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Abstract 

Hydrogenated nanocrystalline silicon (nc-Si:H) thin films were prepared by home-made PE-CVD system from gas mixture of pure 
SiH4 and H2 at various deposition pressures. Obtained results exhibited that deposition rate increases with increase in deposition 
pressure. Raman spectroscopy analysis revealed that deposition pressure in PE-CVD is a critical process parameter to induce 
nanocrystallization in Si:H films. The FTIR spectroscopy analysis results indicate that with increase in deposition pressure 
hydrogen bonding in films shifts from Si-H to Si-H2 and (Si-H2)n bonded species bonded species. The bonded hydrogen content 
didn’t show particular trend with optical band gap with change in deposition pressure. The obtained results indicates that 400 mTorr 
is an optimized deposition pressure of our PE-CVD unit to synthesize nc-Si:H films. At this optimized deposition pressure nc-Si:H 
films with crystallite size  5.43 nm having good degree of crystallinity ( 77 %) and high band gap (ETauc  1.85 eV) were 
obtained with a low hydrogen content (4.28 at. %) at moderately high deposition rate (0.75 nm/s). The ease of the present work is 
to optimize deposition pressure to obtain device quality intrinsic nc-Si:H layer in view of its used in p-i-n solar cells. 
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1. Introduction 

Hydrogenated nano-crystalline silicon (nc-Si:H) has been the subject of scientific and technological interest in 
recent years because of its outstanding properties such as tailorable band gap [1], high intrinsic conductivity [2], higher 
carrier mobility [3], higher doping efficiency  [4] and high stability[5] against the prolonged light illumination in 
comparison to a-Si:H. With the perspective of increase in the conversion efficiency of thin film solar cells, use of nc-
Si:H in a-Si based solar cells has been suggested, and much progress regarding the preparation and performance of 
nc-Si:H material and solar cells has been made in the past few years. A variety of deposition techniques have been 
used for the preparation of nc-Si:H to yield material with good opto-electronic properties. Several chemical vapor 
deposition techniques such as plasma enhanced CVD (PE-CVD) [6] and it’s variant, electron cyclotron resonance 
CVD [7] and hot wire CVD (HW-CVD) [8] very high frequency plasma enhanced chemical vapor deposition (VHF-
PECVD) [9] and microwave CVD [10]. Some other methods also already tried which includes magnetron sputtering 
[11], layer by layer deposition [12], etc. Out of these, only PE-CVD have been successfully used for the preparation 
of nc-Si:H films with device quality films. In the preparation of nc-Si:H by PE-CVD, usually high hydrogen dilution 
of silane and high RF power are used. The use of high hydrogen dilution of silane resulted in lower deposition rate 
while use of high RF power resulted in improvement of electrical conductivity of nc-Si:H layer but degradation of 
transparent conducting coating on which solar cells is fabricated. For industrial applications, high deposition rates with 
good opto-electrical properties are required. Therefore, preparation of nc-Si:H films at high deposition rates while 
maintaining good material quality is of major technological importance. 

It is generally believed that the properties of nc-Si:H films prepared by PE-CVD are strongly affected by the process 
parameters such as substrate temperature, process pressure, inter-electrode distance, RF power, hydrogen dilution of 
source gases etc. These studies are based on the understanding the influence of only one of these process parameters 
on nc-Si:H films. However, there is lot of room for the improvement of film properties since the relation between the 
variation of deposition parameter and the resulting film properties has not been fully elucidated yet. It is with this 
motivation that we initiated the detailed study of synthesis and characterization of intrinsic nc-Si:H films using PE-
CVD method. In this paper, we present detail investigation of influence of deposition pressure on structural, optical, 
and electrical properties of nc-Si:H films deposited by PE-CVD method. Obtained results exhibited that these 
properties critically depends on deposition pressure. 

2. Experimental 

2.1. Film preparation 

Intrinsic hydrogenated nanocrystalline silicon (nc-Si:H) thin films were deposited simultaneously on corning #7059 
glass and c-Si wafers by indigenously designed and locally fabricated plasma enhanced chemical vapor deposition 
(PE-CVD) unit, schematic of which is shown in Fig. 1.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Schematic diagram of indigenously designed and locally fabricated plasma enhanced chemical vapor deposition (PE-CVD). 
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Films were prepared by using pure silane (SiH4) as Si source gas and hydrogen (H2) as dilution gas. The flow rate 
of SiH4 and H2 are kept constant at 1.5 sccm and 100 sccm respectively. The substrate temperature was held constant 
during the deposition. Other deposition parameters are listed in Table 1.  

Table 1. Process parameters used of the deposition of intrinsic nc-Si:H thin films by PE-CVD method. 

Process parameter Value 
Deposition temperature (TSub) 400 0C 
Distance between electrodes (d) 3 cm 
Silane flow rate (FSiH4) 1.5 sccm 
Hydrogen flow rate (FH2) 100 sccm 
Deposition pressure (Pd) 100-700 mTorr 
RF Power (P) 60Watt 
Deposition Time (t) 30 min 

 
The glass substrates were cleaned with double distilled water whereas, the c-Si wafers were given an HF etch to 

remove native oxide layer. The substrates were loaded to the substrate holder and then the deposition chamber was 
evacuated to the base pressure less than 10-6 Torr. Prior to each deposition, the substrate holder and deposition chamber 
were baked for two hours at 100 0C to remove any water vapor absorbed on the substrates and to reduce the oxygen 
contamination in the film. After that, the substrate temperature was brought to desired value by appropriately setting 
the inbuilt thermocouple and temperature controller. The deposition was carried out for desired amount of time and 
films were allowed to cool to room temperature in vacuum.  

2.2. Film characterization 

Raman spectra were recorded with Raman spectroscopy (Renishaw InVia Confocal Raman Microscope) in the 
wave number range 100-1000 cm-1. The spectrometer has backscattering geometry for detection of Raman spectrum 
with the resolution of 1 cm-1. The power of the Raman laser was kept less than 10 mW to avoid laser induced 
crystallization on the films. Deposited films have been studied for their optical properties by UV-Vis-NIR 
Spectroscopy (JASCO, V-670). The optical absorption coefficient ( ) was determined from the transmission (% T) 
and reflection (% R) measurements. The band gap was estimated using the procedure followed by Tauc [13]. The 
FTIR spectra were recorded in transmission mode by using FTIR spectrophotometer (JASCO, 6100-type A). Bonded 
hydrogen content (CH) was calculated from wagging mode of FTIR absorption peak using the method given by the 
Brodsky et al. [14]. Dark conductivity ( dark) and photoconductivity ( photo) were measured using samples of 
dimension 3 cm x1 cm deposited on glass substrate with coplanar Al electrodes 0.5 mm apart deposited by vacuum 
evaporation. Thickness of films was determined by profilometer (KLA Tencor, P-16+) and was further confirmed by 
UV-Visible spectroscopy using the method proposed by Swanepoel [15].   

3. Results and discussion 

3.1. Variation of film deposition rate 

Fig. 2 shows the relation between the deposition rate and deposition pressure. As seen from the figure the highest 
deposition rate is obtained for the film deposited at Pd = 400 mTorr and it decreases at low as well as high deposition 
pressure. At low deposition pressure (< 400 mTorr) it is expected that the primary film forming radicals directly reach 
the substrate surface without any gas phase reactions and results increase in deposition rate. However, as deposition 
pressure becomes higher (> 400 mTorr) the gas transport shifts from molecular to viscous due to collisions in the gas 
phase. Therefore, the supply of film forming radicals to substrate surface becomes restricted and consequently the 
deposition rate decreases at higher deposition pressure. Furthermore, at higher deposition pressure the collisions 
between the primary generated radicals and ambient SiH4 and H2 will also occur. This leads to the formation of lower 
sticking coefficient species, resulting in a reduction of the deposition rate at higher deposition pressure. 
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Fig. 2. Variation of deposition rate as a function of deposition pressure for Si:H films deposited by PE-CVD. 

3.2. Raman spectroscopy analysis 

Raman spectroscopy is a non-destructive tool of analysis which provides direct structural information 
quantitatively related to the average crystallite size and the crystalline volume fraction in the film. Fig. 3(a) shows the 
Raman spectra of Si:H films deposited at various deposition pressures (Pd).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Fig. 3. a) Raman spectra of Si:H films deposited at various deposition pressures by PE-CVD method b) Typical de-convoluted Raman spectra for 
the film deposited at Pd = 400 mTorr. 

 To estimate the volume fraction of crystallites and crystallite size, each spectrum in figure 3 was de-convoluted 
into three peaks with a quadratic base line using Levenberg-Marquardt method [16], a crystalline peak (~ 520 cm-1), 
an amorphous peak (~ 480 cm-1) and an intermediate peak, (~ 510 cm-1). Typical de-convoluted Raman spectra for 
Si:H film deposited at Pd = 400 mTorr is shown in Fig. 3(b). Crystalline fraction (XRaman) was calculated using XRaman 
= Ic  + Im/( Ic  + Im  +Ia) [17], where Ic is the integrated intensity of the crystalline phase near 520 cm-1, Im is the 
integrated intensity of the intermediate phase around 500 cm-1 and Ia is the integrated intensity of the amorphous phase 
at 480 cm-1.  The crystallite size (dRaman) was deduced using dRaman = 2  (β/∆ )1/2,  where ∆  is the peak shift compared 
to c-Si peak located ~ 520 cm-1 and β = 2.0 cm-1nm2 [18].  As seen from figure 4(a) films deposited at low Pd (> 200 
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mTorr) show only a broad shoulder centered  480 cm-1 which corresponds to typical a-Si:H material. However, the 
film deposited at Pd = 300 mTorr, shows the onset of nanocrystallization. Raman spectra for this film show a broad 
shoulder centred  480 cm-1, associated with the amorphous and the other transverse optic (TO) phonon peak centred 

 518 cm-1 originating from nanocrystalline phase [19]. For this film, XRaman is  71 % and dRaman is  4.14 nm. This 
clearly indicates that with increase in deposition pressure results in an amorphous-to-nanocrystalline transition in the 
film. Further increase in Pd, the peak shift towards lower wave number indicating decrease in volume fraction of 
crystallites. As a result, the film deposited at Pd = 600 mTorr, the Raman spectra shows nanocrystalline phase with 
the TO phonon peak centred  515 cm-1 and a small amorphous content in it. For this film, XRaman is  67 % and dRaman 
is  4.94 nm. The Raman spectra for the film deposited at Pd = 700 mTorr the TO peak associated nanocrystalline 
phase disappear completely and a broad shoulder associated with amorphous phase emerged at  480 cm-1 suggesting 
amorphization of the film. Thus, it is concluded that deposition pressure in PE-CVD is a critical process parameter to 
induce nanocrystallization in Si:H films. 

3.3. Fourier transform Infra-red (FTIR) spectroscopy analysis 

The FTIR spectra of nc-Si:H films (at normalized thickness) deposited by PE-CVD method at different deposition 
pressure are shown in Fig. 4(a). For clarity, the spectra have been broken horizontally into two parts.  

 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. a) FTIR spectra and b) Variation of hydrogen content as a function of deposition pressure for nc-Si:H films deposited by PE-CVD. 

It can be seen from the spectra that all films have two major absorption bands centered at  620 cm-1  and  2000 
cm-1 corresponding to the wagging/stretching modes, respectively, of vibrations of mono-hydrogen (Si-H) bonded 
species [20]. The spectra also exibits two absorption peaks one centered  1050 cm-1 and other less intensed centered 

 885 cm-1.  The absorption peaks centered  1050 cm-1 associated with the asymmetric Si-O-Si stretching vibrations. 
This is indicative of an oxidation effect caused by its porous-like microstructure, which is a typical feature for undoped 
nc-Si:H thin films [21]. The absorption peak centered  885 cm-1 can be assigned to the bending vibrational modes of 
Si-H2 and (Si-H2)n complexes [22]. These results indicates that the hydrogen in the films predominantly incorporated 
in mono-hydrogen (Si-H) species. With increase in deposition pressure the intensity of absorption band at ~ 620 cm-1 
increases and an absorption band centered  2100 cm-1 emerged out which can be assigned to stretching vibrational 
modes of di-hydride, Si-H2 and poly-hydride, (Si-H2)n bonded species (isolated or coupled)  respectively [23]. These 
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results indicate that with increase in deposition pressure the predominant hydrogen bonding in films shifts from Si-H 
to Si-H2 and (Si-H2)n bonded species bonded species.  

Fig. 4(b) shows the variation of hydrogen content (CH) as a function of deposition pressure. As seen from the figure, 
hydrogen content first decreases with increase in deposition pressure from 100 to 300 mTorr and then it increases 
gradually with further increase in deposition pressure to 700 mTorr. It is interesting to note that the hydrogen content 
was found less than 8 at. % over the entire range of deposition pressure studied. As seen from the FTIR spectra (Fig. 
5) at low deposition pressures the the hydrogen in the films predominantly incorporated in mono-hydrogen (Si-H) 
species as a result bounded hydeogen content in the is less. However, at high deposition pressures increase in hydrogen 
content may attributed to the formation of defects or disorders or voids due to the amorphization of films as revealed 
from Raman spectroscopy analysis (Fig. 3). The grain boundaries of defects and voids seem to be passivated by large 
amount of hydrides, silicon-hydrogen bonds suggesting increase of hydrogen content in the films at higher deposition 
pressures.  

3.4. UV-Visible spectroscopy analysis 

Optical properties nc-Si:H films were deduced from transmission (T) and reflection (R) spectra using UV-Visible 
spectrophotometer. In the direct transition semiconductor, band gap (ETauc) and absorption coefficient ( ) are related 
by ( E)1/2 = B1/2 (E – ETauc) [14], B is the optical density of state and E is the photon energy. The absorption coefficient 
( ) can be calculated with the formula  = 1/d ln (1/T-R) [24], where d is thickness of the films. Therefore, optical 
band gap is obtained by extrapolating tangential line to photon energy (E = h ) axis in the plot of ( h ) versus h . 
Fig. 5 shows variation of optical band gap as a function of deposition pressure. Band gap decreases with increase in 
deposition pressure. It is generally accepted that the band gap of Si:H depends on the hydrogen content and it linearly 
increases with the increase in hydrogen content [25]. However, in present study, no specific trend has been found 
between hydrogen content and band gap. Thus, the amount of bounded hydrogen only cannot account for the band 
gap in nc-Si:H films. We think that increase in band gap may be due to increase in defect density in the films with 
increase in deposition pressure. Variation of defect density as a function of deposition pressure is shown in Fig. 5. 
Films are more disordered in nature due to the increase in deposition rate with increase in deposition pressure. 
Increasing intensity of Si-O-Si stretching mode absorption band  1050 cm-1 [23] in FTIR spectra suggest increasing 
concentration of O impurity in the film with increasing deposition pressure. The excess oxidation appears to be 
associated with an increase in the defect density, resulting in disordered structures [26]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Variation of optical band gap and defect density as a function of deposition pressure for nc-Si:H films deposited by PE-CVD. 

3.5. Electrical Properties 

Thin films deposited on glass substrates of dimension 1 cm × 2 cm were prepared and Al electrodes 0.5 mm apart 
were deposited by thermal evaporation and loaded to a specially designed sample holder and the contacts were 
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developed using Ag paste. The measurements at room temperature were carried out at atmospheric pressure. A voltage 
of ~ 60 V DC was applied to the electrodes and the current was measured using a system electrometer (Keithley, 
Model 6514). The measurements were done first under dark condition, and then the specimen was illuminated by a 
Xe lamp, with an intensity 100 mW/cm2, which was calibrated using a standard c-Si solar cell. The dark conductivity 
( dark) and photoconductivity ( photo) were calculated using relation  = [(V x d x )/(I x l)]-1, where V is applied 
voltage, I is current, d is thickness,  is width and l is the distance between electrodes. Table 2 shows obtained values 
of dark and photoconductivity for nc-Si:H films deposited at different deposition pressures. 

Table 2. Dark conductivity and photoconductivity for nc-Si:H films deposited at different deposition pressures. 

Deposition pressure (mTorr) Dark Conductivity (S/cm) Photoconductivity (S/cm) 
100 9.20x10-4 1.49x10-4 
200 3.64x10-6 2.61x10-6 
300 2.03x10-6 1.53x10-6 
400 1.56x10-3 2.99x10-3 
500 8.24x10-5 9.04x10-4 
600 8.69x10-4 5.00x10-4 
700 1.56x10-5 5.17x10-5 

 
As seen from the table 2, both, dark and Photo were found in the range  10-3-10-6 S/cm over the entire range of 

deposition pressure investigated. As a result, photo-response, taken as the ratio of photoconductivity-to-dark 
conductivity ( Photo / Dark) was found in the range 10 and 1. We attribute change in the photo-response to change in 
crystalline fraction in the film with increase in deposition pressure because the c-Si:H/nc-Si:H films prepared by 
different methods show high dark conductivity and negligible photo-response depending upon the crystallite size and 
its volume fraction [27]. This inference is further strengthened from Raman spectroscopy analysis. 

4. Conclusion 

Hydrogenated nanocrystalline silicon (nc-Si:H) thin films were prepared by home-made plasma enhanced chemical 
vapor deposition (PE-CVD) system. We investigated the effect of deposition pressure on the structural, optical and 
electrical properties of nc-Si:H films by using various characterization techniques. The obtained results exhibited that 
the deposition rate increases with increase in deposition pressure. Raman spectroscopy analysis revealed that the 
deposition pressure in PE-CVD is a critical process parameter to induce nanocrystallization in Si:H films. The FTIR 
spectroscopy analysis results indicate that with increase in deposition pressure the predominant hydrogen bonding in 
films shifts from Si-H to Si-H2 and (Si-H2)n bonded species bonded species. However, the bonded hydrogen content 
didn’t show particular trend with optical band gap with change in deposition pressure. The obtained results indicates 
that 400 mTorr is an optimized deposition pressure of our PE-CVD unit to synthesize nc-Si:H films. At this optimized 
deposition pressure nc-Si:H films with crystallite size  5.43 nm having good degree of crystallinity ( 7 %) and 
high band gap (ETauc  1.85 eV) were obtained with a low hydrogen content (4.28 at. %) at moderately high deposition 
rate (0.75 nm/s). Further detailed experiments are required to study effect of other process parameters to optimize the 
nc-Si:H films before starting n-and p-type doping for solar cells applications. 
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