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Abstract
We consider a queueing system with N heterogeneous service facilities, in which
admission and routing decisions are made when customers arrive and the objective
is to maximize long-run average net rewards. For this type of problem, it is well-
known that structural properties of optimal policies are difficult to prove in general
and dynamic programming methods are computationally infeasible unless N is small.
In the absence of an optimal policy to refer to, the Whittle index heuristic (originating
from the literature on multi-armed bandit problems) is one approach which might
be used for decision-making. After establishing the required indexability property,
we show that the Whittle heuristic possesses certain structural properties which do
not extend to optimal policies, except in some special cases. We also present results
from numerical experiments which demonstrate that, in addition to being consistently
strong over all parameter sets, the Whittle heuristic tends to be more robust than
other heuristics with respect to the number of service facilities and the amount of
heterogeneity between the facilities.
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1 Introduction

Many routing problems involving multiple queueing facilities can be mathematically
formulated as Markov decision processes (MDPs) and solved exactly using well-
known dynamic programming (DP) techniques such as value iteration and policy
improvement (Bellman 1957; Howard 1960; Puterman 1994). Unfortunately, these
techniques are usually of no practical use for solving problems which are modelled
on real-world applications. The size and complexity of the state space that one must
consider has been cited as one of the curses of dimensionality which usually impede
exact solution attempts (Sutton and Barto 1998; Powell 2007).

To address this problem, there are various strategies that onemight employ.Depend-
ing on the particular features of the problem under consideration, it may be possible to
simplify the search by proving that optimal policies must have certain characteristics.
However, even if this is possible, one may need to resort to the use of heuristicswhich
can be relied upon to find near-optimal policies in a time-efficient manner. In this
paper we discuss the use of ‘index-based’ heuristics and consider their application to a
problem involving aMarkovian queueing systemwith heterogeneous service facilities
arranged in parallel, each with its own queue and multiple servers available.

We consider systems which can be modelled as shown in Fig. 1. Customers arriving
at the ‘routing point’ must either be sent to one of the N service facilities, in which case
they wait in the queue for that facility until a server becomes available, or rejected
without receiving service. A fixed, facility-dependent reward is earned each time a
customer is served, but holding costs are also incurred and depend linearly on the
waiting times of customers. A detailed formulation is provided in Sect. 2.

The fact that we consider heterogeneous facilities, each with the ability to serve
multiple customers at once, makes public service systems a natural application area
for our work. In the context of healthcare systems, for example, a patient seeking an
elective knee operation might be faced with a choice of different treatment providers
which differ from each other with respect to the quality of treatment provided, the
number of beds available, the expected length of stay and other factors. It is well-
known that for systems such as these, the performance of the system (measured, for
example, by the long-run average net reward per unit time after deducting holding
costs) is not optimized by allowing customers to make ‘selfish’ decisions based only
on their own interests (Bell and Stidham 1983; Hassin and Haviv 2003; Haviv and
Roughgarden 2007; Knight and Harper 2013; Shone et al. 2016; Knight et al. 2017).
Instead, customers must be directed to follow an optimal (sometimes referred to as
a ‘socially optimal’) policy which takes into account the effects of decisions on cus-
tomers who have yet to arrive. It is the need to find, or approximate, a socially optimal
policy that we focus on in this paper.

For routing problems involving multiple service facilities in parallel, optimal rout-
ing policies do not necessarily have simple characterizations. “Join the Shortest
Queue” (JSQ) rules often apply to systems inwhich all facilities are identical (seeWin-
ston 1977; Weber 1978; Hordijk and Koole 1990; Menich and Serfozo 1991; Koole
et al. 1999), but even in these cases an optimal policy may have counter-intuitive prop-
erties (Whitt 1986). In the case of heterogeneous facilities, some compelling results
have been obtained for single-server queues (Hordijk and Koole 1992; Ha 1997), but
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Fig. 1 A diagrammatic representation of the queueing system

in general the analysis is much more difficult. Consequently, previous research has
tended to focus on developing heuristic (sub-optimal) routing policies. For example,
policies based on applying one step of policy iteration to a ‘Bernoulli splitting’ policy
have been shown to perform strongly in various contexts (Krishnan 1990; Sassen et al.
1997; Ansell et al. 2003a; Bhulai and Koole 2003; Argon et al. 2009; Hyytia et al.
2012).

The heuristic policy to be developed in this paper has its origins in the work of
Gittins (1979) and Whittle (1988) on deriving ‘dynamic allocation indices’ for multi-
armed bandit processes. Informally speaking, an index-based policy is a policy which
associates a certain, easily-computable score or index to the various possible decision
options in any given system state, and then chooses the option with the highest index.
In order for an index-based policy to be applicable to a particular problem, the property
of indexabilitymust first be established. Although this property is not trivial to prove in
general, it has been proven to hold in various problems involving queueing or inventory
control (see Ansell et al. 2003b; Archibald et al. 2009; Glazebrook et al. 2009, 2011,
2014; Hodge and Glazebrook 2011; Nino-Mora 2012; Larranaga et al. 2016).
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The modus operandi of the particular type of index policy that we focus on in this
paper, which we shall refer to as theWhittle index heuristic, was first described in gen-
eral terms byWhittle (1988) and has been shown to yield strong-performing policies in
various types of problems involving dynamic resource allocation. Nino-Mora (2002)
studied a similar problem to ours, with the evolution of ‘service facilities’ described
by birth–death processes, and derived general expressions for the indices upon which
decisions are based. Argon et al. (2009) also considered a routing problem in which
customers are routed to single-server facilities. Theirmodel does not include admission
control, but does include more general cost structures and different customer types.
Some recent applications for the Whittle heuristic in the literature include egalitarian
processor sharing systems (Borkar and Pattathil 2017), scheduling for time-varying
channels (Aalto et al. 2016), partially observed binary Markov chains (Borkar 2017),
scheduling of information transmissions (Hsu 2018), allocation of scarce resources to
a large number of jobs (Li et al. 2020) and allocation of assets prone to failure (Ford
et al. 2020).

In the context of the routing problem that we consider in this paper, an advantage
of using a Whittle index heuristic is that we are able to show that the resulting index
policies possess certain intuitively ‘nice’ structural properties which usually cannot
be proven to hold for optimal policies. Since the heuristic policies appear to perform
very strongly in numerical experiments, this provides justification for searching for
optimal policies within a reduced class of solutions which possess these ‘nice’ prop-
erties (this is a topic of ongoing work). The main contributions of our paper are as
follows:

– We confirm (Sect. 3) that the service facilities in our problem are indexable and
derive expressions for the Whittle indices in terms of the system parameters.

– We show (Sect. 4) that the positive recurrent state space under an arbitrary optimal
stationary policy is bounded between two finite sets, one of which is derived using
the Whittle indices.

– We show (Sect. 4) that theWhittle heuristic policy becomes asymptotically optimal
in light-traffic and heavy-traffic limits.

– We prove (Sect. 4) that the Whittle heuristic policy possesses various other ‘intu-
itive’ structural properties and provide counter-examples to show that these may
not hold in general for optimal policies.

– We introduce (Sect. 5) an alternative index-based heuristic based on one-step
policy improvement, and show that it possesses asymptotic light-traffic (but not
heavy-traffic) optimality.

– We present (Sect. 6) results from numerical experiments to compare the per-
formance of the Whittle heuristic policy with those of optimal policies (where
feasible) and alternative heuristic policies.

In the next section we provide a detailed formulation of themultiple-facility routing
problem considered throughout this paper.
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2 Problem formulation

We consider a queueing system with N service facilities, each of which has its own
queue and a first-come–first-served (FCFS) queue discipline. Customers arrive from
outside the system according to a Poisson process with demand rate λ > 0. Newly-
arrived customers may proceed to any one of the N service facilities or, alternatively,
exit the system immediately without incurring any cost or reward (referred to as balk-
ing). Thus, there are N + 1 possible destinations for any individual customer. An
individual facility i ∈ {1, 2, . . . , N } possesses ci identical service channels, and ser-
vice times at any channel of facility i are exponentially distributedwithmeanμ−1

i > 0.
The system earns a fixed reward αi > 0 for each customer who completes service

at facility i ∈ {1, 2, . . . , N }, but also incurs a linear holding cost βi > 0 per unit time
for each customer waiting at the facility (whether in the queue or in service). We also
assume that αi > βi/μi for each i ∈ {1, 2, . . . , N } in order to ensure that rewards
adequately compensate customers for their own expected service costs (otherwise we
would have redundancy in the system).

The system is fully observable, in the sense that the number of customers present
at each facility is always known and can be used to inform decision-making. We do
not make any assumptions as to whether decisions are made by customers themselves
or whether they are directed by a central controller, since this depends on the physical
context of the problem and does not affect our results in this paper. If customers make
their own decisions, then an optimal policy can be regarded as that which arises from
customers co-operating with each other to maximize their collective welfare.

Let S = {(x1, x2, . . . , xN ) : xi ∈ N0 for each i ∈ {1, 2, . . . , N }} denote the state
space of the system,where xi is the number of customers present at facility i (including
those being served). A system state is denoted by a vector x ∈ S. We also use xi+
(resp. xi−) to denote the state which is identical to x except that one extra customer
(resp. one fewer customer) is present at facility i . That is:

xi+ = x + ei , xi− = x − ei ,

where ei is the i th vector in the standard orthonormal basis of R
N .

The sum of the infinitesimal transition rates under any state x ∈ S is bounded above
by λ + ∑N

i=1 ciμi . We can therefore apply the process of uniformization (Lippman
1975; Serfozo 1979) to formulate the system as a discrete-time Markov Decision
Process (MDP) in which the action space, transition probabilities and single-step
reward function are defined as follows:

– Under any state x ∈ S, the action space is

A = {0, 1, 2, . . . , N }.

An action a ∈ A represents the decision of the next customer to arrive in the
system. If a = 0 then the customer balks, and if a = i for some i ∈ {1, 2, . . . , N }
then the customer goes to facility i .
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– The transition probability of going from state x ∈ S to state y ∈ S \ {x} in a
single discrete time step, given that action a ∈ A has been chosen, is denoted by
p(x, a, y), where

p(x, a, y) =

⎧
⎪⎨

⎪⎩

λΔ, if a = i for some i ∈ {1, 2, . . . , N } and y = xi+,

min(xi , ci )μiΔ, if y = xi−for some i ∈ {1, 2, . . . , N },
0, otherwise,

(1)

and Δ =
(
λ +∑N

i=1 ciμi

)−1
is the discrete-time step size. Note that, following

uniformization, we assume that at most one random event (either an arrival or a
service completion) may occur in a single discrete time step. A ‘self-transition’
from state x ∈ S to itself may occur if no random event takes place, and the relevant
transition probability is

p(x, a, x) = 1 − I (a �= 0)λΔ −
N∑

i=1

min(xi , ci )μiΔ,

where I denotes the indicator function.
– Under state x ∈ S, rewards are being earned at a total rate of

∑N
i=1 αi min(xi , ci )μi

and holding costs are being incurred at a rate
∑N

i=1 βi xi . We therefore formulate
the single-step reward function as

r(x) =
N∑

i=1

(
αi min(xi , ci )μi − βi xi

)
. (2)

For simplicity we will assume throughout this paper thatΔ =
(
λ +∑N

i=1 ciμi

)−1

= 1, since the units of time are arbitrary.
We define an optimal policy as a decision-making rule θ which maximizes the

long-run average net reward per unit time, defined as

gθ (x) = lim
t→∞ t−1

Eθ

[
t−1∑

n=0

r(xn)|x0 = x

]

, (3)

where xn denotes the state of the system at the nth discrete time step (with x0 as the
initial state).

Letwa(x) denote an individual customer’s expected net reward for choosing action
a ∈ {0, 1, . . . , N } under state x ∈ S. If the action chosen is to join some facility
i ∈ {1, . . . , N } at which xi customers are already present, then the expected waiting
time is 1/μi if xi < ci , and (xi − ci + 1)/(ciμi )+ 1/μi = (xi + 1)/(ciμi ) if xi ≥ ci .
Hence:
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wa(x) =

⎧
⎪⎨

⎪⎩

αa − βa/μa, if a ∈ {1, 2, . . . , N } and xa < ca,

αa − βa(xa + 1)/(caμa), if a ∈ {1, 2, . . . , N } and xa ≥ ca,

0, if a = 0.

(4)

Also, let θ̃ denote the ‘selfish’ (myopic) policy which operates in such a way that
any customer arriving in the system chooses the action a ∈ {0, 1, . . . , N } which
maximizes wa(x), with ties broken arbitrarily except that we assume balking (a = 0)
is chosen only if wi (x) < 0 for all i ∈ {1, 2, . . . , N }. By considering the inequalities

αi − βi xi
ciμi

≥ 0, αi − βi (xi + 1)

ciμi
< 0,

we can show that the maximum number of customers at facility i under policy θ̃ is
�βi/(αi ciμi )�, where �·� denotes the floor function.Hence, the set of positive recurrent
states under θ̃ is S̃, where

S̃ =
{

x ∈ S : xi ≤
⌊

αi ciμi

βi

⌋

∀i ∈ {1, 2, . . . , N }
}

. (5)

It is proved in (Shone et al. 2016) (Theorem 2) that there always exists a stationary
policy θ∗ : S → A which maximizes (3). Furthermore, if Sθ∗ denotes the set of
positive recurrent states under a particular optimal stationary policy θ∗, then

Sθ∗ ⊆ S̃. (6)

This may be described as the ‘containment property’ of socially optimal policies.

3 TheWhittle index heuristic

The main theoretical contributions of our paper (to follow in Sect. 4) rely upon the
service facilities having a property referred to as indexability, and the resulting devel-
opment of a heuristic routing policy based on optimal admission policies for individual
facilities. Indexability is not necessarily a trivial property to prove in general settings,
and sufficient conditions for this property to hold have been well-studied in the lit-
erature; see, for example, Bertsimas and Nino-Mora (1996) and Nino-Mora (2001,
2002) for the development of polyhedral methods. As noted by Glazebrook et al.
(2009), however, it is often possible to provide simple, direct proofs of indexability
in specific problems where the index for resource i (or, in our case, facility i) has a
natural interpretation as a fair charge for utilization. Fortunately, in our model it is
straightforward to establish the indexability property using a simple geometrical argu-
ment. Full details follow later in this section, but first we introduce the Lagrangian
relaxation upon which the index heuristic is based.

Let Θ denote the class of stationary policies under which our N -facility queueing
system is stable and has a stationary distribution; that is, if θ ∈ Θ then the distribution
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{πθ (x)}x∈S exists, where πθ (x) is the steady-state probability of the system being in
state x ∈ S under θ and

∑
x∈S πθ (x) = 1. We note that although λ can be arbitrarily

large,Θ is always non-empty since it includes the trivial policy which chooses to balk
at all states in S.

For each policy θ ∈ Θ and facility i ∈ {1, 2, . . . , N }, let ηi (θ) denote the effective
queue-joining rate per unit time at facility i under θ (i.e. the long-run average number
of customers joining facility i per unit time), and let Li (θ) denote the long-run average
number of customers present at facility i under θ . Then the long-run average reward
gθ under policy θ is independent of the initial state x0 and may be expressed in the
form

gθ =
N∑

i=1

(αiηi (θ) − βi Li (θ)) (7)

Closed-form expressions for ηi (θ) and Li (θ) are unattainable in general when
N ≥ 2, but the expression on the right-hand side of (7) will nevertheless prove useful.
We note that under any policy θ ∈ Θ , the sum of the effective queue-joining rates
ηi (θ) at the various facilities must be bounded above by the system demand rate. That
is:

N∑

i=1

ηi (θ) ≤ λ. (8)

Following Whittle (1988), we consider a Lagrangian relaxation of our original
problem involving an expanded class of stationary policies Θ ′ which are at liberty
to ‘break’ the natural physical restrictions of the system by sending a newly-arrived
customer to any subset of the set of facilities {1, 2, . . . , N }. That is, for each state
x ∈ S, the action θ(x) chosen by a policy θ ∈ Θ ′ satisfies

θ(x) ∈ P ({1, 2, . . . , N }) ,

whereP ({1, 2, . . . , N }) is the power set (i.e. the set of all subsets, including the empty
set) of {1, 2, . . . , N }. Conceptually, one now considers a new optimization problem
in which the option is available to produce ‘copies’ of each customer who arrives, and
send these copies to any number of facilities (at most one copy per facility). For each
state x ∈ S, θ(x) is the set of facilities which, under the policy θ ∈ Θ ′, receive (a copy
of) a new customer if an arrival occurs under state x.

We incorporate the constraint (8) in a Lagrangian fashion by letting ĝ(W ) denote
the optimal expected long-run average reward for the new (relaxed) problem, defined
as

ĝ(W ) := sup
θ∈Θ ′

(
N∑

i=1

(αiηi (θ) − βi Li (θ)) + W

(

λ −
N∑

i=1

ηi (θ)

))

, (9)
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where W ∈ R is a Lagrange multiplier. Clearly, any policy θ belonging to the class
of policies Θ for the original problem may be represented by a policy θ ′ in the new
class Θ ′ for which the cardinality of θ ′(x) is either 1 or 0 at all states x ∈ S. Hence,
for W ≥ 0,

g∗ ≤ ĝ(W ),

where g∗ = supθ∈Θ gθ is the optimal expected long-run average reward in the original
problem. One can re-write (9) in an equivalent form:

ĝ(W ) = sup
θ∈Θ ′

(
N∑

i=1

(
(αi − W ) ηi (θ) − βi Li (θ)

)
)

+ λW . (10)

Then, as in Glazebrook et al. (2009) (for example), one obtains a facility-wise decom-
position:

ĝ(W ) =
N∑

i=1

ĝi (W ) + λW , (11)

where, for each facility i ∈ {1, 2, . . . , N },

ĝi (W ) = sup
θ∈Θi

′

(
(αi − W ) ηi (θ) − βi Li (θ)

)
.

Here, Θi
′ (for i = 1, 2, . . . , N ) is a class of stationary policies which choose

either to accept a customer (denoted by 1) or reject (denoted by 0) at any given state.
Since the relaxation of the problem allows newly-arrived customers to be sent to
any subset of the N facilities, the decision of whether or not to admit a customer at
some facility i ∈ {1, 2, . . . , N } can be made independently of the decisions made in
regard to the other facilities j �= i . It follows that an optimal solution to the relaxed
N -facility problem can be found by solving N independent single-facility admission
control problems. For each facility i ∈ {1, 2, . . . , N }, the corresponding single-facility
problem involves customers arriving according to a Poisson process with a demand
rate λ (the same demand rate as for the N -facility problem), ci service channels, and
exponentially-distributed service times with mean μ−1

i . The holding cost is βi per
customer per unit time, but importantly the reward for service is now αi − W as
opposed to αi . Hence, it is natural to interpret W as an extra charge for admitting a
customer; see Fig. 2.

The single-facility problem described above exactly fits the formulation of Sect. 2
(with N = 1), except that the reward αi − W may not be positive. Interpreting
Theorem 2 from Shone et al. (2016) in the context of a single-facility problem, we can
be assured that there exists an average reward optimal threshold policy. This means
that a customer arriving at the facility balks if and only if the system state x equals
or exceeds the integer threshold n, i.e. x ≥ n. We will refer to such a policy as an
n-threshold policy.
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Fig. 2 An M/M/ci queue with an extra admission charge W

Let θ∗
i denote an optimal threshold policy at facility i , given an entry charge W .

This means that θ∗
i chooses an action a ∈ {0, 1} in response to an input (x,W ) ∈

N0 × R, where x is the observed state and W is the entry charge. Re-interpreting
the summary measures ηi (·) and Li (·) so that they are now functions of policies θi
belonging to the set Θi

′ associated with the single-facility problem, it follows that
(αi − W )ηi (θ

∗
i ) − βi Li (θ

∗
i ) is a valid expression for ĝi (W ), the optimal average

reward for facility i .
Next, we recall that the facility i ∈ {1, 2, . . . , N } was arbitrary in this discussion

and let θ∗
1 , θ∗

2 , . . . , θ∗
N be optimal threshold policies at the various facilities. Also, let

θ∗ be a stationary policy belonging to the expanded class Θ ′ which operates in such
a way that, for each state x ∈ S,

θ∗(x,W ) = {
i ∈ {1, 2, . . . , N } : θ∗

i (xi ,W ) = 1
}
. (12)

That is, each time a new customer arrives, they are sent to all of the facilities
i ∈ {1, 2, . . . , N } at which the optimal threshold policy θ∗

i would choose to accept
a customer. By the previous arguments, θ∗ attains average reward optimality in the
relaxed version of the problem.

In order to derive theWhittle heuristic for theoriginal N -facility problem, it remains
to establish the connection between this heuristic and the optimal solutions for the
relaxed version of the problem discussed thus far. The Whittle heuristic relies upon
the notion of indexability of a service facility, which we define [in line with Whittle
(1988)] as follows:

Definition 1 (Indexability) Facility i ∈ {1, 2, . . . , N } is said to be indexable if, given
any state x ∈ N0, there exists Wi (x) ∈ R such that θ∗

i chooses to accept a new
customer if and only if W < Wi (x).

For each facility i ∈ {1, 2, . . . , N }, let T ∗
i (W )denote the smallest integern such that

an n-threshold policy achieves average reward optimality in a single-facility problem
with demand rate λ, ci service channels, service rate μi , holding cost βi and reward
for service αi −W . Then we can show that the indexability property holds for facility
i if and only if T ∗

i (W ) satisfies the following properties:

1. T ∗
i (W ) is monotonically decreasing with W .

2. For any x ∈ N0, there exists Wi (x) ∈ R such that T ∗
i (W ) > x if and only if

W < Wi (x).
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In the event that the indexability property holds, we refer to the critical valueWi (x)
as the Whittle index for facility i and state x . Although indexability is not trivial to
prove in general, the property has been shown to hold in various problems involving
queueing or inventory control (see Nino-Mora 2002; Ansell et al. 2003b; Archibald
et al. 2009; Glazebrook et al. 2009; Argon et al. 2009; Hodge and Glazebrook 2011
and references therein). The next result confirms that the facilities in our problem are
indexable, and also provides an expression for the Whittle indexWi (x) in terms of the
system parameters. Proof of the lemma can be found in Appendix A.

Lemma 1 Each facility i ∈ {1, 2, . . . , N } is indexable. Furthermore, a valid expres-
sion for the Whittle index Wi (x) is

Wi (x) = αi −
βi

⎛

⎝
x+1∑

y=0

yπi (y, x + 1) −
x∑

y=0

yπi (y, x)

⎞

⎠

λ (πi (x, x) − πi (x + 1, x + 1))
, (13)

where πi (y, T ) denotes the steady-state probability of facility i being in state y ∈ N0,
given that a threshold of T is applied.

We note that convenient formulae for πi (y, T ) are available from finite-buffer
M/M/c queueing theory (see, for example, Gross and Harris 1998):

πi (y, T ) =
{

[(λ/μi )
y/(y!)] πi (0, T ), if y ≤ ci ,

[(λ/μi )
y/(cy−ci

i ci !)] πi (0, T ), if y ≥ ci ,

where

πi (0, T ) =
⎛

⎝
ci−1∑

k=0

λk

μk
i k!

+ λci

μ
ci
i ci !

T∑

k=ci

λk−ci

(ciμi )k−ci

⎞

⎠

−1

.

Several remarks should be made at this point. Firstly, equation (13) can be found in
a more general form in Corollary 7.1 of Nino-Mora (2012). Secondly, the expression∑x+1

y=0 yπi (y, x + 1) −∑x
y=0 yπi (y, x) which appears on the right-hand side of (13)

is simply Li (x+1)−Li (x), where Li (x) is the expected number of customers present
at facility i given a threshold of x . In the special case where x < ci , Little’s formula
yields Li (x+1)−Li (x) = (λ/μi )(πi (x, x)−πi (x+1, x+1)), and hence we obtain

Wi (x) = αi − βi

μi
(x < ci ). (14)

Thus, the Whittle index at states x < ci is equal to a customer’s expected net
reward for joining facility i . As a further remark, suppose we have a single-server
facility (ci = 1). Then it is straightforward to apply results for finite-buffer M/M/1
queues in order to obtain
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Wi (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αi −
βi

(
(x + 1)(1 − ρi ) − ρi (1 − ρx+1

i )
)

μi (1 − ρi )2
, if ρ �= 1,

αi − βi (x + 1)(x + 2)

2μi
, if ρ = 1,

where ρi = λ/μi . This is analogous to the equation (7.3) given in Nino-Mora (2002),
except that their result is given in the context of minimizing holding costs (without a
reward for service). A similar result can also be found by considering equation (18)
in Argon et al. (2009) and setting (in their notation) α = 0, β = λ/μ = ρ and
c(i) = (i + 1)h/μ.

In the light of Definition 1, we can obtain an optimal policy θ∗ for the relaxed
N -facility problem by specifying its decision at state x ∈ S as follows:

θ∗(x,W ) = {
i ∈ {1, 2, . . . , N } : Wi (xi ) > W

}
.

As observed in Argon et al. (2009) and Glazebrook et al. (2009), the fact that an
optimal solution to the relaxed problem may be described using the Whittle indices
makes it logical to propose a heuristic policy for the original N -facility problem,which
involves sending any new customer who arrives under state x ∈ S to a facility i which
maximizes Wi (xi ), or choosing to balk if none of the Wi (xi ) values are positive. The
optimality of such a policy cannot be guaranteed, but its intuitive justification lies in
the fact that Wi (xi ), when positive, is a measure of the amount by which the ‘charge
for admission’ W would need to be increased before the optimal policy θ∗ for the
relaxed problem would choose not to admit a customer to facility i . Thus,Wi (xi )may
be regarded somewhat crudely as a measure of the margin by which one would be
‘in favor’ of having an extra customer present at facility i . A similar interpretation is
that Wi (xi ) is a ‘fair charge’ for admitting a customer to facility i when there are xi
customers already present.

TheWhittle index heuristic policy θ [W ] (hereafter referred to as theWhittle policy)
for our original N -facility routing problem is defined below.

Definition 2 (Whittle index policy) At any given state x ∈ S, the Whittle index policy
θ [W ] chooses an action as follows:

θ [W ](x) ∈
⎧
⎨

⎩

arg max
i∈{1,2,...,N }

Wi (xi ), if ∃ i ∈ {1, 2, . . . , N } such that Wi (xi ) > 0,

{0}, otherwise,
(15)

where Wi (x) is defined in (13). In cases where two or more facilities attain the
maximum in (15), it will be assumed that a decision is made according to some
pre-determined ranking order of the N facilities.

We note that, for any state x = (x1, . . . , xN ) ∈ S, there is an equivalence between
the following three statements:

1. Wi (xi ) > 0 for some i ∈ {1, 2, . . . , N },
2. θ [W ](x) �= 0,
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3. Any optimal stationary policy for a single-facility problem with parameters corre-
sponding to those of facility i ∈ {1, 2, . . . , N }, is a threshold policy with threshold
greater than xi .

We will make use of this equivalence in several of our later proofs.
In the next section we investigate the similarities and differences between theWhit-

tle index policy and an optimal policy which maximizes (3).

4 Structural and asymptotic properties of the index heuristic

Suppose we have a stationary policy, θ∗, which is optimal under the average reward
criterion. In this section we will present several counter-examples to show that θ∗ may
possess surprising and counter-intuitive structural properties. Indeed, there is little that
can be proved about θ∗ in general. However, it is possible to show that the positive
recurrent state space under θ∗ may be bounded by two finite sets. Let the sets S◦ and
Sθ∗ be defined as follows:

S◦ := {x ∈ S : xi ≤ ci ∀ i ∈ {1, 2, . . . , N }},
Sθ∗ := {x ∈ S : x is positive recurrent under θ∗}. (16)

Also, let S̃ be the ‘selfish’ state space defined in (5). The following relationship
may be proved to hold for any optimal stationary policy θ∗:

S◦ ⊆ Sθ∗ ⊆ S̃. (17)

Indeed, the fact that Sθ∗ ⊆ S̃ has been proved in Shone et al. (2016) (Lemma 6).
By using this result and also showing that optimal policies never choose to balk if
there is an idle server available at one of the N facilities, the lower bound S◦ ⊆ Sθ∗
can be established. A full proof can be found in Appendix B. We refer to the property
S◦ ⊆ Sθ∗ as the non-idling property of optimal policies.

We have not stated (17) as a theorem because it can be regarded as a corollary of a
stronger result, which follows next. It is possible to use the structural properties of the
Whittle index policy to obtain an improved lower bound for Sθ∗ . Throughout the rest
of this section we will use θ [W ](x) ∈ {0, 1, . . . , N } to denote the action chosen by the
Whittle policy θ [W ] in response to an observed state x ∈ S, and we will also use SW
to denote the set of states in S which are positive recurrent under θ [W ]. The following
lemma is needed:

Lemma 2 Let θ∗ be an optimal stationary policy. Then, for any x ∈ Sθ∗ ,

θ∗(x) = 0 ⇒ θ [W ](x) = 0.

That is, the Whittle policy θ [W ] chooses to balk at any state x ∈ Sθ∗ where θ∗ chooses
to balk.
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Proof of the lemma is established using dynamic programming recursions and can
also be achieved via a sample path argument. The details can be found in Appendix C.
Essentially, one can show that if balking is chosen at some state x ∈ Sθ∗ by the
optimal policy θ∗, then balking would also be chosen by an optimal threshold policy
in a single-facility problem involving any of the facilities i ∈ {1, 2, . . . , N } at the state
with xi customers present (where xi is the i th component of the state x in the N -facility
problem). Since the Whittle policy θ [W ] makes decisions by considering each of the
N facilities operating in isolation, this is sufficient to establish the result.

Our next theorem states that the Whittle index policy θ [W ] is conservative in com-
parison to an optimal stationary policy θ∗.

Theorem 1 (Conservativity of the Whittle policy) For any optimal stationary policy
θ∗, we have

S◦ ⊆ SW ⊆ Sθ∗ ⊆ S̃. (18)

Proof The containment property Sθ∗ ⊆ S̃ is already known. It follows that there must
exist some state x ∈ Sθ∗ at which θ∗ chooses to balk; otherwise, an unbroken sequence
of customer arrivals (without any service completions) would cause the process to pass
outside S̃ under θ∗. Let z ∈ Sθ∗ be a state at which θ∗ chooses to balk, and let

Sz :=
{
x ∈ S̃ : xi ≤ zi ∀i ∈ {1, 2, . . . , N }

}
.

That is, Sz is the set of states in S̃ which satisfy the componentwise inequality
x ≤ z. Since z ∈ Sθ∗ , it follows that all states in Sz are also included in Sθ∗ , since they
are accessible from z via service completions. Hence, Sz ⊆ Sθ∗ . On the other hand,
since balking is chosen by θ∗ at z, it follows from Lemma 2 that balking is also chosen
at z by the Whittle policy θ [W ]. By definition of the Whittle policy, this implies that
Wi (zi ) ≤ 0 for all i ∈ {1, 2, . . . , N }. Therefore it is impossible for any state x /∈ Sz to
be accessible from state 0 (the empty system state) under the Whittle policy, since this
would require joining some facility i ∈ {1, 2, . . . , N } to be chosen at a state y ∈ Sz
with yi = zi and hence Wi (yi ) ≤ 0. It follows that SW ⊆ Sz ⊆ Sθ∗ .

To complete the proof, it remains only to show that S◦ ⊆ SW . In Sect. 3 it was
shown that, for any facility i ∈ {1, . . . , N }, we have Wi (x) = αi − βi/μi for all
states x < ci (see (14)). Recall that our model assumes αi − βi/μi > 0; otherwise,
facility i would be redundant. Hence, θ [W ] cannot choose to balk at any state with
xi < ci for some i ∈ {1, 2, . . . , N }. Since SW is contained in Sθ∗ (and hence finite),
it then follows that there exists a state x with xi ≥ ci for all i ∈ {1, 2, . . . , N } which
is positive recurrent under θ [W ] (indeed, such a state must be accessible from 0 via
an unbroken sequence of customer arrivals). Hence, all states in S◦ are also positive
recurrent under θ [W ]. ��

Next, we turn our attention to the asymptotic properties of the Whittle index policy
as λ becomes either very small or very large. Since θ [W ] is a heuristic policy, its
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optimality cannot be proved in general, but the next theorem establishes that the
Whittle policy achieves (asymptotic) optimality in a light-traffic limit, and also in a
heavy-traffic limit.

Theorem 2 (Optimality of the Whittle policy in light-traffic and heavy-traffic limits)
Let g[W ](λ) be the long-run average reward attained by the Whittle policy θ [W ](λ)

given a demand rate λ > 0, and let g∗(λ) be the corresponding value under an optimal
policy. Then:

1. θ [W ] is asymptotically optimal in a light-traffic limit. That is:

lim
λ→0

g∗(λ) − g[W ](λ)

g∗(λ)
= 0.

2. θ [W ] is optimal in a heavy-traffic limit. That is:

lim
λ→∞

(
g∗(λ) − g[W ](λ)

)
= 0.

Proof of Theorem 2 can be found in Appendix D. In the light-traffic case, it suffices
to show that theWhittle policy makes optimal decisions at the state with no customers
present, since the decisions chosen at other states essentially become unimportant in
the limiting scenario. In the heavy-traffic case, the proof is accomplished by showing
that the Whittle heuristic directs customers to balk if and only if all servers are busy at
all facilities, and that this results in the system residing continuously in a state which
maximizes the single-step reward function r(x).

Theorem 2 relies upon the fact that optimal policies become quite simplistic in the
limiting cases as λ → 0 and λ → ∞. For general values of λ, however, optimal
policies can be quite intricate. The remaining results in this section identify structural
properties of the Whittle policy θ [W ] which do not necessarily hold under an optimal
policy.

First, we consider monotonicity. We will generalize our previous notation and use
Sθ to denote the set of states which are positive recurrent under an arbitrary stationary
policy θ .

Theorem 3 (Monotonicity) Suppose N ≥ 2, and let Θ [M] denote the class of all
stationary policies θ which satisfy the following three monotonicity properties:

(a) If θ(x) = 0 for some x ∈ Sθ , then θ(xi+) = 0 for all i ∈ {1, 2, . . . , N } with
xi+ ∈ Sθ .

(b) If θ(x) = i for some x ∈ Sθ and i ∈ {1, 2, . . . , N } with xi ≥ 1, then θ(xi−) = i .
(c) If θ(x) = i for some x ∈ Sθ and i ∈ {1, 2, . . . , N }, then θ(x j+) = i for any

j ∈ {1, 2, . . . , N } \ {i} such that x j+ ∈ Sθ .

Then:

1. θ [W ] ∈ Θ [M],
2. If N = 2 and c1 = c2 = 1 then there exists an optimal policy in Θ [M],
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3. In general, Θ [M] is not guaranteed to include an optimal policy.

Proof It is trivial to show that the Whittle policy θ [W ] possesses the monotonicity
properties (a)–(c), since this is a direct consequence of the index-based nature of the
policy. We therefore begin with Statement 2, which relates to a special case of our
model with only two facilities and a single server at each. In general, any optimal
policy must be associated with a constant g∗ and a function h satisfying the well-
known average reward optimality equations:

g∗ + h(x) = max
a∈A

⎧
⎨

⎩
r(x) +

∑

y∈S
p(x, a, y)h(y)

⎫
⎬

⎭
(x ∈ S). (19)

Importantly, the function h satisfying (19) is unique up to an additive constant (see
Puterman 1994). The proof of Statement 2 depends on showing that, in the special
case under consideration, h satisfies three properties defined as follows:

– h((x j+) j+) − h(x j+) ≤ h(x j+) − h(x) for all x ∈ S and j ∈ {1, 2} (concavity);
– h((xi+) j+) − h(xi+) ≤ h(x j+) − h(x j+) for all x ∈ S and i, j ∈ {1, 2} with
i �= j (submodularity);

– h((x j+) j+) − h((xi+) j+) ≤ h(x j+) − h(xi+) for all x ∈ S and i, j ∈ {1, 2} with
i �= j (diagonal submissiveness).

These properties can be established using inductive arguments based on value iter-
ation, and the existence of an optimal policy in Θ [M] then follows. For full details,
please refer to Appendix E.

Unfortunately, the properties of concavity, submodularity and diagonal submissive-
ness cannot be proven to hold in the full generality of our model.We prove Statement 3
of the theorem using a counter-example. Consider a two-facility system with demand
rate λ = 12 and the following parameters for the two facilities:

c1 = 2, μ1 = 8, β1 = 10, α1 = 2,
c2 = 2, μ2 = 2, β2 = 10, α2 = 6.

We can use value iteration to confirm the existence of a unique optimal stationary
policy θ∗ for this system. The positive recurrent state space under this policy is Sθ∗ =
{(x1, x2) ∈ N

2
0 : x1 ≤ 2 and x2 ≤ 2}, i.e. it includes 9 states. However, the decision of

θ∗ at state (0, 0) is to join Facility 2, whereas the decision at (1, 0) is to join Facility
1. This contravenes monotonicity property (b) stated in the theorem, so the proof is
complete. ��

Fellow researchers may be interested to know that we have been unable to find
either a proof or a counter-example to show whether or not monotonicity property
(a) is guaranteed to hold under an optimal policy θ∗ (indeed, this property may be
meaningless if it can be shown that θ∗(x) = 0 ⇒ xi+ /∈ Sθ∗ ). In addition, we have
been unable to find either a proof or a counter-example to show whether or not an
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optimal policy satisfying all three properties (a)–(c) is guaranteed to exist if N ≥ 3
and ci = 1 for all i ∈ {1, 2, . . . , N }.

Next, we consider how the size of the positive recurrent state space changes as the
demand rate λ varies. Intuitively, one might suppose that strong-performing policies
should become more conservative as λ increases. The next theorem shows that this is
indeed the case for the Whittle policy θ [W ], but not for optimal policies in general.

Theorem 4 (Conservativity with demand) Let SW (λ) and S∗(λ) be defined as follows:

SW (λ) = {x ∈ S : x ∈ SW under demand rate λ},
S∗(λ) = {x ∈ S : there exists an optimal stationary policy θ∗ under demand

rate λ such that x ∈ Sθ∗}.

Then, given any two demand rates λ1, λ2 with λ1 > λ2 > 0:

1. SW (λ1) ⊆ SW (λ2),
2. If N = 1, then S∗(λ1) ⊆ S∗(λ2),
3. In general, S∗(λ1) � S∗(λ2).

Proof Since the Whittle index policy is derived from the properties of optimal admis-
sion policies for single-facility problems, Statement 1 is actually implied by Statement
2.However, Statement 2 is somewhat non-trivial to prove.Wehave used a dynamic pro-
gramming argument to establish this result, and the details can be found inAppendix F.

We provide a counter-example to establish Statement 3. Consider a two-facility
system in which both facilities have a single server available. The parameters for the
facilities are:

c1 = 1, μ1 = 14, β1 = 5, α1 = 9,
c2 = 1, μ2 = 5, β2 = 3, α2 = 20.

Consider two different demand rates, λ1 = 10 and λ2 = 9.8. Under the larger
demand rate λ1, the unique optimal policy θ∗

1 found by value iteration has positive
recurrent state space S∗(λ1) = {(x1, x2) ∈ N

2
0 : x1 ≤ 10 and x2 ≤ 14}, with a unique

balking state (10, 14). However, under the smaller demand rate λ2, value iteration
yields a unique optimal policy with S∗(λ2) = {(x1, x2) ∈ N

2
0 : x1 ≤ 11 and x2 ≤ 13},

with a unique balking state (11, 13). Since S∗(λ1) includes states with x2 = 14, the
‘conservativity with demand’ property does not hold. ��

Next, we examine a property related to the distribution of balking states under a
stationary policy. It is natural to suppose that, under a strong-performing policy θ , the
positive recurrent state space Sθ should take the form of a cuboid in N dimensions.
Indeed, if Sθ is finite, then the cuboid property is implied by the existence of a unique
state in Sθ at which balking is chosen. The next result states that the Whittle policy
θ [W ] must have a unique recurrent balking state, but this is not necessarily true for an
optimal stationary policy.
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Theorem 5 (Unique recurrent balking state) Suppose N ≥ 2, and let Θ [B] denote the
set of all stationary policies θ for which the set of positive recurrent states Sθ includes
a unique state at which balking is chosen. Then:

1. θ [W ] ∈ Θ [B],
2. If N = 2 and c1 = c2 = 1 then there exists an optimal policy in Θ [B],
3. In general, Θ [B] is not guaranteed to include an optimal policy.

Proof The proof of Statement 1 is trivial, since the only state x ∈ SW at which θ [W ]
chooses to balk is the state with xi = min{x ≥ 0 : Wi (x) ≤ 0} for i ∈ {1, 2, . . . , N }.

The proof of Statement 2 relies upon the properties of concavity, submodularity and
diagonal submissiveness for the function h satisfying the Eq. 19 in a system with two
single-server facilities. These properties were established (for the N = 2, c1 = c2 = 1
case) in the proof of Theorem 3. Details of how these properties imply a unique balking
state can be found in Ha (1997) (Theorem 3). Ha’s results are given in the context of
a make-to-stock production system with two products and a single server. He defines
a ‘base stock policy’ as a policy for which production is stopped if and only if all
products have inventory at or above their specified base stock levels; this is analogous
to a policy with a unique balking state in our model. We also note that Ha considers a
minimization problem as opposed to a maximization problem, and the value function
in his model has the converse properties of convexity, supermodularity and diagonal
dominance. However, the arguments in his proof can be translated to our setting in an
obvious way.

To prove Statement 3, we provide a counter-example which was found by a numer-
ical search. Consider a system with 3 facilities and a demand rate λ = 21.57. The
parameters for the facilities are:

c1 = 2, μ1 = 15.17, β1 = 12.01, α1 = 5.65,
c2 = 4, μ2 = 10.09, β2 = 22.4, α2 = 9.07,
c3 = 3, μ3 = 6.36, β3 = 7.16, α3 = 5.46.

For this system, the unique optimal policy θ∗ found using value iteration chooses
to balk at the states (13, 10, 14) and (12, 11, 14), both of which are positive recurrent
under θ∗. Thus, the process operating under θ∗ is able to access two different ‘balking
states’, implying that θ∗ /∈ Θ [B]. ��

Our final result in this section concerns a special case in which all of the N facilities
share the same parameters (ci , μi , αi and βi ). We refer to this as the ‘homogeneous
facilities’ case. Like the previous three results, it highlights an intuitively ‘sensible’
structural property which is possessed by the Whittle policy θ [W ], but not by optimal
policies in general.

Theorem 6 (Cube property for a homogeneous system) Suppose N ≥ 2 and the
facilities are homogeneous, i.e. we have ci = c, μi = μ, αi = α, βi = β for
i ∈ {1, 2, . . . , N }. Let Θ [C] denote the set of all stationary policies θ for which the set
of positive recurrent states Sθ is of the form {x ∈ S : xi ≤ M for all i ∈ {1, 2, . . . , N }}
for some M ∈ N0. Then:
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Table 1 An optimal
decision-making structure for a
system with homogeneous
facilities

x2 = 0 x2 = 1 x2 = 2 x2 = 3

x1 = 0 1 or 2 1 1 1

x1 = 1 2 1 or 2 1 1

x1 = 2 2 2 1 or 2 0

x1 = 3 2 2 0 –

1. θ [W ] ∈ Θ [C],
2. In general, Θ [C] is not guaranteed to include an optimal policy.

Proof As in Theorems 3 and 5, the proof of Statement 1 is trivial, since it is a direct
consequence of the index-based nature of the Whittle index policy.

We provide a counter-example to establish Statement 2. Consider a system with
demand rate λ = 15 and two single-server facilities which share an identical set of
parameters as follows:

c = 1, μ = 4, β = 1, α = 5.

With these parameters, it transpires that the set of positive recurrent states Sθ∗
associated with any optimal stationary policy must be either of dimension 3 × 4 or
4 × 3. The optimal decision-making structure is shown in Table 1.

If we restrict attention to stationary policies, then it can be seen from Table 1 that
there must be a unique balking state at either (2, 3) or (3, 2). Therefore an optimal
stationary policy will allow one of the two facilities to have up to three customers
present, but not both. The state (3, 3) is not accessible from 0 (i.e. positive recurrent)
under any optimal stationary policy. Since Table 1 accounts for all 8 optimal stationary
policies in this system, we conclude that none of these are included in Θ [C]. ��

The results in this section have shown that the Whittle policy θ [W ] belongs to
a class of policies which possess certain intuitively ‘sensible’ structural properties.
However, the counter-examples have shown that an optimal policy need not necessarily
be included in the same class, and therefore θ [W ] must be sub-optimal in some cases.
In Sect. 6 we present the results of numerical experiments to evaluate the performance
of theWhittle policy. These numerical results include comparisons with an alternative
heuristic policy, which is developed in the next section.

5 An alternative heuristic policy

In this section we describe an alternative heuristic policy which is derived from the
application of a single step of policy iteration to a ‘static routing’ or ‘Bernoulli splitting’
policy. Similar approaches have been used for other routing problems in the literature;
see Krishnan (1990), Ansell et al. (2003b) and Argon et al. (2009) and references
therein. The heuristic shares some similarities with the Whittle heuristic, in the sense
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that it requires the calculation of indices for the N individual facilities; however, the
indices themselves are calculated in a completely different way from those derived in
Sect. 3.

To begin, consider a randomized policy under which routing decisions are made
according to a fixed probability distribution {σa}Na=0, where a belongs to the same

action set A described in Sect. 2; hence,
∑N

a=0 σa = 1. We refer to this type of policy
as a static policy, since it does not have the ability to make decisions dynamically
according to the system state. We will commit a slight abuse of notation and represent
an arbitrary static policy by a vector Λ = (λ1, . . . , λN ), where λi = λσi is the arrival
rate for facility i (i ∈ {1, . . . , N }) and λ0 = λσ0 is the rate at which customers balk.
We can then write the expected long-run average reward under this policy as

gΛ =
N∑

i=1

(λiαi − βi Li (λi )), (20)

where Li (λi ) is the expected number of customers present at facility i , given that
arrivals occur according to a Poisson process with rate λi (here we are making use of
the well-known ‘Poisson splitting’ property). It should be noted that Li (λi ) is finite if
and only if λi < ciμi , so we will define gΛ = −∞ for any policy Λ with λi ≥ ciμi

for at least one facility i . Known results for M/M/c queues imply that Li (·) is a
strictly convex function (see Grassmann 1983; Lee and Cohen 1983); hence, gΛ is
strictly concave and there must be a unique policy Λ which maximizes gΛ over all
static policies.

We will use Λ∗ := (λ∗
1, . . . , λ

∗
N ) to denote the unique optimal static policy. Here,

‘optimal’ means ‘optimal among all static policies’, not ‘optimal over all policies’.
In fact, it is easy to show that all static routing policies are sub-optimal if non-static
policies which make state-dependent routing decisions are included as candidates.
Nevertheless, it transpires that a strong-performing (heuristic) dynamic routing policy
can be obtained by applying a single step of DP-style policy iteration to the optimal
static policy Λ∗.

To assist our development, let us define V (n)(x,Λ∗) as the expected total reward
over n discrete time steps given that policyΛ∗ is followed and the initial state is x ∈ S.
Note that, in our uniformized MDP described in Sect. 2, λ∗

i can be interpreted as the
probability that a customer arrives and is sent to facility i at an arbitrary discrete time
step under policy Λ∗. Under the usual paradigm of policy iteration, we aim to choose
an action a under state x which maximizes

δ(x, a) := lim
n→∞

(

λV (n)(xa+,Λ∗) −
N∑

b=0

λ∗
bV

(n)(xb+,Λ∗)
)

. (21)

That is, we aim to maximize the improvement in the long-run expected total net
reward that would result from choosing action a under state x at an arbitrary time
step and then following the optimal static policy Λ∗ at all time steps thereafter, as
opposed to simply following the policyΛ∗ at all times. Given that the implementation

123



A conservative index heuristic for routing problems with…

of policy Λ∗ results in individual facilities operating independently with their own
Poisson arrival rates, it will be useful to write

V (n)(x,Λ∗) =
N∑

i=1

V (n)
i (xi , λ

∗
i ), (22)

where V (n)
i (x, λ∗

i ) is an expected finite-stage reward for facility i only, given x cus-
tomers initially present and a Poisson demand rate λ∗

i . We will also define

hi (x, λ
∗
i ) := lim

n→∞
(
V (n)
i (x, λ∗

i ) − V (n)
i (0, λ∗

i )
)

, (23)

Di (x, λ
∗
i ) := hi (x + 1, λ∗

i ) − hi (x, λ
∗
i ), (24)

for each facility i and state x ∈ N0. Then, after some manipulations using (21)–(24),
it can be shown that

δ(x, a) =
{

λDi (xi , λ∗
i ) −∑N

j=1 λ∗
j D j (x j , λ∗

j ), if a = i for some i ∈ {1, 2, . . . , N },
−∑N

j=1 λ∗
j D j (x j , λ∗

j ), if a = 0.

(25)

Hence, in order to obtain a dynamic routing policy via the application of a policy
iteration step to an optimal static policy, we should make decisions in such a way that
customers who arrive under a given state x = (x1, . . . , xN ) are directed to join the
facility i which maximizes Di (xi , λ∗

i ) if this value is positive; otherwise, they should
balk.

It canbe seen from(23) thathi (xi , λ∗
i ) is equivalent to thewell-known ‘relative value

function’ which appears in the optimality equations and policy evaluation equations
for average reward MDPs (see Puterman 1994). In our context, hi (xi , λ∗

i ) applies to
facility i only and we can interpret the demand rate λ∗

i as the ‘policy’ for this facility.
We have also defined state zero as the ‘reference state’ which the other states’ values
are compared against. The policy evaluation equations for facility i can be written

gi (λ
∗
i ) + hi (x, λ

∗
i ) = ri (x) +

∑

y∈N0

pi (x, y, λ
∗
i )hi (y, λ

∗
i ) (x ∈ N0), (26)

where ri (x) and pi (x, y, λ∗
i ) are the obvious single-facility analogues of the rewards

and transition probabilities defined in Sect. 2 and gi (λ∗
i ) is the long-run average reward

for facility i . We can then calculate the Di (x, λ∗
i ) values by using the Eq. (26). Before

proceeding, we note that if λ∗
i = 0 for a particular facility i then hi (x, λ∗

i ) and
Di (x, λ∗

i ) are trivially equal to zero for all x ∈ N0, so we will only consider facilities
i for which λ∗

i > 0.
By setting x = 0 in the Eq. (26) and noting that ri (0) = 0 and hi (0, λ∗

i ) = 0, we
obtain:

Di (0, λ
∗
i ) = hi (1, λ

∗
i ) = gi (λ

∗
i )/λ

∗
i .
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In general, for integers x ∈ {1, . . . , ci − 1}, we have:

gi (λ
∗
i ) + hi (x, λ

∗
i ) = ri (x) + λ∗

i hi (x + 1, λ∗
i ) + xμi hi (x − 1, λ∗

i )

+ (1 − λ∗
i − xμi )hi (x, λ

∗
i ).

Following simple manipulations, we obtain the recurrence relationship:

Di (x, λ
∗
i ) = xμi

λ∗
i

Di (x − 1, λ∗
i ) + gi (λ∗

i ) − ri (x)

λ∗
i

. (27)

Bymaking recursive substitutions in (27) we then obtain, for x ∈ {0, 1, . . . , ci −1}:

Di (x, λ
∗
i ) =

x∑

k=0

x !
k!
(

μi

λ∗
i

)x−k (gi (λ∗
i ) − ri (k)

λ∗
i

)

. (28)

Similarly, for integers x ≥ ci , the recurrence relationship is:

Di (x, λ
∗
i ) = ciμi

λ∗
i

Di (x − 1, λ∗
i ) + gi (λ∗

i ) − ri (x)

λ∗
i

. (29)

By using (28) and (29) and applying a simple inductive argument, one can then
show that for x ≥ ci , we have:

Di (x, λ
∗
i ) =

ci−1∑

k=0

ci ! cx−ci
i

k!
(

μi

λ∗
i

)x−k (gi (λ∗
i ) − ri (k)

λ∗
i

)

+
x∑

k=ci

(
ciμi

λ∗
i

)x−k (gi (λ∗
i ) − ri (k)

λ∗
i

)

. (30)

Let θ [B] denote the ‘Bernoulli improvement’ heuristicwhich is obtainedby applying
a step of policy iteration to the optimal static policyΛ∗. The conclusion of this section
is that θ [B] chooses actions as follows:

θ [B](x) ∈
⎧
⎨

⎩

arg max
i∈{1,2,...,N }

Di (xi , λ∗
i ), if ∃ i ∈ {1, 2, . . . , N } such that Di (xi , λ∗

i ) > 0,

{0}, otherwise,

(31)

where Di (xi , λ∗
i ) is defined in (28) (for xi ∈ {0, 1, . . . , ci − 1}) and (30) (for x ≥ ci ).

We note that, from a practical point of view, implementation of θ [B] requires the initial
solution of a convex optimization problem in order to obtain the optimal static policy
Λ∗. The values gi (λ∗

i ) (required for the computation of Di (x, λ∗
i )) are then readily

obtained as functions of the λ∗
i .
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For the special case ci = 1, we note that (28) and (30) reduce to

Di (x, λ
∗
i ) = αi − βi (x + 1)

μi − λ∗
i

(x ≥ 0).

This implies that θ [B] is more conservative than the selfish policy θ̃ in a system
with single servers at all facilities, since θ̃ prefers joining facility i to balking at state
x if and only if αi − βi (xi + 1)/μi ≥ 0 (see Sect. 2).

The next theorem states that the Bernoulli improvement policy possesses the prop-
erty of asymptotic light-traffic optimality which (according to Theorem 2) is also a
feature of the Whittle policy θ [W ].

Theorem 7 (Optimality of the Bernoulli improvement policy in a light-traffic limit)
Let gΛ∗

(λ) and g[B](λ) be the long-run average rewards attained by the optimal static
policyΛ∗ and the Bernoulli improvement policy θ [B] respectively given a demand rate
λ > 0, and let g∗(λ) be the corresponding value under an optimal policy. Then Λ∗
and θ [B] are both asymptotically optimal in a light-traffic limit. That is:

lim
λ→0

g∗(λ) − gΛ∗
(λ)

g∗(λ)
= lim

λ→0

g∗(λ) − g[B](λ)

g∗(λ)
= 0.

On the other hand, it is easy to find counter-examples to show that θ [B] does not
possess the property of heavy-traffic optimality described (in the context of theWhittle
policy θ [W ]) in Theorem 2. In Appendix G we have provided a proof of Theorem 7
and also a counter-example to show the lack of heavy-traffic optimality for θ [B].

6 Numerical results

In this section we report the results of a series of experiments involving more than
37,000 randomly-generated sets of system parameters. In order to evaluate the exact
sub-optimality of a heuristic policy, it is necessary to evaluate the expected long-run
average reward earned by the relevant policy and compare this with the optimal value
g∗ associated with an average reward optimal policy. Usually, one would wish to carry
out these tasks using dynamic programming algorithms, but this is only practical if the
finite state space S̃ is of relatively modest size. Of course, theWhittle policy described
in Sect. 3 can easily be applied to systems in which S̃ is extremely large, but it is
generally not feasible to evaluate the optimal value g∗ in such systems, and therefore
the only comparisons of interest that can be made in ‘large’ systems are between the
Whittle policy (whose performance must be approximated, using simulation) and with
alternative heuristics such as the selfish policy θ̃ and the Bernoulli improvement policy
θ [B] described in Sects. 2 and 5 respectively. As such, this section is divided into two
subsections:

– In Sect. 6.1, systems of relatively modest size are considered. These are systems
in which the size of |S̃| facilitates the efficient computation of the optimal average
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Table 2 95% confidence intervals for the percentage suboptimality of heuristic policies θ [W ], θ [B] and θ̃

(columns 3–5) for different values of N (the number of facilities)

Pct. Suboptimality

N value Count θ [W ] θ [B] θ̃

All values 32,934 0.659 ± 0.008 1.099 ± 0.013 38.386 ± 0.387

N = 2 12,332 0.526 ± 0.012 0.872 ± 0.020 35.934 ± 0.641

N = 3 11,456 0.729 ± 0.014 1.242 ± 0.025 41.171 ± 0.668

N = 4 9,146 0.750 ± 0.016 1.226 ± 0.025 38.204 ± 0.697

reward g∗ using DP algorithms, and also enables similar evaluations of the average
rewards earned by the Whittle policy θ [W ], the Bernoulli improvement policy θ [B]
and the selfish policy θ̃ .

– In Sect. 6.2, ‘large’ systems are considered. These are systems in which the exact
computation of g∗ is assumed to be infeasible, and the average rewards earned
by θ [W ] are compared with those associated with alternative heuristic policies via
simulation experiments.

For purposes of distinction, a ‘modest-sized’ system is defined in this section as a
system in which 2 ≤ N ≤ 4 and the cardinality of S̃ is between 100 and 100,000.
Although it is certainly possible to apply DP algorithms to systems of greater size
than this, it is desirable to impose a relatively strict restriction on |S̃| in order to allow
a large number of experiments to be carried out in a reasonable amount of time. The
remainder of this section will proceed to present the results obtained from numerical
experiments.

6.1 ‘Modest-sized’ systems with 2 ≤ N ≤ 4

Weconducted a series of numerical experiments involving 32,934 randomly-generated
sets of system parameters. Details of the methods used to generate the parameters can
be found in Appendix H.

Table 2 shows 95% confidence intervals for the percentage suboptimality values
recorded for each of the three heuristic policies θ [W ], θ [B] and θ̃ , (columns 3-5). The
first row shows summary results for all 32,934 systems, and the next three rows show
results for particular values of N . Both θ [W ] and θ [B] are consistently strong, with θ [W ]
tending to be slightly stronger overall (within 1% of optimality on average). Indeed,
θ [W ] was the best-performing of the three heuristics in about 65% of experiments.
Noticeably, all of the heuristics tend to do better in the N = 2 case than in the N = 3
and N = 4 cases. In Sect. 6.2, we will present results for larger values of N .

Next, let ρ := λ
(∑N

i=1 ciμi

)−1
be a measure of the relative traffic intensity for a

particular system. In Table 3 we have presented results for θ [W ], θ [B] and θ̃ in a similar
format to that of Table 2, except with results categorized according to ρ rather than N .
Our results indicate that θ [W ] tends to be strongest for very small (i.e. close to zero)
or very large (i.e. significantly larger than 1) values of ρ - which is unsurprising, since
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Table 3 95% confidence intervals for the percentage suboptimality of heuristic policies θ [W ], θ [B] and θ̃

(columns 3-5) for different values of ρ = λ
(∑N

i=1 ciμi

)−1

Pct. suboptimality

ρ value Count θ [W ] θ [B] θ̃

All values 32,934 0.659 ± 0.008 1.099 ± 0.013 38.386 ± 0.387

ρ ∈ [0, 0.1) 2141 0.001 ± 0.001 0.043 ± 0.010 0.131 ± 0.038

ρ ∈ [0.1, 0.2) 2229 0.009 ± 0.003 0.199 ± 0.021 1.459 ± 0.217

ρ ∈ [0.2, 0.3) 2171 0.031 ± 0.005 0.263 ± 0.020 3.768 ± 0.364

ρ ∈ [0.3, 0.4) 2202 0.084 ± 0.009 0.356 ± 0.020 8.075 ± 0.566

ρ ∈ [0.4, 0.5) 2204 0.165 ± 0.013 0.450 ± 0.023 12.964 ± 0.686

ρ ∈ [0.5, 0.6) 2173 0.319 ± 0.017 0.532 ± 0.025 17.795 ± 0.773

ρ ∈ [0.6, 0.7) 2185 0.550 ± 0.021 0.696 ± 0.032 22.163 ± 0.825

ρ ∈ [0.7, 0.8) 2187 0.996 ± 0.028 0.957 ± 0.038 27.406 ± 0.902

ρ ∈ [0.8, 0.9) 2240 1.440 ± 0.031 1.210 ± 0.039 34.684 ± 0.905

ρ ∈ [0.9, 1) 2258 1.540 ± 0.035 1.259 ± 0.043 45.309 ± 0.885

ρ ∈ [1, 1.1) 2263 1.375 ± 0.033 1.391 ± 0.050 61.214 ± 0.751

ρ ∈ [1.1, 1.2) 2170 1.101 ± 0.029 1.662 ± 0.051 76.962 ± 0.567

ρ ∈ [1.2, 1.3) 2177 0.909 ± 0.026 2.031 ± 0.051 84.584 ± 0.465

ρ ∈ [1.3, 1.4) 2193 0.696 ± 0.022 2.477 ± 0.051 88.673 ± 0.356

ρ ∈ [1.4, 1.5) 2141 0.595 ± 0.021 2.980 ± 0.052 91.067 ± 0.289

it is known to be asymptotically optimal in light-traffic and heavy-traffic limits due
to Theorem 2. Of greater interest, perhaps, are the comparisons with the alternative
heuristic policies θ [W ] and θ̃ , and how these are affected by the value of ρ.

Table 3 shows that the suboptimality of θ [W ] is greatest when ρ is close to 1,
although it remainswithin 1.6%of optimality (on average) in such cases. TheBernoulli
improvement policy θ [B] may be slightly stronger than θ [W ] when ρ is close to 1, but
(unlike θ [W ]) it performs worse as ρ increases beyond 1. This is consistent with the
result of Theorem 7. The selfish policy θ̃ performs well when ρ is very small, but is
very poor in other cases.

We also investigated the effect of heterogeneity between service facilities on our
results. Recall that a particular facility i in our model has four parameters: ci , μi ,
αi and βi . For each of our 32,934 randomly-generated parameter sets we calculated
the coefficient of variation (i.e. the ratio of the standard deviation to the mean) of
the values c1, . . . , cN in order to obtain a measure, denoted by φc, of the variation
between ci values. We then repeated this process for the other parameter types in order
to obtain the analogous statistics φμ, φα and φβ , and calculated the average coefficient
of variation as φ̄ := (φc + φμ + φα + φβ)/4. Table 4 shows comparisons between the
performances and suboptimality values of the three heuristic policies θ [W ], θ [B] and
θ̃ , with results categorized according to the value of φ̄.

Table 4 indicates that θ [W ] remains very strong for all values of φ̄. More interest-
ingly, however, there is a clear trend for the other two heuristics (θ [B] and θ̃ ) to perform
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Table 4 95% confidence intervals for the percentage suboptimality of heuristic policies θ [W ], θ [B] and θ̃

(columns 3–5) for different values of φ̄ := (φc + φμ + φα + φβ)/4

Pct. suboptimality

φ̄ value Count θ [W ] θ [B] θ̃

All values 32,934 0.659 ± 0.008 1.099 ± 0.013 38.386 ± 0.387

φ̄ ∈ [0, 0.05) 53 0.684 ± 0.201 0.664 ± 0.249 36.818 ± 10.463

φ̄ ∈ [0.05, 0.1) 389 0.712 ± 0.084 0.526 ± 0.074 24.871 ± 3.289

φ̄ ∈ [0.1, 0.15) 1127 0.725 ± 0.048 0.645 ± 0.048 30.055 ± 2.033

φ̄ ∈ [0.15, 0.2) 2286 0.655 ± 0.033 0.699 ± 0.035 32.118 ± 1.452

φ̄ ∈ [0.2, 0.25) 3838 0.673 ± 0.025 0.844 ± 0.031 34.752 ± 1.120

φ̄ ∈ [0.25, 0.3) 6117 0.674 ± 0.019 0.984 ± 0.027 37.290 ± 0.897

φ̄ ∈ [0.3, 0.35) 7323 0.674 ± 0.017 1.138 ± 0.027 39.677 ± 0.821

φ̄ ∈ [0.35, 0.4) 6403 0.655 ± 0.018 1.263 ± 0.033 40.483 ± 0.874

φ̄ ∈ [0.4, 0.45) 3602 0.638 ± 0.023 1.397 ± 0.048 42.816 ± 1.163

φ̄ ∈ [0.45, 0.5) 1354 0.549 ± 0.036 1.562 ± 0.087 44.347 ± 1.894

φ̄ ∈ [0.5, 0.55) 365 0.473 ± 0.061 1.805 ± 0.193 44.542 ± 3.676

φ̄ ≥ 0.55 77 0.274 ± 0.088 1.918 ± 0.482 45.588 ± 7.944

worse as φ̄ increases. Consequently, the improvements given by θ [W ] as opposed to
θ [B] and θ̃ tend to increase with φ̄. Indeed, the Spearman’s rank correlation coefficient
between φ̄ and (g[W ] − g[B])/g[B] is 0.178 when all 32,934 trials are considered, and
between φ̄ and (g[W ] − g̃)/g̃ (where g̃ is the selfish policy’s performance) it is 0.102.
These values are statistically highly significant, and it is not obvious why θ [W ] should
be more robust to heterogeneity between facilities than the other heuristics. We will
return to this subject in our conclusions.

6.2 ‘Large’ systems with N ≥ 4

We performed a further series of experiments, involving another 4660 randomly-
generated sets of system parameters. The intention in this part was to investigate
‘large’ systems, in which the size of the selfish state space S̃ would preclude the
use of dynamic programming algorithms. The median of |S̃| over all of the 4660 trials
performedwas approximately 6.25billion states, and themaximumwas approximately
6.03 × 1020 (0.6 sextillion). Please see Appendix H for details of how the parameter
sets were generated.

Without the use of DP algorithms, one cannot evaluate the optimal average reward
g∗ for a given system, nor is it possible to evaluate the performances of the heuristic
policies θ [W ], θ [B] and θ̃ exactly. However, as discussed in previous sections, the
indices used for decision-making by these policies are simple to obtain (regardless
of the size of |S̃|), since they are determined by considering facilities individually.
One can then use simulation to estimate the average rewards earned by the respective
heuristic policies.
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As Sect. 6.1, our interest lies mainly in assessing the strength of the Whittle policy
θ [W ]. Given that we cannot evaluate the exact suboptimality of θ [W ] in larger systems,
we decided to compensate by expanding our set of alternative heuristic policies to be
used for comparison purposes. The results in Sect. 6.1 have already shown that the
selfish policy θ̃ performs poorly in many cases, especially if the demand rate is high.
However, we can derive other (possibly stronger) heuristics by considering a simple
generalization of the selfish decision-making rule. For a given state x ∈ S, action
a ∈ {0, 1, . . . , N } and parameter p ∈ [0, 1], let wa(x, p) be defined as follows:

wa(x, p) =

⎧
⎪⎨

⎪⎩

pαa − βa/μa, if a ∈ {1, 2, . . . , N } and xa < ca,

pαa − βa(xa + 1)/(caμa), if a ∈ {1, 2, . . . , N } and xa ≥ ca,

0, if a = 0.

(32)

Thus, wa(x, p) is equivalent to the expected net reward for an individual customer
defined in (4) except that the rewards αi for the various facilities are scaled by a
multiplier p.

Let θ̃ p denote the policy which operates in such a way that the action chosen under
state x ∈ S is the actionwhichmaximizeswa(x, p), with ties broken arbitrarily (except
that a = 0 is chosen only ifwi (x, p) < 0 for all i ∈ {1, 2, . . . , N }). Also, let g̃ p denote
the average reward under policy θ̃ p. If p = 1 then θ̃ p is equivalent to the usual selfish
policy, θ̃ . However, the value of p which maximizes g̃ p is likely to be smaller than 1,
especially if the demand rate is high.

Let D be a discretization of the interval [0, 1] and let us define g̃D by

g̃D = max
p∈D

g̃ p, (33)

i.e. g̃D is the maximum average reward attained over all possible policies θ̃ p, subject
to the constraint p ∈ D. We will also use θ̃D to denote a policy in {θ̃ p}p∈D which
attains the average reward g̃D. It should be noted that θ̃D is not an admissible policy
itself; instead, it represents the strongest-performing of a set of policies for a particular
system. We intend to use g̃D as a benchmark in order to evaluate the strength of θ [W ]
in larger systems.

In each of our 4660 randomly-generated scenarios we simulated the performances
of all 100 policies in the set {θ̃ p}p∈D, with the discretized set D given by D =
{0.01, 0.02, . . . , 0.99, 1}, and estimated g̃D by taking the maximum of these. We also
simulated the performances of θ [W ] and θ [B] using the same random number seed used
to simulate the 100 policies in {θ̃ p}p∈D.We note here that simulating the performances
of 102 different stationary policies is a computationally intensive task, and this is
why we have considered fewer random scenarios in Sect. 6.2 than in Sect. 6.1. The
implementation and simulation of the Whittle policy itself is extremely fast even in
very large systems, and does not pose any computational difficulty.

Table 5 summarizes the performance of θ [W ] against θ [B] and θ̃D in these 4460
experiments, with results categorized according to the value of N (the number of
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Table 5 95% confidence intervals for the percentage improvement given by θ [W ] against alternative heuris-
tics (columns 3–4) and the percentage of experiments in which θ [W ] matched or exceeded the performances
of alternative heuristics (columns 5–6) for different values of N

Pct. improvement Pct. of experiments

N value Count θ [W ] vs. θ [B] θ [W ] vs. θ̃D g[W ] ≥ g[B] g[W ] ≥ g̃D

All values 4660 1.481 ± 0.065 6.044 ± 0.181 72.77 86.33

N = 4 773 0.765 ± 0.119 4.444 ± 0.403 67.01 79.56

N = 5 772 1.181 ± 0.137 5.476 ± 0.448 70.21 81.99

N = 6 669 1.093 ± 0.155 5.501 ± 0.479 68.76 83.86

N = 7 569 1.585 ± 0.192 6.381 ± 0.511 72.76 87.52

N = 8 475 1.781 ± 0.213 6.871 ± 0.570 76.84 91.37

N = 9 443 1.853 ± 0.236 6.421 ± 0.578 74.72 88.04

N = 10 343 1.903 ± 0.261 6.779 ± 0.670 74.93 91.55

N = 11 319 2.136 ± 0.279 7.450 ± 0.693 81.82 93.10

N = 12 297 2.572 ± 0.315 8.015 ± 0.757 81.82 94.61

facilities). Columns 3–4 show the percentage improvements achieved by θ [W ] against
the other heuristics for different N values. Column 5 (resp. 6) shows the percentages of
experiments in which the (estimated) long-run average reward achieved by theWhittle
policy, g[W ], was at least as great as g[B] (resp. g̃D). There is a general trend for θ [W ]
to increase its advantages against θ [B] and θ̃D as N increases. Also, by comparing
Tables 2 and 5, we may observe that the relative strength of θ [W ] versus the other
heuristics appears to have increased significantly in these ‘large system’ experiments.

Table 6 shows additional comparisons between the three heuristic policies with

results categorized according to the value of ρ = λ
(∑N

i=1 ciμi

)−1
. As in Sect. 6.1

(see Table 3), θ [W ] becomes stronger relative to the alternative heuristics as ρ increases
beyond 1. The Bernoulli improvement policy, θ [B], also tends to be stronger than θ̃D
(this can be seen by comparing columns 3 and 4, for example).

Finally, Table 7 shows the results of our experiments categorized according to the
value of φ̄, where φ̄ is defined the same way as in Sect. 6.1; i.e. it is the average of
the coefficients of variation for the four parameter types (ci , μi , αi , βi ). As in Section
6.1, we observe that θ [W ] tends to increase its advantage over other heuristics when
the heterogeneity between facilities is increased.

It seems clear from our results in Sect. 6.2 that, if we want to find an alternative
heuristic policy which rivals the performance of the Whittle policy θ [W ], it is not
sufficient to simply modify the selfish decision rule so that rewards are given relatively
less importance compared to expected waiting costs (and hence the system becomes
less busy). Indeed, the Whittle policy is based on socially optimal (i.e. average reward
optimal) decisions at individual facilities, and this enables it to make smarter decisions
than the policies in the set {θ̃p}p∈D. To illustrate this point, suppose we have two
facilities i and j such that wi (x, p) = w j (x, p) under a particular state x ∈ S.
Suppose also that the reward for service αi is substantially larger than α j , but the
expected waiting costs at facility i are also larger (this may be due to a longer expected
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Table 6 95% confidence intervals for the percentage improvement given by θ [W ] against alternative heuris-
tics (columns 3–4) and the percentage of experiments in which θ [W ] matched or exceeded the performances

of alternative heuristics (columns 5–6) for different values of ρ = λ
(∑N

i=1 ciμi

)−1

Pct. improvement Pct. of experiments

ρ value Count θ [W ] vs. θ [B] θ [W ] vs. θ̃D g[W ] ≥ g[B] g[W ] ≥ g̃D

All values 4660 1.481 ± 0.065 6.044 ± 0.181 72.77 86.33

ρ ∈ [0, 0.1) 315 0.096 ± 0.025 0.047 ± 0.033 89.21 52.38

ρ ∈ [0.1, 0.2) 301 0.122 ± 0.032 0.326 ± 0.098 73.75 53.16

ρ ∈ [0.2, 0.3) 325 0.066 ± 0.041 0.972 ± 0.222 61.85 66.46

ρ ∈ [0.3, 0.4) 335 0.010 ± 0.054 1.613 ± 0.224 49.25 77.31

ρ ∈ [0.4, 0.5) 299 0.042 ± 0.079 2.401 ± 0.337 48.83 80.6

ρ ∈ [0.5, 0.6) 341 0.208 ± 0.094 3.884 ± 0.367 55.72 91.79

ρ ∈ [0.6, 0.7) 308 0.262 ± 0.122 5.108 ± 0.490 53.57 94.48

ρ ∈ [0.7, 0.8) 295 0.286 ± 0.137 6.006 ± 0.559 55.93 93.56

ρ ∈ [0.8, 0.9) 308 0.251 ± 0.160 7.130 ± 0.579 55.52 95.78

ρ ∈ [0.9, 1) 311 0.954 ± 0.195 9.054 ± 0.714 67.52 95.5

ρ ∈ [1, 1.1) 314 2.083 ± 0.187 9.923 ± 0.615 87.9 98.73

ρ ∈ [1.1, 1.2) 278 3.328 ± 0.199 10.164 ± 0.706 97.12 98.92

ρ ∈ [1.2, 1.3) 315 4.239 ± 0.165 11.032 ± 0.681 100 99.05

ρ ∈ [1.3, 1.4) 300 5.042 ± 0.160 11.935 ± 0.750 99.67 99.67

ρ ∈ [1.4, 1.5) 315 5.585 ± 0.136 12.058 ± 0.702 100 99.68

Table 7 95% confidence intervals for the percentage improvement given by θ [W ] against alternative heuris-
tics (columns 3–4) and the percentage of experiments in which θ [W ] equalled or exceeded the performances
of alternative heuristics (columns 5–6) for different values of φ̄ = (φc + φμ + φα + φβ)/4

Pct. improvement Pct. of experiments

φ̄ value Count θ [W ] vs. θ [B] θ [W ] vs. θ̃D g[W ] ≥ g[B] g[W ] ≥ g̃D

All values 4660 1.481 ± 0.065 6.044 ± 0.181 72.77 86.33

φ̄ ∈ [0, 0.2) 20 0.263 ± 0.745 1.787 ± 1.617 45.00 70.00

φ̄ ∈ [0.2, 0.25) 101 0.433 ± 0.369 3.028 ± 0.758 53.47 80.20

φ̄ ∈ [0.25, 0.3) 429 0.833 ± 0.178 4.347 ± 0.491 64.57 80.19

φ̄ ∈ [0.3, 0.35) 1190 1.209 ± 0.124 5.053 ± 0.317 68.99 84.71

φ̄ ∈ [0.35, 0.4) 1758 1.594 ± 0.107 6.286 ± 0.291 74.74 88.05

φ̄ ∈ [0.4, 0.45) 967 1.944 ± 0.154 7.557 ± 0.447 77.56 89.04

φ̄ ∈ [0.45, 0.5) 180 1.888 ± 0.315 7.887 ± 1.106 85.00 85.00

φ̄ ∈ [0.5, 0.55) 15 2.262 ± 0.912 11.082 ± 4.333 86.67 93.33
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waiting time, for example). In this situation, the generalized selfish policy θ̃p is unable
to distinguish between facilities i and j , but one might imagine that joining facility j
should be a better choice in the context of average reward maximization, since it has
a smaller impact on future congestion levels in the system. The index (13) employed
by the Whittle policy is better-suited to taking such considerations into account.

The randomly-generated parameter sets and results of the numerical experiments
reported in this paper have been archived and are available at http://doi.org/10.5281/
zenodo.3775332.

7 Conclusions

Theorem 2 in Shone et al. (2016) has established that it is theoretically possible to find
an average reward optimal policy for the MDP formulated in Sect. 2 by truncating the
state space S, and applying a dynamic programming algorithm to an MDP with the
finite state space S̃. Unfortunately, the finite set S̃ might itself be very large in many
problem instances, and for this reason it is necessary to look for heuristic approaches
which can be relied upon to yield near-optimal policies in a short amount of time.

As discussed in the introduction, theWhittle index heuristic is nowwell-established
in the field of stochastic dynamic programming andwe have shown (Lemma 1) that the
indexability property, which can be difficult to prove in other settings, can be applied
in our problem. A key finding of our paper is that the positive recurrent state space
under an optimal stationary policy is not only bounded above by the selfish state space
S̃, but also bounded below by the ‘Whittle state space’ SW (Theorem 1). We have
also proved certain structural properties of theWhittle policy, including its asymptotic
optimality in light-traffic and heavy-traffic limits (Theorems 2–6). These results are
useful since, in general, structural properties of optimal policies are difficult to prove
for routing problems involving heterogeneous service facilities.

The empirical results in Sect. 6 have shown that the Whittle policy θ [W ] is very
close to optimality in systems which are ‘small enough’ to allow the computation
of an optimal policy. In larger systems, we have verified that it performs strongly
against alternative heuristics, including the policy θ [B] obtained by applying one step
of policy improvement to a ‘Bernoulli splitting’ policy. Notably, its superiority over
other heuristics appears to increase as

(i) the traffic intensity increases beyond 1;
(ii) the number of facilities increases;
(iii) the heterogeneity between service facilities increases.

The first of the above characteristics is implied by Theorem 2, but the reasons for
the second and third characteristics are less obvious. Indeed, all of the heuristics that
we have considered share some broad methodological similarities, in that they require
the computation of indices for individual facilities—so it is not immediately clear
why the Whittle policy’s indices should be more robust than others with respect to
dimensionality or heterogeneity. We intend to investigate this further in future work.

For any given set of system parameters, the indices which characterize the Whittle
policy θ [W ] are calculated in a completely deterministic way. Thus, this heuristic does
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not rely on any iterative algorithm, nor does it involve any type of simulation or
random sampling. One might regard the deterministic nature of this heuristic as both
a strength and a weakness. On one hand, the simplicity makes it extremely easy to
implement; on the other hand, if the heuristic is found to perform poorly in a particular
system, then it is not necessarily easy to see how the decision-making indices might
be adjusted in order to achieve closer proximity to an optimal policy. In future work,
we intend to test the performance of the Whittle heuristic against policies obtained
by approximate dynamic programming (ADP) methods, including those which have
achieved popularity in the fields of neuro-dynamic programming and reinforcement
learning (Bertsekas and Tsitsiklis 1996; Powell 2007; Sutton and Barto 1998). We
also intend to use the Whittle policy in conjunction with ADP methods, by allowing
it to act as a reference point within broader search algorithms.
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