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ABSTRACT

Random projections have recently found a surprising niche in sig-
nal processing. The key revelation is that the relevant structure
in a signal can be preserved when that signal is projected onto a
small number of random basis functions. Recent work has ex-
ploited this fact under the rubric of Compressed Sensing (CS):
signals that are sparse in some basis can be recovered from small
numbers of random linear projections. In many cases, however,
we may have a more specific low-dimensional model for signals
in which the signal class forms a nonlinear manifold in R

N . This
paper provides preliminary theoretical and experimental evidence
that manifold-based signal structure can be preserved using small
numbers of random projections. The key theoretical motivation
comes from Whitney’s Embedding Theorem, which states that a
K-dimensional manifold can be embedded in R

2K+1. We exam-
ine the potential applications of this fact. In particular, we consider
the task of recovering a manifold-modeled signal from a small
number of random projections. Thanks to our more specific model,
we can recover certain signals using far fewer measurements than
would be required using sparsity-driven CS techniques.

1. INTRODUCTION

Random projections have recently emerged as a surprisingly use-
ful tool in signal processing. The key revelation is that the relevant
structure in a signal can be preserved when that signal is projected
onto a small number of random basis functions. Indeed, although
some information is lost through such a projection, that informa-
tion tends to be incoherent with the relevant structure in the signal.
This fact (which can be formalized in various ways — see below)
is useful for several reasons. For example, the process of acquir-
ing and compressing a signal can be greatly simplified. In fact, this
encoding process can proceed without knowledge of the structure
that makes the signal compressible — in this sense random pro-
jections are a universal measurement tool. Another benefit is that
random projections provide dimensionality reduction, which can
significantly simplify certain computations.

One very general application for random projections deals
with a cloud of P points in R

N . The Johnson-Lindenstrauss
Lemma [1] establishes that using O(log P ) random projections,
one can embed these points with minimal distortion of their pair-
wise distances (the “structure” that is preserved). This result is
particularly useful for solving the Nearest Neighbor problem in
computer science [2]. A primary benefit is that computation can
be substantially reduced by operating in this lower-dimensional
space.

Another, more recent field known as Compressed Sensing
(CS) employs random projections in a more specific setting.
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Fig. 1. Examples of parameterized signal models: (a) A
wedgelet [13] is a parameterized edge on a square image block.
(b) Arbitrary view of a simple object; as the viewpoint changes,
the images trace out a nonlinear, non-differentiable manifold [14].

Rather than dealing with arbitrary clouds of points, CS exam-
ines classes of signals having sparse representations in some ba-
sis. For an N -sample signal that is K-sparse,1 only O(K log N)
random projections of the signal are required to reconstruct the
signal with high probability. A variety of algorithms have been
proposed for signal recovery [3–6], each requiring a slightly dif-
ferent number of projections. CS has many promising applications
in signal acquisition, compression, medical imaging, and sensor
networks [3, 4, 7–12].

CS employs a specific model (sparsity) in order to distinguish
among an infinite number of points (which comprise unions of lin-
ear subspaces — see Section 3.1) based on their random projec-
tions. The principle of sparsity is applicable to a variety of signal
types and is central to algorithms in denoising and compression.
However it is still somewhat generic: in many cases we may have
a more specific low-dimensional model for signals. Simple ex-
amples, illustrated in Figure 1, include straight edges in images
(which can be parameterized by a slope and an offset) or multiple
views of a fixed object (which can be parameterized by the cam-
era position). In these cases, the signal class forms a nonlinear
manifold in R

N .
This paper provides preliminary theoretical and experimen-

tal evidence that manifold-based signal structure can be preserved
using small numbers of random projections. The key theoretical
motivation comes from Whitney’s Embedding Theorem (see Sec-
tion 2.2), which states that a K-dimensional manifold can be em-
bedded in R

2K+1. We examine the potential applications of this
fact (extending the techniques introduced in [15, 16]). In particu-
lar, we consider the task of recovering a manifold-modeled signal
from a small number of random projections. Thanks to our more
specific model, the ability to recover the signal can be far superior
to sparsity-driven CS techniques.

This paper is organized as follows. Section 2 introduces
manifolds as a useful model for low-dimensional signal structure
and discusses the implications of Whitney’s Embedding Theorem.
Section 3 considers the specific problem of recovering a signal

1By K-sparse, we mean that the signal can be written as a sum of K

elements from some basis or dictionary in R
N .
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from its random projections. Section 4 presents an experimental
application in image edge detection, and Section 5 concludes with
a summary of ongoing research directions.

2. SIGNAL MANIFOLDS

2.1. Articulated signal models

In many cases where one has a low-dimensional notion of signal
structure, the resulting signal class manifests itself as a nonlinear
submanifold embedded in the signal space. Suppose, for example,
that one knew (or could conceive of) a low-dimensional param-
eter θ ∈ Θ that somehow controlled the generation of the sig-
nal. Examples of this very generic notion include: images of a
straight edge (parameterized by 2 variables: a slope and an off-
set — see Figure 1(a)), multiple views of a fixed object (∼5 pa-
rameters for the camera position — see Figure 1(b)), signals of
unknown translation (1 parameter for shift — see Figure 2), or
the output of some explicitly parameterized or articulated physical
system [14, 17]. In each of these cases, if we denote by fθ ∈ R

N

the signal formed with a particular parameter θ, then the corre-
sponding family M = {fθ : θ ∈ Θ} forms a submanifold of R

N .
We let K denote the dimension of θ, which under mild assump-
tions matches the dimension of M.

The above are just a few example scenarios in which mani-
folds may arise in signal processing. Recent investigations have
examined the structural properties of particular signal manifolds,
including the image manifolds in Figure 1 [14,17]. One surprising
finding is that manifolds generated by articulated images having
sharp edges are nowhere differentiable; instead they have an inher-
ent multiscale structure that can be characterized and exploited in
image processing.

2.2. Random projections of manifolds

This paper exploits another possibly surprising fact: much of a sig-
nal manifold’s structure is actually preserved when it is projected
from R

N onto a random lower-dimensional subspace. The result
follows from the proof of Whitney’s (Easy) Embedding Theorem.

Theorem 2.1 [18] Let M be a compact Hausdorff Cr K-
dimensional manifold, with 2 ≤ r ≤ ∞. Then there is a Cr

embedding of M in R
2K+1.

The proof of this theorem is highly insightful and considers the
normalized secant set of the manifold

Σ =

{
x − x′

‖x − x′‖
2

: x, x′ ∈ M

}
.

Roughly speaking, the secant set forms a 2K-dimensional sub-
set of the (N − 1)-dimensional unit sphere (which equates with
the space of projections from R

N to R
N−1), and so there ex-

ists a projection from R
N to R

N−1 that projects M injectively
(without overlap). This can be repeated until reaching R

2K+1. In
signal processing, this secant set has been explicitly employed in
order to find the optimal projection vectors for a given manifold
(see [15, 16], which also provide interesting and insightful discus-
sions).

This paper builds upon the following useful observation: Us-
ing identical arguments and assuming mild conditions on the sig-
nal manifold M, it also follows that a randomly chosen projection
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Fig. 2. Top row: The articulated signals fθ(t) = g(t − θ) are de-
fined via shifts of a primitive function g, where g is (left) a Gaus-
sian pulse or (right) a step function. The resulting signals trace
out 1-D manifolds in R

N . Bottom row: Projection of manifolds
from R

N onto 3 random functions; the color/shading corresponds
to different values of θ ∈ R.

of the manifold from R
N to R

2K+1 will be invertible with high
probability.

To fix notation, we will consider signals x ∈ R
N and denote

the M -dimensional random projection operator by P . This op-
erator can be implemented by constructing M random vectors in
R

N , which will span an M -dimensional linear subspace of R
N ,

onto which x is orthogonally projected. (The computations simply
involve inner products, and “signal processing” in this projected
space involves only these M coefficients.) As an example, Fig-
ure 2 shows the random projection of two 1-dimensional (1-D)
manifolds from R

N to R
3 and reveals that the particular charac-

teristics of the manifold (such as differentiability) play a critical
role. Although many interesting signal manifolds do not satisfy
the criteria of Theorem 2.1, the theorem still provides a useful mo-
tivation; this paper provides empirical justification for scenarios
outside of the Whitney criteria.

3. APPLICATION: SIGNAL RECOVERY

Random projections have many potential applications in manifold-
based signal processing, including signal acquisition, sensor net-
works, and compression. In this paper, we focus on one fundamen-
tal task: reconstructing a signal x from its projection Px. This is
facilitated by assuming that x lives near the manifold M and by
exploiting the injectivity of the projection PM. The most rele-
vant questions include: How can x be recovered from Px? How
many dimensions M are required for stability? How accurate will
the reconstruction be? This paper provides preliminary theoretical
insights into these topics and provides promising numerical exper-
iments.

3.1. Recovering manifold-based signals

When the signal is “noiseless” — that is x ∈ M— then Whitney’s
Embedding Theorem implies that x should be recoverable from
Px (with high probability), assuming the dimension M ≥ 2K+1.
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In some situations it may indeed to further reduce M , though in
general we expect M ≥ K to be a strict requirement.

Concrete algorithms for recovery are beyond the scope of this
paper but essentially involve searching the projected manifold

x̂ = arg min
x′∈M

∥∥Px − Px′
∥∥

2
. (1)

Figure 3 (discussed further in Section 4) shows a simple demon-
stration of recovery from 2K + 1 projections.

Relation to Compressed Sensing: The 2K factor plays a very
important role in CS, which can be reinterpreted in light of the
manifold viewpoint. The signal “manifold” in the CS setting con-
sists of a union of K-dimensional hyperplanes. The secant set for
this turns out to be a union of 2K-dimensional hyperplanes (which
loses 1 dimension after normalization). It follows that a random
projection of a length-N , K-sparse signal onto M = 2K dimen-
sions is invertible with probability one [12]. (However, tractable
recovery from Px requires slightly more measurements [3–6].)

3.2. Recovering near-manifold signals

A potentially more interesting scenario arises when the manifold
is only an approximation for the signal class. Examples include
edges that are not entirely straight or manifold-based signals cor-
rupted by noise. We would like our recovery algorithm (1) to pro-
vide robust recovery of such signals. Ensuring such robustness
now requires some notion of the quality of the manifold’s embed-
ding into R

M . Intuitively, if two far-away points x, x′ ∈ M were
to be mapped onto nearby points, then accurate recovery of any
signals falling between x and x′ would be difficult.

This notion can be made precise by defining [15, 16]

κ := inf
x,x′∈M; x �=x′

‖Px − Px′‖
2

‖x − x′‖
2

. (2)

Using this quantity, we can bound the error in a recovered signal
relative to the original signal’s distance from the manifold. We
have the following theorem, with proof omitted for brevity.

Theorem 3.1 Let x ∈ R
N be an observation, and let x̂ be the

estimation recovered from the projection Px via (1). Define δ =
infx′∈M ‖x − x′‖

2
, and let γ = ‖x − x̂‖

2
. Then

γ

δ
≤

√
4

κ2
− 3 + 2

√
1

κ2
− 1.

As κ → 1, the bound on the right reduces simply to 1, and
as κ → 0, the bound grows as 2/κ. We stress that this is a worst
case bound and that the accuracy is often significantly better in
practice (see Section 4). Moreover, we note that κ itself is a worst
case bound relating to two points on the manifold. Many other
pairwise distances may in fact be much more well preserved. (This
suggests that there may exist more appropriate criteria for analysis
— a topic of ongoing work.)

Another relevant topic of investigation is relating κ to M in or-
der to discern the number of measurements required for robust sig-
nal recovery. Clearly, the anticipated κ increases to 1 as M → N .
However, arguments following Whitney’s Embedding Theorem
imply only that κ > 0 with high probability when M ≥ 2K + 1.
A more rigorous theoretical investigation is currently underway

(a) (b) (c) (d)

Fig. 3. Estimating image edge structure from a 256-pixel block.
(a) Original 16 × 16 block. (b) Manifold-based recovery from
5 random projections. (c) Traditional CS recovery from 5 ran-
dom projections using OMP algorithm [6] with Haar wavelets. (d)
OMP recovery from 50 random projections. Perfect OMP recov-
ery requires 70 or more random projections.

(which will relate the expected κ to the properties of the manifold
such as curvature, volume, etc.); however, the next section pro-
vides numerical experiments to characterize the performance of
our recovery algorithm. Finally, we mention that the algorithms
introduced in [15,16] aim specifically to find projection directions
that maximize the quantity κ. However these lack the universal
applicability of random projections.

4. EXAMPLE: EDGE DETECTION

In order to illustrate the basic principles in action, we now con-
sider a simple image processing application. It is well known that
much of the critical information in images is carried by the edges,
which themselves have simple low-dimensional descriptions. One
localized model for edge structure is provided by a wedgelet [13],
a parameterized edge on a square image block (see Figure 1(a)).

We can consider the following task: given random projections
of a local image segment, recover an approximation to the local
edge structure. This can be formulated in our setting if we consider
x ∈ R

N as the original image and Px as the random observation.
We can then search the projected wedgelet manifold PM for the
closest match to the observation. While the wedgelet manifold is
known not to be differentiable [14, 17], we consider it to be an in-
teresting case and use this experiment to demonstrate the potential
for applications beyond the specific assumptions of Theorem 2.1.

For the first experiment (Figure 3), we examine a perfect edge
originating from a clean image x ∈ M. We measure a 16 × 16
image block (256 pixels) using 2 · 2 + 1 = 5 random projec-
tions. To recover x̂ we use a sampling of the projected manifold
and simply find the nearest neighbor to Px. (Note that this exper-
iment assumes the two grayscale values are known for the edge,
or equivalently, that the mean and energy of x are provided along
with the measurements.) While the sampling grid for the manifold
search did not contain Px precisely, we see in Figure 3(b) that a
very close approximation is recovered. In contrast, using tradi-
tional CS techniques to recover x from its random projections (by
assuming that the image is sparse in the 2-D Haar wavelet domain)
requires an order of magnitude more measurements. This compar-
ison is a bit artificial but emphasizes how manifold models can
be useful for recovering structured information from few random
measurements.

For the second experiment (Figure 4) we analyze the robust-
ness of the recovery process. For this we examine a 256 × 256
portion of the Peppers test image. We break the image into square
blocks of size 16 × 16, measure each one using 10 random pro-
jections (plus we include the mean and energy of each block),
and then search the projected manifold to estimate a wedgelet on
each block. We see from the figure that the recovery is fairly ro-
bust and accurately recovers most of the prominent edge structure,
even though none of the original image blocks perfectly fits the
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Fig. 4. (a) Original 256× 256 Peppers image. (b) Wedgelet estimation on 16× 16 pixel tiles, using 10 random projections (plus the mean
and energy) on each tile, for a total of (10 + 2) · 256 = 3072 measurements. (c) Best-possible wedgelet estimation, which would require
all 2562 = 65536 pixel values. (d) Traditional CS-based recovery (from 3072 global random projections) using greedy pursuit to find a
sparse approximation in the projected wavelet (D8) basis.

wedgelet model. The recovery is also fast, taking less than one sec-
ond for the entire image. For point of comparison we include the
best-possible wedgelet approximation to the image, which would
require all 256 numbers per block to determine. In spite of the
relatively small κ generated by the random projections (approxi-
mately 0.05 when computed using (2) over all pairs of wedgelets in
our sampled grid), each wedgelet estimate is no more than 3 times
worse than the best-possible wedgelet estimate (as measured by
γ/δ in Theorem 3.1). For a second point of comparison with the
wedgelet estimates, we also include the CS-based recovery of the
whole image from an equivalent number of total measurements,
using (10 + 2) · 256 = 3072 global random projections. Though
slightly better in terms of mean-square error, this approximation
fails to prominently represent the edge structure (it also takes sev-
eral minutes to compute using our software). We stress again,
though, that the main purpose of the wedgelet experiment is to
illustrate the robustness of recovery on natural image segments,
some of which are not well-modeled using wedgelets.

5. CONCLUSIONS

This paper has provided theoretical and experimental evidence that
manifold-based signal structure can be preserved using a small
number of random projections. Thanks to this more specific
model, we can recover certain signals using far fewer measure-
ments than would be required using sparsity-driven CS techniques.
Much work remains and is ongoing. For example, we wish to de-
velop fast algorithms for signal recovery in the projected space (to
deal with manifolds of dimension higher than two). We also aim
to supplement existing techniques in CS, which may require meth-
ods for recovering local signal structure (such as wedgelets) from
global image measurements. Conversely, this approach could mo-
tivate a somewhat localized CS measurement scheme. Finally, a
more rigorous theoretical investigation is underway, particularly
to quantify the necessary number of random measurements for ro-
bust signal recovery.
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