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Detecting exploits is crucial since the effect of undetected ones can be devastating. Identifying their presence on the network allows
us to respond and block their malicious payload before they cause damage to the system. Inspecting the payload of network traffic
may offer better performance in detecting exploits as they tend to hide their presence and behave similarly to legitimate traffic.
Previous works on deep packet inspection for detecting malicious traffic regularly read the full length of application layer
messages. As the length varies, longer messages will take more time to analyse, during which time the attack creates a disruptive
impact on the system. Hence, we propose a novel early exploit detection mechanism that scans network traffic, reading only
35.21% of application layer messages to predict malicious traffic while retaining a 97.57% detection rate and a 1.93% false positive
rate. Our recurrent neural network- (RNN-) based model is the first work to our knowledge that provides early prediction of
malicious application layer messages, thus detecting a potential attack earlier than other state-of-the-art approaches and enabling
a form of early warning system.

1. Introduction

Exploits are attacks on systems that take advantage of the
existence of bugs and vulnerabilities. *ey infiltrate the system
by giving the system an input which triggers malicious be-
haviour. As time passes, the number of bugs and vulnerabilities
increases, along with the number of exploits. In the first quarter
of 2019, there were 400,000 new exploits [1], while more than
16 million exploits have been released in total. Exploits exist in
most operating systems (OSs); hence, detecting exploits early is
crucial to minimise potential damage.

By exploiting a vulnerability, attackers can, for example,
gain access to remote systems, send a remote exploit, or
escalate their privilege on a system. Exploits-DB [2] is a
website that archives exploits, both remote and local ones.
*e number of existing remote exploits on the website is
almost double that of the local ones, which suggests remote
exploits are more prevalent. No physical access to the system
is required to execute a remote exploit; thus, the attack can
be launched from anywhere in the world.

Remote exploits normally carry a piece of code as a
payload, which will be executed once a vulnerability has been
successfully exploited. An exploit is analogous to a tool for
breaking into a house, and its payload is something the
burglar would do once they are inside the house. Without
this payload, exploits would be merely a tool to demonstrate
that an application is vulnerable. Exploit payloads may take
many forms; they could be written inmachine code, a server-
side scripting language (e.g., PHP, Python, and Ruby), or OS
specific commands (e.g., Bash).

One way to detect exploits is to scan network traffic for their
presence. In doing this, the exploit can be detected before it
arrives at the vulnerable system. If this is achieved, earlier action
can be taken to minimise or nullify the damage.*ere is also no
need to run the exploit in a clone server or virtualmachine (VM)
to be analysed—as it is usually the case in host-based detection
approaches, making this approach more time efficient to block
and provide rapid response to attacks. *erefore, detecting
exploits in network traffic is a promising way to prevent remote
exploits from infecting protected systems.
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Detecting exploits on the wire has challenges: firstly,
processing the vast amount of data without decreasing
network throughput below acceptable levels; quality of
service is still a priority. Secondly, there are various ways to
encode exploit payloads [3], by modifying the exploit
payload to make it appear different, yet still achieve the same
goal. *is technique makes it easy to evade any rule-based
detection. Lastly, encrypted traffic is also a challenge; at-
tackers may transmit the exploit with an encrypted protocol,
e.g., HTTPS.

*ere are many ways to detect exploits in network traffic.
Rule-based detection systems work by matching signatures
of known attacks to the network traffic. Anything that
matches the rule is deemed malicious. *e most prevalent
open-source intrusion detection system, Snort [4], has a rule
that marks any traffic which contains byte 0× 90 as shell-
code-related traffic. *is rule is based on the knowledge that
most x86-based shellcodes are preceded by a sequence of no
operation (NOP) instructions in which the bytes normally
contain this value. However, this rule can easily be evaded by
employing other NOP instructions, such as the “0× 41
0× 49” sequence. Apart from that, rule-based detection
systems are susceptible to zero-day attacks for which no
detection rule exists. Such systems are unable to detect these
attacks until the rule database is updated with the new attack
signature.

Machine learning (ML) algorithms are capable of clas-
sifying objects and artefacts based on features exhibited in
data and handle various modalities of input. ML has been
successfully applied in many domains with a high success
rate, such as image classification, natural language pro-
cessing, speech recognition, and even intrusion detection
system. *ere has been much research on implementing
machine learning to address network intrusion detection [5].
Researchers typically provide training examples of malicious
and legitimate traffic to the ML algorithm that can then be
used to determine whether new (unseen) traffic is malicious.
However, there are three key limitations with existing re-
search: firstly, most of the research uses old datasets, e.g.,
either KDD99 or DARPA99 [6]. *e traffic in those datasets
may not represent recent network traces since network
protocols have evolved during these years, as have the at-
tacks. Secondly, many of the previous works focus solely on
the header information of network packets and process
packets individually [6]. Yet, it is known that exploits may
exhibit similar statistical attributes to legitimate traffic at a
header-level and use evasion techniques such as packet
fragmentation to hide their existence [3]. *erefore, we
argue that network payload features may capture exploits
better, and this area is still actively expanding as shown by
the number of research mentioned in Table 1.*is argument
brings us to the third limitation: existing methods that use
payload features, i.e., byte frequencies or n-grams, usually
involve reading the payload of whole application layer
messages (see Section 2).*e issue is that these messages can
be lengthy and spread over multiple network packets.
Reading the whole messages before making a decision may
lead to a delay in detecting the attack and gives the exploit
time to execute before an alert is raised.

We, therefore, propose Blatta, an early exploit detec-
tion system which reads application layer messages and
predicts whether these messages are likely to be malicious
by reading only the first few bytes. *is is the first work to
our knowledge that provides early prediction of malicious
application layer messages, thus detecting a potential at-
tack earlier than other state-of-the-art approaches and
enabling a form of early warning system. Blatta utilises a
recurrent neural network- (RNN-) based model and
n-grams to make the prediction. An RNN is a type of
artificial neural networks that takes a sequence-based
vector as input—in this case, a sequence of n-grams from
an application layer message—and considers the temporal
behaviour of the sequence so that they are not treated
independently. *ere has been a limited amount of re-
search on payload-based intrusion detection which used
an RNN or its further development (i.e., long short-term
memory [24, 25] and gated recurrent unit [20]), but earlier
research did not make predictive decisions early as they
only used 1-grams of full-length application layer mes-
sages as features, which lacks contextual information—a
key benefit of higher-order n-grams. Other work that does
consider higher-order sequences of n-grams (e.g. [12, 29])
is also yet to develop methods that provide early-stage
prediction, preferring methods that require the full pay-
load as input to a classifier.

To evaluate the proposed system, we generated an exploit
traffic dataset by running exploits in Metasploit [30] with
various exploit payloads and encoders. An exploit payload is
a piece of code that will be executed once the exploit has
successfully infiltrated the system. An encoder is used to
change how the exploit payload appears while keeping its
functionality. Our dataset contains traffic from 5,687
working exploits. Apart from that, we also used a more
recent intrusion detection dataset, UNSW-NB15 [31], thus
enabling our method to be compared with previous works.

To summarise, the key contributions of this paper are as
follows:

(i) Proposed an early prediction of exploit traffic, Blatta,
using a novel approach of using an RNN and high-
order n-grams to make predictive decisions while
still considering temporal behaviour of a sequence of
n-grams. Blatta is the first, to the best of our
knowledge, who introduces early exploit detection.
Blatta detects exploit payloads as they enter the
protected network and is able to predict the exploit
by reading 35.21% of application layer messages on
average. Blatta thus enables actions to be taken to
block the attack earlier and therefore reduce the
harm to the system.

(ii) Generated a dataset of exploit traffic with various
exploit payloads and encoders, resulting in 5,687
unique connections. *e exploit traffic in the dataset
was ensured to contain actual exploit code, making
the dataset closer to reality.

*e rest of this paper is structured as follows: Section 2
gives a summary of previous works in this area. Section 3
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explains the datasets we used to test our proposed method.
How Blatta works is explained in Section 4. *en, Section 5
explains our extensive experimentation with Blatta. We also
discuss possible evasion techniques to our approach in
Section 6. Finally, the paper concludes in Section 7.

2. Related Works

*e earliest solution to detecting exploit activities used
pattern matching and regular expression [4]. Rules are
defined by system administrators and are then applied to the

Table 1: Related works in exploit detection. Unlike previous works, Blatta does not have to read until the end of application layer messages
to detect exploit traffic.

Paper Features Detection method Dataset(s) Learning
type Protocol(s) Early

prediction

PAYL [7] Relative frequency count of each
1-gram

Based on statistical model
and Mahalanobis distance D, SG U HTTP, SMTP,

SSH No

RePIDS [8]

Mahalanobis distance map which
is originated from relative

frequency count of each 1-gram,
filtered by PCA.

Based on statistical model
and Mahalanobis distance D, M U HTTP No

McPAD [9] 2v-grams Multi one-class SVM
classifier D, M U HTTP No

HMMPayl [10] Byte sequences of the L7 payload. Ensemble of HMMs D, M, DI U HTTP No

Oza et al. [11] Relative frequency count of each
1-gram. Based on statistical model D, M, SG U HTTP No

OCPAD [12] High-order n-grams (n> 1).
Based on the occurrence

probability of an n-grams in a
packet

M, SG U HTTP No

Bartos et al.
[13]

Information from HTTP request
headers and the lengths SVM SG S HTTP No

Zhang et al.
[14]

Packet header information and
HTTP and DNS messages

Naı̈ve Bayes, Bayesian
network, SVM D, SG S DNS, HTTP No

Decanter [15] HTTP messages Clustering SG U HTTP No

Golait and
Hubbali [16] Byte sequence of the L7 payload

Probabilistic counting
deterministic timed

automata
SG U SIP No

Duessel et al.
[17]

Contextual n-grams of the L7
payload One-class SVM SG U HTTP, RPC No

Min et al. [18] Words of the L7 payload CNN and random forest I S HTTP No

Jin et al. [19] 2v-grams Multi one-class SVM
classifier M U HTTP No

Hao et al. [20] Byte sequence of the L7 payload Variant gated recurrent unit I S HTTP No
Schneider and
Bottinger [21] Byte sequence of the L7 payload Stacked autoencoder O U Modbus No

Hamed et al.
[22]

n-grams of base64-encoded
payload SVM I S All protocols in

the datasets No

Pratomo et al.
[23]

Byte frequency of application layer
messages

Outlier detection with deep
autoencoder SW U HTTP, SMTP No

Qin et al. [24] Byte sequence of the L7 payload Using a recurrent neural
network O S HTTP No

Liu et al. [25] Byte sequence of the L7 payload
Using a recurrent neural
network with embedded

vectors
D, O S HTTP No

Zhao and Ahn
[26]

Disassembled instructions of bytes
in network traffic

Employing Markov chain-
based model and SVM SG S Not mentioned No

Shabtai et al.
[27]

n-grams of a file and n-grams of
opcodes in a file, then calculated

TF/IDF of those n-grams

Various ML algorithm, e.g.,
random forest, decision tree,
Naı̈ve Bayes, and few others

SG S File
classification No

SigFree [28] Disassembled instructions of bytes
in application layer payload

Analyses of instruction
sequences to determine if

they are code
SG Non-ML HTTP No

Proposed
approach

High-order n-grams of application
layer messages

Uses of recurrent neural
network to early predict

exploit traffic
SW, SG S HTTP, FTP Yes

D�DARPA99; M�McPAD attacks dataset [9]; I� ISCX 2012; SG� self-generated; DI�DIEE; SW�UNSW-NB15; O� others; U� unsupervised;
S� supervised; non-ML�non-machine learning approach.
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network traffic to identify a match.When amatching pattern
is found, the system raises an alert and possibly shows which
part of the traffic matches the rule. *e disadvantage of this
approach is that the rules must be kept up to date. Any
variation to the exploit payload which is done by using
encoders may defeat such detection.

ML approaches are capable of recognising previously
seen instances of objects, and such methods aim to gener-
alise to unseen objects. ML is able to learn patterns or be-
haviour from features present in training data and classify
which class an unseen object belongs to. However, to work,
suitable hand-crafted features must be engineered for the
ML algorithm to make an accurate prediction. Some pre-
vious works defined their feature set by extracting infor-
mation from application layer message. In [14] and [15], the
authors generated their features from HTTP request URI
and HTTP headers, i.e., host, constant header fields, size,
user-agent, and language. *e authors then clustered the
legitimate traffic based on those features. Golait and Hub-
balli [16] tracked DNS and HTTP traffic and calculated
pairwise features of two events to see their similarity. *ese
features were obtained from the transport and application
layer. One of their features is the semantical similarity be-
tween two HTTP requests.

Features derived from a specific protocol may capture
specific behaviour of legitimate traffic. However, this feature
extraction method has a drawback. A different set of features
is needed for every application layer protocol that might be
used in the network. Some research borrows the feature
extraction method from natural language processing
problems to have protocol-agnostic features, using n-grams.

One of the first leading research in payload analysis is
PAYL [7]. It extracts 1-grams from all bytes of the payload as
a representation of the network traffic and is trained over a
set of those 1 grams. PAYL [7] measures the distance be-
tween the new incoming traffic with the model with a
simplified Mahalanobis distance. Similar to PAYL, Oza et al.
[11] extracts n-grams of HTTP traffic with various n values.
*ey compared three different statistical models to detect
anomalies/attacks. HMMPayl [10] is another work based on
PAYL which uses Hidden Markov Models to detect
anomalies. OCPAD [12] stores the n-grams of bytes in a
probability tree and uses one-class Näıve Bayes classifier to
detect malicious traffic. Hao et al. [20] proposed an
autoencoder model to detect anomalous low-rate attacks on
the network, and Schneider and Bottinger [21] used stacked
autoencoders to detect attacks on industrial control systems.
Hamed et al. [22] developed probabilistic counting deter-
ministic timed automata which inspects byte values of ap-
plication layer messages to identify attacks on VOIP
applications. Pratomo et al. [23] extract words from the
application layer message and detect web-based attacks with
a combination of convolutional neural network (CNN) and
random forest. A common approach that is found on all of
the aforementioned works is they read all bytes in each
packet or application layer message and do not decide until
all bytes have been read, at which point it is possible the
exploit has already infected the system and targeted the
vulnerability.

Other research studies argue that exploit traffic is most
likely to contain shellcode, a short sequence of machine
code. *erefore, to get a better representation of exploit
traffic, they performed static analysis on the network traffic.
Qin et al. [24] disassemble byte sequences to opcode se-
quences and calculate probabilities of opcode transition to
detect shellcode presence. Liu et al. [25] utilise n-grams that
comprise machine instructions instead of bytes. SigFree [28]
detects buffer overflow attempts on Internet services by
constructing an instruction flow graph for each request and
analysing the graph to determine if the request contains
machine instructions. Any network traffic that contains valid
machine instructions is deemed malicious. However, none
of these consider that an exploit may also contain server-side
scripting language or OS commands instead of shellcode.

In this paper, we proposed Blatta, an exploit attack
detection system that (i) provides early detection of exploits
in network traffic rather than waiting until the whole pay-
load has been delivered, enabling proactive blocking of
attacks, and (ii) is capable of detecting payloads that include
malicious server-side scripting languages, machine in-
structions, and OS commands, enhancing the previous state-
of-the-art approach that only focuses on shellcode. *e
summary of the proposedmethod and previous works is also
shown in Table 1.

Blatta utilises a recurrent neural network- (RNN-) based
model which takes a sequence of n-grams from network
payload as the input. *ere has been limited research on
developing RNNs to analyse payload data [20, 24, 25]. All of
these works feed individual bytes (1 grams) from the payload
as the features to their RNNmodel. However, 1 grams do not
carry information about context of the payload string as a
sequence of activities. *erefore, we model the payload as
high-order n-grams where n> 1 as to capture more con-
textual information about the network payload. We directly
compare 1-grams to higher-order n-grams in our experi-
ments. Moreover, while related works such as [19], [17], and
OCPAD [12] previously used high-order n-grams, they did
not utilise a model capable of learning sequences of activities
and thus not capable of making early-stage predictions
within a sequence. Our novel RNN-based model will con-
sider the long-term dependency of the sequence of n-grams.

An RNN-based model normally takes a sequence as
input, processes each item sequentially, and outputs the
decision after it has finished processing the last item of the
sequence. *e earlier works which used the RNN has this
behaviour [24, 25].While for Blatta to be able to early predict
the exploit traffic, it takes the intermediate output of the
RNN-based model, not waiting for full-length message to be
processed. Our experiments show that this approach has
little effect to accuracy and enables us to make earlier
network attack predictions while retaining high accuracy
and a low false positive rate.

3. Datasets and Threat Model

Several datasets have been used to evaluate network-based
intrusion detection systems. DARPA released the KDD99
Cup, IDSEVAL 98, and IDSEVAL 99 datasets [32]. *ey
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have been widely used over time despite some criticism that
it does not model the attacks correctly [33]. *e Lawrence
Berkeley National Laboratory released their anonymised
captured traffic [34] (LBNL05). More recently, Shiravi et al.
released the ISCX12 dataset [35] in which they collected
seven-day worth of traffic and provided the label for each
connection in XML format. Moustafa and Slay published the
UNSW-NB15 dataset [31] which had been generated by
using the IXIA PerfectStorm tool for generating a hybrid of
real modern normal activities and synthetic contemporary
attack behaviours. *is dataset provides PCAP files along
with the preprocessed traffic obtained by Bro-IDS [36] and
Argus [37].

Moustafa and Slay [31] captured the network traffic in
two days, on 22 January and 17 February 2015. For brevity,
we refer to those two parts of UNSW-NB15 as UNSW-JAN
and UNSW-FEB, respectively. Both days contain malicious
and benign traffic. *erefore, there has to be an effort to
separate them if we would like to use the raw information
from the PCAP files, not the preprocessed information
written in the CSV files. *e advantage of this dataset over
ISCX12 is that UNSW-NB15 contains information on the
type of attacks and thus we are able to select which kind of
attacks are needed, i.e., exploits and worms. However, after
analysing this dataset in depth, we observed that the exploit
traffic in the dataset is often barely distinguishable from the
normal traffic as some of them do not contain any exploit
payload. Our explanation for this is that exploit attempts
may not have been successful, thus they did not get to the
point where the actual exploit payload was transmitted and
recorded in PCAP files. *erefore, we opted to generate our
exploit traffic dataset, the BlattaSploit dataset.

3.1. BlattaSploit Dataset. To develop an exploit traffic
dataset, we set up two virtual machines that acted as vul-
nerable servers to be attacked. *e first server was installed
with Metasploitable 2 [38], a vulnerable OS designed to be
infiltrated by Metasploit [30]. *e second one was installed
with Debian 5, vulnerable services, and WordPress 4.1.18.
Both servers were set up in the victim subnet while the
attacker machine was placed in a different subnet. *ese
subnets were connected with a router.*e router was used to
capture the traffic as depicted in Figure 1. Although the
network topology is less complex than what we would have
in the real-world, this setup still generates representative
data as the payloads are intact regardless of the number of
hops the packets go through.

To launch exploits on the vulnerable servers, we utilised
Metasploit, an exploitation tool which is normally used for
penetration testing [30]. Metasploit has a collection of
working exploits and is updated regularly with new exploits.
*ere are around 9,000 exploits for Linux- and Unix-based
applications, and to make the dataset more diverse, we also
employed different exploit payloads and encoders. An ex-
ploit payload is a piece of code which is intended to be
executed on the remote machine, and an encoder is a
technique to modify the appearance of particular exploit
code to avoid signature-based detection. Each exploit in

Metasploit has its own set of compatible exploit payloads
and encoders. In this paper, we used all possible combi-
nations of exploit payloads and encoders.

We then ran the exploits against the vulnerable servers
and captured the traffic using tcpdump. Traffic generated by
each exploit was stored in an individual PCAP file. By doing
so, we know which specific type of exploit the packets
belonged to. Timestamps are normally used to mark which
packets belong to a class, but this information would not be
reliable since packets may not come in order, and if there is
more than one source sending traffic at a time, their packet
may get mixed up with other sources.

When analysing the PCAP files, we found out that not all
exploits had run successfully. Some of them failed to send
anything to the targeted servers, and some others did not
send any malicious traffic, e.g., sending login request only
and sending requests for nonexistent files. *is supported
our earlier thoughts on why the UNSW-NB15 dataset was
lacking exploit payload traffic. *erefore, we removed
capture files that had no traffic or too little information to be
distinguished from normal traffic. In the end, we produced
5,687 PCAP files which also represent the number of distinct
sets of exploit, exploit payloads, and encoders. Since we are
interested in application layer messages, all PCAP files were
preprocessed with tcpflow [39] to obtain the application
layer message for each TCP connection.*e summary of this
dataset is shown in Table 2.

*e next step for this exploit traffic dataset was to an-
notate the traffic. All samples can be considered malicious;
however, we decided to make the dataset more detailed by
adding the type of exploit payload contained inside the
traffic and the location of the exploit payload.*ere are eight
types of exploit payload in this dataset. *ey are written in
JavaScript, PHP, Perl, Python, Ruby, Shell script (e.g., Bash
and ZSH), SQL, and byte code/opcode for shellcode-based
exploits.

*ere are some cases where an exploit contains an ex-
ploit payload “wrapped” in another scripting language. For
example, a Python script to do reverse shell connection
which uses the Bash echo command at the beginning. For
these cases, the type of the exploit payload is the one with the
longest byte sequence. In this case, the type of the particular
connection is Python.

It is also important to note that whilst the vulnerable
servers in our setup use a 7-year-old operating system, the
payload carried by the exploit was the identical payload to a
more recent exploit would have used. For example, both
CVE-2019-9670 (disclosed in 2019) and CVE-2012-1495
(disclosed in 2012) can use generic/shell_bind_tcp as a
payload. *e traffic generated by both exploits will still be
similar. *erefore, we argue that our dataset still represent
the current attacks. Moreover, only successful exploit attacks
are kept in the dataset, making the recorded traffic more
realistic.

3.2.'reatModel. A threat model is a list of potential things
that may affect protected systems. Having one means we can
identify which part is the focus of our proposed approach;
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thus, in this case, we can potentially understand better what
to look for in order to detect the malicious traffic and what
the limitations are.

*e proposed method focuses on detecting remote ex-
ploits by reading application layer messages from the
unencrypted network traffic, although the detection method
of Blatta can be incorporated with application layer firewalls,
i.e., web application firewalls. *erefore, we can still detect
the exploit attempt before it reaches the protected appli-
cation. In general, the type of attacks we consider here are as
follows:

(1) Remote exploits to servers that send malicious
scripting languages (e.g., PHP, Ruby, Python, or
SQL), shellcode, or Bash scripts to maintain control
to the server or gained access to it remotely. For
example, the apache_continuum_cmd_exec exploit
with reverse shell payload will force the targeted
server to open a connection to the attacking com-
puter and provide shell access to the attacker. By
focusing on the connections directed to servers, we
can safely assume JavaScript code in the application
layer message could also be malicious since normally
JavaScript code is sent from the server to the client,
not the other way around.

(2) Exploit attacks that utilise one of the text-based
protocols over TCP, i.e., HTTP and FTP. Text-based
protocols tend to be more well-structured; therefore,
we can apply natural language processing based
approach. *e case would be similar to document
classification.

(3) Other attacks that may utilise remote exploits are
also considered, i.e., worms. Worms in the UNSW-
NB15 dataset contain exploit code used to propagate
themselves.

4. Methodology

Extracting features from application layer messages is the
first step toward an early prediction method. We could use
variable values in the message (e.g., HTTP header values,
FTP commands, and SMTP header values), but it would
require us to extract a different set of features from each
application layer protocol. It is preferable to have a generic
feature set which applies to various application layer pro-
tocols.*erefore, we proposed amethod by using n-grams to
model the application layer message as they carry more
information than a sequence of bytes. For instance, it would
be difficult for a model to determine what a sequence of bytes
“G,” “E,” “T,” space, “/,” and so on means as those individual
bytes may appear anywhere in a different order. However, if
the model has 3-grams of the sequence (i.e., “GET,” “ET,”
“T,” and so on), the model would learn something more
meaningful such as that the string could be an HTTP
message. *e advantage of using high-order n-grams where
n> 1 is also shown by Anagram [29], method in [40], and
OCPAD [12]. However, these works did not consider the
temporal behaviour of a sequence of n-grams as their model
was not capable of doing that. *erefore, Blatta utilised a
recurrent neural network (RNN) to analyse the sequence of
n-grams which were obtained from an application layer
message.

Attacker VM
192.168.66.6

Switch Router Switch

Metasploitable VM
192.168.99.9

Debian VM
192.168.99.6

Figure 1: Network topology for generating exploit traffic. Attacker VM running Metasploit and target VMs are placed in different network
connected by a router. *is router is used to capture all traffic from these virtual machines.

Table 2: A summary of exploits captured in the BlattaSploit dataset.
Number of TCP connections 5687
Protocols HTTP (3857), FTP (6), SMTP (74), POP3 (93)
Payload types JavaScript, shellcode, Perl, PHP, Python, Ruby, Bash, SQL
Note. *e numbers next to the protocols are the number of connections in the application layer protocols.
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An RNN takes a sequence of inputs and processes them
sequentially in several time steps, enabling the model to
learn the temporal behaviour of those inputs. In this case, the
input to each time step is an n-gram, unlike earlier works
which also utilised an RNN model but took a byte value as
the input to each RNN time step [24, 25]. Moreover, these
works took the output from the last time step to make
decision, while our novel approach produces classification
outputs at intermediate intervals as the RNN model is al-
ready confident about the decision. We argue that this
approach will enable the proposed system to predict whether
a connection is malicious without reading the full length of
application layer messages, therefore providing an early
warning method.

In general, as shown in Figure 2, the training and de-
tection process of Blatta are as follows.

4.1. Training Stage. n-grams are extracted from application
layer messages. l most common n-grams are stored in a
dictionary.*is dictionary is used to encode an n-gram to an
integer. *e encoded n-grams are then fed into an RNN
model, training the model to classify whether the traffic is
legitimate or malicious.

4.2. Detection Stage. For each new incoming TCP connec-
tion directed to the server, we reconstruct the application
layer message, obtain a full-length or partial bytes of them,
and determine if the sequence belongs to malicious traffic.

4.3. Data Preprocessing. In well-structured documents such
as text-based application layer protocols, byte sequences can
be a distinguishing feature that makes each message in their
respective class differ from each other. Blatta takes the byte
sequence of application layer messages from network traffic.
*e application layer messages need to be reconstructed as
the message may be split into multiple TCP segments and
transmitted in an arbitrary order. We utilise tcpflow [39] to
read PCAP files, reconstruct TCP segments, and obtain the
application layer messages.

We then represent the byte sequence as a collection of
n-grams taken with various stride values. An n-gram is a
consecutive sequence of n items from a given sample; in this
case, an n-gram is a consecutive series of bytes obtained from
the application layer message. Stride is how many steps the
sliding window takes when collecting n-grams. Figure 3
shows examples of various n-grams obtained with a dif-
ferent value of n and stride.

We define the input to the classifier to be a set of integer
encoded n-grams. Let X � x1, x2, x3, . . . , xk􏼈 􏼉 be the integer
encoded n-grams collected from an application layer mes-
sage as the input to the RNN model. We denote k as the
number of n-grams taken from each application layer
message. Each n-gram is categorical data. It means a value of
1 is not necessarily smaller than a value of 50. *ey are
simply different. Encoding n-grams with one-hot encoding
is not a viable solution as the resulting vector would be
sparse and hard to model. *erefore, Blatta transforms the

sequence of n-grams with embedding technique. Embedding
is essentially a lookup table that maps an item to a dense
vector with a fixed size embedded dim. Using pretrained
embedding vectors, e.g., GloVe [41], is common in natural
language processing problems, but these pretrained em-
bedding vectors were generated from a corpus of words.
While our approach works with byte-level n-grams.
*erefore, it is not possible to use the pretrained embedding
vectors. Instead, we initialise the embedding vectors with
random values which will be updated by backpropagation
during the training so that n-grams which usually appear
together will have vectors that are close to each other.

It is worth noting that the number of n-grams collected
raises exponentially as the n increases. If we considered all
possible n-gram values, the model would overfit. *erefore,
we limit the number of embedding vectors by building a
dictionary of most common n-grams in the training set. We
define the dictionary size as l in which it contains l unique
n-grams and a placeholder for other n-grams that do not
exist in the dictionary. *us, the embedding vectors have
l + 1 entries. However, we would like the size of each em-
bedded vector to be less than l + 1. Let ε be the size of an
embedded vector (embedded dim). If xt represents an
n-gram, the embedding layer transforms X to 􏽢X. We denote
􏽢X � 􏽢x1, . . . , 􏽢xk􏼈 􏼉 where each 􏽢x is a vector with the size of ε.
*e embedded vectors 􏽢X are then passed to the recurrent
layer.

4.4. Training RNN-Based Classifier. Since the input to the
classifier is sequential data, we opted to use a method that
takes into account the sequential relationship of elements in
the input vectors. Such methods capture the behaviour of a
sequence better than processing those elements individually
[42]. A recurrent neural network is an architecture of neural
networks in which each layer takes time series data, pro-
cesses them in several time steps, and utilises the output of
the previous time step in the current step calculation. We
refer to these layers as recurrent layers. Each recurrent layer
consists of recurrent units.

*e vanilla RNN has a vanishing gradient problem, a
situation where the recurrent model cannot be further
trained because the value to update the weight is too small;
thus, there would be no point of training the model further.
*erefore, long short-term memory (LSTM) [43] and gated
recurrent unit (GRU) [44] are employed to avoid this sit-
uation. Both LSTM and GRU have cells/units that are
connected recurrently to each other, replacing the usual
recurrent units which existed in earlier RNNs. What makes
their cells different is the existence of gates. *ese gates
decide whether to pass certain information coming from the
previous cell (i.e., input gate and forget gate in LSTM unit
and update gate in GRU) or going to the next unit (i.e.,
output gate in LSTM). Since LSTM has more gates than
GRU, it requires more calculations, thus computationally
more expensive. Yet, it is not conclusive whether one is
better than the other [44]; thus, we use both types and
compare the results. For brevity, we will refer to both types as
recurrent layers and their cells as recurrent units.
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*e recurrent layer takes a vector 􏽢xt for each time step t.
In each time step, the recurrent unit outputs hidden state ht

with a dimension of |ht|. *e hidden state is then passed to
the next recurrent unit. *e last hidden state hk becomes the
output of the recurrent layer which will be passed onto the
next layer.

Once we obtain hk, the output of the recurrent layer, the
next step is to map the vector to benign or malicious class.
Mapping hk to those classes requires us to use linear
transformation and softmax activation unit.

A linear transformation transforms hk into a new vector
L using (1), whereW is the trained weight and b is the trained
bias. After that, we transform L to obtain Y � yi | 0≤ i< 2􏼈 􏼉,
the log probabilities of the input file belonging to the classes
with LogSoftmax, as described in (2). *e output of Log-
Softmax is the index of an element that has the largest
probability in Y. All these forward steps are depicted in
Figure 4:

L � W∗ hk + b,

L � li
􏼌􏼌􏼌􏼌 0≤ i< 2􏽮 􏽯,

(1)

Y � argmax
0≤i<2

log
exp li( 􏼁

􏽐
2
i�0 exp li( 􏼁

􏼠 􏼡. (2)

In the training stage, after feeding a batch of training
data to the model and obtaining the output, the next step is

to evaluate the accuracy of our model. To measure our
model’s performance during the training stage, we need to
calculate a loss value which represents how far our model’s
output is from the ground truth. Since this approach is a
binary classification problem, we use negative log likelihood
[45] as the loss function.*en, the losses are backpropagated
to update weights, biases, and the embedding vectors.

4.5. Detecting Exploits. *e process of detecting exploits is
essentially similar to the training process. Application layer
messages are extracted. n-grams are acquired from these
messages and encoded using the dictionary that was built
during the training process. *e encoded n-grams are then
fed into the RNN model that will output probabilities of
these messages being malicious. When the probability of an
application layer message being malicious is higher than 0.5,
the message is deemed malicious and an alert is raised.

*emain difference in this process to the training stage is
the time when Blatta stops processing inputs and makes the
decision. Blatta takes the intermediate output of the RNN
model, hence requiring fewer inputs and disregarding the
needs to wait for the full-length message to process. We will
show in our experiment that the decision taken by using
intermediate output and reading fewer bytes is close to
reading the full-length message, giving the proposed ap-
proach an ability of early prediction.

5. Experiments and Results

In this section, we evaluate Blatta and present evidence of its
effectiveness in predicting exploit in network traffic. Blatta is
implemented with Python 3.5.2 and PyTorch 0.2.0 library.
All experiments were run on a PC with Core i7 @ 3.40GHz,
16GB of RAM, NVIDIA GeForce GT 730, NVIDIA CUDA
9.0, and CUDNN 7.

*e best practice for evaluating a machine learning
approach is to have separate training and testing set. As the
name implies, training set is used to train the model and the

Network packets

TCP reconstruction

Application
layer messages

(i.e., HTTP
requests, SMTP

commands)

Most common n-grams in
the training set

n-grams
RNN-based model

Legitimate

Malicious

Figure 2: Architecture overview of the proposed method. Application layer messages are extracted from captured traffic using tcpflow [39].
n-grams are obtained from those messages. *ey will then be used to build a dictionary of most common n-grams and train the RNN-based
model (i.e., LSTM and GRU). *e trained model outputs a prediction whether the traffic is malicious or benign.
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Figure 3: An example of n-grams of bytes taken with various stride
values.
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testing set is for evaluating the model’s performance. We
split BlattaSploit dataset in a 60 : 40 ratio for training and
testing set as malicious samples. *e division was carefully
taken to include diverse type of exploit payloads. As samples
of benign traffic to train the model, we obtained the same
number of HTTP and FTP connections as the malicious
samples from UNSW-JAN. Having a balanced set of both
classes is important in a supervised learning.

We measure our model’s performance by using samples
of malicious and benign traffic. Malicious samples are ob-
tained from 40% of BlattaSploit dataset, exploit, and worm
samples in UNSW-FEB set (10,855 samples). As for the
benign samples, we took the same number (10,855) of benign
HTTP and FTP connections in UNSW-FEB. We used the
UNSW dataset to compare our proposed approach per-
formance with previous works.

In summary, the details of training and testing sets used
in the experiments are shown in Table 3.

We evaluated the classifier model by counting the
number of true positive (TP), true negative (TN), false
positive (FP), and false negative (FN). *ey are then used to
calculate detection rate (DR) and false positive rate (FPR)
which are metrics to measure our proposed system’s
performance.

DR measures the ability of the proposed system to
correctly detect malicious traffic. *e value of DR should be
as close as possible to 100%. It would show how well our

system is able to detect exploit traffic. *e formula to cal-
culate DR is shown in (3). We denote TP as the number of
detected malicious connections and FN as the number of
undetected malicious connections in the testing set:

DR �
TP

TP + FN
. (3)

FPR is the percentage of benign samples that are clas-
sified as malicious. We would like to have this metric to be as
low as possible. High FPR means many false alarms are
raised, rendering the system to be less trustworthy and
useless. We calculate this metric using (4). We denote FP as
the number of false positives detected and N as the number
of benign samples:

FPR �
FP
N

. (4)

5.1. Data Analysis. Before discussing about the results, it is
preferable to analyse the data first to make sure that the
results are valid and the conclusion taken is on point. Blatta
aims to detect exploit traffic by reading the first few bytes of
the application layer message. *erefore, it is important to
know how many bytes are there in the application layer
messages in our dataset. Hence, we can be sure that Blatta
reads a number of bytes fewer than the full length of the
application layer message.

Table 4 shows the average length of application layer
messages in our testing set. *e benign samples have an
average message length of 593.25, lower than any other sets.
*erefore, deciding after reading fewer bytes than at least
that number implies our proposed method can predict
malicious traffic earlier, thus providing improvement over
previous works.

5.2. Exploring Parameters. Blatta includes parameters that
must be selected in advance. Intuitively, these parameters
affect the model performance, so we analysed the effect on
model’s performance and selected the best model to be
compared later to previous works. *e parameters we
analysed are recurrent layer types, n, stride, dictionary size,
the embedding vector dimension, and the recurrent layer
type. When analysing each of these parameters, we use
different values for the parameter and set the others to their
default values (i.e., n � 5, stride � 1, dictionary size� 2000,
embe dd ing dim � 32, recurrent layer� LSTM, and number
of hidden layers� 1). *ese default values were selected
based on the preliminary experiment, which had given the
best result. Apart from the modifiable parameters, we set the
optimiser to stochastic gradient descent with learning rate
0.1 as using other optimisers did not necessarily increase or
decrease the performance in our preliminary experiment.
*e number of epochs is fixed to five as the loss value did not
decrease further, adding more training iteration did not give
significant improvement.

As can be seen in Table 5, we experimented with variable
lengths of input to see how much the difference when the
number of bytes read is reduced. It is noted that some

Application layer messages

Integer encoded
n-grams as inputs

n-gram n-gram …

…

…

n-gram

Embedding
layer

Embedded
vector

Embedded
vector

Embedded
vector

Recurrent layer
with LSTM/GRU

units
Recurrent

unit
Recurrent

unit
Recurrent

unit

Decision can be acquired
earlier without waiting for the
last n-grams to be processed

So�max
unit

So�max
unit

Training and detection phase
Detection phase only

Legitimate Malicious

Figure 4: A detailed view of the classifier. n-grams are extracted
from the input application layer message, which are then used to
train an RNNmodel to classify whether the connection is malicious
or benign.
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messages are shorter than the limit. In this case, all bytes of
the messages are indeed taken.

In general, reading the full length of application layer
messages mostly gives more than 99% detection rate with
2.51% false positive rate. *is performance stays still with a
minor variation when the length of input messages is re-
duced down to 500 bytes. When the length is limited to 400,
the false positive rate spikes up for some configurations. Our
hypothesis is that this is due to benign samples have rela-
tively short length. *erefore, we will pay more attention to
the results of reading 500 bytes or fewer and analyse each
parameter individually.

n is the number of bytes (n-grams) taken in each time
step. As shown in Table 5, we experimented with 1, 3, 5, 7,
and 9-gram. For brevity, we omitted n � 2, 4, 6, 8 because the
result difference is not significant. As predicted earlier, 1-
gram was least effective, and the detection rates were around
50%. As for the high-order n-grams, the detection rates are
not much different but the false positive rates are. 5-gram
and 7-gram provide better false positive rates (2.51%) even
when Blatta reads the first 400 bytes. 7-gram gives lower false
positive rate (8.92%) when reading first 300 bytes yet it is still
too high for real-life situation. Having a higher n means
more information is considered in a time step, this may lead
to not only a better performance but also overfitting.

As the default value of n is five, we experimented with
stride of one to five. *us, it can be observed how the model
would react depending on how much the n-grams over-
lapped. It is apparent that nonoverlapping n-grams provide
lower false positives with around 1–3% decrease in detection
rates. A value of two and three for the stride performs the
worst, and they missed quite a few malicious traffic.

*e dictionary size plays an important role in this ex-
periment. Having too many n-grams leads to overfitting as
the model would have to memorise too many of them that
may barely occur. We found that a dictionary size of 2000
has the highest detection rate and lowest false positive rate.
Reducing the size to 1000 has made the detection rate to
drop for about 50%, even when the model read the full-
length messages.

Without embedding layer, Blatta would have used a one-
hot vector as big as the dictionary size for the input in a time
step. *erefore, the embedding dimension has the same
effect as dictionary size. Having it too big leads to overfitting
and too little could mean toomuch information is lost due to
the compression. Our experiments with a dimension of 16,
32, or 64 give similar detection rates and differ less than 2%.
An embedding dimension of 64 can have the least false
positive when reading 300 bytes.

Changing recurrent layer does not seem to have much
difference. LSTM has a minor improvement over GRU. We
argue that preferring one after the other would not make a
big improvement other than training speed. Adding more
hidden layers does not improve the performance. On the
other hand, it has a negative impact on the detection speed,
as shown in Table 6.

After analysing this set of experiments, we ran another
experiment with a configuration based on the best per-
forming parameters previously explained. *e configu-
ration is n � 5, stride � 5, dictionary size � 2000,
embedding dimension � 64, and a LSTM layer. *e model
then has a detection rate of 97.57% with 1.93% false
positives by reading only the first 400 bytes. *is result
shows that Blatta maintains high accuracy while only
reading 35.21% the length of application layer messages in
the dataset. *is optimal set of parameters is then used in
further analysis.

5.3. Detection Speed. In the IDS area, detection speed is
another metric worth looked into, apart from accuracy-
related metrics. Time is of the essence in detection, and the
earlier we detect malicious traffic, the faster we could react.
However, detection speed is affected bymany factors, such as
the hardware or other applications/services running at the
same time as the experiment. *erefore, in this section, we
analyse the difference of execution time between reading the
full and partial payload.

We first calculated the execution time of each record in
the testing set, then divided the number of bytes processed
by the execution time to obtain the detection speed in ki-
lobytes/seconds (KBps). Eventually, the detection speed of
all records was averaged. *e result is shown in Table 6.

As shown in Table 6, reducing the processed bytes to 700,
about half the size of an IP packet, increased the detection
speed by approximately two times (from an average of
8.366 kbps to 16.486 kbps). Evidently, the trend keeps rising
as the number of bytes reduced. If we take the number of
bytes limit from the previous section, which is 400 bytes,
Blatta can provide about three times increment in detection
speed or 22.17 kbps on average. We are aware that this
number seems small compared to the transmission speed of
a link in the network which can reach 1Gbps/128MBps.
However, we argued that there are other factors which limit
our proposed method from performing faster, such as the
hardware used in the experiment and the programming
language used to implement the approach. Given the ap-
proach runs in a better environment, the detection speed will
increase as well.

Table 3: Numbers of benign and malicious samples used in the
experiments.

Set Obtained from Num. of samples Class

Training set BlattaSploit 3406 Malicious
UNSW-JAN 3406 Benign

Testing set
BlattaSploit 2276 Malicious
UNSW-FEB 10855 Benign
UNSW-FEB 10855 Malicious

Table 4: Average message length of application layer messages in
the testing set.

Set Average message length
BlattaSploit 2318.93
UNSW benign samples 593.25
UNSW exploit samples 1437.36
UNSW worm samples 848
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5.4. Comparison with Previous Works. We compare Blatta
results with other related previous works. PAYL [7],
OCPAD [12], Decanter [15], and the autoencoder model
[23] were chosen due to their code availability, and both can
be tested against the UNSW-NB15 dataset. PAYL and
OCPAD read an IP packet at a time, while Decanter and [23]
reconstruct TCP segments and process the whole applica-
tion layer message. None of them provides early detection,
but to show that Blatta also offers improvements in detecting
malicious traffic, we compare the detection and false positive
rates of those works with Blatta.

We evaluated all methods with exploit and worm data in
UNWS-NB15 as those match our threat model and the

dataset is already publicly available.*us, the result would be
comparable. *e results are shown in Table 7.

In general, Blatta has the highest detection rate—albeit it
also comes with the cost of increasing false positives. Al-
though the false positives might make this approach un-
acceptable in real life, Blatta is still a significant step towards
a direction of early prediction, a problem that has not been
explored by similar previous works. *is early prediction
approach enables system administrators to react faster, thus
reducing the harm to protected systems.

In the previous experiments, as shown in Section 5.2,
Blatta needs to read 400 bytes (on average 35.21% of ap-
plication layer message size) to achieve 97.57% detection

Table 5: Experiment results of using various parameters combination and various lengths of input to the model

Parameter No. of bytes No. of bytes
All 700 600 500 400 300 200 All 700 600 500 400 300 200

n

1 47.22 48.69 49.86 50.65 51.77 54.99 65.32 1.18 1.19 1.21 1.21 71.31 78.7 89.43
3 99.87 99.51 99.77 99.1 99.59 98.93 91.07 2.51 2.51 2.51 2.51 72.61 10.29 20.51
5 99.87 99.55 99.78 99.57 99.29 98.91 88.75 2.51 2.51 2.51 2.51 2.51 72.6 11.08
7 99.86 99.47 99.59 99.37 99.19 98.53 97.08 2.51 2.51 2.51 2.51 2.51 8.92 80.92
9 99.81 99.59 99.62 99.57 99.23 98.16 88.93 2.51 2.51 2.51 2.51 72.6 74.16 90.6

Stride

1 99.87 99.55 99.78 99.57 99.29 98.91 88.75 2.51 2.51 2.51 2.51 2.51 72.6 11.08
2 73.39 74.11 74.01 74.45 74.69 74.62 77.82 1.81 1.81 1.81 1.81 71.92 72.46 19.86
3 82.51 82.54 83.07 83.12 83.25 83.5 85.75 1.5 1.49 1.5 1.51 71.62 75.47 89.63
4 99.6 99.19 99.26 99.28 98.61 98.55 98.37 1.93 1.93 1.93 1.93 1.93 74.09 10.5
5 99.73 98.95 98.88 98.65 98 95.77 88.29 1.93 1.92 1.93 1.93 1.93 54.16 90.02

Dictionary size

1000 47.78 49.5 50.36 50.79 51.8 54.83 54.68 1.21 1.21 1.22 1.22 71.33 79.47 89.42
2000 99.87 99.55 99.78 99.57 99.29 98.91 88.75 2.51 2.51 2.51 2.51 2.51 72.6 11.08
5000 99.87 99.37 99.75 99.79 99.62 99.69 99.66 2.51 2.51 2.51 2.51 72.61 10.03 90.61
10000 99.86 99.44 99.74 99.55 99.44 98.55 98.33 2.51 2.51 2.51 2.51 72.61 79.06 90.15
20000 99.84 99.81 99.69 99.24 99.21 99.43 98.91 2.51 2.51 2.51 2.51 72.61 80.46 89.64

Embedding dimension

16 99.89 99.65 99.7 99.67 99.22 99.09 98.81 2.51 2.51 2.51 2.51 2.51 76.77 80.94
32 99.87 99.55 99.78 99.57 99.29 98.91 88.75 2.51 2.51 2.51 2.51 2.51 72.6 11.08
64 99.87 99.2 99.41 99.09 98.61 96.76 85.52 2.51 2.51 2.51 2.51 2.51 4.51 89.85
128 99.84 99.33 99.6 99.35 98.99 97.69 86.78 2.51 2.51 2.51 2.51 72.6 4.27 10.88
256 99.88 99.76 99.8 99.22 99.38 98.64 90.34 2.51 2.51 2.51 2.51 72.6 80.79 90.6

Recurrent layer LSTM 99.87 99.55 99.78 99.57 99.29 98.91 88.75 2.51 2.51 2.51 2.51 2.51 72.6 11.08
GRU 99.88 99.35 99.48 99.35 99.06 97.94 86.22 2.51 2.51 2.51 2.51 2.51 78.95 8.48

No. of layers
1 99.87 99.55 99.78 99.57 99.29 98.91 88.75 2.51 2.51 2.51 2.51 2.51 72.6 11.08
2 99.86 99.46 99.46 99.38 99.2 99.72 88.65 2.51 2.51 2.51 2.51 72.59 78.78 20.29
3 99.84 99.38 99.68 99.1 99.18 98.16 87.35 2.51 2.51 2.51 2.51 2.51 74.94 10.83

Detection rate False positive rate
Bold values show the parameter value for each set of experiment which gives the highest detection rate and lowest false positive rate.

Table 6: *e effect of reducing the number of bytes to the detection speed.

No. of bytes
No. of LSTM layers

1 2 3
All 8.366± 0.238327 5.514± 0.004801 3.698± 0.011428
700 16.486± 0.022857 10.704± 0.022001 7.35± 0.044694
600 18.16± 0.020556 11.97± 0.024792 8.21± 0.049584
500 20.432± 0.02352 13.65± 0.036668 9.376± 0.061855
400 22.17± 0.032205 14.94± 0.037701 10.302± 0.065417
300 24.076± 0.022857 16.368± 0.036352 11.318± 0.083477
200 26.272± 0.030616 18.138± 0.020927 12.688± 0.063024
*e values are average (mean) detection speed in kbps with 95% confidence interval, calculated from multiple experiments. *e detection speed increased
significantly (about three times faster than reading the whole message), allowing early prediction of malicious traffic.
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rate. It reads fewer bytes than PAYL, OCPAD, Decanter, and
[23] while keeping the accuracy high.

5.5.Visualisation. To investigate how Blatta has performed
the detection, we took samples of both benign and
malicious traffic and observed the input and output. We
were particularly interested in the relation of n-grams that
are not stored in the dictionary to the decision (unknown
n-grams). *ose n-grams either did not exist in the
training set or were not common enough to be included in
the dictionary.

On Figure 5, we visualise three samples of traffic taken
from different sets, BlattaSploit and UNSW-NB15 datasets.
*e first part of each sample shows n-grams that did not
exist in the dictionary. *e yellow highlighted parts show
those n-grams. *e second part shows the output of the
recurrent layer for each time step. *e darker the red
highlight, the closer the probability of the traffic being
malicious to one in that time step.

As shown in Figure 5 (detection samples), malicious
samples tend to have more unknown n-grams. It is evident
that the existence of these unknown n-grams increases the
probability of the traffic being malicious. As an example,
the first five bytes of the five samples have around 0.5
probability of being malicious. And then the probability
went up closer to one when an unknown n-gram is
detected.

Similar behaviour also exists in the benign sample. *e
probability is quite low because there are many known
n-grams. Despite the existence of unknown n-grams in the
benign sample, the end result shows that the traffic is benign.
Furthermore, most of the time, the probability of the traffic
being malicious is also below 0.5.

6. Evasion Techniques and Adversarial Attacks

Our proposed approach is not a silver bullet to tackle exploit
attacks. *ere are evasion techniques which could be
employed by adversaries to evade the detection. *ese
techniques open possibilities for future work. *erefore, this
section talks about such evasion techniques and discuss why
they have not been covered by our current method.

Since our proposed method works by analysing appli-
cation layer messages, it is safe to disregard evasion tech-
niques on transport or network layer level, e.g., IP
fragmentation, TCP delayed sending, and TCP segment
fragmentation. *ey should be handled by the underlying
tool that reconstructs TCP session. Furthermore, those

evasion techniques can also be avoided by Snort
preprocessor.

Two possible evasion techniques are compression and/or
encryption. Both compression and encryption change the
bytes’ value from the original and make the malicious code
harder to detect by Blatta or any previous work [7, 12, 23] on
payload-based detection. Metasploit has a collection of
evasion techniques which include compression. *e com-
pression evasion technique only works on HTTP and utilises
gzip. *is technique only compresses HTTP responses, not
HTTP requests. While all HTTP-based exploits in UNSW-
NB15 and BlattaSploit have their exploit code in the request,
thus no data are available to analyse the performance if the
adversary uses compression. However, gzip compressed data
could still be detected because they always start with the
magic number 1f 8b and the decompression can be done in a
streaming manner in which Blatta can do so.*ere is also no
need to decompress the whole data since Blatta works well
with partial input.

Encryption is possibly the biggest obstacle in payload-
based NIDS: none of the previous works in our literature (see
Table 1) have addressed this challenge. *ere are other
studies which deal with payload analysis in encrypted traffic
[46, 47]. However, these studies focus on classifying which
application generates the network traffic instead of detecting
exploit attacks; thus, they are not directly relevant to our
research.

On its own, Blatta is not able to detect exploits hiding in
encrypted traffic. However, Blatta’s model can be exported
and incorporated with application layer firewalls such as
ShadowDaemon [48]. ShadowDaemon is commonly in-
stalled on a web server and intercepts HTTP requests before
being processed by a web server software. It detects attacks
based on its signature database. Since it is extensible and
reads the same data as Blatta (i.e., application layer mes-
sages), it is possible to use Blatta’s RNN-based model to
extend the capability of ShadowDaemon beyond rule-based
detection. More importantly, this approach would enable
Blatta to deal with encrypted traffic, making it applicable in
real-life situations.

Attackers could place the exploit code closer to the end
of the application layer message. Hoping that in doing so, the
attack would not be detected as Blatta reads merely the first
few bytes. However, exploits with this kind of evasion
technique would still be detected since this evasion tech-
nique needs a padding to place the exploit code at the end of
the message. *e padding itself will be detected as a sign of
malicious attempts as it is most likely to be a byte sequence
which rarely exist in the benign traffic.

Table 7: Comparison to previous works using the UNSW-NB15 dataset as the testing set.

Method
Detection rate (%)

FPR (%)
Exploits in UNSW-NB15 Worms in UNSW-NB15

Blatta 99.04 100 1.93
PAYL 87.12 26.49 0.05
OCPAD 10.53 4.11 0
Decanter 67.93 90.14 0.03
Autoencoder 47.51 81.12 0.99
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7. Conclusion and Future Work

*is paper presents Blatta, an early prediction system for
exploit attacks which can detect exploit traffic by reading only
400 bytes from the application layer message. First, Blatta
builds a dictionary containing most common n-grams in the
training set. *en, it is trained over benign and malicious
sequences of n-grams to classify exploit traffic. Lastly, it con-
tinuously reads a small chunk of an application layer message
and predicts whether the message will be a malicious one.

Decreasing the number of bytes taken from application
layer messages only has a minor effect on Blatta’s detection
rate. *erefore, it does not need to read the whole appli-
cation layer message like previously related works to detect
exploit traffic, creating a steep change in the ability of system
administrators to detect attacks early and to block them
before the exploit damages the system. Extensive evaluation
of the new exploit traffic dataset has clearly demonstrated the
effectiveness of Blatta.

For future study, we would like to train a model that
can recognise malicious behaviour based on messages
exchanged between clients and a server since in this paper
we only consider messages from clients to a server, but not
the other way around. Detecting attacks on encrypted
traffic while retaining the early prediction capability could
be a future research direction. It also remains a question
whether the approach in mobile traffic classification
[46, 47] would be applicable to the field of exploit
detection.

Data Availability

*e compressed file containing the dataset is available on
https://bit.ly/blattasploit.
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Figure 5: Visualisation of unknown n-grams in the application layer messages and outputs of the recurrent layer for each time step. It shows
how the proposed system observes and analyses the traffic. Yellow blocks show unknown n-grams. Red blocks show the probability of the
traffic being malicious when reading an n-gram at that point.
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METIC: mobile encrypted traffic classification using multi-
modal deep learning,” Computer Networks, vol. 165, Article
ID 106944, 2019.

[48] H. Buchwald, “Shadow daemon: a collection of tools to detect,
record, and block attacks on web applications,” Shadow
Daemon Introduction. 2015, https://shadowd.zecure.org/
overview/introduction/.

Security and Communication Networks 15

http://www.bro-ids.org
https://qosient.com/argus/
https://information.rapid7.com/download-metasploitable-2017.html
https://information.rapid7.com/download-metasploitable-2017.html
https://arxiv.org/abs/1412.3555
https://shadowd.zecure.org/overview/introduction/
https://shadowd.zecure.org/overview/introduction/

