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Abstract

The computational expense associated with evaluating the electrostatic potential at

a series of points stems from the presence of the position vector of each point in the

denominator of a complicated 3D integral. A multipole expansion of the potential

is significantly less computationally demanding, and yields a good approximation

to the exact potential far from the charge distribution, but penetration effects lead

to erroneous potentials at short range. In this work we present a new, computa-

tionally efficient method for approximating molecular electrostatics, the Reduced

Orbital Potential Approximation, which combines multipole information with the

full electrostatic potential arising from a simple model density, which can be eval-

uated at a fraction of the cost of the full density and incorporates some of the

penetration correction without the need for damping functions.

A new tool for the chemical interpretation of ab initio wavefunctions is also in-

troduced which aims to establish a rigorous link between accurate computations of

the potential energy surface and widely employed chemical descriptions of change

during a reaction, such as frontier orbitals and “curly arrows”. To achieve this,

the total energy is partitioned tensorially into a global potential energy containing

no quantities associated with chemical bonding and a covalency energy, for which

the necessary assumptions and approximations for the use of chemically intuitive

notions of reactivity can be considered valid. The scheme is applied first to canon-

ical orbitals and shown to provide quantitative bonding information in line with

classical molecular orbital diagrams, and then to localised orbitals in an attempt

to recover frontier orbitals and curly-arrows. An extension to the method is also

explored which enforces the assumption that core orbitals are mere spectators to

reactions. The method is shown to give good results for a simple test system, and

then applied to an SN2 reaction.
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“Sometimes it seems to me that a bond between two atoms has become so real, so

tangible, so friendly, that I can almost see it. And then I awake with a little shock:

for a chemical bond is not a real thing: it does not exist: no-one has ever seen it,

no-one ever can. It is a figment of our own imagination.”

- Charles A. Coulson
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Chapter 1

Introduction

1.1 Quantum Mechanics

The laws of classical mechanics defined our understanding of the universe exclu-

sively, and successfully, for almost three centuries. The first clues as to the inad-

equacy of classical mechanics as the sole descriptor of the world around us came

at the hands of technological advances at the beginning of the 20th century, which

posed the question of how one should describe particles at large velocities or on

small scales. The theory of relativistic mechanics solved the high velocity problem,

while the small scale problem was solved by the construction of a new branch of

physics: quantum mechanics.

The impact of the early quantum mechanical theories cannot be overstated.

Not only did they provide scientists with predictive powers over atomic and sub

atomic systems, they changed the way physicists think about macroscopic systems.

Erwin Schrödinger’s wave mechanics approach to the quantum problem is perhaps

the most famous, and is foundational to this work. [1]

1.1.1 The Postulates of Quantum Mechanics

In any discussion of quantum mechanics, the start is almost invariably the com-

parison of the postulates of quantum and classical mechanics. [2] This section will

cover this ground and include a short disussion of each postulate in turn. The

list items X.C and X.Q correspond to the Xth classical and quantum postulates,

respectively.
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1.C The state of a particle can be described at any time t by two variables,

position x(t), and momentum p(t), by Newton’s Laws.

1.Q The state of a particle is described by a vector ψ(~r, t) belonging to a Hilbert

Space.

A Hilbert space is a complex vector space which contains vectors (representing

functions) normalisable to unity, and vectors normalisable only to the dirac delta

function. The importance of this feature is made clear in the discussion of the next

postulate.

2.C Any measurable quantity exhibited by the particle can be described by some

combination of x(t) and p(t) using the appropriate equation. The measure-

ment of a variable has no impact on the state of the system.

2.Q The analogues of the classical variables for 2.C are not simple functions of

time, but the expectation values of the operators x̂ and p̂. The measurement

of an observable changes the state vector of the particle to a basis vector

contained within the eigenbasis of the operator used to take the measurement.

The classical postulate requires little discussion, the state of a ball at x is not

changed by the observation that the ball is at x. Upon the measurement of a quan-

tum particle in state |ψ(~r, t)〉 with the position operator, x̂, the state is changed to

an eigenvector of x̂ contained within the Hilbert space of the previous postulate,

with eigenvalue (i.e the measured position) xδ(x − x0). In this basis, the matrix

representation of x̂, x, is diagonal. The form of the operators used in quantum

mechanics are given quite simply, by mapping the classical expression for a variable

to the operator form in the same combination (if we ignore some constants).

The modification of the state vector as a result of measurement is known as

the “collapse” of the state vector. One obtains upon the measurement of variable

Λ eigenvalue λi, with probability P (λi) ∝ | 〈λi|ψ〉 |2.

3.C The change in the state variables stays within the superstructure that is

Hamilton’s equations.
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3.Q The state vector |ψ(~r, t)〉 obeys at all times the Schrödinger equation,

i~
∂

∂t
|ψ(~r, t)〉 = Ĥ |ψ(~r, t)〉 (1.1)

The collapse of the state vector into an eigenvector of the chosen Hamiltonian

introduces an uncertainty which sits at the core of quantum mechanics. That is,

to measure two observables associated with a particle, apply their Hamiltonian

operators one after another, and if they are diagonal in the same basis, one can

know both precisely. In the case that they are not diagonal in the same basis,

both can never be known simultaneously. The most famous example of this is

Heisenberg’s uncertainty principle, which states that increasing the accuracy of a

measurement of a component of the position operator is to the detriment of the

accuracy of any momentum measurement along that component.

There are two representations used frequently in quantum mechanics: the posi-

tion space and the momentum space, which are simply the Hilbert spaces in which

the position and momentum operators, respectively, are diagonal. In this thesis

we are concerned only with position space, and also not at all with the evolution

of the wavefunction with time.

1.1.2 Quantum Chemistry

There are several terms which are commonly used synonymously with quantum

chemistry, such as computational, or theoretical chemistry. In this work the term

quantum chemistry will be used and defined, loosely, as the treatment of molecular

systems within the framework above, with the view to use the wavefunction for

the calculation of quantities of chemical interest.

While the Schrödinger equation is too difficult to solve analytically for systems

of chemical interest, there are a number of available methods and approximations

which allow us to gather numerical solutions. A selection of the most popular ones

are discussed in the next chapter.
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1.2 Current Work

A review of the most commonly used methods for finding approximate solutions

to the Schrödinger equation is contained in chapter 2. Chapter 3 provides useful

mathematical context to the optimisation problems encountered throughout this

thesis, and outlines a popular algorithm for solving problems of this sort, which

has been much used in the preparation of this thesis. Chapter 4 contains a review

of methods, theory and historical setting related to the new work on approximat-

ing molecular electrostatic potentials and forcefields which is then presented in

chapter 5. Chapter 6, much like chapter 4, is entirely review and sets the stage

for the introduction of a new method for extracting chemically intuitive bonding

information from molecular wavefunctions in chapter 7.
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Chapter 2

Electronic Structure Theory

Electronic structure theory comprises a vast array of approaches for solving the

Schrödinger equation. As such, this discussion is limited to those not including

relativistic effects, nor those including any nuclear motion. It is assumed that nu-

clear and electronic eigenstates are completely decoupled and as such our problem

is reduced to constructing a wavefunction which satisfies the requirements of the

electrons. How this is done, and the most popular models built on this assump-

tion are outlined in this chapter, along with the general form of the electronic

wavefunction and the most commonly used basis sets.

2.1 The Born-Oppenheimer Approximation

The time-independent Schrödinger equation for a molecule takes the following form,

Ĥψ(r,R) = Eψ(r,R) (2.1)

Ĥ = T̂e + T̂N + V̂ee + V̂eN + V̂NN (2.2)

5



where r and R are the electronic and nuclear co-ordinates, respectively, and

T̂e = −
N∑
i

1

2
∇2
i , (2.3)

T̂N = −
M∑
A

∇2
A

2MA

, (2.4)

V̂ee =
N∑
i>j

1

rij
, (2.5)

V̂eN = −
∑
i,A

ZA
riA

, (2.6)

V̂NN =
∑
A>B

ZAZB
RAB

, (2.7)

in atomic units. Kinetic energy operators are denoted T̂ and potential energy

operators are denoted V̂ . Subscripts correspond to electrons, e, of which there are

N and nuclei, A, of which there are M . Assuming that the electronic and nuclear

co-ordinates are separable, one can write a trial eigenfunction of the molecular

Hamiltonian written above as

|Ψ(r; R)〉 = ψ(r; R)γ(R), (2.8)

where ψ(r; R) is the electronic wavefunction which depends explicitly on the elec-

tronic co-ordinates and parametrically on the nuclear co-ordinates, and γ(R) is the

nuclear wavefunction. Inserting the above into the Schrödinger equation yields

Ĥψγ =
[
ψT̂Nγ + U(r; R)

]
+
{
γT̂eψ + (V̂ee + V̂NN + V̂eN)ψγ

}
. (2.9)

U(r; R) represents the coupling terms between the nuclear and electronic wave-

functions, and is assumed negligible. The second set of parentheses contains terms

dependent only on electronic co-ordinates and fixed nuclear positions, and under

the clamped nuclei approximation is the only surviving term in the above equa-

tion. Moreover, any contribution to the energy from V̂NN is constant under this

approximation and simply shifts the eigenvalues of the operator. Under the Born-

Oppenheimer (BO) approximation, the operator for nuclear motion is applied after

the solution to the electronic problem has been found. The justification rests upon

the differences in mass of the electrons, protons and neutrons, which have a ratio

of 0.00054:1:1; the protons and neutrons are expected to move much more slowly

than the electrons, thus in the frame of reference of an electron the nuclei are

stationary. [3] As a result, the potential energy surface the nuclei move along un-
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der the BO approximation can be found by repeated evaluation of the electronic

Schrödinger equation at fixed geometries.

This approximation is not valid for excited states, or where electronic states

are near-degenerate at the same nuclear geometry. In this thesis we are concerned

only with ground state wavefunctions, so the breakdown of the approximation

under these circumstances will not present an issue.

2.2 Electronic Wavefunctions

The description of an electron’s state requires, in total, four parts: three spatial co-

ordinates, r, and one spin function. The spin functions, α(ω) and β(ω) identify the

spin of the electron as spin up (ms = +1
2
) or spin down (ms = −1

2
), respectively.

A complete description of a single electron can be written as,

χ(r, ω) =

ψ(r)α(ω)

ψ(r)β(ω)

. (2.10)

With the available tools for describing a single electron, we can generalise to many

electrons so long as we keep in mind a set of requirements which must be fulfilled:

That the electrons are treated as indistinguishable particles - one can never say

electron one is described by this function and electron two by a second function

exclusively - and that any trial wavefunction be antisymmetric with respect to the

interchange of the space and spin co-ordinates of any pair of electrons. The latter

requirement arises from the fermionic nature of electrons. If this thesis concerned

the description of protons, which are bosons, we would require the wavefunction

to be symmetric, rather than antisymmetric.

For any system of N electrons one can quite simply write the wavefunction as a

Slater determinant (SD), named so after John C. Slater. [4,5] A Slater determinant

takes advantage of the features of the determinants one calculates in linear algebra

from the elements of a square matrix. Those features are the change in sign upon

interchange of any two columns or rows, and that the determinant vanishes if any

two columns or rows happen to be identical. Perhaps best illustrated by example

7



for two electrons,

Ψ(x1,x2) =

∣∣∣∣∣∣χp(x1) χq(x1)

χp(x2) χq(x2)

∣∣∣∣∣∣ = χp(x1)χq(x2)− χq(x1)χp(x2) (2.11)

wherein it is clear that if both columns were identical, the determinant would be

naught, and interchanging the two sets of variables x1 and x2 leaves us with the

same wavefunction but for a change in sign. More generally, one can write

Ψ(x1,x2, . . . ,xN) =

∣∣∣∣∣∣∣∣∣∣∣∣

χp(x1) χq(x1) · · · χr(x1)

χp(x2) χq(x2) · · · χr(x2)
...

...
. . .

...

χp(xN) χq(xN) · · · χr(xN)

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.12)

The orthogonality of the spin functions used in the description of these electrons

builds into this wavefunction a deficiency in correlating the motions of electrons of

opposite spins. This is remedied in higher-level methods by using more than one

Slater determinant, as will be discussed in later sections of this chapter.

2.3 The Slater-Condon Rules

The Slater-Condon rules are central to deriving the working equations for all meth-

ods which construct approximate solutions to the Schrödinger equation as a SD,

or a linear combination of SDs, of orthonormal orbitals. They were defined for

the diagonal elements of a matrix representation of an operator, Ĥ, in terms of

individual orbitals by John C. Slater, and for the off diagonal elements by Edward

Condon the following year. [4, 6] That is, they provide the means for evaluating

the matrix elements,

HIJ = 〈ΨI | Ĥ |ΨJ〉 , (2.13)

for SDs |ΨI〉 and |ΨJ〉. Taking one determinant as a reference, it is then possible

to define all other determinants belonging to the same space by how they differ

from the reference,

Ψ = ||ψ1(x1), ψ2(x2), . . . , ψi(xi), . . . , ψj(xj), . . . , ψk(xk), . . . , ψN(xN)||, (2.14)

8



where the notation ||·|| indicates a normalised SD. It is then simple to write excited

determinants in the form

Ψa
i = ||ψ1(x1), ψ2(x2), . . . , ψa(xi), . . . , ψj(xj), . . . , ψk(xk), . . . , ψN(xN)||, (2.15)

Ψab
ij = ||ψ1(x1), ψ2(x2), . . . , ψa(xi), . . . , ψb(xj), . . . , ψk(xk), . . . , ψN(xN)||, (2.16)

Ψabc
ijk = ||ψ1(x1), ψ2(x2), . . . , ψa(xi), . . . , ψb(xj), . . . , ψc(xk), . . . , ψN(xN)||, (2.17)

and so on. The superscripts denote virtual orbitals which are now occupied and

have replaced the orbital in coincidence in the subscript. Pauli exclusion prevents

double occupation of spin orbitals.

In this work we are interested only in the orbitals which minimise the energy

of the operator,

Ĥ =
∑
i

ĥ(i) +
1

2

∑
i,j

1

rij
, (2.18)

as discussed in section 2.1. The Slater-Condon rules for the integrals across Ĥ are

〈Ψ| Ĥ |Ψ〉 =
N∑
i

〈ψi| ĥ |ψi〉+
1

2

N∑
i,j

[
〈ψiψj|

1

r12

|ψiψj〉 − 〈ψiψj|
1

r12

|ψjψi〉
]
(2.19)

〈Ψa
i | Ĥ |Ψ〉 = 〈ψa| ĥ |ψi〉+

∑
j

[
〈ψaψj|

1

r12

|ψaψj〉 − 〈ψaψj|
1

r12

|ψjψa〉
]

(2.20)

〈Ψab
ij | Ĥ |Ψ〉 = 〈ψaψb|

1

r12

|ψaψb〉 − 〈ψaψb|
1

r12

|ψbψa〉 (2.21)

〈Ψabc
ijk | Ĥ |Ψ〉 = 0. (2.22)

These results are valuable. We now know that states which differ by more than one

orbital do not couple through the one electron operator, and those which differ by

more than two orbitals do not couple through the two electron operator. [3,7,8] In

the case that we build a wavefunction for a system which is a linear combination of

SDs, we then have valuable information about the form of the matrix representation

of Ĥ - it is very sparse. These results will be useful in the coming sections.
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The integrals shown in this section take the form,

〈ψi| ĥ |ψj〉 =

∫
d~x1 ψ∗i (~x1)ĥψj(~x1), (2.23)

〈ψiψj|
1

r12

|ψkψl〉 =

∫
d~x1

∫
d~x2 ψ∗i (~x1)ψ∗j (~x2)

1

r12

ψk(~x1)ψl(~x2). (2.24)

The integral shown in equation 2.24 is often abbreviated to 〈ψiψj|ψkψl〉, and

(〈ψiψj|ψkψl〉 − 〈ψiψj|ψlψk〉) to 〈ψiψj| |ψkψl〉.

2.4 Basis Sets

In this thesis, approximate molecular wavefunctions are always represented by an

expansion in some appropriately designed set of functions, which are referred to

as “basis sets”. The topic of this section is the design and features of modern

basis sets used frequently in quantum chemistry as a means to express the orbitals

mentioned in section 2.3. It is first worth noting that the algebraic approach to

solving the electronic problem outlined in this section is not the only one available.

One could more accurately solve the electronic problem numerically using a dense

grid, however this is hardly done as it comes at intractable computational cost

except where symmetry is high. [7, 9, 10]

In a complete basis, one could write exactly the wavefunction of a single electron

as a linear combination of the member functions of the set, {χα}. That is,

ψi =
∑
α

Cαiχα(r), (2.25)

where ψi is the ith molecular orbital and Cαi is the coefficient of basis function

χα(r) in the expansion of that molecular orbital. These basis functions are often

referred to as the atomic orbitals (AOs). In reality, infinitely large bases are of

course not possible, and choices must be made as to which functions to include

in the basis set, both for computational effficiency and accuracy of the numerical

solutions to the Schrödinger equation they provide.

In principle, one could use any set of appropriately defined functions as a basis

set for a quantum chemical calculation. It is also not unreasonable to centre these

basis functions randomly throughout space, not associating them with any nucleus
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in particular. However, in modern applications of electronic structure methods,

basis functions are almost always centred at the nuclear positions, and take the

form of atomic orbitals, thus giving rise to the linear combination of atomic orbitals

(LCAO) picture of molecular orbital (MO) theory. Features which are desirable for

basis functions are observed quite clearly in the eigenfunctions of the Schrödinger

equation for the hydrogen atom, seen in figures 2.1 and 2.2.

0 1 2 3 4 5 6 7

r(a0)

0.0

0.5

1.0

1.5

2.0

ψ
(r

)

Hydrogen Eigenfunction, n= 1, l= 0

Figure 2.1: The radial part of the first solution to the Schrödinger equation for the
H atom - the 1s orbital, which corresponds to quantum numbers n = 1 and l = 0.

Singularities arise in the wavefunction for any system containing both electrons

and nuclei. The conditions under which they occur are,

lim
rij→0

(
∂Ψ

∂rij

)
av.

=
1

2
Ψ(rij = 0) (2.26)

lim
rAi→0

(
∂Ψ

∂rAi

)
= −ZAΨ(rAi = 0). (2.27)

Equation 2.26 is known as the electronic cusp condition and arises where the po-

sition of two electrons is identical, and equation 2.27 is known as the nuclear cusp

condition, and is observed in the l = 0 orbitals (seen in figures 2.1 and 2.2). The

LCAO formalism of MO theory results in the shape of the wavefunction close to
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the nuclei being dominated by the analytic form of the AOs, which is in turn

dominated by the nuclear cusp condition.
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r(a0)

0.0
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0.4

0.6

ψ
(r

)

Hydrogen Eigenfunctions, n= 2, l= 0, 1

Figure 2.2: Second and third solutions to the Schrödinger equation for the H atom
- the 2s and 2p orbitals, which correspond to quantum numbers n = 2, l = 0 (blue
line) and l = 1 (orange line)

An early solution was offered by Slater, who proposed a nodeless analytic form

for the AOs known as Slater-type atomic orbitals (STOs), which are written as

χSTO
ξnllm

(r, θ, φ) = Rξnllm(r)Ylm(θ, φ) (2.28)

RSTO(r) =
(2ξnl)

3
2√

(2l + 2)!
(2ξnlr)

l exp(−ξnlr) (2.29)

where the radial dependence is given by Rξnllm(r), the angular part by the Legendre

polynomial Ylm(θ, φ) and n, l are the usual quantum numbers. In this way each ξnl

may be optimised, and the best basis set generated for each atomic number. As

an example, the H 1s function (ξnl = 1), the slater orbital is identical to the exact

solution seen in figure 2.1.

In modern day quantum chemical calculations, STOs are rarely used. Rather,

it has become the de facto approach to use Gaussian-type AOs (GTOs) in their
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place. The Gaussian product theorem, which guarantees that the product of any

two Gaussians is another Gaussian, provides a means to reduce products of many

Gaussians to a single Gaussian. By taking advantage of this, one can reduce

3- and 4-centre integrals to finite sums of two centre integrals, and then again to

finite sums of one-centre integrals and thus reduce the computation associated with

integration by several orders of magnitude. [7] Gaussian-type orbitals (GTOs) take

the analytic form,

χGTO
αnllm

(r, θ, φ) = Rαnllm(r)Ylm(θ, φ) (2.30)

Rαnllm(r) =
2(2αnl)

3
4

π
1
4

√
2l

(2l + 1)!!
(
√

2αnlr)
l exp(−αnlr2), (2.31)

where the exponent is here denoted α. Either of the function definitions in equation

2.28 or 2.30 could be used to form a complete basis. The lack of a cusp at r = 0

in the Gaussian-type orbitals is concerning; however they are so computationally

efficient one can include many Gaussians where it might only be possible to include

a few Slater-type orbitals. To take advantage of this, Pople and co-workers created

the STO-KG basis sets, which include K functions which are fitted by the least

squares method to the Slater-type orbitals. One can achieve in this way arbitrary

accuracy in the fit by simply including more GTOs, as seen in figures 2.3 and 2.4.

The linear combination of Gaussians which gave the green and red orbitals in

figures 2.3 and 2.4 need only be optimised once, then the coefficients and exponents

stored. In this way one can avoid the duplication of effort by using contracted basis

sets made up of contracted Gaussians (such as the STO-KG basis sets), rather than

primitive Gaussians. Contracted Gaussians take the form

χCGTO
µ =

∑
p

dpµχ
PGTO
p , (2.32)

where dpµ is the coefficient of the pth primitive Gaussian in the expansion of the µth

contracted Gaussian. Optimizing exponents and coefficients for GTOs is a complex

problem with many solutions, and thus must be re-performed for as many systems

as there are elements in the periodic table. One way in which this optimisation is

simplified is to place a constraint upon the ratio between exponents within the same
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GTO Expansions of the STO 1s Orbital

Figure 2.3: Expansion of the hydrogen STO 1s (blue line) function in GTOs,
generated using a least squares approach. Shown are the GTO expansions using a
single GTO (orange line), two GTOs (green line) and three GTOs (red line).
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GTO Expansions of the STO 2p Orbital

Figure 2.4: Expansion of the hydrogen STO 2p (blue line) function in GTOs,
generated using a least squares approach. Shown are the GTO expansions using a
single GTO (orange line), two GTOs (green line) and three GTOs (red line).
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shell, requiring that the exponent in each term of the expansion have a predefined

ratio with the exponent in the previous term. Basis sets generated in this way are

referred to as even-tempered basis sets, named so after the evenly spaced peaks of

their constituent Gaussians. [7,11–14] Expansions of the basis functions defined in

this way form a good starting point for moving towards the HF limit in a controlled

manner, as opposed to beginning arbitrarily. [7]

It was made clear at the outset that this thesis is concerned with solving the

electronic problem for molecules. So far the discussion has been limited to atoms,

and much has been made of the deficiency of GTOs in comparison with STOs.

When one makes the move to modelling systems containing multiple nuclei (par-

ticularly those with different atomic numbers), atomic symmetry is destroyed and

consequently there is a need for polarization functions to appear in the basis set.

One has available two approaches to including polarization functions: functions

positioned away from nuclear centres, or the inclusion of more atom-centred func-

tions. The variational optimisation of positions of GTOs away from nuclear centres

is numerically and computationally difficult, and so is rarely done. Moreover, the

inclusion of basis functions only at nuclear positions allows one to compare the

sizes of basis sets in a consistent way. The terminology usually used for basis

sets containing the minimum possible number of functions is a minimal basis. For

carbon, a minimal basis would simply contain a total of five basis functions; two

s-type functions and three p-type functions. If one then includes two basis func-

tions for each atomic orbital and has a total of ten basis functions: four s-type

functions and six p-type functions, one has a strictly “double-zeta” basis. A triple-

zeta basis contains three basis functions for each atomic orbital, and so on. In the

description of molecules it is common to employ split-valence basis sets, in which a

smaller number of basis functions are included for core orbitals than are included

for valence orbitals. In the description of molecules, it is also necessary to provide

enough flexibility to the wavefunction that it is able to distort in the presence of

any nearby charge distribution. This is usually achieved by the inclusion of polari-

sation functions in the form of basis functions of higher l. For instance, an s-orbital

is able to shift its position and shape by mixing with p-orbitals, and p-orbitals by

mixing with d-orbitals, and so on. Thus, one introduces to a basis set functions of
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lmax + 1 angular momentum, where lmax is the largest l of the valence orbitals of

the atom. For instance, to introduce polarisation functions to a carbon nucleus,

one expands the basis to include functions for which l = 2.

2.5 Hartree-Fock Theory

The Hartree-Fock (HF) method is concerned with the clamped-nucleus, mean-field

treatment of the electrons in a system. The wavefunction is approximated by a

single SD. As such, using the results presented in section 2.3, one can write the

energy expression for a single SD as

E =
N∑
i

〈ψi| ĥ |ψi〉+
1

2

N∑
i,j

[
〈ψiψj|

1

rij
|ψiψj〉 − 〈ψiψj|

1

rij
|ψjψi〉

]
+ Enuc. (2.33)

Self-interaction of the electrons is not present, i.e, the second term in the energy

equation is zero when i = j. The factor of a half is to prevent double counting.

The first term is a sum over one-electron contributions,

〈ψi| ĥ |ψi〉 = −1

2
〈ψi| ∇2

1 |ψi〉 −
M∑
I=1

〈ψi|
ZI

|~r1 − ~RI |
|ψi〉 , (2.34)

each term of which is the energy arising from an electron in orbital i interacting

with M nuclei independent of the other electrons in the system. The quantity

in square brackets in equation 2.33 - the two electron terms - describe the inter-

electron interactions. The first term in the square brackets is the coulomb term, and

is the classical repulsive interaction between two charge distributions. The second

term is a consequence of the antisymmetry of the wavefunction and is known as

the exchange interaction energy and has no simple classical interpretation.

2.5.1 Closed-Shell Hartree-Fock Theory

In the case that one has a molecular wavefunction of singlet spin and all orbitals are

doubly occupied (i.e, two spin orbitals have identical spatial parts and orthogonal
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spin parts), one can integrate out the spin functions in 2.33 according to,

〈α(ω)|α(ω)〉 = 〈β(ω)|β(ω)〉 = 1, (2.35)

〈α(ω)|β(ω)〉 = 〈β(ω)|α(ω)〉 = 0, (2.36)

and thus obtain the energy expression containing only the spatial parts of the

orbitals defined in equation 2.10,

E = 2
N∑
i

〈ψi| ĥ |ψi〉+
N∑
i,j

[
2 〈ψiψj|

1

r12

|ψiψj〉 − 〈ψiψj|
1

r12

|ψjψi〉
]

+ Enuc. (2.37)

It is then straightforward to obtain an expression for the closed-shell energy within

the LCAO picture of MO theory by substituting equation 2.25 into equation 2.37

to obtain,

E = 2
∑
α,β

∑
i

CαiCβi

{
hαβ +

1

2

∑
γ,δ

2
N∑
j

CγjCδj

[
〈αγ|βδ〉 − 1

2
〈αγ|δβ〉

]}
+ Enuc

(2.38)

=
∑
α,β

Dαβ

{
hαβ +

1

2

∑
γ,δ

Dγδ

[
〈αγ|βδ〉 − 1

2
〈αγ|δβ〉

]}
+ Enuc (2.39)

=
∑
α,β

Dαβ

{
hαβ +

1

2
Γαβ

}
+ Enuc. (2.40)

where the abbreviation 〈χαχγ|χβχδ〉 = 〈αγ|βδ〉 has been introduced for integrals

over basis functions, and

Dαβ = 2
N∑
i

CαiCβi, (2.41)

Γαβ =
∑
γ,δ

Dγδ

[
〈αγ|βδ〉 − 1

2
〈αγ|δβ〉

]
. (2.42)

D is the density matrix in the atomic orbital basis, and Γ is the two-electron

matrix, which has a parametric dependence on D. One can now write a compact
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expression for the HF energy in matrix form,

E = tr

[
D ·

(
h +

1

2
Γ

)]
+ Enuc. (2.43)

Thus during any calculation of E one need only calculate the one-electron integrals

in the AO basis once. Thereafter, they are stored and transformed according to

the equations above to give the energy of any SD defined in the current basis.

2.5.2 Variational Conditions

The HF method provides an upper bound on the exact energy, so we can vary the

MO coefficients as we wish in order to minimize the energy and thus obtain the

best approximation to the energy within the space spanned by the chosen basis.

It is customary to also demand the orbitals be orthonormal with respect to the

atomic orbital overlap matrix,

Sαβ = 〈α|β〉 =

∫
d~x1 χ∗α(~x1)χβ(~x1). (2.44)

That is,

C†SC = 1. (2.45)

There are several ways one can solve this problem. One could start with orthonor-

mal orbitals and rotate them together, thus retaining their orthonormality and

allowing an unconstrained optimisation of elements of the rotation generator. An-

other method might be to define a Lagrangian, L, and perform an unconstrained

optimisation. The latter is the way this is usually presented, and so will be briefly

shown here and the former will be used extensively in later chapters for a different

problem.

Consider the function

L = E − 2
∑
i,j

εij([C
†SC]ij − δij) = E − g. (2.46)
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We wish to find the MO coefficients for which

∂L

∂Cαi
= 0 ∀ α, i. (2.47)

One obtains for the derivatives of the energy with respect to the MO coefficients

and AO density matrix elements,

∂E

∂Cαi
=
∑
γδ

(
∂E

∂Dγδ

)(
∂Dγδ

∂Cαi

)
, (2.48)

∂E

∂Dγδ

= hγδ +Gγδ = Fγδ (2.49)

respectively. F is the Fock matrix. The derivative of the density with respect to

the MO coefficients is
∂Dγδ

∂Cαi
= 2[δγαCδi + δδαCγi]. (2.50)

Now differentiating the constraint, g,

∂g

∂Cαi
= 4

∑
j

[SC]αjεij = 4[SCε]αi. (2.51)

Then, writing the derivative of the Lagrangian out in full, assuming we have found

a stationary point, one has

∂L

∂Cαi
= 4[FC− SCε]αi = 0. (2.52)

And thus the Hartree-Fock-Roothaan equations are obtained,

FC = SCε. (2.53)

In order to find the undetermined multipliers, εij, one multiplies on the left with

C†. The density matrix in HF, given by equation 2.41 is invariant to unitary

transformations, and depends only on the occupied orbitals. This is easily shown,

by inserting C′ = CU into the equation for the density matrix,

D′ = 2CUU†C = 2C1C† = D. (2.54)
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Thus the Fock operator is also invariant to unitary transformations of the occupied

orbitals. This allows us to choose U such that ε is diagonal. The diagonal elements

of ε are then defined as the “orbital energies” of the molecular system of interest.

Having spoken only about optimising the occupied molecular orbitals, we have

neglected a famous feature of the Hartree-Fock-Roothaan equations, and that is

that they can be extended to include the virtual orbitals, and consequently become

self consistent after a sufficient number of iterations. That is, if one calculates the

Fock matrix (using a density calculated with only the occupied orbitals), then

diagonalises in the full orbital space, the mixing between the occupied and virtual

orbitals changes the energy, the occupied orbitals, and the density. Repeatedly

performing this procedure leads to a solution for which the Fock operator in the

MO basis is diagonal, in both the occupied and virtual blocks. At this point, the

orbitals stop changing (there is no longer any mixing between spaces), and self

consistency is achieved.

An alternative way to do this is to transform the Fock matrix (AO basis) into

the symmetrically orthogonalised AO basis, by multiplying by S−
1
2 . That is,

F̄ = S−
1
2 FS−

1
2 , (2.55)

C = S−
1
2 C̄. (2.56)

Substituting into equation 2.53, we then have an eigenvalue problem,

F̄C̄ = C̄ε̄. (2.57)

Diagonalisation of F̄ yields C̄ from which one obtains the next C though the back-

transformation of the MO coefficients in the orthogonalised AO basis, i.e, using

equation 2.56.

2.5.3 Open-Shell Hartree-Fock

So far, we have assumed that for a system containing N electrons, of which Nα

are of α spin and Nβ are of β spin, that Nα = Nβ. This is not always true in

reality and so it is important to also consider open-shell systems wherein one or
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more spatial orbitals contain only one electron. One usually refers to these states

by quantum number S = 0, 1/2, 1, 3/2, . . ., or as singlet, doublet, triplet or quartet

states, respectively. It is easy to see from the integration of the spin functions

that if we wish to describe these states with a single Slater determinant, all of the

open-shell orbitals must contain electrons of the same spin. This is an artefact of

the two electron terms in the energy expression vanishing where the electrons are

of opposite spins.

Now consider the case that Nα > Nβ. One can either treat the system in

an analogous way to that described in section 2.5.1 - that is, to require α and β

spin electrons to occupy identical spatial orbitals - or one can lift this restriction

and optimise the spatial functions for individual electrons, rather than pairs. The

former case is known as the restricted Hartree-Fock method (RHF), and the latter

is known as the unrestricted Hartree-Fock method (UHF).

The UHF method will not be treated in detail here, as it is not of much interest

in this work, and the results obtained are similar to those presented in section

2.5.1. The difference is simply that where one has a single quantity in RHF, one

has two quantities in UHF. The coupled equations are obtained,

FαCα = SCαεα, (2.58)

FβCβ = SCβεβ, (2.59)

which must be solved simultaneously. [3] It is worth noting that the RHF equations

are a special case of the UHF equations. Thus, solutions to the RHF problem

represent a subset of the set of solutions to the UHF problem.

2.5.4 Deficiencies of the Hartree-Fock Method

While the HF method can provide reasonable and qualitatively useful results for

systems which can be described by a single determinant (for instance some equilib-

rium geometries of closed shell systems), there are some glaring issues and it cannot

be relied upon for all cases. The particular weaknesses of the HF method are the

modelling of bond dissociation, and the capture of electron correlation effects; the

former is hostage to the latter, both are discussed together here.
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In the homolytic cleavage of a chemical bond, one begins with a singlet wave-

function, and must retain that singlet wavefunction as the nuclei are pulled away

from one another. Consider the H2 molecule. [15] One can write the wavefunction

for this system in terms of the hydrogen 1s orbitals centered at HA and HB. That

is,

Ψ =
1√
2

[
||sαA(1)sβB(2)|| − ||sβA(1)sαB(2)||

]
. (2.60)

The above features two SDs. In HF theory we have only one SD. From basic MO

theory we know that the in-phase and out-of-phase combinations of the atomic

orbitals gives the molecular bonding and anti-bonding orbitals,

σg =
1√

2(1 + s)
[sA + sB], (2.61)

σu =
1√

2(1− s)
[sA − sB], (2.62)

where s is the overlap between the two s functions, which tends to zero as internu-

clear distance increases. One can then write the atomic orbitals in terms of these

molecular orbitals,

sA =
1√
2

(σg + σu), (2.63)

sB =
1√
2

(σg − σu), (2.64)

thus obtaining the correct, singlet wavefunction for H2 in the molecular orbital

basis,

Ψ =
1√
2

[
||σαg (1)σβg (2)|| − ||σαu (1)σβu(2)||

]
. (2.65)

The RHF determinant is just the first term in this expansion,

ΨRHF = ||σαg (1)σβg (2)||, (2.66)

=
1

2

[
||sαA(1)sβA(2)||+ ||sαB(1)sβB(2)||+ ||sαA(1)sβB(2)||+ ||sαB(1)sβA(2)||

]
,

(2.67)

and represents a mixture of the correct wavefunction, and two degenerate ionic

states (last two terms and first two terms in square brackets, respectively). This
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leads to the dissociation curve having ionic character - the electrons have a 50%

chance of being at both atoms, and 50% chance of both being on the same atom.

In the UHF treatment, the symmetry of the wavefunction is broken, and is actually

a mixture of triplet and singlet states, but given the degeneracy of the states, the

lineshape of the dissociation curve is correct, albeit for the wrong reasons. [3] These

results are shown in figure 2.5.
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Figure 2.5: Energy of H2 with internuclear distance r, calculated using RHF (blue
line) and UHF (orange line) in the cc-pVTZ basis.

It is obvious from equation 2.65, that the correct wavefunction is a 50:50 mixing

of two Slater determinants. The energy arising from degenerate states such as

these is known as the static correlation energy. Static correlation is responsible

for returning the appropriate spin symmetry of the asymptotic wavefunction and

cannot be captured by a single SD by definition.

Dynamic correlation, which is associated with satisfying the electronic cusp

condition (equation 2.26), would do nothing to address the dissociation of the

bond, and thus a distinction is drawn between the two types. Dynamic correlation

is partly captured by the HF method, as two electrons of parallel spins cannot

occupy the same point in space, however, electrons of opposite spins can. This is

unphysical and steps can be taken to account for this, as outlined in the following

sections.
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2.6 Configuration Interaction

In full CI (FCI) theory, the electronic wavefunction is written as an expansion of

all configurations formed by exciting electrons from some reference wavefunction.

Where one is concerned with a closed shell system, the RHF wavefunction makes a

good reference from which one then constructs all singly, doubly, triply, etc excited

configurations and forms a linear combination of these determinants,

|ΨFCI〉 = c0 |Ψ0〉+
∑
i,a

cai |Ψa
i 〉+

∑
i<j

∑
a<b

cabij |Ψab
ij 〉+

∑
i<j<k

∑
a<b<c

cabcijk |Ψabc
ijk〉+ · · · ,

(2.68)

where the quantities {Ψ} are as defined in section 2.3. While there are com-

putational advantages to using SDs (as above), one could opt to use configura-

tion state functions (CSFs) which are spin adapted linear combinations of SDs,

are eigenfunctions of Ŝ2 and explicitly retain the spin multiplicity of the total

wavefunction. [7, 16] In terms of the problem at hand (obtaining the parameters

C0, c
a
i , c

ab
ij , c

abc
ijk , . . .), the manner in which one writes the wavefunction makes little

difference.

Writing the FCI wavefunction in a more general form,

|Ψ0〉 =
∑
m

cm |Ψm〉 (2.69)

where m runs over all SDs (or CSFs), one can minimise the expectation value of

the energy, E, with respect to the expansion coefficients cm, and this does not

modify the orbital coefficients. In matrix notation, this is

Hc = ESc, (2.70)

where c is a vector containing the expansion coefficients, cm. Given the results

in section 2.1, we know that matrix H is sparse. As one can imagine from the

discussion of the bonding in H2 in section 2.5.4, a wavefunction generated in this

way includes all correlation effects, and gives the correct form of the wavefunction

at all points - the FCI wavefunction (if one had a complete basis set) is the exact

solution to the clamped-nucleus non-relativistic Schrödinger equation.
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This problem is computationally unwieldy, with H being difficult to diagonalise

numerically, and the number of generated SDs being so large they become impossi-

ble to store. Various methods have been developed for tackling this issue, perhaps

the most famous is the direct CI method developed by Roos. [17]

To further reduce the cost of CI methods, one can make a decision about the

level of excitations to include in the expansion 2.68. For example in the CISD

method, one stops at the third term in the expansion. Doing this requires making

a sacrifice - the method is no longer size extensive. Size extensivity is a property of a

wavefunction which states that the wavefunction of two coexisting, non-interacting

systems is the same as the product of the wavefunctions for the two systems where

they do not coexist. Consider, for example CID (double excitations only) for 2H2,

where the distance between the molecules is infinite. By definition our wavefunction

consists of the ground state wavefunction and double excitations. The wavefunction

for H2 consists of the ground state and double excitations. The product of two H2

wavefunctions infinitely separated consists of double and quadruple excitations,

and thus is not the same as the wavefunction where the molecules coexist.

Where one has a reference wavefunction of the form of equation 2.69, one can

construct excitations from the set of configurations {|Ψm〉}. This is known as

the multi-reference configuration interaction method. One simply has the job of

generating those |Ψm〉 which are most important for the region of the potential

energy surface (PES) of interest.

2.7 Multiconfigurational SCF Theory

Multiconfigurational Self-Consistent Field (MCSCF) theory is essentially a hybrid

HF-CI method, or a HF method for a linear combination of SDs rather than a

single SD. [7, 16] That is, in standard configuration interaction (CI) methods one

optimises only the CI coefficients whereas in MCSCF one optimises both the CI

coefficients, and the molecular orbital coefficients. By the appropriate selection

of determinants to include in the expansion, one can describe very well chemical

features, and degenerate states.

The exponential generator of orbital rotations mentioned in section 2.5.2 is now

25



applied to equation 2.69 to give

|Ψ0(θ,C)〉 = exp(−θ)
∑
m

cm |Ψm〉 , (2.71)

where θ† = −θ. The energy of this wavefunction,

E = min
θ,C

〈Ψ0(θ,C)| Ĥ |Ψ0(θ,C)〉
〈Ψ0(θ,C)|Ψ0(θ,C)〉

, (2.72)

is of course invariant to the rotations if the expansion forms a complete set. That

is, if one chooses all excited configurations and performs FCI.

In terms of the applications to chemical problems, MCSCF is a powerful tool in

the prediction of bond dissociation energies, as one can be sure that the wavefunc-

tion has the right symmetry and the problems encountered in section 2.5.4 are not

met again. Moreover, by choosing states which are degenerate and including them

in the expansion (equation 2.69) one can capture reliably the static correlation. Of

course, the dynamic correlation captured in these methods depends on the size of

the space one explores in the second expansion of the wavefunction.

2.7.1 Complete Active Space Self-Consistent-Field Theory

Complete active space SCF theory (CASSCF) is simply a regime by which one can

choose the determinants included in the initial expansion by generating excited

states from a single reference wavefunction. It is done by dividing the full orbital

space into three subspaces: the inactive, active and virtual spaces. The inactive

space is treated with the usual HF mean-field approach with a single SD and

all orbitals are doubly occupied. The active space consists of both occupied and

virtual orbitals and is defined by the user, then all excited configurations within this

space are used for the expansion of the wavefunction. The virtual space remains

unoccupied throughout.

Usually the active space is defined by the user’s chemical intuition and how it

aligns with the graphical depiction of the orbitals (usually localised by the minimi-

sation of some functional). It is not much of a stretch to imagine how one might

choose an active space for a bond dissociation, for example. One hopes to find an
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orbital which points along the bond and resembles the LCAO in-phase mixing of

MO theory and a virtual which resembles the out-of-phase mixing of MO theory.

Performing CI within this space, then, one returns a good representation of the

PES in the direction of the nuclear separation of the bonding atoms.

2.8 Coupled Cluster Theory

Coupled cluster (CC) theory involves exponential ansätze where one expands the

wavefunction in terms of excitation operators acting upon a reference wavefunction,

exciting electrons in singles, pairs, triples, and so on as the power increases in the

series. CC has at its disposal a unique feature and one which sets it apart from

other electronic structure methods, which is that, in constrast to truncated CI

methods, it is size-extensive in all of its flavours. One can truncate the expansion

at any point and not suffer the same loss of this feature that FCI does. This arises

from the form of the wavefunction,

|ΨCC〉 = exp

(∑
i,a

tai τ̂
a
i +

∑
i>j

∑
a>b

tabij τ̂
ab
ij + · · ·

)
. (2.73)

Where the quantities ta
i

and τai are the weighting of the excitations in the expan-

sion, and the excitation operators, respectively. The excitation operators simply

generate the state where orbitals corresponding to the lower indices are replaced

by the orbitals corresponding to the upper indices.

Just as in section 2.6, consider two H2 molecules infinitely separated, and the

wavefunction generated by the application of the CCD operator on an RHF ref-

erence. The wavefunction for each fragment would include only the ground state

and double excitations, and the system wherein the molecules coexist would also

be described by a wavefunctions which includes only the ground state and double

excitations. One can write a simple example of this and show that the wavefunction

is multiplicatively separable. [7, 16]
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2.9 Many-Body Perturbation Theory

Perturbation theory rests on the idea that one can take a solution to an ideal

problem, and perturb it to make it better suit reality. There is only the requirement

that the ideal case is close to the real case. In terms of electronic structure, electron

correlation is very small by comparison to the total energy, thus the energy is

not dominated by correlation and nor is the wavefunction. Using this method to

acquire the correlation energy will be the subject of section 2.9.1. Here, a short

introduction to Rayleigh-Schrödinger perturbation theory is given.

One begins by writing the quantities we are interested in as a Taylor series in

some parameter, λ,

Ĥ(λ) = Ĥ(0) + λĤ(1) + λ2Ĥ(2) + · · · , (2.74)

Ψ(λ) = Ψ(0) + λΨ(1) + λ2Ψ(2) + · · · , (2.75)

E(λ) = E(0) + λE(1) + λ2E(2) + · · · , (2.76)

where

Ĥ(k) =
1

k!

∂kĤ

∂λk
, (2.77)

Ψ(k) =
1

k!

∂kΨ

∂λk
, (2.78)

E(k) =
1

k!

∂kE

∂λk
. (2.79)

The power of this method, alongside its application to the theory of intermolecular

forces, is in the choice of the parameter λ. One can choose it to represent an

external field imparted by a nearby molecule, for instance. Inserting into the

Schrödinger equation the expansions in equations 2.74, 2.75 and 2.76 one obtains

a sequence of equations of increasing order in λ,

[Ĥ(0) − E(0)] |Ψ(0)〉 = 0, (2.80)

λ[Ĥ(0) − E(0)] |Ψ(1)〉+ λ[Ĥ(1) − E(1)] |Ψ(0)〉 = 0, (2.81)

λ2[Ĥ(0) − E(0)] |Ψ(2)〉+ λ2[Ĥ(1) − E(1)] |Ψ(1)〉+ λ2[Ĥ(2) − E(2)] |Ψ(0)〉 = 0. (2.82)
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In order to ensure unique solutions to the above and avoid the construction of

linear combinations of eigenstates with the zeroth order wavefunction, which are

just further eigenstates and equally valid solutions, we insist that the wavefunctions

{Ψ(k) : ∀k > 0} be orthogonal to Ψ(0). Projecting on the left of equations 2.80,

2.81 and 2.82 with 〈Ψ(0)|, one obtains the energies corresponding to each order of

the perturbation parameter,

E(0) = 〈Ψ(0)| Ĥ(0) |Ψ(0)〉 , (2.83)

E(1) = 〈Ψ(0)| Ĥ(1) |Ψ(0)〉 , (2.84)

E(2) =
[
〈Ψ(0)| Ĥ(1) |Ψ(1)〉+ 〈Ψ(0)| Ĥ(2) |Ψ(0)〉

]
. (2.85)

As a result, one requires only the zeroth and first order wavefunctions to correct

the energy up to second order in λ.

2.9.1 Møller-Plesset Perturbation Theory

Møller-Plesset (MP) perturbation theory is concerned with using the framework of

section 2.9 in order to approximately capture as much of the correlation energy as

possible. [18, 19] The zeroth order wavefunction is just a single SD and the zeroth

order Hamiltonian is chosen to be a sum of Fock operators for all electrons and

the first order operator is the difference between the exact operator and the fock

operator. That is,

Ĥ(0) =
N∑
i

f̂(i), (2.86)

Ĥ(1) = Ĥ −H(0). (2.87)

These are convenient definitions: the zeroth order wavefunction is the optimised

HF determinant, and the zeroth order energy is the sum of the orbital eigenvalues,

as discussed in section 2.5, with the difference between the HF energy and the

zeroth order energy being that in MP perturbation theory we do not correct for

double counting. Rather, this is corrected by the first order Hamiltonian. Thus,

〈Ψ(0)|H(0) +H(1) |Ψ(0)〉 = E(0) + E(1) = EHF . (2.88)
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So to improve upon the HF energy one has to go up to second order, which requires

a first order wavefunction as in equation 2.85. The first order wavefunction is a

combination of SDs,

Ψ(1) =
∑
i

∑
a

taiΨ
a
i +

∑
j>k

∑
b>c

tbcjkΨ
bc
jk + · · · , (2.89)

where t are the weighting coefficients in the expansion. To find them, project on

the left with all excited determinants, and take advantage of the fact that we are

in an eigenbasis of the zeroth order Hamiltonian. This yields

tai = −〈Ψ
a
i | Ĥ |Ψ〉
εa − εi

, (2.90)

tabij = −
〈Ψab

ij | Ĥ |Ψ〉
εa + εb − εj − εi

. (2.91)

For single excitations this amounts to naught where Brillouin’s conditions are sat-

isfied, as the occupied virtual block of the Fock matrix is zero. That is, for all

closed shell HF problems, and for all UHF wavefunctions there is no contribution

from singly excited determinants. We are also aware from section 2.3 that integrals

between determinants differing by more than 2 orbitals vanish, thus only double

excitations can contribute to the zeroth order wavefunction and the second order

energy (this is true for the third order energy too, but the algebraic manipulation

needed to show this is omitted). Moreover, the only terms remaining where deter-

minants differ by two orbitals are the two-electron integrals, thus the amplitude is

given by

tabij = −〈ψaψb|ψiψj〉 − 〈ψaψb|ψjψi〉
εa + εb − εi − εj

, (2.92)

and the second order correction to the energy is

E(2) =
∑
i>j

∑
a>b

tabij 〈Ψab
ij | Ĥ |Ψ0〉 = −

∑
i>j

∑
a>b

[〈ψaψb|ψiψj〉 − 〈ψaψb|ψjψi〉]2

εa + εb − εj − εi
. (2.93)

Thus the second order correction to the energy arises from the pairwise correlation

of the electrons in the system. Higher order terms couple only to excited deter-

minants whose importance diminishes. The physical interpretation of this result

is that the pairwise correlations are more important than three-and-higher-body
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correlations. An attractive consequence of only considering certain excitations is

that the method is size extensive.

The order to which one corrects the energy through this method is written

MPX, where X indicates at which order the expansion terminates. Here we have

only discussed MP2 but the same framework applies to all higher orders. MP2 is

computationally very cheap to perform given that only double excitations need be

generated. It is rare in modern electronic structure applications to see higher orders

than this. MP2 reliably gives an energy closer to the true energy, whereas increasing

the order can sometimes lead to a divergence in the series and unreliable results.

MPX can be performed for any reference wavefunction, restricted or otherwise, and

will yield an energy which behaves similarly asymptotically. That is, any deficiency

in the HF energy of the reference is carried over to the MPX energy. A similar

procedure to this can also be carried out for multireference wavefunctions. [7, 16]

2.10 Density Functional Theory

Density functional theory (DFT) is built upon the foundations laid by Hohenberg

and Kohn, who proved that the ground-state electronic energy is determined only

by the electron density. [20] The features of the density which provide some insight

into why this may be true are that the integration over the density is equal to the

electron number and that there are cusps at the nuclei (of a height dependent on

the atomic number) in the electron density of any system, atomic or molecular. [8]

In orbital-free DFT, there are only ever 3 variables which define the density and

thus the energy, however, the accuracy of these methods is very low and they will

not be discussed here. Rather, one makes the sacrifice of increasing the number

of variables to 3N and introduces orbitals to DFT in the form of Kohn-Sham

theory. [21] The Kohn-Sham model sits on top of what has already been discussed

in section 2.5 - the kinetic, electron-nuclear and coulomb electron-electron terms

in the energy being of identical form. The difference in approach comes in the use

of natural orbitals (NO) in place of the canonical HF orbitals. The NOs are those

orbitals which diagonalise the electron density. The kinetic energy, then, is given
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by,

T [ρexact] = −1

2

∑
i

ni 〈ψi| ∇2 |ψi〉 . (2.94)

Where the ψi are natural orbitals, and ni are the eigenvalues of the density matrix,

referred to as the occupation numbers. Where the exact density is not known (it

can never be known as we can never have an infinite number of natural orbitals),

the ni are exactly one or zero, as in the case for HF theory. So one can write the

approximate density, ρ, as,

ρ =
∑
i

|ψi|2 (2.95)

The use of a single Slater determinant in HF theory, and the use of binary

occupation numbers in DFT leaves us with some error in the kinetic energy, which

arises from the assumption that each electron is moving independently of the rest.

In DFT, a term exists which soaks up “the rest” of any omitted interactions. Since

this missing energy arises only from the independent treatment of the electrons, it

is called the exchange-correlation term, Exc[ρ]. By contrast, the electron-nuclear

interaction is truly an independent particle term and so if one wishes to return the

exact energy using DFT, the form of the exchange correlation term must be,

Exc[ρ] = T [ρ]− THF + Vee[ρ]− J [ρ]. (2.96)

And thus the form of the density functional be,

E[ρ] = T [ρ] + VNe + J [ρ] + Exc[ρ]. (2.97)

The art in DFT is the design of the exchange-correlation functional. There are

so many DFT functionals in existence one could not hope to keep up with them

all. Each one is tuned according to some regime, some according to physics, others

according to large data sets. [21–24] The design of density functionals is beyond

the scope of this discussion. It suffices to say that the vast majority of the kinetic

energy of the electrons comes in the same form as in HF theory, and that in the

Kohn-Sham formulation of DFT, one has an orbital-based, independent electron

model.
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Chapter 3

Numerical Optimisation Methods

Much of this thesis is concerned with the minimisation of functionals. This chapter

provides a short mathematical background, and motivation for certain approxima-

tions and methods. It is by no means a complete review of numerical optimisation

methods, but is pertinent given the content of chapters 5 and 7.

3.1 Useful Results and Definitions

It is usual to assume the objective function f(x) which is to be minimised is

smooth, continuous and continuously differentiable (C1), so one can then define

the gradient vector,

∇f =


∂f
∂x1

∂f
∂x2
...

∂f
∂xn

 . (3.1)

For our purposes, we shall also assume x contains only real values. In the case the

function is twice continuously differentiable (C2), one can also define the Hessian

matrix,

G = ∇2f =


∂2f
∂x2

∂2f
∂x1x2

· · · ∂2f
∂x1xn

∂2f
∂x2x1

∂2f
∂x22

· · · ∂2f
∂x2xn

...
...

. . .
...

∂2f
∂xnx1

∂2f
∂xnx2

· · · ∂2f
∂xnxn

 . (3.2)
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All functionals encountered in this thesis are C2 or higher. Given these expressions,

it is possible to calculate the gradient and second derivative of the function f(x)

along any line,

x(= x(α)) = x′ + αs ∀α. (3.3)

x′ is a point along the line, α is the distance between x and x′ if the direction

vector, s, is normalised. The measure most commonly used for this normalisation

is the L2 norm. That is that ||s||2 =
√

s†s = 1. [25]

The slope along the line is given by

df

dα
= s†∇f = (∇f)†s. (3.4)

And the curvature along the line, by

d2f

dα2
= s†∇((∇f)†s) = s†∇2fs. (3.5)

Let us consider the quadratic function,

q(x) =
1

2
x†Gx + b†x + c, (3.6)

which when differentiated using the product rule (∇(u†v) = (∇u†)v + (∇v†)u)

yields the gradient vector

∇q(x) =
1

2
(G + G†)x + b = Gx + b (3.7)

from the symmetry of G, and thence the Hessian

∇2q(x) = G. (3.8)

An interesting consequence of equation 3.7 is that differences in position are mapped

to differences in gradient by the Hessian. That is, if one has points x and x′, one

can find the associated gradients, g and g′, according to

g − g′ = G(x− x′). (3.9)
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Equations 3.7 and 3.8 are enough to fully characterise any stationary point

defined by equation 3.6. We are interested in solving the minimisation problem,

min
x
f(x), x ∈ R. (3.10)

But it is worth mentioning that everything discussed here can be used to find

maxima through a simple transformation of the objective function,

max
x

f(x) = −min
x
−f(x). (3.11)

Usually one operates under the assumption that the minimiser (the location of a

minimum in f(x)), x∗, exists and is unique, though neither of these assumptions

always holds.

The criteria for what constitutes a minimum are divided into two sets; the

necessary conditions and the sufficient conditions. [25] The necessary conditions

arise from the observation that any line x(α) passing through x∗ must have zero

slope and non-negative curvature at x∗. That is,

g∗ = 0, (3.12)

s†Gs ≥ 0. (3.13)

The possibility of zero in the second equation is perhaps surprising at first glance,

but arises as the line passing through x∗ from which the implication is drawn cannot

completely characterise the point. Rather, one combines the necessary conditions

with the sufficient conditions, which imply that the point x∗ is a minimum. The

first is identical to equation 3.12, the second is that G∗ is a positive semi-definite

matrix. [25]

The eigenvalues of a Hessian matrix give information about the function along

the corresponding eigenvectors. Where all eigenvalues are positive, the function

increases in all directions, and one is at a minimum. Where all of the eigenvalues

are negative, the function decreases in all directions, and one is at a maximum.

If one eigenvalue is negative and the rest positive, and the gradient is zero then

one has arrived at a saddle point, and the function decreases in one direction and
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increases in the rest.

In the design of a numerical optimisation method one must make a choice of

both the model used to approximate the objective function (usually a quadratic

model), and some algorithm which chooses the length of the step in the direc-

tion chosen, such as a trust-region, restricted-step or line search model. In this

discussion we will limit ourselves to a quadratic model with a line search.

A line search method is a procedure by which one walks along the objective

function in some pre-computed descent direction, then chooses the step size to be

the distance from the current point to the minimum along that walk.

3.2 Newton’s Method

Newton’s method is a simple way of employing a quadratic model. One performs

a Taylor expansion of the objective function about x(n) and truncates at second

order,

f(x(n) + δ) ≈ q(n)(δ) = f (n) + g(n)†δ +
1

2
δ†G(n)δ. (3.14)

Where δ = x − x(n). Then we take x(n+1) = x(n) + δ(n) where δ(n) minimises the

model function. That is, the update in position is given uniquely by ∇q(n)(δ(n)) =

0. Taking the derivative of equation 3.14, rearranging and multiplying on the left

by G(n)−1
, we obtain

δ(n) = −G(n)−1

g(n). (3.15)

There is, of course, no guarantee that the point on the objective function will

behave similarly enough to a quadratic that this method yields a decrease in the

value of f . One can protect against this by taking δ(n) as the direction for a line

search in order to make a step of informed length and ensure descent. A more

difficult problem to solve arises remote from the minimum, where the Hessian may

not be positive definite. In such a situation the stationary point in the model

function is not a minimising point, and the algorithm is ill-defined. Moreover,

there is then no minimum. One further disadvantage of the Newton method is

the demand placed on the user; f,g and G must be available at all points on the

surface and provided to the algorithm.

36



3.3 Quasi-Newton Methods

Quasi-Newton methods are those which approximate the Hessian in a way which

ensures positive definiteness, and thus robustness of the method at all points on

the objective function. All quasi-Newton methods need only the gradient vector

(and f , if a line search is performed) to be provided by the user.

The structure of a quasi-Newton method is to have some way of constructing

a positive definite H ≈ G(n)−1
, solving for the direction of the linesearch using

s(n) = −H(n)g(n), (3.16)

performing the linesearch to get x(n+1) = x(n) + α(n)s(n) and updating the approx-

imate inverse Hessian to H(n+1). Defining the useful quantities,

δ(n) = α(n)s(n) = x(n+1) − x(n), (3.17)

γ(n) = g(n+1) − g. (3.18)

From the mapping of the differences in position to differences in gradient by the

hessian,

γ(n) ≈ G(n)δ(n). (3.19)

Since the quantities defined in equations 3.17 and 3.18 contain updated terms

(those with superscript (n+ 1)), the approximate inverse Hessian fails to relate

them properly. H(n+1) is chosen such that this is remedied,

H(n+1)γ(n) = δ(n). (3.20)

This is known as the quasi-Newton condition. [25] This can be achieved through a

number of formulae, a famous one is the Davidson-Fletcher-Powell update of the

Hessian,

H
(n+1)
DFP = H +

δδ†

δ†γ
− Hγγ†H

γ†Hγ
, (3.21)

where the superscripts on the right hand side are suppressed. This form of the

approximate inverse Hessian is clearly defined at the solution as the second and

third terms vanish. Moreover, this formula also preserves positive definiteness
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and thus the descent property. The quasi-Newton method with the Davidson-

Fletcher-Powell (DFP) Hessian update and exact line search performs very well

for most optimisation problems. [25] A method which performs better than DFP

with inexact line searches is the quasi-Newton method with the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) Hessian update with line search,

H
(n+1)
BFGS = H +

(
1 +

γ†Hγ

δ†γ

)
δδ†

δ†γ
−
(
δγ†H + Hγδ†

δ†γ

)
. (3.22)

This also preserves positive definiteness. [25] This method is the one used frequently

throughout this work.

A full exposition with example problems and of greater depth can be found

in ref. [25], which this discussion has followed closely, omitting proofs and finer

details.
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Chapter 4

Approximating Molecular

Electrostatic Potentials

Empedocles, sometime between 500BC and 400BC imagined the four classical el-

ements (fire, earth, air and water), and suggested they interact with one another

through forces of attraction and repulsion he named “love” and “strife”, and that

these relationships explain the nature of the universe in which we live. Around

the same time, Leucippus and his student Democritus proposed that all matter

is made of discrete units called “atoms” from the Greek “atomos”, meaning “un-

cuttable” or “indivisible”, which remained an accurate descriptor until 1917, more

than 2400 years later, the year Rutherford produced the world’s first artificially

induced nuclear reaction in Manchester, UK. More than 2.5 millennia since its in-

ception, the model has been refined but the ideas remain the same. We continue

to consider matter as being made up of atoms, and describe interactive forces as

being “attractive” or “repulsive”.

Modern concepts surrounding attractive and repulsive forces between atoms

and molecules at large-to-intermediate separation primarily concern the electro-

static interactions between charge distributions, which is generally the dominant

term. Elaborate schemes exist for the partitioning of molecular charge distribu-

tions into atomic contributions, and to thence approximate the potential arising

through point-charge models and multipole expansions. The purpose of this chap-

ter is to provide a review of such methods for the approximation of electrostatic

potentials, and to set the stage for new research introduced in chapter 5.
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4.1 Intermolecular Forces

The energy of the interaction between two molecules, is a function of the distance

R between them. The shape of the function depends on both the form of the

molcules themselves and their relative orientation. Van der Waals was the first to

describe these ideas with any success when he considered gases beyond ideality,

and as non-infinitesimal volumes and thus proposed that attractive forces between

gaseous molecules in a sealed container reduced the pressure inside. That is, he

modified the gas law to

(
p+

a

V 2
m

)
(Vm − b) = RT, (4.1)

from pV = nRT , where b provides some information on the radius of the molecules

(assumed to be balls in the van der Waals equation). Parameters a and b provide

the correction from the ideal gas law arising from intermolecular forces. The name

“van der Waals forces” is used to this day as a general name for intermolecular

forces, but lends itself to nothing specific.

Intermolecular forces arise from a number of phenomena, and can be broken

into two groups: long and short range interactions. The largest long range effects

are electrostatics, induction and dispersion. Electrostatic effects arise from the

interaction of two static charge distributions, and may take either a positive or

negative sign. Induction effects are a response to the electric field imparted by other

molecules to lower the energy and thus always takes a negative sign. Dispersion

effects are those which arise as the motions of the electrons in two separate systems

correlate and lower the total energy, and by the same logic as the induction effects,

are always attractive. In special cases one also has to consider resonance effects,

which arise when at least one molecule in an assembly is in a degenerate state.

Finally, of no consequence to the work in this thesis are magnetic effects which are

very small in magnitude and occur when there are multiple unpaired spins present

between nuclei or electrons. The energy of these so-called long range interactions

behaves asymptotically as R−n, where n is dependent on the type of interaction

and presence of low-rank multipole moments. [26]

Short range interactions arise once molecules are placed sufficiently close to-
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gether that their wavefunctions begin to overlap to an extent one cannot ne-

glect. They include exchange-repulsion, charge transfer, penetration and damping.

Exchange-repulsion has a net repulsive effect, and is a balancing act between the

decrease in the kinetic energy as electrons move in larger distances and the in-

crease in energy arising from Pauli-principle enforced adaptation of the wavefunc-

tion. Charge transfer is rather self explanatory - it is a donor-acceptor interaction

and only happens when it is energetically favourable and is thus always attractive.

The penetration energy is the energy missed by an approximation resting upon

Laplace’s equation, once in a position where Laplace’s equation no longer holds

as we shall discuss in more detail later. Finally, damping is a modification to the

induction and dispersion effects once electron correlation across the overlapping

densities is taken into account, and is repulsive. The energy of the short range

interactions behaves as e−αR. [26]

41



4.2 The Multipole Approximation

The work presented in this chapter is primarily concerned with the approxima-

tion of electrostatic potentials. As such, this section begins with the electrostatic

potential and introduces the multipole moments as they fall out of the equations

naturally. The highest working order throughout will be octopole. Cartesian co-

ordinates are used where they can add to the discussion, and spherical co-ordinates

used otherwise, for compactness.

O

ρd~r
r

P

R

R− r

Figure 4.1: Example co-ordinates and notation for a finite and continuous charge
distribution.

Consider a finite, origin-containing charge distribution in a vacuum. The charge

inside any infinitesimal volume at any position r is given by ρ(r)d~r, where ρ is any

charge density. The electrostatic potential arising from this charge distribution at

some point, P located at R is given by the integral

V (R) =
1

4πε0

∫
τ

ρ(r)

|R− r|
d~r, (4.2)

over the volume, τ , occupied by the charge density. A graphical representation of

this scenario is shown in figure 4.1. One can perform a Taylor expansion of the

denominator in equation 4.2 and obtain

|R− r|−1 = (R2 − 2R · r + r2)−
1
2 (4.3)

=
1

R

(
1 +

1

R2

[
r2 − 2R · r

])− 1
2

(4.4)

=
1

R
+

R · r
R3

+
3(R · r)2 −R2r2

2R5
+

(5R · r)3 − 3R2(R · r)r2

2R7
+ · · · ,

(4.5)

where terms have been grouped in powers of r. [26–28] Substituting this expansion
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into equation 4.2 one obtains the multipole expansion for the electrostatic potential,

V (R) =
1

4πε0

[
q

R
+
Rα

R3
Mα +

3RαRβ −R2δαβ
2R5

Mαβ

+
5RαRβRγ −R2(Rαδβγ +Rβδαγ +Rγδαβ)

2R7
Mαβγ + · · ·

]
(4.6)

where

q =

∫
τ

ρ(r)dν, (4.7)

Mα =

∫
τ

rαρ(r)dν, (4.8)

Mαβ =

∫
τ

rαrβρ(r)dν, (4.9)

Mαβγ =

∫
τ

rαrβrγρ(r)dν, (4.10)

are the zeroth through 3rd electric moments, and are referred to hereafter as the

primitive moments. The Greek letter subscripts range over x, y and z. It is the

usual approach to write these expansions in terms of traceless multipole moments,

of which there are fewer independent components at all ranks greater than dipole,

as opposed to the primitive moments, and there are several definitions of these

available. For consistency with Stone’s text (ref. [26]) on intermolecular forces, the

definitions contained within are used in this section and for the first three traceless

moments read as follows,

µOα =
∑
a

earα, (4.11)

ΘO
αβ =

∑
a

ea

(
3

2
rαrβ −

1

2
r2δαβ

)
, (4.12)

ΩO
αβγ =

∑
a

ea

[
5

2
rαrβrγ −

1

2
r2(rαδβγ + rβδαγ + rγδαβ)

]
, (4.13)

where the superscript O indicates that the multipole moments are calculated at

the origin. The above are sensitive to the choice of origin for a system if, and only

if, all multipoles of lower rank are not zero. Pertinent to the work in this thesis,

and as an illustration of the origin independence of the first non-zero terms in the

expansion, one can translate multipole moments calculated at the origin to some
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other position. [26] For example, the quadrupole moment ΘO
zz at the origin can be

translated to some point C and written as

ΘC
zz =

∑
a

ea

[
3

2
(rz − cz)2 − 1

2

{
(rx − cx)2 + (ry − cy)2 + (rz − cz)2

}]
, (4.14)

=
∑
a

ea

[
3

2

(
r2
z − 2rzcz + c2

z

)
− 1

2

{
a2 − 2

∑
α

cαrα −
∑
α

c2
αq

}]
, (4.15)

= ΘO
zz − 3µOz cz +

3

2
c2
zq +

∑
α

µOα cα −
1

2

∑
α

c2
αq. (4.16)

That is, as a linear combination of the same component of the same rank and

multipole moments of lower rank at the original origin. By setting the lower rank

multipoles to zero one clearly observes the origin independence of the quadrupole

moment if it is the leading term in the expansion. This result holds for all multipole

moments at all ranks. As these relationships are simple but time consuming to

deduce and there is no easily accessible resource in which to find them online,

those up to octopole are provided in appendix A for reference.

Replacing the terms in equation 4.6 with the traceless multipole moments, and

taking into account factors in the definitions of each moment, one arrives at [26]

V (R) = Tq − Tαµα +
1

3
TαβΘαβ −

1

15
TαβγΩαβγ + · · · (4.17)

where

T =
1

4πε0R
, (4.18)

Tα = ∇α
1

R
= − Rα

4πε0R3
, (4.19)

Tαβ = ∇α∇β
1

R
= −3RαRβ −R2δαβ

4πε0R5
, (4.20)

Tαβγ = ∇α∇β∇γ
1

R
= −15RαRβRγ − 3R2(Rαδβγ +Rβδαγ +Rγδαβ)

4πε0R7
, (4.21)

Tαβγ...δ =
1

4πε0
∇α∇β∇γ . . .∇δ

1

R
. (4.22)

Let us now briefly compare equations 4.2 and 4.17, and explore the benefits of

performing a multipole expansion. The presence of R in equation 4.2 is the source

of computational expense in calculating the electrostatic potential; if we wish to
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evaluate a molecular potential several thousands of times, we have to evaluate

the complicated 3D integral several thousands of times, once for each point, R.

In contrast, by using equation 4.17, one needs only compute the integrals for the

multipole moments once, as R is only present in this expression in the prefactors of

the expansion, not the operators themselves. Now, although the series of multipole

operators runs, in principle, to infinity we know that we usually need only consider

the first few terms. This cheapens the computational cost of those thousands of

evaluations of the electrostatic potential enormously, as one must only re-evaluate

the fraction (1/R)n where it is needed in the expansion. Performing an expansion

also reduces the pressure on numerical accuracy by simplifying the expression of the

potential. For example, take the scenario of two separated and opposite charges q

and -q, placed at ±s = 1 mm on the z-axis, respectively. Evaluating the potential

at +1000 m on the z-axis using equation 4.2,

V =
q

(1000 + s)m
− q

(1000− s)m
, (4.23)

=
q

m
(0.000999999 . . .− 0.001000001 . . .) ≈ 2× 10−9 q

m
, (4.24)

where the numerical accuracy has been tuned up to 9 decimal places, which is

trivial for this very simple example, but for large molecules this integral would be

significantly more complex. The dipole for this system is 2mm×q, and calculating

the potential arising from the dipole we get

V = 0.002 m× q × 1

10002 m2
= 2× 10−9 q

m
. (4.25)

Thus in this simple case we obtain the same potential with one significant figure

using the dipole field as we get with numerical integrals tuned to 9 decimal places.

That is, the use of the multipole expansion replaces the evaluation of an expensive

integral with the evaluation of a simple numerical ratio, and represents an excellent

approximation to the exact potential far from the charge distribution, meanwhile

removing concerns about numerical errors in the integrals.

Multipole expansions are not limited to pragmatic benefits, but extend to pro-

viding some conceptual clarity. Each term in a multipole expansion is a shape

descriptor of the density, and the expansion separates the scales beautifully by
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having increasing powers of 1
R

. We can see exactly at what distance the test point

begins to “see” something other than a ball of charge on the horizon, and at what

point the finer details of the charge distribution become relevant. Moreover, one

can gather some chemical insights from lower order multipole moments of bonding

orbitals, for instance, when there is a polarised bond, one might expect nucleophilic

attack at the “positive end”. In such a case, the bonding orbital has a large dipole.

This insight is simply not possible if the potential is evaluated exactly.

One could feasibly stop here, and use the expansion in equation 4.17 in order

to calculate a molecular electrostatic potential, and this would yield good results

where P is very far from the electron density. However, given the additivity of the

electrostatic potential and the nature of the multipole expansion, there are certain

advantages to dividing up the density according to some scheme, and using exactly

this formula several times over to calculate the potential arising from each bit of

the density, as will be discussed in more detail in section 4.3.

4.2.1 Approximate Electric Fields

The electric field Fα is related to the electrostatic potential by,

Fα(R) = −∂V (R)

∂R
. (4.26)

So, having written down the potential in equation 4.17, and the coefficients in the

expansion as Tαβ...γ it is, formally at least, very simple to write down the electric

field as a multipole expansion. We write the same expansion as previously, take

care with dummy variables and add a subscript to each T in the expansion then

multiply by −1. [26] That is,

Fα(R) = −Tαq + Tαβµβ −
1

3
TαβγΘβγ +

1

15
TαβγδΩβγδ − . . . (4.27)

where to go up to the quadrupole term, Tαβγδ is needed and is given by,

Tαβγδ =
1

4πε0R9

(
105RαRβRγRδ − 15R2(RαRβδγδ +RαRγδβδ +RαRδδβγ

+RβRγδαδ +RβRδδαγ +RγRδδαβ) + 3R4(δαβδγδ + δαγδβδ + δαδδβγ)
)
. (4.28)
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Identical logic applies to the electric field gradient and higher order derivatives.

The termwise differentiation or integration of a power series within its radius of

convergence is identical to the power series expansion of the derivative or integral.

This is a powerful result and is general to all power series, of which the Taylor

series used in this chapter is an example.

4.2.2 Electrostatic Interactions Between Molecules

If one has a potential, V (r), which can be written as the Taylor expansion,

V (r) = V (0) + rαVα(0) +
1

2
rαrβVαβ(0) +

1

3!
rαrβrγVαβγ(0) + · · · , (4.29)

then the operator describing the energy of interaction with a molecule in that

potential is given by [26]

Ĥ′ =
∑
a

eaV̂ (ra), (4.30)

= V (0)
∑
a

ea + Vα(0)
∑
a

eaaα +
1

2
Vαβ(0)

∑
a

eaaαaβ + · · · , (4.31)

= qV + µ̂aαVα +
1

3
ΘαβVαβ + · · · , (4.32)

where ra is the position vector of each particle, a, in the system of charge ea,

and in the last line the primitive moments have been replaced by the traceless

multipole moments as before. Suppose now that the potential is one arising from

the presence of a molecule located at A, and is denoted V A and the molecule placed

in the electrostatic potential sits at B. We are able to insert into equation 4.32

the expression for V A from equation 4.17 and obtain the operator describing the

electrostatic interaction of molecules A and B, [26]

Ĥ = qBV A + µ̂BαV
A
α +

1

3
Θ̂B
αβV

A
αβ + · · · , (4.33)

= qB
[
TqA − Tαµ̂Aα +

1

3
TαβΘ̂A

αβ + · · ·
]

+ µ̂Bα

[
Tαq

A − Tαβµ̂Aβ +
1

3
TαβγΘ̂

A
βγ − · · ·

]
+ Θ̂B

αβ

[
Tαβq

A − Tαβγµ̂Aγ +
1

3
TαβγδΘ̂

A
γδ − · · ·

]
+ · · · ,

(4.34)

47



from which one can calculate the electrostatic interaction by simply inserting the

expectation values of the operators. [26] That is, by taking the expectation value

of the ground state across the operator Ĥ. One can further obtain expressions for

the polarizabilities of the molecule(s) in terms of multipole moments by performing

Rayleigh-Schrödinger perturbation theory to second order, and hyperpolarizabili-

ties by going to fourth order. [26]

While we have placed much emphasis on the work of Stone, we also acknowledge

expressions derived by other authors, such as Buckingham, Hirshfelder, Jansen and

Leavitt, which are similar to the ones presented in this chapter. [27, 29–31]

4.2.3 A Remark on Co-ordinates

While the cartesian definitions used thus far provide equations which are somewhat

intuitively appealing, at high rank these definitions lose their intuitive appeal and

become unwieldy. One can combat this by working with spherical co-ordinates,

which allow succinct and open-ended definitions of the multipole moments up to

arbitrary rank, admittedly with far less conceptual transparency at low rank. The

multipole operators associated with an origin, ~A, in the spherical tensor formalism

are defined by [26,32]

Q̂A
lm =

∑
a

eaRlm(ra −A), (4.35)

Rlm(r) =

√
4π

2l + 1
rl Ylm(θ, φ), (4.36)

Ilm(r) =

√
4π

2l + 1
r−l−1 Ylm(θ, φ), (4.37)

where ra is the position of particle a, ea is the charge of particle a, Rlm(~r) and

Ilm(~r) are the regular and irregular solid harmonics, and Ylm are the spherical

harmonics. [26,32] The expressions for the regular and irregular solid harmonics are

obtained by solving the Laplace equation in spherical polar co-ordinates (r, θ, φ).

The spherical harmonics are the eigenfunctions of the angular momentum oper-

ator, and generate a representation of the rotation group. They are defined on the

surface of a sphere of radius r, and provide a basis for the expansion of a potential

which naturally behaves according to the appropriate symmetry at each rank, l.
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The spherical tensor definitions of the multipole moments have the added benefit of

not containing any rotationally invariant terms, as is the case in the cartesian ten-

sor formulation (those along the trace in the primitive moments which are removed

in the traceless multipole moments) and thus the spherical tensor formulation is a

more natural way to write expansions in terms of multipole moments.

As an example, the expansion of the electrostatic potential given in equation

4.17 can be written more compactly in terms of spherical tensors as, [26]

V (r) =
∑
lm

(−1)mQlmIl,−m(r), (4.38)

and as in the cartesian case can be substituted into the equation for the operator

describing the electrostatic interaction of molecules A and B, centered at A and

B, [26]

Ĥ =
∑
lm

(−1)mQ̂B
l,−mV

A
lm, (4.39)

where

V A
lm = [(2l − 1)!!]−1Rlm(∇)V A. (4.40)

The value returned from the regular solid harmonic of the gradient vector (Rlm(∇))

is a differential operator of an order dependent on l, [26] and thus returns the same

expansion as in the cartesian case but is much more compact for large l.
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4.3 Distributed Multipole Analysis

Distributed multipole analysis (DMA) was developed to provide improved perfor-

mance of the multipole expansion close to a molecular charge distribution, com-

pared with the then-common expansion of the entire electron density around a

single point. [33] The structure and motivation of the method has remained un-

changed since its inception. The structure is

1. Divide an electron density into atomic contributions by some scheme,

2. Calculate the multipole moments arising from the atomic contributions to

the electron density,

3. Take a single atomic density and perform the expansion in equation 4.17,

and sum over all atoms.

More formally, calculate the potential at R according to

V (R)DMA,L =
∑
A

L∑
lm

(−1)mQA
lmIl,−m(R−A), (4.41)

where L is the maximum angular momentum included in the expansion, and is

included for reference later and A is the origin chosen for the expansion, usually

the nucleus of the atomic basin from which this term in the potential is calculated.

The motivation arises from the knowledge that the multipole expansion only

converges (formally) outside any sphere which contains all of the electron density.

But the electron density decays exponentially out to infinity in all directions, so

any containing sphere must therefore be infinitely large and the approach infinitely

ineffective! In reality, so long as the sphere contains an overwhelming majority of

the electron density, the expansion converges. As a consequence, as molecular sym-

metry reduces, and as larger systems are studied, the expansion of the coulomb

integral around a single point becomes less and less reliable; the radius of con-

vergence grows, and the points for which the series will converge are found at

increasing distance. The distributed multipole approximation, therefore, by di-

viding the molecular electron density into atomic contributions reduces one large

sphere to a number of smaller spheres and as a result reduces the error associated
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with the multipole expansion by exploiting additivity. Moreover, where the one

sphere encloses a test point, the other sphere is still far away and thus only the

parts of the electrostatic potential arising from density within the sphere enclosing

the test point will be erroneous. A schematic showing an example situation where

DMA is superior is shown in figure 4.2. Of course, very far from the density, both

the multipole expansion of the molecular density and DMA perform equally well.

P

Figure 4.2: A schematic showing a point within the sphere containing most of the
molecular electron density (dashed line), but outside both spheres for the atomic
densities (solid lines).

The evolution of DMA has been entirely within the scheme used to partition

the electron density into atomic contributions. [26, 33–37] The first iteration of

the method from Stone, described as an extension to Mulliken population analy-

sis included partitioning the electron density into atomic and bond contributions.

Around the same time as Stone published his DMA, Bentley suggested an “atomic

multipole analysis”, in which bond contributions are not considered, and involved a

fitting to experimental multipole data, [38] and thus was less desirable than Stone’s

formulation. [34] For some time after the first publication, Stone continues to par-

tition the density in different ways, often taking DMA sites between nuclei, i.e an

expansion anywhere there is significant overlap between basis functions combined

with sites at the nuclei. The issue with this approach was in the sensitivity of

the multipole moments at the sites with changing basis sets. [33] Although this

of course did not manifest itself in sensitivity in the calculated electrostatic po-

tential. This instability in the multipole moments arises as a consequence of the

partitioning taking place in basis function space, and thus in 2005 a revised ver-

sion of DMA was presented which used real-space partitioning for diffuse functions

and the original partitioning schemes for compact functions. [35] This approach

yielded extremely stable multipole moments up to hexadecapole. At this time,
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the DMA sites were almost always chosen to be the nuclei and the densities to

be near-spherical atomic contributions, with the DMA sites along the bonds not

receiving a mention. [35]

In its most recent formulation, DMA relies upon a modified form of the it-

erated stockholder algorithm (ISA) for decomposing a molecular electron density

into atomic contributions. [36] The original (real-space) form of the ISA algorithm

iterates over two equations,

ρa(r) = ρ(r)× wa(r)∑
bw

b(r)
(4.42)

wa(r) = 〈ρa(r)〉sph. (4.43)

for all atoms a in a molecule. [39,40] wa(r) are functions describing the spherically

averaged density of atom a. Convergence is measured by the consistency of the

functions wa(r) iteration to iteration. This was found to converge slowly, and

instead a basis-space version of ISA (BS-ISA) was developed by Misquitta et al..

[36,41] In this modified scheme the density is expanded in an auxiliary basis through

a density-fitting technique. The atomic densities are then expanded in terms of

Gaussian type s-orbitals, and a functional such as

FBS-ISA =
∑
a

∣∣∣∣∣∣∣∣ (ρa − ρ wa∑
bw

b

)2 ∣∣∣∣∣∣∣∣ (4.44)

is minimised, and the shape functions wa have been redefined as the expansions in

terms of Gaussian s-orbitals,

wa =
∑
p

capξ
a
p,s(r) (4.45)

A full exposition of the BS-ISA method is available in ref. [36], wherein there are

a number of more involved steps for dealing with the tails of the shape functions,

and an analysis of the performance of DMA with BS-ISA defined sites which is

found to out-perform the previous versions of the DMA algorithm, especially at

low rank. The details included here are simply to show that DMA in its current

form still rests upon an artificial partitioning of the molecular electron density into

spherical atomic components. The sites for DMA are then chosen as the nuclei, and
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the multipole moments included in the expansion are those of the near spherical

densities corresponding to each “atom”.

A non-heuristic partitioning of the electron density was suggested by Pullman

et al. in which the molecular electron density is partitioned into localised orbital

contributions, and a multipole expansion performed about each orbital centroid in

turn (let us also acknowledge Gordon et al. independently arriving at the same

scheme; see ref. [42]). [43, 44] This approach is conceptually related to the new

work presented in the next chapter, and so we compare its efficacy with that of

DMA. We shall refer to Pullman’s scheme as the “Orbital Multipole Approxiation”

(OMA). The logic of the approach is founded in the use of localised orbitals, which

by definition reduce the radius of convergence discussed previously in comparison

with canonical orbitals. While this approach removes the need for the assumption

that the density can be represented by a sum of near spherical atomic densities, it

does introduce a dependence on the chosen localisation algorithm; orbitals localised

in different ways will carry different multipole moments. The orbital centroid is

the point at which the dipole moment is zero. The dipole moment is calculated as

~ri =

∫
d~r|ψi(~r)|2~r, (4.46)

and the multipole moments arising at the centroids as

Qi
lm = −

∫
d~rRlm(~r − ~ri)|ψi|2, (4.47)

or by calculating them at the global origin and translating the orbital multipole

moments to the centroids using the equations provided in appendix A. Two values

of Qi
lm are given by construction: the l,m = 0 term is −1, and the l = 1 term is

zero by definition. Further simplifications in the implementation occur in closed

shell systems. One can then calculate an approximate potential arising from the

multipole expansion of each orbital at its centroid, sum over the orbital index and

arrive at the total molecular electrostatic potential at some point, R, by simply

providing the L at which to terminate OMA electrostatic potential,

V OMA,L(~r) =
∑
A

ZA
|r−A|

+
∑
i

L∑
lm

(−1)mQi
lmIlm(~r − ~ri). (4.48)
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This model, of course, suffers the same deficiencies as DMA. Penetration effects

will ruin the model potential at short range, and the same arguments about regions

of convergence will apply. However, the lack of any nonphysical assumptions that

the density is a sum of near-spherical atomic densities is appealing, and arguably

the most expensive step of the DMA algorithm (the partitioning of the density) is

no longer any concern.
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Figure 4.3: DMA,L and OMA,L electrostatic potentials / volt along the molecular
axis of CO arising from a B3LYP calculation with the aug-cc-pVQZ basis set. C
is at the origin, O is at (0, 0, re = 1.1282 Å). Distances of one van der Waals radii
are shown in grey.

Figure 4.3 shows the exact potential along with V DMA,L and V OMA,L for several

L along the molecular axis of carbon monoxide. The data shows that both DMA

and OMA yield good approximations to the potential further than 1.5 van der

Waals radii away. Significant errors occur where the DMA and OMA expansions

are truncated at L = 2, more visibly in the OMA,2 case. The difference between

the exact potential and the DMA and OMA potentials is shown in figure 4.4. It

is clear to see that OMA,0 performs poorly in this example, as expected given

that there is no characteristic shape descriptor included in the expansion, and we

are at short range. OMA,2 and DMA,2 also perform poorly. OMA,3 and OMA,4

perform best at the oxygen end of the molecule, diverging signficantly closer to the

atom than DMA,4. At the other end of the molecule, close to the carbon DMA,4,

OMA,3 and OMA,4 all perform roughly as well as each other.

In general there are more OMA sites in a molecule than there are DMA sites

- there are usually more orbitals than nuclei in any molecule, given the presence

of non-bonding core orbitals. That said, the number of OMA sites can likely be
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Figure 4.4: Error in OMA,L electrostatic potentials / Volt at points along the
molecular axis of CO arising from a B3LYP calculation with the aug-cc-pVQZ
basis. C is at the co-ordinate origin, and O at (0, 0, re = 1.1282 Å). Distances of
one van der Waals radii of the atoms (rC = 1.70 Å and rO = 1.52 Å) are indicated
in grey. [45]

reduced by representing the core orbitals as monopoles at the nuclei. OMA is,

therefore, a viable alternative to DMA and offers a comparable level of accuracy

when compared to the exact electrostatic potential.

A more qualitative picture of the accuracy of the OMA can be obtained by

investigating a more chemically interesting system. Take, for example, the simplest

of the amino acids, glycine. One has within glycine several different functional

groups, most of which are polar and produce a more characterful density than

the ellipsoidal CO density. Within the restricted formalism of electronic structure,

there are 20 molecular orbitals in glycine; 5 core 1s orbitals from each carbon,

oxygen and nitrogen atom present, 9 σ bonding molecular orbitals, 1 π bonding

orbital and the rest are made up of lobes on each of the carbon, oxygen and nitrogen

atoms. The core 1s orbitals are rather uninteresting - they are spherical with stable

multipole moments up to high order. They look like small concentrated balls of

charge even at short-range, because that is what they are! The lobes, σ− and

π−bonds however, are of rather complicated shapes and while at long range they

of course look like small balls of charge, at close range the details of their shapes

become more important.

Figure 4.5 shows contour maps of the electrostatic potential arising due to the

presence of a molecule of glycine. Given the form of equation 4.48, it is not a

surprise to see OMA,0 performing poorly at distances close to the molecule - in
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Figure 4.5: Contour maps of the molecular electrostatic potential arising from
glycine, calculated using the OMA,0 (top), OMA,2 (middle) and OMA,3 (bot-
tom). Solid and dashed lines indicate positive and negative electrostatic potentials,
respectively. The electrostatic potential calculated from the optimised cc-pVTZ
B3LYP density (grey) is included for reference in each subfigure. The orbitals used
for OMA were localised using the Pipek-Mezey procedure. [46]
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OMA,0 there are only point charges (in this case q = −2) at the orbital centroids,

and the nuclear term. There is no descriptor of the shape of the electron density,

and thus once the molecular charge distribution ceases to look like balls of charge

very far away, OMA,0 diverges. Once we reach OMA,2 the potential begins to

perform much better at close range - the quadrupole term is the first characteristic

shape descriptor of the density in the OMA expansion. OMA,3 almost perfectly

reproduces the potential far from the molecule. The model naturally still suffers

the same problems as DMA once well within the molcular electron density where

penetration effects play an enormous role, and no choice of multipole sites could

be clever enough to correct for this issue.

4.4 Methods Accounting for Penetration Effects

While the DMA and OMA approximations laid out in the previous section yield

good approximations to the electrostatic potential at long range, even at low rank,

upon approaching the molecular electron density, the approximation diverges, and

any potential within the radius of divergence does not behave as the exact po-

tential behaves. The error in the multipole-expanded interaction energy between

two subsystems relative to the non-expanded coulomb interaction is known as the

penetration correction. [26, 47, 48] The penetration error becomes significant over

distances where charge densities on two subsystems overlap, and the permanent

multipole moments of the sub-systems no longer reflect the shape of the den-

sity. [49] Traditionally, damping functions have been used to yield better-behaved

electrostatic, dispersion and induction energies upon penetration of the electron

density. [26, 49–52] Several modern schemes exist which aim to account for the

penetration correction by employing a model density, thereby removing the need

for parameterised damping functions, and are related to the new research presented

in the next chapter. [53–58]

4.4.1 Minimal Basis Iterative Stockholder

In the Minimal Basis Iterative Stockholder (MBIS) algorithm, an approximate

atomic density is constructed in terms of Slater-type functions. [56] The centres

57



for the Slater functions are chosen to be the nuclei, and a procedure similar to

the BS-ISA approach is performed, and a so-called “pro-density” is optimised by

minimising the information loss. The electrostatic potential arising from this model

density can then be calculated at a fraction of the cost of the full electrostatic

potential, and given the presence of a suitably optimised model density in the

evaluation of the potential, some portion of the penetration correction is recovered.

[56] The approach is reasonably new, and systematic improvements to the potential

through inclusion of higher order multipole moments forms part of the “future

work” section of the initial publication. [56] Partial charges and the potential arising

from the pro-density obtained through this scheme have, however, been applied to

some systems of chemical interest. [59–61] Assigning partial charges is not of any

concern in this thesis, however, methods akin to the MBIS approach which may

or may not be used to form approximate electrostatic potentials are benchmarked

and discussed in some detail in a recent review article. [62]

4.4.2 Gaussian Electrostatic Model

The Gaussian Electrostatic Model (GEM), similar to the MBIS approach, involves

expanding the electron density in terms of an auxiliary basis set. This basis set

comprises Hermite-Gaussians which, in the form first introduced, are centred wher-

ever appropriate in order to well-reproduce the molecular electron density. [58,63]

The auxiliary density is generated by performing a density fitting technique. That

is, by minimising the self-energy of the error in the density,

Eself = 〈ρ− ρ̃| 1

r12

|ρ− ρ̃〉 , (4.49)

where the chosen measure in the case of the GEM model is the coulomb operator

(but need not be, if one is interested in reducing the cost of evaluating other prop-

erties). [58] It is then possible to perform a distributed multipole expansion at each

site where the density has been approximately expanded in Hermite-Gaussians, or

to evaluate the potential arising from the new density. This approach has been

extensively benchmarked, and attempts have been made to incorporate it into

popular MM and QM/MM forcefields. [64–66]

58



4.4.3 Gaussian Multipole Model

If one makes a departure from the use of point-multipoles, which are those pre-

sented in the discussion of DMA and OMA, and instead uses Gaussian multipoles,

which arise as from derivatives of spherical Gaussians and take the form, [67]

Gξ
abc(r− r′) =

(
ξ

π

) 3
2 (−1)a+b+c

(a+ b+ c)!

∂a

∂xa

∂b

∂yb

∂c

∂xc
exp

[
−ξ(r− r′)2

]
, (4.50)

one arrives at a description of the potential and electrostatic interactions which

includes penetration terms for finite ξ. For infinite ξ, the above yields an expression

which behaves as a point-multipole expansion. In the Gaussian Multipole Model

(GMM), the density arising from the Gaussian multipoles is determined by fitting

to accurate values of the electrostatic potential at chosen sites around the molecule.

[57]

4.5 Summary

This chapter has covered, in some detail, how one can approximate the electrostatic

potential by expanding the coulomb expression in multipole moments. We have

also discussed the divergence of the multipole expansion which occurs close to the

charge density, and the unphysical singularities in the potential which arise at the

multipole sites. These deficiencies are remedied to an extent by reducing the radius

of divergence through the use of a distributed multipole approximation, in which

several regions of the charge density are represented by several separate multipole

expansions. This raises questions of how many multipole sites in a given charge

density one should choose, and how they should be chosen. However, no choice of

multipole expansion sites is capable of incorporating penetration effects, and the

eventual singularities arising still represent a significant flaw in approaches such as

DMA and OMA.

Approaches to modelling electrostatic potentials which employ an approximate

charge density, such as MBIS, GEM and GMM have the appealing characteristic

that they naturally include exponential terms in the electrostatic potential which

cancel the multipole terms at points close to, or within the charge density. Methods
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based upon building a model density which can be evaluated cheaply represent a

promising alternative to established distributed multipole approaches, however, in

general they lack the cheap systematic improvement of the approximate potential

by the inclusion of higher order multipole terms in an expansion. That is, any

improvement of a potential calculated from a model density comes as a result

reducing the simplicity of the model density in order to better capture the shape

of the density one is attempting to approximate. This controlled approach to the

exact potential is appealing in a sense, but taking advantage of it could be seen as

counter productive.

In the coming chapter we introduce a new method which aims to include the

appealing features of both multipole expansions and model densities for approx-

imating the electrostatic potential. This is achieved by first constructing a set

of approximate molecular orbitals, which are in turn used to calculate a model

density. The approximate molecular orbitals are obtained by a procedure which

matches their charge centroids to a set of accurate molecular orbitals, thus allowing

the controlled approach to the exact potential by increasing the basis in which the

approximate MOs are expressed. A corrected multipole expansion is then devel-

oped at their centroids, allowing the systematic improvement of the potential in

terms of multipole moments as in DMA or OMA.
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Chapter 5

The Reduced Orbital Potential

Approximation

Having provided some survey of the scientific and historic landscape surround-

ing the issue of approximate molecular potentials, the purpose of this chapter is

to introduce a new, computationally efficient method for approximating electro-

static potentials and forcefields arising from molecular electron densities. We first

introduce the Reduced Orbital Potential Approximation (ROPA), which aims to

incorporate the systematic improvements of a multipole expansion while naturally

maintaining some control over penetration effects through the inclusion of a model

density expressed in a “reduced basis”. Then, we differentiate the expressions ob-

tained as a means to gather approximate expressions for the field, the Orbital Field

Approximation (OFA) based on the OMA of the previous chapter, and the Reduced

Orbital Field Approximation (ROFA) based on the ROPA expression deduced in

this chapter.

We also later consider the impact of orbital localisation on the symmetries

of the associated approximate potentials in a case study on the OMA and ROPA

electrostatic potentials arising from benzene, and see that ROPA shows surprisingly

robust performance when applied with either canonical or localised orbitals of

broken symmetry.
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5.1 The Reduced Orbital Potential Approxima-

tion

By expanding the electrostatic potential around some point in terms of multipole

moments, one introduces unphysical singularities into the potential arising from

the electrons. This is readily observed from the form of the cartesian definitions of

the multipole moments. If R is the distance from the origin chosen for the expan-

sion, then as R → 0, the expansion of the potential quickly approaches infinity.

This is true for any choice of multipole site. Thus, while multipole expansions

such as those in DMA and OMA provide good approximations to the potential

at long range, more care is needed over shorter distances. In the exact calcula-

tion of electrostatic potentials, the terms arising from the multipole moments are

controlled over small R by exponential terms in the exact potential. [26] The only

necessarily surviving singular terms are those arising from point-nuclei. For some

time, damping functions have been used as prefactors for the terms in the multi-

pole expansion for returning satisfactory behaviour of the dispersion and induction

energies. [26,50–52,68,69] Damping functions constitute some system-specific, pa-

rameterised function of intermolecular separation, R, which behaves as Rn over

short range when the term being damped behaves as R−n, and tends to unity as

R → ∞, and to zero as R → 0. This behaviour thus mutes multipole terms over

distances they yield unphysical quantities, and yields a potential equivalent to the

un-damped multipole expansion at large R. [26] More recently, schemes have been

developed for incorporating damping functions in multipole-expanded expressions

of the electrostatic potential. [26,48] Some of these schemes require fitting to exact

values of the molecular potential at various points. [70–73] The deficiency in captur-

ing penetration effects is unique to point-charge and point-multipole approaches,

and thus any method which treats all charge-charge interactions according to the

non-expanded forms of the operators will yield finite quantities for intermolecular

interactions of various types. Thus approaches such as Symmetry Adapted Pertur-

bation Theory (SAPT) do not have associated with them the same issues. [26, 74]

In this section we introduce a new method for approximating molecular elec-

trostatic potentials which, as far as possible, naturally incorporates the charge
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penetration correction, without the need for damping functions, by combining the

potential arising from a model density with the appealing systematic improve-

ments of a multipole expansion through a point-correction term. The form of the

model density is kept as simple as possible in order to increase only minimally the

computational expense of a multipole expansion.

Let us first define an auxiliary, “reduced” basis set {χ̄µ}, which according to

the criteria laid out above need only be smaller than the primary basis set (the

basis being used for the energy optimisation), but will in general be minimal, as

the intention is that the electrostatic potential can be calculated from the density

expressed in this basis at little computational expense. An example basis set which

is used extensively throughout this thesis is the MINAO basis set in MOLPRO

which comprises the valence atomic orbital subset of cc-pVTZ, and will be referred

to hereafter without qualification as MINAO. [75] One could of course see more

rapid evaluation of the potential under the scheme we present here by replacing

MINAO with, say, the STO-3G basis set. A set of molecular orbitals in the reduced

basis,

|ψ̄i〉 =
∑
µ

C̄µi |χ̄µ〉 , (5.1)

can then be generated by projection of the reference molecular orbitals,

|ψi〉 =
∑
α

Cαi |χα〉 , (5.2)

onto the minimal basis, as is done in some orbital localisation schemes. [76] That

is,

|ψ̄i〉 = |χ̄µ〉 (S̄−1)µν 〈χ̄ν |χα〉Cαi (5.3)

= |χ̄µ〉 C̄ ′µi (5.4)

where

C̄′ = S̄−1∆C (5.5)

∆µα = 〈χ̄µ|χα〉 . (5.6)
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Then finding the MO coefficients in the minimal basis which form the closest

orthonormal set in the usual way,

C̄ = C̄′(C̄′†S̄C̄′)−
1
2 . (5.7)

One can then minimise the following functional with respect to the coefficients of

the reduced orbitals, C̄,

F =
∑
i

∣∣〈ψ̄i|~r − ~ri|ψ̄i〉∣∣2 , (5.8)

where

~ri = 〈ψi|~r|ψi〉. (5.9)

subject to the constraint that the reduced orbitals remain orthonormal. At the

minimum of this functional, the dipoles, and by definition the centroids of the

reduced orbitals, {ψ̄i}, are matched to those of the reference orbitals. It is expected

that at least one F = 0 can be found, as the dipole in any system can be modified

by modifying the ratio of any two coefficients of basis function centred on any two

different atoms. By minimising F , one arrives at a reduced density which gives rise

to an optimum asymptotic electrostatic potential. This can be done quite simply

by making stationary the Lagrangian,

L = F − 1

2

∑
ij

∑
µν

εij 〈ψ̄i|ψ̄j〉 . (5.10)

However, in the case that the dimension of the minimal basis is greater than the

number of electrons (half the number if considering the spin-restricted orbital for-

malism), as will usually be the case, this is an underdetermined problem; there

might exist a number of solutions, which all give the same orbital dipoles and

F = 0 but different higher-order orbital multipole moments. For instance, for H2

with a minimal reduced basis the solution to the minimisation is governed by the

symmetry of the molecule, and the problem is not underdetermined. For HHe+,

there are two atomic orbitals whose coefficients can be varied to minimise the func-

tional, but only one occupied orbital and thus only one constraint - normalisation.

Consequently, changing one coefficient forces change in the other and thus only
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one can freely change and exactly one choice of this parameter will give the desired

orbital centroid and minimise F . Now, for HLi there are 6 parameters arising from

two spatial orbitals and three basis functions; three of these are needed for the

orthonormality constraint - for example one orbital varying to remain orthonormal

to the other as it is optimised freely, and two are needed for the on-axis co-ordinate

of the two orbital centroids. We have thus minimised L but have a parameter left

over. This gives rise to an entire family of solutions with identical orbital dipoles

and F = 0. By its nature, this deficiency will only grow worse as the number of

parameters increases. To combat this, we introduce two penalty functions G and

H, which are defined below. Both account for the right number of variables, and

act as tie-breakers between similar minimisers of F .

G = −
∑
i

〈ψi|ψ̄i〉, (5.11)

H =
∑
i

∑
i 6=j

∣∣〈ψj|ψ̄i〉∣∣2 . (5.12)

The first penalty function, G, provides a means by which one imposes a bias

towards minima of F for which the reduced orbitals take a shape as similar as

possible to the reference orbitals, thus reducing the magnitude of corrections of

higher l in the multipole expansion of the orbitals. The second penalty function,

H, places no such bias on the optimisation and allows the orbitals to take whatever

shape necessary to minimise F so long as the reduced orbital has nonzero overlap

only with the orbital whose centroid is matched by the functional F . This allows

greater flexibility in the reduced orbitals, and leads to shapes of the reduced orbitals

which are naturally similar to those of the reference orbitals.

We thus arrive at the reduced orbital functional,

W =
∑
i

∣∣〈ψ̄i|~r − ~ri|ψ̄i〉∣∣2 − wG∑
i

〈ψi|ψ̄i〉+ wH
∑
i

∑
i 6=j

∣∣〈ψj|ψ̄i〉∣∣2 , (5.13)

= F + wGG+ wHH, (5.14)

where wG and wH are the weights of the penalty functions which are chosen to be

small enough such that G or H act only as tie-breakers and do not result in the

optimisation determining orbitals where the effect of the penalty functions is to
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render F significantly different from zero.

The ROPA functional is in itself an interesting optimisation problem, and one

for which the Lagrangian approach to the constrained optimisation of equation

5.13 becomes rather tricky when followed through and the form of the multipliers

is much less clear than in the optimisation of F alone.1 Let us first write the

derivatives,

∂F

∂C̄µi
= 4

(
~̄ri − ~ri

)
·
(
~̄rµν − ~ri S̄µν

)
C̄νi, (5.15)

∂G

∂C̄µi
= −∆µαCαi, (5.16)

∂H

∂C̄µi
= 2

∑
j 6=i

〈ψj|ψ̄i〉∆µαCαj, (5.17)

Tµi =
∂W

∂Cµi
=

∂F

∂C̄µi
+ wG

∂G

∂C̄µi
+ wH

∂H

∂C̄µi
, (5.18)

where the short hand ~̄rµν is introduced and represents dipole integrals evaluated

between basis functions µ and ν,

~̄rµν = 〈χ̄µ| r̂ |χ̄ν〉 . (5.19)

The usual convention applies (greek subscripts correspond to atomic orbital quanti-

ties and latin subscripts to molecular orbital quantities, and an overbar denotes the

reduced basis). Lagrange’s method of undetermined multipliers has been dropped

here in favour of an unconstrained optimisation of the elements of an antisymmetric

matrix, X, where the reduced orbitals are rewritten as

C̄µi = C̄µp(exp(X))pi ≈ C̄0
µi + C̄0

µpXpi +
1

2
C̄0
µqXqpXpi +O(X2). (5.20)

where in the last step the update to C̄µi is approximated as an expansion, which

then allows us to introduce the explicitly skew-symmetric,

X−pq =
1

2
(Xpq −Xqp)

∂

∂X−pq
=

1

2

(
∂

∂Xpq

− ∂

∂Xqp

)
(5.21)

1The method of undetermined Lagrange multipliers was the the first approach used to at-
tempt to solve the problem of how one can find the optimum reduced orbitals, but keeping
track of dummy variables became too difficult as the partial derivatives of different terms in the
expressions were found.
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which protects against the unwanted introduction of symmetric changes to X by

updating C̄µi as

C̄µi = C̄0
µi + C̄0

µpX
−
pi +

1

2
C̄0
µqX

−
qpX

−
pi +O(X2), (5.22)

thereby ensuring X remains antisymmetric. This is so that the matrix exp(X)

remains orthogonal, and the rotations it affects in the orbitals do not break their

orthonormality. The derivative of C̄µk with respect to the elements of X− is

∂C̄µk
∂X−pq

=
1

2
(1− τ̂pq)(δqkC̄0

µp +
1

2
C̄0
µrXrpδkq +

1

2
C̄0
µpXqk) (5.23)

where δ is the Kronecker delta, and τsj replaces s by j and j by s in the indices of

any quantity it acts upon. Equation 5.23 gives the change in the reduced orbital

coefficients with respect to only the antisymmetric part of X, which is precisely

what is needed. Now write an expression for C̄0
µpTµk and collect terms, 2

C̄0
µpTµk = C0

µpT
0
µk + 4(~̄rk − ~rk) · (~̄rpr − ~rkδrp)Xrk + 8(~̄rrk − ~rkδrk) · (~̄rpk − ~rkδpk)Xrk

+ 2wH
∑
j 6=k

〈ψj|ψ̄r〉〈ψj|ψp〉Xrk. (5.24)

It is now possible to find a general expression for the Jacobian by evaluating

Jpq =
∂W

∂C̄µk
· ∂C̄µk
∂X−pq

. (5.25)

That is,

Jpq = (1− τ̂pq)
(
δqk

(
C̄0
µpT

0
µk + 4(~̄rk − ~rk) · (~̄rrp − ~rkδrp)Xrk

+ 8(~̄rrk − ~rkδrk) · (~̄rpk − ~rkδpk)Xrk + 2wH
∑
j 6=k

〈ψj|ψ̄r〉〈ψj|ψ̄p〉Xrk

)
+

1

2
C̄0
µrT

0
µkXrpδqk +

1

2
C̄0
µpT

0
µkXqk

)
, (5.26)

for which one can write simplified expressions for the occupied and occupied-virtual

blocks. The virtual-virtual block is completely unimportant in this, as we only cre-

2One should note that the wG dependence in 5.24 is contained within the term T 0
µk, since the

function G is linear in C̄µk.
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ate occupied reduced orbitals in order to reproduce the occupied reference orbitals

from which the density is calculated. The occupied block is given by,

Jji = (1− τ̂ji)
(
C̄0
µjT

0
µi + 4(~̄ri − ~ri) · (~̄rrj − ~riδrj)Xri

+ 8(~̄rri − ~riδri) · (~̄rji − ~riδji)Xri + 2wH
∑
l 6=i

〈ψl|ψ̄r〉〈ψl|ψ̄j〉Xri

+
1

2
C̄0
µrT

0
µiXrj +

1

2
C̄0
µjT

0
µkXik

)
(5.27)

where Kronecker deltas have been evaluated wherever possible, likewise for the

occupied-virtual block.

Jai = C̄0
µaT

0
µi + 4(~̄ri − ~ri) · (~̄rra − ~riδra)Xri + 8(~̄rri − ~riδri) · ~̄raiXri

+ 2wH
∑
j 6=i

〈ψj|ψ̄r〉〈ψj|ψ̄a〉Xri +
1

2
C̄0
µrT

0
µkXraδik +

1

2
C̄0
µaT

0
µkXik −

1

2
C̄0
µiT

0
µkXak.

(5.28)

Having found expressions for the gradient, one might then ask the question of

how these equations could be written into a piece of code. The problem is broken

down into intermediate quantities,

~Dpq = (~̄rpq − ~rpδpq) ~Dp = ~Dpp not summed, (5.29)

Api = C̄0
µpT

0
µi, (5.30)

Epi = 〈ψ̄p|ψi〉, (5.31)

which gives us

Jji = (1− τ̂ji)
(
Aji + 4 ~Di · ( ~Djr + ~rjδjr − ~riδjr)Xri + 8 ~Dir · ~DijXri

+ 2wH
∑
l 6=i

Elr̄Elj̄Xri +
1

2
AriXrj +

1

2
AjkXik

)
, (5.32)
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and

Jai = Aai + 4 ~Di · ( ~Dar + ~raδar − ~riδra)Xri + 8 ~Dir · ~DiaXri

+ 2wH
∑
j 6=i

Ejr̄EjāXri +
1

2
AriXra +

1

2
AakXik −

1

2
AikXak, (5.33)

for the occupied and occupied-virtual blocks, respectively. Now define a new ma-

trix, Q which is just the quantity in brackets in equation 5.32,

Qpi = Api + 4 ~Di · ( ~Dpr + ~rpδpr − ~riδpr)Xri + 8 ~Dir · ~DipXri

+ 2wH
∑
l 6=j

Elr̄Elj̄ +
1

2
AriXrp +

1

2
ApkXik, (5.34)

which becomes

Qpi = Api + 4
(
~Di · ~DprXri + ~Di · ~rpXpi − ~Di · ~riXpi

)
+ 8 ~Dir · ~DipXri

+ 2wH
∑
l 6=j

Elr̄Elj̄ +
1

2
AriXrp +

1

2
ApkXik. (5.35)

One thus arrives at simple formulae for the blocks of the Jacobian, which are

Jji = Qji −Qij, (5.36)

Jai = Qai −
1

2
AikXak. (5.37)

Now, let us assume we start very close to the solution, which given the projec-

tion we used is not unreasonable, and perturb by some small amount δ,

F =
∑
i

|〈ψ̄i + δ|~̄r − ~ri|ψ̄i + δ〉|2 (5.38)

=
∑
i

|〈ψ̄i|~̄r − ~ri|ψ̄i〉+ 2〈δ|~̄r − ~ri|ψ̄i〉+ 〈δ|~̄r − ~ri|δ〉|2 (5.39)

The first term inside the modulus goes zero, because F goes to zero. The second

term is linear in C̄µi and the third term is just some small constant. Thus the

square of the linear term gives rise to a quadratic term as the highest power in

F . F thus behaves as a quadratic in a sufficiently small neighbourhood of the
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minimiser. This makes the BFGS algorithm outlined in section 3 an excellent

choice for the minimisation problem.

Having generated the reduced orbitals, we have matched the orbital dipoles and

thus expect the electrostatics of any molecule whose potential is dominated by the

dipole term would be well represented by the reduced orbitals alone. Hydrogen

cyanide is linear, with a dominating dipole term in the expansion of the density

and thus is a good test for this hypothesis. If one performs a Kohn-Sham B3LYP

calculation on HCN in the MINAO basis, one obtains a density which gives rise to

the electrostatic potential mapped out in figure 5.1 (top, orange line). The grey

line in the same map is the electrostatic potential arising from the density found

performing the same calculation in the aug-cc-pVTZ basis. One can immediately

see that the MINAO density fails to reproduce the electrostatics faithfully at all

distances in every direction. In contrast, using the MINAO basis as the reduced

basis, minimising the ROPA functional (wG = 0, wH = 10−9) where the reference

orbitals are localised Pipek-Mezey3 (PM) orbitals in the aug-cc-pVTZ basis, one

arrives at the red line in figure 5.1 (bottom), which is also shown alongside the

aug-cc-pVTZ potential (grey). The potential arising from the reduced orbitals

is seen to be remarkably faithful to the “exact” potential, and reproduces the

electrostatics almost exactly, especially when one considers the aug-cc-pVTZ basis

for this calculation has a dimension of 115, and the MINAO basis has a dimension

of 11.

Once the reduced orbitals have been found, and the centroids match those

of the reference orbitals, it is possible to define the Reduced Orbital Potential

Approximation as,

V ROPA,L(~r) =
∑
A

ZA|~r − ~A|−1 +
∑
i

J
[
−
∣∣ψ̄i∣∣2] (~r)

+
∑
i

L∑
lm

(−1)m
(
Qi
lm − Q̄i

lm

)
Ilm(~r − ~ri) (5.40)

where the first term is the potential arising from the nuclei, the second is the poten-

tial arising from the reduced density, and the last term is a point correction to the

3The Pipek-Mezey localisation scheme is discussed in more detail in section 6.3.1.
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Figure 5.1: Contour plots of the electrostatic potential of HCN arising from the aug-
cc-pVTZ Kohn-Sham density (grey line, both), the MINAO Kohn-Sham density
(top, orange line), and the ROPA,0 potential with reduced orbitals in the MINAO
basis (bottom, red line). Dashed and solid lines correspond to negative and positive
values of the potential, respectively. The contour lines are chosen to be logarithmic
for image clarity.

reduced orbital multipole moments using the multipole moments of the reference

orbitals, i.e, the multipole moments used in OMA. There are several benefits to

using this form for the potential as opposed to DMA or OMA. The screening effect

upon penetration of the electron density is at least partially accounted for by the

second term, and the use of an actual charge density means that at intermediate

distances extra definition is added to the shape seen by the test point, without the

inclusion of higher order moments. The final term is, however, where the power lies

in the ROPA method; a model density is constructed from the reduced orbitals,

and then corrections to its shape are made from the perspective of the test points
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by using the difference between the multipole moments of the reduced orbitals and

those of the reference orbitals. As a consequence, ROPA is expected to perform as

well as, or better than OMA. Given that OMA performs approximately as well as

DMA, ROPA represents an exciting alternative to both.

Figure 5.2 shows the difference between the exact potential and DMA, OMA

and ROPA at a number of points along the molecular axis of carbon monoxide.

The electrostatic potential of CO is dominated by the quadrupole moment, and

as a consequence ROPA,0 performs poorly. Significant progress is made by the

inclusion of the quadrupole moment correction (ROPA,2), but this correction goes

too far at the oxygen end of the molecule. By the time one reaches the octopole

moment, the potential has begun to converge nicely, and looks more stable. With

the inclusion of the hexadecapole moment (DMA,4, OMA,4 and ROPA,4) we see

that ROPA outperforms, in general, every other approach.
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Figure 5.2: Error in ROPA electrostatic potentials / volt at points along the molec-
ular axis of CO arising from a B3LYP calculation with the aug-cc-pVQZ basis. C
is at the co-ordinate origin, and O at (0, 0, re = 1.1282Å). Distances of one and
two van der Waals radii of the atoms (rC = 1.70 Å and rO = 1.52 Å) are indicated
in grey. [45]

It is beneficial to consider some more elaborate examples given the additional

layer of complexity involved in constructing a ROPA potential. Glycine is again

chosen as the test molecule to provide a basis for comparison to the OMA method

outlined in the previous chapter, and the first step is to compare the B3LYP

MINAO potential and the “exact” potential (in this case, the cc-pVTZ potential).

Figure 5.3 shows two maps: the exact molecular electrostatic potential (grey) and

the MINAO B3LYP potential (orange) superimposed for comparison. The dotted
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lines in this figure represent negative potentials and the solid lines represent positive

potentials. One can see immediately, that not only is the shape of the electrostatic

potential (ESP) incorrect, there are enormous regions which are attractive when

they ought to be repulsive. The electrostatic potential (ESP) to the left side of the

glycine molecule is very poorly replicated by the MINAO B3LYP density, and even

quite far from the molecule in the lower right corner, the potential is incorrect.

Figure 5.3: Contour maps of the molecular electrostatic potential arising from
glycine, calculated with the B3LYP density using cc-pVTZ (grey line) and MINAO
(orange line) basis sets. A dashed line indicates contours at negative values, and a
solid line indicates contours at positive values.

Figure 5.4 shows the ROPA,0-3 potential maps for glycine. The reference or-

bitals were optimised in the cc-pVTZ basis, and the reduced basis is MINAO.

ROPA,0 clearly outperforms the B3LYP MINAO density when compared to the

cc-pVTZ potential (grey line). Regions which are repulsive and attractive are well

reproduced. The change in electrostatic potential is not perfect, but the same

features are there, and as a model density goes it performs quite well. ROPA,2 is

a significant improvement over ROPA,0 and ROPA,3 almost perfectly reproduces

the exact potential. Simply including the quadrupole correction term in the expan-

sion largely remedies the errors in the potential at all distances where contours are

shown (the pentration effects which only become visible after the inclusion of the

quadrupole are clear to see, but less striking than in the OMA case, as should be

expected). ROPA,3 continues the trend of convergence and represents an extremely

accurate potential. By sampling points close to the van der Waals radius of the
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molecule, one obtains an idea of the convergence behaviours and accuracies of both

the OMA and ROPA approximations. The OMA,0, OMA,2 and OMA,3 approx-

imations have, in this case, a root mean square error value of 0.2439, 0.1301 and

0.06737 respectively, showing a good increase in accuracy as higher rank multipoles

are included in the OMA expansion. However, OMA is significantly outperformed

by ROPA in this measure as the ROPA,0, ROPA,2 and ROPA,3 approximations

have root mean square error values of 0.0395, 0.02805 and 0.0278, respectively,

indicating that to achieve a ROPA,0 level of performance with OMA close to the

density one must include terms beyond L = 3 in the expansion.

One criticism of the early DMA methods was that the multipoles associated

with different atomic DMA sites were unstable under the change of basis set, as

discussed in section 4.3, until a new method was suggested by Stone which showed

an improvement in the stability of the multipole moments as basis set size was

increased. [35] Here the stability of the multipole moments of the reduced and

reference orbitals are discussed, with the example being those used to calculate

the electrostatic potential for CO in this section. Figure 5.5 shows the absolute

multipole moments for the reduced and reference molecular orbitals (top in each

subfigure) and the difference between the appropriate aug-cc-pVQZ basis and each

data point, to show any convergence behaviour.

Examination of figure 5.5 (a) and (b), noting the scale, one notices that the

orbital multipoles for the s-orbitals hardly change with basis set - as one should

expect. They begin almost exactly spherical, and remain that way with only some

small contamination in high rank multipole moments. They are unimportant, and

in future iterations of ROPA will likely be replaced by point charges at the centroid

(i.e, on the nucleus). However, strong convergent behaviour is seen for all multipole

moments up to octopole, with the hexadecapole moment being slightly erratic in

the reduced orbitals. The multipole moments of the lobes on the carbon and

oxygen (figures 5.5 (c) and (d)) reveal that for more difficult shapes, the orbital

multipoles for both reference and reduced orbitals converge with basis set. In

particular this can be seen if the series of augmented and regular basis sets are

considered independently, i.e, trace the line between avdz, avtz and avqz and the

convergence is clear. One can also see that the reduced orbital multipole moments
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Figure 5.4: Contour maps of the molecular electrostatic potential arising from
glycine in the glycine-water dimer, calculated using the ROPA,0, ROPA,2 (mid-
dle) and ROPA,3 (bottom). Solid and dashed lines indicate positive and negative
electrostatic potentials, respectively. The electrostatic potential calculated from
the optimised cc-pVTZ density (grey) is included for reference in each subfigure.
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Figure 5.5: Absolute multipole moments (top) for each orbital (solid line) and each
reduced orbital (dashed line) for the CO molecule, and the difference compared
with the largest basis (bottom) in atomic units. The red lines (+ data markers)
correspond to dipoles, green (×) to quadrupoles, blue (N) to octopoles and brown
(�) to hexadecapoles. To avoid duplicate data, only one π-bonding orbital shown.
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in general show improved stability over the reference orbitals; this likely arises

due to the decrease in variational flexibility when one goes from a large basis set

to a minimal one. The most interesting are likely the bonding orbital multipole

moments, which show fantastic convergence in the reduced basis, and are very

stable up to octopole. The π-bonding orbital shows good stability of all moments.

These results can easily be compared to those of Stone. [35] Comparison yields the

conclusion that both approaches are similar in terms of stability of the multipoles

for the most part, with the stability of Stone’s multipole moments for the C and

O DMA sites being slightly better. This is not a surprise, given the characterful

shapes of the bonding orbitals and lobes in comparison to the almost spherical

atomic contributions to the density in that version of DMA. In fact, one might be

surprised at the stability of the orbital multipoles.

5.2 The Orbital Field Approximation

In section 4.2.1, the brief discussion of the relationship between the electrostatic

potential and the electric field is enough to define an Orbital Field Approximation

(OFA) to the electric field,

FOFA
α (~r) = −

∑
A

TAα ZA +
∑
i

[
−T iαqi + T iαβµ

i
β −

1

3
T iαβγΘ

i
βγ +

1

15
T iαβγδΩ

i
βγδ − . . .

]
(5.41)

which is exactly the derivative of the OMA potential in equation 4.48 with respect

to whichever direction happens to be the index α multiplied by minus one, and one

specifies the highest order multipole in the same way and truncates the term in

the square bracket. For example OMA,2 goes up to quadrupole in the expansion,

and OFA,2 truncates after the third term in the square brackets - the quadrupole

term. Cartesian co-ordinates are chosen for their simplicity in the differentiation

and functional form at low L. Figure 5.6 shows the difference between the “exact”

total electric field values along the molecular axis of CO and the OFA total electric

field.

One is immediately struck by the accuracy (see the y-axis scale in figure 5.6) of

the OFA,3 electric field, which performs better, and diverges closer to the molecule
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Figure 5.6: Error in OFA total electric field at points along the molecular axis of
CO arising from a B3LYP calculation with the aug-cc-pVQZ basis. C is at the co-
ordinate origin, and O at (0, 0, re = 1.1282Å). The red line corresponds to OFA,0,
green line to OFA,2 and blue line to OFA,3.

than all approximations to the electric field we’ll see in this thesis, with OFA,0

performing poorly at both ends of the molecule, and OFA,2 likewise, although

an improvement over OFA,0. This is somewhat surprising, and is potentially a

fortuitous anomaly. Figure 5.7 shows contour maps of the electric field arising

from glycine, i.e, analogous to the plots for the potential in figure 4.5. One sees in

this series of plots that OFA,3 outperforms OFA,0 and OFA,2 almost everywhere,

but suffers some instability close to the molecule. The accuracy of OFA,0 is perhaps

better than one might have expected, and the inclusion of higher order moments has

a smaller impact on the shape of the field in comparison to the impact the inclusion

of higher order moments in the expansion of the potential has on the shape of the

molecular electrostatic potential (MEP). As a result, the rate of convergence to a

strong representation of the electric field is less striking, but of course, still present.

OFA,2 yields an excellent representation of the field, with some small regions in

error (for instance, the lower left corner of the middle image in figure 5.7). OFA,3

yields the best representation, almost exactly reproducing the field in most areas.

However, there is some inaccuracy close to the hydroxy oxygen at all ranks.
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Figure 5.7: The OFA,0 (top, red), OFA,2 (middle, green) and OFA,3 (bottom,
blue) approximations to the total electric field of glycine.
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In much the same way as the OFA expression was derived, one can write down

an expression for GOFGA, the orbital field gradient approximation (OFGA),

GOFGA
αβ (~r) = −

∑
A

TAαβZA+
∑
i

[
−T iαβqi + T iαβγµ

i
γ −

1

3
T iαβγδΘ

i
γδ +

1

15
T iαβγδεΩ

i
γδε − . . .

]
.

(5.42)
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5.3 The Reduced Orbital Field Approximation

Differentiating equation 5.40 and multiplying by minus one, one arrives naturally

at an expression for the Reduced Orbital Field Approximation (ROFA),

FROFA
α (~r) = −

∑
A

TAα ZA +
∑
i

Fα[|ψ̄i|2](~r)

+
∑
i

[
−T iαqi + T iαβµ

i
β −

1

3
T iαβγΘ

i
βγ +

1

15
T iαβγδΩ

i
βγδ − . . .

]
−
∑
i

[
−T̄ iαq̄i + T̄ iαβµ̄

i
β −

1

3
T̄ iαβγΘ̄

i
βγ +

1

15
T̄ iαβγδΩ̄

i
βγδ − . . .

]
(5.43)

where in this context Fα[|ψ̄i|2](~r) is the electric field arising at a point ~r due to

the presence of the reduced density. Figure 5.8 shows the difference between the

“exact” total electric field values along the molecular axis of CO and the ROFA

total electric field.
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Figure 5.8: Error in ROFA,0 (red), ROFA,2 (green) and ROFA,3 (blue) total
electric field at points along the molecular axis of CO arising from a B3LYP cal-
culation with the aug-cc-pVQZ basis. C is at the co-ordinate origin, and O at
(0, 0, re = 1.1282Å).

The fields calculated using ROFA,0-3 are surprisingly poor in comparison to

those calculated using OFA,0-3, though they are still more stable than the ROPA
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potentials and are only underwhelming for the CO case as a result of the outstand-

ing results OFA produces. A more fruitful discussion can be had by comparing

the data represented in figures 5.9 and 5.7. While both OFA and ROFA produce

outstanding approximations to the electric field for glycine, ROFA is the only one

of the two closely reproduce the electric field close to the hydroxy oxygen. The

presence of an erroneously positive electric field in this region in the OFA,0 and

OFA,2 cases is remedied in the ROFA case as a result of the model density.

If one is interested in an approximate field gradient, differentiating the ex-

pression for GROFA provides an expression for the reduced orbital field gradient

approximation (ROFGA),

GROFGA
αβ (~r) = −

∑
A

TAαβZA +
∑
i

Gαβ[|ψ̄i|2](~r)

+
∑
i

[
−T iαβqi + T iαβγµ

i
γ −

1

3
T iαβγδΘ

i
γδ +

1

15
T iαβγδεΩ

i
γδε − . . .

]
−
∑
i

[
−T̄ iαβ q̄i + T̄ iαβγµ̄

i
γ −

1

3
T̄ iαβγδΘ̄

i
γδ +

1

15
T̄ iαβγδεΩ̄

i
γδε − . . .

]
. (5.44)
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Figure 5.9: The ROFA,0 (top, red), ROFA,2 (middle, green) and ROFA,3 (bottom,
blue) approximations to the total electric field of glycine.
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5.4 Symmetry: LMOs vs Canonical MOs

Orbital localisation routines often break the D6h symmetry of the benzene canon-

ical orbitals and produce orbitals of D3h symmetry, which closely resemble the

orbitals one might expect from a single Kekulé resonance structure. Given that

the expansion is performed on each orbital in turn, this could present an issue for

the electrostatic potentials calculated using OMA or ROPA. In this section we ex-

plore how severe this impact is for both OMA and ROPA when applied to benzene

Intrinsic Bond Orbitals (IBOs)4, and weigh the pros and cons of using canonical

orbitals in their stead for cases of high symmetry. [76] Figure 5.10 shows both one

canonical and one IBO orbital describing the π− system in benzene.

Figure 5.10: Canonical orbital π-system benzene (left column) and one intrinsic
bond orbital belonging to the π-system (right column). Both sets of orbitals were
generated with the cc-pVTZ basis and the B3LYP density functional.

To assess the impact of breaking the symmetry of the orbitals through localisa-

tion, let us perform a short case study on benzene. This case study will involve two

identical treatments of two sets of orbitals: a set of IBOs for benzene, the potential

arising from which we shall expand according to both the OMA and ROPA recipes,

and likewise for a set of canonical orbitals. For consistency the entire study is car-

ried out using the B3LYP density functional and the cc-pVTZ basis set. First,

we take an optimised benzene geometry, move the centre of the ring to the origin,

4The IBO routine is discussed in more detail in section 6.3.1.
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Figure 5.11: The potential arising on the circle around benzene, in the molecular
plane, defined by radius r = ||~rH|| + 2HvdW = 9.22376 Bohr, equidistant from all
hydrogen atoms. The potential is calculated using the molecular density and not
a multipole expansion.

rotate the geometry into the xy-plane, and define a circle in the molecular plane

also centred at the origin with radius r = ||~rH||+2HvdW = 9.22376 bohr radii (here

HvdW is the van der Waals radius of hydrogen and ~rH is the position vector of any

H atom in the system). [77] Any point, (x, y), on the circle is thus defined by the

angle θ according to (cos(θ), sin(θ)). In this study we take 120 evenly spaced points

around the ring. Figure 5.11 shows the potential on the circle as a function of θ

calculated using the molecular density and for the purposes of this section shall be

referred to as the “exact” potential. As one should expect, there are 6 equivalent

minima evenly spaced around the circle, one at each point closest to a H atom and

6 equivalent maxima opposite the centres of each carbon-carbon bond. The exact

potential is of D6h symmetry.

Figure 5.12 shows the potentials calculated using the OMA and ROPA recipes,

where the orbitals used in the large basis are IBOs. Both sets of potentials clearly

break the D6h symmetry and are of the same symmetry as the IBOs, as one may

have expected. ROPA performs better than all OMA expansions even at rank zero;

the symmetry breaking and absolute errors are both smaller. The errors reduce

upon inclusion of higher order multipole moments for both OMA and ROPA. The

π−bonding IBOs are each centred on every other carbon atom, one centroid every

120◦. Thus the potential is expected to have 6 equivalent minima which are slightly
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displaced from 60◦ intervals, and 2 sets of 3 equivalent maxima which alternate

around the ring. This is exactly what is seen in figure 5.12 for all expansions but

OMA,2, where the nuclear potential overcomes the weak maxima in the expansion

of the electronic potential and the symmetry is broken further.
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Figure 5.12: The exact (grey), OMA,0 (top, red), OMA,2 (top, green), OMA,3(top,
blue), ROPA,0 (bottom, red), ROPA,2 (bottom, green), ROPA,3 (bottom, blue)
potentials on a ring around benzene with radius 9.224 au around the centre of
mass. The reference orbitals are the B3LYP, cc-pVTZ IBOs.

Table 5.1 contains numerical measures of the symmetry breaking of the OMA

and ROPA potentials calculated using both sets of orbitals. The ROPA potentials

calculated with localised orbitals clearly approach the correct symmetry, and are

extremely close after the inclusion of the octopole moments in the expansion. OMA

performed using localised orbitals also approaches the correct symmetry, but much
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more slowly than ROPA. In the canonical case ROPA is seen to be far less sensitive

to the use of canonical orbitals than one may have expected, and the potentials are

extremely close to the exact potential, especially once a quadrupole correction has

been included. This is likely due to an absence of localisation tails, and the high

symmetry yielding a good approximation to the density through the projection

to the MINAO basis alone. The canonical OMA potentials are by far the least

accurate, but yield the correct symmetry.

Method Vmax Vmin V (30◦)− V (90◦) θmin − 60◦

Exact 0.00546 0.00391 0.00000 -0.01

Localised orbitals:
OMA,0 0.01405 0.00610 0.00596 6.95
OMA,2 0.00609 0.00184 0.00425 30.0
OMA,3 0.00735 0.00378 -0.00094 -1.54
ROPA,0 0.00727 0.00501 -0.00020 -0.46
ROPA,2 0.00598 0.00364 0.00033 0.78
ROPA,3 0.00544 0.00379 0.00001 0.00

Canonical orbitals:
OMA,0 0.13888 0.12556 0 0
OMA,2 0.02144 0.00812 0 0
ROPA,0 0.00595 0.00413 0 0
ROPA,2 0.00571 0.00389 0 0

Table 5.1: Symmetry breaking in the maximum and minimum electrostatic po-
tentials for benzene. Potentials are given in au, angles in degrees. Vmax, Vmin

are the maximum and minimum values of the potential, wherever they occur.
V (30◦)− V (90◦) is the difference between the maxima at 30 and 90 degrees which
are equivalent maxima if the potential is of the correct (D6h) symmetry, and
θmin − 60◦ is the difference in angle of the potential minima from those angles
expected by molecular symmetry.

Figure 5.13 shows the potentials calculated using the canonical orbitals for the

OMA expansion, and as reference for the ROPA expansion. The centroids are all at

the centre of the molecule, and since the octopole operator carries only ungerade

representations of D6h the octopole moments are zero by symmetry. OMA,2 is

thus the same as OMA,3 and ROPA,2 the same as ROPA,3. The small errors seen

in figure 5.13 are perhaps surprising, and show that the canonical orbitals are a

reasonable alternative reference set of orbitals for the generation of the reduced

orbitals where symmetry makes localisation an unappealing option.
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Figure 5.13: The exact (grey), OMA,2 (top, green), ROPA,0 (bottom, red), and
ROPA,2 (bottom, green) potentials on a ring around benzene with radius 9.224 au
around the centre of mass. The reference orbitals are the canonical orbitals arising
from a Kohn-Sham B3LYP calculation in the cc-pVTZ basis.
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5.5 Conclusions

On the basis of the data presented in this chapter, and the previous one, it is clear

that, in cases where symmetry does not prevent the determination of well-localised

orbitals, OMA provides a reasonably good approximation to the molecular elec-

trostatic potential, but must be used with caution in cases of high symmetry and

is at all ranks sensitive to the symmetry of the orbitals, rather than the nuclear

positions. On the basis of the data shown in this chapter, and the previous one, the

only argument for using OMA over ROPA is one of computational expense, and

clearly ROPA will always be more expensive than OMA, but the dimension of the

reduced basis will always be small and one must ask questions about the balance

of accuracy and computational cost on a case by case basis. In systems of high

symmetry, it has also been shown that high rank ROPA potentials are very close

to the correct symmetry, even if the reference orbitals are not. Of course, one can

always fall back on canonical orbitals in cases of doubt and rest assured that the

potentials provided by both ROPA and OMA will carry the correct symmetry. The

OMA potentials have been shown in this chapter to be inaccurate by comparison to

ROPA potentials for benzene. No comment is made concerning the computational

expense of DMA, as it entirely depends on the chosen method for partitioning the

electron density into atomic regions. Some of these methods are extremely com-

putationally expensive, and some are not, for instance Stone recommends Bader’s

method of atoms in molecules (AIM), which requires a notoriously expensive, real-

space topological analysis of the molecular electron density. [26, 35,78]

OFA, OFGA are first and second derivatives of the OMA expression (multiplied

by minus one), respectively, and will thus carry any of the benefits and defects

in OMA, and so they require little further discussion. The same goes for the

relationship between ROFA, ROFGA and ROPA. That is, the symmetry of the

fields and field gradients obtained from these methods follow the same rules as the

potentials provided by OMA and ROPA.

It is anticipated that ROPA may be of interest to those studying large molecules,

wishing to extract a model potential without the enormous cost of calculating it

exactly. A unique selling point of ROPA,0 is that a good model density can be

obtained with knowledge of the orbital centroids alone, and thus one can imagine a
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scenario where centroids associated with functional groups are part of a database,

and reduced orbitals and their associated potentials can be determined on the fly.

Potentials of large molecules are beyond the scope of this thesis but present an

interesting challenge which might be partly solved by the use of a simple model

density calculated from a set of reduced orbitals. Moreover, the use of localised or-

bitals allows for predictable locations of orbital centroids for functional groups, and

clearly strengthens the case for the development of a “ROPA for large molecules”

which would in the same breath provide field and field gradient information by

simple differentiation and change of sign.

It is common in molecular mechanics calculations to reduce the multipole ex-

pansion to its leading term, and to parameterise forcefields through a fitting pro-

cedure which optimises atomic point charges to reproduce the exact electrostatic

potential as closely as possible and to then describe other non-bonding effects using

a Lennard-Jones potential. In fact, in most commercial molecular mechanics pack-

ages and forcefields, there is no inclusion of even dipole moments in the formulae

used for electrostatic interactions. [26, 55, 79] As a result, anisotropic features of

the electrostatic potential are not well reproduced, and whether or not one obtains

“correct” results rests upon ones ability to choose the appropriate forcefield for the

simulation. This is a choice which is not always clear as quantitative justification

can be difficult to come by. [26] This omission of higher order moments appears

to arise through a reluctance to increase computational expense by performing

transformations of multipole moments between local and global co-ordinate sys-

tems. [8] If, for some reason, this changes and higher order multipoles are included

it is beyond any doubt that the chosen method will be the DMA or some other

atom-based scheme, as the atomistic description used in molecular mechanics is

unlikely to undergo significant change. As a consequence, it is unlikely that the

ROPA method will provide a suitable component for molecular mechanics force

fields.
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Chapter 6

Ab Initio Chemical Bonding

Insights

The purpose of this chapter is to provide a review of the current understanding

of chemical bonding. As this topic is so large and encompasses most of chemistry,

emphasis is placed upon those aspects most relevant to the new work presented in

the next chapter.

The first section of this chapter comprises a comparison between the basics

of MO theory and valence bond theory, and a justification of why the remainder

of the chapter resides within the MO theory framework. The second section is a

review of the two prevailing schools of thought on the precise physical description

of covalent bonding. The third section briefly covers common practices for gaining

insight into chemical bonding in different systems, and there is a strong emphasis

placed on those methods which provide energetic insight.

6.1 MO and Valence Bond Methods

In general, when chemists discuss different molecules, they speak of functional

groups, atoms and bonds. The MO approach to solving the Schrödinger equation

is built upon no such preconception, and as a result when one looks at a computer

rendered image of, for instance, a Hartree-Fock canonical orbital it rarely resembles

the organic chemist’s bonding, anti-bonding or more generally frontier orbital one

may have expected to see. Molecular orbitals are just that - molecular - with the
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exception of the uninteresting core orbitals, they are spread across the molecule

and almost never resemble an atomic fragment. This perhaps frustrating property

is the price to be paid for a set of orthogonal orbitals which have a host of other

desirable properties, such as the invariance of the total wavefunction under rotation

of the orbitals, the simple applicability of the coupled cluster operator, and the

reduced complexity in variationally optimising the molecular wavefunction.

However, there exists an equally valid approach to solving the Schrödinger

equation which may sit more pleasantly among chemists, known as Valence Bond

(VB) Theory. The aim of this section is to briefly compare and contrast the MO

and VB approaches, and thus justify the choice of framework for the remainder of

the chapter.

In MO theory, one has for minimal basis, single determinant H2,

Ψ0 = (χAχA + χBχB + χAχB + χBχA) [αβ − βα] , (6.1)

which, as outlined in section 2.5, is a 50:50 mixture of ionic and covalent terms,

and is incorrect at the dissociation limit and does not have the requisite flexibility

to fix this without including the excited configuration,

Ψ1 = (χAχA + χBχB − χAχB − χBχA) [αβ − βα], (6.2)

in an expansion of the CI wavefunction,

ΨCI = c0Ψ0 + c1Ψ1, (6.3)

= [(c0 − c1)(χAχB + χBχA) + (c0 + c1)(χAχA + χBχB)] [αβ − βα] (6.4)

Now, in valence bond theory one builds a wavefunction by placing s-functions

on the H atoms, allowing them to overlap to form a singlet configuration, and

antisymmetrizing afterwards, thus arriving at the Heitler-London (HL) function,

Ψcov
HL = (χAχB + χBχA)[αβ − βα], (6.5)
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which must then be improved with a second function consisting of the ionic terms,

Ψion
HL = (χAχA + χBχB)[αβ − βα], (6.6)

to give

ΨHL = c0Ψcov
HL + c1Ψion

HL. (6.7)

The coefficients c are determined variationally. The CI wavefunction in 6.4 is

identical to the above. The HL function is improved upon by the Fischer-Coulson

function, which allows the AOs to distort in the presence of the other atoms. This

distortion is the foundation which most modern VB methods are based upon, and

comes at the price of nonorthogonality of the orbitals. For H2 this is

ΨCF = (ψAψB + ψBψA)[αβ − βα], (6.8)

ψA = χA + cχB, ψB = χB + cχA. (6.9)

The overlap of the VB orbitals ψA and ψB is

〈ψA|ψB〉 = 2c(〈χA|χA〉+ 〈χB|χB〉) + (1 + c2)〈χA|χB〉, (6.10)

= 4c+ (1 + c2)SAB. (6.11)

Clearly, the Coulson-Fischer function describes appropriately the dissociation of

the bond without including further terms in the expansion; as the bond lengths

increase, c goes to zero and there are two single atoms with no overlap.

The generalized form of the Coulson-Fischer function one can use for any

molecule is known as Spin Coupled Generalized Valence Bond (SCGVB) The-

ory. [80,81] This approach involves coupling unpaired atomic orbitals to produce a

singlet spin state and thus a bond. For instance, in a hydrocarbon one would cou-

ple unpaired H s-orbitals with the unpaired p-orbitals on the carbons (in different

ratios depending on the hybridisation of the carbon centre) to produce C-H bonds,

and coupling pairs of p-orbitals to produce the C-C bonds. The spin-coupling co-

efficients together with the VB orbital coefficients are then optimised variationally

to produce an optimal VB wavefunction for which the different combinations of

unpaired electrons should all be considered and combined linearly. In simple cases
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the combination one would expect from organic chemistry textbooks dominates,

and the rest are neglected. For more complicated cases, such as benzene multiple

spin couplings must be considered, namely the Kekulé resonance structures and

the three states where each carbon has electrons coupled with the carbon oppo-

site and the carbons adjacent. The improvement of a VB wavefunction, much

like the improvement of the MO wavefunction, essentially involves adding excited

(ionic) states to the ground state VB wavefunction. SCGVB plus the appropriate

ionic configurations and CASSCF produce much the same energetic results and

thus capture roughly the same amount of electron correlation. The SCGVB wave-

function is more compact, and perhaps more conceptually appealing, whereas the

CASSCF wavefunction requires large numbers of Slater determinants to be stored

and evaluated.

Why then, is the MO approach dominant in the field of electronic structure and

the VB approach relegated to the research interests of small parts of the academic

community? The answer to this question is beyond the scope of this thesis, but it is

undoubtedly in no small part down to the flexibility of the MO orbitals compared

with the SCGVB orbitals. Orthogonal MOs can be freely rotated together without

consequence to the total wavefunction, and thus can be manipulated to show us

things a chemist might be interested in at no detriment to the total energy (but

usually at the cost of the applicability of Koopmans’ theorem). Whereas once the

SCGVB orbitals have been variationally determined, any modification will destroy

their variational character and most likely be of little use. It should be noted

however, that the SCGVB orbitals are by their construction rather localised and

arguably the most common reason for rotating orthogonal MOs is to localise them!

However, the work done in the previous chapter simply could not be done with a

valence bond wavefunction. This invariance of the total MO wavefunction under

unitary transformation of the MOs is central to this chapter, and the previous one.

As such the VB method is parked here, and not picked up again.
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6.2 The Nature of the Covalent Bond

In 1916 Lewis’ theory that a single chemical bond arises from two atoms sharing

a pair of electrons was published. [82] Since then, it has been taught to secondary

school students across the globe, and is universally accepted and understood to be

true by the scientific community. This model has been applied to virtually every

type of compound in “dot structures”, and has been adapted to include bonds con-

taining one shared electron since groundbreaking quantum chemical calculations

on H+
2 were performed by the likes of Heitler, London and Barrau. [83, 84] More

than 100 years after Lewis’ original publication, the precise mechanism of chemical

bonding is still a subject of debate between two prevalent schools of thought: one

insisting it is an electrostatic phenomenon and the other that covalent bonding is

driven by a kinetic energy lowering which accompanies the expansion of electron

wavefunction.

The electrostatic argument for covalent bond formation arises quite naturally

from things we know from quantum mechanics; bonds are created through the

constructive interference of two atomic orbitals on two separate nuclei, and this

yields an increase in the electron density in the so-called “binding region” and that

at the equilibrium geometry the molecular potential energy is always lower than

the sum of the potential energies of the constituent free atoms, whereas the case

is reversed for the kinetic energy. One could therefore be forgiven for presuming

that the virial theorem,
V

T
= −2, (6.12)

where V and T are the atomic or molecular potential and kinetic energies, respec-

tively, provides rigorous grounding for an appealingly simple electrostatic picture

of the chemical bond. Indeed, this was (and arguably still is) the most widely ac-

cepted description of covalent bonding, and was strongly supported by incredibly

talented scientists such as Slater, Feynman and Coulson. [85–87] More recently,

Bader has lent his support to the electrostatic model, with motivation drawn from

topological features of the electron density, along with the virial theorem. [88]

At odds with the classical description offered by those in support of the electro-

static description of chemical bonding, Hellmann suggested chemical bonding be
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treated as a quantum mechanical effect, and that the lowering of the kinetic energy

upon the expansion of the electron waves as delocalisation occurs is responsible for

chemical binding. [89] Hellmann’s apparent difficulty in aligning his interpretation

with the virial theorem was, at least in part, to have his arguments dismissed by the

wider scientific community. [90,91] It was not until almost 30 years later that Klaus

Ruedenberg provided an in-depth analysis of all of the effects leading to chemical

binding in H+
2 , and found himself to be in general agreement with Hellmann; chem-

ical bonding occurs upon the ”depression” of the kinetic energy as orbitals overlap

and the electrons are free to explore a larger region of space without tunnelling. [92]

Since then, Ruedenberg and co-workers have explored molecules ranging from H+
2

to larger homonuclear diatomics. [92–100] The salient point, however, remains the

same; the covalent bond formation is driven by the depression of the kinetic energy.

In this respect, then, there is nothing remarkable nor unremarkable about bonds

containing one electron.

Several high-profile scientists, such as Nobel Prize winners Mulliken and Fukui,

have since aired their agreement with Ruedenberg’s description of the chemical

bond, among many other prominent researchers in theoretical chemistry. [101–116]

However, it would be remiss not to mention that a number of undergraduate text-

books still used today mislead readers by describing covalent bonding as Slater did,

more than 80 years ago. It is both surprising and disappointing to see such a funda-

mental idea, perhaps the fundamental idea, in chemistry be given such little regard

by the authors that more than 50 years of research and growing scientific consen-

sus on its description should be ignored. This deficiency in common textbooks

has been noticed, and several authors have published pedagogical descriptions in

educational journals in an attempt to make Ruedenberg’s ideas, which do require

some knowledge of quantum chemistry in order to grasp, more accessible to the

wider chemical community. [106,110,117]

6.2.1 Atomic Hydrogen: A Cheat Sheet for Variational

Reasoning

The exact solutions to the Schrödinger equation for the hydrogen atom are known.

This places it uniquely in a position to provide us with a conceptual understanding,
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from a rigorous footing, of precisely what the physical effects are which lead us to

a stationary electronic state in the field of point charge “nuclei”. The variation

principle tells us that the electronic wavefunction assumes whatever shape is nec-

essary in order to minimise the expectation value of the electronic Hamiltonian.

The ground state wavefunction is

ψ =

(
ξ3

π

) 1
2

e−ξr, (6.13)

where the shape is determined by the exponent, ξ, and the requirement that the

solution be normalisable. The kinetic energy operator is the radial Laplacian,

T̂ = − 1

2r2

∂

∂r

(
r2 ∂

∂r

)
, (6.14)

Or, equivalently

T̂ = ∇2 =

[(
∂

∂x

)2

+

(
∂

∂y

)2

+

(
∂

∂z

)2
]
. (6.15)

The form of the above tells us rather a lot about the behaviour of the kinetic

energy of electron waves. If one increases the localisation, the requirement that ψ

remains normalised demands the maximum of the orbital be higher. If a maximum

in the orbital increases, and the orbital remains normalised, then necessarily the

gradient increases. If the gradient increases, then by simple inspection of the above

it is clear to see that the kinetic energy must also increase. The pertinent point

here is that the increased localisation of the electron wavefunction must increase

the kinetic energy. [118]

The potential energy operator for a hydrogen-like system is

V̂ = −Z
r
, (6.16)

where Z is the nuclear charge. The system contains only one electron and one

nucleus, so of course the terms for electron-electron and internuclear repulsion

are missing and the potential energy is clearly always negative. All of these are

classical electrostatic interactions, of which the attractive term dominates. As a
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consequence, even in systems of many electrons and nuclei the potential energy is

negative.

The kinetic and potential energy integrals of ψ are

〈T̂ 〉 =
ξ2

2m
, (6.17)

〈V̂ 〉 = −ξZ, (6.18)

where m is the mass of the electron. This tells us that the potential energy reaches

a minimum as ξ → ∞, whereas the kinetic energy reaches a minimum as ξ → 0.

The total energy is given by

E =
ξ2

2m
− ξZ. (6.19)

The optimum choice for the exponent is found by simply setting the derivative of

the energy with respect to the exponent to zero, and solving for ξ. For the H atom

that, in atomic units, is

dE

dξ
= ξ − 1 = 0, (6.20)

ξ = 1. (6.21)

It is clear, then, that the potential and kinetic energies oppose one-another. The

kinetic energy drives the electrons towards complete delocalisation, and the po-

tential energy drives the electrons towards collapse onto the nuclei and complete

localisation to a point. The interaction between the kinetic and potential energies

can be thus described as the potential driving contraction against the resistance

of the kinetic energy driving expansion, or vice versa; the kinetic energy drives

expansion against the pull of the attractive force between the electrons and the

nuclei. [91, 95,118]

Figure 6.1 shows the dependence of the kinetic, potential and total energies

of atomic hydrogen upon changing the orbital exponent according to the above.

Also shown is one side of the virial equation (−V/2), which intersects the kinetic

energy, i.e shows the virial theorem is satisfied only with an orbital exponent of

1. The kinetic energy, which is always positive, and has a minimum at an orbital

exponent of zero, thus drives orbital delocalisation, or synonymously, orbital ex-
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Figure 6.1: The kinetic (blue), potential (orange) and total (green) energies of the
H atom as a function of orbital exponent. The red line is −V/2 where V is the
potential energy.

pansion. The potential energy drives orbital contraction. The total energy is of

course a balance of the two. One can thus draw the conclusion that wherever the

kinetic energy decreases and the potential energy becomes less negative, the or-

bitals are expanding, and contracting where the case is reversed. Now considering

the fabricated case, where the nuclear mass remains the same, but the charge of

the nucleus is doubled, i.e Z = 2. The kinetic energy remains the same, whereas

the electron feels double the attraction to the nucleus, and as a consequence the

energy minimum is at ξ = 2, as shown in figure 6.2. [118]

One could likewise reduce the kinetic energy pressure, as Ruedenberg calls it in

his original publication, by increasing m in equation 6.17. [92] The kinetic energy

pressure can be increased absolutely by decreasing m, or relatively by decreasing

Z and thereby reducing the pull the electrons feel towards the nuclei. [118]

6.2.2 The Chemical bond in H+
2

With the results of the previous subsection in mind, let us now examine how the

kinetic, potential and total energies change as the bond in H+
2 is shortened, from

the dissociation limit to slightly shorter than the equilibrium bond distance of 2

Bohr radii, as seen in figure 6.3. When the proton and the hydrogen atom are
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Figure 6.2: The kinetic (blue), potential (orange) and total (green) energies of one
electron in the field of a point charge of +2 as a function of orbital exponent. The
red line is −V/2 where V is the potential energy.

brought together from far apart attraction initially arises as the s-orbitals overlap,

leading to a lowering of the kinetic energy as the molecular orbital expands between

the nuclei and occupies a larger region of space. In terms of the results of the

preceding section: the orbital exponents decrease, thereby decreasing the kinetic

energy against the resistance of the potential energy. The adaptation of the orbital

exponent to the bonding situation can be mimicked closely by using a sufficiently

large basis set, wherein as long the coefficients in the linear combinations of atomic

orbitals are able to provide adequate flexibility in the variational optimisation of

the wavefunction, one sees the same behaviour for the kinetic, potential and total

energies as if one optimised the exponents, as in VB theory.

As the proton and hydrogen atom come close together the physical effects be-

come somewhat more complicated. There is a contraction of the orbitals perpen-

dicular to the bond direction, which drives further delocalisation along the bond

and thus lowers the kinetic energy overall, but increases the kinetic energy in the

“intra-atomic” region. Bacskay et al. examined the individual components of the

kinetic energy operator and found that the bond-perpendicular component shows

an increase, whereas the bond-parallel component shows a substantial decrease as

the bond is shortened. [114] The intra-atomic contractions naturally cause a de-
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crease in the intra-atomic potential energy, and oppose the inter-atomic kinetic

and potential energy changes which are driving bond formation; the intra-atomic

orbital contraction drives delocalization along the bond, thus increasing the inter-

atomic potential energy and decreasing the inter-atomic kinetic energy. The total

intra-atomic energy increases as a result of the contractions; the intra-atomic ki-

netic energy increase is slightly larger than the magnitude of the intra-atomic

potential energy decrease. As the nuclear separation approaches equilibrium bond

length, the intra-atomic effects become so large that they become larger than the

inter-atomic effects. Thus the total kinetic energy increases, and becomes greater

than that of the electron in atomic hydrogen, whereas the total potential energy

decreases, and becomes less than that in atomic hydrogen. However, on balance,

the total energy goes down, as the absolute value of the sum of the inter- and intra-

atomic potential energies at equilibrium is greater than the sum of the inter- and

intra-atomic kinetic energies, as demanded by the virial theorem. [91] The orbitals

contract wherever possible against the resistance of the kinetic energy, which is

lessened by the increase in delocalisation along the bond. The role of orbital con-

traction in covalent bond formation, might thus be attributed to the restoration of

the virial ratio at equilibrium bond length. Head-Gordon and co-workers recently

suggested that in some larger molecules the role of orbital contraction is taken over

by polarization. [119]

The difference between the bond in H+
2 and the bonds between other elements,

or in molecules that most chemists might have an interest in, is likely to arise pri-

marily from the presence of other occupied orbitals which could interfere with the

electron-nuclear term through electron-electron coulomb and exchange integrals.

Ruedenberg et al provided some insight into this case while investigating a range

of homonuclear diatomics. [97,99,100,118] In each case the energy curves are simi-

lar to those in H+
2 and the variational reasoning remains the same. The same group

more recently showed that orbital contraction is responsible for the restoration of

the virial coefficient by calculating the increase in intra-atomic electron-electron

repulsions, and increase in nuclear-electronic attraction in a range of homonuclear

diatomics compared with the constituent free atoms. [91]

Let us now consider covalent bonding in a basis set without the necessary flex-
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Figure 6.3: The total (blue line), kinetic (orange line) and potential (green line)
energy against nuclear separation for H+

2 . The energies are calculated using the
cc-pVQZ basis set, and have been shifted by their respective asymptotic values.

ibility to contract the atomic regions but expand along the bond direction, nor

distort strongly from the free atom shapes. That is, let us perform the same cal-

culation on H+
2 , but using a minimal basis set with fixed atomic orbital exponents.

Figure 6.4 shows the energy components over the same internuclear distances as

in figure 6.3. One should immediately notice the violation of the virial theorem at

the equilibrium bond length. The kinetic energy is lower in the molecule than in

the separate atoms, whereas the potential energy is larger in the molecule than in

the consitituent free atoms! The delocalisation of the electron over both nuclei as

the atomic orbitals overlap causes the decrease in the kinetic energy against the re-

sistance of the potential energy pulling the electrons towards the nuclei. However,

the wavefunction lacks the flexibility to contract in the atomic regions and thus

lower the total potential energy and increase the total kinetic energy - there are no

p-functions to allow bond-perpendicular contraction, only s-functions whose con-

traction would decrease delocalisation in the bond-parallel direction, and increase

the kinetic energy. The variational balance over the nuclear separations is to never

have the potential energy decrease. Thus the potential energy contribution to

the covalent binding, i.e the orbital contraction, is completely missing, and the

minimum in the total energy arises only due to the kinetic energy.

The salient points, in order of occurrence in the chemical bond formation in
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Figure 6.4: The total (blue line), kinetic (orange line) and potential (green line)
energy against nuclear separation for H+

2 . The energies are calculated using the
MINAO minimal basis set, and have been shifted by their respective asymptotic
values.

H+
2 , as the nuclear separation is decreased, are: [118]

1. The overlapping s-functions and consequential delocalisation of the electron

over both protons is the only covalent interaction at large nuclear separation.

There is no orbital contraction perpendicular to the bond. The kinetic en-

ergy decreases against the resistance of the potential energy increase which

accompanies the accumulation of charge between the nuclei.

2. The kinetic energy decreases further, and the electron wavefunction becomes

more and more delocalised. The inter-atomic potential energy remains an

antibonding effect over all internuclear distances.

3. As the nuclear separation becomes smaller, there is an intra-atomic contrac-

tion and consequential lowering of the intra-atomic potential energy. This

contraction facilitates further shifting of charge into the bonding region, thus

lowering the kinetic energy further.

4. At roughly two times the equilibrium bond distance, the total molecular

kinetic energy begins to increase as the intra-atomic contractions increase the

intra-atomic kinetic energy. The total potential energy begins to decrease at
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the same point because the orbital contraction places the electron closer to

the nuclei.

5. Once equilibrium bond length has been reached, the intra-atomic kinetic

energy has increased to such a degree, due to the intra-atomic orbital con-

traction, that it overwhelms the inter-atomic kinetic energy and thus yields

a larger total kinetic energy than the constituent free atoms. The potential

energy in the intra-atomic region lowers and likewise overwhelms the inter-

atomic potential energy through the intra-atomic contraction of the orbitals,

leaving us with a negative total potential energy relative to the consituent

free atoms. The virial ratio is thereby restored.

Where there are additional shells of electrons, or where bonds are delocalised

over 3 or more nuclear centres, the interpenetration of the electron wavefunctions

will clearly increase the coulombic repulsion, which is missing entirely from the

H+
2 example. This increase is counteracted by dynamic electron correlation to a

certain degree. The overall effect of occupied inner shells of electrons is one which

aids in the restoration of the virial ratio, through a delicate balance of correlation,

coulomb and one-electron effects. [91]

104



6.3 Wavefunctions and Chemical Bonding

Many different approaches exist for extracting bonding information from molecu-

lar wavefunctions. Many groups exist which focus primarily upon using quantities

which can be calculated using the appropriate operators and indirectly yield in-

formation on the types and strengths of chemical bonds. Such approaches include

NICS, ring-current methods, magnetic methods, and many more. There is no dis-

cussion of methods such as these in this chapter as, despite their value, they are

not related to the original work presented in later sections. Instead, we focus on

methods which provide direct qualitative and quantitative information on bonding

through the shapes of orbitals, energetic quantities or both.

6.3.1 Orbital Localisation

Localised Molecular Orbitals LMOs) are, as the name suggests, canonical orbitals

which have been transformed in order to reduce their spatial volume. The most

attractive features of LMOs are that they are usually consistent across molecules

containing the same functional groups; they usually reflect the chemist’s picture

of bonding and they facilitate the development of electronic structure methods

where only local correlations are included in an expansion or perturbation. It is

common to generate LMOs at several points over a reaction co-ordinate; doing so

can be qualitatively rather illuminating, and certainly provides conceptual insight

into how a reaction proceeds. However, this kind of analysis is not necessarily

based on any physical quantities and yields no quantitative energetic information

which might really be used to help an experimentalist design experiments. Over

the years, there have been many localisation methods developed. In this subsection

we briefly discuss a selection of methods, and their benefits and drawbacks in what

is far from a complete discussion.

Pipek-Mezey Localised Orbitals

Pipek-Mezey (PM) LMOs, (as used frequently throughout chapters 4 and 5) are

those orbitals which maximise the sum of (originally Mulliken) atomic charges. [46]
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The orbital coefficients are those which minimise the functional,

FPM = −
Natom∑
A

(QA)2, (6.22)

where QA is the charge allocated to atom A. Although it is common to use Mulliken

atomic charges, any method for allocating atomic charge which depends on the

orbital coefficients can be used whenever the basis set employed is a large one

and the Mulliken atomic charges become erratic. PM LMOs are used widely, and

usually reflect orbitals one might draw through intuition. Pipek-Mezey orbitals

are popular as they, in general, separate σ- and π-orbitals. The application of

PM localization can come at a cost in highly symmetrical systems. The go-to

example is benzene, whose canonical orbitals are of D6h symmetry but under PM

transformation has orbitals of D3h symmetry, as was discussed in chapter 4.

Boys’ Localised Orbitals

The Foster-Boys (FB) localisation method perhaps more intuitively decreases the

spatial extent of the canonical orbitals by explicitly referencing the square of the

distance between two electrons in a minimisation of the functional, [120,121]

FFB =

Norb∑
i

〈ψiψi|(r1 − r2)2|ψiψi〉 (6.23)

with respect to the orbital coefficients. FB localization yields orbitals which are

perhaps less intuitive as far as π−bonding is concerned, as the σ/π separation is

rarely preserved and one ends up with “banana bonds”, but essentially serve the

same purpose as PM orbitals.

Intrinsic Bond Orbitals

Knizia’s Intrinsic Bond Orbitals (IBOs) are related to PM orbitals, with a different

choice of exponent in the objective function, and the atomic charges used are those

arising from the intrinsic atomic orbitals of the same paper, wherein he proposes

a new method for calculating atomic charges which are convergent with increasing

size of the basis set by projection onto a minimal basis and back. The orbitals
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are then reconstructed in the large basis by a further projection, and the atomic

charges obtained by performing a Mulliken atomic population analysis. [76] The

choice of exponent 4 is inspired by work which has shown it to be effective in

suppressing unwanted orthogonalisation tails. [76, 122,123]

Natural Orbitals

Natural orbitals are the eigenfunctions of the one-electron density matrix, the as-

sociated eigenvalues are the orbital occupation numbers. Natural orbitals also

have the attractive feature of providing the fastest possible convergence to the full

CI energy when the occupation numbers are used to guide the choice of excited

determinants when one includes the largest occupations in excited determinants

first. [8] Natural orbitals often resemble localised orbitals, and are one of the most

widely used approaches in computational chemistry for gaining insight into how

atomic orbitals interact in a given system to give rise to bonding. The procedures

involved are the natural atomic orbital (NAO) and natural bond orbital (NBO)

analyses of Weinhold et al. [124] The natural atomic orbitals are those which di-

agonalise blocks of the density matrix arising from basis functions on each atom;

the natural atomic orbitals on atom A are the eigenfunctions of the sub matrix of

the density arising only from atomic orbitals centred on A. The diagonalisation

is then performed for each block in the density matrix associated with each atom.

The resulting natural atomic orbitals are not mutually orthogonal, and must thus

be orthogonalised using an appropriate algorithm. The natural orbitals in general

resemble the pure atomic orbitals, and the orthogonalisation ensures a sum over

the diagonal elements of the new density matrix formed from the NAOs is equal

to the number of electrons, and the trace of each block yields the atomic charge

arising from the electrons in the setting of the molecule. However, this approach to

calculating partial charges is hostage to the same effects as Mulliken populations;

whenever a basis set containing diffuse functions is chosen, electronic charge far

from the basis function centre will be attributed to the atom erroneously.

Following the definition of the NAOs, bonds between atoms are formed by sim-

ple inspection of the off diagonal blocks of the NAO basis density matrix. Orbitals

with occupations very close to 2 have their contributions to the density matrix
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removed and are thereafter considered core orbitals, a lower threshhold is set for

so-called “lone-pair” orbitals, whose contributions to the density matrix are treated

similarly. Removing the contributions of these orbitals to the density matrix leaves

us with off diagonal blocks between atomic centres. These blocks are diagonalised,

and the eigenfunctions filtered by their corresponding eigenvalues (occupation num-

bers) until the correct number of bonding orbitals have been found; these are the

natural bond orbitals, and can be written in terms of the NAOs, thus providing

insight into which atomic orbitals contribute to the bonds, and the occupation

number giving at least something close to quantitative insight into relative bond

strengths.

6.3.2 Energy Decomposition Analyses

Several schemes have been published which go a step further than the orbital lo-

calisation pictures and aim to give numerical quantities which can be associated

with bond strength, or in some cases, numerical quantities for each physical ef-

fect associated with bond formation (i.e distortion from the atomic state, orbital

contraction, spin-coupling effects, and so on). There have been a large number of

methods developed for the energy decomposition of non-covalent interactions, with

some proving to be very successful. [119,125–137] The general validty of EDAs and

their inevitable shortcomings and benefits was the topic of a recent review arti-

cle. [138] As we shall see later, we are concerned in this chapter only with covalent

bonding, and so we limit ourselves to associated energy decomposition schemes.

Even so, a large number of EDAs exist for covalent bond energy decomposition,

and so this subsection outlines several popular methods, but could not possibly

cover all available approaches.

Quasi-atomic Orbitals and Chemical Bonding

Ruedenberg and co-workers have, with success, developed a black-box algorithm

for drawing bonding information from ab initio wavefunctions for electronic states

through a sequence of orbital localisations. [125] The aim of the approach is to

separate the one electron potential from the electron correlation potential. This is

achieved by dividing the full orbital space into three components: the inner-shell
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core space, the valence-internal space and valence-external space.

The core orbital space is always a subset of the occupied orbitals, they are

always closed and orthogonal to the valence and external spaces. In order to

determine the quasi-atomic core orbitals, the HF core orbitals are projected onto

a set of minimal basis atomic orbitals and a singular value matrix decomposition

(SVD) is performed. The non-zero values then correspond to the core orbitals.

These core HF orbitals are then symmetrically orthogonalised, and the resulting

orbitals are the quasi-atomic core orbitals.

The valence-internal orbital basis is generated similarly. The HF virtual orbitals

are projected onto the full space of minimal basis orbitals, the SVD is performed

and the HF orbitals corresponding to the minimal basis virtual orbitals are those

with the maximal singular values. They are then cast into a basis which diag-

onalises the Fock operator, and the resulting orbitals are named the canonical

valence-virtual orbitals. Together with the occupied HF canonical orbitals, they

make up the canonical valence-internal space. The valence-external space are sim-

ply those HF virtual orbitals whose singular values did not qualify them as part of

the canonical valence-virtual space.

Now that we have the three well-defined canonical orbital subspaces, what

remains is to find a quasi-atomic representation of the canonical orbitals. The

SVD of the overlap matrix between the full canonical orbital space and the minimal

atomic orbital basis is then performed. The number of non-zero singular values

is exactly equal to the number of minimal basis orbitals, and since each minimal

basis orbital is associated with an atom, the associated singular vector in canonical

valence-internal space is taken to be the local contributions of each atomic orbital

to that internal space. By performing this for all orbitals and for each atom, a set

of localised basis orbitals is generated. The orbitals must then be orthogonalised,

as they are in general non-orthogonal between atomic centres. Ruedenberg and

co-workers dubbed these orbitals canonical quasi-atomic valence orbitals.

All that is left is to now orient these canonical quasi-atomic valence orbitals,

by maximising the sum of the off-diagonal inter-atomic one-particle density matrix

elements to the fourth power, and thus yielding those orbitals which interact with

as few other orbitals as possible. These are the oriented quasi-atomic orbitals. In

109



the first publication about such orbitals, an illustrative example of quinone showed

that the bond orders they yield are rather insightful, even revealing information as

to the aromaticity of the system through the σ − π bond orders. [125]

Further modifications were made to this approach in a series of papers. [126–128]

The modification in the first instance was the generalisation to wavefunctions be-

yond HF wavefunctions, which is beyond the scope of this thesis, as we shall concern

ourselves in this section only with closed shell single configurational systems. How-

ever, the introduction of a “kinetic binding energy” in the second publication as a

measure of bond strength is of particular interest. [126] The difficulty in controlling

the phases of the quasi-atomic orbitals in large systems, and negative bond-orders

sometimes being associated with bonding interactions led the authors to multiply

the bond-orders by a kinetic energy interference term. This term is taken to be

the kinetic energy integrals between different quasi-atomic centres. They further

assert that “since the kinetic energy is responsible for covalent bonding, it is likely

that the [inter-quasi-atomic kinetic energy integrals] reflect bond strengths and can

serve a similar purpose as ‘resonance energies’ ”, and that adjusting the kinetic

bond orders empirically (multiplying by 0.1) provides a numerical measure of the

bonding indicated by the one-particle density matrix. [126–128] The last two pub-

lications were applications to specific molecules, with the last being a unimolecular

diradical dissociation reaction. [127,128]

A full energy decomposition scheme has since been developed by the same

group, and is based upon these quasi-atomic orbitals. [139] The total energy is

written in terms of five different quantities,

E = E1 + E2C + E2I + E3I + E4I , (6.24)

where E1 is the intra-atomic energy, E2C is the energy arising from two-centre

coulomb interactions and EXI are the interference interactions across X centres.

In order to associate terms in the above equation with physical quantities, the

wavefunction is first partitioned into two parts: one part which is an assembly of

unbound quasi-atoms and one part which is responsible for bonding. A determinant

which describes the wavefunction of atom A is taken as being the antisymmetrised

product of all quasi-atomic orbitals centred on A, and the total molecular wavefunc-
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tion is the further antisymmetrised product of all wavefunctions for all atoms. The

atomic wavefunctions which consist of a number of quasi atomic orbitals which is

equal to the nuclear charge are combined linearly to give a wavefunction describing

a set of non-bonded quasi-atoms,

Ψ0 =
∑
i

c0
iD

0
i , (6.25)

where D0
i are the antisymmetrised atomic determinants. A whole host of properties

of Ψ0 which indicate it is indeed a wavefunction of unbound atoms are calculable

and discussed in some detail in ref [139], but most notable is the absence of any

inter-atomic density matrix elements. A second wavefunction is generated similarly

from the wavefunctions of atoms whose number of constituent quasi-atomic orbitals

is not equal to the atomic charge,

Ψ′ =
∑
j

c′jD
′
j. (6.26)

The energy of these wavefunctions then correspond to parts of the energy associated

with notional zero charge migration, Enm, and the part associated with charge

migration and thus bonding, Em. That is,

E = 〈Ψ|Ĥ|Ψ〉+ Enuc, (6.27)

Enm = 〈Ψ0|Ĥ|Ψ0〉+ Enuc (6.28)

Em = E − Enm = 2c0c′〈Ψ0|Ĥ|Ψ′〉+ (c′)2
[
〈Ψ′|Ĥ|Ψ′〉 − 〈Ψ0|Ĥ|Ψ0〉

]
, (6.29)

where Enm is the energy associated with the wavefunction describing unbound

quasi-atoms and E is the energy arising from the total wavefunction, which can be

written as

Ψ = c0Ψ0 + c′Ψ′, (6.30)

subject to the constraint that (c0)2+(c′)2 = 1). It is found that the energy lowering

associated with chemical bonding arises through the kinetic energy integrals, par-

ticularly those in the cross term, 〈Ψ0|T̂|Ψ′〉, where T̂ is the kinetic energy operator

of the one electron Hamiltonian. [139]
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The energy terms in equation 6.24 for Enm correspond to the energies of the

quasi-atoms (E1), the quasi-classical energy (E2C) and the energy of antisymmtri-

sation (E2I). The terms in the equation for Em correspond to the sharing-intra-

atomic energy (E1), the sharing-coulombic energy (E2C), sharing-interference en-

ergy over X centres (EXC). The goal of the EDA is to write an explicit form for

the bonding energy,

E(bonding) = E(quasi-atom formation) + E(quasi-classical)

+ E(electron sharing) + E(charge-transfer). (6.31)

The quasi-classical term naturally falls out of the expression for Enm as the two

centre coulomb interaction between any two quasi-atoms. The quasi-atom forma-

tion energy requires a second calculation on the free-atom ground states, and is the

difference between the energies of those free atoms and the corresponding quasi-

atoms. The electron sharing and charge transfer terms are together encompassed

by the sum of the sharing-intra-atomic and sharing-coulombic terms which both

arise through Em. An illustrative example investigating the bonding in C2 was

included in the original publication, which shows what one may expect; the atoms

are not bound without the interference terms. [139]

In subsequent publications concerning the quasi-atomic orbital approach to

extracting bonding information from molecular wavefunctions, Ruedenberg et al

have not performed analyses similar to the one they performed for C2, and instead

focus on elucidating information through those quantities defined earlier in this

section: the kinetic bond orders and bond orders arising from the one particle

density matrix. [140–142]

Absolutely Localised Molecular Orbital Energy Decomposition

A novel approach to the problem of isolating bonding energies and their various

contributing quantities has been suggested by Head-Gordon et al., wherein a se-

ries of constraints are placed on a wavefunction in a gradual relaxation to the

ground state. [119, 130–132, 135, 143] Under the absolutely localised molecular or-

bital (ALMO) EDA scheme, the energy of interaction of two molecular fragments
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is written as [119]

∆EINT = ∆EGEOM + ∆EFRZ + ∆ESC + ∆EPOL + ∆ECT. (6.32)

The procedure begins with calculations on isolated fragments A and B of molecule

AB in their ground states, and then in their respective geometries in AB but with no

interaction with the molecular environment, in order to obtain the term ∆EGEOM,

which is the energy change associated with the geometric distortion of each frag-

ment. The orbitals then remain unmodified, but are allowed to experience the

presence of those on the other fragment. The associated energy change is ∆EFRZ

and consists of Pauli-repulsion, classical electrostatic interactions and dispersion.

The MO matrix is block-diagonal and if bonding occurs in the nonorthogonal meet-

ing of the fragments, the system is placed in a high-spin electronic state. A flip of

the spin of one of the electrons is thus performed, and a lower spin configuration

formed. The energy change associated with the spin flipping of electrons in the

frozen orbitals is thus the spin coupling energy change, ∆ESC. To define ∆EPOL,

an optimisation of the orbitals local to each fragment is carried out through the

mixing of same-fragment occupied and virtual orbitals capable of describing wave-

function polarization, and the difference is taken relative to the previous state.

The final term, ∆ECT, which is associated with charge transfer is then defined as

the change in the energy upon the removal of all constraints, and the optimal mix-

ing of the orbitals across the fragments. By definition, then, the quantites which

are overall repulsive are ∆EFRZ and ∆EGEOM. All other quantities are manifestly

attractive. [132]

Partitioning the energy of interaction according to the ALMO-EDA scheme has

led Head-Gordon and co-workers to suggest that orbital contraction be replaced

by orbital polarization in the discussion of bonding for elements heavier than hy-

drogen. [119] The partitioning is modified in the extension of the ALMO-EDA for

MP2 calculations by the inclusion of an additional dispersion term. This inclusion

is an attractive prospect: the dispersion is in general only a small contribution to

the energy, but plays the dominant role in the formation of the bond in the helium

dimer. [133–135]

In some publications the ALMO-EDA has been applied to systems at several
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points along a reaction co-ordinate. [131, 133–135] The method is shown to yield

an energetic “fingerprint” for different types of bond. At the time of writing,

however, no studies of covalent bonds of greater order than 1 have been published.

The high resolution of this EDA can come at considerable computational expense,

depending on the nature of its use; if one is interested in the nature of the changes

in, say, 5 bonds in a molecule along a reaction co-ordinate then one must perform

calculations on 10 isolated fragments (both in their equilibrium geometry and in the

geometry they take in the molecular setting) in turn, and perform the entire series

of optimisations for each bond at each geometry along the reaction co-ordinate.

It could well be that the information it provides is worth the cost for systems of

specific interest, but it is unlikely to be the case for exploratory calculations.

Seminal Energy Decomposition Analyses

Early EDAs similar in concept to the ALMO-EDA include the Extended Transition

State EDA (ETS-EDA) and the Kitaura-Morokuma EDA (KM-EDA). [136, 137]

Although the early energy decomposition schemes were aimed at understanding

noncovalent interactions, they have been modified and redeployed as a means to

gain insight into bonding interactions. [129] The ETS-EDA decomposes the energy

as

∆E = ∆EGEOM + ∆EEL + ∆EPAULI + ∆EORB, (6.33)

where ∆EGEOM is the energy change associated with the reorganisation of the nuclei

from the ground state to the arrangement in the molecular environment; that is,

precisely the same as the corresponding term in the ALMO-EDA. ∆EEL is the

coulombic repulsion between two fragments of a molecule. ∆EPAULI is the repulsive

interaction arising from the antisymmtrization of the wavefunction, and ∆EORB

is the stabilising energy associated with the mixing of the orbitals from different

fragments; this form of energy partitioning wherein all bonding interactions are

grouped into a single orbital interaction term is common. The ALMO-EDA is the

exception in providing further clarity.
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6.4 Summary

We have introduced in this chapter some popular orbital localisation schemes which

aim to provide qualitative insight into chemical bonding and reactions. We have

also introduced a number of EDA methods, the first of which is the one of Rue-

denberg et al. [125–128], in which the orbital space is divided into a number of

subspaces and a series of orbital optimisations are performed and an empirical

measure of covalency is obtained by scaling a set of “inter-quasi-atomic” kinetic

energy integrals. An energy of bonding is also calculated through some combi-

nation of interference terms. The number of quantities defined in this EDA is

large, and in order to obtain a bonding energy requires multiple calculations on

the system of interest.

The ALMO EDA was also covered in significant detail, and represents a large

number of other EDAs which are built upon a similar partitioning of the energy,

such as the KM-EDA and ETS-EDA. In the ALMO EDA, a series of constraints

placed upon a wavefunction are relaxed, and the energy differences attributed to

different quantitative effects, such as polarization, and charge transfer. This EDA

has received a lot of praise in the literature, and seems to provide the best results in

this particular class of EDAs. However, no single quantity points at how covalent

a bond might be, and the approach requires several calculations to be carried out

in order to obtain certain terms, such as the energy of the geometry adjusting to

nearby molecular fragments, as well as a series of relaxing constraints and is thus

quite computationally taxing.

A review of the work which isolated, for the first time, the physical effects which

give rise to chemical bonding has formed a large part of this chapter. We have

emphasised the differences in the roles of the kinetic and potential energies in the

formation of a chemical bonds in large and minimal basis sets, as these differences

form the central motivation of the new method introduced in the coming chapter,

which aims not to compete with the other EDAs presented in this thesis, but to

provide quantitative justification for curly arrow mechanisms in chemistry at little

computational expense. The new method aims to sacrifice the resolution of the

rigorous EDAs, and equip the computational chemist with a new tool to help form

conceptual pictures of chemical change over the course of a reaction.
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Chapter 7

Reaction Orbitals

Curly arrow mechanisms are ubiquitous in chemistry. One need only open any

modern organic text book and be presented with a myriad of different reactions

with different names, all with their own unique curly arrow reaction mechanism

to be convinced of this. [144] The original example and use is usually attributed

to Robinson in his study on resonance in a conjugated system. [145] Since their

inception, curly arrows have proven to be remarkably powerful and reliable tools

for predicting the outcome of chemical reactions, and are a cornerstone of every

chemistry student’s education. In general, they are used to describe the motions

of pairs of electrons over the course of a reaction; half-arrows are used, where

necessary, to describe the motions of single electrons. The tail of the arrow is

where they begin, and the head is where they end in that particular “step” of the

reaction. Their place centre-stage in organic chemistry has led to them becoming

a preoccupation of some theoretical chemists whose aim has been to place them

on a more formal footing. [146–155]

Vidossich and co-workers suggest the concentration of orbitals to their charge

centroids, and that the motions of the centroids be tracked and used to gather curly-

arrow information. [146] Knizia and Klein apply their IBO routine and use measures

of orbital change to inform them of those orbitals involved in the reaction and thus

connect curly arrows to the IBO representation of the wavefunction. [147, 154]

Weinhold and Glendening lean upon a modification to their NBO methods. [153]

Liu and co-workers discard the MO model and interpret the wavefunction in tiles

and draw conclusions from electron motion among and across those tiles. [151]
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Other existing methods rest upon topological features of the electron density. [148–

150]

In what ensues, we present a new method for drawing chemical bonding infor-

mation across a reaction co-ordinate, with the ultimate aim of providing quanti-

tative justification for the use of curly arrow mechanisms by connecting the ideas

discussed in the previous section on energy partitioning and orbital localisation.

7.1 Reaction Orbitals: A Framework

The use of curly arrows in chemistry, usually comes with little-to-no quantitative

justification. This is hardly a surprise. Their unrelenting success in describing

chemical transformation can understandably lead to some complacency and readi-

ness in their application. The reasoning associated with curly arrow mechanisms

is often classical in nature. One could therefore suggest that the current nature

of their application is one at odds with quantum mechanics, and inconsistent with

what we have known of the nature of covalent bonds since the work of Ruedenberg

in 1962. [92] If one were to write down some approximations and assumptions in a

bid to justify the use of curly arrows, they might be

1. Electron correlation effects are negligible; molecular orbital theory can be

applied.

2. Orthogonal, localised molecular orbitals can be found which correspond to

the familiar chemical picture of bonds and lone pairs.

3. The total energy can be written as a sum of orbital energies.

4. Most of the molecular orbitals do not need to be considered as their energy

contribution does not change over the reaction co-ordinate.

The neglect of correlation effects is common in large systems, and MO wavefunc-

tions are the most widely used approximation to exact wavefunctions in quantum

chemistry. The second item is almost always true, and one has at one’s disposal a

whole arsenal of orbital localization methods to choose from which are designed to

produce orbitals resembling bonds and lone pairs. The third item is formally true
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Figure 7.1: An example reaction mechanism (H3O+ is abbreviated to H+) and
orbital energies one may expect to see if the list of assumptions are all assumed
valid.

in the case of the HF approximation. If the fourth item were also true, one would

arrive at the familiar Walsh diagram picture of the reaction, and be able to plot

the orbital energies along a reaction co-ordinate and obtain something similar to

that shown in figure 7.1. That is, orbitals we shall refer to hereafter as “specta-

tor” orbitals do not change in energy at all, and those involved in the making and

breaking of bonds are responsible for the entirety of the energy changes over the

reaction co-ordinate. In this make-believe scenario, the connection of curly arrows

to the wavefunction is clear; as the orbitals spread themselves over more centres,

and the atomic orbitals overlap, they decrease in energy, and as orbitals reduce the

number of nuclei they’re spread over, they increase in energy (see the blue and red

lines in figure 7.1, respectively). The curly arrows are thus drawn in coincidence

with those experiencing the energy changes (those whose shape and/or location

changes significantly over the reaction).

In reality, it is easy to show item 4 is not true. The spectator orbitals experience

strong energy changes through changing coulomb interactions with the electrons

in all of the other orbitals, and with the nuclei. It transpires that these spectator

orbital changes are very significant, as illustrated by the orbital energy changes

shown in figure 7.2 for a simple reaction between a fluoride ion and hydrogen
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Figure 7.2: HF canonical orbital energy changes for the reaction F− + HF in the
aug-cc-pVQZ basis. The abscissa is the angle θ (degrees) and the H-F distances
are R1 = R cos(θ) and R2 = R sin(θ). A selection of bond lengths (in atomic units)
are indicated at points along the reaction co-ordinate.

fluoride. It is clear that drawing any conclusions about which orbital is which, and

which ones are involved in the bond forming and bond breaking processes from the

numbers alone is not straightforward. The reaction orbitals problem can thus be

summarized as follows: to define a physically meaningful quantity associated with

chemical bonding which, in contrast to the orbital eigenvalues, makes reasonable

item 4 in the list of assumptions and approximations.

As a solution to the reaction orbitals problem we propose that we first partition

the orbital energies into one-part classical and non-bonding effects, and one-part

interactions leading to covalent bonding. The magnitude of the latter interac-

tions will be refered to hereafter as ‘covalency’. Upon the extraction of covalency

from each orbital, we then propose uniquely optimised reaction orbitals be de-

termined through the minimisation of an appropriate functional, referencing the

newly-defined orbital covalency energies. This minimisation should be designed to

concentrate the changes in orbital covalency into as few orbitals as yields physically

reasonable results.
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7.2 A Minimal Basis Energy Decomposition Scheme

We wish to define tensorially a quantity, Vglobal, which contains for any given re-

stricted, closed-shell wavefunction all classical, electrostatic interactions and any

quantity not culpable for the formation of covalent bonds. That is, we wish to

acquire the ability to write the total energy for a system as,

E = Vglobal +
∑
i

Hii, (7.1)

where H is the “covalency matrix”. The effects described by the elements of H

depend upon the nature of the chosen basis set. In a minimal basis, orbital relax-

ation effects which drive bond formation are absent; there are too few Gaussians

to provide the requisite flexibility. As a consequence, the variational balance is

simply to have the kinetic energy decrease upon basis function overlap. This is

seen clearly in fig 6.4. Thus the quantities responsible for covalent bonding along

the reaction co-ordinate, given a set of optimum molecular orbitals are the kinetic

energy integrals in the AO basis1 in off-diagonal, inter-atomic elements.

An expression for the off-diagonal kinetic energy AO basis integrals in terms of

those not arising through the overlap of basis functions can be found by construct-

ing a matrix, t′ in a basis whose member functions, and their second derivatives,

are orthogonal. For a minimal basis containing two orbitals this is,

t′ =

t′11 0

0 t′22

 . (7.2)

The diagonal elements of this AO basis kinetic energy matrix remain constant

regardless of separation of two molecules or atoms, and the depression of the kinetic

energy seen in figure 6.4 is absent. Transforming t′ into a non-orthogonal basis

capable of accounting for covalency with the overlap matrix,

S =

1 s

s 1

 (7.3)

1The term “in the AO basis” shall be used frequently throughout this chapter to describe
integrals between basis functions.
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raised to the power of a half yields a new kinetic energy matrix whose diagonal

elements take a value dependent on the overlap of basis functions. This new matrix

is

t′′ = S
1
2 t′S

1
2 (7.4)

=

1
2
(t′11 + (f(s))(t′11 − t′22) + t′22) 1

2
(t′11 + t′22)s

1
2
(t′11 + t′22)s 1

2
(t′22 + (f(s))(t′22 − t′11) + t′11)

 , (7.5)

where f(s) = (1− s2)
1
2 . (7.6)

The corrections in the diagonal terms arising through overlap of different func-

tions come only from the inter-atomic coupling terms, and are dependent on f(s).

Assuming basis function 1 and 2 are centred on the same atom, the corrections

disappear as functions in minimal basis sets centred on the same atom are orthog-

onal by symmetry. In the case that orbitals 1 and 2 are centred on different atoms,

the corrections do not disappear, and we must consider their influence. They

contribute only what f(s) allows, and as bonding in the minimal basis is present

only through inter-atomic coupling across the kinetic energy operator, the energy

changes associated with bond formation, which come from the diagonal elements,

are characterized by the derivative of f(s),

df(s)

ds
= − s

(1− s2)
1
2

. (7.7)

Figure 7.3 shows how the term governing the changes in the diagonal elements in

equation 7.5 (f(s)) behaves, and its derivative with respect to overlap (equation

7.7). The results are those one should expect. For positive s, the gradient is neg-

ative, indicative of covalent bonding, and in the negative direction the gradient is

positive (anti-bonding interactions between the basis functions, where the destruc-

tive interference results in the electrons being more confined, and thus the kinetic

energy increasing). If we wish for the diagonal elements of t′ to contain no covalent

bonding effects, we must remove all terms dependent on s. Performing a Taylor

expansion on equation 7.6 provides some clarity as to how this should be done.
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Figure 7.3: f(s) (equation 7.6) and df(s)
ds

(equation 7.7) over the interval [−1, 1].

Assuming that s is small, and performing an expansion about zero one obtains

f(s) = 1− s2

2
− s4

8
− s6

16
+O(s8). (7.8)

Thus by simply setting f(s) = 1, we arrive at an expression for the kinetic en-

ergy integrals in a non-orthogonal AO basis set, the elements of which contain no

covalent terms and are given by

T̄µν =
1

2
(Tµµ + Tνν)Sµν , (7.9)

where Tµµ are the regular kinetic energy integrals between basis functions in a

non-orthogonal basis set, or some other approximation to the diagonal elements

expected as part of equation 7.2.

In reality, when one symmetrically orthogonalises the AO basis, the kinetic

energy matrix is not diagonal, as in the model case shown in equation 7.2. The

accuracy of this approach is reliant on a good choice of the elements t′µµ. Finding

an appropriate equation for calculating the values of the diagonals is not straight-

forward. One option is to simply use the diagonals of the kinetic energy matrix

in the non-orthogonal AO basis, and another is to set the inter-atomic elements of

the non-orthogonal AO basis overlap and kinetic energy matrix elements to zero

to form matrices S and T, respectively, then symmetrically orthogonalise T with
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S
1
2 , and transform back to the non-orthogonal basis by substituting Tεε for Tεε in

equation 7.9. One further option is to use the eigenvalues of T as the elements Tεε

in equation 7.9. At the time of writing, the solution to this problem remains to

be found, and is still under investigation. We shall proceed under the assumption

that the non-orthogonal AO basis diagonal elements of the kinetic energy matrix

are reasonable approximations to t′ in equation 7.9.

The nuclear part of the long range interaction energy between two molecules is

controlled by the one electron potential. This is manifest in the form of the one

electron potential energy operator, but let us briefly show this using an illustrative

model. Say we have a pair of AOs, φ1 and φ2 are centred on two positive charges

at positions −r and 0, respectively, which are in the field of a negative point charge

at R, such that R� r in a linear system. A graphical representation of the system

is shown below.
+1•
−r
− +1•

0
· · · · · · · · · · · · · · · −1•

R
(7.10)

The total wavefunction in this model is normalised, plays host to two electrons and

is written as a linear combination of the undefined atom-centred AOs,

Ψ = c1φ1 + c2φ2. (7.11)

Given the presence of only two atomic orbitals one can write the coefficients in the

expansion above as,

c1 = sin(θ), (7.12)

c2 = cos(θ), (7.13)

and naturally obtain c2
1 + c2

2 = 1. The interactions of the point charges (let us say

the positive point charges on the left are two hydrogen nuclei, and the negative

charge is a negative ion far away, and can be treated as a negative point) gives

rise to the nuclear energy, and the energy of the nuclei interacting with the distant
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point charge,

Vnuc = −R−1 − (r +R)−1 + r−1, (7.14)

≈ r−1 − (2R−1 + rR−2 +O(R−3)), (7.15)

which are grouped into one term for brevity. The nuclear energy thus changes

approximately according to R−1 and must be appropriately controlled by a term

in the electronic potential energy to recover the R−2 expected from a pure charge-

dipole interaction. The one-electron potential energy integrals in the AO basis

arising through interaction with the distant point charge are,

Ve =

∫
dre φ∗|R + re|−1φ, (7.16)

=

∫
dre φ∗

∣∣∣R−1
(

1− re
R

)∣∣∣−1

φ, (7.17)

≈
∫
dre φ∗

(
R−1 +R−2re +O(R−3)

)
φ, (7.18)

which in matrix form evaluate to

VAO
e = R−1S +R−2

 0 −1
2
sr

−1
2
sr −r

 . (7.19)

The sum of the one-electron potential and nuclear asymptotic energies in the molec-

ular orbital basis is given by,

2V MO
e + Vnuc =

(
rR−2

2(1− s2)
1
2

)
cos(2θ) + r−1. (7.20)

Thus the nuclear term is controlled by the one-electron potential alone, and the

correct R−2 dependence is recovered. The charge-dipole interaction is given by

µR−2. The dipole for this system is µ = r cos(2θ). The pure charge-dipole term

can clearly be seen in equation 7.20. The r−1 term naturally arises as part of

the energy, is constant, and unimportant in our current discussion of long-range

interactions and can thus be ignored.

In a minimal basis, then, where the kinetic energy is the driver of covalent bond

formation, we now have an expression for Vglobal which contains no covalent effects
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arising from the kinetic energy integrals,

Vglobal =
∑
i

(C†(T̄ + V + g[D])C)ii, (7.21)

where g[D] is the two electron part of the HF energy calculated from the density

D arising from the outer products of the optimum orbitals C. Given the design of

Vglobal, and the quantities we wish for it to contain, we may reasonably place the

demand upon it that it have the same dependence upon intermolecular separation

as the total energy at long range. The modification of the kinetic energy integrals

also has the potential to influence this dependence through the induction energy.

The kinetic energy truncation shown in equation 7.9 is deduced from a simple

model with only one MO expressed as a sum of two atomic orbitals. Thus there

are no intra-atomic kinetic energy integrals present. This raises the question of

whether the AO integrals between atomic centres ought to be truncated, and those

AO integrals which are intra-atomic be left untouched, or whether all AO basis

kinetic energy integrals need to be treated in the same way if we are to ensure the

induction energy remain a part of Vglobal, and does not pollute our covalency matrix.

Allowing this pollution of the covalency energy would yield a Vglobal which does not

behave appropriately at large inter-molecular separation. An answer can be found

by investigating how the AO basis integrals influence the total kinetic energy in the

molecular orbital basis. In order to do this, let us define a decomposition of the AO

basis kinetic energy integrals into diagonal, inter- and intra-atomic components,

T inter
µν =

Tµν , if ν /∈ A

0, otherwise,

(7.22)

T diag
µν =

Tµν , if µ = ν

0, otherwise,

(7.23)

T intra
µν = Tµν − T inter

µν − T diag
µν , (7.24)

where Tµν is the kinetic energy integral between basis functions µ and ν and A is

the set of basis functions centred at the same position as µ. The full kinetic energy

126



matrix in the AO basis can thus be reconstructed as a sum of the above,

T = Tdiag + Tinter + Tintra. (7.25)

The quantities in equation 7.25 will be referred to as the exact diagonal, inter-

and intra-atomic kinetic energy integrals in the AO basis. The matrix defined by

equation 7.9 can be decomposed similarly, into

T̄ inter
µν =

T̄µν , if ν ∈ A,

0, otherwise,

(7.26)

T̄ diag
µν =

T̄µν , if µ = ν,

0, otherwise,

(7.27)

T̄ intra
µν = T̄µν − T̄ inter

µν − T̄ diag
µν . (7.28)

These components can then be summed together to give the “scheme 1” kinetic

energy in the AO basis. It is constructed of a full set of truncated AO basis

integrals, with only the diagonal elements remaining unchanged. A final kinetic

energy matrix,

T ′µν = T̄ inter
µν + T diag

µν + T intra
µν , (7.29)

is defined and referred to as the kinetic energy in the AO basis under “scheme 2”.

This is the kinetic energy matrix one obtains by truncating the AO basis integrals

according to 7.9 only if basis functions with index µ and ν are centred on different

atoms. The energy (or property) associated with the AO basis integrals in the MO

basis can be calculated by substituting the appropriate matrix in place of X in

EX =
∑
i

(C†XC)ii, (7.30)

where the matrix X is any matrix of AO basis integrals.

Figure 7.4 shows the energy associated with the intra-atomic, diagonal, inter-

atomic, and full kinetic energy integrals, in their exact form and under schemes

1 and 2, as a function of R over the interval [30, 40] Bohr radii, where R is the
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distance between the H in HF and an F− ion in the constrained linear system,

F− · · · · · · R· · · · · · · · ·H− F. (7.31)

The change in the exact, inter-atomic kinetic energy integrals (solid blue line) is

small, given the nuclear separations but still noticeable. It is also the only contri-

bution to the total kinetic energy which decreases as R decreases. The exact intra-

atomic contributions to the total kinetic energy increase sharply as R decreases.

The contributions dependent on the diagonal integrals increase most steeply of all,

but take values which are consistent across all schemes. The solid grey line is the

total kinetic energy in the MO basis, and is the sum of the solid coloured lines.

The increase in the kinetic energy at these large distances is due to the kinetic con-

tribution to the induction energy, where the overlap between the basis functions on

the ion and those in the molecule is basically zero, but the electrostatically induced

dipole in the molecular orbitals on the molecule yields an overall increase in the

kinetic energy of the system. The desired outcome of the truncation scheme is

thus that the total truncated kinetic energy will change at the same rate as the ex-

act MO basis total kinetic energy, but without any covalent interactions included,

thereby incorporating the induction energy into Vglobal. The dashed lines are those

obtained under scheme 1; all kinetic energy integrals are treated the same way, and

truncated according to equation 7.9. The scheme 1 intra-atomic contributions once

transformed into the MO basis do not change with the nuclear separation; they’re

dependent on the overlap of orthogonal functions and manifestly zero. Rather, the

change is forced in its entirety into the inter-atomic contributions which increase as

R decreases. The sums of the coloured dashed lines, and the green solid line is the

total kinetic energy under scheme 1 (black dashed line), and agrees with the change

in the exact MO basis total kinetic energy almost perfectly. Under scheme 1, then,

the R−dependence must be retained. Under scheme 2, the total, truncated kinetic

energy in the MO basis is shown by the dotted black line, which shows a significant

deviation from the exact total kinetic energy in the MO basis. The R−dependence

is thus destroyed if this scheme is used; the total kinetic energy under scheme 2

(black dotted line) is given by the sum of the solid green, dotted blue and solid red

lines. In summary, truncating all kinetic energy integrals yields a kinetic energy
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Figure 7.4: The contributions of various kinetic energy matrices to the MO basis
kinetic energy. Solid lines are various contributions to the atomic orbital basis
kinetic energy integrals transformed into the MO basis. The dashed lines corre-
spond to those contributions defined in equations 7.26, 7.28 and 7.9 in order of
appearance in the legend. The dotted line corresponds to the equation 7.29. The
scheme(s) each quantity is part of is indicated in brackets in the legend.

matrix whose intra- and inter-atomic terms cancel appropriately, and intra-atomic

kinetic energy contributions to the MO basis kinetic energy do not change along

the reaction co-ordinate. Truncating the inter-atomic kinetic energy integrals alone

leads to a kinetic energy matrix whose inter- and intra-atomic contributions to the

total MO basis kinetic energy do not cancel sufficiently and the R−dependence is

ruined.

Figure 7.5 shows the total HF energy in the MINAO basis, along with Vglobal

and the pure dipole-charge interaction µR−2 for the same example. Vglobal is cal-

culated according to equation 7.21, and the kinetic energy integrals are truncated

under scheme 1. It is clear to see that the R-dependence is retained, and the change

in Vglobal with reaction co-ordinate agrees well with the change in the total energy.

Both Vglobal and the RHF energy agree nicely with the pure dipole-charge interac-

tion, which is a reasonable approximation for the energy change of this system at

such large ion-molecule separation. It is assumed hereafter that any reference to

the truncation of the kinetic energy integrals concerns scheme 1. The difference

between Vglobal and the RHF energy at each point in figure 7.5 is, according to

equation 7.1, the change in the covalency energy of the system.
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Figure 7.5: The RHF energy, Vglobal (computed using scheme 1 kinetic energy
matrix) and dipole-charge interaction for the constrained linear F− ion interacting
with a hydrogen fluoride molecule as a function of the F−-H distance, R.

We have now derived an energy decomposition scheme for minimal basis wave-

functions, which in principle should provide us with an energy associated with each

orbital which is constant for the “spectator” orbitals as discussed in section 7.1,

and changes strongly only for those involved in bond breaking or bond forming pro-

cesses. Thus we have made reasonable the list of necessary assumptions presented

in section 7.1 for the use of curly arrows and frontier orbitals. We shall persist with

the same example as shown in equation 7.31, and first inspect the behaviour of

Vglobal and the covalency energy as the trace of their respective matrices, and then

on an orbital-by-orbital basis. The charge-dipole interaction between the distant

F− ion and the dipolar HF molecule is attractive, and thus when decreasing R one

approaches a minimum in the energy at the point where R = r, and by symmetry

any further decrease in R leads to an r > R and produces a mirror image of the

energy surface already explored. Figure 7.6 shows how the overlap integral be-

tween the atomic basis hydrogen 1s and both atomic basis 2pz orbitals changes as

R is decreased, and indicates that any change in the covalency energy of orbitals

describing bonding between the H and F− where R > 9 must be erroneous. One

should expect, then, that Vglobal keep the same R-dependence as the total energy

until R is somewhere in the region of 8 to 4 Bohr radii before deviating, and the

covalency should remain approximately constant until the same R by construction.
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Figure 7.6: The modulus of the overlap integral between the atomic basis 1s func-
tion centred on the hydrogen in HF and the atomic basis 2pz function centred
on the incoming fluoride ion at distance R (solid line), and the same basis func-
tion centred on the F atom in the HF molecule (dashed line) and as a function of
ion-molecule separation.

Figure 7.7 shows Vglobal and the total RHF and covalency energies of the system

over the reaction co-ordinate. It is immediately clear that Vglobal shows the same

R-dependence at long range as the total energy, and that the total covalency en-

ergy of the system remains constant until approximately 3.5Å separation. This is

in line with what one should expect given the overlaps shown in figure 7.6.

While one would normally use localised orbitals for drawing conclusions about

chemical change along a reaction co-ordinate in order to minimise the number

of molecular orbitals changing strongly in shape, canonical orbitals provide a deep

link with molecular orbital diagrams used in organic and inorganic chemistry. This

link is especially strong when MOs are expressed in a minimal basis where the

experimental chemists “symmetry adapted linear combinations” (SALCs) of atomic

orbitals really are the molecular orbitals yielded by the RHF procedure, and not

complicated combinations of large numbers of valence orbitals. We first perform

the energy decomposition using canonical orbitals and later consider the use of

localised orbitals. The linear combinations of atomic orbitals one expects from

classical MO theory are those shown in figure 7.8. That is, that covalent bonding

arises through σ bonding interactions between 1s functions on each fluorine atom,
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Figure 7.7: Vglobal (dashed line), total RHF (solid line) and covalency energy (dotted
line) along the reaction co-ordinate for F−+HF defined by the angle θ where the
HF bond distances are R = λ cos(θ) r = λ sin(θ), where λ is optimised at each
θ. R (Å) is shown at all points along the line for the covalency energy except the
asymptotic point at R = 48.3 Å(θ = 2◦).

2s functions on each fluorine atom, and the combination of the 1s on the hydrogen

and the two pz orbitals on the fluorine atoms. There is further splitting through

π interactions between the px and py functions on each fluorine. The energy levels

are then filled appropriately with 20 electrons to account for the charge on the

molecule. The unoccupied orbital σ∗3 is the combination of the phase-flipped 1s

on the hydrogen with the Ag orbital. Of course, in the mission to deduce curly

arrow mechanisms, this is not ideal. It is more desirable to have covalency energy

changes in a smaller number of orbitals. It is, however, beneficial to consider

first an example for which we have an expected outcome and can therefore gauge

the success of the energy partitioning without the question of how using localised

orbitals will impact the picture by reducing the number of orbitals changing in

energy. The use of canonical orbitals avoids the difficult problem of assessing

whether any spurious results arise through a deficiency in the energy partitioning

or as artefacts of the chosen localisation procedure.

Here it is worth stressing the physical interpretation of equation 7.1. That is,

positive changes in the covalency energy are manifestly anti-bonding quantities,

whereas decreases in the orbital covalency energy are bonding quantities; positive
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Figure 7.8: Molecular orbital diagram for [FHF]−. The symmetry labels are
dropped in the molecular orbitals for better agreement with the scan of the re-
action co-ordinate, in which the symmetry changes.

changes increase the energy of the system and negative changes decrease the energy

of the system, with the difference being made up by Vglobal. Figure 7.9 shows

the changes in orbital covalency for the RHF canonical orbitals in the MINAO

basis. The changes in covalency are consistent with what is expected from the MO

diagram; the σ1 and σ∗1 orbitals experience hardly any change in covalency over

the reaction co-ordinate, with the out-of-phase combination showing a very small

increase in the covalency energy and the in-phase combination showing a small

decrease, these changes cancel in the trace. The σ2 orbital shows a decrease in

covalency energy and is thus bonding as expected. The σ∗2 contribution requires

additional explanation, and will be discussed shortly. The MO arising from the

in-phase combination of the two 2pz orbitals shows a negative change in covalency

energy. The anti-bonding complement σ∗3 is a virtual orbital and thus not shown.

The π orbital contributions cancel appropriately, and the respective bonding and

anti-bonding properties are recovered; in-phase combination shows a decrease in

the covalency energy whereas the out-of-phase, anti-bonding combination of the

AOs shows an increase. The orbitals obtained from a calculation at the ground

state geometry (θ = 45◦ in figures 7.7 and 7.9), except the σ1 and σ∗1 orbitals, can

be seen in figure 7.10.

The σ∗2 orbital, while anti-bonding at the ground state of the system, is seem-
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Figure 7.9: Orbital covalencies of the canonical RHF orbitals in the MINAO. The
labels correspond to those orbitals shown in figure 7.8.

(a) σ2 (b) σ∗2

(c) σ3 (d) π

(e) π∗ (f) σa

Figure 7.10: The canonical orbitals arising from a HF calculation on [FHF]− at the
ground state. The labels coincide with those shown in the MO diagram in figure
7.8.

ingly a bonding orbital at increased ion-molecule separation (in truth, it is not

an antibonding orbital at smaller θ, it is an MO which very closely resembles the

atomic 2s function). An explanation for this is found by inspecting figure 7.11,

which shows the form of the so-called σ∗2 orbital at θ = 40◦ in figure 7.9, that is, at
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(a) σ2, θ = 40◦ (b) σ∗2, θ = 40◦

Figure 7.11: The σ2 and σ∗2 canonical orbitals arising from a HF calculation on
[FHF]− at the ground state at θ = 40◦ on the reaction co-ordinate in figure 7.7.
The labels coincide with those shown in the MO diagram in figure 7.8.

the value of θ that the covalency energy associated with the “σ∗2” approaches the

point at which it becomes anti-bonding. The σ2 orbital is also shown, and provides

clarity to the fact that the σ∗2 orbital becomes anti-bonding as a consequence of the

orthonormality constraint; also visible is the distortion of the 2s function on the

approaching fluoride ion in the σ∗2 as the s function on the hydrogen has become

available, and the out-of-phase contribution from the other 2s orbital maintaining

the orthogonality of the σ∗2 MO with the σ2 MO. Thus, the bonding behaviour

shown in the covalency energy arising from the “σ∗2” orbital is due to the distor-

tion of the 2s upon the approach of the ion over distances where the orthogonality

constraint does not require large contributions from the other 2s orbital.

The results suggest, then, that the minimum in this complex is found through

predominantly electrostatic and classical effects, and in fact, the covalent interac-

tion is destabilising once all orbital covalencies are taken into account.

At the beginning of this chapter, we set out with the intention of connecting

curly arrows and frontier orbitals to ab initio wavefunctions. While we have man-

aged to extract parts of the Fock eigenvalues associated with covalent bonding,

the picture is more complex than one which might allow us to draw the two curly

arrows an organic chemist might anticipate from this reaction co-ordinate. Usu-

ally, the computational chemist turns to localised orbitals in order to minimise the

change in the shapes of those orbitals not involved in a chemical transformation

and to generate orbitals which resemble frontier orbitals, and are more conceptu-

ally appealing. An attractive feature of the tensorial definition of Vglobal is that

the transformation of the molecular orbitals on which it depends is usually per-

formed by orbital rotations after a variational calculation. These rotations leave

the trace of any symmetric matrix unchanged, and thus the total Vglobal, and total
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(a) 2s (b) 2s′

(c) sp (d) sp′

(e) 2p (f) 2p′

Figure 7.12: The Pipek-Mezey orbitals arising from a HF calculation on [FHF]−

in its ground state geometry. The labels are chosen according to their appearance
and evident hybridisation. A prime denotes orbitals centred on the approaching
fluoride ion in a scan of the reaction co-ordinate.

covalency is invariant to localisation, as long as it is performed by applying uni-

tary transformations to the orbital coefficient matrix. The orbital contributions

to the total covalency and total Vglobal will of course change upon mixing through

rotation. Localising our set of molecular orbitals, then, one should expect to see

a dampening of the orbital covalency energy changes in the spectator orbitals, as

their shape changes are less significant over the course of the reaction. Figure 7.12

shows a selection of the Pipek-Mezey orbitals generated from a HF calculation at

the equilibrium geometry. They clearly coincide well with the orbitals one expects

to see from frontier orbital theory.

The covalency energies associated with the PM orbitals are shown in figure 7.13.

The orbital covalencies of the spectator orbitals are almost constant over the whole

reaction co-ordinate, with the exception of 2s′ which requires further discussion.

The orbitals which change in covalency energy strongly are those one might expect.

The sp and sp′ orbitals change most strongly, and are those involved in the bond

making and bond breaking. The decrease in the orbital covalency of the sp′ orbital

comes through the expansion over the H atom as R is decreased. The increase
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Figure 7.13: Orbital covalencies of the PM orbitals generated from a RHF wave-
function in the MINAO basis. The labels correspond to those orbitals shown in
figure 7.8.

in orbital covalency seen in the sp orbital is an antibonding effect which arises as

the orbital is forced to contract upon the approach of the sp′ orbital. The core 1s

orbitals are not localised and correspond to the σ1 and σ∗1 orbitals of the canonical

investigation. This is because enforcing the localisation of the full occupied orbital

space leads to large and unphysical changes in the covalency energies of the core

orbitals. The reason for this in a minimal basis is unclear, and the topic of further

investigation, a likely cause is the small expansions and contractions of the core

orbitals which do not cancel as they do in the canonical case, where there are

contributions from two 1s orbitals with opposing behaviour; where one contracts

the other necessarily expands.

The kink in the orbital covalency for the 2s′ orbital in figure 7.13 is an artefact

of the localisation procedure. The sp-hybridisation changes from being weakly sp3

to the expected 2s orbital and thus there is a rapid change in shape, which is

shown in the covalency energy. This is demonstrated in figure 7.14. Promisingly,

for all θ > 15◦, and all θ < 10◦ the covalency remains constant. In a later section

we shall explore an extension to this analysis which ensures this does not happen,

regardless of the localisation procedure.
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(a) 2s′, θ = 10◦ (b) 2s′, θ = 15◦

Figure 7.14: The 2s′ Pipek-Mezey orbital arising from a HF calculation on [FHF]−

on the reaction co-ordinate in figure 7.7.

7.3 Generalisation to Large Basis Sets

The properties of the minimal basis wavefunction which make the analysis in the

previous section possible are not present in large basis sets containing polarisation

functions. The processes which lead to covalent bond formation are more delicately

balanced, as discussed earlier in this chapter, and demonstrated in figure 6.3. That

is, as orbitals overlap and bonds are formed, the kinetic energy decreases initially

as the electrons delocalise in the bonding direction. A critial point is reached in the

interaction where the potential energy, which was increasing, begins to decrease

as the kinetic energy pressure decreases; once the electrons are delocalised and

the kinetic energy decreases, the potential energy begins to decrease against the

reduced resistance of the kinetic energy. This decrease drives orbital contraction, or

orbital polarisation, which is not present in a minimal basis description as it lacks

the appropriate functions. The kinetic energy then begins to increase, hostage to

the virial theorem.

Thus, the generalisation of the procedure outlined in section 7.2 to large ba-

sis sets cannot be a direct translation; the variational flexibility of a larger basis

wavefunction ensures we cannot simply apply the same recipes and expect to re-

move the covalency while calculating Vglobal. At least, not without also trying to

derive equations for the truncation of the one- and two-electron potentials, and the

former is left in its exact form in the previous section to control the nuclear repul-

sion. Thus, any truncation of off-diagonal elements runs the risk of breaking the

long range R-dependence of Vglobal. Although the difference in the effects driving

bonding between minimal and large bases complicates the picture somewhat, it

also provides us with the means to generalise the results of the previous section in

an indirect way. If we are able to remove covalent effects in a minimal basis, and if

that basis contains too few functions to describe the orbital relaxation responsible
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for the potential energy lowering seen in large basis wavefunctions, any minimal

basis representation of a large basis wavefunction which accurately describes the

long range electrostatic and non-covalent interactions can simply have its associ-

ated Vglobal matrix projected into the large basis and subtracted from the large

basis Fock matrix to yield a covalency matrix for a more accurate wavefunction.

The diagonals of this covalency matrix will thus contain the covalent effects of the

large basis associated with kinetic energy depression, and orbital relaxation.

In the following we make use of two basis sets; a large, primary basis set, B1,

and a minimal basis set, B2, such that B2 ⊂ B1. We shall be deducing formulae

for moving between bases, and while there will always be information lost in the

transformation from the primary to the minimal basis set, we are able to eliminate

all of the error associated with the transformation from the minimal to primary

basis set by imposing the requirement that B2 be a subset of B1. This requirement

is not essential to the method, but is the only sensible way here to choose a minimal

basis. The data lost in the transformation to the minimal basis are the finer details

of large basis orbitals arising primarily through relaxation. Also not reproducible

in a minimal basis are the kinetic energy integrals between functions which are not

orthogonal over larger ranges than they might be in a minimal basis, as a result

of the inclusion of diffuse functions in the large basis set. Again, these are not

bonding effects we wish to be able to reproduce and thus pose no concern. An

unavoidable issue in this approach is that the minimal basis representation of the

wavefunction will never be able to capture all of the electrostatic, non-bonding

effects present in the large basis. This will lead to some contamination of the

orbital covalency energies with quantities we would rather have placed in Vglobal.

However, it is hoped that the contamination over long range will be close to zero,

and over short range only make up a small percentage of the orbital covalency

energies.

Many of the equations used in chapter 4, inspired by those in Knizia’s IBO

procedure will be repeatedly used again here. [76] For clarity of communication

these equations will be presented again here, as if for the first time. Let us define
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two projection operators,

P = |χα〉
(
S−1
)
αβ
〈χβ| , (7.32)

P̄ = |χ̄µ〉
(
S̄−1
)
µν
〈χ̄ν | , (7.33)

where we have introduced a notation we shall lean upon heavily for the remainder

of this section; an overbar denotes a quantity defined in, or member function of the

minimal basis, B2. The symbol χ is used for atomic basis functions. Any quantity

or basis function presented which does not have an overbar is defined in B1. We

shall also refer to functions in B2 with indices µ, ν and ε and ξ, and functions in

B1 with indices α, β, γ and δ. A set of molecular orbitals {ψi} defined in B1 by a

linear combination,

|ψi〉 =
∑
α

χαCαi, (7.34)

can be projected onto the minimal basis by applying the projection operator defined

in equation 7.33 to yield a new set of molecular orbitals, {ψ̄′i}. That is,

|ψ̄i
′〉 = P̄ |χα〉Cαi (7.35)

= |χ̄µ〉
(
S̄−1
)
µν

∆ναCαi, (7.36)

= |χ̄µ〉 C̄ ′µi, (7.37)

where

∆µα = 〈χ̄µ|χα〉 , (7.38)

C̄′ = S̄−1∆C. (7.39)

The Einstein summation convention has been used in the above, and will be used

throughout this section. The orbitals {ψ̄′i} will not necessarily be mutually orthog-

onal, but can be symmetrically orthogonalised to form a new set of minimal basis

molecular orbitals {ψ̄i} with coefficients,

C = C̄′Λ̄−
1
2 , (7.40)

140



where

Λ̄ij = 〈ψ̄i|ψ̄j〉 , (7.41)

Λ̄ = C̄′
†
S̄−1C̄′. (7.42)

These orbitals then represent a starting point which one can perform some unitary

transformations according to criteria in order to generate a set of minimal basis

orbitals which represent the large basis, long-range electrostatic effects faithfully.

As we discussed at length in chapter 4, a variationally optimised minimal basis

wavefunction does not produce accurate electrostatics and therefore is not an op-

tion for generating optimal C̄. Moreover, it is preferable to find orbitals in the

minimal basis through some reference to the large basis orbitals, such that Vglobal

is sensitive to the choice of the large basis set. A suitable procedure for this was

laid out in detail in section 5.1 in determining the reduced orbitals of ROPA.

Having optimised the minimal basis MO coefficients to yield, say, reduced or-

bitals, one can exactly reproduce them in B1 (if B2 ⊂ B1) as the set of molecular

orbitals, {φi}, by projection onto B1,

|φi〉 = P |ψ̄i〉 , (7.43)

= |χα〉
(
S−1
)
αβ

(
∆†
)
βµ
C̄µi, (7.44)

= |ψα〉 C̃αi, (7.45)

where

C̃ = S−1∆†C̄ (7.46)

and C̃ is the matrix of optimal minimal basis molecular orbital coefficients ex-

pressed in the large basis. The B1 representation of the orthonormal B2 molecular

orbitals will naturally require no orthogonalisation. The B2 atomic orbital integrals

can similarly be exactly transformed into B1 by

IB1
αβ = (∆†)αµ(S̄−1)µνI

B2
νε (S̄−1)εξ∆ξβ. (7.47)
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The B1 integrals can similarly be transformed, and reduced, into B2 by

IB2
µν = ∆µα(S−1)αβI

B1
βγ (S̄−1)γδ(∆

†)δν . (7.48)

where I is any integral across basis functions in the basis indicated in the super-

script, and by the subscript notation outlined previously. The total Vglobal for the

system expressed in B1 is then defined as the trace of the matrix,

Vglobal =
∑
i

(
C̃†∆†S̄−1(T̄trunc + V̄ + g[D̄])S̄−1∆C̃

)
ii
, (7.49)

where Ttrunc is the kinetic energy matrix in B2 truncated according to the scheme

1, V̄ is the minimal basis one-electron potential energy matrix, and g[D̄] is the

matrix of two-electron integrals in the minimal basis calculated with the density

arising from the optimal C̄, which in this thesis will always be chosen as the set

of reduced orbitals given by the procedure in section 5.1. The individual terms in

the sum in equation 7.49 are the Vglobal associated with each orbital, i. The total

covalency energy is the trace of the covalency matrix, the elements of which are

given by,

Hij = Fij − V global
ij , (7.50)

where F is the B1 Fock matrix in the MO basis.

As a basis for comparison, and to gauge the success of the generalised approach,

we shall perform the same analysis on the same system as in the previous section,

first using canonical orbitals, and then using localised orbitals. It is worth men-

tioning the scheme presented in this section that if the choice of orbitals changes,

the value of Vglobal will also change. For instance, if reduced orbitals are used, they

will change depending on whether the reference set of orbitals in the large basis

are localised or not, and so will the associated Vglobal. Let us add to the MINAO

basis those s- and p-functions not already contained within MINAO but are a part

of the cc-pVTZ basis set to the fluorine atoms, and the additional s-functions to

the hydrogen. That is, define B1 as the subset of cc-pVTZ s- and p-functions for

atoms which are not hydrogen, and the subset of cc-pVTZ s-functions for hydrogen

atoms, roughly tripling the dimension of the basis. This subset of cc-pVTZ will be
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Figure 7.15: Total (solid line), covalency (dotted line) and global potential (dashed
line) energies calculated using MINAO reduced orbitals, with canonical reference
orbitals in the cc-pVTZ(p/s) basis, over the reaction co-ordinate for [FHF]− for-
mation as a function of the angle θ. The HF bond distances are R = λ cos(θ)
r = λ sin(θ), where λ is optimised at each θ.

denoted cc-pVTZ(p/s) hereafter. The associated total Vglobal, energy and covalency

energy, calculated with reduced orbitals which are generated by reference to cc-

pVTZ(p/s) canonical Fock orbitals, are shown in figure 7.15 which shows that the

global potential, when calculated in this way, faithfully reproduces the long-range

energy change arising primarily through electrostatic interactions. The changes in

total covalency, and total global potential are more severe than seen in the minimal

basis example in the previous section. While there is bound to be some pollution

of the covalency energy with non-covalent effects, this is not necessarily the source

of the increased deviation. Inspection of the energy changes accompanying bond

formation in H+
2 shown in figure 6.3, reveals much stronger changes in the energy

constituents than in a minimal basis as the virial ratio is restored. This behaviour

is reflected in the global potential and covalency energies. Qualitatively this is

perhaps expected; the more diffuse functions overlap to a larger extent, and the

orthogonality constraint has more of an impact on the shapes of the orbitals. The

attractive interaction described by Vglobal is also of larger magnitude, and again,

may be qualitatively anticipated as the inclusion of polarisation functions allow

greater flexibility in the description of the multipole moments.
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Before partitioning the total covalency energy into orbital contributions, it is

beneficial to consider how one expects this picture to differ from the one obtained

for a minimal basis wavefunction. We know from the work of Ruedenberg, Bacskay

et al. that intra-atomic orbital contraction plays a central role in the formation of a

chemical bond, in that it restores the virial ratio by driving up the intra-atomic ki-

netic energy and driving down the intra-atomic potential energy. [91,95,114] More

specifically, these authors have shown the contraction occurs perpendicular to the

bond direction and in intra-atomic orbitals, with bond parallel components not

showing contraction to the same degree. One might therefore expect the covalency

energies of the bond-parallel orbitals, σ2, σ3 and σ∗a to have similar behaviour to

those in the minimal basis picture as orbital contraction will play only a minor role,

and the “intra-atomic” and bond-perpendicular orbitals, σ1, σ∗1, σ∗2, π and π∗ to

deviate significantly from the minimal basis example as orbital contraction plays a

major role in a large basis wavefunction and is absent in a minimal basis wavefunc-

tion. One can see in figure 7.16 that this is precisely the case; there is a decrease in

the π contributions, both bonding and antibonding likely arising through orbital

contraction and thus decreased overlap, and a significant increase in magnitude

of the orbital covalency changes in the σ1 and σ∗1 orbitals through contraction as

the overall covalency in the system increases. The bond-parallel components show

little difference from those discussed in the minimal basis covalency energies.

Applying this procedure once one has localised the orbitals is not straight-

forward. The recipe remains the same, but increasing the dimension of the basis

set introduces significant risk in the use of PM orbitals for instance, that many

artefacts such as the one seen in the minimal basis example in figure 7.12 will arise.

The use of Mulliken population analysis further increases the likelihood of spurious

localised orbitals. To this end, we use Boys’ localisation procedure which makes

direct reference to the spatial extent of each orbital. [121] It is important to note

that while this adds a layer of robustness to the procedure, it does not guarantee

the localised orbitals will change smoothly over the reaction co-ordinate. Figure

7.17 shows the total changes in the total, global potential, and covalency energies

in the cc-pVTZ(p/s) basis over the reaction co-ordinate. The long range behaviour

is well reproduced under the formulation presented in this section, and the energy
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Figure 7.16: Orbital covalencies of the canonical RHF orbitals in the cc-pVTZ(p/s)
basis. The labels correspond to those orbitals shown in figure 7.8.

breakdown closely resembles that seen in the minimal basis. The associated orbital

covalencies are shown in figure 7.18. The nonbonding sp3 orbitals show little change

in covalency over the reaction co-ordinate, with the majority of the change being

seen in the core σ1 and σ∗1 orbitals and the bonding sp3 orbitals. It is difficult to

assess the extent to which this generalisation to a large basis has been successful.

The behaviour of the core orbitals, while not unexpected, perhaps exhibits larger

changes than might expect. How this approach can be effectively generalised to

large basis sets remains an open question and part of future research plans.
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Figure 7.17: Total (solid line), covalency (dotted line) and global potential (dashed
line) energies calculated using MINAO reduced orbitals, with Boys localised refer-
ence orbitals in the cc-pVTZ(p/s) basis, over the reaction co-ordinate for [FHF]−

formation as a function of the angle θ. The HF bond distances are R = λ cos(θ)
r = λ sin(θ), where λ is optimised at each θ.
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Figure 7.18: Orbital covalencies of the Boys localised RHF orbitals in the cc-
pVTZ(p/s) basis. The core orbitals are not localised, and the valence orbitals are
sp3 hybridised as a result of the localisation. A prime indicates an orbital centred
on the approaching F− ion, and (b) and (nb) indicate an sp3 orbital pointing along,
or away from the bond, respectively.
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7.4 Reaction Orbitals: Optimisation

In the previous sections in this chapter a new approach for decomposing the en-

ergy into covalent parts and a part arising through electrostatic and non-covalent

interactions has been presented, and has been performed in some exploratory cal-

culations. It has also been demonstrated that some core localised orbitals such as

those obtained through Pipek-Mezey localisation fail to remain consistent enough

in shape over the course of a simple reaction to have their covalency energies remain

constant. In this section we explore some new approaches to orbital localisation

over a reaction co-ordinate, making use of the new measures of covalency. That is

not to say that we discard old fashioned, discrete methods of localisation at each

point in a reaction; rather, we rely on them but modify the orbitals they generate

at each point through reference to orbital covalencies at previous points.

The changes in the Pipek-Mezey orbital covalencies provide quantitative insight

into which orbitals are involved in the bond breaking and bond forming process

in the reaction between F− and HF. An unfortunate artefact of the localisation

process was seen as a core orbital changed suddenly in energy midway along the

reaction co-ordinate. To combat this, one approach is to choose those orbitals one

expects to change, and define them as the set of reaction orbitals (ROs), {φRO},

then to minimise through orbital rotations the sum

1F =
∑

i/∈{φRO}

(H
(0)
ii −H

(n)
ii )2, (7.51)

where H
(n)
ii is the covalency energy of the ith orbital at the nth step along the

reaction co-ordinate. One could also consider modifying the above functional by

weighting each term in the sum with some value which is proportional to the inverse

of its importance to the reaction. That is, modifying 1F to be,

2F =
∑
i

(H
(0)
ii −H

(n)
ii )2wi, (7.52)

where wi is the weight for orbital i. The weight for the frontier, or “reaction

orbitals” should be small (or zero, as in 1F ), so only a very small amount of pressure

is placed upon them to remain constant over the reaction, and very large for the
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spectator orbitals whose orbital covalency energy we wish to remain constant.

Finding suitable quantities for wi are part of ongoing investigation. In a recent

publication, Knizia and Klein use orbital contributions to atomic charges as a

measure of orbital change, which they define as

fi =

√√√√Natoms∑
A

(nA,i(n̄)− nA,i(n̄ = 0))2, (7.53)

where nA,i(n) is the contribution of orbital i to the atomic charge n of atom A at

the n̄th point on the reaction co-ordinate, which represents a potential alternative

for future investigation. [154]

Here we shall consider only the orbital covalencies, and orbitals, obtained by

finding the minimum of the functional defined in equation 7.51, and choose the

orbitals we expect to change by inspecting the orbitals by eye. In the future, it

is hoped that the detection of the appropriate orbitals can be done automatically,

and step-to-step, such that applications to wider problems, such as on-the-fly active

space detection are possible. If this cannot be done, an analysis of the covalency

after a full reaction co-ordinate scan presents a simpler problem for which one could

consider using the inverse of the area between the curve describing each orbital’s

covalency energy change and the x-axis as the weight, wi, in equation 7.52.

Let us again consider the same reaction between a fluoride ion and a hydrogen

fluoride molecule. With the present goal in mind, which is to reduce the number of

orbitals whose covalency energy changes to two orbitals, consistent with a frontier

orbital and curly arrow picture of the reaction, the Pipek-Mezey orbitals reflect a

better starting point. This is simply because the choice of orbitals associated with

bond breaking/forming is more clear, and more in line with the pictures chemists

generally think of as bonding orbitals than the Fock eigenfunctions. Let us begin by

optimising the functional shown in equation 7.51 at each point along the reaction

co-ordinate. The chosen basis is MINAO, and the initial orbitals are PM orbitals.

The unoptimised orbital energies are shown in figure 7.13, and showed a kink in

the 2s′ orbital energy as the hybridisation changed. Figure 7.19 shows that, as

a result of the orbital rotations, this kink is removed and, in fact, when rotated

together with the sp′ orbital, the change in both of them is delayed until larger θ;

148



0 10 20 30 40
 (deg)

0.2

0.1

0.0

0.1

0.2

0.3

0.4

E 
(H

a)

Figure 7.19: Orbital covalencies of the PM orbitals generated from a RHF wave-
function in the MINAO basis, which have then been optimised along the reaction
co-ordinate by minimisation of the functional in equation 7.51. The labels corre-
spond to those orbitals shown in figure 7.12, orbitals not in the reaction orbital set
are practically super imposed at E=0.

the rotations mix them appropriately until the change is completely cancelled in

both. The sp′ orbital covalency energy changes less severely over the reaction as a

consequence of the change which was erroneously attributed to the 2s′ orbital in

the original PM picture, which has an opposite sign to the original sp′ data, and

so flattens the curve. Likewise, the change in the sp orbital, once mixed with the

other orbitals is delayed. This is all acheived by choosing sp and sp′ as being the

orbitals making up the reaction orbital set {φRO} in equation 7.51. This allows the

spectator orbitals to rotate freely together and for any remaining covalency to be

localised into the reaction orbitals.

Given the symmetry of the molecule, any effective orbital optimisation should

yield covalency energies of the sp and sp′ orbitals which cross at the transition

state, and, in order to recover the barrier to the bond formation seen in the total

covalency energy in figure 7.7, should show an increase in the sp orbital covalency

which is larger than the decrease in the sp′ orbital. Figure 7.20 shows that this

is, in fact, the case. Thus the barrier to bond formation is approximately 0.2 Ha,

which is generally consistent with the bond energy one may expect from a single

bond. This provides further clarity to the nature of the reaction. There is indeed
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Figure 7.20: Orbital covalencies of the sp (purple) and sp′ (brown) orbitals shown
in figure 7.12 after optimisation using the functional in equation 7.51.

an energy barrier associated with forming a new covalent bond as the old one is

broken, as one should expect. However, the net decrease in the total energy arises

in this instance from the electrostatic attraction between the charge and the dipole,

and is strong enough to significantly overcome the bond forming/breaking process.

It should be noted that we are assuming that the single determinantal description

of this reaction is valid, which may not be true, and an extension of this method to

multi-determinantal methods forms part of future research plans for this project.

Having built a picture of this reaction in which the changes in covalency really

do only occur in two of the ten available orbitals, we have made true the list

of assumptions and approximations outlined in section 7.1 and are able to begin

thinking about how one might draw curly arrows from first principles for the first

time. The decreasing covalency energy of the sp′ orbital has a stabilising impact

on the total energy, and is thus favourable. The increase in the sp orbital covalency

is destabilising and is the source of the energy barrier to covalent bond formation

in this system, and were it not for the prevailing electrostatic attraction coupled

with the decrease in the covalency energy of the sp′ orbital, would prevent this

reaction from being barrierless. In the context of “pushing” curly arrows, which

are concerned only with the skeletal structure of a molecule, one could only feasibly

begin a curly on the incoming sp′ and draw it to the H atom, thereby decreasing
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its covalency energy and as a consequence increase the covalency energy of the sp

orbital by drawing a second curly arrow from the H-F bond in the molecule to the

F, creating a new fluoride ion.
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7.5 Case study: An SN2 Reaction

A reaction related to the one seen previously, but which provides more of a test

of the reaction orbitals approach is the SN2 reaction between a fluoride ion and

methyl fluoride,

F− + CH3 − F −→ F− CH3 + F−, (7.54)

for which we should expect to see changes in the orbital covalencies of the lo-

calised orbitals associated with the C-H bonds as well as the C-F bonds, as the

C-H bonds change in length and location as we approach the transition state. In

the subsequent optimisation of the reaction orbitals, we shall investigate how the

chosen {φRO} impact the results obtained using the reaction orbitals algorithm,

and how reasonable constant orbital covalencies for the C-H bonding orbitals are,

and thus whether the textbook mechanism, the one in which only the C-F bonds

change, can really be thought of as a reasonable approximation. The Boys locali-

sation procedure is chosen as it yields one bonding orbital per hydrogen attached

to the central carbon atom, and one bonding orbital between the carbon atom and

each fluorine atom and thus provides us with exactly the picture we wish to exam-

ine. The PM orbitals, however, as well as the IBOs yield orbitals delocalised over

multiple hydrogen atoms and not consistent with a frontier orbital model for the

reaction. Thus, the use of PM or IBO orbitals in this example makes the expected

behaviour of the covalency energy unclear. The reaction co-ordinate is optimised

in the aug-cc-pVTZ(p/s) basis.

The MINAO Boys localised orbitals at the transition state where both C-F

bond lengths are identical are shown in figure 7.21. As the coordination number

of the carbon atom approaches 5, one should anticipate positive changes in the

σCH covalencies, a positive change in the σCF covalency corresponding to bond

weakening, and a large, negative change in the σCF ′ covalency energy, where F′

is the approaching fluorine atom, corresponding to a bond forming interaction

as the “negative charge” is stabilised. The associated energies as a function of

reaction co-ordinate in both the large (aug-cc-pVTZ(p/s)) and minimal (MINAO)

bases are shown in figure 7.22. The barrier height in the minimal basis is seen to be

siginificantly smaller than the barrier height in the large basis. One should therefore
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(a) σCF (b) σCF’

(c) σCH (d) sp3(F )/sp3(F ′)

Figure 7.21: The Boys orbitals arising from a MINAO RHF calculation on
[FCH3F]− at the transition state. The labels are chosen according to their ap-
pearance and evident hybridisation. The sp3 orbital in (d) is given by reflection
through the plane bisecting the three σCH bonds. A prime denotes orbitals centred
on the approaching fluoride ion in a scan of the reaction co-ordinate.

expect that, in the minimal basis, the covalency energy increase associated with the

breaking bond in the minimal basis is much smaller than the bond-forming energy

decrease. One should also anticipate that in the large basis, the energy increase

associated with the breaking bond is in finer balance with the energy decrease

in the forming bond. One should also not neglect to consider the impact on the

total covalency of the σCH bonding orbitals, of which there are three and have a

covalency energy which, pre-optimisation, should change.

The total covalency energy changes in both the large and minimal bases can

be seen in figure 7.23. Rather surprisingly, the total covalency is seen to have

a stabilising impact on the total energy at the transition state, as the geometry

becomes trigonal bipyramidal. In contrast, the total global potential, which by

definition looks much like a mirror image of the total covalency energy, has a

maximum at the transition state. This may be less surprising, as the coulomb

interactions become larger and larger and the dipole in what was the methyl fluoride

molecule becomes vanishingly small, consequently destroying the attractive charge-

dipole interaction.

The orbital covalency energy changes in the Boys localised orbitals in the MI-

NAO basis are shown in figure 7.24. The core orbitals, as was seen in the illustrative

[FHF]− example remain approximately constant. The anti-bonding increase in the
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Figure 7.22: Total energy along the reaction co-ordinate defined by aug-cc-
pVTZ(p/s) optimised geometry parameters in the MINAO (dashed line) and aug-
cc-pVTZ(p/s) (solid line) bases. The transition state is at point 13 along the
reaction co-ordinate. C-F′ bond lengths can be seen in figure 7.24.
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Figure 7.23: Total covalency along the reaction co-ordinate defined by aug-cc-
pVTZ(p/s) optimised geometry parameters in the MINAO (dashed line) and aug-
cc-pVTZ(p/s) (solid line) bases. Transition state is at point 13 along the reaction
co-ordinate. C-F′ bond lengths can be seen in figure 7.24.

covalency energy in the σCF orbital is strikingly small, and occurs only close to

the transition state, with the majority of the increase in the covalency energy ac-

counted for by the three σCH bonding orbitals. As anticipated, the σCF ′ orbital has

an associated strong covalency energy decrease upon the formation of the new C-F
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bond. The strong changes in the σCH orbital covalency energies raise an interesting

question; can one really localise all of the changes in covalency into two orbitals

and retain a physically reasonable picture from which one can draw chemical con-

clusions and, ultimately, curly arrows? If one selects the set of reaction orbitals

as {φRO} = {σCF , σCF ′}, and optimises the functional 7.51, i.e, if one attempts to

recover a curly arrow picture, the orbital covalency energies shown in figure 7.25

are obtained.

Figure 7.24: Orbital covalencies of the Boys localised orbitals generated from
a RHF wavefunction in the MINAO basis. The labels of the valence orbitals
correspond to those orbitals shown in figure 7.21. Core orbital labels are self-
explanatory. Also shown along the top of the figure are some of the C-F′ bond
lengths.

The unfortunate artefact of the optimisation which results in an unphysical

increase in the covalency energy of the σCF ′ orbital highlights the need for a more

sophisticated reaction orbital optimisation than the one provided by equation 7.51.

Whether the increased sophistication should come through weighting the terms in

the functional, as in equation 7.52 or whether the design of a new functional is

necessary is unclear. A reduction in the change in the covalencies of the orbitals

whose covalency we do not expect to change in the reaction, however, does not

provide physically unreasonable results under the current scheme. That is, by

updating our chosen set of reaction orbitals as {φRO} = {3σCH , σCF , σCF ′} and

thence minimising equation 7.51. The resulting orbital covalency energy changes

155



are shown in figure 7.26. The changes in orbital covalency can be rationalised

as follows: The dipole induced in the C-F bond by the approaching F− yields a

response in the molecule which strengthens the C-F bond by the distortion of the

geometry and the C-H bonding orbitals, which are in turn weakened, then, upon

closer approach the C-F bond elongates until a trigonal bypyramidal geometry is

obtained and the dipole in the direction along the F→F vector becomes zero. The

distortion of the σCH bonding orbitals becomes symmetric through the molecular

mirror plane, and the vanishing dipole along the F→F results in a stabilisation

of the σCH bonds. The σCF ′ orbital experiences a strong negative change in the

covalency energy as a bond is formed.

Figure 7.25: Optimised orbital covalencies of the Boys localised orbitals generated
from a RHF wavefunction in the MINAO basis. The labels of the valence orbitals
correspond to those orbitals shown in figure 7.21. Core orbital labels are self-
explanatory. Only σCF ′ and σCF change strongly, the other orbitals are practically
superimposed at E=0.

Performing the same analysis in aug-cc-pVTZ(p/s) basis, and choosing our

minimal basis orbitals to be reduced orbitals, defined by reference to Boys localised

orbitals in the large basis, one arrives at the orbital covalency energy changes shown

in figure 7.27. Strong changes are observed in the un-optimised core orbitals upon

contraction, as discussed previously. These changes mostly cancel and can be

removed by optimisation. The large, positive change in the σCF bonding orbital

is more in line with expectation. The σCF ′ orbital experiences a large decrease
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Figure 7.26: Optimised orbital covalencies of the Boys localised orbitals generated
from a RHF wavefunction in the MINAO basis. The labels of the valence orbitals
correspond to those orbitals shown in figure 7.21. Core orbital labels are self-
explanatory. Also shown along the top of the figure are some of the C-F′ bond
lengths. The 3 σCH, σCF, σCF′ , are exempted from optimisation.

in covalency energy, whereas the σCH orbitals experience less change than they

did in the minimal basis. This is likely through the increased flexibility in the

wavefunction to describe the distortion of the orbitals in the field of the charge.

Attempting to recover a curly arrow description of the reaction through the

optimisation of equation 7.51 with a set of reaction orbitals defined by {φRO} =

{σCF , σCF ′} represents a difficult challenge. Since the initial results were less er-

ratic in the minimal basis, and the optimisation of the same functional with the

same chosen set of reaction orbitals yields unphysical results, it is no surprise that

the optimised reaction orbital covalency energies shown in figure 7.28 offer little

chemical insight, and further highlight the need for development of the reaction

orbital optimisation procedure. Similar to the minimal basis case, one can im-

prove the picture significantly by including in the reaction orbital space the σCH

orbitals. The results obtained by updating the selection of the reaction orbital

space are shown in figure 7.29.

It is worth stressing that the inclusion of further orbitals in the reaction orbital

space does not ruin the validity of the scheme. In fact, it removes some ambiguity

from the model, and ensures that the appropriate crossing of the orbital covalency
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Figure 7.27: Orbital covalencies of the Boys localised orbitals generated from a
RHF wavefunction in the aug-cc-pVTZ(p/s) basis. The labels of the valence or-
bitals correspond to those orbitals shown in figure 7.21. Core orbital labels are
self-explanatory. Also shown along the top of the figure are some of the C-F′ bond
lengths.

Figure 7.28: Optimised orbital covalencies of the Boys localised orbitals generated
from a RHF wavefunction in the aug-cc-pVTZ(p/s) basis. The labels of the valence
orbitals correspond to those orbitals shown in figure 7.21. Core orbital labels are
self-explanatory. Also shown along the top of the figure are some of the C-F′ bond
lengths.

energies at the transition state is preserved, which is not the case when one also

spreads the orbital covalencies of the σCH bonds among the σCF and σCF ′ orbitals.
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Figure 7.29: Optimised orbital covalencies of the Boys localised orbitals generated
from a RHF wavefunction in the aug-cc-pVTZ(s/p) basis. The labels of the valence
orbitals correspond to those orbitals shown in figure 7.21. Core orbital labels are
self-explanatory. Also shown along the top of the figure are some of the C-F′ bond
lengths. The 3 σCH, σCF, σCF′ , are exempted from optimisation.

This retention in the crossing behaviour is seen clearly in figure 7.30.

Figure 7.30: Optimised (dashed line) and unoptimised (solid line) covalency en-
ergies of the σCF and σCF ′ orbitals in the aug-cc-pVTZ(p/s) basis. In both cases
the σCF ′ orbital decreases in covalency energy and the σCF orbital increases in
covalency energy. The reaction orbital set omitted in the optimisation of equation
7.51 was {3σCH , σCF , σCF ′}.
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7.6 Conclusions

In this section we have presented a promising new method for, as far as possible,

making true the assumptions and approximations one makes in the application of

curly arrows and frontier orbitals for restricted Hartree-Fock wavefunctions. While

there are several issues requiring further attention, such as a more effective scheme

for the attenuation of the kinetic energy integrals and a robust and automatic

detection and optimisation of reaction orbitals, the method itself, and the associ-

ated framework shows promising signs of one day becoming a black-box procedure

for providing curly-arrows and frontier orbitals from first principles, along with a

quantitative measure of covalency which can be broken down into orbital contri-

butions. The scheme has been shown to work well for a small test case, and has

also shown its limitations in a more complicated reaction with several bonds whose

covalency energy must be accounted for.

Several avenues in this project now exist which can be explored and iterative

improvements made to the procedure; for instance, one could imagine the definition

of a new basis in which the kinetic energy matrix is diagonal and can be related

back to a minimal basis of Gaussian functions. Or perhaps a new localisation

procedure which accounts for covalency in the system and naturally results in

unchanging covalency energies for the core orbitals. Solutions to this problem

have implications beyond providing insights into chemical bonding, and have the

potential to provide some clarity or automation for the choices of active spaces in

CASSCF calculations.

Extension of this analysis to other methods may also be required once the

algorithm is taken beyond prototypical stage for restricted HF methods. For in-

stance an immediate extension can be formulated for Kohn-Sham calculations by

partitioning the molecular density into orbital squares and performing the same

truncation scheme for the kinetic energy integrals, though one must be careful

of the kinetic correlation corrections in the exchange functional. For perturbative

and coupled cluster methods one must appeal to both one and two-electron density

matrices; this represents a greater challenge.
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Chapter 8

Closing Remarks

This thesis contains new solutions to two problems; how to mitigate the computa-

tional expense associated with electrostatic potential evaluation without sacrificing

too much accuracy, and the other is how to quantitatively justify widely used con-

ceptual descriptors of chemical change. The overall success of the new methods

is unknown at the time of writing, but both form promising directions for future

research.

Both methods are distinct from one another, in accordance with how they have

been presented. It is worth keeping in mind, however, that the ROPA method

came about as a result of needing a minimal basis wavefunction for the expression

of Vglobal, which formed the largest part of this research and is thus designed with

the reaction orbital scheme in mind.

The methods as they are presented in the pages of this thesis are the product

of an enormous number of unsuccessful attempts at solving various problems, in

particular finding a suitable form for the Vglobal. For the reader interested in pursu-

ing the same research direction, some of these failed attempts at forming optimal

reduced orbitals are mentioned here in a series of short sections.

Calculating Vglobal Using Population Analysis

In this approach we tried a crude Mulliken population analysis approach to ap-

proximating the electrostatics using the resultant charges of atoms in the system

of interest. That is, we took the electronic population for each atom, nA, and

summed over the orbital contributions to the atomic populations, subtracted this
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electronic charge from the atomic number and used the charge-charge interactions

of the atoms as our Vglobal quantity.

Putting aside the issues associated with Mulliken populations when large basis

sets are used, the use of a charge-charge model makes for a particularly poor ap-

proximation to the MEP. For instance, if we consider the co-linear hydrogen fluoride

dimer in which the dipole-dipole interaction is the dominant one electrostatically,

a charge-charge model will fail to appropriately describe the long-range behaviour

of the global potential: it will result in an R−1 asymptotic potential, rather than

the correct R−3 asymptotic potential. As such this approach was dropped.

Calculating Vglobal Using Projected Orbitals

The final version of Vglobal presented in this thesis is the trace of a modified, minimal

basis Fock matrix. This form for the global potential came about rather early on

in the project. We made the assumption that the primary basis orbitals, once

projected onto the minimal basis, would provide a better approximation to the

electrostatic potential than the optimised minimal basis wavefunction. This turned

out to be incorrect. Applications to simple monomers, such as hydrogen fluoride

showed that the total dipole moment of the RHF minimal basis wavefunction was

much closer to the exact dipole moment than the dipole moment of the projected

minimal basis wavefunction. This first hint that a projection alone would not be

enough to obtain orbitals for which Vglobal behaved appropriately was then borne

out in a number of experiments on several small systems. As a result, the approach

in the following section was developed.

Using the minimal basis RHF orbitals to calculate Vglobal

The RHF orbitals from a separate calculation on the same system but in the

minimal basis were then used as a trial form for Vglobal. However, as was discussed

at length in chapter 5.1, the density arising from a minimal basis calculation turns

out to be inaccurate, and even sometimes taking the wrong sign when compared to

an accurate calculation. Thus, again, the approach was dropped. Moreover, this

approach would leave the minimal basis orbitals invariant to the basis the reference

orbitals are expressed in, which would be an unappealing feature for the reaction
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orbitals method.

Calculating Vglobal Using Density Fitting

The deficiency of the minimal basis RHF orbitals led to a series of investigations in

which different operators were used as a measure of similarity, and the similarity

between the minimal basis orbitals and the primary basis orbitals maximised. The

first of these approaches was to employ a density fitting approach, in which the

following was minimised,

F = (ρ− ρ̄|ρ− ρ̄). (8.1)

Where ρ̄ is density calculated from the minimal basis orbitals and ρ is the density

arising from the primary basis orbitals. This approach performed surprisingly

poorly. Perhaps in part because the function being minimised is takes the minimal

basis density as an argument and not the orbital coefficients. This logic led to

the use of a number of operators being used for approaches with the measure of

similarity being a number of one electron operators.

Calculating Vglobal Using One-Electron Operators

In finding the reduced orbitals, which form the basis of Vglobal in all of the examples

in this thesis, one minimises the reduced orbital functional. While attempting to

deduce the appropriate form for Vglobal, a number of operators were substituted

into a similar functional,

F =
∑
i

(
〈ψ̄i| Ô |ψ̄i〉 − 〈ψi| Ô |ψi〉

)2

, (8.2)

where Ô is some one-electron operator. Some attempts which are of note and came

before the eventual dipole operator are the r̂2 operator, inspired by Boys locali-

sation and the overlap operator. The dipole operator was the first to give results

which could be considered reasonable, and had the added benefit of matching the

orbital centroids and thus a possible incorporation of a point corrected multipole

expansion of the potential which eventually became the ROPA approximation.

Efforts continued along this line for a short time, in which higher rank multipole

moments were included in a linear combination of operators, with the expectation
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that this would yield a better potential from the density alone, without the extra

point correction. After some investigation it became clear that the improvement

was marginal, if it existed at all. Moreover, by including higher rank multipole

moments, the centroids no longer necessarily match and the point correction in the

ROPA equation is rendered invalid. The decision was then made that the reduced

orbitals of the ROPA scheme were sufficient for the reaction orbitals algorithm.

8.1 Future Work

The ROPA method requires heavily benchmarking in order to establish its place

in the literature, and to assess whether it outperforms existing methods. This is

perhaps the most pressing piece of work which must be done on the molecular

potentials research presented in this thesis. A second interesting piece of work

which could be carried out on the ROPA method is to see how the errors behave as

the basis set is changed. For instance, using STO-1G as the reduced basis would

yield a density which is exceptionally cheap to evaluate. Moreover, if it is possible

to demonstrate that the errors behave predictably as the dimension of the reduced

basis is increased, perhaps a semi-empirical form of the ROPA potential could be

devised in which the potentials are improved according to some regression function

after employing a very small reduced basis.

The reaction orbitals scheme is not yet in a position that it can be applied

reliably on any system. The elements of the truncated kinetic energy matrix,

while logically presented in this thesis, may not represent the best choice and

further work is needed in this direction. The same can be said of the form of the

reaction orbital functional by which the orbital covalencies of the spectator orbitals

are made flat over the course of a reaction, which holds a great deal of promise. The

application of the reaction orbitals procedure to the detection of active spaces in

active space methods is a particularly exciting application of the reaction orbitals

method, and represents a potential solution to a long-standing problem. Further

work is needed in order to aid in the detection of virtual orbitals of importance.

However, the other issues must be solved before this research can be done.
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Appendix A

Translation of Multipole Moments

The formulae here are for the translation of cartesian multipole moment compo-

nents, up to octopole from the origin, O = (0, 0, 0), to a point, C = (cx, cy, cz).

For the dipole moment we have,

µCx = µOx − qcx, (A.1)

µCy = µOy − qcy, (A.2)

µCz = µOz − qcz. (A.3)

For the quadrupole moment,

ΘC
xx = ΘO

xx − 3µOx cx +
3

2
c2
xq +

∑
α

µOα cα −
1

2

∑
α

c2
αq, (A.4)

ΘC
yy = ΘO

yy − 3µOy cy +
3

2
c2
yq +

∑
α

µOα cα −
1

2

∑
α

c2
αq. (A.5)

ΘC
zz = ΘO

zz − 3µOz cz +
3

2
c2
zq +

∑
α

µOα cα −
1

2

∑
α

c2
αq, (A.6)

ΘC
xy = ΘO

xy −
3

2
(µOx cy + µOy cx − cxcyq), (A.7)

ΘC
xz = ΘO

xz −
3

2
(µOx cz + µOz cx − cxczq), (A.8)

ΘC
yz = ΘO

yz −
3

2
(µOy cz + µOz cy − cyczq). (A.9)
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Finally, for the octopole moment,

ΩC
zzz = ΩO

zzz − 3ΘO
zzcz + 2(ΘO

xzcx + ΘO
yzcy) +

9

2
µOz c

2
z −

3

2
||c||(µOz − czq)

− 3(µOx cxcz + µOy cycz)−
5

2
c3
zq, (A.10)

ΩC
yyy = ΩO

yyy − 3ΘO
yycy + 2(ΘO

xycx + ΘO
yzcz) +

9

2
µOy c

2
y −

3

2
||c||(µOy − cyq)

− 3(µOz czcy + µOx cxcy)−
5

2
c3
yq, (A.11)

ΩC
xxx = ΩO
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xxcx + 2(ΘO

zxcz + ΘO
yxcy) +

9

2
µOx c

2
x −

3

2
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5

2
(c3
xq), (A.12)
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5

3
(ΘO

yzcx + ΘO
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+
5

2
(µOz cycx + µOy cxcz + µOx cycz − cxcyczq), (A.13)
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8

3
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2

3
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8

3
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184



ΩC
xxz = ΩO

xxz −
8

3
ΘO
xzcx +

2

3
ΘO
yzcy −ΘO

xxcz +
2

3
(ΘO

zz −ΘO
xx)cz

+ 4µOx cxcz − µOy cycz +
5

2
µOz c

2
x − µOz c2

z −
1

2
||c||(µOz − czq)−

5

2
c2
xczq, (A.17)

ΩC
yyz = ΩO

yyz −
8

3
ΘO
yzcy +

2

3
ΘO
xzcx −ΘO

yycz +
2

3
(ΘO

zz −ΘO
yy)cz

+ 4µOy cycz − µOx cxcz +
5

2
µOz c

2
y − µOz c2

z −
1

2
||c||(µOz − czq)−

5

2
c2
yczq, (A.18)

ΩC
xyy = ΩO

xyy −
8

3
ΘO
xycy +

2

3
ΘO
xzcz −ΘO

yycx +
2

3
(ΘO

xx −ΘO
yy)cx

+ 4µOy cycx − µOz cxcz +
5

2
µOx c

2
y − µOx c2

x −
1

2
||c||(µOx − cxq)−

5

2
c2
ycxq. (A.19)

185


