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An Efficient LSTM Network for Emotion
Recognition from Multichannel EEG Signals

Xiaobing Du, Cuixia Ma, Guanhua Zhang, Jinyao Li, Yu-Kun Lai, Guozhen Zhao, Xiaoming Deng, Yong-Jin

Liu, Senior Member, IEEE, and Hongan Wang, Senior Member, IEEE

Abstract—Most previous EEG-based emotion recognition methods studied hand-crafted EEG features extracted from different
electrodes. In this paper, we study the relation among different EEG electrodes and propose a deep learning method to automatically
extract the spatial features that characterize the functional relation between EEG signals at different electrodes. Our proposed deep
model is called ATtention-based LSTM with Domain Discriminator (ATDD-LSTM), a model based on Long Short-Term Memory (LSTM)
for emotion recognition that can characterize nonlinear relations among EEG signals of different electrodes. To achieve state-of-the-art
emotion recognition performance, the architecture of ATDD-LSTM has two distinguishing characteristics: (1) By applying the attention
mechanism to the feature vectors produced by LSTM, ATDD-LSTM automatically selects suitable EEG channels for emotion
recognition, which makes the learned model concentrate on the emotion related channels in response to a given emotion; (2) To
minimize the significant feature distribution shift between different sessions and/or subjects, ATDD-LSTM uses a domain discriminator
to modify the data representation space and generate domain-invariant features. We evaluate the proposed ATDD-LSTM model on
three public EEG emotional databases (DEAP, SEED and CMEED) for emotion recognition. The experimental results demonstrate that
our ATDD-LSTM model achieves superior performance on subject-dependent (for the same subject), subject-independent (for different

subjects) and cross-session (for the same subject) evaluation.

Key Words—Emotion recognition, multichannel EEG, LSTM, attention mechanism, domain adaptation.

1 INTRODUCTION

H UMAN emotions are complex psychological and phys-
iological expressions, which are often related to sub-
jective feelings, temperament, personality, motivational ten-
dencies, behavioral reactions and physiological arousal [1],
[2]. Both behavioral and physiological signals have been ex-
plored for human emotion recognition. The most commonly
used behavioral signals include speech, facial expressions,
as well as hand and body gestures [3] [4]. Compared to
behavioral signals that are easy to disguise in emotion
recognition, physiological measurements are more reliable
to recognize human emotions [1]. Electroencephalography
(EEG) is a physiological signal with an excellent temporal
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resolution, which can be directly used for emotion recogni-
tion through analyzing immediate brain activities elicited by
emotional stimuli [5], [6]. In recent years, with the advance
of brain-computer interface (BCI) techniques and the devel-
opment of practical and precise emotion annotation tools
(e.g., [7]), EEG-based applications have been flourishing,
e.g., [8], [9], [10], [11].

Exploring practical EEG features for emotion recognition
is vital. Although the EEG measurements usually have sulffi-
cient density to sample the brain electrical field (i.e., gener-
ally more than 30 electrodes are placed on the scalp), the
spatial feature that optimally characterizes the functional
relations among different EEG channels is rarely considered.
Recently, a few pioneering works [12], [13], [14] have been
proposed that explore such spatial features through multi-
channel EEG signals. Among these methods, the state of the
art [14] introduced a dynamic graph convolutional neural
network (DGCNN) to learn the optimal adjacency matrix
M automatically. However, M can only represent linear
relations, which characterizes the strengths of connections
between pairs of EEG channels. In this paper, we propose
ATtention-based LSTM with Domain Discriminator (ATDD-
LSTM), a model based on Long Short-Term Memory (LSTM)
for emotion recognition that can characterize nonlinear rela-
tions among multichannel EEG signals.

In the proposed ATDD-LSTM, the input for a given
temporal sample is a channel sequence representing the
EEG signal from different electrodes, and the output is
the emotion label corresponding to the input EEG channel
sequence. Unlike most previous research, we focus on ad-
dressing the following two challenges: (1) selecting effective
emotion-related channels and (2) building domain-invariant
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features to ensure robust recognition across subjects and
different sessions of a subject.

Channel selection. Not all EEG signals are related to
emotion. The EEG signals collected from different electrodes
on the scalp reflect a variety of information, and it is well
known that the electrodes located in the prefrontal cortex
are associated with the emotional process [15], [16], [17],
[18]. In our study, in addition to making use of existing
neurophysiological research for establishing the relations
among multi-channels, we expect that the data-driven ap-
proach can also help explore more subtle relations. To do so,
in ATDD-LSTM we propose to use an attention mechanism
to optimally search for emotion-related channels in response
to a given emotion.

Domain-invariant features. Many previous studies build
the emotion recognition model on the basis of each individ-
ual person’s brain responses, due to the data distribution
shift between different persons. Despite the popularity of
subject-dependent models in EEG-based emotion recogni-
tion [19], [20], [21], some recent studies [22], [23], [24], [25],
[26], [27], [28] suggest building models specially designed
for subject-independent evaluation. To address the data
distribution shift problem, we incorporate a domain dis-
criminator in our model to constrain the features extracted
from training (source) data and test (target) data to have
similar distributions.

To sum up, our proposed ATDD-LSTM model not only
extracts discriminative emotion-related features by learning
the nonlinear relationships between EEG channels, but also
constrains a domain-invariant data representation through
a global domain discriminator. We consider a multi-channel
EEG signal from different electrodes as a channel sequence,
which allows us to use LSTM (typically applied for tempo-
ral feature extraction) to extract sequential features, taking
nonlinear channel relations into account. Then we feed
the sequential features to two network branches, namely
a domain discriminator and an attention-based encoder-
decoder. The domain discriminator is used to distinguish
which domain (training data or test data) the input comes
from, to narrow down the distribution shift. The attention-
based encoder-decoder enables the representation of EEG
features to focus on emotion-related features and maps the
encoded features into a label space for classification. A
reconstruction process (decoder) aims to improve the perfor-
mance of the encoder. We demonstrate the effectiveness of
our proposed ATDD-LSTM model on three main benchmark
EEG emotional databases (DEAP [2], SEED [21] and CMEED
[16], [17]). Besides, we also conduct ablation studies, which
show the effectiveness of our domain discriminator module
and attention mechanism. In particular, we make the follow-
ing contributions:

e We apply the LSTM to the EEG channel sequence
to characterize nonlinear relations among multi-
channel EEG signals.

e We introduce the attention mechanism in our model
to make the features focus on emotion-related aspects
of the EEG signals when different emotion cate-
gories are concerned. Results show that the attention
mechanism is effective in selecting emotion-related
channels.
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e We introduce a domain discriminator to constrain
the feature distributions between training and test
domains to be similar, which addresses the data
distribution shift problem in cross-subject and cross-
session scenarios, making the learned model more
practically useful.

2 RELATED WORK
2.1 Emotion Models

In general, two widely used emotion models exist for char-
acterizing the emotional space: one is the discrete model
and the other is the dimension model. In the discrete model,
the emotional space is described by a few basic discrete
emotions. Although there is no consensus reached for what
emotions are “basic”, many studies use at least six basic
emotions: joy, sadness, surprise, fear, anger, and disgust [29].
In the dimension model (e.g., [30]), the emotional space is
characterized with continuous coordinates in two or three
dimensions, i.e., the valence-arousal or valence-arousal-
dominance dimensions. Specifically, the valence dimension
ranges from negative to positive, the arousal dimension
ranges from calm to peaceful, then to active and finally
to excited, and the dominance characterizes an individual’s
status ranging from in control to being controlled. The ATDD-
LSTM method proposed in this paper can be used for both
emotion models.

2.2 EEG Features for Emotion Recognition

Feature extraction plays an important role in EEG-based
emotion recognition [31]. A variety of feature extraction
methods have been proposed and the obtained EEG features
can be generally divided into three categories: time-domain
features, frequency-domain features and time-frequency
features.

Time-domain features mainly capture the temporal sta-
tistical information of EEG signals. Some representative
time-domain EEG features include Hjorth feature [32], frac-
tal dimension feature [33] and higher order crossing fea-
ture [34], etc. Frequency-domain features mainly capture the
emotion information from the frequency domain perspec-
tive. For extracting frequency-domain features, it is essential
to decompose the EEG signal into several frequency bands
(e.g., 6 band (1-3Hz), # band (4-7Hz), o band (8-13Hz),
8 band (14-30Hz), and ~ band (31-50Hz)) [35], [36]. Then
the EEG features can be extracted from each frequency
band, respectively. Popular EEG frequency-domain feature
extraction methods include Fourier transform (FT), power
spectral density (PSD), wavelet transform (WT) [37] and
differential entropy (DE) [36].

Time-frequency features capture both the temporal in-
formation and the information from the frequency domain,
which are extracted from the unit time signal segmented
by a sliding window. Based on time-frequency features,
existing research achieved considerable success, e.g., Liu et
al. [11] recognized emotions in real-time using the short-
time Fourier transform (STFT) with a 2-second sliding time
window for feature extraction. Zheng et al. [38] extracted
two types of features, namely, power spectral density (PSD)
and differential entropy (DE), using STFT with a 4-second
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time window without overlapping for EEG-based emotion
recognition. In this paper, we use the DE feature from
the STFT with a 1-second sliding time window for subtle
temporal analysis.

2.3 EEG-based Emotion Recognition Models

Many emotion recognition methods have been proposed
based on EEG signals. The reader is referred to [37] for
a comprehensive overview. The majority of these research
works utilize traditional machine learning algorithms to rec-
ognize/predict emotional states. For example, Liu et al. [11]
adopted support vector machines (SVM) to recognize seven
discrete emotions and neutrality. Piho and Tjahjadi [19]
compared three supervised learning algorithms — SVM,
K-nearest neighbors (KNN), and naive Bayes (NB) — and
KNN achieves the best accuracy when recognizing valence.

Recently, deep neural networks have been success-
fully introduced into EEG-based emotion recognition and
achieved the state-of-the-art performance. Zheng and
Lu [21] fed PSD, DE, the differential asymmetry feature
(DASM), the rational asymmetry feature (RASM) and the
differential caudality feature (DCAU) into a Deep Belief
Network (DBN) for extracting high-level emotional features,
and the features are used for emotion classification. Tang
et al. [39] proposed a bimodal deep denoising autoencoder
and a bimodal-LSTM model that uses wavelet EEG features
as input. A deep framework that adopted a convolutional
neural network (CNN) kernel to extract emotional related
features using the input of time, frequency, and electrode
location features was proposed in [40].

While many existing deep models can perform well in
EEG-based emotion recognition, less attention is paid to ex-
tract the EEG feature that optimizes the functional relations
among different EEG channels/electrodes. A few pioneer-
ing research works [12], [13], [14] attempted to address this
issue. Li et al. [12] proposed a preprocessing method which
uses wavelet and scalogram transform to encapsulate the
multi-channel EEG signals into grid-like frames, and hybrid
CNN and recurrent neural network (RNN) to extract task-
related features. By solving a group feature selection prob-
lem from raw EEG frequency features, Zheng [13] proposed
a group sparse canonical correlation analysis for simulta-
neous selection from EEG multi-channels. A state-of-the-art
work [14] characterized the 2D topographical map of EEG
electrodes on the scalp with an adjacency matrix. The matrix
was further fed into a graph convolutional neural network
for optimizing weights in the matrix entities. However, the
adjacency matrix can only characterize linear relations. In
this paper, we exploit the LSTM network model [41] that
has the ability to describe nonlinear relations.

2.4 Attention Mechanism and Domain Adaptation

The attention mechanism is widely used in various vi-
sual and natural language processing tasks (e.g., [42],
[43], [44], [45], [46]), since it can for example locate the
correct regions for image captioning or concentrate on the
key part of a sentence given the aspect. Inspired by [46], we
propose an attention mechanism for enforcing the model
to attend to some automatically selected key information of
multi-channel EEG signals in response to a specific emotion.
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In practical applications related to EEG-based emotion
recognition, data distribution shift exists between subjects
and across sessions of the same subject. Due to the non-
stationary characteristics of EEG and the wild environ-
ments, an EEG-based emotion recognition model trained
with training data usually does not generalize well to the
test data. This domain shift phenomenon has been ad-
dressed in general classification problems [47] [48], where
domain adaptation is used to constrain the features to be
invariant to the change of domains. For example, Tzeng
et al. [49] proposed an effective Adversarial Discriminative
Domain Adaptation (ADDA) method for cross-domain digit
classification tasks. Long et al. [50] proposed Conditional
Domain Adversarial Networks (CDANSs) for aligning dif-
ferent domains of multimodal distributions in classification
problems. For EEG-based emotion recognition, Luo et al.
[51] proposed a novel Wasserstein Generative Adversar-
ial Network Domain Adaptation (WGANDA) framework,
which consists of GAN-like components and a two-step
training procedure with pre-training and adversarial train-
ing to decrease the domain shift. An alternative way to
address the domain shift is to use the domain discrimina-
tor to minimize the discrepancy between two probability
distributions [25]. However, none of these research works
can handle multi-channel EEG signals. In this paper, we
incorporate a domain discriminator in our framework to
generate domain-invariant data features.

3 OVERVIEW OF THE ATDD-LSTM MODEL
3.1 Input EEG Signal Representation

Five EEG features — differential entropy (DE), power spec-
tral density (PSD), differential asymmetry (DASM), rational
asymmetry (RASM), differential caudality (DCAU) — are
evaluated in [14] for multichannel EEG signal analysis, in
which DE is reported to achieve the best overall perfor-
mance in emotion recognition. Following [14], we use the
DE features of multichannel EEG signals as input to the
proposed ATDD-LSTM model.

DE characterizes the logarithm energy spectrum in a
certain frequency band. Under the assumption that the
EEG signal of a specific channel in a frequency band is
approximately a Gaussian distribution, the computation of
DE can be formulated as [21]:

< 1 (v — p)? 1
X)=— / ex
S —c0 V2mo2 P 002 & V2mo?
2
— 1
exp %dm =5 log 2meo?, @)

where X is a given segment of EEG signal with the Gaus-
sian distribution N (p, 0?). Specifically, in the public EEG
emotional databases (DEAP, SEED and CMEED) evaluated
in Section 5, each subject has several recorded samples
(called trials) and each sample is a length of multichannel
EEG signals elicited under a specified emotion. For each
sample, we use short-time Fourier transform with a non-
overlapped Hanning window of one second to extract DE
in each channel of five different frequency bands, ie., §
band (1-3Hz), # band (4-7Hz), o band (8-13Hz), 8 band (14-
30Hz), and v band (31-50Hz). The sizes of DE features for
1-second windows are (32,4), (62,5) and (30, 5) for DEAP,
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Figure 1. Our ATDD-LSTM model for emotion recognition based on multichannel EEG data. It consists of a feature extractor, an attention-based
encoder-decoder and a domain discriminator. The input to our model is a differential entropy (DE) matrix containing the signal representation
extracted from each EEG channel separately. The channel sequential feature extractor aims at capturing sequential features from the channel
sequence by using a 2-layer LSTM. The attention-based encoder-decoder learns the importance weights among different channels and emotion
classes, and produces classification probabilities. A reconstruction process is also included to add a further constraint to improve learning. The
domain discriminator is used to narrow down the feature distribution shift of training set and test set, and therefore helps generate domain-invariant
features. See the text of the paper for detailed definition of symbols. In a nullshell, The output of the feature extractor is fed into the attention-based
encoder-decoder and the domain discriminator in parallel, and these two modules help extract emotion-related and domain-invariant features
through adversarial learning. The final classifier is included in the encoder-decoder module.

SEED and CMEED databases', separately. We compute DEs
of all windows and concatenate them to form a feature
vector for representing one sample.

In the proposed ATDD-LSTM model, the input matrix
is denoted as s, corresponding to the k-th sample, s, =
[Sk.1ySk2 s Skm]? € R where d, is the dimension
of DE feature vector containing DE features from different
frequency bands, and sy, ; is a d,; dimensional vector, which
is a time-frequency feature corresponding to the i-th channel
of the k-th sample.

3.2 Proposed Model

We illustrate the framework of the proposed ATDD-LSTM
model in Figure 1. Our model consists of three modules:
a sequential feature extractor, a domain discriminator and
an attention-based encoder-decoder. The sequential feature
extractor utilizes a 2-layer LSTM to capture the sequential
feature of multi-channel EEG recordings. The domain dis-
criminator is designed to reduce the effect of the distribution
shift between features of training and test sets and help the
feature extractor to produce domain-invariant features. The
attention-based encoder-decoder includes two parts. One
uses the attention mechanism to focus on emotion-related
channels and construct an integrated representation, and
then predicts the classification probability. The other com-
bines the above feature and probability to perform recon-
struction, which leads to an encoder-decoder. The encoder-
decoder adds further constraints to facilitate learning. By
operating the encoder-decoder module m times, one for
each emotion category, where m is the number of emotion
categories, we can get a prediction probability for emotion
recognition. The implementation details of these modules
are presented below.

1. In DEAP, § band is not used, while all five bands are used in SEED
and CMEED.

4 SYSTEM IMPLEMENTATION DETAILS
4.1 Channel Sequential Feature Extractor

To extract sequential features for channel sequences, we
utilize a long short-term memory (LSTM) module to learn
the sequential dependencies. Formally,

(Chytr hieyt) = LSTM (Chp—1, Peyt—15 Skt) (2

where memory cell ¢+ and hidden state hy ; are functions
of previous cj +—1, hit—1 and input vector sy, ; for channel ¢
of the k-th sample.

Although LSTM is typically used for temporal se-
quences, here we apply LSTM to EEG channel sequences.
Note that we order the EEG channels based on the channel
ordering methods of each independent database (refer to
Figure 2). Therefore, the LSTM is designed to receive the
input as a series with d, (the size of DE feature vector)
variables and n (the number of channels) steps. Finally, we
form a matrix> Hy = [hg1,hk2,..., hikn] and take Hy as
the input to the discriminator and encoder-decoder. In this
way, our model can capture the relationships between EEG
channels, which is effective for EEG signal processing. Note
that an alternative approach is to use the LSTM block to
process a batch of n variables over d, steps. This instead
learns the relationship between different frequencies. By
exploiting the between-channel dependencies, our proposed
approach better extracts useful features; see the ablation
study in Section 5.5 (Table 8).

Our framework can learn the nonlinear relationships
between EEG channels regardless of the ordering method.
To demonstrate this, we reorder the channel sequence of
DEAP using an ordering method similar to SEED (see the
DEAP scalp in the dashed box of Figure 2). Specifically,
the ordering method depends on the partition of five brain

2. In our experiment, the dimension of each vector hy, ; is 1,024.
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Figure 2. Order and location of EEG electrodes in three main EEG databases used in this paper. The EEG signals of these databases were
recorded according to the international 10-20 system. In the scalp map of each EEG database, we use numbers in red to show the used order
of electrodes. These databases were recorded according to different orders of EEG electrodes based on different partition strategies of the brain.
SEED and CMEED EEG electrodes are ordered following the rule from left to right and front to back depending on the partition of five brain function
regions, and DEAP EEG electrodes are ordered based on the distance between electrodes with the hemisphere restriction. To demonstrate the
insensitivity of our method to the order of electrodes, we also show the order of electrodes sorted based on the same rule as SEED and CMEED in

the scalp map of the DEAP database inside the dashed box.

function regions: Frontal (F), Temporal (T), Parietal (P),
Occipital (O) and Central (C) [52]. We then performed
experiments on the DEAP database following the subject-
independent protocol after electrodes were reordered, and
achieved the two binary classification accuracies (mean ac-
curacy and standard deviation (%) ) of 68.36/06.14 for va-
lence, 70.63/07.21 for arousal. Compared with the results of
DEAP with default channel ordering (valence: 69.06/06.37,
arousal: 72.97/06.57), the accuracies are similar, showing
that our ATDD-LSTM model is robust to different EEG
electrode orders. More details of experimental setup are
given in Section 5.

4.2 Attention-based Encoder-Decoder

The attention-based encoder-decoder (AT) module consists
of an encoder and a decoder. As a specific channel may
be informative to identify whether the arousal dimension
is calm or active but worthless for recognizing whether
the valence dimension is negative or positive. The encoder
takes advantage of the attention mechanism to capture the
relationship between EEG channels and different emotion
classes, and construct a vector representation for the EEG
sample. Then, it maps the newly-formed feature to a prob-
ability that indicates how likely the sample falls into this
emotion class. The decoder mainly combines the outputs
of the encoder to reconstruct an EEG representation. By
forming an encoder-decoder, this reconstructed vector can
optimize the function of the encoder during back propaga-
tion.
Specifically, we perform the encoder through

1 n
U]}CL = E Z hk7i (3)
i=1
eﬁc - hk,iwa,c (4)
X exp(eﬁc) )
Gie = <= 5
e 2=t eacp(eé?yc)
n
U= D waaie (6)
i=1

where hy; is the feature of the i-th channel in the k-th
EEG sample, and w,. € R% is the parameters of c-th
emotion class for the attention layer. ¥ is the attention
importance score for each channel, corresponding to the

i,c

c-th emotion class, which is obtained by multiplying the
hidden vector matrix with the weight matrix and normaliz-
ing it to a probability distribution a¥ = [a} ., a5 ., ,al ]
over the channels (see Section 5.5 in which we visualize
them for better understanding). v} € R is the average
of input feature vectors over channels, and v € R ig
a weighted sum over features of all channels, which de-
emphasizes the irrelevant channels specific to emotion ¢ by
the attention mechanism. Therefore, the attention module
helps the network to learn discriminative features to make
better prediction for emotion classification.

After we obtain the feature vgc, the probability that
sample k£ belongs to the emotion class ¢ can be computed
as follows

Pr. = sigmoid(W? - v+ bP) (7)

where W2 and 02 are learnable parameters corresponding
to the c-th emotion class. During the decoding stage, the re-
construction representation of an input instance is obtained
by multiplying probability p;. and weighted representation
vf , ie, ry, = pg.vf_. Consequently, v and ry, share the
same space and they are further compared to constrain the
learning (see more details in Eq. (14) in Section 4.4).

By performing the whole encoder-decoder process m
times, one for each emotion class, we can form a proba-
bility vector Py = [pr,; Pkys " > Pk, |, Which is the primary
criterion for classification.

4.3 Domain Discriminator

The domain discriminator (DD) aims to judge whether the
EEG samples come from source (training) or target (test)
domain. Through weakening the classification ability of
DD, the feature extractor is updated in the direction of
generating more domain-invariant features. As a result, the
model is able to solve the feature distribution shift problem.
Specifically, we begin with concatenating the input hid-
den vector matrix H}, according to the channel dimension
to form vector dj. Since the overall aim is to maximize DD
loss, we apply a gradient reversal layer (GRL) [53] before
feeding dj, to a linear transformation and ReLU activation
to extract the domain-related feature d%c in Eq. (8), where wt
and b! are the weight matrix and bias vector, respectively.

d. = relu(W'-dy + b)) (8)
di = softmax(W?* - d 4 b*) )
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The function of GRL is to change the gradient sign and
pass the gradient backward during back propagation (BP).
Therefore, it achieves the reversion of updating direction.

Finally, we obtain the probability of being training sam-
ples or test samples by mapping d}, to a two-dimensional
space and applying softmax function in Eq. (9), where W*
and b° are the weight matrix and bias vector learned during
the training process.

4.4 Training Objective

Denote Xr = [Xg, X7]| to be the entire data with Xg as a
set of labeled (training) data and Xt as a set of unlabeled
(test) data. Let Y be the labels associated with Xg. We refer
to Ds = {(Xs,Ys)} as the source (training) domain and
Dr = {Xr} as the target (test) domain. In order to train
the domain discriminator, we build a binary label vector
YP = [Y&P,YP], where elements of YL are set to 1, and
those of Y2 are set to 0.

Algorithm 1 Training of ATDD-LSTM

Input:
Training data set X5 and its ground-truth label set Ys;
Test data set Xr;
Source (training) domain labels Y&, Vy2 € Y2 y2 =1,
and target (test) domain labels Y./, Vy» € Y2 yf = 0;
Learning rate .

Output: o
Parameters: 0y, 6,, 04.

1: Use Xg and Yy to update the parameters of attention-
based encoder-decoder and feature extractor:
0o 0 — agge, Oy 0 — agge;

2: Use X, X7, Y2 and Y to update the parameters of
the domain discriminator and feature extractor:
Gdeﬁd—a%—xﬂf(—@—a%;

3: Go to step 1 until convergence, or the algorithm reaches
the maximum number of iterations (set to 256 in our
experiments);

4: return (07,0,,0,) as trained parameters G I’ 0., 0,).

The overall training objective of the ATDD-LSTM model
can be formulated as

L(XR;05,04,0q) = Lao(Xs;07,04) — La(XR;07,0q) (10)

where 0¢, 0, and 0, are parameters of the sequential fea-
ture extractor, attention-based encoder-decoder and domain
discriminator, respectively, and L, and L, are loss functions
of the attention-based encoder-decoder module and domain
discriminator module. We can optimize the objective func-
tion by

(éf7 éa) = arg min La(XS; (afa ea)a éd) (11)
05,04
éd = argmax Ld(XR; éf, éa, 0d) (12)

04

The loss function of the attention-based encoder-decoder
module L, aims to minimize the reconstruction error and
maximize the probability for the emotion corresponding to
the true label, while maximizing the reconstruction error
and minimizing the probability for any other emotion class.
To achieve these, we adopt the contrastive max-margin loss

6

which has been used in many studies [54], [55]. The loss L,
consists of the probability objective function J(6y,6,) and
the reconstruction objective function U (6, 0,,).

Given an EEG sample sj and its true label y;, the loss
functions of the attention-based encoder-decoder module
can be formulated as

J(Op.0a) = D max(0.1+> wepr) — (13)
k i=1

U0f,0,) = Zmax(O,lJrZykinTki) (14)
k i=1

where yy, is set to —1 only if ¢ is equal to y. Otherwise,
it is set to 1. The probability objective function J(6y,6,)
guides the model to perform correct classification, and the
reconstruction objective function U (6, §,) ensures that the
reconstructed vector 7y, is similar to the instance represen-
tation v}, while making 7, (i # yy.) distinct from v}.

For the loss of domain discriminator module Lg, we
adopt cross-entropy as the loss function

La(Xgi05,0a) = =) _ qrlogd;, (15)
2

where g, is the one-hot encoding of domain label in YRD . By
maximizing Lg4, the feature extractor is optimized to discard
the domain-specific components of the input. Therefore, we
can decrease the distribution shift between source and target
domains.

We train the encoder-decoder and the discriminator iter-
atively, updating 6, 6, by minimizing L, and maximizing
Lg, and updating 64 by minimizing L ;. We convert this min-
max goal to a minimum loss function L = L, + (—Lg)
using a gradient reversal layer (GRL) (refer to Figure 1),
which changes the gradients to have an opposite sign during
back-propagation. Thus the feature extractor can generate
data representations that minimize the loss of encoder-
decoder and maximize the loss of the discriminator. The
pseudo-code of overall training process is summarized in
Algorithm 1.

5 EXPERIMENTS

In this section, we present experimental results on three
EEG databases, i.e., the DEAP database [2], the SJTU Emo-
tion EEG Database (SEED) [21] and CAS Movie-induced
Emotion EEG Database (CMEED) [16], [17] which are com-
monly used for emotion recognition evaluation. We com-
pare our proposed ATDD-LSTM model with four represen-
tative methods: one classic machine learning method (SVM),
one classic deep network model called deep belief network
(DBN) [21], two state-of-the-art deep network models called
graph convolutional neural network (GCNN) [56] and dy-
namic GCNN (DGCNN) [14]. SVM and DBN can only
process EEG signals channel by channel, while GCNN and
DGCNN can handle multichannel EEG signals. In addition,
we also present an ablation study, showing the effectiveness
of the feature aggregation scheme in ATDD-LSTM.
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5.1 EEG Databases for Emotion Recognition

The DEAP database [2] contains EEG data of 32 participants,
which was collected via 32 EEG electrodes from the subjects
when they were watching 40 one-minute long excerpts
of music videos. Participants rated each video in terms
of the levels of arousal, valence, like/dislike, dominance
and familiarity ranging from 1 to 9. In our study, the 8
peripheral channels were removed and only EEG signals
were used for emotion recognition. The EEG signals were
recorded from 32 EEG electrodes according to the interna-
tional 10-20 system. We segment the valence dimension to
positive/negative and the arousal dimension to high/low
arousal, both are binary classification problems. To balance
the classes, we follow the same threshold and partition
strategy in [2]. In DEAP, a bandpass filter with frequency
range 4.0-45.0Hz was applied. We firstly decompose the
EEG signals into 4 frequency bands, including ¢ band (4-
THz), a band (8-13Hz), § band (14-30Hz) and ~ band
(31-45Hz). Then for every frequency band, we extract DE
features from each channel.

The SEED database contains EEG data of 15 Chinese
subjects, which was collected via 62 EEG electrodes from
the subjects when they were watching 15 Chinese film clips
(the duration of each film clip is about 4 minutes). Three
emotions (positive, neutral and negative) were elicited. A
self-assessment was conducted for each subject after the
film clip was watched. One key difference between SEED
and DEAP is that for the same subject, SEED contains three
sessions at a time interval of one week or longer. Within each
session, the same 15 movie clips were watched by every
subject. These settings make it possible for us to conduct
cross-session experiments, thereby validating the stability
and generalizability of our model. In SEED, a bandpass filter
with frequency range 1.0-75.0Hz was applied. We extract
the DE features in five frequency bands (6, 6, o, 8 and v
bands).

The CMEED database contains EEG data of 37 Chinese
subjects, which was collected via 30 EEG electrodes from the
subjects when they were watching 16 two-minute Chinese
film clips. After watching, participants rated each video in
terms of the levels of arousal and valence ranging from 1
to 9. The EEG signals in one trial were recorded from 30
EEG electrodes according to 10-20 system with a sampling
rate of 128 Hz. We further segment the valence dimension
to positive/negative and the arousal dimension to high/low
arousal, both are binary classification problems. To balance
the classes, we set the threshold of valence to 4 (i.e., > 4
is positive) and arousal to 6 (i.e., > 6 is high arousal). In
CMEED, a bandpass filter with frequency range 1.0-45.0Hz
was applied. In the same way as the SEED database, 5
frequency bands (4, 8, o, 5 and ) are extracted on CMEED.
We extract DE features on different frequency bands and
channels respectively.

Experiment protocols. Based on the three databases,
we conduct two kinds of experiments to evaluate the
performance of EEG-based emotion recognition: subject-
dependent and subject-independent. On the SEED database,
an additional cross-session evaluation is also performed.

Table 1
Mean and standard deviation (%) of accuracies achieved by SVM,
DBN, GCNN, DGCNN and ATDD-LSTM using 9-vs-6 subject
dependent protocol on the SEED database.

Method Accuracy (mean/std)
SVM 83.99/ 09.72
DBN 86.08/ 08.34

GCNN 87.40/09.20

DGCNN 90.40/ 08.49

ATDD-LSTM 91.08/06.43
Table 2

Mean and standard deviation (%) of accuracies achieved by DBN,
DGCNN and ATDD-LSTM using leave-one-session-out cross-validation
subject-dependent protocol on the SEED database.

Method Accuracy (mean/std)
DBN 56.82/ 10.97
DGCNN 73.06/ 10.36
ATDD-LSTM 79.26/12.79

5.2 Evaluation on SEED Database

The EEG data in the SEED database is associated with
three emotional labels, i.e., positive, neutral and negative.
Therefore, we perform a three-class classification task for
evaluation.

Subject-dependent evaluation. We follow the protocol
of [14], [21] to evaluate different methods. Specifically, for
each subject, there are 15 trials of EEG data in one session.
These trials are divided into two parts: the first 9 trials of
EEG data are used as the training data, and the remain-
ing 6 trials serve as the test data. After the recognition
accuracy corresponding to each subject is obtained, the
average classification accuracy and standard deviation over
sessions of all 15 subjects are computed. The results are
summarized in Table 1, indicating that ATDD-LSTM has the
best performance compared with SVM, DBN, GCNN and
DGCNN. Note that DGCNN, GCNN and DBN methods
can also achieve competitive results and are better than
SVM. Moreover, the DGCNN method is specially designed
as an improved version of GCNN for multichannel EEG
signal analysis [14]. Thereafter, we only compare DBN and
DGCNN with our ATDD-LSTM methods.

Cross-session evaluation. Compared with the other two
databases, a unique characteristic of the SEED database
is that it consists of three sessions for each participant
(recorded at different times). We use this characteristic to
investigate the stability of different recognition methods
across sessions. To the best of our knowledge, very few
research works perform cross-session experiments on the
SEED database. However, this experiment setting is much
more challenging and useful for practical applications; in
other words, it predicts the emotion of the same subject at
different times when the same stimulus is received, and
its recognition accuracy shows the stability of different
methods over time. To do the cross-session evaluation,
we perform leave-one-session-out cross validation for each
subject. Specifically, for each subject, its two sessions of EEG
data are used as the training data, and the remaining one
session serves as the test data. The recognition accuracy
corresponding to each subject is obtained by averaging
on three-fold cross validation study. Finally, the average
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recognition accuracy and standard deviation over all 15 sub-
jects are computed. The results are summarized in Table 2,
showing that ATDD-LSTM achieves the best recognition
performance.

Table 3
Mean and standard deviation (%) of accuracies achieved by DBN,
DGCNN and ATDD-LSTM using leave-one-subject-out cross-validation
subject independent protocol on the SEED database.

Method Accuracy (mean/std)
DBN 53.91/ 11.15
DGCNN 79.95/ 09.02
ATDD-LSTM 90.92/01.05
Table 4

Mean and standard deviation (%) of accuracies achieved by DBN,
DGCNN and ATDD-LSTM using leave-one-clip-out cross-validation
subject dependent protocol on the DEAP database.

Accuracy
Method Valence (mean/std) | Arousal (mean/std)
DBN 60.69/ 7.20 64.63/ 10.19
DGCNN 86.06/ 02.61 85.61/ 02.44
ATDD-LSTM 90.91/12.95 90.87/11.32
Table 5

Mean and standard deviation (%) of accuracies achieved by DBN,
DGCNN and ATDD-LSTM using leave-one-subject-out cross-validation
subject independent protocol on the DEAP database.

Accurac
Method Valence (mean/std) Al}r,ousal (mean/std)
DBN 56.76/ 07.26 58.98/ 13.60
DGCNN 59.29/ 06.83 61.10/ 12.28
ATDD-LSTM 69.06/06.37 72.97/06.57

Subject-independent evaluation. We apply the leave-
one-subject-out cross validation strategy to evaluate the
emotion recognition. In each fold, the EEG data of 14 sub-
jects is used for training and the remaining one subject’s
EEG data is used as the test data. After repeating 15 folds
on 15 subjects, the classification accuracy and standard
deviation are computed by averaging on all subjects. The
results are presented in Table 3, showing that ATDD-LSTM
outperforms DBN and DGCNN.

5.3 Evaluation on DEAP Database

Following the same threshold and partition scheme in [2],
we classify the emotion labels on the DEAP database into
high/low arousal and positive/negative valence. Then we
perform a binary classification task for evaluation.

Subject-dependent evaluation. We utilize leave-one-
clip-out cross validation for each subject to evaluate differ-
ent methods. Specifically, for all the 40 trials of one subject,
we select 39 trials of EEG data as the training data and
leave 1 trial as the test data. The experiments are repeated
until the samples of all stimuli for the same subject are used
once as the test data. The average classification accuracy and
standard deviations of 40 x 32 experiments are computed as
the final performance measure. The results are summarized
in Table 4, showing that ATDD-LSTM achieves the best
performance.

Table 6
Mean and standard deviation (%) of accuracies achieved by DBN,
DGCNN and ATDD-LSTM using leave-one-clip-out cross-validation
subject-dependent protocol on the CMEED database.

Accuracy
Method Valence (mean/std) | Arousal (mean/std)
DBN 53.69/ 17.68 71.79/ 17.53
DGCNN 74.47/ 08.46 81.28/ 09.02
ATDD-LSTM 91.53/09.00 91.55/11.32
Table 7

Mean and standard deviation (%) of accuracies achieved by DBN,
DGCNN and ATDD-LSTM using leave-one-subject-out cross-validation
subject-independent protocol on the CMEED database.

Accuracy
Method Valence (mean/std) | Arousal (mean/std)
DBN 60.58/ 13.37 56.79/ 25.76
DGCNN 66.86/ 10.24 65.52/ 15.80
ATDD-LSTM 94.21/05.88 88.03/06.32
Table 8

Mean and standard deviation (%) of accuracies achieved by LSTM,
ATDD-LSTM, ATDD-LSTMfred, AT-LSTM and DD-LSTM using
leave-one-subject-out cross-validation subject independent protocol on
SEED database.

Method Accuracy (mean/std)
LSTM 77.48/ 06.78
AT-LSTM 84.15/ 06.65
DD-LSTM 87.11/ 07.22
ATDD-LSTMIred 88.15/06.04
ATDD-LSTM 90.92/01.05
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Figure 4. Visualization of feature vectors v,’g (without attention layer) and
vE (with attention layer) for two samples on the binary classification
task of the arousal dimension and the valence dimension. Each column
represents one feature dimension.

Subject-independent evaluation. The same as on SEED,
we apply the leave-one-subject-out cross-validation strategy
for evaluation. After repeating 32 folds on 32 subjects, the
classification accuracy and standard deviation are computed
by averaging on all subjects. The results are presented in
Table 5, showing that ATDD-LSTM outperforms DBN and
DGCNN.

5.4 Evaluation on CMEED Database

Similar to DEAP, we set thresholds to classify the emo-
tion labels on the CMEED to high/low arousal and posi-
tive/negative valence. Then we perform a binary classifica-
tion task for evaluation.

Subject-dependent evaluation. The same leave-one-
clip-out cross validation was applied as for DEAP. The
results are summarized in Table 6, showing that ATDD-
LSTM achieves the best performance.
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Figure 3. Visualization of attention allocation. In the heat map, the horizontal axis represents the number of channels and each grid represents the
attention weight on this channel, and the vertical axis shows arousal dimension and valence dimension. The scalp map represents the contribution of
all electrodes to the binary classification on the arousal dimension or the valence dimension of emotion, with the electrode location corresponding
to the grid in the heat map. Notably, since the SEED database is only annotated with the valence dimension of emotion (positive, neutral and
negative), only the scalp map associated with the valence dimension is shown.

Subject-independent evaluation. The same leave-one-
subject-out cross validation was applied as for SEED and
for DEAP. The results are summarized in Table 7, showing
that ATDD-LSTM achieves the best performance.

5.5 Ablation Study

We conduct an ablation study on the SEED database to val-
idate the effectiveness of each component in our proposed
ATDD-LSTM model. ATDD-LSTM is built upon LSTM with
two additional modules: attention-based encoder-decoder
and domain discriminator. Specifically, we compare our
complete ATDD-LSTM model with three variant models:

e LSTM: only the basic LSTM model without the
attention-based encoder-decoder and the domain
discriminator;

e AT-LSTM: the LSTM model with only attention-
based encoder-decoder;

e DD-LSTM: the LSTM model with only the domain
discriminator.

Recall that to capture the relationship among different chan-
nels in our proposed ATDD-LSTM model, the LSTM module
uses a series with d,, (the size of DE feature vector) variables
and n (the number of channels) steps as input. An alterna-
tive approach is to use the LSTM block to process a batch
of n variables over d,, steps. This instead learns the relation-
ship between different frequencies. We call this alternative
approach ATDD-LSTM™4. The results of ablation study are
summarized in Table 8, showing that ATDD-LSTM is indeed
the best models among these variant models.
Visualization. To better understand how attention mech-
anism learns to solve emotion recognition tasks, methods
to visualize functional aspects of attention mechanism and

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Subject ID

Figure 5. Quantitative evaluation of the similarity between feature vec-
tors, according to the leave-one-subject-out cross-validation experi-
ments on DEAP. The horizontal axis represents individual subjects, and
the vertical axis shows the Euclidean distance between v’ (or vg ) of
samples belonging to the same category, which were selected randomly.

feature maps can be helpful. The visualization of attention
allocation in Figure 3 shows the qualitative results. In order
to analyze the effectiveness of attention mechanism more
intuitively, we map the attention weights to the electrode
location on scalp. For the binary classification task on the
arousal dimension or valence dimension, different channels
may not contribute equally. From the scalp map, we observe
that the frontal lobe and occipital lobe are correlated with
the arousal dimension of emotion, and the parietal lobe and
temporal lobe reflect obvious lateral partial phenomenon for
the valence dimension of emotion. Moreover, we can also
find that the right hemisphere activity is more related to
the emotional states on the valence dimension. This visu-
alization result demonstrates the effectiveness of attention
mechanism in ATDD-LSTM for capturing emotion-related
channels.

We further visualize the feature vectors recorded in
the leave-one-subject-out cross-validation experiments on



SUBMITTED TO IEEE TRANS. AFFECTIVE COMPUTING

Training set ~ © Test set

(a) AT-LSTM (b) ATDD-LSTM

Figure 6. Visualization of feature embedding using t-SNE on the training
(source) set and test (target) set of DEAP. (a) shows the feature space
of using AT-LSTM (the method without the domain discriminator). (b)
shows the feature space of using ATDD-LSTM.

DEAP for demonstrating the effectiveness of attention
mechanism. Specifically, v} is a simple average of hidden
vectors from LSTM, while vy is a weighted sum of them.
To make the visualization clearer, we extract the principal
components using a Kernel PCA (KPCA) with a Radial Basis
Function (RBF) kernel. The dimension is reduced from 1,024
to 37 for preserving 99% of differences between features. As
shown in Figure 4, each row corresponds to one sample,
and each column represents a feature dimension. We show
the visualization of feature vectors for two samples corre-
sponding to the arousal dimension and valence dimension
of emotion. The ground-truths of two samples are low
arousal dimension and low valence dimension (negative),
respectively. Obviously, the use of the attention layer makes
a difference to vy, by balancing the weight of each channel.
Specifically, our framework with the attention layer can
extract more consistent feature vectors for predicting the
arousal dimension and the valence dimension of emotion.
In addition, Figure 5 further confirms this finding from the
overall perspective.

Finally, we visualize the feature distributions in 2-
dimensional space using t-SNE to show the effectiveness of
domain discriminator in reducing feature distribution shift.
In Figure 6, we present the training feature distribution and
test feature distribution from ATDD-LSTM and AT-LSTM
in the same 2D space, respectively. We observe that our
model with the domain discriminator can ensure the feature
distribution coverage is closer and the data representations
are invariant, with respect to the training or test domain.

6 DiscussioN

In this paper, we have proposed the ATDD-LSTM model for
EEG-based emotion recognition. Both subject-dependent ex-
periments and subject-independent experiments on DEAP,
SEED, and CMEED databases have demonstrated that our
model can achieve state-of-the-art results. Furthermore, we
used the ablation study results to show that the integration
of attention mechanism and domain discriminator in our
base model is beneficial to emotion recognition.

For EEG-based emotion recognition, most previous stud-
ies have shown that the emotional states can be distin-
guished by using all the electrodes on the scalp [35]. Based
on the previous research of the regions related to emotion
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recognition in the brain [57], Zheng et al. [38] selected
six symmetrical temporal electrode locations, excluding the
frontal lobe, for emotion recognition. However, the frontal
asymmetry has been considered to be correlated with the
arousal dimension and the valence dimension of emotion in
[58], [59], [60]; therefore, we applied the attention mecha-
nism to select emotion-related electrodes dynamically. The
results in our study have demonstrated that the frontal lobe
and occipital lobe are correlated with the arousal dimen-
sion of emotion, and the parietal lobe and temporal lobe
reflect obvious lateral partial phenomenon for the valence
dimension of emotion (refer to Figure 3). According to the
ablation study results in this paper, the attention mechanism
can focus on selecting electrodes that are useful for emotion
recognition.

Due to the noise from the changing environments and
the non-stationary characteristics of EEG, the critical fac-
tor restricting the establishment of the subject-independent
model is the difference in data distribution among subjects.
From a practical perspective, we try to embed domain
adaptation and feature learning within one training pro-
cess to optimize the subject-independent model, inspired
by the domain adaptation method [53]. According to the
cross-session results and subject-independent results in the
ablation study, the domain discriminator is able to constrain
the feature extractor to obtain domain invariant features.

7 CONCLUSION

In this paper, we propose an effective attention-based LSTM
with domain discriminator (ATDD-LSTM) model, which is
a deep neural network model to recognize human emo-
tions from multichannel EEG signals. Aiming at extract-
ing dynamic and domain-invariant features, we design a
global domain discriminator for narrowing the distribution
difference between training and test domains during the
process of sequential feature extraction from LSTM. Using
an ablation study, we demonstrate that the attention mech-
anism can significantly improve the emotion recognition
performance. Finally, the subject-dependent and subject-
independent cross validation experiments on SEED, DEAP,
CMEED databases are conducted and experimental results
show that the proposed ATDD-LSTM model achieves the
state-of-the-art performance on emotion recognition.
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