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Abstract

This article presents a new perspective on the development of inorganic scintillator-
based fiber dosimeters (IOSFDs) for medical radiotherapy dosimetry (RTD) focusing
on real-time in vivo dosimetry. The scintillator-based optical fiber dosimeters (SFD)
are compact, free of electromagnetic interference, radiation-resistant, and robust.
They have shown great potential for real-time in vivo RTD. Compared with organic
scintillators (OSs), inorganic scintillators (IOSs) have larger X-ray absorption and
higher light output. Variable IOSs with maximum emission peaks in the red part of
the spectrum offer convenient stem effect removal. This article outlines the main
advantages and disadvantages of utilizing IOSs for SFD fabrication. IOSFDs with
different configurations are presented, and their use for dosimetry in X-ray RT,
brachytherapy (BT), proton therapy (PT), and boron neutron capture therapy (BNCT)
is reviewed. Challenges including the percentage depth dose (PDD) deviation from
the standard ion chamber (IC) measurement, the angular dependence, and the
Cherenkov effect are discussed in detail; methods to overcome these problems are
also presented.

Keywords: Inorganic scintillators, Optical fiber dosimeters, In vivo, Real time
dosimetry

Introduction
As a fundamental process for RT treatment, RTD ensures that the radiation dose is

safely and correctly delivered to the malignant abnormalities. However, current RTD

practices have fallen behind the fast rapid scientific and clinical development of RT.

Novel techniques applied to RT treatment include intensity-modulated RT (IMR),

stereotactic ablative RT (SABR), and magnetic resonance imaging guided linear accel-

erator (MRI-linac). While these techniques provide better treatment opportunities for

cancer patients, they also increase the complexity of the measurement of the dose rate

and accumulated dose during treatment and are impacted by the limitations of existing

dosimeters. Current safety and quality protocols are well established for traditional RT

treatment techniques [1–4], but these protocols face challenges from aforementioned

fast developing RT technologies. There are reports of patients receiving incorrect doses

while undergoing radiation treatment utilizing these new RT techniques [5, 6]. This

has aroused concerns over the lag of dosimetric equipment development behind the
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treatment techniques [7–9]. Therefore, developing radiation dosimeters capable of real-

time in vivo dose monitoring has received significant research attention.

MOSFETs and diode-based devices have been utilized for clinical real-time in vivo

dosimetry [10–12] owning to their good sensitivity, small size, and real-time readout

capabilities. However, MOSFETs are expensive, incident angle-dependent, and of lim-

ited durability. Diode dosimeters are sensitive to accumulated dose, temperature, and

incident angle. SFD provides an alternative solution for real-time in vivo dosimetry. It

is a relatively new type of detector that involves coupling of a scintillator, an optical

fiber, and a light-detector. The combination of the scintillator and the optical fiber en-

dows SFD attractive merits such as passive detection, small size, linear response to dose

rate, energy independence, immunity to the electromagnetic interference, good mech-

anical robustness, and capacity for multiplexing. Though the clinical applications of

SFD are limited, they have shown great potential for real-time in vivo dosimetry.

To the best of our knowledge, the ideal of a “SFD” first emerged in 1969 when Byfield

et al. [13] reported a plastic scintillator-based optical fiber dosimeter for intracavitary

dosimetry. The probe comprising a piece of plastic phosphor encapsulated in a

stainless-steel tube. The optical signal was collected and transmitted via a Lucite “light

pipe”. The detector achieved good accuracy measuring the radiation dose from cobalt60

and megavoltage X-rays in a phantom. Although this probe dosimeter might appear

primitive and too large for actual real-time in vivo dosimetry, SFDs later reported/

shared the similar design which combines a small piece of scintillator, an optical fiber,

and a photodetector.

The fast development of SFD emerged in the 1990s due to seminal and systematic re-

search on plastic scintillator optical fiber dosimeters (PSFDs) [14, 15]. Since then, SFDs

have attracted more and more research attention, and numerous articles investigated

aspects of SFDs such as scintillator materials [16, 17], configuration optimization [18,

19], and signal processing techniques (e.g., Cherenkov effect removal) [20, 21]. Several

featured review papers on SFD development exist in the scientific literature as well [8,

9, 22–26].

The scintillation materials applied in SFDs can be classified into two broad groups.

One group is the plastic OS comprising aromatic hydrocarbon molecules. They have

similar mass and electron densities as those of water and human tissue. Thus, they have

photon/electron interaction properties similar to water and human tissue (i.e., “water-

equivalent” property). Another group includes the IOSs, most of which are alkali halide

(e.g., NaI:Tl, CsI:Tl, and CsI:Na) or oxide (e.g., Y2O3:Eu and Lu2O3:Eu) crystals doped

with lanthanide ions. Though IOSs have been widely utilized for X-ray detection and

imaging, their application in SFD is still quite limited partially due to their non-linear

response to X-ray energies under 100 keV and non-water equivalency.

However, research on the IOS-based SFDs (IOSFDs) shows that this particular type

of SFD has promise in RT dosimetry applications due to their high sensitivity to low ra-

diation dose rate and overwhelming signal intensity compared with the Cherenkov ef-

fect. This paper reviews the state-of-the-art development of IOSFDs for radiation

dosimetry in oncology, focusing on X-ray RT. We first evaluate the fundamentals of

IOSFD in the “Fundamentals” section. The scintillation mechanism of scintillators

under ionizing photon radiation will be briefly introduced—this section evaluates the

properties of the scintillators that we considered important for RT dosimetry (RTD).
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Second, we look at the development of IOSFDs using different scintillators and designs

in the “Development of IOSFDs” section including their applications for dosimetry in

RT such as BT, PT, and BNCT. Third, we discuss some challenges facing IOSFD for

RT dosimetry application in the “Challenges of IOSFD for RTD application” section in-

cluding the measured PDD discrepancy in comparison with the standard IC measure-

ment and the angular dependence. The Cherenkov removal techniques are summarized

in the “Cherenkov effect removal techniques” section. Finally, we conclude the article

and provide a future outlook of ISFD for RTD.

Fundamentals
The regular SFD configuration involves the coupling of a piece of scintillation material

to an optical fiber. Figure 1 gives a simple schematic of how SFD works under the ion-

izing radiation. The scintillator undergoes a radio-luminescence process when irradi-

ated by a high-energy ionizing beam (Fig. 1). The light photons generated in the

scintillator are collected by an optical fiber and remotely transmitted to the photon de-

tector (e.g., photomultiplier, CCD camera, and spectrometer). The output can be ana-

lyzed via a remote computer terminal. Theoretically, the scintillation light emission is

proportional to the dose rate.

Overall, the performance of the SFD for oncology radiation measurement is deter-

mined by the scintillation light collection efficiency and the response of the scintillator

to the incident radiation particles. The scintillation light collection efficiency resembles

the light extraction efficiency for LED. It describes how efficiently the scintillation light

is extracted and transported by the optical fiber coupled to the scintillator. The scintil-

lation light photons are emitted towards arbitrary directions. To collect these photons

as many as possible, it is key to achieve an efficient coupling between the scintillation

domain and the optical fiber with a limited numerical aperture. Such coupling required

a delicate design of the configuration of the IOSFD, and this issue will be reviewed and

discussed later in the “Development of IOSFDs” section.

The response of the scintillator to the radiation is determined by several factors. Tak-

ing RTD with an X-/γ-ray radiation source for examples, these factors include the size

or the concentration of the scintillation material, the X-ray linear attenuation coeffi-

cient, the scintillation rise-decay time, and the overall radiation-to-light conversion effi-

ciency. Focusing on dosimetry for ionizing photon radiation, we next briefly introduce

the scintillation mechanism and then look at several physical properties of scintillators

that are considered important for IOSFD.

Fig. 1 A simple schematic of the radiation detection process using SFD
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Scintillation mechanism

IOSs normally have broad band gaps where electrons can jump up to higher energy

levels via excitation once absorbing ionizing radiation energy. The excited electrons can

also drop down to lower energy levels via de-excitation through the emission of (vis-

ible) photons. The scintillation process under ionizing X-ray radiation can be divided

into three stages: (a) primary photon interaction, ionization of atoms, relaxation, and

thermalization of secondary particles; (b) transport of electrons and holes and further

relaxation; and (c) luminescence [27, 28]. The attenuation of X-ray photons takes place

in stage (a) in the form of four possible primary photon interactions, i.e., photoelectric

absorption, Compton scattering, electron-positron pair production, and coherent scat-

tering. Some of the energy absorbed by the scintillator will generate free electron holes;

the other is transferred to a lattice vibration (i.e., heat) or secondary X-rays or electrons

radiation. In stage (c), the electrons and holes are trapped by the luminescence centers

(defects or dopant activators, e.g., Mn2+, Sn2+, Eu3+, and Ti4+), which contributes to ra-

diative recombination in the form of ultraviolet/visible (UV/vis) light emission. For

in vivo or under-surface phantom dosimetry, the scintillation material is excited not

only by direct X-ray radiation, but also by secondary electrons generated via Compton

scattering or photoelectric interaction in the tissue-equivalent material.

Basic physical properties of scintillators

Generally, the IOS for photon radiation detection should have a high light yield, high

X-ray linear attenuation coefficient, short scintillation-decay time, low afterglow, good

radiation resistance, and linear-response with incident X-ray or electron beams. Due to

the long history and consistent research efforts concerning developments in this area,

there are numerous types of scintillators available. Many articles and books have sys-

tematically reviewed and illustrated the work conducted on scintillator development

and the application of scintillators for radiation detection [26, 28–34]. The synthesis

and characterization of scintillators are beyond the scope of this review, and this work

briefly introduces the physical parameters describing the scintillator with respect to in-

organic scintillation materials used in existing reported IOSFDs [35–37].

The parameters describing the scintillation efficiency include the light yield (Nph/Eγ)

and the overall scintillation efficiency η. (Nph/Eγ) for photons describes the number of

UV/vis photons (Nph) produced in the scintillation conversion per energy Eγ (usually

in MeV) of incoming X-/γ-ray [27]. The overall scintillation efficiency η is usually used

to evaluate the scintillation ability of X-ray phosphors, and it is the ratio of the energy

emitted as scintillation light and the energy absorbed by the scintillation material [38]

η ¼ Nph∙Evis=Eγ ð1Þ

where Evis is the energy of generated UV/vis photons.

The X-ray linear attenuation coefficient (μ, cm−1) describes how fast the X-ray pho-

ton is attenuated in a material. It is determined by the mass-density ρ, the effective

atomic number (Zeff), and the ionizing photon energy E. Normally, dense IOSs com-

prising heavy elements (e.g., Gd, Lu, and I) have relatively higher value of μ than those

of OSs, as is shown in Table 1. Term μ is the sum of the linear attenuation coefficients

of the primary photon interactions μi (“i” represents “photoelectric,” “Compton,” or

“pair”), given by:
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μ ¼ μphotoelectric þ μCompton þ μpair

¼ μ
ρ
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where ðμρÞphotoelectric , ð
μ
ρÞCompton

, and ðμρÞpair are the mass partial interaction coefficients of

the three primary photon interactions; μ/ρ is the total mass interaction coefficient. The

behavior of photon beam (flux intensity is I) attenuation when transporting a distance l

in a uniform material is usually described by the exponential law [43]

I lð Þ ¼ I0∙ exp − μ∙lð Þ ð3Þ

where I0 is the initial flux intensity.

The total mass attenuation coefficients (μ/ρ) of some IOSs used for reported IOSFD

construction or applications are shown in Fig. 2, which are sourced from the XCOM

database [44]. For ionizing photons with relatively low energies under 100 keV, photo-

electric absorption is the dominant type of photon interaction for IOSs. The energy of

the incident photon is totally absorbed during this process. For the water-equivalent

material, Compton scattering is the main type of photon interaction when the photon

energy is larger than 30 keV [45], and only part of the photon energy is absorbed for

light signal generation. As for γ-rays of high energy (more than a few MeVs, as shown

in Fig. 2b) used for RT treatment, Compton scattering and electron-positron pair pro-

duction are predominant, and (μ/ρ) for γ-rays decreases distinctively compared with X-

rays in low energy ranges (Fig. 2). More information regarding this topic is published

[43, 46, 47]. Due to different photon interaction mechanisms, higher values of (μ/ρ),

and ρ, most IOSs exhibit distinctively higher X-ray absorption coefficients than those

of OSs in both low (< 100 keV) and high (> 2MeV) photon energy ranges. We note

here that the energy mainly refers to the energy level of incident X-rays, which is deter-

mined by the accelerating voltage of the X-ray tube or linac.

Table 1 The physical properties of typical IOSs compared with OSs BCF-10 and BCF-12 [28, 30, 34,
39–42]

Scintillator Density
(g∙cm−3)

Efficiency η
(%)

Light yield photons/
MeV

Emission maximum
(nm)

Decay time
(ns)

Gd2O2S: Tb 7.3 16 60,000 540 6 × 105

Gd2O2S: Pr 7.3 15 56,000 513 ~ 7 × 103

Gd2O2S: Eu 7.3 12 45,000 626 ~ 106

NaI:Tl 3.67 11.3 41,000 410 230

CsI:Tl 4.51 13.7 66,000 550 800

ZnS:Ag 3.9 17–20 NA 450 ~ 1000

Y2O3:Eu 5.0 10 NA 611 ~106

Y2O2S:Eu 4.89 12 NA 670 6 × 105

YVO4:Eu 4.22 7 NA 625 8 × 105

Y3Al5O12:Ce 4.56 3–5 24,000 550 90–120

ZnWO4 7.62 NA 9500 490 2 × 104

BCF-10 1.05 NA ~ 8000 432 2.7

BCF-12 1.05 NA ~ 8000 435 3.2
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The mass attenuation coefficients (μ/ρ) of most materials decreases with respect to

photon energy in 10–100 keV energy range (Fig. 2a). However, for scintillators com-

prised of heavy elements such as Gd or I, there is an abrupt rise in the (μ/ρ) − E curve,

owning to the characteristic photoelectric absorption at K-edge (e.g., I: 33.17 keV; Gd:

50.02 keV). The relationship between (μ/ρ) and E may explain the energy-dependent

sensitivity of IOSFD in low-energy X-ray radiation.

The scintillation decay time relates to the scintillation kinetics. The “Scintillation

mechanism” section has introduced the scintillation mechanism. The photon absorp-

tion and generation of e−-h+ pairs are instant; thus, the emission time is determined by

the relaxation, thermalization, and transport of e−-h+ pairs and the luminescence

process. Taking NaI:Tl for example, the time profile of the scintillation is shown in

Fig. 3 [48]. Once irradiated, the scintillation pulse rises quickly to the top with a typical

rise time within 1 ns. The decay time, however, can be as slow as a few nanoseconds

and as high as several milliseconds. The decay can be approximated using an exponen-

tial [28]

I tð Þ � exp − t=τð Þ ð4Þ

where τ is the decay time. The decay time of NaI:Tl is shown in Fig. 3 as about 230 ns.

Rare-earth elements (e.g., Tb, Pr, and Eu) are often introduced as dopants into IOSs

and normally act as luminescence centers. The decay time will also change accordingly

with respect to the dopants. Table 1 shows that with the same matrix of Gd2O2S, the

scintillator doped with europium (Eu) exhibits the longest decay time (τ ~ 106 ns).

Gd2O2S with the dopant praseodymium (Pr) has the shortest decay time (τ ~ 7 μs). This

is because the allowed 5d → 4f transitions of Pr3+ ions (the luminescence centers) are

fast (tens of nanoseconds), while the lifetime of forbidden and faint f → f transitions

(5D0→
7Fj) of Eu

3+ is much slower. To achieve real-time dosimetry, the IOSs chosen

for IOSFD should have decay time that is short enough so as to secure accuracy, due to

its effect on the sampling frequency.

Fig. 2 The photon mass attenuation coefficients μ/ρ (g ∙ cm−3) of IOSs Gd2O2S, NaI, ZnS, and Al2O3 for photons
in the energy ranges 10–100 keV (a), and 2—22MeV respectively. The insert in (a) is the mass attenuation
coefficient of H2O
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Normally, it is required that scintillator material used for real-time monitoring has

short decay time. However, the long decay time of some scintillators relative to the

Cherenkov effect has also inspired solutions for eliminating the Cherenkov interference.

For example, the BC-444 scintillator (Saint-Gobain Crystals) was chosen by Archer

et al. [49] to fabricate a PSFD because of its slow rise and decay time compared to the

Cherenkov effect. They applied an algorithm-based temporal Cherenkov removal tech-

nique to eliminate Cherenkov interference. The decay time of NaI:Tl is similar to that

of BC-444 (285 ns). Other inorganic scintillators such as Gd2O2S:Tb and YVO4:Eu have

much longer decay time; thus, the same temporal Cherenkov removal technique can

also be applied when using IOSFD.

IOSs with high light yields, e.g., Gd2O2S:Tb and CsI:Tl, have already shown good per-

formance in X-ray computed tomography. The high X-ray linear attenuation coefficient

and overall scintillation efficiency endow IOSs with great potential in low dose detec-

tion application. Moreover, numerous scintillators or phosphors with maximum emis-

sion peaks in red to infrared wavelength range provide convenience for the stem effect

removal. However, there is still significant concern over IOS applied for real-time dos-

imetry. In the following sub-sections, the factors that limit the IOSFD application in

medical radiation dosimetry are presented along with the advantages of utilizing IOSs

for SFD dosimetry.

Development of IOSFDs
To the best of our knowledge, Swinth et al. [50] first applied IOSFD for low-

background, low-energy biomedical photon counting. The biomedical radiation-

sensitive probe comprised a large piece of NaI : Tl crystal coupled to a bundle of glass

Fig. 3 Averaged scintillation pulse recorded for NaI:Tl irradiated with a 137Cs source [48]. Two exponential
terms fit to the data are presented with solid line
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optical fibers. The probe exhibited a higher sensitivity to low-energy 239Pu photons (17

keV, 60 keV) than the diode dosimeter developed for the same purpose.

Besides ionizing X-/γ- ray detection, research efforts have also been paid to explore

the potential of IOSFDs for the dosimetry of biomedical particle radiations. For ex-

ample, Jang et al. [51] compared the β-ray (electrons) detection ability of different

scintillator-coupled optical fiber dosimeters. As shown in Fig. 4a, the sensor tip is fabri-

cated using IOSs and plastic optical fiber bundles. With a metal hydride type of tritium

source, three kinds of scintillators (Gd2O2S:Tb, Y3Al5O12:Ce, and CsI:Tl) were used for

sensor fabrication to select the best scintillator. Among these three scintillators, the

IOSFD with Gd2O2S:Tb exhibited the best scintillation response in terms of generated

photons (Fig. 4b).

In the recent decades, IOSFDs using various kinds of scintillators and configurations

were developed, and their potential application for RTD such as external RTD, small-

field in-vivo dosimetry, and BT has been investigated. In the following sections, the re-

search on IOSFDs for X-ray RTD will be reviewed; efforts of utilizing IOSFDs for BT

dosimetry, PT, and BNCT would also be concluded.

IOSFD for X-ray RTD

A IOSFD based on Gd2O2S:Tb was presented by McCarthy et al. [37, 52]. The sche-

matic illustration of the probe structure is shown in Fig. 5. The cladding layer of the

PMMA fiber tip was removed, and the scintillator powders were coated surrounding

the fiber core using an epoxy resin-based molding method. Though this dosimeter was

less sensitive to X-ray energy below 50 kVp, it exhibited good sensitivity, stability, and

repeatability of measurement for various levels of low-energy ionizing X-ray (50–140

kVp). The dosimeter also demonstrated excellent spectral response and repeatability

for γ-ray radiation as high as 6 MV and 15 MV. This research carried out an initial

characterization measurement of IOSFD in both air and water phantom and is a useful

study of IOSFD concerning the linearity, repeatability, stability, and effective coupling

between scintillator powders and optical fiber. However, it would still need more re-

search effort into the angular dependence, radiation field-size dependence, and the

Fig. 4 IOSFD for detection of tritium [51]. a A schematic diagram of sensor tip. b Measured amounts of
scintillation photon with three kinds of IOS
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PDD measurement, for a more comprehensive assessment of this dosimeter for real-

time in vivo dosimetry.

The coupling efficiency between the scintillator and the optical fiber is important for

the light collection. To improve the coupling efficiency, O’Keeffe et al. [53] proposed a

new design by embedding a piece of Gd2O2S:Tb scintillator into the core of an optical

fiber (Fig. 6). This design was further confirmed and investigated by Qin et al. [19]. The

configuration not only reduced the transmission loss, but also isolated the scintillator

from the surrounding environment. Except from the excellent signal-to-noise ratio, lin-

earity, and repeatability, the detector showed a great isotropic response to both radical

and axial changes of the incident radiation as well.

Another effort to increase the light coupling efficiency between the scintillation do-

main and optical fiber of Gd2O2S:Tb IOSFD was presented by Andres et al. [54]. The

basic idea of the sensor configuration optimization is accelerating the light extraction

efficiency from scintillation domain via expanding the useful surface in contact with

the scintillator. The sensor tip (Fig. 7) is modified by either chemical etching (LM2 in

Fig. 7a) or thermomechanical tapering (LM3 in Fig. 7a). Precautions to minimize the

air-bubble density were also taken, aiming to increase the optical signal intensity. All

Fig. 5 The fiber optic radiation dosimeter sensor design reported by McCarthy et al. [52]

Fig. 6 Embedded structure of an IOSFD. a The IOSFD (photograph) presented by O’Keeffe et al. [53]. b The
IOSFD (schematic representation)
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fabricated devices have been tested under X-ray irradiation (6 MV) from a linac at a

dose rate of 300 monitor units/min with a readout every 100 ms. The results of LM2

(chemical etching) shown in Fig. 7b demonstrated a signal improvement of up to 43

times compared with the previously reported proposals using IOSs and polymer fibers

(LM1). Moreover, a scintillator format comparison between scintillator powders and

scintillator-epoxy mixture demonstrated that the IOS used in powder format could

achieve higher sensitivity. This is due to the higher packing density of the scintillator in

the scintillation domain. This is another successful illustration of improving the light

coupling efficiency between the scintillator and optical fiber through sensor tip

modification.

Research on ruby-based IOSFD was reported by Jordan et al. in 1996 [35]. Here, a

ruby (Al2O3:Cr, 1 mm in diameter)-coupled PMMA optical fiber was used to evaluate

the integrated dose of both X-ray and electron beams generated with Varian CL600C

and 2100A medical linacs. The time-delayed method combined with optical filtering

method was used to remove the stem effect (Cherenkov effect and fluorescence) signal

from the optical fiber. The results demonstrated that this time-delayed gated signal in-

tegration method is effective for eliminating the fluorescent and Cerenkov light origin-

ation in the irradiated optical fiber. Irradiated by 4 MV photon beams and 9–12MeV

electron beams, the PDD measurements with this probe agree well with values using an

ionization chamber. Therefore, it is possible to apply ruby-based IOSFD for radiation

dosimetry. This temperature dependence of Al2O3:Cr was also investigated in this

study, and a temperature correction on the order of 0.6% per degree was suggested for

clinical application.

The application of Al2O3:Cr ruby-based IOSFD in radiotherapeutic field was further

investigated by Teichmann et al. [55]. A ruby (Al2O3:Cr) crystal (1-mm diameter) was

adhered to a fused silica light guide (BFH-400, Thorlabs) with optically transparent

epoxy (EPO-TEK® 301-2, Epoxy Technology). An optical single-band pass filter (Sem-

rock 689/23 nm BrightLine®) was adopted to remove the unwanted stem signals from

the fiber guide. The probe was tested under irradiation of both electron and photon ra-

diation with a radiation dose up to 0.5 kGy. The radioluminescence signal shows a

slight linear rise with an accumulated dose up to 2 Gy, which is stable for large doses

up to 0.5 kGy. The sensor also demonstrated good sensitivity to dose as low as 2.6 ±

Fig. 7 a Schematic draw of the fabricated transducers LM-1 (plain fiber), LM-2 (etched fiber), and LM-3
(tapered fiber). b Sensor signal recorded for single fiber tip (dotted line), tapered fiber tip (dashed line), and
etched fiber tip (solid line) [54]
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0.2 mGy/h. The stem effect produced in optical fibers covers a wide range of wave-

lengths [20, 56], and it cannot be completely eliminated. Thus, the stem signal below

and above the energy threshold for the generation of Cherenkov radiation could be

modeled by a linear function according to their research.

Yttrium phosphors doped with Eu such as Y2O3:Eu, Y2O2S:Eu, and YVO4:Eu emit

bright red-light under UV or X-ray excitation; these have been used widely in the industry

(e.g., white LEDs). Attempts have also been made to utilize them for dosimetry [57–60].

One merit of these Eu-doped yttrium phosphors is that they provide the convenience of

the stem effect removal with the simplest optical-filtering method. The stem effect (in-

cluding Cherenkov effect and fluorescence of the plastic optical fiber) dominates in the

blue/green spectral region; therefore, combining a red-emission phosphor with a long-

pass optical filter can effectively suppress or remove these spurious signals [61, 62].

Molina et al. investigated the feasibility of utilizing Eu-doped yttrium phosphors for

fiber optic dosimetry [57]. The radio-luminescence response of three commercial phos-

phors (Y2O3:Eu, Y2O2S:Eu, and YVO4:Eu) was characterized. All three materials

showed no changes in RL response as dose accumulates with no afterglow decay. The

same research group further studied the feasibility of using Y2O3:Eu-based IOSFD for

real-time dosimetry under 60Co irradiation [58]. The stem effect signal was successfully

suppressed via a long-pass optical filter (610 nm). Figure 8 shows that the PDD profile

of the IOSFD was affected not only by the irradiation field size but also by the coating

thickness of the Y2O3:Eu phosphor. The cause of this PDD deviation was attributed to

the higher atomic number of Y2O3:Eu in this research. The larger proportion of phos-

phor acts as a scintillator with respect to the larger irradiation field size.

A more reasonable explanation, according to the research of Qin et al. [63], is that

the inorganic scintillators are more sensitive to photons with energies under 1MeV.

Due to multiple Compton scattering events during the photon transporting in water,

the photon energy keeps decreasing with respect to the increasing water depth (i.e.,

softening of the photon spectrum). The energy eventually reaches below 1MeV where

the photon electronic interaction occurs. As a result, the inorganic scintillator exhibits

an over-response compared to IC and PSFD. Nevertheless, this result demonstrated the

potential of Y2O3:Eu-based IOSFD for in vivo and real-time dosimetry; however, the

coating thickness of the phosphor attached to the fiber is not given, and the angular de-

pendence requires further illustration regarding this kind of dosimeter.

The consistent work on YVO4:Eu-based IOSFD was reported by Martínez et al. [59,

64]. A temporal discrimination method was applied to eliminate the stem effect. The

Cherenkov effect is a fast process and decays rapidly without radiation; scintillation is a

delayed process. Therefore, the temporal discrimination method can effectively remove

the Cherenkov signal by using a scintillation material with relatively longer radio-

luminescence lifetime [20]. In this case, a pulse radiation mode was set with the linac,

and only the optical signal starting 20 μs after each linac pulse reaching the detector

was recorded. The YVO4:Eu-based IOSFD demonstrated temperature-independence,

good spatial resolution, and capability for real-time dosimetry. The azimuthal angle ex-

periment test showed that the geometry of the detector determines angular-dependent

response to the radiation [59]. The Monte-Carlo simulation method was successfully

used to verify the PDD profiles measured with the IOSFDs and the standard IC in the

fields with different sizes.
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IOSFD for BT dosimetry

To date, commercially available in-vivo dosimeters for BT can only measure the total

dose post-treatment, which might introduce errors and uncertainties during the

process. Given the small size, durability, and fast and linear response of PSFDs, there

have been reports of using PSFD or PS-based radiation detector for in vivo BT dosim-

etry and source tracking to improve the dose delivery accuracy [65–68]. Compared to

PS, IOSs are more sensitive to low dose radiation and have much higher scintillation ef-

ficiency; thus, IOS-based radiation detectors have great potential for in vivo BT

dosimetry.

Kertzscher and Beddar tested the potential of the Al2O3:Cr-based IOSFD for dosim-

etry in 192Ir BT [69]. This ruby-based IOSFD was compared with common PSFDs. The

doping concentration of Cr3+ is 0.5%, and the OSs chosen are BCF-12 and BCF-60.

Also, in this experiment, three types of IOSFD configurations were tested (Fig. 9): one

without reflective paint and optical filter, one with reflective paint but no filter, and

one with both a filter and reflective paint. The optical coupling effect of different ruby

morphologies was investigated, namely, sphere and half-sphere. The air-kerma strength

of the 192Ir source is between 17.6 and 40.0 mGy m2·h−1 throughout the experiments.

The contribution of the stem effect and photoluminescence signal from the fiber was

quantified. By incorporating a long pass filter between the scintillator and optical fiber,

the unwanted photoluminescence from fiber was suppressed from 1 to 5% as the radi-

ation source dwelled 0.5 cm away from the fiber-optic cable. The stem effect was sup-

pressed as low as < 3% using a band-pass filter because the distance from the

scintillator to the source is smaller than 7 cm. The IOS exhibited a much stronger scin-

tillation signal than that of OSs—up to 20-fold that of BCF-12-based PSFDs. The result

shows that by choosing IOSs with insignificant time-dependent luminescence and after-

glow, the inorganic IOSFDs are promising candidates for in vivo high-dose-rate BT

dosimetry.

In addition to the Al2O3:Cr ruby, Kertzscher and Beddar also studied four types of

IOSs-based fiber dosimeters for real-time BT dosimetry [60, 70]. The scintillation prop-

erty of commercial Eu-doped phosphors Y2O3:Eu, YVO4:Eu, Y2O2S:Eu, and Gd2O2S:Eu

was assessed and compared to plastic scintillators BCF-12 and BCF-60. The IOSFD

Fig. 8 The PDD curves from Y2O3:Eu-based FOD compare to that of a standard IC under 60Co irradiation.
Surface to source distance is 80 cm and the irradiation field is set to a 10 × 10 cm2 and b 5 × 5 cm2

respectively [58]. Different phosphor coating thickness is applied
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exhibited scintillation intensities about 16–134 times of that of BCF-12-based PSFD.

More importantly, this article showed that the time-dependent response caused by the

afterglow of Eu-doped scintillators can be suppressed by the mixture of Y2O3:Eu and

YVO4:Eu with an appropriate weight ratio. The same research group later compared

ruby (Al2O3:Cr), Y2O3:Eu, YVO4:Eu, ZnSe:O, and CsI:Tl-based IOSFDs for 192Ir BT

and also used BCF-12 and BCF-60 as a reference [70]. According to their test, ZnSe:O-

based IOSFD exhibited the most favorable characteristics considering its high and

stable scintillation intensity, dose linearity, insignificant memory effects, and negligible

stem interference. However, all IOSFDs tested are heavily energy dependent because of

the non-water equivalent characteristic of IOSs and the distant-dependent energy spec-

tra of 192Ir BT source in water. As a result, further attempts to acquire signal intensity-

dependent correction factors are needed.

The possibility of doing time-resolved in vivo dosimetry with the IOSFD for source

tracking in BT was also explored [67, 71, 72]. Belley et al. [71] adopted an inorganic

nanocrystalline composition (Y2O3:Eu,-Li) as the scintillation part and connected it to a

silica-based optical fiber. The clinical performance of real-time dose rate monitoring

during high-dose-rate (HDR) BT was evaluated and compared to thermoluminescent

dosimeters and the treatment planning system. The result conferred the feasibility of

using Y2O3:Eu,-Li-based IOSFD for real-time measurements during HDR BT. Johansen

et al. [67] used Al2O3:C-based IOSFD as an in vivo dosimeter for source tracking BT.

Fig. 9 The 3 types of detector probe tips that were used in the experiments in ref [69]
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The IOSFD was placed in a delicate BT needle in the prostate near a 192Ir radiation

source. The delivered dose rate and total dose were recorded with a single IOSFD, and

the distance between the source and dosimeter was derived from the measured dose

rate. The shift of the treatment needle was successfully detected with the IOSFD. This

work demonstrated the great application potential of IOSFD to source tracking in BT.

The same research group later used the Al2O3:C-based IOSFD to verify the dwell time

in HDR BT [72]. By analyzing the dose rate at different sampling rates, dwell times in

the identified dwell positions were calculated with high accuracy. Though the detection

efficiency needs to be improved, the research proposed an effective method to detect

dwell time offsets in BT. Overall, IOSFD-based in vivo dosimetry has promising appli-

cations in BT dosimetry.

IOSFD for other types of particle radiation dosimetry

Except for photon-based RT and BT dosimetry, IOSFDs also demonstrate the potential

for dosimetry in other types of therapy treatments such as PT and BNCT [73–79]. PT

offers improved dose distribution compared to ionizing photon radiation. The depos-

ited dose reaches the maximum near the end of the transporting range (the Bragg

peak). However, applying SFD for PT dosimetry faces challenges whereby SFD exhibits

a non-linear response to proton radiation dose at high-energy deposition of the parti-

cles within the fiber. These are due to the ionization-quenching phenomenon resulting

from non-radiative de-excitation occurring under conditions of high-density energy de-

position [80]; efforts have been made to find a scintillator with minimized quenching

phenomenon. The IOSFDs reported in this area include a Gd2O2S:Tb-based detector

and a lanthanide-doped silica scintillator-based detector [73–75]. Penner et al. [73] in-

vestigated Gd2O2S:Tb-based IOSFD for photon and proton dosimetry. For proton dose

detection, the detector exhibited excellent sensitivity, signal-to-noise ratio, and repro-

ducibility. However, further research effort is required to address the errors caused by

the significant quenching.

A Ce-doped silica scintillation fiber dosimeter was tested under 74MeV proton radi-

ation [74]. The experiment demonstrated that the Ce-doped silica IOSFD has a good

linear response to accumulated dose, irradiated dose length, and total dose rate

(Fig. 10a–c). At high-density energy deposition of protons, the quenching effect is sig-

nificant with a peak-to-plateau signal ratio of 2.79 for the proton raw Bragg peak pro-

file; nevertheless, this value is still lower than most standards (≥ 3.7) indicating less

severe quenching as shown in Fig. 10d. Hoehr et al. [75] reported an innovative Gd-

doped amorphous silica bulk scintillator for dosimetry in PT. This Gd-doped silica

IOSFD was tested with 8.2–62.9MeV protons and 2–6 nA of extracted beam current

and then compared with Ce- and Cu-doped silica IOSFDs fabricated with the same sol-

gel technique. Three types of IOSFDs all exhibited strong luminescence and linear re-

sponse to proton radiation. Of these, the Gd-doped silica IOSFD shows superior reso-

lution of the Bragg peak with the lowest Birks’ constant (kB = (0.0162 ± 0.0003) cm/

MeV), which is also lower than common PSFD, indicating a significant reduced

quenching. Their research demonstrated that this Gd-doped silica IOSFD could be a

promising candidate for PT dosimetry, and future steps to minimize the detector size

were suggested.
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During the BNCT process, 6Li-based inorganic scintillators have been adopted to

measure the neutron flux. Thermal and epi-thermal neutrons are captured by 6Li(n,t)α

reactions after which α particles and tritons are emitted. Other scintillation compo-

nents are absorbed by these secondary particles and emit light photons. Ito et al. [76]

fabricated a 6LiF-ZnS(Ag)-based IOFD to monitor a thermal neutron flux for BCNT.

Two types of probes were fabricated: one comprised a thin ZnS(Ag) film and a thin
6LiF film, and another comprised a wavelength-shift (WLS) fiber coated with a ZnS(Ag)

film and a thin 6LiF film. These two probes aimed to improve gamma-neutron discrim-

ination ability and neutron detection efficiency, respectively. Watanabe et al. [81] used

a similar 6LiF-ZnS(Ag)-WLS combination to increase the neutron sensitivity. The ef-

fective length of the detector has a positive effect on the sensitivity. Watanabe et al.

[78] reported a small Eu:LiCaAlF6 scintillator-based IOSFD for neutron detection in

BNCT. The light yield, the light collecting efficiency, and the transparency of the scin-

tillator were improved compared with the aforementioned 6LiF-ZnS(Ag)-based IOSFD.

The experiment confirmed an enhancement on the gamma-neutron discrimination

ability. However, the output linearity and dynamic range in real BNCT field requires

further investigation.

The “Development of IOSFDs” section reviews IOSFDs with different scintillation

materials and sensor configurations for dosimetry in ionizing photon RT, 192Ir BT, PT,

and BNCT. Clinical applications still require more research to identify proper scintilla-

tion materials, scintillator fiber-coupling configurations, and correction factors as well

as protocols for IOSFD for real-time in vivo dosimetry.

Fig. 10 The response of a Ce-doped silica based IOSFD to a 74MeV proton radiation source [74]. a Integrated
counts as a function of set dose for the fiber. b Signal from fiber as a function of its irradiation length. c Count
rate from the fiber as a function of dose rate. d Depth dose profiles for the Spread Out Bragg Peak using
various dosimeters
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Challenges of IOSFD for RTD application
Recent years have witnessed promising progress in IOSFD research, but there still re-

mains some concern over the clinical utilization of IOSFDs for in vivo dosimetry. This

section will discuss three major challenges in this research area: PDD deviation from

the standard IC measurement, the angular dependence, and the Cherenkov effect.

PDD deviation from the standard IC measurement

The PDD curve is used to measure the percentage of dose deposited in water at differ-

ent depths, with respect to the point of maximum dose. The curves measured with

SFDs are normally compared with standard IC. One attractive merit of PSFD is the

water-equivalent property of the plastic organic scintillators and plastic optical fibers;

therefore, the PSFD normally has no interference on the dose distribution. Early re-

search on PSFD has demonstrated a good agreement with IC regarding the PDD test

[15]. A maximum error of 0.3% was achieved by neglecting the Cherenkov effect when

the detector was placed perpendicular to the central axis of a 10 MV X-ray radiation

beam (field size 10 × 10 cm2). However, most of IOSFDs exhibited non-ignorable devi-

ation of depth-dose characteristics compared to the IC measurement. To date, this re-

mains the major impediment to the clinical application of IOSFD. For example, the

Gd2O2S:Tb-based IOSFD exhibited overresponse to the X-ray (6 MV, 100 MU) when

the field size is larger than 10 × 10 cm2 (at 1.5 cm in water equivalent material where

the radiation dose reaches maximum (Dmax) for a 6-MV photon beam measured by the

IC) [27]. The deviation increased as the field size increased. The magnitude of the devi-

ation depends not only on the field size but also on the type of scintillator, the incident

radiation beam profile, and the sub-surface depth [27, 58, 63, 82–85].

Multiple factors may give rise to the PDD deviation using IOSFD sensors compared

with ICs. In the study on YVO4:Eu, Gd2O2S:Tb, and ZnSe(Te)-based IOSFDs, the over-

response of the IOSFD to radiation in PDD experiment was attributed to the higher Zeff

of these inorganic scintillators [59, 83, 86]. The high Zeff results in an over-response of

IOSFD with respect to water or water-equivalent material due to the secondary radi-

ation of low energy. A recent study reported a new model investigating the overre-

sponse phenomenon in PDD measurement with IOSFD [63]. The experiment verified

that the influence of the energy effect and Cherenkov effect only contributed to a small

part of PPD deviation from the IC measurement. To explain the overresponse

phenomenon, the new model considers the softening of the energy spectrum of the in-

cident X-ray/γ-ray and the secondary electrons, as well as the sensitivity of IOS to pho-

tons and secondary electrons with lower kinetic energies. As the photons penetrate

into the water phantom, the mean energy of the photon beam and secondary electrons

decreases due to photon interactions [87, 88]. The IOS is more sensitive to photons

with lower energy in the deeper depth. The model also suggests that the scintillation ef-

ficiency of IOS corresponding to lower energetic secondary electron absorption is also

higher considering the inner scintillation mechanism. This group used the shielding of

the low energy particles and different beam size experiments to prove the theory. How-

ever, further Monte-Carlo simulation-based research (including a thorough consider-

ation of the incident beam profile, secondary electrons, the radiation field size, and the

probe size of the IOSFD) would be helpful to understand this theory.
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This same group proposed a solution to correct the PDD curves of IOSs [85]. This

method utilized the fact that different scintillators have unique PDD characteristics and

near-perfect dose linearity for a fixed depth. By applying a parallel-paired fiber light

guide structure where the two different scintillator materials (Gd2O2S:Tb and NaI:Tb

in this case) are separately embedded in two fiber tips, the information of water depth

and absorbed dose at the point of measurement can be extracted. This method pro-

vides one solution to overcome the PDD curve uncertainty and errors using IOSFD.

However, the accuracy of applying this method to a clinical trial with respect to varying

field sizes still needs further investigation. Overall, for the wide clinical application of

IOSFD, more efforts are needed to study the cause and solution of the PDD deviation

of various IOSFDs with respect to the IC measurements.

Angular dependence

Angular dependence was also constantly mentioned in the research concerning IOSFDs

[19, 59, 89, 90]. The angular dependence arises from the geometrical asymmetry of the

scintillator material in the sensor tip. For better coupling with the optical fiber, the

scintillation part is normally shaped in the form of cylinder geometry with a small

diameter (smaller than 1 mm) and relatively long length (several millimeters; Figs. 4, 5,

6, 7, and 8). As the angle changes, photons or electrons which enter the cylindrical sen-

sor tip from different locations and directions may have different initial energies and

travel further through paths of different lengths in the scintillator material. Hence, it is

reasonable to presume that the angular changes may cause a fluctuation of response to

the radiation.

Considering the geometrical symmetry, response of IOSFD to radiation with respect

to angular changes along axial direction and azimuthal direction of the scintillator and

optical fiber (Figs. 11) have different characteristics [59]. IOSFDs with cylindrical sensor

tips normally exhibit great axial angular independence and noticeable azimuth angular

dependence as shown by Qin et al. [19] and Alharbi et al. [90]. A solution to this issue

was suggested from the aspect of geometry [59]. The scintillator powders were dis-

persed in a quasi-sphere droplet compared with a cylinder-shaped scintillator tip. The

probe with this quasi-spherical geometry exhibited better azimuth angle independence

with an observed variation less than 2%. Therefore, it is possible to achieve angular in-

dependence by optimizing the geometry of the scintillator material pack.

Cherenkov effect removal techniques
The Cherenkov effect is considered as a major interference when using SFDs for dos-

imetry. It describes the phenomena that electromagnetic radiation is emitted when the

charged particles (e.g., electrons and positrons) passes through a material with the

speed exceeding the phase velocity of light in that medium. It occurs in almost every

clear material (e.g., silica or plastic optical fiber) at electron energies approximately 180

keV [56]. The Cherenkov light signal covers a broadband spectrum ranging from UV to

infrared wavelength. The Cherenkov radiation from the optical fiber and scintillators

limits the accuracy of the dosimeter. The intensity of the Cherenkov radiation is of the

same order of magnitude as the scintillation signal of the plastic scintillator, thus it

must be removed if PSFD is applied [91, 92]. In IOSFD, the intensity of the scintillation
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signal is significantly stronger than that of the Cherenkov signal. Nevertheless, it is still

necessary to remove the Cherenkov effect and only account for the scintillation signal.

Here, we briefly summarize the solutions to remove the Cherenkov effect including ex-

amples of both inorganic and organic scintillator-based SFDs.

Studies on the generation of Cherenkov radiation have been carried out for both sil-

ica and plastic optical fiber [62, 93–95]. At least four different methods have been de-

vised to eliminate the Cherenkov effect. These methods either remove Cherenkov

physically or take advantage of the characteristic differences of the scintillation and

Cherenkov radiation (such as the spectrum and the rise-decay time).

The first method, presented by Beddar et al. [14], removed the Cherenkov back-

ground signal by employing a parallel optical fiber located close to the signal fiber that

coupled with a piece of scintillator. The light signal detected in the second fiber is an

approximation (or a reference) of the Cherenkov background in the signal fiber. The

scintillation signal was corrected by subtracting this background signal detected by the

reference fiber. The limitation of this method is that any positional differences between

the two fibers will introduce errors [95], and it increases the size of the dosimeter.

The second method exploits the spectral difference between the scintillation light

and the Cherenkov radiation [61]. Importantly, the intensity of the Cherenkov

spectrum is proportional to λ−3 (where λ is the wavelength of the Cherenkov light), and

the emission peak is in the blue/green light region. By using scintillation coupled with

a longer wavelength emission (e.g., red emission peak) and filtering out the light with a

shorter wavelength, the Cherenkov emission was decreased from 6.5 to 2.8% of the

scintillator’s signal. Still, the Cherenkov signal cannot be totally eliminated using this

method, as Cherenkov light spectrum is continuous and comprises photons with long

wavelength. Later, Fontbonne et al. [96] demonstrated that by measuring the absolute

dose and the intensities of green and blue emission at two different locations, the

Cherenkov background signal can be, in principle, eliminated using linear equations to

calculate the contribution of the Cherenkov signal and the scintillation signal. Further

research regarding the correction of the Cherenkov effect based on this spectral dis-

crimination method was presented by Frelin et al. [97], Guillot et al. [21], and Ishikawa

et al. [98].

Fig. 11 The schematic of the angler dependence measurement showing the azimuthal angular change
and the axial angular change [59]. The arrows by the angle 90°, 180°, and 270° give the direction of
incident radiation
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The third method, which has been mentioned in the “Basic physical properties of

scintillators” section, was presented by Clift et al. [20]. It is a temporal method, and it

relies on the fact that the Cherenkov emission is a prompt process, whereas scintillation

is a delayed process. The Cherenkov signal could be reduced by reading the signal from

the dosimeter between the linac pulses when the Cherenkov radiation was decayed to

almost zero. An organic scintillator BC-444G with a long decay constant (264 ns) was

used to maximize the amount of scintillation light emitted in between the linac pulses,

and a sampling time of 700–705 ns was adopted. This setup successfully eliminated

most of the Cherenkov and fluorescent radiation.

The last method, proposed by Lambert et al. [91], corrected the Cherenkov signal

“physically” by removing the media where the Cherenkov signal is produced. In this

case, the fiber core exposed in radiation was removed. The experiment used an air core

light guide to transport the light from the scintillator to the light detector. This theoret-

ically eliminates the generation of Cherenkov light at its source and thus provides a

novel solution to the Cherenkov effect.

Conclusion
This work reviewed the work on IOSFDs for medical radiation dosimetry. First, some

basic knowledge regarding scintillator material was introduced. The fundamentals of

IOSs were reviewed in the “Fundamentals” section in terms of overall scintillation effi-

ciency, decay time, mass attenuation coefficients, and energy dependence. Dense IOSs

with high photon attenuation coefficient and scintillation efficiency are favorable for

the application of IOSFD for low-dose rate in vivo dosimetry. The “Development of

IOSFDs” section detailed the development of IOSFDs by applying different scintillator

materials and configurations. Research concerning embedded-structure IOSFDs and

sensor tip modification certifies that by optimizing the scintillator coupling method, it

is possible to improve the coupling efficiency between the scintillator and the optical

fiber. Furthermore, various IOSs with the bright red emission maximum provide con-

venience to suppress the Cherenkov effect and stem effect in the optical fiber using a

spectrum filtering method. IOSFD also offers promising potential for dosimetry in BT,

PT, and BNCT, but problems like the quenching phenomenon must be addressed. The

response characteristics of different IOSs to radiation dose from various charged par-

ticle sources should be investigated in the future. In the “Challenges of IOSFD for RTD

application” section, challenges for IOSFD development including PDD deviation from

standard IC measurement and angular dependence were discussed. In the “Cherenkov

effect removal techniques” section, typical Cherenkov removal techniques were summa-

rized. Clinical applications still require more research effort to identify a proper scintil-

lator material, scintillator-fiber coupling configuration, and correction factor; protocols

using IOSFD for in vivo and real-time dosimetry are also still needed. Nevertheless, it

is reasonable to expect more use of IOSFDs for in vivo real-time RTD considering their

good linearity and repeatability, high sensitivity, and convenience for stem effect

removals.
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