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Abstract 

Objective: Certain copy number variants (CNVs) greatly increase risk of autism. We conducted a 

genetics-first study to investigate whether heterogeneity in the clinical presentation of autism is 

underpinned by specific genotype-phenotype relationships. 

Methods: This international study included 547 individuals (12.3 years (SD=4.2), 54% male) who 

were ascertained on the basis of having a genetic diagnosis of a rare CNV associated with high risk of 

autism (82 16p11.2 deletion carriers, 50 16p11.2 duplication carriers, 370 22q11.2 deletion carriers 

and 45 22q11.2 duplication carriers), as well as 2027 individuals (9.1 years (SD=4.9), 86% male) with 

autism of heterogeneous aetiology. The Autism Diagnostic Interview-Revised (ADI-R) and IQ testing 

were conducted.  

Results:  The four genetic variant groups differed in autism severity, autism subdomain profile as 

well as IQ profile. However, we found substantial variability in phenotypic outcome within individual 

genetic variant groups (74% to 97% of the variance depending on the trait), whereas variability 

between groups was low (1% to 21% depending on trait). We compared CNV carriers who met 

autism criteria, to individuals with heterogeneous autism, and a range of profile differences were 

identified. Using clinical cut-offs, we found that 54% of individuals with one of the 4 CNVs who did 

not meet full autism diagnostic criteria nonetheless had elevated levels of autistic traits. 

Conclusion: Many CNV carriers do not meet full diagnostic criteria for autism, but nevertheless meet 

clinical cut-offs for autistic traits. Although we find profile differences between variants, there is 

considerable variability in clinical symptoms within the same variant.  
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Introduction 

Autism is a behaviourally defined condition characterized by deficits in social interaction and 

communication, as well as the presence of restricted, repetitive behaviours and interests1. There is 

considerable heterogeneity in the clinical presentation of autism, in terms of symptom profile, 

cognitive function and developmental trajectories2-5. Studies of large genotyped cohorts of 

individuals with autism and typically developing controls have identified several chromosomal copy 

number variants (CNVs) (deletions and duplications >1 kilobase (kb)6) as genetic risk factors for 

autism7-12, and have been demonstrated in clinical settings to have  predictive value13. Although 

individually rare, collectively pathogenic CNVs  are identified in 15% of patients with 

neurodevelopmental disability14. A number of researchers have advocated that the time is ripe for a 

reverse strategy based on a genetics-first rather than a phenotype-first approach, in order to better 

understand the clinical heterogeneity of autism15-17. 

Deletions and duplications at the 16p11.2 (600kb, break points 4 and 5 (BP4-BP5) critical region 

29.6-30.2 Mb, build hg19) and 22q11.2 (3 Mb, break points A and D, critical region 19.0-21.5 Mb, 

build hg19) loci have been identified as risk factors for autism, both from phenotype-first studies 

that find these variants occur with greater frequency in cohorts of individuals with autism versus 

controls7-9, and genetics-first studies which find that patients diagnosed with 16p11.2 and 22q11.2 

CNVs in medical genetics clinics have an elevated frequency of autism diagnosis18-25 relative to the 

frequency in the general population of 1% 26,27. It is important to determine whether these variants 

confer risk for the same autism phenotype or whether the presentation differs by genotype. The 

former would indicate that genomic risk for autism has common phenotypic effects, whilst the latter 

would suggest that genetic heterogeneity underpins clinical heterogeneity. Within the autism field, 

there is a strong notion that the condition is dissociable by genetics28,29, with some researchers using 

the term “autisms”30.  Early evidence indicates that the 22q11.2 deletion and duplication may have 

unique autism profiles25,31, however, the profiles of the two groups have not been directly compared 

within the same study, and hence the differences reported could be due to methodological 



4 

 

inconsistencies.  For the 16p11.2 locus,  it has been reported that duplication carriers with autism 

have lower IQ compared to deletion carriers with autism18, however the autism profiles of the two 

groups have not been compared. It is also important to investigate the extent to which the autism 

profile of these variants differs from individuals without these variants who have autism (referred to 

as heterogeneous autism from here onwards). 

Comprehensive clinical phenotyping of individuals with autism-risk genetic variants requires large 

integrated networks of researchers and clinicians using the same clinical instruments. The present 

study brings together patient data from several international genetics-first consortia of individuals 

with rare chromosomal conditions associated with high risk of autism. Individuals with deletions and 

duplications that span critical regions at the 22q11.2 and 16p11.2 loci were ascertained clinically via 

medical genetics clinics and patient organisations. We aimed to: 1) Characterise and contrast the 

phenotypes of different autism risk genetic variants, in terms of autism prevalence, severity, 

symptom domain profile, subdomain profile and IQ; 2) Investigate whether CNV carriers with autism 

differ in phenotype from individuals with autism of heterogeneous origins.  

Methods 

Participants 

Genetics-first cohorts 

We identified several clinical research sites and consortia which had independently established 

genetic-first cohorts, and had utilised the Autism Diagnostic Interview – Revised (ADI-R) 32  to assess 

autism, thus allowing data to be easily combined. Data on 566 clinically ascertained CNV carriers 

were available but 19 cases were removed due to insufficient genotypic information (n=18) and 

cohort overlap (n=1). This resulted in 547 CNV carriers (12.3 years (SD=4.2), 54% male) ; 82 with 

16p11.2 deletion, 50 with 16p11.2 duplication, 370 with 22q11.2 deletion and 45 with 22q11.2 

duplication was provided from the ECHO (ExperienCes of people witH cOpy number variants 
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https://www.cardiff.ac.uk/mrc-centre-neuropsychiatric-genetics-

genomics/research/themes/developmental-psychiatry/echo-study-cnv-research) study, the 

IMAGINE-ID (Intellectual disability and Mental health: Assessing Genomic Impact on 

Neurodevelopment http://imagine-id.org/) study, the Hospital neurodevelopmental CNV cohort at 

the Belgrade University Children's Hospital Belgrade, the International 22q11.2DS Brain and Behaviour 

Consortium (http://22q11-ibbc.org/), the Center for Autism Research at Children’s Hospital of 

Philadelphia, and the 16p11.2 European consortium (http://www.minds-

genes.org/Site_EN/index.html) and Simons Variation in Individuals Project (VIP) Consortium 

(https://simonsvipconnect.org/) (Supplementary Table 1 has full details). Cohort demographics by 

continent are provided in Table 1. The characteristics of these studies have been described 

elsewhere18,24,25,33-37. 

Carrier status for CNVs at the 16p11.2 (critical region 29.6-30.2 Mb,  had to span breakpoints 4 to 5, 

build hg19) or  22q11.2 (critical region 19.0-21.5 Mb, had to span at least low copy repeat regions A-

B as pathogenicity of atypical variants outside the A-B region is uncertain, build hg19) loci was 

confirmed for all individuals through clinical chromosome microarrays, medical records and/or 

confirmation in a research laboratory (Full genotype information in Supplementary Table 2). Analysis 

included individuals ≥4 years old. The study was approved by the appropriate local ethics 

committees and institutional review boards. Each participant and his or her caregiver, where 

appropriate, provided informed written consent/assent to participate prior to recruitment.  

Heterogeneous autism cohort 

Data on 2053 individuals with autism, ≥4 years old, was accessed from the Autism Genome Project 

(AGP) 38. These individuals were ascertained via autism diagnostic clinics. Of these 2053 individuals, 

26 had CNVs at the 16p11.2 and 22q11.2 loci; 7 with 16p11.2 deletion, 4 with 16p11.2 duplication, 4 

with 22q11.2 deletion and 11 with 22q11.2 duplication. Given the small sample sizes we did not 

compare these groups to the remainder of the AGP cohorts; also, previous work has reported on the 

https://www.cardiff.ac.uk/mrc-centre-neuropsychiatric-genetics-genomics/research/themes/developmental-psychiatry/echo-study-cnv-research
https://www.cardiff.ac.uk/mrc-centre-neuropsychiatric-genetics-genomics/research/themes/developmental-psychiatry/echo-study-cnv-research
https://simonsvipconnect.org/
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phenotype of CNV carriers in the AGP cohort39. These individuals were not included in the genomic 

condition groups given the different ascertainment strategies. The remaining 2027 individuals 

represent a group of individuals with autism for whom the underlying aetiology is heterogeneous 

(See Table 1 for demographics). Following previous authors17, we refer to this cohort as “ 

heterogeneous autism”,  rather than “idiopathic.”   

Autism assessment 

All individuals were  assessed using the Autism Diagnostic Interview - Revised (ADI-R)32 by a research 

reliable assessor (further information on assessors and assessment sites in Supplementary Table 3). 

The ADI-R is a semi-structured interview conducted with the primary caregiver about a child’s 

symptoms both currently and during early development. Total ADI-R score was used as an index of 

autism severity37. Autism domain scores for “Social Interaction”, “Communication” and “Restricted, 

Repetitive, and Stereotyped Behaviours (RRBs)” were extracted, as well as autism subdomain scores 

(further details on ADI-R scores in Supplementary Materials). To meet autism criteria on the ADI-R 

an individual had to meet the clinical cut-offs on each domain (score of 10 for social, 8 (7 if 

nonverbal) for communication, and 3 for RRB) and there must also have been evidence of 

developmental abnormality before the age of 36 months. 

Cognitive assessment 

Full Scale IQ (FSIQ), Verbal IQ (VIQ) and Performance IQ (PIQ) scores were derived from age and 

developmentally appropriate standardized IQ measures as described elsewhere 18,24,33,35,40.  

Statistical Analysis 

Aim 1: Characterising and contrasting the phenotypes of different autism risk genetic variants 

Autism prevalence within genetic variant groups 
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Autism prevalence was determined on the basis of the ADI-R diagnostic algorithm41. A logit mixed 

model was performed to determine whether genetic variant group (22q11.2 deletion, 22q11.2 

duplication, 16p11.2 deletion, 16p11.2 duplication) was a predictor of autism diagnosis, whilst 

accounting for gender and age. Following previous international studies of the 16p11.2 duplication, 

we included site (European vs United States) as a covariate18,42. Post-hoc contrasts were conducted 

to establish autism prevalence differences between genetic variant groups with Tukey adjustment 

for multiple comparisons. The percentage of individuals who did not meet autism criteria but did 

meet the clinical cut-off in one or more domains was additionally calculated. 

Autism profiles between genetic variant groups 

To investigate possible differences in autism profiles between genetic variant groups, a series of 

analysis of covariance (ANCOVA) models were conducted with group as a predictor and the following 

phenotypic variables as outcome measures: ADI-R total as an index of autism severity (ADI-R total 

score), autism domain profile, autism subdomain profile and IQ profile, whilst accounting for gender, 

age and site (see Supplementary Materials for full information).  Tukey’s method was used to 

conduct post-hoc contrasts between genetic variant groups, producing p-values adjusted for the 

number of contrasts. Eta-squared values were calculated to estimate the proportion of variance 

explained by genetic variant group (between group differences). We also calculated the variance 

that is explained by variable expressivity within the four genetic variant groups, i.e. variance not 

explained by genetic variant group, age, gender and site. Analyses of ADI-R total score, domain and 

subdomain scores were repeated including FSIQ as a covariate, to investigate whether differences in 

autism phenotype were driven by FSIQ.  

Aim 2: Symptom profiles of individuals with autism within the genetic variant groups and individuals 

with “heterogeneous autism” 
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To compare autism in the genetic variant groups to heterogeneous autism (i.e., individuals from the 

AGP dataset who did not have 16p11.2 and 22q11.2 CNVs; n=2027), we conducted analyses leaving 

out individuals within the genetic variant groups who did not meet ADI-R criteria for autism, and 

compared the profiles to individuals with heterogenous autism. This resulted in 5 groups: 16p11.2 

deletion + autism; 16p11.2 duplication + autism; 22q11.2 deletion + autism; 22q11.2 duplication + 

autism; and heterogeneous autism (Table 1). 

MANCOVA analysis was conducted with group as a predictor and phenotypic scores as the 

outcomes, whilst accounting for gender, age and site. As in aim 1, analyses were run for autism 

severity (ADI-R total score), autism domain profile, autism subdomain profile and IQ profile. Post hoc 

contrasts to investigate the difference between CNV + autism groups in relation to the autism group 

were conducted with Tukey adjustment for multiple comparisons.  

To investigate whether male-to-female ratios differed between the five groups, we used a logit 

model with gender as a binary outcome, and group as a predictor, whilst taking account of fixed 

effects of age, and the random effect of site. 

For aims 1 and 2 a Benjamini-Hochberg False Discovery Rate (B-H FDR) multiple testing correction of 

0.05 was applied to p-values.  

Results 

Aim 1: Characterising and contrasting the phenotypes of different autism risk genetic variants 

Autism prevalence within genetic variant groups 

Within our cohort of CNV carriers ascertained clinically via medical genetics clinics and patient 

organisations; 43% of individuals with 16p11.2 deletion, 58% of individuals with 16p11.2 duplication, 

23% of individuals with 22q11.2 deletion and 44% of individuals with 22q11.2 duplication met ADI-R 

criteria for autism (Table 1). Genetic variant group was a significant predictor of autism diagnosis 
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(p<0.001). Post-hoc contrasts revealed that autism prevalence in the 22q11.2 deletion carrier group 

(23%) was significantly lower compared to the 16p11.2 deletion (43%, p=0.004), 16p11.2 duplication 

(58%, p<0.001) groups; the remaining genetic variant group differences were not significant.  

Within CNV carriers who did not meet formal autism diagnosis, we examined the proportion who 

met clinical cut-off criteria for one or more domains on the ADI-R. Amongst the 378/547 (69%) 

individuals who did not meet criteria for autism, 205/378 (54%) were found to meet the clinical cut-

off for at least one domain, indicating a significant domain-based impairment; 38/47 (81%) of 

16p11.2 deletion, 19/21 (90%) of 16p11.2 duplication, 135/285 (47%) of 22q11.2 deletion and 13/25 

(52%) of 22q11.2 duplication carriers. Supplementary Table 4 and Supplementary Figure 1 show for 

each CNV the proportion of individuals who met the clinical cut-offs for each domain.  

Autism profiles between genetic variant groups 

Genetic variant group predicted autism severity (7% of the variance, p<0.001), autism domain profile 

(5% of the variance, p<0.001), autism subdomain profile (1% of the variance, p<0.001). In terms of 

individual domain scores, genetic variant group predicted 5% of the social domain total score, 3% of 

the communication domain score, and 15% of the RRB domain (Table 2, Figure 1).  For subdomain 

scores the proportion of variance predicted by genetic variant group varied between 1% (social 

interaction) and 21% (motor mannerisms). In addition to motor mannerisms, the proportion of 

variance explained was also high for sensorimotor interests (19%). Genetic group variant predicted 

12% of variance in FSIQ (p<0.001), 12% of variance in PIQ (p<0.001) and 4% of the variance in VIQ 

(p<0.001). Findings for autism severity, domain scores and subdomain scores remained significant 

after controlling for FSIQ, and the eta-squared values remained relatively unchanged 

(Supplementary Table 5). Age accounted for 0-3% of variance in phenotypic traits (see 

Supplementary Table 6). 
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After accounting for between group variability, age, gender and site, a large proportion of variability 

remained; 74% to 97% within group variability depending on trait (final column, Table 2). This is 

visualised in Figure 1 and Supplementary Figure 2, which shows that although group differences 

exist, there is much more variability within all groups across traits. For IQ we found greater 

variability for duplications than deletions for both 16p11.2 (Levene’s test, p=0.001) and 22q11.2 

(Levene’s test, p<0.001) loci. For autism severity we found greater variability in outcome for 

duplications than deletions for the 22q11.2 locus (Levene’s test, p<0.001) but not for the 16p11.2 

locus (Levene’s test, p=0.071).  

Supplementary Table 7 details which post hoc Tukey contrasts between groups were significant (p-

values adjusted for multiple contrasts). To briefly summarise phenotypic profiles; 16p11.2 deletion 

carriers had relatively moderate autism severity scores and moderate cognitive impairment (IQ= 

81.3); 16p11.2 duplication carriers had relatively greater autism severity scores and greater cognitive 

impairment (IQ= 70.9); 22q11.2 deletion carriers had relatively lower autism severity scores but 

greater cognitive impairment (IQ=70.3); and 22q11.2 duplication carriers had relatively higher 

autism severity scores but less cognitive impairment (IQ=88.1). 

Aim 2: Symptom profiles of individuals with autism within the genetic variant groups and individuals 

with “heterogeneous autism” 

Supplementary Table 8 details mean scores for each phenotypic trait for each group (heterogeneous 

autism, 16p11.2 deletion + autism, 16p11.2 duplication + autism, 22q11.2 deletion + autism, 22q11.2 

duplication + autism). With the exception of VIQ and “routines and rituals” domain, all phenotypic 

traits and subdomains were found to differ between the five groups (last column Supplementary 

Table 5).  These findings remained significant after a B-H FDR 0.05 correction for multiple testing. 

Age accounted for 0-5% of variance in phenotypic traits (see Supplementary Table 9). Figure 2A 

visualises the profile of each “genetic variant + autism” group relative to each other and Figure 2B 

visualises the profile of each “genetic variant+ autism” group relative to the heterogeneous autism 
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group. Supplementary Table 8 details which aspects of the phenotypic profile showed significant 

contrasts between the heterogeneous autism group and the genetic variant groups.  

To briefly summarise phenotypic profile differences relative to the heterogeneous autism group: the 

16p11.2 deletion + autism group had relatively less impairment in autism score severity but had a 

similar level of cognitive impairment; the 16p11.2 duplication + autism group had greater PIQ 

deficits but did not differ on any of the other phenotypic measures; the 22q11.2 deletion + autism 

group had greater cognitive impairment but relatively less severity in autism scores; the 22q11.2 

duplication + autism group did not significantly differ from the heterogeneous autism group on any 

phenotypic measure. 

Sex 

Male CNV carriers (all groups combined) were at increased risk of autism (OR = 2.3, p<0.001) 

compared to female CNV carriers.  However, male to female ratios were lower within CNV carriers 

with autism (2.3:1) compared to the heterogeneous autism group (6.4:1) (p<0.001).  

Discussion 

This study is the result of a collaboration between several international genetics-first consortia and 

the Autism Genome Project. The availability of a large sample of individuals with one of four autism 

risk CNVs allowed us to use a genetics-first approach which meant we were not constrained by 

ascertaining patients on the basis of autism diagnosis, allowing examination of the impact of 

genotype on autism severity and domain profiles across the spectrum. The use of the widely 

accepted research diagnostic ADI-R interview across all sites represents a methodological strength, 

enabling us to directly compare the autism profiles of 22q11.2 and 16p11.2 CNVs. Our findings 

indicate that although autism risk genetic variants differ in several aspects of the autism phenotype, 

including autism severity, symptom domain profile and cognitive profile, only 1-21% of the variance 

is explained by genetic variant group, depending on autism measure.  In contrast, variation within 
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each of the four genetic variant groups is much greater, explaining between 74%-97% of the 

variability, depending on autism measure. This highlights that even within individuals with the same 

autism risk genetic variant, the autism profile is difficult to predict on the basis of CNV alone and 

that phenotypic profiles overlap, providing evidence against a ‘highly specific”  model 43 whereby  

each genotype leads to a unique autism phenotype (see Supplementary Figure 3), instead our 

findings support a partially specific model whereby autism profiles are distinct but overlapping.  

Severity of autism phenotype differed by genetic variant group. In terms of autism prevalence; fewer 

22q11.2 deletion carriers met criteria for autism (23%) than 22q11.2 duplication (44%), 16p11.2 

deletion (43%) and 16p11.2 duplication (58%) carriers. These figures represent autism prevalence 

within a clinically ascertained cohort of CNV carriers, and should not be taken as the prevalence for 

CNV carriers in the wider population. Among CNV carriers with autism we found that 22q11.2 

deletion and 16p11.2 deletion carriers with autism had relatively less severe profiles compared to 

individuals with heterogeneous autism. On the other hand individuals with 16p11.2 duplication and 

22q11.2 duplication with autism had a profile more consistent with individuals with heterogeneous 

autism. Our findings complement genome wide CNV studies which find the strength of association 

and penetrance for autism varies by genetic variant, in particular the association of 22q11.2 deletion 

is relatively weaker8.  

We found evidence that the four genetic variant groups were associated with differences in autism 

severity, the three autism domains as well as nine out of the 10 subdomains we studied, FSIQ, VIQ 

and PIQ.  However, the proportion of variance explained by genetic variant group for each sub-

domain varied between 1-21%. It was only the social interaction subdomain that did not differ, 

indicating that this trait is a universal aspect of autism across the 4 genetic variant groups. The sub-

domains for which genetic variant group explained the greatest proportion of variance were motor 

aspects of the RRB domain, motor mannerisms (21%) and sensorimotor interests (19%), indicating 

that genetic variant group particularly distinguishes motor aspects of the autism phenotype.  
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Cognitive profile was also influenced by genetic variant group; 22q11.2 deletion and 16p11.2 

duplication carriers had greater cognitive impairments in FSIQ, VIQ and PIQ relative to 22q11.2 

duplication and 16p11.2 deletion carriers. There was evidence at both the 22q11.2 and 16p11.2 loci 

that cognitive outcomes are more variable for duplication carriers than deletion carriers. This has 

been previously been reported for 16p11.2 duplication carriers18 and our findings indicate the same 

may be true for the 22q11.2 locus. Autism severity of a genetic variant did not covary with 

magnitude of cognitive deficit, 22q11.2 duplication carriers had the highest mean IQ (88.1) out of 

the CNV groups, yet had high symptom severity scores. 22q11.2 deletion carriers had the greatest 

cognitive impairment yet were at less risk of autism compared to the other genetic variants. 

Furthermore, when we controlled for IQ, differences in autism domain and subdomains scores 

between CNVs remained relatively unchanged. These findings suggest that the mechanisms 

underlying autism and cognitive impairment are at least partially distinct among carriers of 

pathogenic CNVs.  

However, although specific group differences exist, it is clear that phenotypic profiles overlap 

(Supplementary Figure 2), and we find greater variability between individuals with the same CNV 

than between CNVs. Overall, our findings provide most support for a “partially specific model” 

whereby autism profiles are distinct but highly overlapping. Though the magnitude of these 

differences is closer to the “non-specific effect” end of the scale whereby all genotypes lead to 

similar autism phenotypes, than the “highly specific effect” end of the scale whereby genotypes lead 

to discrete autism subtypes (Figure 1). These findings highlight that it will be important for 

behavioural phenotyping research to move beyond a focus on average differences between variants, 

and to investigate the genetic (including additional rare variants and polygenic risk, which we were 

not able to analyse in this study) and environmental factors that contribute to variation in clinical 

phenotypes. There is already evidence that family background is important to consider in a genetic 

counselling context; parental IQ has been found to predict the IQ impairment in 16p11.2 and 

22q11.2 deletion carriers44-46.  
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There was a male preponderance for autism across all genetic variant groups, and gender 

significantly influenced domain and subdomain profiles. However, the male to female ratio in CNV 

carriers is approximately 2.3:1 which is considerably less pronounced than in the heterogeneous 

autism group (6.4:1). It may be that the genetic variants we studied have such a large effect on 

neurodevelopment that they partially override the protective effect of being female9,11. Age did 

influence phenotypic traits, however the proportion of variance age explained in analyses was low 

(≤5%). 

Using a genetics-first approach, we identified a significant proportion of CNV carriers (54%) who did 

not meet autism criteria but did meet clinical cut-offs for diagnosis related impairments. 

Furthermore, the profile of CNV carriers with autism does to some extent present differently from 

heterogeneous autism (Figure 2B). This has the potential implication that the clinical needs of 

patients with genomic conditions may be overlooked because they fail to meet diagnostic criteria 

despite exhibiting a range of impairments across domains. Parents of children with CNVs at  16p11.2 

or 22q11.2 who have taken part in our studies in the UK have anecdotally reported that their child’s 

genetic diagnosis can be a barrier to receiving an autism diagnosis and support, with some service 

providers having stated that a child with a genetic diagnosis cannot also have a secondary diagnosis 

of autism despite DSM 5 specifying that autism can be diagnosed when “associated with a known 

medical or genetic condition or environmental factor”1. It is important that clinicians are aware of 

the risk of autism associated with certain genetic variants to improve the opportunities that these 

children receive of an early diagnosis and access to interventions.   

Further clinical implications arise from our finding that there are not highly specific genotype-

phenotype relationships between individual CNVs and autism, at least for 16p11.2 and 22q11.2 

deletion and duplication variants. This indicates that, although CNVs are pre-symptomatically 

predictive of autism and therefore can inform early intervention, individual genotypes are not 

specific in predicting symptom subtypes. Rather our findings indicate an overlap in clinical 
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phenotypes between these CNVs, suggesting that neurodevelopmental service provision for 

different CNVs could be grouped together. Our genetics-first approach reveals great variability 

within CNV groups, highlighting that autism risk variants are not deterministic for autism.  It is 

important that in genomic counselling that pathogenic CNVs are considered as one factor within a 

broader biopsychosocial context, rather than being the only causative factor for autism. 

Identification of genetic and environmental modifiers of phenotypes of autism risk CNVs has 

potential for informing clinical care and intervention.  

Our study benefits from several features, including a large sample size by combining data from 

individuals with these rare genetic conditions from a number of international cohorts, and 

synchronisation of phenotyping measures across sites allowing for analysis extending beyond 

categorical diagnosis, allowing for autism domains and subdomains to be analysed. However, there 

are potential limitations. Firstly, ascertainment bias needs to be considered as our study focuses on 

individuals who received a clinical genetic diagnosis, and our findings therefore do not necessarily 

extend to individuals with these CNVs in the population who are affected below a clinical threshold 

and as a consequence not referred for genetic testing. As one of the main indications for genetic 

testing currently is often developmental delay18,25, our findings may not be representative for 

individuals with these CNVs with a more typical developmental pattern. However, despite these 

ascertainment considerations, not all CNV carriers in this study met autism criteria or had cognitive 

impairment, thus allowing us to study the impact of genotype across a broad spectrum of abilities.  

Another source of possible ascertainment bias is that referral reason for genetic testing may differ 

by genetic variant. For instance it has been reported that 22q11.2 deletion carriers are more likely to 

be referred due to physical abnormalities, such as heart defects, in comparison to 22q11.2 

duplication carriers who are more likely to be referred for developmental reasons25. However, this 

may actually reflect true phenotypic differences as a recent population based study which was able 

to identify individuals in the population undiagnosed with a 22q11.2 CNV, as well as individuals with 

a diagnosis through a clinic, reported higher frequency of congenital abnormalities in the deletion 
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carriers47. Before taking part in the study, individuals had a variety of diagnostic experiences, where 

some had a pre-existing autism diagnosis before the ADI-R assessment, whilst others had had no 

interaction with autism diagnostic services. This potentially introduces caregiver reporter bias, but 

this is partly mitigated by the semi-structured nature of the ADI-R. That is, although the ADI-R 

interview is based on caregiver report, the scoring of a particular trait is based on concrete 

descriptions coded by a trained interviewer. We were not able to conduct cross-site reliability of 

ADI-R administration as it was not pre-planned that ADI-R data would be combined across several 

international sites, however all assessors underwent ADI-R formal training and were research 

reliable. Finally, we were not able to control for ethnicity, and socio-economic and environmental 

factors, as these data were not available at all sites, and/or were not internationally comparable. 

Future studies would benefit from greater alignment of measurement of environmental factors 

across international sites.  

Conclusion 

The genetics-first approach we employed represents a novel method for investigating genotype-

phenotype relationships unconstrained by categorical diagnostic criteria. We found that the 

phenotypic profiles of 16p11.2 and 22q11.2 CNVs differ in terms of severity, symptom profile and 

cognitive profile. However, although genetic variants have specific effects, within variant variability 

is much greater than between variant variability, thus indicating that the phenotypic consequences 

of genomic risk factors for autism fit a “partial specific model” rather than a “highly specific” model.  

It will be important that future studies of autism risk variants consider the genetic and 

environmental factors that contribute to clinical variability within autism risk variant carriers.  An 

important message from our work is that individuals with genomic conditions are likely to present 

with clinically significant symptoms of autism but not meet diagnostic criteria. Clinical services need 

to adapt as individuals without a formal autism diagnosis are unlikely to access support and 

interventions.   
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