
Improving Connection Times for Bluetooth Devices in Mobile Environments

Erik Welsh, Patrick Murphy, J. Patrick Frantz
Rice University

6100 Main St – MS380
Houston, TX 77005

USA
{welsh, murphpo, jpfrantz}@rice.edu

Abstract – Communications devices in a highly mobile
environment need to minimize connection setup times
in order to maximize useful data transfer. In this paper
we investigate - empirically and through simulations -
the device discovery process of Bluetooth™, a
technology that has potential in short-range, high-
mobility applications. In order to improve Bluetooth’s
performance in a mobile environment, it is desirable to
lessen the amount of time it takes to set up connections
between two devices. We suggest three possible changes
to the Bluetooth specification: eliminating or
decreasing the random backoff delay in INQUIRY SCAN,
using a single frequency train instead of two in
INQUIRY, and a combination of the two. These simple
changes can dramatically decrease connection setup
times without having deleterious effects on overall
system performance.

I. INTRODUCTION

One frequently cited usage example for Bluetooth is the
pedestrian equipped with a Bluetooth-enabled device such
as a cell phone. In this scenario, the individual receives
information about her surroundings via Bluetooth access
points – e.g. nearby shopping, restaurants and other
services. Since Bluetooth has both limited range and
bandwidth, this mobility scenario raises some serious
questions about the length of time it takes to establish a
connection between two Bluetooth devices. If this process
takes too long, then either no connection can be made or
there will not be enough remaining time to do any useful
data transfer. In our study, we are interested in an even
more demanding application in which fast-moving vehicles
would exchange information as they pass each other. In
this environment, the Bluetooth devices are highly mobile.
It is also likely a dense environment in which there could
be tens or hundreds of devices in the vicinity.

TABLE 1
EFFECT OF SPEED ON CLASS 1 (20dBm) BLUETOOTH

DEVICES

Speed of Vehicle Max Time Max 1-Way Data
km/hr m/s In Range (s) Trans. (MBytes)

20 5.56 36.00 3.18
40 11.11 18.00 1.59
60 16.67 12.00 1.06
80 22.22 9.00 0.79
100 27.78 7.20 0.64

Table 1 shows some simple speed calculations for a Class
1 (20dBm) Bluetooth device. In these examples, one
Bluetooth device is moving at a constant speed, and the

other is stationary. Since our application involves outdoor
transmissions occurring at high speeds, we assume that a
Class 1 Bluetooth device (100m range) will be necessary.

Table 1 indicates that it is indeed possible to use Bluetooth
in a mobile environment, provided that the expected
amount of data transfer is fairly small. However, it is also
clear from the calculations in Table 1 that a lengthy
connection setup time will severely inhibit Bluetooth’s
usefulness in short-term ad hoc connections between fast-
moving objects. These calculations assume that
connections are instantaneous; therefore, any length of
connection setup time will decrease the data transfer
capability. Our objective in this paper is to characterize the
device discovery process and introduce some simple
methods to improve the performance of connection setup
in Bluetooth devices in order to maximize the amount of
data transfer. We will present three methods of speeding
device discovery: reducing/eliminating the random backoff
in the INQUIRY SCAN state, implementing a single
frequency train in the INQUIRY state, and a combination of
these two. We will also present data for each of these
schemes that shows how the modifications affect collisions
that can occur in the device discovery process.

In the rest of this paper, we will first give a brief overview
of the Bluetooth device discovery process (Section II).
Then, we will present some empirical studies of the
discovery process with real Bluetooth hardware (Section
III). Next, we will present some simulation results of
modified inquiry processes that show improvements to the
Bluetooth connection setup times (Section IV). Finally, we
will provide some analysis and concluding comments
(Section V).

II. THE INQUIRY PROCESS

The inquiry process is a means for one Bluetooth device to
discover other Bluetooth devices. If a device wants to
participate in Bluetooth piconets, then it will spend some
of its time in an INQUIRY state (looking for other devices)
and some of its time in an INQUIRY SCAN state (being
looked for). It is important to remember that this process is
only used to determine the existence of other Bluetooth
devices and has no relation to the number of connections
that a Bluetooth device can concurrently maintain. After
discovering other devices or being discovered, an
individual device can move into or resume other states.

For our characterization of device discovery we are
primarily concerned with some of the timing parameters
associated with the inquiry process, as well as the behavior

of devices in INQUIRY SCAN state. We will not embark on a
thorough explanation of the inquiry process here because it
described fully in the baseband specification [3]. We will,
therefore, only briefly describe the details that concern our
experiments. To ease the understanding of this process, it
is useful to think of one device being in a perpetual state of
INQUIRY and the rest being in INQUIRY SCAN. Much of our
study assumes this case for ease of analysis.

Fig. 1 shows a broad overview of some of the timing
parameters we are interested in for this study. Bluetooth
implements frequency hopping at 1600 hops per second
with a corresponding time slot length of 625µs. In the
inquiry process, Bluetooth devices hop through a set of 32
common frequencies.1 The potential master (in INQUIRY

STATE) breaks this set into two 16-hop trains, A and B. It
hops through the frequencies in each train at twice the
normal rate, repeating the train at least 256 times (2.56s)
before switching to the next train. During this process, the
device is sending inquiry packets on every frequency. To
find all devices in an error-free environment, the length of
time a device spends in inquiry, Tw_inquiry, must consist of at
least three train switches (10.24s) [3].

Potential Master

Potential Slave

Train A 10ms * 256 Train B 10ms * 256

Tw_inquiry

Tw_inquiryscan

Tinquiryscan

f(k) f(k+1) f(k+2) f(k+3) f(k+4) f(k+5) f(k+6) f(k+7)

INQUIRY STATE

INQUIRY SCAN STATE

Fig. 1- Bluetooth Inquiry Timing Parameters

The potential slave (in INQUIRY SCAN STATE) also hops
through the 32 common frequencies, but at a much slower
rate. The phase of the hopping sequence changes every
1.28s. Periodically, the device listens for inquiry packets
on the current frequency. This interval, Tw_inquiryscan, lasts at
minimum of 10ms – long enough to listen for all 16
frequencies in train A or B. The default length, however, is
11.25ms to compensate for minor offset in clock values
between devices. The parameter Tinquiryscan defines the
amount of time between active scans and must be between
1.28 and 2.56s.

Fig. 2 shows the state diagram for a device entering
INQUIRY SCAN state. This state can be entered from
STANDBY or CONNECT at an interval defined by Tinquiryscan.
In this state, the device will actively listen for inquiry
packets for Tw_inquiryscan. If no packet is received, the device
can reenter INQUIRY SCAN or go back to STANDBY or
CONNECT. If a packet is received, the device implements a
random backoff between 0 and 1024 timeslots (0 to

1 In the 79-hop system there are 32 frequencies. The 23-hop
system uses 16. We will concentrate on the 79-hop system in this
paper because it is far more common.

640ms). This random backoff helps reduce the number of
collisions among responding devices. In addition, the
device can also enter the PAGE SCAN state before
continuing. After the random backoff, the device reenters
INQUIRY SCAN to listen for another inquiry packet on the
same frequency. If no packet is received, the device returns
to STANDBY or CONNECT. If a packet is received, then the
device sends an identifying FHS packet to the inquirer and
adds an offset to the INQUIRY SCAN hop sequence. It then
continues scanning, but on a different hop frequency. By
responding in this manner, a potential slave will respond
on average 4 times during a 1.28s probing window, but on
different frequencies and at different times [3].

INQUIRY

SCAN

Tw_inquiryscan

Inquiry Packet?

STANDBY or
CONNECT

No

Tinquiryscan

Random
Backoff

(0-640ms)

Yes

INQUIRY

SCAN

Inquiry Packet?No

Send FHS
Packet &

Add Offset to
Hop Sequence

Yes

INQUIRY

RESPONSE

Inquiry Packet?Yes

No

Fig. 2 - State Diagram for INQUIRY SCAN

We briefly mentioned collisions in the previous description
of INQUIRY SCAN and more needs to be said on this topic.
A collision is defined by two devices in INQUIRY SCAN
transmitting their FHS packets at the same time and on the
exact same frequency in response to an inquiry packet
from an inquirer. When this happens the inquirer will get
no useful data since the two packets will interfere with
each other. Since there are 32 distinct frequencies in the
inquiry process, and since each device in INQIURY SCAN is
only actively listening for a short period of time, there is
only a small chance that a collision will take place. To
make the chances even smaller, the specification calls for
the implementation of a random backoff delay as described
above.

III. EMPIRICAL ANALYSIS

Previous investigations into Bluetooth links have
suggested 2 seconds as a typical setup time between two
unknown devices [1], although some experiments have
shown much higher values of 10s and greater (for
unknown reasons) [2]. A quick read of the Bluetooth
specification [3] also indicates that 2s is a reasonable
number, and that 10s should be an absolute maximum.

For this study, we first decided to empirically measure the
connection setup times of various Bluetooth devices. We
did this to verify the numbers quoted in other sources and
also to gauge the promise of Bluetooth in a mobile and
dense environment. To do this we set up two experiments.
The first measures the latency in receiving the first reply to
an inquiry. The second provides a distribution of
connection times for individual devices.

For our empirical tests we used five Bluetooth devices
from various manufacturers:

�� Two Ericsson Bluetooth modules with Class 3 radios

each hosted by a Linux-based embedded systems
development board made by Axis Communications

�� Two Texas Instruments Bluetooth modules with Class
1 radios each hosted by Windows 2000 PC’s

�� One Toshiba Bluetooth PC Card with a Class 1 radio
hosted by a Windows 98 laptop

We chose one of the Ericsson modules, hosted by the Axis
development board, to act as the inquirer in these
experiments. The software used in this system is an open-
source implementation of the Bluetooth stack [4]. We were
able to use this stack to interactively issue device discovery
requests and to accurately time the responses.

In our first experiment, we set the inquirer to stop after it
had received the first reply. Table 2 shows the results of
this test. When there are multiple Bluetooth devices to be
discovered – as is the case in this test - the first discovery
occurs quite rapidly (0.79s on average). In addition, we
found that the connections were distributed evenly among
the four devices, such that no device was more likely than
another to be the first device discovered. This results of
this experiment were encouraging, because in a very dense
or highly-mobile Bluetooth environment, one may not
want to communicate with all Bluetooth devices, but rather
just the first few that respond.

TABLE 2
LENGTH OF FIRST CONNECTION ESTABLISHMENT

(1 MASTER, 4 SLAVES)

Number of Mean Inq. Median
Tests Time (s) Time (s)
1142 0.79 0.53

For our second test, we measured the connection time to
each individual device. We did this because the connection
time can theoretically vary between devices if the clocks
are not initially well synchronized, as can be the case in
devices from different manufacturers. Table 3 shows the

results. We can see from this experiment that the average
connection time to an individual Bluetooth device is,
indeed, around 2s, although the median is much lower.
Furthermore, there are not tremendous variations between
different Bluetooth devices. These empirical results are
quite similar to other studies [7], which suggest that these
numbers make a good baseline for comparison.

TABLE 3
 CONNECTION TIME TO ONE BLUETOOTH DEVICE

 Number Mean Inq. Median
 of Tests Time (s) Time (s)

Device 1 600 2.26 1.72
Device 2 505 2.63 1.95
Device 3 610 2.11 1.35
Device 4 499 2.10 1.36

All Devices 2214 2.27 1.44

IV. SIMULATION RESULTS

While using real Bluetooth devices is informative, it is also
somewhat limiting. In general, we do not have access to
the inner workings of the baseband protocol in real
Bluetooth devices. In order to better characterize the
device discovery process, we decided to use a simulator.
We started with IBM’s open-source Bluetooth simulator,
BlueHoc [8]. We found, however, that BlueHoc did not yet
implement certain features we were interested in, such as
collision detection. Therefore, we developed our own
simulator, RIBBIT2 (RIce Bluetooth Baseband Inquiry
Tester), which uses a small part of the BlueHoc source as a
base.

To improve connection setup performance, we decided to
modify two inquiry parameters: eliminating the
differentiation between trains A and B (i.e. we
implemented just one train of 32 hops and increased the
duration of Tw_inquiryscan to 21.25ms), and eliminating or
reducing the amount of time that a device performs random
backoff in INQUIRY SCAN. We also test the combination of
the two. Several factors influenced our decision. First, we
felt that these changes were relatively easy to implement in
the baseband, and would therefore not impact the cost or
complexity of hardware or software. Second, the changes
could be easily incorporated into future Bluetooth
specifications while retaining a measure of backward
compatibility. Third, we felt that these changes would offer
better connection times without degrading performance
(e.g. increasing the number or rate of collisions).

The RIBBIT simulator runs in Linux and uses the GNU C
library function random() to generate pseudo-random
numbers for the simulations based on an initial seed. In
order to assure that the simulations used a different set of
psuedo-random numbers, a random number from 1 to 1000
was passed in as the seed to random(). In addition, to
eliminate individual variation within each trial we ran each
simulation 5000 times and averaged the data returned by
the simulator.

2 For more information about our simulator, visit the RIBBIT
simulator home page at http://koala.ece.rice.edu/bluetooth/ribbit/

We ran the same tests in our simulator that we ran in our
empirical study. The connection setup time numbers we
received from the simulator were slightly higher but were
comparable to the numbers we received from our empirical
analysis, leading us to believe that our simulator was
providing accurate data. However, we did notice some
unusual behavior with regard to collisions when there were
very few devices in the simulation. The simulator does not
account for two device clocks being unsynchronized,
which is the case in a real environment. Because of this,
there is a higher chance that two devices clocks will be
very highly synchronized. This will result in an unusually
high number of collisions, especially in the case of no
random backoff.

Fig. 3 shows the results of our control case. The purpose of
this was to show the decrease in connection time to one
device as the number of devices increases. This was also
the case against which we measured the performance of
our three schemes. This plot shows that as the Bluetooth
environment grows denser the rate of collisions increases,
although it still remains quite low even when there are 100
devices. In this dense environment, only about 0.002% of
all inquiry packets result in a collision.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

M
ea

n
D

ev
ic

e
D

is
co

ve
ry

 T
im

e

Number of Devices
0 10 20 30 40 50 60 70 80 90 100

10
 6

10
 5

10
 4

10
 3

F
ra

ct
io

n
of

 P
ac

ke
ts

 C
ol

lid
ed

Fig. 3 - Connection Time and Collisions vs. Number of Devices

Fig. 4 shows a normalized plot of three connection time
improvement schemes without regard to collisions. The
control gives a baseline with which to compare. This is the
case with no changes to the baseband algorithm. The
average time to connect to 1 device has been normalized to
1 for each data point. As can be seen, all three schemes
offer dramatically better improvement than the control
case. Using a single hopping train instead of two separate
trains offers best performance when there are just a small
number of devices present, and eliminating the random
backoff performs better as the environment grows denser.
Combining the two schemes results in the best
improvement, and offers at least an 70% reduction in the
time it takes to connect to the first Bluetooth device.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Devices

M
ea

n
D

is
co

ve
ry

 T
im

e Single Train
No Backoff
Single Train, No Backoff
Control

Fig. 4 – Discovery Time for First Bluetooth Device (Normalized)

We discovered during our simulations that our three
schemes not only decreased the time it takes to discover
Bluetooth devices, but that it also increased the number of
devices found in a given inquiry. Fig. 5 shows a
normalized plot of the number of devices found in a one
second search. Regardless of the number of devices, each
of our schemes consistently results in 1.5 to 3 times more
devices being found. Similar data were gathered for longer
search lengths.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

Number of Devices

D
ev

ic
es

 D
is

co
ve

re
d

Single Train
No Backoff
Single Train, No Backoff
Control

Fig. 5 - Number of Devices Found in a 1 Second Search (Normalized)

We know that we can improve connection setup times and
also increase the relative number of devices found in a
given inquiry. It is important to look at how our suggested
changes affect collisions that can occur when two devices
in INQUIRY SCAN transmit their FHS response packets at
exactly the same time and on the same frequency.

Fig. 6 shows the average rate of collision for each of the
test cases. The rate of collision is expressed as the fraction
of inquiry packets sent that result in a collision. As
expected, the control case has the fewest collisions. As in
Fig. 4 the Single Train and No Backoff cases offer
different qualities of performance that depend on the
density of the Bluetooth environment. The combined case
offers the worst performance, which was expected.
However, this is still very few collisions, less than 0.03%

of all inquiry packets will result in collisions with this
scheme.

Because the random backoff case had such good
performance improvement, we decided to explore this case
further. It would probably not be wise to totally remove the
random backoff since two devices could still conceivably
have closely matched clock values that would result in
very high numbers of collisions. Fig. 7 shows the results of
varying the random backoff from 4 to 1024 timeslots (each
timeslot is 625µs) with 100 slaves present.

10 20 30 40 50 60 70 80 90 100
10

−7

10
−6

10
−5

10
−4

10
−3

Number of Devices

F
ra

ct
io

n
of

 S
lo

ts
 C

ol
lid

ed

Single Train
No Backoff
Single Train, No Backoff
Control

Fig. 6 – Average Rate of Collision

10
1

10
2

10
3

0.2

0.4

0.6

0.8

1

Max Backoff Slots

N
or

m
al

iz
ed

 T
im

e
to

 F
irs

t D
is

co
ve

ry

Search to First Discovery − 100 Slaves

10
1

10
2

10
3

10
−5

10
−4

10
−3

Max Backoff Slots

F
ra

ct
io

n
of

 S
lo

ts
 C

ol
lid

ed

Fig. 7 - Varying the Random Backoff

V. DISCUSSION

Our empirical analysis and simulations demonstrate that
Bluetooth is a viable candidate for use in highly mobile, ad
hoc networks. This is particularly true in very dense
environments - such as a large group of automobiles -
where the application may not require communication with
all devices, but rather just the first few to respond.

In a mobile environment, however, consuming even one-
half to one second to setup a connection can impact the
amount of data that can be transferred. To maximize data
transfer we propose extending the Bluetooth baseband
specification by adding a “mobility mode” that can be used

in situations when devices are in motion. Our three
proposed schemes - reducing random backoff, using a
single inquiry train and a combined scheme - each offer
significant performance benefits to connection setup
without drastically increasing the number of failures due to
collisions. In a highly mobile environment, one might not
care that there are a few more collisions because it is not
imperative to discover and communicate with every
device. It becomes more like a best-effort model. The
easiest scheme to implement, from a hardware and
software standpoint, would be a modification of the
random backoff time that a device implements in INQUIRY

SCAN. We do not, however, suggest completely eliminating
the backoff because there would still be a very small
chance that two Bluetooth devices would have matching
clock values and would always collide. A much smaller
value, perhaps on the order of 0 to 16 timeslots (0 to
10ms), would likely prevent this from happening yet still
offer superior connection setup times (about 75% less).

Decreasing or eliminating the random backoff does result
in a larger number of collisions, however. An alternative to
this would be to implement a single train sequence in the
INQUIRE state. This offers a much lower improvement in
connection times, but it does not increase the number of
collisions from the control case.

This study of the Bluetooth discovery process has
encouraged us to continue work along this path. As stated
before, our test scenarios assumed that one device was
constantly in the INQUIRY state while the other devices
were always in INQUIRY SCAN. In the real world, this will
not necessarily be the case, and this will impact device
discovery. If a device cannot spend all of its time in either
state, then this will naturally increase discovery times.
Other researchers have developed efficient algorithms for
switching between these two states to minimize connection
setup times [5, 9], and we will incorporate such algorithms
into future versions of our simulator. In addition, we plan
incorporate channel models to reflect the presence of noise,
fading, Doppler shift and other channel conditions.

VI. REFERENCES

[1] R. Nüsser and R. Pelz, “Bluetooth-based Wireless

Connectivity in an Automotive Environment,” IEEE
Vehicular Technology Conference, Fall 2000, pp.
1935-1942.

[2] D. Groton and J.R. Schmidt, “Bluetooth-based Mobile

Ad Hoc Networks: Opportunities and Challenges for a
Telecommunications Operator,” Vehicular Technology
Conference, Spring 2001, pp. 1134-1138.

[3] H. Hedlund, Bluetooth Baseband Specification, Version

1.1, www.bluetooth.com.

[4] Axis OpenBT Stack,

developer.axis.com/software/bluetooth/

[5] T. Salonidis, P. Bhagwat and L. Tassiulas, “Proximity

Awareness and Fast Connection Establishment in

Bluetooth,” Mobile and Ad Hoc Networking and
Computing, 2000, pp. 141-142.

[6] G.F. Pedersen and P. Eggers, “Initial Investigations of

the Bluetooth Link,” Vehicular Technology
Conference, Fall 2000, pp. 64-69.

[7] O. Kasten and M. Langheinrich, “First Experiences

with Bluetooth in the Smart-Its Distributed Sensor
Network,” Workshop on Ubiquitous Computing and
Communications, PACT 2001, October 2001.

[8] IBM Open-Source Bluetooth Simulator, BlueHoc.

oss.software.ibm.com/bluehoc/

[9] F. Siegemund and M. Rohs, “Rendezvous Layer

Protocols for Bluetooth-Enabled Smart Devices,”
International Conference on Architecture of Computing
Systems, October 2001.

