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Abstract – Communications devices in a highly mobile 
environment need to minimize connection setup times 
in order to maximize useful data transfer. In this paper 
we investigate - empirically and through simulations - 
the device discovery process of Bluetooth™, a 
technology that has potential in short-range, high-
mobility applications.  In order to improve Bluetooth’s 
performance in a mobile environment, it is desirable to 
lessen the amount of time it takes to set up connections 
between two devices. We suggest three possible changes 
to the Bluetooth specification: eliminating or 
decreasing the random backoff delay in INQUIRY SCAN, 
using a single frequency train instead of two in 
INQUIRY, and a combination of the two. These simple 
changes can dramatically decrease connection setup 
times without having deleterious effects on overall 
system performance. 

 
I. INTRODUCTION 

 
One frequently cited usage example for Bluetooth is the 
pedestrian equipped with a Bluetooth-enabled device such 
as a cell phone. In this scenario, the individual receives 
information about her surroundings via Bluetooth access 
points – e.g. nearby shopping, restaurants and other 
services.  Since Bluetooth has both limited range and 
bandwidth, this mobility scenario raises some serious 
questions about the length of time it takes to establish a 
connection between two Bluetooth devices. If this process 
takes too long, then either no connection can be made or 
there will not be enough remaining time to do any useful 
data transfer. In our study, we are interested in an even 
more demanding application in which fast-moving vehicles 
would exchange information as they pass each other. In 
this environment, the Bluetooth devices are highly mobile. 
It is also likely a dense environment in which there could 
be tens or hundreds of devices in the vicinity. 
 

TABLE 1 
EFFECT OF SPEED ON CLASS 1 (20dBm) BLUETOOTH 

DEVICES 
 

Speed of Vehicle Max Time Max 1-Way Data 
km/hr m/s In Range (s) Trans. (MBytes) 

20 5.56 36.00 3.18 
40 11.11 18.00 1.59 
60 16.67 12.00 1.06 
80 22.22 9.00 0.79 
100 27.78 7.20 0.64 

 
Table 1 shows some simple speed calculations for a Class 
1 (20dBm) Bluetooth device. In these examples, one 
Bluetooth device is moving at a constant speed, and the 

other is stationary.  Since our application involves outdoor 
transmissions occurring at high speeds, we assume that a 
Class 1 Bluetooth device (100m range) will be necessary. 
 
Table 1 indicates that it is indeed possible to use Bluetooth 
in a mobile environment, provided that the expected 
amount of data transfer is fairly small. However, it is also 
clear from the calculations in Table 1 that a lengthy 
connection setup time will severely inhibit Bluetooth’s 
usefulness in short-term ad hoc connections between fast-
moving objects. These calculations assume that 
connections are instantaneous; therefore, any length of 
connection setup time will decrease the data transfer 
capability. Our objective in this paper is to characterize the 
device discovery process and introduce some simple 
methods to improve the performance of connection setup 
in Bluetooth devices in order to maximize the amount of 
data transfer.  We will present three methods of speeding 
device discovery: reducing/eliminating the random backoff 
in the INQUIRY SCAN state, implementing a single 
frequency train in the INQUIRY state, and a combination of 
these two. We will also present data for each of these 
schemes that shows how the modifications affect collisions 
that can occur in the device discovery process. 
 
In the rest of this paper, we will first give a brief overview 
of the Bluetooth device discovery process (Section II). 
Then, we will present some empirical studies of the 
discovery process with real Bluetooth hardware (Section 
III). Next, we will present some simulation results of 
modified inquiry processes that show improvements to the 
Bluetooth connection setup times (Section IV). Finally, we 
will provide some analysis and concluding comments 
(Section V). 
  

II. THE INQUIRY PROCESS 
 
The inquiry process is a means for one Bluetooth device to 
discover other Bluetooth devices. If a device wants to 
participate in Bluetooth piconets, then it will spend some 
of its time in an INQUIRY state (looking for other devices) 
and some of its time in an INQUIRY SCAN state (being 
looked for). It is important to remember that this process is 
only used to determine the existence of other Bluetooth 
devices and has no relation to the number of connections 
that a Bluetooth device can concurrently maintain.  After 
discovering other devices or being discovered, an 
individual device can move into or resume other states. 
 
For our characterization of device discovery we are 
primarily concerned with some of the timing parameters 
associated with the inquiry process, as well as the behavior 



of devices in INQUIRY SCAN state. We will not embark on a 
thorough explanation of the inquiry process here because it 
described fully in the baseband specification [3]. We will, 
therefore, only briefly describe the details that concern our 
experiments. To ease the understanding of this process, it 
is useful to think of one device being in a perpetual state of 
INQUIRY and the rest being in INQUIRY SCAN. Much of our 
study assumes this case for ease of analysis. 
 
Fig. 1 shows a broad overview of some of the timing 
parameters we are interested in for this study. Bluetooth 
implements frequency hopping at 1600 hops per second 
with a corresponding time slot length of 625µs. In the 
inquiry process, Bluetooth devices hop through a set of 32 
common frequencies.1 The potential master (in INQUIRY 

STATE) breaks this set into two 16-hop trains, A and B. It 
hops through the frequencies in each train at twice the 
normal rate, repeating the train at least 256 times (2.56s) 
before switching to the next train. During this process, the 
device is sending inquiry packets on every frequency. To 
find all devices in an error-free environment, the length of 
time a device spends in inquiry, Tw_inquiry, must consist of at 
least three train switches (10.24s) [3]. 
 
 

Potential Master

Potential Slave

Train A 10ms * 256 Train B 10ms * 256

Tw_inquiry

Tw_inquiryscan

Tinquiryscan

f(k) f(k+1) f(k+2) f(k+3) f(k+4) f(k+5) f(k+6) f(k+7)

INQUIRY STATE

INQUIRY SCAN STATE

 
Fig. 1- Bluetooth Inquiry Timing Parameters 

 
The potential slave (in INQUIRY SCAN STATE) also hops 
through the 32 common frequencies, but at a much slower 
rate. The phase of the hopping sequence changes every 
1.28s. Periodically, the device listens for inquiry packets 
on the current frequency. This interval, Tw_inquiryscan, lasts at 
minimum of 10ms – long enough to listen for all 16 
frequencies in train A or B. The default length, however, is 
11.25ms to compensate for minor offset in clock values 
between devices. The parameter Tinquiryscan defines the 
amount of time between active scans and must be between 
1.28 and 2.56s. 
 
Fig. 2 shows the state diagram for a device entering 
INQUIRY SCAN state. This state can be entered from 
STANDBY or CONNECT at an interval defined by Tinquiryscan. 
In this state, the device will actively listen for inquiry 
packets for Tw_inquiryscan. If no packet is received, the device 
can reenter INQUIRY SCAN or go back to STANDBY or 
CONNECT. If a packet is received, the device implements a 
random backoff between 0 and 1024 timeslots (0 to 

                                                   
1 In the 79-hop system there are 32 frequencies. The 23-hop 
system uses 16. We will concentrate on the 79-hop system in this 
paper because it is far more common. 

640ms). This random backoff helps reduce the number of 
collisions among responding devices. In addition, the 
device can also enter the PAGE SCAN state before 
continuing. After the random backoff, the device reenters 
INQUIRY SCAN to listen for another inquiry packet on the 
same frequency. If no packet is received, the device returns 
to STANDBY or CONNECT. If a packet is received, then the 
device sends an identifying FHS packet to the inquirer and 
adds an offset to the INQUIRY SCAN hop sequence. It then 
continues scanning, but on a different hop frequency. By 
responding in this manner, a potential slave will respond 
on average 4 times during a 1.28s probing window, but on 
different frequencies and at different times [3]. 
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Fig. 2 - State Diagram for INQUIRY SCAN 

 
We briefly mentioned collisions in the previous description 
of INQUIRY SCAN and more needs to be said on this topic. 
A collision is defined by two devices in INQUIRY SCAN 
transmitting their FHS packets at the same time and on the 
exact same frequency in response to an inquiry packet 
from an inquirer. When this happens the inquirer will get 
no useful data since the two packets will interfere with 
each other.  Since there are 32 distinct frequencies in the 
inquiry process, and since each device in INQIURY SCAN is 
only actively listening for a short period of time, there is 
only a small chance that a collision will take place. To 
make the chances even smaller, the specification calls for 
the implementation of a random backoff delay as described 
above.   

 
 
 



III. EMPIRICAL ANALYSIS 
 
Previous investigations into Bluetooth links have 
suggested 2 seconds as a typical setup time between two 
unknown devices [1], although some experiments have 
shown much higher values of 10s and greater (for 
unknown reasons) [2].  A quick read of the Bluetooth 
specification [3] also indicates that 2s is a reasonable 
number, and that 10s should be an absolute maximum. 
 
For this study, we first decided to empirically measure the 
connection setup times of various Bluetooth devices.  We 
did this to verify the numbers quoted in other sources and 
also to gauge the promise of Bluetooth in a mobile and 
dense environment. To do this we set up two experiments. 
The first measures the latency in receiving the first reply to 
an inquiry. The second provides a distribution of 
connection times for individual devices. 
 
For our empirical tests we used five Bluetooth devices 
from various manufacturers: 
 
�� Two Ericsson Bluetooth modules with Class 3 radios 

each hosted by a Linux-based embedded systems 
development board made by Axis Communications 

�� Two Texas Instruments Bluetooth modules with Class 
1 radios each hosted by Windows 2000 PC’s 

�� One Toshiba Bluetooth PC Card with a Class 1 radio 
hosted by a Windows 98 laptop 

 
We chose one of the Ericsson modules, hosted by the Axis 
development board, to act as the inquirer in these 
experiments. The software used in this system is an open-
source implementation of the Bluetooth stack [4]. We were 
able to use this stack to interactively issue device discovery 
requests and to accurately time the responses. 
 
In our first experiment, we set the inquirer to stop after it 
had received the first reply.  Table 2 shows the results of 
this test. When there are multiple Bluetooth devices to be 
discovered – as is the case in this test - the first discovery 
occurs quite rapidly (0.79s on average). In addition, we 
found that the connections were distributed evenly among 
the four devices, such that no device was more likely than 
another to be the first device discovered. This results of 
this experiment were encouraging, because in a very dense 
or highly-mobile Bluetooth environment, one may not 
want to communicate with all Bluetooth devices, but rather 
just the first few that respond.  
 

TABLE 2 
LENGTH OF FIRST CONNECTION ESTABLISHMENT 

(1 MASTER, 4 SLAVES) 

Number of Mean Inq. Median 
Tests Time (s) Time (s) 
1142 0.79 0.53 

 
For our second test, we measured the connection time to 
each individual device. We did this because the connection 
time can theoretically vary between devices if the clocks 
are not initially well synchronized, as can be the case in 
devices from different manufacturers. Table 3 shows the 

results. We can see from this experiment that the average 
connection time to an individual Bluetooth device is, 
indeed, around 2s, although the median is much lower. 
Furthermore, there are not tremendous variations between 
different Bluetooth devices. These empirical results are 
quite similar to other studies [7], which suggest that these 
numbers make a good baseline for comparison. 
 

TABLE 3 
 CONNECTION TIME TO ONE BLUETOOTH DEVICE 

 Number Mean Inq. Median 
 of Tests Time (s) Time (s) 

Device 1 600 2.26 1.72 
Device 2 505 2.63 1.95 
Device 3 610 2.11 1.35 
Device 4 499 2.10 1.36 

All Devices 2214 2.27 1.44 
 
 

IV. SIMULATION RESULTS 
 
While using real Bluetooth devices is informative, it is also 
somewhat limiting. In general, we do not have access to 
the inner workings of the baseband protocol in real 
Bluetooth devices. In order to better characterize the 
device discovery process, we decided to use a simulator. 
We started with IBM’s open-source Bluetooth simulator, 
BlueHoc [8]. We found, however, that BlueHoc did not yet 
implement certain features we were interested in, such as 
collision detection. Therefore, we developed our own 
simulator, RIBBIT2 (RIce Bluetooth Baseband Inquiry 
Tester), which uses a small part of the BlueHoc source as a 
base. 
 
To improve connection setup performance, we decided to 
modify two inquiry parameters: eliminating the 
differentiation between trains A and B (i.e. we 
implemented just one train of 32 hops and increased the 
duration of Tw_inquiryscan to 21.25ms), and eliminating or 
reducing the amount of time that a device performs random 
backoff in INQUIRY SCAN. We also test the combination of 
the two. Several factors influenced our decision. First, we 
felt that these changes were relatively easy to implement in 
the baseband, and would therefore not impact the cost or 
complexity of hardware or software. Second, the changes 
could be easily incorporated into future Bluetooth 
specifications while retaining a measure of backward 
compatibility. Third, we felt that these changes would offer 
better connection times without degrading performance 
(e.g. increasing the number or rate of collisions). 
 
The RIBBIT simulator runs in Linux and uses the GNU C 
library function random() to generate pseudo-random 
numbers for the simulations based on an initial seed.  In 
order to assure that the simulations used a different set of 
psuedo-random numbers, a random number from 1 to 1000 
was passed in as the seed to random().  In addition, to 
eliminate individual variation within each trial we ran each 
simulation 5000 times and averaged the data returned by 
the simulator. 
                                                   
2 For more information about our simulator, visit the RIBBIT 
simulator home page at http://koala.ece.rice.edu/bluetooth/ribbit/ 



 
We ran the same tests in our simulator that we ran in our 
empirical study. The connection setup time numbers we 
received from the simulator were slightly higher but were 
comparable to the numbers we received from our empirical 
analysis, leading us to believe that our simulator was 
providing accurate data. However, we did notice some 
unusual behavior with regard to collisions when there were 
very few devices in the simulation. The simulator does not 
account for two device clocks being unsynchronized, 
which is the case in a real environment. Because of this, 
there is a higher chance that two devices clocks will be 
very highly synchronized. This will result in an unusually 
high number of collisions, especially in the case of no 
random backoff. 
 
Fig. 3 shows the results of our control case. The purpose of 
this was to show the decrease in connection time to one 
device as the number of devices increases. This was also 
the case against which we measured the performance of 
our three schemes. This plot shows that as the Bluetooth 
environment grows denser the rate of collisions increases, 
although it still remains quite low even when there are 100 
devices. In this dense environment, only about 0.002% of 
all inquiry packets result in a collision. 
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Fig. 3 - Connection Time and Collisions vs. Number of Devices 

 
Fig. 4 shows a normalized plot of three connection time 
improvement schemes without regard to collisions. The 
control gives a baseline with which to compare. This is the 
case with no changes to the baseband algorithm. The 
average time to connect to 1 device has been normalized to 
1 for each data point. As can be seen, all three schemes 
offer dramatically better improvement than the control 
case. Using a single hopping train instead of two separate 
trains offers best performance when there are just a small 
number of devices present, and eliminating the random 
backoff performs better as the environment grows denser. 
Combining the two schemes results in the best 
improvement, and offers at least an 70% reduction in the 
time it takes to connect to the first Bluetooth device. 
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Fig. 4 – Discovery Time for First Bluetooth Device (Normalized) 

 
We discovered during our simulations that our three 
schemes not only decreased the time it takes to discover 
Bluetooth devices, but that it also increased the number of 
devices found in a given inquiry. Fig. 5 shows a 
normalized plot of the number of devices found in a one 
second search. Regardless of the number of devices, each 
of our schemes consistently results in 1.5 to 3 times more 
devices being found.  Similar data were gathered for longer 
search lengths. 
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Fig. 5 - Number of Devices Found in a 1 Second Search (Normalized) 

 
We know that we can improve connection setup times and 
also increase the relative number of devices found in a 
given inquiry. It is important to look at how our suggested 
changes affect collisions that can occur when two devices 
in INQUIRY SCAN transmit their FHS response packets at 
exactly the same time and on the same frequency. 
 
Fig. 6 shows the average rate of collision for each of the 
test cases. The rate of collision is expressed as the fraction 
of inquiry packets sent that result in a collision. As 
expected, the control case has the fewest collisions. As in 
Fig. 4 the Single Train and No Backoff cases offer 
different qualities of performance that depend on the 
density of the Bluetooth environment. The combined case 
offers the worst performance, which was expected. 
However, this is still very few collisions, less than 0.03% 



of all inquiry packets will result in collisions with this 
scheme.  
 
Because the random backoff case had such good 
performance improvement, we decided to explore this case 
further. It would probably not be wise to totally remove the 
random backoff since two devices could still conceivably 
have closely matched clock values that would result in 
very high numbers of collisions. Fig. 7 shows the results of 
varying the random backoff from 4 to 1024 timeslots (each 
timeslot is 625µs) with 100 slaves present. 
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Fig. 6 – Average Rate of Collision 
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Fig. 7 - Varying the Random Backoff 

 
V. DISCUSSION 

 
Our empirical analysis and simulations demonstrate that 
Bluetooth is a viable candidate for use in highly mobile, ad 
hoc networks. This is particularly true in very dense 
environments - such as a large group of automobiles - 
where the application may not require communication with 
all devices, but rather just the first few to respond. 
 
In a mobile environment, however, consuming even one-
half to one second to setup a connection can impact the 
amount of data that can be transferred. To maximize data 
transfer we propose extending the Bluetooth baseband 
specification by adding a “mobility mode” that can be used 

in situations when devices are in motion. Our three 
proposed schemes - reducing random backoff, using a 
single inquiry train and a combined scheme - each offer 
significant performance benefits to connection setup 
without drastically increasing the number of failures due to 
collisions. In a highly mobile environment, one might not 
care that there are a few more collisions because it is not 
imperative to discover and communicate with every 
device. It becomes more like a best-effort model. The 
easiest scheme to implement, from a hardware and 
software standpoint, would be a modification of the 
random backoff time that a device implements in INQUIRY 

SCAN. We do not, however, suggest completely eliminating 
the backoff because there would still be a very small 
chance that two Bluetooth devices would have matching 
clock values and would always collide. A much smaller 
value, perhaps on the order of 0 to 16 timeslots (0 to 
10ms), would likely prevent this from happening yet still 
offer superior connection setup times (about 75% less). 
 
Decreasing or eliminating the random backoff does result 
in a larger number of collisions, however. An alternative to 
this would be to implement a single train sequence in the 
INQUIRE state. This offers a much lower improvement in 
connection times, but it does not increase the number of 
collisions from the control case.  
 
This study of the Bluetooth discovery process has 
encouraged us to continue work along this path. As stated 
before, our test scenarios assumed that one device was 
constantly in the INQUIRY state while the other devices 
were always in INQUIRY SCAN. In the real world, this will 
not necessarily be the case, and this will impact device 
discovery. If a device cannot spend all of its time in either 
state, then this will naturally increase discovery times. 
Other researchers have developed efficient algorithms for 
switching between these two states to minimize connection 
setup times [5, 9], and we will incorporate such algorithms 
into future versions of our simulator. In addition, we plan 
incorporate channel models to reflect the presence of noise, 
fading, Doppler shift and other channel conditions. 
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