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Abstract

We describe an effective approach to automated text digitisation with respect to natural

history  specimen  labels.  These  labels  contain  much  useful  data  about  the  specimen

including its collector, country of origin, and collection date. Our approach to automatically

extracting these data takes the form of a pipeline. Recommendations are made for the

pipeline's component parts based on some of the state-of-the-art technologies.

Optical Character Recognition (OCR) can be used to digitise text on images of specimens.

However, recognising text quickly and accurately from these images can be a challenge for

OCR.  We  show  that  OCR  performance  can  be  improved  by  prior  segmentation  of

specimen images into their component parts. This ensures that only text-bearing labels are

submitted for OCR processing as opposed to whole specimen images, which inevitably

contain  non-textual  information that  may lead to  false positive  readings.  In  our  testing

Tesseract OCR version 4.0.0 offers promising text recognition accuracy with segmented

images.
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Not all the text on specimen labels is printed. Handwritten text varies much more and does

not  conform  to  standard  shapes  and  sizes  of  individual  characters,  which  poses  an

additional challenge for OCR. Recently, deep learning has allowed for significant advances

in this area. Google's Cloud Vision, which is based on deep learning, is trained on large-

scale datasets, and is shown to be quite adept at this task. This may take us some way

towards negating the need for humans to routinely transcribe handwritten text.

Determining  the  countries  and collectors  of  specimens has  been the  goal  of  previous

automated text digitisation research activities. Our approach also focuses on these two

pieces of information. An area of Natural Language Processing (NLP) known as Named

Entity  Recognition  (NER)  has  matured  enough  to  semi-automate  this  task.  Our

experiments demonstrated that existing approaches can accurately recognise location and

person names within  the  text  extracted from segmented images via  Tesseract  version

4.0.0. Potentially, NER could be used in conjunction with other online services, such as

those of  the Biodiversity  Heritage Library  to  map the named entities  to  entities  in  the

biodiversity literature (https://www.biodiversitylibrary.org/docs/api3.html).

We have highlighted the main recommendations for potential pipeline components. The

document  also  provides  guidance  on  selecting  appropriate  software  solutions.  These

include  automatic  language  identification,  terminology  extraction,  and  integrating  all

pipeline components into a scientific workflow to automate the overall digitisation process.
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1.Introduction

1.1 Background

We do not know how many specimens are held in the world's museums and herbaria.

However,  estimates  of  three  billion  seem  reasonable  (Wheeler  et  al.  2012).  These

specimens are irreplaceable and contribute to a diverse range of scientific fields (Suarez

and Tsutsui 2004; Pyke and Ehrlich 2010). Their labels hold data on species distributions,

scientific names, traits, people and habitats. Among those specimens are nomenclatural

types that underpin the whole of formal taxonomy and define the species concept. These

specimens span more than 200 years of biodiversity research and are an important source

of data on species populations and environmental change. This enormous scientific legacy

is largely locked into the typed or handwritten labels mounted with the specimen or in

associated ledgers and field notebooks. It is a significant challenge to extract these data

digitally, particularly without introducing errors. Furthermore, the provenance of these data

must be maintained so that they can be verified against the original specimen.
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Perhaps the method most widely used today to extract these data from labels is for expert

technicians to type the specimen details into a dedicated collection management system.

They might, at the same time, georeference specimens where coordinates are not already

provided on the specimen. Volunteers have also been recruited to help with this process

and  in  some  cases  transcription  has  been  outsourced  to  companies  specializing  in

document transcription (Engledow et al. 2018; Ellwood et al. 2018).

Nevertheless,  human transcription of  labels  is  slow and requires both skill  to  read the

handwritten labels and knowledge of the names of places, people, and organisms. These

labels are written in many languages often in the same collection and sometimes on the

same  label.  Furthermore,  abbreviations  are  frequently  used  and  there  is  little

standardisation on where each datum can be found on the label.

Full or partial automation of this process is desirable to improve the speed and accuracy of

data extraction and to reduce the associated costs. Automating even the simplest tasks

such  as  triaging  the  labels  by  language  or  writing  method  (typed  versus  handwritten)

stands  to  improve  the  overall  efficiency  of  the  human-in-the-loop  approach.  Optical

Character  Recognition  (OCR)  and  Natural  Language  Processing  (NLP)  are  two

technologies that may support the automation. OCR concerns the automatic detection of

printed text in a given document and the subsequent conversion of that text to a format that

may be processed by machine (Mori et al. 1999). NLP concerns the interpretation of text

by machine (Indurkhya and Damerau 2010).

OCR and NLP proved effective for extracting data from biodiversity literature (Thessen et

al.  2012;  Hoehndorf  et  al.  2016).  However,  specimen labels  pose  additional  problems

compared  to  formally  structured  text  such  as  that  found  in  literature.  The  context  of

individual words is often difficult to determine; specimens that overlap with the label may

obscure some words; the orientation of labels typically varies; typed and handwritten text

may coexist within the same label and the handwriting on the same specimen may come

from different people (Fig. 1). Therefore, the task of digitising the text found in specimen

labels is far from simple and requires different approaches from standard text recognition.

This document examines the state of the art in automated text digitisation with respect to

specimen images. The recommendations within are designed to enhance the digitisation

and  transcription  pipelines  that  exist  at  partner  institutions.  They  are  also  intended  to

provide guidance towards a proposed centralised specimen enrichment pipeline that could

be  created  under  a  pan-European  Research  Infrastructure  for  biodiversity  collections

(DiSSCo 2020). This pipeline would provide state-of-the-art label digitisation services to

institutions that need them.

In  this  document  we focus  mainly  on  herbarium specimens,  even  though similar  data

extraction problems exist for pinned insects, liquid collections, and animal skins. Herbarium

specimens are among the most difficult targets and we know from recent successful pilot

studies for large-scale digitisation such as Herbadrop (EUDAT 2017) that they provide a

good test of  the technology. Furthermore, herbaria have been among the first  to mass

image their collections, so there is a vast number of specimen images available for testing.
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Figure 1. 

A range  of  sample  specimens  that  demonstrate  the  wide  taxonomic  range  of  specimens

encountered in collections. They also demonstrate the diversity of label types, which include

handwritten, typed, and printed labels. Note the presence of various barcodes, rulers, and a

colour chart in addition to labels describing the origin of the specimen and its identity.

a: Herbarium specimen (Natural History Museum 2007a)     

b: Pinned insect specimen (Natural History Museum 2018)   

c: Microscope slide (Natural History Museum 2017)   

d: Fossilised animal skin (Natural History Museum 2009)   

e: Liquid preserved specimen (Natural History Museum 2010)    
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This document examines the state of the art in automated text digitisation with respect to

specimen images. The recommendations within are designed to enhance the digitisation

and  transcription  pipelines  that  exist  at  partner  institutions.  They  are  also  intended  to

provide guidance towards a proposed centralised specimen enrichment pipeline that could

be  created  under  a  pan-European  Research  Infrastructure  for  biodiversity  collections

(DiSSCo 2020). This pipeline would provide state-of-the-art label digitisation services to

institutions that need them.

In  this  document  we focus  mainly  on  herbarium specimens,  even  though similar  data

extraction problems exist for pinned insects, liquid collections, and animal skins. Herbarium

specimens are among the most difficult targets and we know from recent successful pilot

studies for large-scale digitisation such as Herbadrop (EUDAT 2017) that they provide a

good test of  the technology. Furthermore, herbaria have been among the first  to mass

image their collections, so there is a vast number of specimen images available for testing.

1.2 Digitisation Workflow

We now outline a potential digitisation workflow, which is designed to process specimens

and extract  targeted data from them (Fig.  2).  Starting with  the original  specimen,  it  is

initially  converted to a digital  image. Though a digital  object  itself,  the image does not

immediately contain digitised text. In other words, though readable by humans, the image

of the text is not yet searchable by machine. The role of OCR is to convert text images into

searchable text documents.

To make these text documents searchable by the type of information that they contain,

another layer of information (metadata) is required on top of the original text. This step

requires deeper analysis of the textual content, which is performed using NLP techniques

including  language  identification,  Named  Entity  Recognition  (NER),  and  terminology

extraction.  The  role  of  language  identification  here  is  twofold.  If  the  labels  are  to  be

transcribed manually, then language identification can help us direct transcription tasks to

the transcribers with suitable language skills. Similarly, if the labels were to be processed

automatically, then the choice of tools will also depend on the given language.

NER will support further structuring of the text by interpreting relevant portions of the text,

such as those referring to people and locations. In addition to the extracted data and the

associated metadata, the digitised collection should also incorporate a terminology that

facilitates  the interpretation of  the scientific  content  described in  the specimens.  Many

specimen  labels  contain  either obscure  or  outdated  terminology.  Therefore,  standard

terminologies need to be supplemented by terminology extracted from the specimens.

Finally, the performance of both OCR and NLP can be improved by restricting their view to

only the labels on the specimen. This can be achieved by segmenting images prior to

processing by identifying the areas of the image that relate to individual labels. However,

there  are  trade-offs  between  the  time  it  takes  to  segment  images  compared  to  the

improved performance of OCR and NLP. In a production environment processing time is

limited because of the need to ingest images into storage from a production line through a
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pipeline  that  includes  quality  control,  the  creation  of  image  derivatives,  and  image

processing.

To help determine the subsequent steps in the pipeline it may be necessary to establish

the  language  of  the  text  recognised  in  the  OCR  step.  This  next  step  may  be  the

deployment of language-specific NLP tools for identifying useful information in the target

specimen. Or it may be the channelling of the text for manual transcription. A number of

software solutions exist for performing language identification and are explored in section

‎3.3.

An approach to automatic identification of data from OCR recognised text might include

NER. This is an NLP task that identifies categories of information such as people and

places. This approach may be suitable for finding a specimen's collector and collection

country from text. Section ‎3.4 investigates this possibility using an NER tool.

 
Figure 2.  

A possible semi-automatic digitisation workflow to extract data from the labels of collection

specimens.
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1.3 Project Context

This project report was written as a formal Deliverable (D4.1) of the ICEDIG Project and

was previously made available on Zenodo without a formal review process (Owen et al.

2019). While the differences between the two versions are minor the authors consider this

the definitive version of the report.

2. Data

2.1 Data Collection

As  noted  above  there  is  a  large  body  of  digitised  herbarium specimens  available  for

experimentation. A herbarium is a collection of pressed plant specimens and associated

data (Fig. 1a). As indicated in Fig. 2, the first step in digitisation of these specimens is to

produce  a  digital  image.  This  requires  physical  manipulation  of  specimens,  which  is

beyond the scope of the present task. Instead of gaining access to the original specimens,

we collected their images in JPEG format from the partner institutions (Dillen et al. 2019).

The choice of images sampled from these collections was based on the requirement to test

OCR on a representative sample of the specimens in terms of their temporal and spatial

coverage. This is because the age and origin of specimens may present different OCR

challenges.  For  example,  specimens can include printed,  typed,  or  handwritten  labels,

which may be partially obscured or have different orientations.

Each partner herbarium contributed 200 images containing a geographical and temporal

cross-section of nomenclatural type and non-type herbarium specimens (Fig. 3). A type

specimen is used to name a newly identified species.

 
Figure 3.  

The criteria used by partner institutions to compile a test set of herbarium specimens. We did

not attempt global coverage but instead aimed at a representative sample from BR=Brazil,

CN=China, ID=Indonesia, AU=Australasia, US=United States of America, and TZ=Tanzania.

 

Towards a scientific workflow featuring Natural Language Processing for ... 7

https://icedig.eu/
https://arpha.pensoft.net/zoomed_fig/5677507
https://arpha.pensoft.net/zoomed_fig/5677507
https://arpha.pensoft.net/zoomed_fig/5677507
https://doi.org/10.3897/rio.6.e55789.figure3
https://doi.org/10.3897/rio.6.e55789.figure3
https://doi.org/10.3897/rio.6.e55789.figure3


A total of nine herbaria, described in Table 1, each contributed 200 specimen images giving

a total of 1800 images, which formed a dataset for use in this study.

Institution Index Herbariorum

Code

ICEDIG

Partner

Naturalis Biodiversity Center, Leiden, Netherlands L Yes

Meise Botanic Garden, Meise, Belgium BR Yes

University of Tartu, Tartu, Estonia TU Yes

The Natural History Museum, London, United Kingdom BM Yes

Muséum National D'Histoire Naturelle (MNHN), Paris, France P Yes

The Royal Botanic Gardens Kew (RGBK), Richmond, United

Kingdom
K Yes

Finnish Museum of Natural History, Helsinki, Finland H Yes

Botanic Garden and Botanical Museum, Berlin, Germany B No

Royal Botanic Garden, Edinburgh, United Kingdom E No

2.2 Data Properties

To illustrate the textual content of these images and to better understand the challenges

posed to the OCR, Fig. 4 provides an example of labels attached to a specimen shown in

Fig. 1a. In general, the labels can contain the following information:

1. Title: Organisation that owns the specimen.

2. Barcode: The specimen's machine readable identifier.

3. Species name: Scientific or common name of the species.

4. Determined by and date: The person who identified the specimen and the date of

identification.

5. Locality: The geographical location where the specimen was collected.

6. Habitat  and altitude:  The habitat  in  which the specimen was collected and its

altitude.

7. Notes: Additional notes written by the collector, often related to the characters of

the species.

8. Collector  name,  specimen  number,  and  collection  date:  The  name  of  the

person(s) who collected the specimen, the identifier that they used to record and

manage specimens, and the date that the specimen was collected.

The above list is non-exhaustive and more or less information may be recorded by the

collector or determiner.

Table 1. 

Contributing institutions and their codes from Index Herbariorum.
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The properties of textual content of the given herbarium have been extrapolated from a

random sample of 10 specimens per institution (Table 2).

Contributor Words Per Specimen Handwritten Content 

BR 47 49.0%

H 77 21.3%

P 45 42.3%

L 64 22.0%

BM 59 32.8%

B 61 50.1%

E 54 68.0%

K 79 17.8%

TU 26 62.2%

Average 57  40.6% 

A  subset  of  250  images  with  labels  written  in  English  has  been  selected  to  test  the

performance of image segmentation and its effects on OCR and NER. For the purposes of

 
Figure 4.  

An example of specimen labels. 1=Title, 2=Barcode, 3=Species name, 4=Determined by and

date,  5=Locality,  6=Habitat  and altitude, 7=Notes,  8=Collector  name, species number,  and

collection date.

 

Table 2. 

A summary of specimen properties. The Names and Index Herbariorum codes for the contributing

herbaria are listed in Table 1.
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these tests these images were manually divided into a total of 1,837 label segments, which

were then processed separately. Nieva de la  Hidalga et  al.  2020discuss segmentation

methods and results from the ICEDIG project.

The segments effectively separate labels, barcodes, and colour charts. Examples can be

seen in Fig. 5. Item 1 is a label containing the species name, the collection location, and

the collector's name. Some of the information is printed while some of it is handwritten. In

contrast,  the  label  shown  as  Item  2  contains  printed  text  only.  However,  its  vertical

orientation may cause additional difficulties. The label seen in Item 3 contains printed text

that states the organisation that owns the specimen together with a barcode that identifies

the specimen locally. However, the barcode stripes can sometimes be misinterpreted as

text  by overzealous OCR software.  A colour  chart,  such as the one shown in  Item 4,

contains no text, so it does not need to be processed further. Finally, Item 5 presents a

ruler, which is accompanied by text that is not specific to the specimen and therefore does

not need to be considered. A machine learning classifier can be trained on segmented

images to differentiate between different classes of labels in order to triage them ahead of

the subsequent steps in the digitisation workflow.

 
Figure 5.  

An impression of the different challenges presented by specimen image segments. 1=Label

with both printed and handwritten text,  2=Printed label  placed non-horizontally,  3=Barcode

composed of unhelpful characters, 4=Colour chart containing no text, 5=Ruler containing no

useful text.
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2.3 Metadata

The role of OCR is to convert image text into searchable text. To make this text searchable

by the type of  information that  they contain,  another layer of  information (metadata) is

required on top of  the original  text.  The term metadata simply means data about data

(Weibel 2005). We can differentiate between three different types of metadata (Riley 2017):

1. Descriptive metadata facilitate searching using descriptors that qualify their content.

For  example,  digitised  specimens  can  be  accessed  by  a  species  name,  its

collection location, or its collector.

2. Structural metadata describe how the components of the data object are organised

thereby  facilitating  navigation  through  its  content.  For  example,  labelling  each

segment of a digitised specimen by its type can facilitate their management. As

shown in Fig.  5,  segment  types  include  colour  chart,  ruler,  barcode,  collector's

label, and determination.

3. Administrative metadata convey technical information that can be used to manage

data objects. Examples include time of creation, digital format, and software used.

While metadata can take many forms, it is important to comply with a common standard to

improve  accessibility  to  the  data.  Darwin  Core  (Wieczorek  et  al.  2012)  is  one  such

standard  maintained  by  the  Darwin  Core  Maintenance  Group  of  the  Biodiversity

Information Standards organisation (TDWG). It includes a glossary of terms intended to

facilitate the sharing of information on biological diversity by providing global identifiers,

labels, and definitions. Darwin Core is primarily based on taxa, their occurrence in nature

as  documented  by  observations,  specimens,  samples,  and  related  information.  Fig.  6

shows how the text content of the specimen shown in Fig. 4 could be structured using

Darwin  Core  standard,  version  2014  (Darwin  Core  Maintenance  Group,  Biodiversity

Information Standards (TDWG) 2014; Biodiversity Information Standards (TDWG) 2020).

Once structured, the data can be stored in a database allowing for complex queries and

efficient retrieval. For example, the geographic coordinates can be used to retrieve data

referring to specimens collected within a given radius, which may be further restricted by a

time period.

The problem of populating a predefined template such as the one defined by Darwin Core

with information found in free text is an area of NLP known as Information Extraction (IE)

(Doleschal  et  al.  2020).  The complexity  of  the template usually  requires a bespoke IE

system to be developed, which is beyond the scope of this feasibility study. Therefore, we

will be focusing on information that could be extracted using NER, a subtask of IE, which

can be supported using off-the-shelf software. Here, we focus on two commonly supported

named entities, namely location and person names. Specifically, in the context of Darwin

Core,  we aim to automatically  extract  a specimen's country and collector name, which

have  been  associated  with  an  increase  of  over  50% in  the  speed  of  semi-automatic

digitisation (Drinkwater et al. 2014).
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3. Digitisation Experiments

This section describes a selection of software tools that can be used to automate the steps

of the digitisation workflow shown in Fig. 2 together with the test results obtained using the

data described in section ‎2.

3.1 Optical Character Recognition

OCR is a technology that allows the automatic recognition of characters through an optical

mechanism or computer software (Mori et al. 1999). OCR can be used to convert image-

borne characters to text documents that are machine readable in the sense that the text

can then be indexed, searched, edited, or processed by NLP software.

We  tested  three  off-the-shelf  OCR  software  tools,  described  in  Table  3.  Tesseract  is

reportedly  the  most  accurate  open-source  OCR  software  with  respect  to  the  task  of

extracting text from specimen labels (Haston et al. 2015). Its development is sponsored by

Google (Google Open Source 2018) and it has the native ability to recognise more than

100 languages. We originally considered version 3.0.51 of Tesseract, but later extended

our experiments to version 4.0.0, which was released in the meantime and was reported to

offer  significantly  higher  accuracy  than  its  earlier  version  (Ooms  2018).  The  software

development kit ABBYY FineReader Engine 12.0 allows software developers to integrate

OCR  functionality  into  their  applications  to  extract  textual  information  from  paper

documents, images, or displays (ABBYY 2018).

Microsoft's  OneNote  is  a  note  taking  and  management  application  for  collecting,

organising, and sharing digital information (Microsoft Corporation 2018). It contains native

OCR  functionality  whose  performance  had  not  been  evaluated  in  another  recent

investigation into automating data capture from natural history specimens (Haston et al.

 
Figure 6.  

An example of an instantiated Darwin Core record.
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2015).  Unlike  Tesseract  and  ABBYY  FineReader  Engine,  OneNote  is  a  stand-alone

software  application  whose  OCR  functionality  cannot  readily  be  integrated  into  other

software.

  Founded

Year 

Latest Stable

Version 

License Windows Macintosh Linux 

Tesseract 1985 4.0.0 Apache Windows 10 Mac OS X

10.14.x

Ubuntu 18.04,

18.10

ABBYY

FineReader

Engine 

1989 12.0 Proprietary Windows 10,

8.1, 8, 7-SP1

Mac OS X

10.12.x, 10.13.x

Ubuntu 17.10,

16.04.1,

14.04.5

Microsoft

OneNote 

2012 17.10325.20049 Proprietary Windows 10,

8.1

Mac OS X,

10.12 or later

Ubuntu 18.04,

18.10

To evaluate the OCR performance of the aforementioned software tools, we ran two sets of

experiments, one against the whole digital images of specimens and the other against the

segmented images with an expectation that the latter would result in shorter processing

time  and  higher  accuracy.  Indeed,  the  results  shown  in  Table  4 demonstrate  that  the

processing time was reduced by 49% on average when images were segmented prior to

undergoing OCR. Out of the three batch processing software tools considered, Tesseract

3.0.51  was  the  fastest  in  both  scenarios.  All  experiments  were  performed  using  the

following configuration: a desktop computer containing an Intel i5-4590T 2.00GHz 4 Core

CPU (Central Processing Unit), 8.00 GB RAM (Gigabytes of Random Access Memory) and

Microsoft Windows 10 Education Version 10.0.17134.

  Processing Time (h:m:s)  

250 Whole Images 1,837 Segments Difference Difference 

(Percentage Saving)

Tesseract 4.0.0 01:06:05 00:45:02 -00:21:03 -31.9%

Tesseract 3.0.51 00:50:02 00:23:17 -00:26:45 -53.5%

ABBYY FineReader Engine 12.0 01:18:15 00:29:24 -00:48:51 -62.4%

The accuracy of  OCR will  be measured in terms of line correctness as described by

Haston et al. (2015). To create a gold standard, the text from a digital image is manually

transcribed verbatim and the number of original lines counted. The lines from the OCR

output  are  then  compared  against  the  gold  standard  and  classified  into  one  of  three

classes: correct, partially (in)correct and incorrect and scored 1, 0.5, and 0, respectively.

An  example  can  be  seen  in  Fig.  7.  The  line  scores  are  then  aggregated  into  overall

accuracy. This method considers only printed text and not handwritten text.

Table 3. 

Comparison of selected OCR software tools.

Table 4. 

Processing times for OCR programs using whole images and segments.
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Bearing in mind the time and effort involved in creating the gold standard, only a subset of

the dataset (250 specimen images and their segments) available for testing was used to

evaluate the correctness of the OCR. Five herbarium sheet images, their segments and

manual transcriptions, and OCR text used in these experiments can be found in Section 2

of Suppl. material 1. A summary of results is given in Table 5.

  5 Whole Images 

Mean Line Correctness (%) 

22 Segments 

Mean Line Correctness (%) 

 

Difference 

 

Tesseract 4.0.0 72.8 75.2 +2.4

Tesseract 3.0.51 44.1 63.7 +19.6

ABBYY FineReader Engine 12.0 61.0 77.3 +16.3

Microsoft OneNote 2013 78.9 65.5 -13.4

Apart from ABBYY FineReader Engine all other tools recorded an accuracy around 70%,

with Tesseract 4.0.0 proving to be the most robust with respect to image segmentation. Its

performance  could  be  improved  by  further  experiments  focusing  on  its  configuration

parameters.

3.2 Handwritten Text Recognition

As mentioned in section 1.1, not all specimen labels bear printed text. A huge volume of

specimen labels bear handwritten text in place of or in addition to printed text. Similar to

 
Figure 7.  

Measuring OCR accuracy.

Specimen source: NHM Data Portal (Natural History Museum 2007b).

 

Table 5. 

Line correctness for OCR using whole images and their segments.
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using  OCR  technologies  to  automatically  read  printed  specimen  labels,  we  can  use

Handwritten  Text  Recognition  (HTR)  technologies  to  automatically  read  handwritten

specimen labels. HTR is described as the task of transcribing handwritten text into digital

text (Scheidl 2018).

ABBYY FineReader Engine 12.0 and Google Cloud Vision OCR v1 (Google Cloud 2018)

are  both  capable  of  performing  HTR.  Google  Cloud  Vision  currently  supports  56

languages. Its language settings can be adjusted to improve speed and accuracy of the

text recognition. It is a paid service and has a limit of 20MB and 20M pixels per image

submitted to it for processing.

We  performed  an  experiment  to  measure  the  HTR  performance  of  both  ABBYY

FineReader Engine and Google Cloud Vision with respect to handwritten specimen labels.

The five  specimen whole  images used in  section  3.1 were reused in  this  experiment.

These whole  images,  each of  which  bear  handwritten  text,  were  submitted  to  ABBYY

FineReader Engine and Google Cloud Vision to undergo HTR.

The  HTR  results  from  ABBYY  FineReader  Engine  and  Google  Cloud  Vision  were

compared with the gold standard for each specimen image using Levenshtein distance

(Levenshtein 1966). The Levenshtein distance measures the minimum difference between

two strings by counting the number of insertions, deletions, and substitutions needed to

change one string into the other. Note that this metric is not case sensitive.

One  must  be  cautious  when  comparing  interpreted gold  standard  data.  For  example,

where  the  catalog  number  is  "BM000521570"  Google  Cloud  Vision  finds  "000521570

(BM)". Technically, Google Cloud Vision has found the correct string, but because the gold

standard contains an interpreted value it appears that Google Cloud Vision is not correct.

Another  example  concerns  the  fact  that  the  gold  standard  contains  fields  that  use

abbreviations, such as country codes. This means that "Australia" and its country code

"AU" will rightly be considered identical.

Specific  fields were identified for  HTR analysis:  catalogNumber,  genus,  specificEpithet,

country,  recordedBy,  typeStatus,  verbatimLocality,  verbatimRecordedBy.  Verbatim

coordinates are likely  too complex or  too often open to  interpretation to  be compared

reliably in this analysis. For example, verbatimEventDate was ignored because it is not

technically  verbatim;  it  may  be  written  “3/8/59”  on  a  specimen  label,  but  recorded  as

“1959-08-03” in a specimen database (Finnish Biodiversity Info Facility 2018). Year was

therefore  used  instead,  although  we  acknowledge  that  this  is  not  as  precise  or  as

informative as a complete date. We acknowledged this limitation in our analysis;  when

comparing Years we insisted that Levenshtein distance considered them identical for them

to be deemed a match. All Levenshtein distances between two Years that were greater

than 0 (meaning not identical) were therefore omitted from further analysis.

Please note that typeStatus is not always present in a specimen image. It is therefore often

inferred based on other data that  is  present.  typeStatus was nevertheless included for

analysis because of its importance in biodiversity taxonomy.

Towards a scientific workflow featuring Natural Language Processing for ... 15



Fig. 8 shows the count of Levenshtein distance scores for all selected fields combined, Lev

>0  excluded.  Google  Cloud  Vision  scores  better.  The  high  count  of  results  with  a

distance greater than 4 (indicating large dissimilarity) is partly due to certain fields being

interpreted. Such fields might include typeStatus.

Examining the results in Fig. 8 it shows that the Google Cloud Vision scores are higher for

the three best distances. Comparing the results in Fig. 9 and Fig. 10 show that Google

Cloud Vision has more results in the best category for each field, while ABBYY FineReader

Engine  has  a  higher  count  of  Lev≥4  for  each  field.  Distances  greater  than  4  can  be

considered low quality results. When Lev≥4 and Lev >0 results are excluded, Google

Cloud Vision obtained 1133 results while ABBYY FineReader Engine obtained 809. When

the  results  are  weighted  for  accuracy  (5  for  distance=0,  1  for  distance≥4,  Lev >0

excluded)  Google  Cloud  Vision  scored  6540  while  ABBYY FineReader  Engine  scored

4689.

In conclusion, this comparative test indicates that the results from Google Cloud Vision are

of higher quality than ABBYY FineReader Engine. The results are of even higher quality

when the lowest scoring categories are excluded. These results demonstrate that HTR can

be used to retrieve a considerable volume of data of high quality. HTR should no longer be

dismissed as ineffective because it has already become a viable technique.

year

 

year

year

Figure 8.  

Comparison of Levenshtein distance scores for ABBYY FineReader Engine and Google Cloud

Vision for selected fields, Levyear>0 excluded.
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3.3 Language Identification

Language identification is the task of determining the natural language that a document is

written in. It is a key step in automatic processing of real-world data where a multitude of

languages exist (Lui and Baldwin 2012). Languages used on specimen labels can vary

across a collection as can be seen in  Fig.  11.  In  the context  of  digitisation workflows

knowing  the  languages  that  specimen  labels  are  written  in  allows  us  to  inform  the

subsequent steps, including NLP. It also offers the opportunity to improve manual curation

of the results by being able to forward them to people with the required language skills.

 

 

Figure 9.  

Results per field from ABBYY FineReader Engine.

 

Figure 10.  

Results per field from Google Cloud Vision.
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A number of off-the-shelf software tools can be used to perform language identification,

examples of which can be seen in Table 6. The given tools can all be integrated into larger

software applications.

Software Licence Organisation 

langid.py Open Source University of Melbourne

langdetect Apache License Version 2.0 N/A

language-detection Apache License Version 2.0 Cybozu Labs, Inc.

Table  7 provides  output  obtained  by  langid.py  from  a  sample  of  our  test  data.  The

automatically identified language is quantified with a probability estimate. langid.py is able

to identify 97 different languages without requiring any special configuration. It generally

outperforms langdetect (Danilák 2018) in terms of accuracy. langid.py is also reportedly the

faster of the two (Lui and Baldwin 2012). The corpus used in the evaluation contained

 
Figure 11.  

The distribution of  languages across the specimen and herbaria.  EN=English, FR=French,

LA=Latin, ET=Estonian, DE=German, NL=Dutch, PT=Portuguese, ES=Spanish, SV=Swedish,

RU=Russian, FI=Finnish, IT=Italian, ZZ=Unknown. The codes for the contributing herbaria are

listed in Table 11 (from Dillen et al. 2019).

 

Table 6. 

Language identification software tools and their properties.
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government documents,  online encyclopaedia entries,  and software documentation (Lui

and Baldwin 2012; Baldwin and Lui 2010).

Input: “Unangwa Hill about 6 km. E. of Songea in crevices in vertical rock faces”

Output: English [99%]

Input: “Herbier de Jardin botanique de l'Etat”

Output: French [99%]

Input: “Tartu olikooli juures oleva loodusuurijate seltsi botaanika sekstsiooni”

Output: Estonian [99%]

Input: “Arbusto de ca. 2 m, média ramificação.”

Output: Portuguese [100%]

The  program  language-detection  (Shuyo  2014)  provides  a  third  option  for  language

detection.  Unlike langid.py and langdetect  no evaluation of  its  performance appears to

have been published. It advertises 99% precision over 53 languages although texts of 10

to 20 words are recommended to support accurate detection. This may prove problematic

when used with short fragments of OCR text obtained from specimen images.

3.4 Named Entity Recognition

NER is commonly used in information extraction to identify text  segments that refer to

entities  from  predefined  categories  (Nadeau  and  Sekine  2009).  The  state-of-the-art

approaches use conditional random fields trained on data manually labelled with these

categories to  learn automatically  how to extract  named entities  from text.  Traditionally,

these  categories  include  persons,  organisations,  and  locations.  Therefore,  pre-trained

models for  these categories are readily  available.  Stanford NER (The Stanford Natural

Language Processing Group 2018) provides such models.

As mentioned in section 2.3, in this study we are interested in two categories of named

entity: country (subcategory of location) and collector (subcategory of person). Pre-trained

NER software can only identify names of locations and persons, but cannot verify that a

location is a country or that a person is a collector. Therefore, we will generalise our NER

problem into  that  of  recognising persons and locations in  general  and will  accordingly

measure the performance of Stanford NER on our dataset. A subset of specimen labels

was manually transcribed and annotated with person and location labels to create a gold

standard against which to evaluate Stanford NER. Fig. 12 shows a specimen label. Fig. 13

shows the results of both manual transcription and NER with respect to that specimen

label.

Table 7. 

Example  of  langid.py  usage  with  fragments  of  OCR  text.  Output  lines  denote  the  language

identified in the input text and the probability estimate for the language.
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According to  Jiang et  al.  (2016) a named entity  is  recognised correctly  if  either  of  the

following criteria is met:

1. Both boundaries of a named entity and its type match. For example, the segment

“Ilkka Kukkonen” in Fig. 13 is recognised fully and correctly as a person.

2. Two text segments overlap partially and match on the type.

 

 

Figure 12.  

An example of a specimen label.

 

Figure 13.  

Gold standard versus NER output.
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Either way, the NER results are usually evaluated using the three most commonly used

measures in NLP: precision, recall, and F1 score. Precision is the fraction of automatically

recognised entities that are correct. Recall is the fraction of manually annotated named

entities that were successfully recognised by the NER system. F1 score is a measure that

combines precision and recall - it is the harmonic mean of the two.

Table 8 and the formulae below show how these might be calculated. An example follows

that explains the terms used.

  Predicted (NER) 

Negative Positive 

Actual 

(Gold Standard) 

Negative True Negative False Positive

Positive False Negative True Positive

Formulae for Precision, Recall, and F1 Score:

To  evaluate  the  performance  of  NER  on  our  dataset,  we  selected  a  subset  of  five

herbarium sheet images and their segments, which are to be found in Section 3 of Suppl.

material 1. These are the same images and segments used to calculate line correctness in

section ‎3.1. The OCR output used is that obtained using Tesseract 4.0.0.

Table 9 and Table 10 show the results of Stanford NER performance.

  PERSON LOCATION Overall 

Precision 0.81 0.38 0.69

Recall 0.71 0.21 0.53

F1 0.76 0.27 0.60

Table 8. 

Confusion matrix for predicted and actual labels.

Table 9. 

NER performance on OCR text retrieved from whole images.
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  PERSON LOCATION Overall 

Precision 0.85 0.43 0.74

Recall 0.74 0.50 0.69

F1 0.79 0.46 0.71

An  improvement  across  all  measures  can  be  observed  when  using  OCR  text  from

segmented  images.  This  is  consistent  with  the  increased  line  correctness  observed

described in section ‎3.1.

3.5 Terminology Extraction

To improve the accessibility  of  a specimen collection, its  content needs to be not only

digitised but also organised in alphabetical or some other systematic order. This is naturally

expected to be done by species name. The problem with old specimens is that the content

of their  labels is not likely to comply with today's standards. Therefore, matching them

against  existing  taxonomies  will  fail  to  recognise  non-standard  terminology.  To

automatically extract species names together with other relevant terminology, we propose

an unsupervised data-driven approach to terminology extraction. FlexiTerm is a method

developed in-house at  Cardiff  University.  It  has been designed to automatically  extract

multi-word terms from a domain-specific corpus of text documents (Spasić  et  al.  2013;

Spasić 2018).

OCR text extracted from specimens in a given herbarium fits a description of a domain-

specific  corpus;  therefore  FlexiTerm  can  exploit  linguistic  and  statistical  patterns  of

language use within  a  specific  herbarium to  automatically  extract  relevant  terminology.

Section  4  of  Suppl.  material  1  shows  the  multi-word  terms  extracted  from  the  text

recognised using Tesseract 4.0.0 on the segmented images. The results show that the

majority  of  extracted  terminology  refers  to  organisations  (herbaria)  that  host  the

specimens,  such  as  “Royal  Botanic  Gardens  Edinburgh”  or  “Nationaal  Herbarium

Nederland”. There are also mentions of collectors, such as “Ilkka Kukkonen” that were also

recognised as persons by NER. In that respect, there is some overlap between NER and

terminology  extraction.  Regardless  of  their  type,  the  multi-word  terms  extracted  by

FlexiTerm will  represent the longest repetitive phrases found in a collection.  Therefore,

their recognition can facilitate transcription or curation of a digital collection should these

activities be crowdsourced.

4. Putting It All Together

Many scientific disciplines are increasingly data driven and new scientific knowledge is

often  gained  by  scientists  putting  together  data  analysis  and  knowledge  discovery

“pipelines” (Ludäscher et al. 2006). These “pipelines” are known as scientific workflows.

Table 10. 

NER performance on OCR text retrieved from image segments.
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Interpreting data and attaching meaning to it creates information. Interpreting information in

the context of prior knowledge, experience and wisdom can lead to new knowledge.

A  scientific  workflow  consists  of  a  series  of  analytical  steps.  These  can  involve  data

discovery and access, data analysis, modelling and simulation, and data mining. Steps can

be  computationally  intensive  and  therefore  are  often  carried  out  on  high‐performance

computing  clusters.  Herbadrop,  a  pilot study  of  specimen  digitisation  using  OCR,

demonstrated successful use of high performance digital workflows (EUDAT 2017). In this

section,  we  review workflow management  systems that  can  be  used  to  automate  the

workflow presented in Fig. 2.

The tools that allow scientists to compose and execute scientific workflows are generally

known as workflow management systems, of which Apache Taverna and Kepler are among

the most well-known and best established examples.

Apache  Taverna  is  open-source  and  domain-independent  (The  Apache  Software

Foundation 2018). It is designed for use in any scientific discipline and is supported by a

large community of users.

Taverna has been successfully deployed within the domain of biodiversity via BioVeL - a

virtual  laboratory  for  data analysis  and modelling in  biodiversity  (Hardisty  et  al.  2016).

BioVeL allows the building of workflows through the selection of a series of data processing

services and can process large volumes of data when the services needed to do that are

distributed among multiple service providers.

Taverna supports BioVeL users by allowing them to create workflows via a visual interface

as opposed to writing code. Users are presented with a selection of processing steps and

can “drag and drop” them to create a workflow. They can then test the workflow by running

it on their desktop machine before deploying it to more powerful computing resources.

Kepler is a scientific workflow application also designed for creating, executing and sharing

analyses across a broad range of scientific disciplines (Altintas et al. 2004). Application

areas include bioinformatics, particle physics and ecology.

Like Taverna, Kepler provides a graphical user interface to aid in the selection of analytical

components  to  form  scientific  workflows  (Barseghian  et  al.  2010).  It  also  offers  data

provenance features that allow users to examine workflow output in detail for diagnostic

purposes (Liew et al. 2016). This supports the reliability and reproducibility of evidence

from data, which is necessary for the presentation of conclusions in research publications.

Tools like Apache Taverna and Kepler can be used for creating workflows for OCR, NER,

and  IE,  like  that  depicted  in  Fig.  2.  When managed and  executed  in  virtual  research

environments such as BioVeL, the data and results can be collated, managed, and shared

appropriately.  Such  workflows  can  be  run  repeatedly,  reliably,  and  efficiently  with  the

possibility to process many tens of thousands of label images in parallel within a single

workflow run.
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5. Conclusions

We designed a modular approach for automated text digitisation with respect to specimen

labels  (Fig.  1).  To  minimise  implementation  overhead,  we  proposed  implementing  this

approach  as  a  scientific  workflow  using  off-the-shelf  software  to  support  individual

components.  An  additional  advantage  of  this  approach  is  an  opportunity  to  run  the

workflow in a distributed environment, thus supporting large-scale digitisation as well as an

optimal use of resources across multiple institutions. Based on the local experience and

expertise associated with both development and applications, we recommend the use of

Apache Taverna for implementing and executing the workflow. We evaluated off-the-shelf

software that can support specific modules within the workflow. Our recommendations are

summarised in Table 11. Further research is needed with respect to image segmentation,

which has been shown to have significant effect on the performance across all tasks listed

in Table 11.

Task Software Comment 

Optical Character

Recognition

Tesseract 4.0.0 Robust with respect to image segmentation

Handwritten Text

Recognition

Google Cloud

Vision

Supports 56 languages

Language identification langid.py Supports 97 languages

Named Entity

Recognition

Stanford NER A wide variety of entities recognised including location, organisation,

date, time, and person

Terminology extraction FlexiTerm Robust with respect to orthographic variation (such as that

introduced by OCR)

6. Appendices

For the sake of brevity the Appendices can be found in the supplementary document "Appe

ndices".  The  document  contains  the  following  principal  information  concerning  the

Digitisation Experiments:

• OCR Software Settings

• OCR Line Correctness Analysis Data

• NER Analysis Data

• Non-standard Terminology Extraction Analysis Data

Table 11. 

A summary of recommendations.
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7. Glossary

• Automated text digitisation - The process of converting written words found in a

document  to  a  format  that  can  be  understood  by  a  computer.  In  biodiversity,

documents may typically include printed or handwritten specimen labels.

• Conditional Random Field - A device used in machine learning tasks that involve

examining a sequence of data. It helps the machine determine the nature of a piece

of data in the series by considering the nature of neighbouring data. For example,

an unnamed image containing part of a leaf may appear in a sequence of plant

specimen images. A machine may be able to determine that the leaf belongs to a

"deciduous holly" if a named image of that plant neighbours the leaf image in the

sequence.

• Deep learning - A specialised type of machine learning. It uses computer programs

that mimic the workings of the human brain to learn the properties of selected data

types, which could include plants or insects. Deep learning is widely considered to

yield better performance in comparison to traditional machine learning approaches.

• Gold standard - A description of the properties of some subject of interest, which is

normally used to support some scientific experiment. The gold standard is often

produced by hand. In the task of automated text digitisation of a specimen label a

human may first read the label and write its contents down. This forms a definitive

reference against which the computer tasked with automatically digitising the label

will be judged. The closer the computer gets to digitising all of the text seen in the

gold standard the better it is judged to have performed.

• Handwritten Text Recognition (HTR) - One of a number of specialist tasks that

might be performed during automated text digitisation. This particular task entails

the automatic recognition of text written by the human hand. It also involves the

subsequent conversion of the recognised text to a format that can be understood

by a computer.

• High performance computing cluster - This approach to computing involves the

working of one or more computers alongside one another to complete a task. This

is traditionally known as parallel processing. The co-location of computers expected

to perform subtasks in parallel is known as a cluster.

• Information Extraction (IE) - The task of taking data from an unstructured source,

such as a specimen label, and placing that data in a structured destination, such as

a Darwin  Core record.  We might  aim to  deploy  a  specially  designed computer

program to perform this task automatically.

• JPEG - A special format for computer image files that is designed to make them

easier to store and to send between computers. The format ensures that images

are compressed. This means that the files are generally small in size, which makes

for speedy transmission between computers.

• Language identification - A specialist Natural Language Processing (NLP) task

whereby a computer program ascertains the human language that a given body of

text is written in.
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• Machine learning - The practice of teaching a computer to determine properties of

some data that it might receive. The machine does this based on what it knows

about the properties of similar data that it might have seen before. For example, a

computer may have learnt that leaves of the holly species of plant contain several

pointed ends if it has seen many such images in the past. If it later sees an image

of a rounded leaf it may determine that the leaf is unlikely to belong to that of a

holly species of plant.

• Metadata -  Data  that  describes some accompanying principal  piece of  data.  A

digital photograph of a plant specimen is a piece of data. This photograph may be

accompanied by data such as the date and time that it was taken, the name of the

camera used,  and the resolution of  the image. Metadata can make the task of

searching a large collection of digital photographs much easier.

• Named Entity  Recognition (NER) -  A  specialist  Natural  Language Processing

(NLP) task whereby a computer program identifies subjects of interest in a body of

text.  Typical  subjects  of  interest  might  include  countries,  cities,  names  of

organisations, and names of people.

• Natural Language Processing (NLP) - The task of using computer programs to

understand human languages such as English. The understanding can be used to

automate tasks such as sorting a collection of data into categories. A collection of

digitised specimen labels may be sorted by country of origin if a computer program

can identify country names or cities mentioned in the label.

• Optical Character Recognition (OCR) - One of a number of specialist tasks that

might be performed during automated text digitisation. This particular task entails

the automatic detection of printed text and the subsequent conversion of it  to a

format that can be understood by a computer.

• Scientific workflow - The description of a process in terms of tasks and sub-tasks

that must be completed to meet some research goal. A process might include the

acquisition, categorisation, manipulation, and publication of data.
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