCGGTACCA-3′

and 5′-CATCATCACCATCACCATTGACAGATATCCAGCACAGTGGCGGCC-3′ the vector
(underlined codons were used to introduce the His-Tag). Site-directed mutagenesis to introduce P23H
mutation (hRHO P23H His-tag) was performed with the QuikChange Lightning kit (Agilent) according
to the manufacturer’s instructions, using the following primers: 5′-TGTGGTACGCAGCCACT
TCGAGTACCCAC-3′ and 5′- GTGGGTACTCGAAGTGGCTGCGTACCACA-3′ (mutated codon is
underlined). All primers were purchased from IDT (Integrated DNA Technologies, IDT, Coralville,
IA, USA). All plasmid constructs were verified through sequencing (Eurofins Genomic UK,
Wolverhampton, UK).

The tetracycline-inducible expression of hRHO P23H mutant was established in U2OS using
plasmids from the Flp-In™ T-REx™ Core kit (Thermo Fisher Scientific, Waltham, MA, USA). Briefly,
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U2OS cells transfected with 1 µg pcDNA6/TR plasmid and Fugene HD (1:3 DNA:FUGENE HD
ratio, Promega) were subsequently cultured in media containing 10 µg/mL blasticidin (Thermo Fisher
Scientific), selecting the clone that exhibited the lowest levels of basal transcription of the tetracycline
repressor (TetR) but the highest levels of transcription after addition of tetracycline to the media.
Subsequently, the clone was transfected with 1 µg of pcDNA5/FRT/TO hRHO P23H and Fugene HD
and selected with 50 ug/mL Zeocin (Thermo Fisher Scientific). Inducible expression of hRHO P23H
was checked through immunofluorescence microscopy.

4.2.6. Immunofluorescence Microscopy

Cells were plated on 13 mm polylysine-treated round glass coverslips and let to adhere for at least
4 h. Media was replaced with media containing 1 µg/mL of tetracycline and 5 µM of 9-cis-retinal or
compound (2, 8, 11, 13, 18 and 20 at 10 µM final concentration, CF35EsC, CF35Es and the remaining
compounds at 20 µM final concentration, DMSO not exceeding 0.1%). CF35EsC and CF35Es were
used as a positive control. Cells were incubated overnight in the dark to allow the tetracycline-induced
expression of rhodopsin. On the following day, under dim red light conditions, cells were washed twice
in PBS and fixed for 25 min using a solution of methanol-free 4% paraformaldehyde, then washed in
PBS before blocking 1 h with TBS blocking buffer (LI-COR, Lincoln, NE, USA) solution followed by
incubation with RET-P1 antibody (Invitrogen, 1:500, Carlsbad, CA, USA) in TBS buffer and, subsequently,
with anti-mouse IgG (H + L), F(ab’) 2 Fragment Alexa Fluor ® 555 Conjugate (Cell Signalling
Technologies, 1:1000, TBS buffer, Danvers, MA, USA) for 1 h. Coverslips were then carefully washed
before permeabilising cell membranes with a solution of Triton 0.1% for 20 min. Anti-His Tag (Amgen,
1:500, TBS buffer, Thousand Oaks, CA, USA) was then incubated with the cells overnight followed by a
1 h incubation with an anti-mouse IgG (H + L), F(ab’)2 Fragment Alexa Fluor® 488 Conjugate antibody
(Cell Signalling Technologies, 1:1000, TBS buffer). Nuclei were stained with DAPI before mounting the
coverslips on glass microscope slides. Immunofluorescence images were captured with an Olympus
BX50 epifluorescence microscope, Southend-on-Sea, UK, (from 3 independent experiments). Gain and
exposure times for 488 nm and 555 nm channels were maintained constant across all coverslips
from the same experiment, which always included DMSO and 9-cis-retinal as controls. Images were
processed with ImageJ software: the contrast was enhanced in the 405 nm channel for clarity, whilst no
manipulations were made to the channels relevant in the experiments (488 and 555 nm). RGB colours
were assigned to each channel (blue to 405 nm, green to 488 nm and red to 555 nm) and images were
merged with the software in-built function.

Supplementary Materials: The following are available online. Figure S1: Synthetic preparation of the two
reference compounds CF35EsC and CF35Es; Table S1: Effect of compound 1–24 on rate constant (K) of bovine
isorhodopsin regeneration; Figure S2: Plots of C-alpha RMSD (Å) values against simulation time for rhodopsin;
Figure S3: Plots of C-alpha RMSD (Å) values against simulation time for protein–ligand complexes; Figure S4:
Plots of C-alpha RMSD (Å) values against simulation time for not equilibrated protein–ligand systems; Figure S5:
Subcellular localisation of C-terminus His-tagged human rod opsin wild type (hRHO WT His-Tag) in transiently
transfected U2OS cells.

Author Contributions: M.B. conceived the study and supervised the project; G.P., M.S., C.K., S.R.M. and I.B.;
set-up, performed and interpreted the biological experiments; S.F., M.B. and C.V.; worked on the molecular
modelling; E.P.; worked on the synthesis and compounds characterisation; S.F., M.B. and A.B.; cosupervised the
molecular modelling work. M.R.; conceived the initial study and supervised some biological work; S.F. and M.B.;
wrote the manuscript with the help of G.P., C.V. and M.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the Academy of Medical Sciences Springboard Award (Grant number:
SBF002\10090; Gaia Pasqualetto). Marcella Bassetto and Salvatore Ferla were supported by the Sêr Cymru II
programme, which is part-funded by Cardiff University and the European Regional Development Fund through
the Welsh Government. Elisa Pileggi was supported by the Wellcome Trust through an ISSF3 Translational
Kickstart Award.

Acknowledgments: The authors would like to thank Trevor Dale (Cardiff University) for kindly providing U2OS
cells and Karl Hoffmann’s lab, IBERS, (Aberystwyth University) for kindly providing HepG2 cells.



Molecules 2020, 25, 4904 23 of 24

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kiser, P.D.; Golczak, M.; Palczewski, K. Chemistry of the retinoid (visual) cycle. Chem. Rev. 2014, 114,
194–232. [CrossRef] [PubMed]

2. Orban, T.; Jastrzebska, B.; Palczewski, K. Structural approaches to understanding retinal proteins needed for
vision. Curr. Opin. Cell Biol. 2014, 27, 32–43. [CrossRef] [PubMed]

3. Dias, M.F.; Joo, K.; Kemp, J.A.; Fialho, S.L.; da Silva Cunha, A., Jr.; Woo, S.J.; Kwon, Y.J. Molecular genetics
and emerging therapies for retinitis pigmentosa: Basic research and clinical perspectives. Prog. Retin. Eye Res.
2018, 63, 107–131. [CrossRef] [PubMed]

4. Den Hollander, A.I.; Roepman, R.; Koenekoop, R.K.; Cremers, F.P. Leber congenital amaurosis: Genes,
proteins and disease mechanisms. Prog. Retin. Eye Res. 2008, 27, 391–419. [CrossRef] [PubMed]

5. Zhang, S.X.; Sanders, E.; Fliesler, S.J.; Wang, J.J. Endoplasmic reticulum stress and the unfolded protein
responses in retinal degeneration. Exp. Eye Res. 2014, 125, 30–40. [CrossRef]

6. Noorwez, S.M.; Ostrov, D.A.; McDowell, J.H.; Krebs, M.P.; Kaushal, S. A high-throughput screening method
for small-molecule pharmacologic chaperones of misfolded rhodopsin. Investig. Ophthalmol. Vis. Sci. 2008,
49, 3224–3230. [CrossRef]

7. Chen, Y.; Chen, Y.; Jastrzebska, B.; Golczak, M.; Gulati, S.; Tang, H.; Gao, S. A novel small molecule chaperone
of rod opsin and its potential therapy for retinal degeneration. Nat. Comm. 2018, 9, 1976. [CrossRef]

8. Ohgane, K.; Dodo, K.; Hashimoto, Y. Retinobenzaldehydes as proper-trafficking inducers of folding-defective
P23H rhodopsin mutant responsible for retinitis pigmentosa. Bioorg. Med. Chem. 2010, 18, 7022–7028.
[CrossRef]

9. Okada, T.; Sugihara, M.; Bondar, A.N.; Elstner, M.; Entel, P.; Buss, V. The retinal conformation and its
environment in rhodopsin in light of a new 2.2 Å crystal structure. J. Mol. Biol. 2004, 342, 571–583. [CrossRef]

10. Specs. Available online: https://www.specs.net/index.php#aboutspecs (accessed on 26 July 2020).
11. Matsumoto, H.; Yoshizawa, T. Existence of a β-ionone ring-binding site in the rhodopsin molecule. Nature

1975, 258, 523–526. [CrossRef]
12. Daemen, F.J.M. The chromophore binding space of opsin. Nature 1978, 276, 847–848. [CrossRef] [PubMed]
13. Makino, C.L.; Riley, C.K.; Looney, J.; Crouch, R.K.; Okada, T. Binding of more than one retinoid to visual

opsins. Biophys.J. 2010, 99, 2366–2373. [CrossRef] [PubMed]
14. Schrödinger Release 2020-2; Glide Schrödinger LLC: New York, NY, USA, 2020. Available online: https:

//www.schrodinger.com/maestro (accessed on 26 July 2020).
15. Korb, O.; Stutzle, T.; Exner, T.E. Empirical scoring functions for advanced protein-ligand docking with

PLANTS. J. Chem. Inf. Model. 2009, 49, 84–96. [CrossRef]
16. SeeSAR, version 9.2; BioSolveIT GmbH: Sankt Augustin, Germany, 2020. Available online: www.biosolveit.

de/SeeSAR (accessed on 26 July 2020).
17. Palczewski, K. Retinoids for treatment of retinal diseases. Trends Pharm. Sci. 2010, 31, 284–295. [CrossRef]
18. Isayama, T.; England, S.M.; Crouch, R.K.; Zimmerman, A.L.; Makino, C.L. β-ionone activates and bleaches

visual pigment in salamander photoreceptors. Vis. Neurosci. 2009, 26, 67–274. [CrossRef]
19. Ortega, J.T.; Parmar, T.; Jastrzebska, B. Flavonoids enhance rod opsin stability, folding, and self-association

by directly binding to ligand-free opsin and modulating its conformation. J. Biol. Chem. 2019, 294, 8101–8122.
[CrossRef]

20. SmartsFilter, Web App from UNM (University of New Mexico) Translational Informatic. Available online:
http://pasilla.health.unm.edu/tomcat/biocomp/smartsfilter (accessed on 26 July 2020).

21. Steling, T.; Irwin, J.J. ZINC 15-Ligand Discovery for Everyone. Chem. Inf. Model. 2015, 55, 2324–2337.
[CrossRef] [PubMed]

22. D. E. Shaw Research (Ed.) Schrödinger Release 2020-2; Shaw Research: New York, NY, USA, 2020. Available
online: https://www.schrodinger.com/maestro (accessed on 26 July 2020).

23. Maestro-Desmond Interoperability Tools, version 3.1.; Schrödinger: New York, NY, USA, 2020. Available online:
https://www.schrodinger.com/maestro (accessed on 26 July 2020).

24. Schrödinger Release 2020-2: Prime; Schrödinger, LLC: New York, NY, USA, 2020. Available online: https:
//www.schrodinger.com/maestro (accessed on 26 July 2020).

http://dx.doi.org/10.1021/cr400107q
http://www.ncbi.nlm.nih.gov/pubmed/23905688
http://dx.doi.org/10.1016/j.ceb.2013.11.001
http://www.ncbi.nlm.nih.gov/pubmed/24680428
http://dx.doi.org/10.1016/j.preteyeres.2017.10.004
http://www.ncbi.nlm.nih.gov/pubmed/29097191
http://dx.doi.org/10.1016/j.preteyeres.2008.05.003
http://www.ncbi.nlm.nih.gov/pubmed/18632300
http://dx.doi.org/10.1016/j.exer.2014.04.015
http://dx.doi.org/10.1167/iovs.07-1539
http://dx.doi.org/10.1038/s41467-018-04261-1
http://dx.doi.org/10.1016/j.bmc.2010.08.014
http://dx.doi.org/10.1016/j.jmb.2004.07.044
https://www.specs.net/index.php#aboutspecs
http://dx.doi.org/10.1038/258523a0
http://dx.doi.org/10.1038/276847a0
http://www.ncbi.nlm.nih.gov/pubmed/723961
http://dx.doi.org/10.1016/j.bpj.2010.08.003
http://www.ncbi.nlm.nih.gov/pubmed/20923672
https://www.schrodinger.com/maestro
https://www.schrodinger.com/maestro
http://dx.doi.org/10.1021/ci800298z
www.biosolveit.de/SeeSAR
www.biosolveit.de/SeeSAR
http://dx.doi.org/10.1016/j.tips.2010.03.001
http://dx.doi.org/10.1017/S0952523809090105
http://dx.doi.org/10.1074/jbc.RA119.007808
http://pasilla.health.unm.edu/tomcat/biocomp/smartsfilter
http://dx.doi.org/10.1021/acs.jcim.5b00559
http://www.ncbi.nlm.nih.gov/pubmed/26479676
https://www.schrodinger.com/maestro
https://www.schrodinger.com/maestro
https://www.schrodinger.com/maestro
https://www.schrodinger.com/maestro


Molecules 2020, 25, 4904 24 of 24

25. Forge, version 3.0.; Cresset: Peterborough, UK, 2020. Available online: http://www.cresset-group.com/forge/

(accessed on 26 July 2020).
26. Cheeseright, T.; Mackey, M.; Rose, S.; Vinter, A. Molecular field extrema as descriptors of biological activity:

Definition and validation. J. Chem. Inf. Model. 2006, 46, 665–676. [CrossRef]
27. FieldTemplater; in Forge, version 3.0.; Cresset: Litlington, UK, 2020. Available online: http://www.cresset-

group.com/forge/ (accessed on 26 July 2020).
28. Flare, version 4.0.; Cresset: Peterborough, UK, 2020. Available online: http://www.cresset-group.com/flare/

(accessed on 26 July 2020).
29. Bauer, M.R.; Mackey, M.D. Electrostatic complementarity as fast and effective tool to optimize binding and

selectivity of protein-ligand complexes. J. Med. Chem. 2019, 62, 3036–3050. [CrossRef]
30. Schadel, S.A.; Heck, M.; Maretzki, D.; Filipek, S.; Teller, D.C.; Palczewski, K.; Hofmann, K.P. Ligand

channeling within a G-protein-coupled receptor. J. Biol. Chem. 2003, 278, 24896–24903. [CrossRef] [PubMed]
31. Park, H.J.; Heck, M.; Maretzki, D.; Filipek, S.; Teller, D.C.; Palczewski, K.; Hofmann, K.P. Crystal structure of

the ligand-free G-protein-coupled receptor opsin. Nature 2008, 454, 183–187. [CrossRef] [PubMed]
32. Behnen, P.; Felline, A.; Comitato, A.; Di Salvo, M.T.; Raimondi, F.; Gulati, S.; Fanelli, F. A small chaperone

improves folding and routing of rhodopsin mutants linked to inherited blindness. iScience 2018, 4, 1–19.
[CrossRef] [PubMed]

33. Ramirez, T.; Felline, A.; Comitato, A.; Di Salvo, M.T.; Raimondi, F.; Gulati, S.; Fanelli, F. Prediction of liver
toxicity and mode of action using metabolomics in vitro in HepG2 cells. Arch. Toxicol. 2018, 92, 893–906.
[CrossRef] [PubMed]

34. Saliba, R.S.; Munro, P.M.; Luthert, P.J.; Cheetham, M.E. The cellular fate of mutant rhodopsin: Quality control,
degradation and aggresome formation. J. Cell Sci. 2002, 115, 2907–2918. [PubMed]

35. Molecular Operating Environment (MOE 2019.10); Chemical Computing Group, Inc.: Montreal, QC, Canada.
Available online: http://www.chemcomp.com (accessed on 26 July 2020).

36. Papermaster, D.S. [8] Preparation of retinal rod outer segments. Methods Enzymol. 1982, 81, 48–52.

Sample Availability: Samples of the compounds 7, 13, 20 and 23 are available from the authors.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.cresset-group.com/forge/
http://dx.doi.org/10.1021/ci050357s
http://www.cresset-group.com/forge/
http://www.cresset-group.com/forge/
http://www.cresset-group.com/flare/
http://dx.doi.org/10.1021/acs.jmedchem.8b01925
http://dx.doi.org/10.1074/jbc.M302115200
http://www.ncbi.nlm.nih.gov/pubmed/12707280
http://dx.doi.org/10.1038/nature07063
http://www.ncbi.nlm.nih.gov/pubmed/18563085
http://dx.doi.org/10.1016/j.isci.2018.05.001
http://www.ncbi.nlm.nih.gov/pubmed/30240733
http://dx.doi.org/10.1007/s00204-017-2079-6
http://www.ncbi.nlm.nih.gov/pubmed/28965233
http://www.ncbi.nlm.nih.gov/pubmed/12082151
http://www.chemcomp.com
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Structure-Based Virtual Screening 
	Competitive Binding Assay 
	Molecular Modelling Studies on the Chromophore Binding Pocket 
	Molecular Modelling Studies to Investigate the Observed Stabilisation Effect of the Rhodopsin-9-cis- Retinal Complex 
	Evaluation of Cytotoxic Effects for Selected Hit Compounds 
	Immunofluorescence Microscopy 

	Conclusions and Future Works 
	Materials and Methods 
	Molecular Modelling 
	Molecular Docking 
	Molecular Dynamics 
	Molecular Field-Based Similarity and Electrostatic Complementarity Studies 

	Biological Assays 
	Retina Outer Segments (ROSs) Isolation from Bovine Eyes 
	Competitive Binding Assay 
	Cell Culture 
	Determination of Cell Viability Assessed by CellTiter-Blue 
	Plasmids and Generation of the Stable Cell Lines 
	Immunofluorescence Microscopy 


	References

