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Abstract

The alternating direction multiplier method (ADMM) is widely used in computer graphics for solving optimization problems that

can be nonsmooth and nonconvex. It converges quickly to an approximate solution, but can take a long time to converge to a

solution of high-accuracy. Previously, Anderson acceleration has been applied to ADMM, by treating it as a fixed-point iteration

for the concatenation of the dual variables and a subset of the primal variables. In this paper, we note that the equivalence

between ADMM and Douglas-Rachford splitting reveals that ADMM is in fact a fixed-point iteration in a lower-dimensional

space. By applying Anderson acceleration to such lower-dimensional fixed-point iteration, we obtain a more effective approach

for accelerating ADMM. We analyze the convergence of the proposed acceleration method on nonconvex problems, and verify its

effectiveness on a variety of computer graphics problems including geometry processing and physical simulation.
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1. Introduction

Numerical optimization is commonly used in computer graphics,

and finding a suitable solver is often instrumental to the performance

of the algorithm. For an unconstrained problem with a simple

smooth target function, gradient-based solvers such as gradient

descent or the Newton method are popular choices [NW06]. On

the other hand, for more complex problems, such as those with a

nonsmooth target function or with nonlinear hard constraints, it is

often necessary to employ more sophisticated optimization solvers

to achieve the desired performance. For example, proximal splitting

methods [CP11] are often used to handle nonsmooth optimization

problems with or without constraints. The basic idea is to introduce

auxiliary variables to replace some of the original variables in the

target function, while enforcing consistency between the original

variables and the auxiliary variables with a soft or hard constraint.

This often allows to problem to be solved via alternating update

of the variables, which reduces to simple sub-problems that can be

solved efficiently. One example of such proximal splitting methods is

the local-global solvers commonly used for geometry processing and

physical simulation [SA07, LZX∗08, BDS∗12, LBOK13, BML∗14].

Another popular type of proximal splitting methods, the alternat-

ing direction method of multipliers (ADMM) [BPC∗11], is designed

† Corresponding author: juyong@ustc.edu.cn (Juyong Zhang)

for the following form of optimization:

min
x,z

Φ(x,z) s.t. Ax−Bz = c, (1)

where x,z are the original variable and the auxiliary variable, and

the linear hard constraint Ax−Bz = c enforces their compatibility.

ADMM computes a stationary point of the augmented Lagrangian

function L(x,z,y) =Φ(x,z)+〈βy,Ax−Bz−c〉+ β
2 ‖Ax−Bz−c‖2 via

the following iterations [BPC∗11]:

zk+1 = argmin
z

L(xk,z,yk), (2)

xk+1 = argmin
x

L(x,zk+1,yk), (3)

yk+1 = yk +Axk+1 −Bzk+1 − c, (4)

where y is the dual variable, and β ∈ R+ is a penalty parameter.

This formulation is general enough to represent a large variety of

optimization problems. For example, any additional hard constraint

can be incorporated into the target function using an indicator

function that vanishes if the constraint is satisfied and has value +∞
otherwise. The above iteration often has a low computational cost,

where each sub-problem can be solved in parallel and/or in a closed

form. The solver can handle nonsmooth problems, and typically

converges to an approximate solution in a small number of itera-

tions [BPC∗11]. Moreover, although ADMM was initially designed

for convex problems, it has proved to be also effective for many

noncovex problems [WYZ19]. Such properties make it a popular

solver for large-scale optimization in computer graphics [NVW∗13,
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NVT∗14, OBLN17], computer vision [LFYL18, WG19], and image

processing [FB10, AF13, HDN∗16].

Despite its popularity, a major drawback of ADMM is that it

can take a long time to converge to a solution of high accuracy.

This limitation has motivated various work on accelerating ADMM

with a focus on convex problem [GOSB14, KCSB15, ZW18]. For

nonconvex ADMM, an acceleration technique was proposed recently

in [ZPOD19]. By treating the steps (2)–(4) as a fixed-point iteration

of the variables (x,y) , it speeds up the convergence using Anderson

acceleration [And65], a well-known acceleration technique for fixed-

point iterations. It is also shown in [ZPOD19] that for problems with

a separable target function that satisfies certain assumptions, ADMM

can be treated as a fixed-point iteration on a reduced set of variables,

which further reduces the overhead of Anderson acceleration.

In this paper, we propose a novel acceleration technique for

nonconvex ADMM from a different perspective. We note that if

the target function is separable in x and z, then ADMM is equivalent

to Douglas-Rachford (DR) splitting [DR56], a classical proximal

splitting method. Such equivalence enables us to interpret ADMM

using its equivalent DR splitting form, which turns out to be a fixed-

point iteration for a linear transformation of the ADMM variables,

with the same dimensionality as the dual variable y. As a result,

we can apply Anderson acceleration to such alternative form of

fixed-point iteration, often with a much lower dimensionality than

the fixed-point iteration of (x,y) that is utilized in [ZPOD19] for the

general case and with a lower computational overhead. Moreover,

compared to the other acceleration techniques in [ZPOD19] based

on reduced variables, our new approach has the same dimensionality

for the fixed-point iteration but requires a much weaker assumption

on the optimization problem. To achieve stability of the Ander-

son acceleration, we propose two merit functions for determining

whether an accelerated iterate can be accepted: 1) the DR envelope,

with a strong guarantee for global convergence of the accelerated

solver, and 2) the primal residual norm, which provides fewer

theoretical guarantees but incurs lower computational overhead.

As far as we are aware of, this is the first global convergence proof

for Anderson acceleration on nonconvex ADMM. We evaluate our

method on a variety of nonconvex ADMM solvers used in computer

graphics and other domains. Thanks to its low dimensionality and

strong theoretical guarantee, our method achieves more effective

acceleration than [ZPOD19] on many of the experiments.

To summarize, our main contributions include:

• We propose an acceleration technique for nonconvex ADMM

solvers, by utilizing their equivalence to DR splitting and applying

Anderson acceleration to the fixed-point iteration form of DR

splitting. We also propose two types of merit functions that can

be used to verify the effectiveness of an accelerated iterate, as well

as acceptance criteria for the iterate based on the merit functions.

• We prove the convergence of our accelerated solver under appro-

priate assumptions on the problem and the algorithm parameters.

2. Related Works

ADMM. ADMM is a variant of the augmented Lagrangian scheme

that uses partial updates for the dual variables, and is commonly

used for optimization problems with separable target functions and

linear side constraints [BPC∗11]. Its ability to handle nonsmooth

and constrained problems and its fast convergence to an approximate

solution makes it a popular choice for large-scale optimization in var-

ious problem domains. In computer graphics, ADMM has been ap-

plied for geometry processing [BTP13, NVW∗13, ZDL∗14, XZZ∗14,

NVT∗14], image processing [HDN∗16], computational photogra-

phy [WFDH18], and physical simulation [GITH14,PM17,OBLN17].

It is well known that ADMM suffers from slow convergence to a

high-accuracy solution, and different strategies have been proposed

in the past to speed up its convergence, e.g., using Nesterov’s

acceleration [GOSB14, KCSB15] or GMRES [ZW18]. However,

these acceleration methods focus on convex problems, while many

problems in computer graphics are nonconvex.

Anderson Acceleration. Anderson acceleration [And65, WN11]

is an established method for accelerating fixed-point iterations,

and has been applied successfully to numerical solvers in different

domains, such as numerical linear algebra [Ste12, PSP16, SPP19],

computational physics [LSV13, WTK14, AJW17, MST∗18], and

robotics [POD∗18]. The key idea of Anderson acceleration is to

utilize m previous iterates to construct a new iterate that converges

faster to the fixed point. It has been noted that such an approach is

indeed a quasi-Newton method [Eye96,FS09,RS11]. Other research

works have investigated its local convergence [TK15, TEE∗17] as

well as its effectiveness in acceleration [EPRX20]. Recently, it has

been applied in [PDZ∗18a] to improve the convergence of local-

global solvers in computer graphics. Later, Zhang et al. [ZPOD19]

proposed to speed up the convergence of nonconvex ADMM solvers

in computer graphics using Anderson acceleration.

DR Splitting. DR splitting was originally proposed in [DR56]

to solve differential equations for heat conduction problems, and

has been primarily used for solving separable convex problems. In

recent years, there is a growing research interest in its application

on nonconvex problems [ABT14, LP16, Pha16, HL13, HLN14]. The

convergence of DR splitting in such scenarios has only been studied

very recently [LP16, TP20]. In this paper, we will work with the

same assumption as in [TP20] to analyze the convergence of our

algorithm.

Similar to ADMM, DR splitting also needs a large number of

iterations to converge to a solution of high accuracy [FZB19]. This

has motivated research works on acceleration techniques for DR

splitting, such as adaptive synchronization [BKW∗19] and momen-

tum acceleration [ZUMJ19]. Anderson acceleration and similar

adaptive acceleration strategies have also been used to accelerate

DR splitting [FZB19, PL19]. However, these works consider convex

problems only, and their convergence proofs rely heavily on the

convexity. Thus they are not applicable to the nonconvex problems

considered in this paper.

The equivalence between ADMM and DR splitting is well known

for convex problems [Glo83]. Some existing methods utilize this

connection to accelerate ADMM [PJ16, PL19], but they are only

applicable to convex problems. Our method is based on the equiva-

lence between ADMM and DR splitting for nonconvex problems,

which has only been established very recently [BK15,YY16,TP20].

c© 2020 The Author(s)
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3. Algorithm

In this section, we first introduce the background for ADMM, DR

splitting, and Anderson acceleration. Then we discuss the equiva-

lence between ADMM and DR splitting on nonconvex problems,

and derive an Anderson acceleration technique for ADMM based

on its equivalent DR splitting form.

3.1. Preliminary

ADMM. In this paper, we focus on ADMM for the following

optimization problem with a separable target function:

min
x,z

f (x)+g(z) s.t. Ax−Bz = c, (5)

with the ADMM steps given by:

xk+1 = argmin
x

(

f (x)+
β

2
‖Ax−Bzk +yk − c‖2

)

, (6)

yk+1 = yk +Axk+1 −Bzk − c, (7)

zk+1 = argmin
z

(

g(z)+
β

2
‖Axk+1 −Bz+yk+1 − c‖2

)

, (8)

Throughout this paper, we assume that the solutions to sub-

problems (6) and (8) always exist. Note that for each sub-problem,

it is possible that there exist multiple solutions. Like [ZPOD19], we

assume that the solver for each sub-problem is deterministic and

always returns the same solution if given the same input, so that

the operator argmin is single-valued. Although the order of steps

here appears different from the standard scheme in Eqs. (3)–(4),

they are actually equivalent since they have the same relative order

between the steps. We adopt this notation instead of the standard

scheme, because it facilitates our discussion about the equivalence

with DR splitting. A commonly used convergence criterion for

ADMM is that both the primal residual rk
p and the dual residual rk

d
vanish [BPC∗11]:

rk
p = Axk −Bzk−1 − c, rk

d = βBT A(xk −xk−1). (9)

The primal and dual residuals measure the violation of the linear side

constraint and the dual feasibility condition of problem (5), respec-

tively [BPC∗11]. An alternative criterion is a vanishing combined

residual [GOSB14]:

rk
c = β‖Axk −Bzk−1 − c‖2 +β‖A(xk −xk−1)‖2, (10)

which is a sufficient condition for vanishing primal and dual residu-

als. Moreover, the combined residual decreases monotonically for

convex problems [GOSB14].

DR splitting. DR splitting has been used to solve optimization

problems of the following form:

min
u

ϕ1(u)+ϕ2(u), (11)

with an iteration scheme:

sk+1 = sk +vk −uk, (12)

uk+1 = proxγϕ1
(sk+1), (13)

vk+1 = proxγϕ2
(2uk+1 − sk+1), (14)

where γ ∈ R+ is a constant and proxh denotes the proximal mapping

of function h, i.e.,

proxh(x) := argmin
y∈Rn

(

h(y)+
1

2
‖x−y‖2

)

. (15)

Similar to our treatment of ADMM, we assume that there always

exists a solution to the minimization problem above, and its solver

always return the same result if given the same input, so that the

proximal operator is single-valued. Although DR splitting has been

primarily used on convex optimization, recent results show that it is

also effective for noncovex problems [LP16]. Later in Section 3.2,

we will show that the ADMM steps (6)–(8) are equivalent to the DR

splitting scheme (12)–(14) for two functions ϕ1,ϕ2 derived from the

target function and the linear constraint in Eq. (5).

Anderson Acceleration. Given a fixed-point iteration

xk+1 =G(xk),

Anderson acceleration [And65, WN11] aims at speeding up its

convergence to a fixed point where the residual

F(x) =G(x)−x

vanishes. Its main idea is to use the residuals of the latest step xk

and its previous m steps xk−1, ...,xk−m to find a new step xAA
k+1

with

a small residual. This is achieved via an affine combination of the

images of xk,xk−1, ...,xk−m under the fixed-point mapping G:

xk+1 =G(xk)−
m
∑

j=1

θ∗j
(

G(xk− j+1)−G(xk− j)
)

,

where the coefficients are found by solving a least-squares problem:

(θ∗1, . . . , θ
∗
m) = argmin

θ1,...,θm

∥

∥

∥

∥

∥

∥

∥

∥

F(xk)−
m
∑

j=1

θ j

(

F(xk− j+1)−F(xk− j)
)

∥

∥

∥

∥

∥

∥

∥

∥

2

.

3.2. Anderson Acceleration Based on DR Splitting

The derivation of our acceleration method relies on the equivalence

between ADMM and DR splitting from [TP20], which we will

review in the following. To facilitate the presentation, we first

introduce a notation from [TP20]:

Definition 3.1. Given f : Rn→ R∪{+∞} and A ∈ Rp×n, the image

function fA : Rp→ [−∞,+∞] is defined as

fA(x) =















infy{ f (y) | A(y) = x} if x is in the range of A,

+∞ otherwise.

Note that we adopt a different symbol for image function than the

one used in [TP20] to improve readability. The equivalence between

ADMM and DR splitting is given as follows:

Proposition 3.2. ([TP20, Theorem 5.5]) Suppose (x,y,z) ∈ Rm ×
R

n ×Rp, and let (x+,y+,z+) be generated by the ADMM iteration

(6)–(8) from (x,y,z). Define



























s = Ax−y

u = Ax

v = Bz+ c

,



























s+ = Ax+ −y+

u+ = Ax+

v+ = Bz+ + c

. (16)
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Then we have:

s+ = s+v−u, (17)

u+ = proxγϕ1
(s+), (18)

v+ = proxγϕ2
(2u+ − s+), (19)

where γ = 1/β, and

ϕ1(u) = fA(u), ϕ2(u) = gB(u− c). (20)

Proposition 3.2 shows that for the optimization problem (5), we

can find the functions ϕ1 and ϕ2 in the problem (11) such that the

DR splitting steps (12)–(14) are related to the ADMM steps (6)–(8)

via the transformation defined in Eq. (16).

According to the DR splitting steps (13) and (14), both uk and

vk are functions of sk. Then the step (12) indicates that sk+1 can be

written as a function of sk only:

sk+1 = G(sk) :=
1

2

(

(2proxγϕ2
− I)◦ (2proxγϕ1

− I)+ I
)

(sk), (21)

where I denote the identity operator. In other words, the DR splitting

steps can be considered as a fixed-point iteration of s, which is a

transformation of the variables x and y for its equivalent ADMM

solver. Therefore, we can apply Anderson acceleration to the s

variable in DR splitting to speed up the convergence. One tempting

approach is to compute the value of s according to Eq. (16) after

each ADMM iteration and apply Anderson acceleration. This would

not work in general, however, because from an accelerated value of

s we cannot recover the values of x and y to carry on the subsequent

ADMM steps. Instead, we perform Anderson acceleration on DR

splitting, and derive the ADMM solution x,y,z based on the final

values of the DR splitting variables s,u,v. To implement this idea,

we still need to resolve a few problems. First, we need to determine

the specific forms of the proximal operators proxγϕ1
and proxγϕ1

used in DR splitting. Second, similar to [ZPOD19], we need to

define criteria for the acceptance of an accelerated iterate, to improve

the stability of Anderson acceleration. Finally, we need to find a

way to recover the ADMM variables x,y,z after the termination of

DR splitting. These problems will be discussed in the following.

3.2.1. Proximal Operators for γϕ1 and γϕ2

In general, given the functions f and g from the optimization

problem (5), it is difficult to find an explicit formula for the image

functions ϕ1 and ϕ2 given in Eq. (20). On the other hand, the

proximal operators proxγϕ1
and proxγϕ2

have rather simple forms,

as we will show below. Here and in the remaining parts of the paper,

we will make frequent use of the following proposition from [TP20]:

Proposition 3.3. ([TP20, Proposition 5.2]) Let f : Rn→ R∪{+∞}
and A ∈ Rp×n. Suppose that for some β > 0 the set-valued mapping

Xβ(s) := argmin
x∈Rn

{ f (x)+
β
2 ‖Ax− s‖2} is nonempty for all s ∈Rp. Then

(i) the image function fA is proper;

(ii) fA(Axβ) = f (xβ) for all s ∈ Rp and xβ ∈ Xβ(s);

(iii) prox fA/β
= AXβ.

Then from Proposition 3.3, it is easy to derive the following:

Proposition 3.4. The proximal operators proxγϕ1
,proxγϕ2

defined

in Eqs. (18) and (19) can be evaluated as follows:

proxγϕ1
(s) = Ax̄, proxγϕ2

(2u− s) = Bz+ c, (22)

where

x̄ = argmin
x

(

f (x)+
1

2γ
‖Ax− s‖2

)

, (23)

z̄ = argmin
z

(

g(z)+
1

2γ
‖Bz+ c− (2u− s)‖2

)

. (24)

3.2.2. Criteria for Accepting Accelerated Iterate

Classical Anderson acceleration can be unstable with slow conver-

gence or stagnate at a wrong solution [WN11, PE13, PDZ∗18b]. To

improve stability, in [ZPOD19] an accelerated iterate is accepted

only if it decreases a certain quantity that will converge to zero

with effective iterations, such as the combined residual. Adopting

a similar approach, we define a merit function ψ whose decrease

indicates the effectiveness of an iteration. At the k-th iteration, we

evaluate the un-accelerated iterate G(sk−1) as well as the accelerated

iterate sAA, and evaluate the decrease of the merit function from

sk−1 to sAA:

d = ψ(sAA)−ψ(sk−1).

We choose sAA as the new iterate if d meets a certain criterion, and

revert to the un-accelerated iterate G(sk−1) otherwise.

One choice of the merit function is

ψP(s) := ‖v(s)−u(s)‖, (25)

where u(s) and v(s) denote the u and v values produced by the DR

splitting steps (13) and (14) from s, i.e.,

u(s) = proxγϕ1
(s), v(s) = proxγϕ2

(2u(s)− s). (26)

Note that according to Eq. (12), v(s)− u(s) measures the change

in variable s between two consecutive iterations. Therefore, if s

converges to a value s∗, then ψP(s) must converge to zero. Moreover,

Proposition 3.2 indicates that ‖v − u‖ = ‖Ax −Bz − c‖, which is

the norm of the primal residual for the equivalent ADMM prob-

lem (5) [BPC∗11]. We call ψP(s) the primal residual norm, and

accept an accelerated iterate if its primal residual norm is no larger

than the previous iterate. Thus the decrease criterion is:

d ≤ 0. (27)

An alternative merit function is the DR envelope:

ψE(s) :=min
w

(

ϕ1(u(s))+ϕ2(w)+〈∇ϕ1(u(s)),w−u(s)〉+ 1

2γ
‖w−u(s)‖2

)

,

(28)

where u(s) is defined in Eq. (26). It is shown in [TP20, Theorem 4.1]

that ψE(s) decreases monotonically during DR splitting iterations

under the following assumptions:

(A.1) ϕ1 is L-smooth, σ-hypoconvex with σ ∈ [−L,L].

(A.2) ϕ2 is lower semicontinuous and proper.

(A.3) Problem (11) has a solution.

Here a function F is said to be L-smooth if it is differentiable and

‖∇F(x)−∇F(y)‖ ≤ L‖x−y‖2 ∀x,y. F is said to be σ-hypoconvex if

it is differentiable and 〈∇F(x)−∇F(y),x−y〉 ≥ σ‖x−y‖2 ∀x,y. F

is said to be lower semicontinuous if liminf
x→x0

F(x) ≥ F(x0) ∀x0. F is

said to be proper if F(x) > −∞ ∀x and F . +∞. Under Assumptions

(A.1)–(A.3), the DR envelope has a more simple form:

c© 2020 The Author(s)
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Proposition 3.5. If Assumptions (A.1)–(A.3) hold, then

ψE(s) = f (x̄)+g(z̄)+
1

γ
〈s−u(s),v(s)−u(s)〉+ 1

2γ
‖v(s)−u(s)‖2,

(29)

where x̄, z̄ are defined in (23) and (24) respectively, and u(s),v(s)

are defined in (26).

A proof is given in Appendix B. Note that the values x̄, z̄,u(s),v(s)

are already evaluated during the DR splitting iteration. Therefore, the

actual cost for computing ψE(s) is the evaluation of functions f and

g as well as two inner products, which only incurs a small overhead

in many cases. Using the DR envelope as the merit function, we

can enforce a more sophisticated decrease criterion that provides a

stronger guarantee of convergence. Specifically, we require that sAA

decreases the DR envelope sufficiently compared to sk−1:

d ≤ −ν1‖G(sk−1)− sk−1‖2 − ν2‖sAA − sk−1‖2, (30)

where ν1, ν2 are nonnegative constants. The convergence of our

solver using such acceptance criterion is discussed in Theorems 4.4

and 4.6 in Section 4.

In this paper, unless stated otherwise, we use the DR envelope as

the merit function to benefit from its convergence guarantee if the

optimization problem satisfies the conditions given Theorems 4.4 or

4.6, and use the primal residual norm otherwise as it is an effective

heuristic with lower overhead according to our experiments.

3.2.3. Recovery of x,y,z

After the variable s converges to a fixed point s∗ for the mapping G,

it is easy to recover the corresponding stationary point (x∗,y∗,z∗)
for the ADMM problem. Before presenting the method, we first

introduce the definition for the stationary points.

Definition 3.6. (x∗,y∗,z∗) is said to be a stationary point of (5) if

Ax∗ −Bz∗ = c, −βAT y∗ ∈ ∂ f (x∗), βBT y∗ ∈ ∂g(z∗),

where ∂ f and ∂g denote the generalized subdifferentials of f and

g [RW09, Definition 8.3], respectively. Our method for recovering

(x∗,y∗,z∗) is based on the following:

Proposition 3.7. Let s∗ be a fixed point of G. Define

x∗ = argmin
x

(

f (x)+
1

2γ
‖Ax− s∗‖2

)

u∗ = Ax∗,

y∗ = u∗ − s∗,

z∗ = argmin
z

(

g(z)+
1

2γ
‖Bz+ c− (2u∗ − s∗)‖2

)

.

Then (x∗,y∗,z∗) is a stationary point of the problem (5).

A proof is given in Appendix C. Note that the evaluation of x∗,z∗

has the same form as the intermediate values x̄, z̄ in Proposition 3.4

for evaluating the proximal operators in DR splitting. Therefore,

during the DR splitting, we store the values of x̄ and z̄ when

evaluating the proximal operators. When the variable s converges,

we simply return the latest values of x̄, z̄ as the solution to the

ADMM problem. Algorithm 1 summarizes our acceleration method.

Algorithm 1: Anderson Acceleration for ADMM based on

DR splitting.

Data: x0,y0,z0: initial values;

m ∈ N: number of previous iterates used for acceleration;

kmax : maximum number of iterations;

ε: convergence threshold.

1 xdefault = x0; zdefault = z0;

2 s0 = Ax0 −y0; u0 = v0 = 0; sdefault = s0;

3 k = 0; ψprev = r = +∞; reset = TRUE;

4 while TRUE do

// Perform one iteartion of DR splitting to

evaluate merit function for sk

5 x̄ = argminx

(

f (x)+ 1
2γ ‖Ax− sk‖2

)

;

6 ū = Ax̄;

7 z̄ = argminz

(

g(z)+ 1
2γ ‖Bz+ c− (2ū− s̄)‖2

)

;

8 v̄ = Bz̄+ c;

9 Compute ψ using Eq. (25) (or Eq. (28));

10 d = ψ−ψprev;

// Acceptance check for sk

11 if reset == TRUE OR d satisfies condition (27) (or (30))

then

// Record the accepted iterate

12 xk = xdefault = x̄; zk = zdefault = z̄; uk = udefault = ū;

13 vk = vdefault = v̄; sdefault = sk;

14 ψprev = ψ; reset = FALSE;

// Compute accelerated iterate

15 gk = sk + v̄− ū; fk = gk − sk; r = ‖fk‖; m̄ =min(m,k);

16 (θ∗
1
, . . . , θ∗m̄) = argmin

θ1,...,θm̄

∥

∥

∥

∥

fk −
∑m̄

j=1
θ j(fk− j+1 − fk− j)

∥

∥

∥

∥

2
;

17 sAA = gk −
∑m̄

j=1
θ∗

j
(gk− j+1 −gk− j);

// Use sAA for next acceptance check

18 sk+1 = sAA; k = k+1;

19 else

// Revert to last accepted iterate

20 sk = sdefault; uk = udefault; vk = vdefault;

21 xk = xdefault; zk = zdefault; reset = TRUE;

22 end if

// Check convergence

23 if k ≥ kmax OR r < ε then

24 return xdefault, zdefault;

25 end if

26 end while

3.3. Discussion

3.3.1. Choice of Parameter m

As pointed out in [FS09], Anderson acceleration can be considered

as a quasi-Newton method to find the root of the residual function,

utilizing the m previous iterates to approximate the inverse Jaco-

bian. Similar to other Anderson acceleration based methods such

as [HS16, PDZ∗18b, ZPOD19], we observe that a larger m leads to

more reduction in the number of iterations required for convergence,

but also increases the overhead per iteration. We empirically set

m = 6 in all our experiments.
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3.3.2. Comparison with [ZPOD19]

[ZPOD19] also proposed an Anderson acceleration approach for

ADMM. In the general case, they treat the ADMM iteration (6)–(8)

as a fixed-point iteration of (x,y). In comparison, Proposition 3.2

shows that our approach is based on a fixed-point iteration of

s = Ax− y, with a dimensionality up to 50% lower than (x,y). A

main computational overhead for Anderson acceleration is 2m inner

products between vectors with the same dimensionality as the fixed-

point iteration variables [PDZ∗18a]. Therefore, our approach incurs

a lower overhead per iteration. The lower dimensionality of our

formulation also indicates that it describes the inherent structure of

ADMM in a more essential way. And we observe in experiments

that such lower-dimensional representation can be more effective in

reducing the number of iterations required for convergence. Together

with the lower overhead per iteration, this often leads to faster

convergence than the general approach from [ZPOD19].

It is also shown in [ZPOD19] that if there is a special structure in

the problem (5), ADMM can be represented as a fixed-point iteration

of x or y alone, which would have the same dimensionality as the

fixed-point mapping we use in this paper. In this case, besides the

general approach mentioned in the previous paragraph, Anderson

acceleration can also be applied to x or y alone, often with similar

performance to our approach. However, this formulation requires

one of the two target function terms in (5) to be a strongly convex

quadratic function, which is a strong assumption that limits its

applicability. In comparison, our method imposes no special require-

ments on functions f and g, making it a more versatile approach for

effective acceleration.

4. Convergence Analysis

If we utilize the DR envelope as the merit function in Algorithm 1,

and use condition (30) to determine acceptance for an accelerated

iterate, then it can be shown that Algorithm 1 converges to a

stationary point to the optimization problem. In the following, we

will discuss the conditions for such convergence. Unless stated

otherwise, we assume that all the functions are lower semicontinuous

and proper. In contrast to Section 3, we will write ∈ instead of = for

the evaluation of proximal mappings and minimization subproblems,

to indicate that our results are still applicable when these operators

are multi-valued. We first introduce some definitions:

Definition 4.1. A point s∗ is said to be a fixed point of the mapping

G if s∗ ∈ G(s∗).
Definition 4.2. A point u∗ is said to be a stationary point of (11) if

0 ∈ ∂ϕ1(u∗)+∂ϕ2(u∗).

Definition 4.3. A function F is said to be level-bounded if the set

{x : F(x) ≤ α} is bounded for any α ∈ R.

Our first convergence result requires the following assumptions:

(B.1) The constants ν1, ν2 in condition (30) satisfy ν1 > 0, ν2 ≥ 0.

(B.2) ϕ1 +ϕ2 is level-bounded.

(B.3) The constant γ = 1/β satisfies γ < min{ 1
2max{−σ,0} ,

1
L }, where

L and σ are defined in Assumption (A.1).

(B.4) The function g(z) := g(z)+
β
2 ‖Bz+ c− s‖2 is level-bounded

and bounded from below for any given s.

Our first convergence result is then given as follows:

Theorem 4.4. Suppose Assumptions (A.1)–(A.3) and (B.1)–(B.3)

hold. Let {(sk,uk,vk)} be the sequence generated by Algorithm 1

using Eq. (30) as the acceptance condition. Then

(a) {ψE(sk)} is monotonically decreasing and ‖vk −uk‖ → 0.

(b) The sequence (sk,uk,vk) is bounded. If any subsequence {ski
}

converges to a point s∗, then s∗ is a fixed point of G and

u∗ = proxγϕ1
(s∗) is a stationary point of (11). Moreover, such

a convergent subsequence must exist.

(c) Suppose Assumption (B.4) is also satisfied. For any convergent

subsequence {ski
} in (b), let {zki

} be the corresponding subse-

quence generated by Algorithm 1, i.e.,

zki
∈ argmin

z

(

g(z)+
1

2γ

∥

∥

∥Bz+ c− (2u(ski
)− ski

)
∥

∥

∥

2 )

.

Then {zki
} is bounded. Let z∗ be a cluster point of {zki

}, and define

x∗ ∈ argmin
x

f (x)+
β

2
‖Ax− s∗‖2, y∗ = u∗ − s∗.

Then (x∗,y∗,z∗) is a stationary point of (5).

A proof is given in Appendix D.

Remark 4.5. Given a fixed point s∗ of G, we can also compute a

stationary point (5) without the assumptions used in Theorem 4.4.

The reader is referred to Appendix E for further discussion.

Theorem 4.4 shows the subsequence convergence of {(sk,uk,vk)}
to a value corresponding to a stationary point. Next, we consider the

global convergence of the whole sequence. We define

Dγ(s,u,v) = ϕ1(u)+ϕ2(v)+
1

γ
〈s−u,v−u〉+ 1

2γ
‖v−u‖2.

Our global convergence results rely on the following assumptions:

(C.1) The constants ν1, ν2 used in condition (30) are positive.

(C.2) FunctionDγ is sub-analytic.

The definition of a sub-analytic function can be found in [XY13].

Then we can show the following:

Theorem 4.6. Suppose assumptions (A.1)–(A.3), (B.1)–(B.3) and

(C.1)–(C.2) hold. Let {(sk,uk,vk)} be the sequence generated by

Algorithm 1 using Eq. (30) as the acceptance condition. Then

{(sk,uk,vk)} converges to (s∗,u∗,v∗), where s∗ is a fixed-point of

G, and v∗ = u∗ = proxγϕ1
(s∗).

A proof is given in Appendix F.

Remark 4.7. A sufficient condition for Assumption (C.2) is that

f and g are both semi-algebraic functions. In this case, ϕ1 and ϕ2

will both be semi-algebraic [TP20], thusDγ is also semi-algebraic.

Since a semi-algebraic function is also sub-analytic [XY13],Dγ will

be a sub-analytic function. As noted in [ZPOD19], a large variety of

functions used in computer graphics are semi-algebraic. Interested

readers are referred to [ZPOD19] and [LP15] for further discussion.

Remark 4.8. If the functions f and g satisfy some further condi-

tions, it can be shown that the convergence rate of (sk,uk,vk) is

r-linear. The discussion relies on the KL property [ABS13] and is

rather technical, so we leave it to Appendix F.

Remark 4.9. Assumption (A.1) requires the function f in (5)

to be globally Lipschitz differentiable. When f is only locally

Lipschitz differentiable, it is still possible to prove the convergence

of Algorithm 1. One such example is given in Appendix (I).
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4.1. Assumptions on f and g

Assumptions (A.1), (A.2) and (B.2) impose conditions on the func-

tions ϕ1 and ϕ2 in (11). As there is no closed-form expression for

ϕ1 and ϕ2 in general, these conditions can be difficult to verify. For

practical purposes, we provide some conditions on the functions f

and g that can ensure Assumptions (A.1), (A.2) and (B.2). These

conditions are based on the results in [TP20, Section 5.4].

Proposition 4.10. Suppose the problem (5) and the ADMM sub-

problems in (6) and (8) have a solution. Then the following condi-

tions are sufficient for Assumptions (A.1), (A.2) and (B.2):

(D.1) f and g are proper and lower semicontinuous.

(D.2) One of the functions f and g is level-bounded, and the other

is bounded from below.

(D.3) A is surjective.

(D.4) f satisfies one of the following conditions:

1. f is Lipschitz differentiable, and argminx{ f (x) | Ax = s} is

single-valued and Lipschitz continuous;

2. f is Lipschitz differentiable and convex;

3. f is differentiable, and ‖∇ f (x)−∇ f (y)‖ ≤ L‖A(x− y)‖2 for

any x,y if ∇ f (x) and ∇ f (y) are in the range of AT .

(D.5) The function Z(s) := argminz {g(z) | Bz+ c = s} is locally

bounded on the set S = {Bz+ c | g(z) < +∞}, i.e., for any s ∈ S
there exists a neighborhood O such thatZ is bounded on O.

A proof is given in Appendix G.

5. Numerical Experiments

We apply our method to a variety of problems to validate its

effectiveness, focusing mainly on nonconvex problems in com-

puter graphics. We describe each problem using the same variable

names as in (5), so that its ADMM solver can be described by the

steps (6)–(8). Different solvers are run using the same initialization.

For each problem, we compare the convergence speed between

the original ADMM solver, the accelerated solver (AA-ADMM)

proposed in [ZPOD19], and our method. For each method we plot

the combined residual (10) with respect to the iteration count and

the computational time respectively, where a faster decrease of

the combined residual indicates faster convergence. For ADMM

and AA-ADMM, the combined residual is evaluated according to

Eq. (10). For DR splitting, it can be evaluated using the values

of s,u,v without recovering their corresponding ADMM variables.

Using the notations and results from Proposition 3.2, we have

u+ −v = Ax+ −Bz− c, u+ −u = A(x+ −x).

Therefore, given an DR splitting iterate (sk,uk,vk), we evaluate the

combined residual rk
c by performing a partial iteration

s′ = sk +vk −uk, u′ = proxγϕ1
(s′)

and computing

rk
c =

1

γ

(

‖u′ −vk‖2 + ‖u′ −uk‖2
)

.

Similar to [ZPOD19], we normalize all combined residual values as

follows to factor out the influence from the dimensionality and the

value range of the variables:

R =

√

rc / (NA ·a2), (31)
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Figure 1: Comparison between ADMM, AA-ADMM, and our

method with different merit functions, using the ℓq-regularized lo-

gistic regression problem (32). The two variants of our method have

similar performance. Both accelerate the convergence of ADMM

and perform better than AA-ADMM.

where NA is the number of rows of matrix A, and a is a scalar

that indicates the typical range of variable values. For both AA-

ADMM and our method, we use m = 6 previous iterates for An-

derson acceleration. We adopt the implementation of Anderson

acceleration from [PDZ∗18a]†. All experiments are run on a desktop

PC with a hexa-core CPU at 3.7GHz and 16GB of RAM. The

source codes for the examples are available at https://github.

com/YuePengUSTC/AADR.

ℓq-Regularized Logistic Regression. First, we consider a

sparse logistic regression problem from the ADMM demo code

for [WYZ19]‡:

min
x,z

p ·λ ·Ω(z1)+
∑p

i=1
log(1+ exp(−bi(a

T
i w+ v))) s.t. x = z.

(32)

Here x = (w,v) are the parameters to be optimized, with w ∈ Rn and

v ∈ R. z = (z1,z2) is an auxiliary variable, with z1 ∈ Rn and z2 ∈ R.

{(ai,bi) | i = 1, . . . , p} is a set of input data pairs each consisting of a

feature vector ai ∈ Rn and a label bi ∈ {−1,1}. Ω(z1) =
∑n

i=1
|z1

i
|1/2

is an ℓq sparsity regularization term with q = 1
2 . To test the perfor-

mance, we use the data generator in the code to randomly generate

p = 1000 pairs of data with feature vector dimension n = 1000.

We test the problem with a weight parameter λ = 10−4 and a

penalty parameter β = 105. It can be verified that problem (32)

satisfy the assumptions for Theorem 4.6 (see Appendix H). Thus

we use the DR envelope as the merit function for Algorithm 1, with

parameter ν1 = ν2 = 10−3 for the acceptance condition (30). For

comparison, we also run the algorithm using the primal residual

norm as the merit function. We run AA-ADMM using the general

approach in [ZPOD19] that accelerates x and the dual variable y

simultaneously, since the problem does not meet their requirement

for reduced-variable acceleration. Fig. 1 shows the comparison

between the four solvers. We can see that both AA-ADMM and

our methods can accelerate the convergence, while our methods

achieve better performance thanks to the lower dimensionality of its

accelerated variables. In addition, there is no significant difference

between the performance of the two variants of our method, which

verifies the effectiveness of the primal residual norm as the merit

function despite its lack of convergence guarantee in theory.

† https://github.com/bldeng/AASolver
‡ https://github.com/shifwang/Nonconvex_ADMM_Demos
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Figure 2: Comparison using (33) for computing a frame in physical

simulation of a stretched elastic bar with 6171 vertices and 25000

tetrahedrons, using three types of hyperelastic energy and a high

stiffness parameter (‘rubber’ in the source code of [OBLN17]). The

normalized combined residual plots (the top two rows) show that

both variants of our method achieve similar acceleration results as

the reduced-variable scheme of AA-ADMM. All three approaches

perform better than the general scheme of AA-ADMM. The bot-

tom two rows plot the relative energy (35) and include a Newton

solver [SB12] and an L-BFGS solver for [LBK17] for comparison.

Physical Simulation. Next, we consider the ADMM solver used

in [OBLN17] for the following optimization for physical simulation:

min
x,z

f (x)+g(z) s.t. W(x−Dz) = 0, (33)

where z is the node positions to be optimized, x is an auxiliary

variable that represents the absolute or relative node positions for

the elements according to the selection matrix D, W is a diagonal

weight matrix, f is an elastic potential energy, and g is a quadratic

momentum energy. In Appendix I, we use the StVK model as an

example to prove the convergence of Algorithm 1 on problem (33).

AA-ADMM can be applied to this problem to accelerate the variable

x alone [ZPOD19], and we include both the general approach and

the reduced-variable approach for comparison. For our method,

we include the implementation using each merit function into the

comparison, and choose parameter ν1 = ν2 = 0 for the acceptance

condition (30). Fig. 2 shows the performance of the five solver
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Figure 3: Computation of compressed manifold basis via prob-

lem (36). Our method achieves similar reduction of iterations as AA-

ADMM, but outperforms AA-ADMM in computational time thanks

to its lower overhead.

variants on the simulation of a stretched hyperelastic bar with a

high stiffness parameter, using three types of hyperelastic energy.

We adapt the source codes from [OBLN17]§ and [ZPOD19]¶ for

the implementation of ADMM and AA-ADMM, respectively. The

normalized combined residual plots (the top two rows) show that

all accelerated variants achieve better performance than the ADMM

solver. Overall, the general AA-ADMM takes a long time than other

accelerated variants for full convergence, potentially due to the

larger number of variables involved in the fixed-point iteration and

the higher overhead they induce. For a more complete evaluation,

we also compare the solvers with a Newton method [SB12] and an

L-BFGS method [LBK17], neither of which suffers from slow final

convergence. Specifically, we use them to minimize the following

energy equivalent to the target function of (33):

F(z) = f (Dz)+g(z). (34)

In the bottom two rows of Fig. 2, we compare all methods by plotting

their relative energy

E = (F −F∗)/(F0 −F∗), (35)

with respect to the iteration count and computational time, where

F0 and F∗ are the initial value and the minimum of the energy F,

respectively. We can see that although the Newton method requires

the fewest iterations to convergence, it is one of the slowest methods

§ https://github.com/mattoverby/admm-elastic
¶ https://github.com/bldeng/AA-ADMM
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Figure 4: Comparison between ADMM and accelerated methods on a wire mesh optimization problem (38). The normalized combined

residual plots show faster convergence using the accelerated solvers and better performance with our method. The color-coding visualizes the

edge length error ξ defined in (39) on meshes computed by the three methods within the same computational time (see the bottom-right plot).

in terms of actual computational time, due to its high computational

cost per iteration. L-BFGS achieves the best performance in terms

of computational time, followed by the accelerated ADMM solvers.

Note, however, that classical Newton and L-BFGS are intended for

smooth unconstrained optimization problems, and they are often not

applicable if the problem is nonsmooth or constrained — the type

of problems that ADMM is popular for.

Geometry Processing. Nonconvex ADMM solvers have also been

used in geometry processing. In Fig. 3, we compare the performance

between different methods on the following optimization problem

from [NVT∗14] for compressed manifold modes on a triangle mesh

with N vertices:

min
X,Z

Tr((X1)T LX1)+µ‖X2‖1 + ι(Z) s.t. Z = X1,Z = X2, (36)

where Z ∈ RN×K denotes a set of basis functions to be optimized,

X1,X2 ∈ RN×K are auxiliary variables, L ∈ RN×N is a Laplacian

matrix, and ι is an indicator function of Z for enforcing the orthog-

onality condition if ZT DZ = I with respect to a mass matrix D.

We apply our method with the primal residual norm as the merit

function. We use the source code released by the authors‖ for the

ADMM solver, and modify it to implement AA-ADMM and our

method. We use the general approach of AA-ADMM that accelerates

X together with the dual variable, as the problem does not meet

the requirement for reduced-variable acceleration. Fig. 3 shows the

combined residual plots for the three methods on two models as well

as the parameter settings for each problem instance. Our method

achieves a similar effect in reducing the number of iterations as AA-

ADMM, but outperforms AA-ADMM in terms of computational

time thanks to its lower computational overhead.

We also apply our method to a problem proposed in [DBD∗15]

for optimizing the vertex positions x ∈ R3n of a mesh model subject

to a set of soft constraints Aix ∈ Ci (i ∈ S) and hard constraints

A jx ∈ C j ( j ∈ H), where matrices Ai and A j select the relevant

‖ https://github.com/tneumann/cmm

vertices for the constraints and compute their differential coordinates

where appropriate, and Ci and C j represent the feasible sets. This is

formulated in [DBD∗15] as the following optimization:

min
x,z

1

2
‖L(x− x̃)‖2 +

∑

i∈S

(

wi

2
‖Aix− zi‖2 +σCi

(zi)

)

+
∑

j∈H
σC j

(z j)

s.t. A jx− z j = 0 ∀ j ∈ H . (37)

where zi (i ∈ S) and z j ( j ∈ H) are auxiliary variables, σCi
and σC j

are indicator functions for the feasible sets, and wi are user-specified

weights. The first term of the target function is an optional Laplacian

smoothness energy, whereas the second term measures the violation

of the soft constraints using the squared Euclidean distance to the

feasible sets. This problem is solved using ADMM and AA-ADMM

in [ZPOD19]. However, since its target function is not separable, our

accelerated ADMM solver is not applicable. To apply our method,

we reformulate the problem as follows:

min
x,z

1

2
‖L(x− x̃)‖2 +

∑

i∈S

wi

2

(

DCi
(zi)

)2
+

∑

j∈H
σC j

(z j)

s.t. Aix = zi ∀i ∈ S, A jx = z j ∀ j ∈ H , (38)

where DCi
(·) denotes the Euclidean distance to Ci. This problem

has a separable target function, and we derive its ADMM solver

in Appendix A. We compare the performance of ADMM, AA-

ADMM and our method on problem (38) for wire mesh optimiza-

tion [GSD∗14]: we optimize a regular quad mesh subject to the

soft constraints that each vertex lies on a target shape, and the hard

constraints that (1) each edge has the same length l and (2) all angles

of each quad face are within the range [π/4,3π/4]. In Fig. 4, We

solve the problem on a mesh with 230K vertices, using L = 0, wi = 1,

and penalty parameter β = 10000. The combined residual plots show

that both AA-ADMM and our method and our method achieve faster

convergence than ADMM, with a slightly better performance from

our method. To illustrate the benefit of such acceleration, we take

the results generated by each method within the same computational

time, and use color-coding to visualize the edge-length error

ξ(e) = |e− l|/l (39)
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Random InitializationSegmentation ResultOriginal

Figure 5: Comparison on the image segmentation problem (40)

with a re-formulated binary constraint. Our method reduces the

iteration count and computational time required for convergence,

while AA-ADMM fails to achieve acceleration.

where e is the actual length for each edge. We can see that the

two accelerated solvers lead to notably smaller edge-length errors

than ADMM within the same computational time. The acceleration

brings significant savings in computational time needed for a high-

accuracy solution, which is required for the physical fabrication of

the design [GSD∗14].

Image Processing. In Fig. 5, we test our method on the non-

convex ADMM solver for the following image segmentation prob-

lem [WG19]:

min
x,z

xT Lx+dT x+ ι1(z1)+ ι2(z2) s.t. z1 = x, z2 = x, (40)

where x ∈ Rn represents the pixel-wise labels to be optimized, L is

a Laplacian matrix based on the similarity between adjacent pixels,

d is a unary cost vector, and z = (z1,z2) is an auxiliary variable

with z1,z2 ∈ Rn. ι1 and ι2 are indicator functions for the feasible

sets S1 = [0,1]n and S2 = {p ∈ Rn |∑n
i=1

(pi − 1
2 )2 = n

4 } respectively,

which together with the linear constraint between x and z induces a

binary constraint for the labels x. Fig. 5 uses the cameraman image

to compare ADMM, AA-ADMM, and our method with the primal

residual norm as the merit function, using the same random initializa-

tion. We use the python source code released by the authors∗∗ for the

ADMM implementation, and modify it to implement AA-ADMM

and our method. We use the general approach of AA-ADMM since

the problem does not meet the reduced-variable conditions. The

released code gradually changes the penalty parameter β, starting

with β = 5 and increasing it by 3% every five iterations until it

reaches the upper bound 1000. Since a different value of β will

lead to a different fixed-point iteration, for both AA-ADMM and our

method we reset the history of Anderon acceleration when β changes.

We observe an interesting behavior of the ADMM solver: initially it

maintains a relatively high value of the combined residual norm until

the variable z converges to its value z∗ in the solution; afterwards,

∗∗ https://github.com/wubaoyuan/Lpbox-ADMM
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Figure 6: Comparison on a convex problem (41) with λ = 2, for

computing local mesh deformation components from an input mesh

sequence and given weights. The methods are tested using two

mesh sequences constructed from the facial expression dataset

of [RBSB18], with 100 frames and 250 frames, respectively. We

set the penalty parameter to β = 10 for both problem instances. Our

method have similar acceleration performance as AA-ADMM in

reducing the number of iterations, and outperforms AA-ADMM in

actual computational time.

z remains close to z∗, and the ADMM iteration effectively reduces

to an affine transformation for the variables x and y with a rapid

decrease of the combined residual norm. In comparison, our method

shows more oscillation of the combined residual norm in the initial

stage but accelerates the convergence of z towards z∗, followed

by a similar rapid decrease of the combined residual norm, thus

outperforming ADMM in both iteration count and computational

time. On the other hand, AA-ADMM fails to achieve acceleration.

Convex Problems. Although our method is designed with non-

convex problems in mind, it can be naturally applied to convex

problems. In Fig. 6, we apply our method to the ADMM solver

in [NVW∗13] for computing mesh deformation components given a

mesh animation sequence and component weights:

argmin
X,Z

‖V−WZ‖2F +λ ·Ω1(X) s.t. X = Z, (41)

where matrix Z represents the deformation components to be op-

timized, V is the input mesh sequence, W represents the given

weights for the components, X is an auxiliary variable, and Ω1(X)

is a weighted ℓ1/ℓ2-norm to induce local support for the defor-

mation components. In Fig. 7, we accelerate the ADMM solver

in [HDN∗16] for image deconvolution:

argmin
x,z
‖x1 − f‖2 +λ ·Ω2(x2) s.t. Kz = x1, Gz = x2, (42)

where z represents the image to be recovered, x = (x1,x2) are

auxiliary variables, matrix K represents the convolution operator,

G is the image gradient matrix, and Ω2 is the ℓ1/ℓ2-norm for

regularizing the image gradients. Both problems (41) and (42) are

convex, and AA-ADMM can only be applied using the general

approach due to the problem structures. For both problems, we apply

c© 2020 The Author(s)
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Figure 7: Comparison on the convex problem (42) for image deconvolution. We choose λ = 400 in problem (42), and set the penalty parameter

to β = 100. ADMM and AA-ADMM have fairly similar performance. Both are outperformed by our method.

our method using the primal residual norm as the merit function. We

use the source codes released by the authors††‡‡ to implement the

ADMM solver and their accelerated versions. For both problems,

our method accelerates the convergence of ADMM and outperforms

AA-ADMM in the computational time.

Limitation. Similar to [ZPOD19], our method may not be effective

for ADMM solvers with very low computational cost per iteration.

Fig. 8 shows the performance of our method and AA-ADMM on the

ADMM solver from [TZD∗19] for recovering a geodesic distance

function on a mesh surface from a unit tangent vector field. The two

methods achieve almost the same effect in reducing the amount of

iterations required for convergence. Our method requires a shorter

computational time than AA-ADMM to achieve the same value of

combined residual, because we can only apply the general approach

of AA-ADMM to this problem and its overhead is higher than our

method. On the other hand, both approaches take a longer time than

the original ADMM solver to achieve convergence, because the very

low computational cost per iteration of the original solver means

high relative overhead for both acceleration techniques.

6. Concluding Remarks

In this paper, we propose an acceleration method for ADMM by

applying Anderson Acceleration on its equivalent DR splitting

formulation. Based on a fixed-point interpretation of DR splitting,

we accelerate one of its variables that is not explicitly available

in ADMM but can be derived from a linear transformation of

the ADMM variables. Our strategy consistently outperforms the

general Anderson acceleration approach in [ZPOD19] due to the

lower dimensionality of the accelerated variable. Compared to the

†† https://github.com/tneumann/splocs
‡‡ https://github.com/comp-imaging/ProxImaL
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Figure 8: Comparison on the ADMM solver in [TZD∗19] for recov-

ering geodesic distance on meshes. Both AA-ADMM and our method

can reduce the number of iterations required for convergence, but

their actual computational time is higher due to the very low

computational cost per iteration for the ADMM solver. Our method

takes a shorter time than AA-ADMM thanks to its lower overhead.

reduced-variable approach in [ZPOD19], our method has the same

dimensionality for the accelerated variable and achieves similar

performance, but imposes no special requirements on the problem

except for the separability of its target function. This makes our

approach applicable to a much wider range of problems. In addition,

we analyze the convergence of the proposed algorithm, and show

that it converges to a stationary point of the ADMM problem under

appropriate assumptions. Various ADMM solvers in computer graph-

ics and other domains have been tested to verify the effectiveness

and efficiency of our algorithm.

There are still some limitations for our approach. First, the

equivalence between ADMM and DR splitting relies on a separable

target function for the ADMM problem. As a result, our method is

not applicable to problems where the target function is not separable.

However, as far as we are aware of, the majority of ADMM problems

in computer graphics, computer vision, and image processing have

a separable target function. Moreover, as shown in the geometry

c© 2020 The Author(s)
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optimization example in Section 5, it is possible to reformulate the

problem to make the target function separable. Therefore, this issue

does not hinder the practical application of our method. Another

limitation is that there is no theoretical guarantee that the method can

always accelerate the convergence even locally. Recently, [EPRX20]

provide theoretical results showing that Anderson Acceleration can

improve the convergence rate, but their proofs require the original

iteration to be contractive or converge q-linearly. For nonconvex DR

splitting, to the best of our knowledge, local q-linear convergence

can only be shown in very special cases that is too restrictive

in practice. Further investigation of the theoretical property of

Anderson Acceleration and nonconvex DR splitting is needed to

provide a theoretical guarantee for acceleration.
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Appendix A: Derivation of ADMM for Problem (38)

In this section, we derive an ADMM solver for the geometry

optimization problem (38) using the scheme (6)–(8). We first write

the problem in matrix form as

min
x,z

1

2
‖L(x− x̃)‖2 +

∑

i∈S

wi

2

(

DCi
(zi)

)2
+

∑

j∈H
σC j

(z j)

s.t. Ax− z = 0,

where matrix A stacks all matrices {Ai | i ∈ S} and {A j | j ∈ H}. In

the following, y denotes the dual variable that consists of {yi | i ∈ S}
and {y j | j ∈ H} corresponding to the soft constraints S and hard

constraints H , respectively. We will use superscripts to indicate

iteration counts, to avoid conflict with subscripts that indicate the

constraints. Then the step (6) reduces to the problem

min
x

1

2
‖L(x− x̃)‖2 + β

2
‖Ax− zk +yk‖2, (43)

which can be solved via the linear system

(LT L+βAT A)xk+1 = LT Lx̃+βAT (zk −yk). (44)

The step (7) is simply written as

yk+1 = yk +Axk+1 − zk. (45)

The step (8) reduces to separable subproblems:

min
zi

wi

2

(

DCi
(zi)

)2
+
β

2
‖Aix

k+1 − zi +yk+1
i ‖

2 for i ∈ S, (46)

min
z j

σC j
(z j)+

β

2
‖A jx

k+1 − z j +yk+1
j ‖

2 for j ∈ H . (47)

The solution to (47) is

zk+1
j = PC j

(A jx
k+1 +yk+1

j ), (48)

where PC j
(·) is a projection operator onto the C j. The solution

to (46) is

zk+1
i =

wi ·PCi
(Aix

k+1 +yk+1
i

)+β · (Aix
k+1 +yk+1

i
)

wi +β
. (49)

Appendix B: Proof for Proposition 3.5

Proof. By Proposition 3.3 we have

u(s) = Ax̄ = proxγϕ1
(s).

doing a simple change of variables, similar result for v(s) can be

attained as

v(s) = Bz̄+ c = proxγϕ2
(2u(s)− s),

For the expression of DR envelope, we utilize the optimality condi-

tion of proxγϕ1

∇ϕ1(u(s))+
1

γ
(u(s)− s) = 0 ⇒ 2u(s)− s = u(s)−γ∇ϕ1(u(s)).

(50)

We then rewrite ψE as

ψE(s) =min
w

{

ϕ1(u(s))+ϕ2(w)+
1

2γ
‖w− (u(s)−γ∇ϕ1(u(s)))‖2

− 1

2γ
‖∇ϕ1(u(s))‖2

}

.

The definition of v(s) indicates that v(s) is the solution of minization

problem in the definition of ψE, so

ψE(s)

= ϕ1(u(s))+ϕ2(v(s))+ 〈∇ϕ1(u(s)),v(s)−u(s)〉+ 1

2γ
‖v(s)−u(s)‖2

= ϕ1(u(s))+ϕ2(v(s))+
1

γ
〈s−u(s),v(s)−u(s)〉+ 1

2γ
‖v(s)−u(s)‖2.

By Proposition 3.3 we have

ϕ1(u(s)) = f (x̄), ϕ2(v(s)) = g(z̄),

which completes the proof. �

Appendix C: Proof for Proposition 3.7

Proof. By the definition of s∗, we know that for v∗ = Bz∗+ c. The

definition of fixed-point indicates v∗ = u∗. Hence Ax∗ −Bz∗ − c =

0. We then utilize the definitions of x∗ and z∗ and the optimality

conditions of the associated minimization problems:

−1

γ
AT (Ax∗ − s∗) ∈ ∂ f (x∗),

−1

γ
BT (Bz∗ + c− (2u∗ − s∗)) ∈ ∂g(z∗).

We note that 1
γ = β, which means

−βAT y∗ =
1

γ
AT (u∗ − s∗) ∈ ∂ f (x∗),

βBT y∗ = −1

γ
BT (s∗ −u∗) ∈ ∂g(z∗).

This completes the proof. �

Appendix D: Proof for Theorem 4.4

Let us first prove two lemmata:

Lemma D.1. Assume that s∗ is a fixed point of G, ϕ1 is differ-

entiable, and proxγϕ1
is single-valued. Then u∗ = proxγϕ1

(s∗) is a

stationary point of (11).

Proof. By the definition of G

u∗ ∈ proxγϕ2
(2u∗ − s∗).

By the optimality condition of proxγϕ2

1

γ
(u∗ − s∗) ∈ ∂ϕ2(u∗).
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By the definition of u∗ and the optimality condition of proxγϕ1

0 = ∇ϕ1(u∗)+
1

γ
(u∗ − s∗),

which means 0 ∈ ∇ϕ1(u∗)+∂ϕ2(u∗). �

Lemma D.2. Let s∗ and u∗ be defined in Lemma D.1 and assume

the conditions in Lemma D.1 hold. Moreover, define

Zβ(s) = argmin
z∈Rn

(

g(z)+
β

2
‖Bz+ c− s‖2

)

.

If u∗ ∈ BZβ(2u∗ − s∗)+ c, and (x∗,y∗,z∗) satisfies

x∗ ∈ argmin
x

f (x)+
β

2
‖Ax− s∗‖2,

y∗ = u∗ − s∗,

u∗ = Bz∗ + c, z∗ ∈ Zβ(2u∗ − s∗),

then (x∗,y∗,z∗) is a stationary point of (5).

Proof. By Proposition 3.3 we have Ax∗ ∈ proxγϕ1
(s∗). Since

proxγϕ1
is single-valued we have u∗ = Ax∗. By (50)

1

γ
(s∗ −u∗) = ∇ϕ1(u∗).

By [TP20, Proposition 5.3] we have

AT∇ϕ1(u∗) = AT ∂̂ϕ1(u∗) ⊂ ∂̂ f (x∗),

where we have ∂̂ϕ1(u∗) = {∇ϕ1(u∗)} by [RW09, Exercis 8.8]. Notice

that β = 1
γ we then have

−βAT y∗ ∈ ∂̂ f (x∗) ⊂ ∂ f (x∗).

Similarly we have

βy∗ =
1

γ
(u∗ − s∗) ∈ ∂̂ϕ2(u∗).

By Proposition 3.3 and [RW09, Exercise 8.8]

βBT y∗ ∈ BT ∂̂ϕ2(u∗) ⊂ ∂̂g(z∗) ⊂ ∂g(z∗).

Finally, we have

Ax∗ = u∗ = Bz∗ + c ⇒ Ax∗ −Bz∗ − c = 0. �

Finally, we give the main proof for Theorem 4.4.

Proof. The proof here is similar to the proof for [TP20, Theorem

4.1]. Let η = min{ν1,
c

(1+γL)2 }, where c is the constant defined in

[TP20, Theorem 4.1], then by algorithmic construction we have

ψE(sk)−ψE(sk+1) ≥ η‖sk −G(sk)‖2 = η‖vk −uk‖2.

Due to the definition of ψE and the fact that ϕ1,ϕ2 are both proper,

we have ψE(s0) <∞. By Assumption (A.3) we know ϕ = ϕ1 +ϕ2 is

bounded from below and then by [TP20, Proposition 3.4] ψE is also

bounded from below. Hence

η

∞
∑

k=0

‖uk −vk‖2 <∞ ⇒ ‖uk −vk‖ → 0,

which proves (a). For (b) we first note that since γ < 1
L , by [TP20,

Theorem 3.1] ψE is level-bounded provided Assumption (B.2) holds.

So by (a) we know {sk} is bounded. Then by [TP20, Proposition

2.3] we know proxγϕ1
is Lipschitz continuous. Therefore {uk} is

also bounded. The boundedness of {vk} follows from ‖vk −uk‖ →
0. Therefore uki

→ u∗. Next, to prove that s∗ is a fixed-point of

G, it suffices to show u∗ ∈ proxγϕ2
(2u∗ − s∗). By the continuity of

proxγϕ1
we know uki

→ u∗. Then since ‖uk − vk‖ → 0, we also

have vki
→ u∗. Notice that vki

∈ proxγϕ2
(2uki

− ski
), by Assumption

(B.2) and [RW09, Theorem 1.25] we know that proxγϕ2
is outer

semicontinuous(osc), then by [RW09, Exercise 5.30]

u∗ = lim
i→∞

vki
⊂ limsup

i→∞
proxγϕ2

(2uki
− ski

) ⊂ proxγϕ2
(2u∗ − s∗),

which proves that s∗ is fixed-point of G. The stationarity of u∗

follows from Lemma D.1.

For (c), notice that if Assumption (B.3) holds, then Zβ is locally

bounded and osc by [RW09, Theorem 1.17]. Since zki
∈ Zγ(2uki

−
ski

) and 2uki
− ski
→ 2u∗ − s∗, {zki

} is bounded. So the cluster point

of {zki
}, z∗ must exists. Without loss of generality, we can assume

zki
→ z∗. By [RW09, Exercise 5.30]

z∗ = lim
i→∞

zki
⊂ limsup

i→∞
Zβ(2uki

− ski
) ⊂ Zβ(2u∗ − s∗)+ c.

Next, push to the limit on both sides of vki
= Bzki

+ c

v∗ = lim
i→∞

vki
= lim

i→∞
Bzki
+ c = Bz∗ + c.

The stationarity of (x∗,y∗,z∗) follows from Lemma D.2. �

Appendix E: Further Discussion for Generating the

Stationary Point of ADMM

For the most general case where proxγϕ1
and proxγϕ2

are both set-

valued, we need much more sophisticated techniques to generate

the stationary point of ADMM.

We note the definition of s∗ ∈ G(s∗) means there exist u∗ such

that u∗ ∈ proxγϕ1
(s∗) and u∗ ∈ proxγϕ2

(2u∗ − s∗). We assume u∗ is

known since u∗ is explicitly available from Algorithm 1. This is

because proximal mapping is outer semi-continuous, which means

if a subsequence ski
→ s∗, then it suffice to choose a cluster point

of {uki
} to generate such a u∗. Our goal is to generate the stationary

point of ADMM from (s∗,u∗).

We first need a technical lemma:

Lemma E.1. Let h : Rn→ R̄ and C ∈ Rp×n. Suppose for some β the

set-valued mapping Xβ(s) := argmin
x∈Rn

{h(x)+
β
2 ‖Cx−s‖2} is nonempty

for any s ∈ Rp. Let γ = 1/β and ϕ = hC. If u∗ ∈ proxγϕ(s∗) and

x∗ ∈ argmin
x∈Rn

{h(x)+
β

2
‖Cx− s∗‖2 + α

2
‖Cx−u∗‖2},

where α > 0. Then x∗ ∈ Xβ(s∗) and u∗ = Cx∗.

Proof. We first prove Cx∗ = u∗. Let u+ = Cx∗. By the definition of

x∗ we know ∀e ∈ ker(C), we have h(x∗) ≤ h(x∗ + e), which means
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ϕ(u+) = h(x∗). Then we have:

ϕ(u+)+
β

2
‖u+ − s∗‖2 + α

2
‖u+ −u∗‖2

= h(x∗)+
β

2
‖Cx∗ − s∗‖2 + α

2
‖Cx∗ −u∗‖2

= inf
u
{ inf
x:Cx=u

h(x)+
β

2
‖u− s∗‖2 + α

2
‖u−u∗‖2}

= inf
u
{ϕ(u)+

β

2
‖u− s∗‖2 + α

2
‖u−u∗‖2}.

But by the definition of u∗, we know

{u∗} = argmin
u
{ϕ(u)+

β

2
‖u− s∗‖2 + α

2
‖u−u∗‖2},

which means u+ = u∗ and hence demonstrates that u∗ = Cx∗. Now

assume that x∗ < Xβ(s∗), which means there exists another x+ such

that

h(x+)+
β

2
‖Cx+ − s∗‖2 < h(x∗)+

β

2
‖Cx∗ − s∗‖2.

However, we have

h(x∗)+
β

2
‖Cx∗ − s∗‖2 = ϕ(u∗)+

β

2
‖u∗ − s∗‖2,

≤ ϕ(Cx+)+
β

2
‖Cx+ − s∗‖2,

≤ h(x+)+
β

2
‖Cx+ − s∗‖2,

which yields contradiction. Hence x∗ ∈ Xβ(s∗). �

Then we are able to prove the general transition theorem:

Theorem E.1. Suppose s∗ is the fixed-point of G, and u∗ ∈
proxγϕ1

(s∗)∩proxγϕ2
(2u∗ − s∗). Define:

x∗ ∈ argmin
x

f (x)+
1

2γ
‖Ax− s∗‖2 + α

2
‖Ax−u∗‖2,

y∗ = s∗ −u∗

z∗ ∈ argmin
z

g(z)+
1

2γ
‖Bz+ c− (2u∗ − s∗)‖2 + α

2
‖Bz+ c−u∗‖2,

where α > 0, then (x∗,y∗,z∗) is a stationary point of (5).

Proof. Lemma E.1 means that

u∗ = Ax∗,u∗ = Bz∗ + c,

x∗ ∈ argmin
x

f (x)+
1

2γ
‖Ax− s∗‖2,

z∗ ∈ argmin
z

g(z)+
1

2γ
‖Bz+ c− (2u∗ − s∗)‖2.

Next, we utilize the optimality conditions of the proximity operator

proxγϕ1
(s∗)

1

γ
(s∗ −u∗) ∈ ∂̂ϕ1(u∗).

Then by [TP20, Proposition 5.3]

−βAT y∗ =
1

γ
AT (s∗ −u∗) ∈ ∂̂ f (x∗) ∈ ∂ f (x∗).

Similarly we have

βBT y∗ ∈ ∂g(z∗).

The last condition follows from u∗ = Ax∗ = Bz∗ + c. �

Appendix F: Proof for Theorem 4.6 and Remark 4.8

Our proof will utilize the Kurdyka-Łojasiewicz (KL) inequal-

ity [ABS13]. We will introduce several notations for the definition

of KL property. Let Cη be the set consisting of all the concave and

continuous function ρ : [0,η)→ R+ satisfying that

ρ ∈C1((0,η)), ρ(0) = 0, ρ′(x) > 0,∀x ∈ (0,η).

We also consider a subclass of Cη, called Łojasiewicz functions

L := {ρ : R+→ R+,∃ m > 0, θ ∈ [0,1) : ρ(x) = qx1−θ}.

Next we give the definition of the KL property:

Definition F.1. Let ψ be a proper, lower semicontinuous function.

We say that ψ has the KL property at x̄ ∈ dom∂ψ if there exists

η ∈ (0,∞], a neighborhood U of x̄, and a function ρ ∈ Cη such that

for all x ∈U∩{x ∈Rn : 0 < ψ(x)−ψ(x̄) < η} the KL-inequality holds,

i.e.,

ρ′(ψ(x)−ψ(x̄)) ·dist(0,∂ψ(x)) ≥ 1. (51)

If the mapping ρ can be chosen from L and satisfies ρ(x) = qx1−θ

for some q > 0 and θ ∈ [0,1), then we say that ψ has the KL-property

at x̄ with exponent θ.

It is known that a variety of functions, which contains the sub-

analytic function [ABS13], have the KL property. So we will directly

work with the KL property.

We note that by the definition ofDγ it is clear thatDγ(sk,uk,vk)=

ψE(sk).

Assume {sk,uk,vk} is generated by Algorithm 1, then we define

U to be the set consisting of all the cluster points of {sk,uk,vk}.
Several structural properties of U are listed in the next proposition.

Proposition F.2. Assume {sk,uk,vk} is bounded. Then

(a) U is nonempty and compact.

(b) dist((sk,uk,vk),U)→ 0.

(c) If the assumptions in Theorem 4.4 hold, thenDγ is constant and

finite onU.

Proof. For statement (a) and (b), see [BST14, Lemma 5(iii)]. For (c),

by Theorem 4.4 we can assume ψE(sk)→ l∗ where l∗ is finite. Now

assume (s∗,u∗,v∗) ∈ U, then the proof in Theorem 4.4 has already

shown that v∗ = u∗ ∈ proxγϕ2
(2u∗ − s∗). And we clearly have u∗ =

proxγϕ1
(s∗) by the continuity of proxγϕ1

. Hence Dγ(s∗,u∗,v∗) =
ψE(s∗). Notice that ψE is strictly continuous [TP20, Proposition 3.2],

so we have ψE(s∗) = l∗, which completes the proof. �

In the following we provide the main proof of global and r-linear

convergence stated in Theorem 4.6 and Remark 4.8.

Proof. These two conclusions trivially hold if Algorithm 1 ter-

minates after finite steps, so in the rest of the proof we assume

Algorithm 1 generates infintely many steps. Let δ,η be the constants
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appearing in the definition of KL property. Choose k′ sufficiently

large such that for any k ≥ k′ we have

dist((sk,uk,vk),U) < δ, 0 <Dγ(sk,uk,vk)−Dγ(s̄, ū, v̄) < η

where (s̄, ū, v̄) ∈ U. Such a k′ exists due to Proposition F.2. Define

δk = ρ(Dγ(sk,uk,vk)−Dγ(s̄, ū, v̄)). For k ≥ k′ we utilize the concav-

ity of ρ

δk −δk+1 ≥ ρ′(δk)(Dγ(sk,uk,vk)−Dγ(sk+1,uk+1,vk+1))

≥
Dγ(sk,uk,vk)−Dγ(sk+1,uk+1,vk+1)

dist(0,∂Dγ(sk,uk,vk))
. (52)

Next, we estimate dist(0,∂Dγ(sk,uk,vk)):

∇sDγ(sk,uk,vk) =
1

γ
(vk −uk),

∇uDγ(sk,uk,vk) = ∇ϕ1(uk)− 1

γ
(sk −uk)− 1

γ
(vk −uk)+

1

γ
(uk −vk),

=
2

γ
(uk −vk)

∂vDγ(sk,uk,vk) = ∂ϕ2(vk)+
1

γ
(sk −uk)+

1

γ
(vk −uk) ∋ 0,

where we have used (50) for the second equality and the optimality

condition of proxγϕ2
for the third equality. These means

dist(0,∂Dγ(sk,uk,vk)) ≤
√

5

γ
‖vk −uk‖. (53)

We now consider the next two cases

Case 1: sk+1 = sAA
k

then

Dγ(sk,uk,vk)−Dγ(sk+1,uk+1,vk+1) = ψE(sk)−ψE(sk+1)

≥ ν1‖vk −uk‖2 + ν2‖sk+1 − sk‖2.

Moreover, by Young’s inequality

2
√
ν1ν2‖sk+1 − sk‖ = 2

√
ν2‖sk+1 − sk‖√
‖vk −uk‖

√
ν1

√

‖vk −uk‖

≤ ν2‖sk+1 − sk‖2
‖vk −uk‖

+ ν1‖vk −uk‖.

Then by (52) and (53)

δk −δk+1 ≥
γ
√

5
(
ν2‖sk+1 − sk‖2
‖vk −uk‖

+ ν1‖vk −uk‖)

≥
2γ
√
ν1ν2√
5
‖sk+1 − sk‖.

Case 2: sk+1 =G(sk). Then sk+1 − sk = vk −uk and by [TP20, The-

orem 4.1]

Dγ(sk,uk,vk)−Dγ(sk+1,uk+1,vk+1) = ψE(sk)−ψE(sk+1)

≥ c

(1+γL)2
‖vk −uk‖2.

where c is the constant defined in [TP20, Theorem 4.1]. By (52)

and (53)

δk −δk+1 ≥
cγ

√
5(1+γL)2

‖sk+1 − sk‖.

Let ā =min{ 2γ
√
ν1ν2√
5

,
cγ√

5(1+γL)2
}, then we have

δk −δk+1 ≥ ā‖sk+1 − sk‖. (54)

Notice that δk is positive and monotone decreasing, summing (54)

from k′ to∞

δk′ ≥ ā

∞
∑

k=k′
‖sk+1 − sk‖. (55)

which means that {sk} is a Cauchy sequence and hence converges

to some point s∗. By the continuity of proxγϕ1
we know uk → u∗ =

proxγϕ1
(s∗). v∗ = u∗ follows from ‖vk−uk‖→ 0. u∗ is fixed-point of

G follows from Theorem 4.4. For Remark 4.8, we need the condition

that Dγ has the KL property at U with exponent θ ∈ (0, 1
2 ]. Now

assume ρ(x) = qx1−θ. By the definition of KL property (51) and (53)
√

5q(1− θ)
γ

‖vk −uk‖ ≥ q(1− θ)dist(0,∂Dγ(sk,uk,vk))

≥ (Dγ(sk,uk,vk)−Dγ(s̄, ū, v̄))θ.

Hence we have

δk = q(Dγ(sk,uk,vk)−Dγ(s̄, ū, v̄))1−θ ≤ q(

√
5q(1− θ)
γ

‖vk−uk‖)
1−θ
θ .

By elementary calculus, one can show that (

√
5q(1−θ)
γ ‖vk −uk‖)

1−θ
θ

is monotone increasing on θ ∈ (0, 1
2 ] provided that

√
5q‖vk−uk‖

γ < 1.

Since ‖vk −uk‖ → 0, we can assume that k′ is sufficiently large such

that for any k ≥ k′ we have

√
5q‖vk−uk‖

γ < 1. Then

δk ≤ a1‖vk −uk‖.
where a1 is some constant. Similar to the previous proof, we can

show

δk −δk+1 ≥ a2‖vk −uk‖. (56)

where a2 =

√
5
γ min{ν1,

c
(1+γL)2 }. Summing (56) from k′ to∞

δk′ ≥ a2

∞
∑

k=k′
‖vk −uk‖.

Therefore

a1‖vk′ −uk′‖ ≥ a2

∞
∑

k=k′
‖vk −uk‖.

Define Hk =
∞
∑

i=k
‖vi −ui‖ we have

a1(Hk′ −Hk′+1) ≥ a2Hk′ ⇒ Hk′+1 ≤
a1 −a2

a1
Hk′ .

Similarly, we can show for any l ≥ k′ we have

Hl+1 ≤
a1 −a2

a1
Hl,

which means that {Hk} converges q-linearly and since Hk ≥ ‖vk−uk‖
we get the r-linear convergence of ‖vk −uk‖. Then

a1‖vk −uk‖ ≥ δk ≥ ā

∞
∑

i=k

‖si+1 − si‖ ≥ ‖sk+1 − sk‖,
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which proves the r-linear convergence of {‖sk+1 − sk‖} and further

implies the r-linear convergence of {sk}. �

Appendix G: Proof for Proposition 4.10

Proof. The properness of ϕ2 are given in Proposition 3.3(i) since

we assume all the ADMM subproblems has solution. The lower

semicontinuity of ϕ2 are given by [TP20, Proposition 5.10] by

assuming (D.4). Hence assumption (A.2) is satisfied. Assumption

(A.1) comes from [TP20, Theorem 5.13] by assuming (D.2) and

(D.3). For Assumption (B.2), without loss of generality, we can

assume f is bounded from below and g is level-bounded. Then it is

clear that ϕ1 is bounded from below and ϕ2 is level-bounded, and

hence ϕ1 +ϕ2 is level-bounded. �

Appendix H: Verification of Assumptions for ℓq Regularized

Logistic Regression Problem

In this section we will verify Assumption (A.1) to (A.3), (B.2) and

(B.4), (C.2) for the ℓq regularized logistic regression problem. In

this problem, we have

f (x) =

p
∑

i=1

log(1+ exp(−bi(a
T
i w+ v))),g(z) = p ·λ ·

n
∑

i=1

|zi|q

where x = (w,v) ∈ Rn+1. For this problem matrices A and B are all

identity, so image functions have rather simple form, i.e., ϕ1 = f and

ϕ2 = g. It is well known that f is Lipschitz differentiable, so (A.1) is

satisfied. Moreover, g is continuous and hence lower semicontinuous,

so (A.2) is satisfied. To prove (A.3), since f + g is continuous, it

suffices to show (B.2) hold, because (A.1) then follows by [RW09,

Theorem 1.9]. For the level-boundedness of f +g, we have:

Proposition H.1. Assume bi are not all 1 or −1, then f +g is level-

bounded.

Proof. Without loss of generality, we can assume b1 = 1 and b2 =−1.

Let α ∈R, and S = {x ∈Rn+1 : f (x)+g(x)≤ α}. Since if α≤ 0, then it

is easy to show S is bounded, we assume α > 0 in the following. We

need to prove that S is bounded. Now suppose z = (z1, ...,zn+1) ∈ S ,

since f (z) ≥ 0, we have g(z) ≤ α. Then there exists some constant M

which only depends on α such that ‖w‖ ≤ M, where w = (z1, ...,zn).

Notice that g(z) ≥ 0 and ∀1 ≤ i ≤ p, log(1+exp(−bi(a
T
i

w+ zn+1))) ≥
0, we have

log(1+ exp(aT
1 w+ zn+1)) ≤ α,

log(1+ exp(−aT
2 w− zn+1)) ≤ α.

This means

exp(zn+1) ≤ (exp(α)−1)exp(−aT
1 w) ≤ (exp(α)−1)exp(M‖a1‖),

exp(−zn+1) ≤ (exp(α)−1)exp(aT
2 w) ≤ (exp(α)−1)exp(M‖a2‖),

which proves the boundedness of zn+1 and completes the proof. �

(B.4) comes from the fact that g is bounded from below and B = I.

For (C.2), first by [WCX18, Section 2.2], we know f (u)+ g(v) is

subanalytic. Moreover 1
γ 〈s−u,v−u〉+ 1

2γ ‖v−u‖2 is subanalytic and

maps bounded set to bounded set. HenceDγ is subanalytic as the

sum of these two functions by [XY13].

Appendix I: Convergence for Physical Simulation Problem

In this section, we analyze the convergence of Algorithm 1 on the

physical simulation problem (33). In some cases, Assumption (A.1)

would fail to hold. But since (A.1)–(A.3) are only used to prove

the decrease of DR envelope, we would show that DR envelope is

decreasing even if (A.1) is replaced by weaker assumption. Specifi-

cally, it is noted in [ZPOD19] that for physical simulation problem

(33), if g is set to be the hyperelastic energy of StVK material, then

g is only locally Lipschitz differentiable and hence doesn’t satisfy

(A.1). However, due to the monotone decreasing of DR envelope,

we can except that [TP20, Theorem 4.1] still holds in this case, so

that the convergence theorem in this paper remains valid.

In the following, we replace (A.1) by a weaker assumption:

(A.1)’ ϕ1 is Lipschitz differentiable on any bounded set.

Along with this assumption, we further assume:

(A.4) ϕ1 is level-bounded and ϕ2 ≥ 0.

To simplify the notation, we define:

Definition I.1. We define lev≤αϕ to be the set:

lev≤αϕ := {x ∈ Rn : ϕ(x) ≤ α}.

We need the next initial value assumption:

(A.5) Let Ax0 −Bz0 = c. y0 is chosen such that the augmented

Lagrangian function L(x0,z0,y0) = T0 := f (x0)+g(z0) <∞ and

L(x1,z1,y1) ≤ L(x0,z0,y0). Assume s0 = Ax1 −y1.

Moreover, we need γ to be sufficiently small as the next assumption

required:

(A.6) γ is sufficiently small such that c0 ≤ 1, where

c0 = sup
lev≤T0+1ϕ1

γ

2
‖∇ϕ1(x)‖2.

Here we note that such a γ must exist due to (A.4) and the fact that

T0 is independent of the choice of γ. In the following, we assume

L1 to be the Lipschitz modulus of ∇ϕ1 on the convexhull of the set

lev≤T0+1ϕ1.

Lemma I.2. Suppose that (A.5) holds. Then we have ψE(s0) ≤ T0.

Proof. Let u0 = proxγϕ1
(s0), then by the definition of DR envelope

and Proposition 3.2 we can obtain that:

ψE(s0) = L(x1,z1,y1) ≤ T0. �

Lemma I.3. Assume (A.1)’, (A.2)–(A.6) hold and γ < 1
L1

. If it holds

that

ϕ1(uk) ≤ T0 +1, ϕ1(uk+1) ≤ T0 +1,

then

‖uk+1−uk‖ ≤
1

1−γL1
‖sk+1− sk‖,‖uk+1−uk‖ ≥

1

1+γL1
‖sk+1− sk‖.

Proof. By the optimality condition of uk we know

γ∇ϕ1(uk)+uk = sk.
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Hence we can infer that

‖sk+1 − sk‖ ≥ ‖uk+1 −uk‖−γ‖∇ϕ1(uk+1)−∇ϕ1(uk)‖,
≥ (1−γL1)‖uk+1 −uk‖,

The proof for second part is similar. This completes the proof. �

Lemma I.4. Assume (A.1)’, (A.2)–(A.6) hold and γ is sufficiently

small. If for sk it holds that:

ψE(sk) ≤ T0, ϕ1(uk) ≤ T0 +1,

then the it also holds for sk+1.

Proof. Utilizing the definition of uk+1, we obtain that:

ϕ1(uk+1)+
1

2γ
‖uk+1 − sk+1‖2 ≤ ϕ1(uk)+

1

2γ
‖uk − sk+1‖2.

By the definition of sk+1 and (A.4) we have:

ϕ1(uk+1)+
1

2γ
‖uk+1 − sk+1‖2

≤ ϕ1(uk)+ϕ2(vk)+
1

2γ
‖vk − (2uk − sk)‖2,

= ψE(sk)+
1

2γ
‖sk −uk‖2,

= ψE(sk)+
γ

2
‖∇ϕ1(uk)‖2,

≤ ψE(sk)+ c0 ≤ ψE(sk)+1,

where we have used the definition of ψE for the first equation, the

optimality condition of uk for the second equation, the definition of

c0 for the second inequality. Hence we have proved that

ϕ1(uk+1) ≤ ψE(sk)+1 ≤ T0 +1.

For the estimation of ψE(sk+1), we have:

ψE(sk+1)

≤ ϕ1(uk+1)+ϕ2(vk)+ 〈∇ϕ1(uk+1),vk −uk+1〉+
1

2γ
‖vk −uk+1‖2,

where we have used the definition of DR envelope. We then utilize

the definition of L1 and [Nes18, Lemma 1.2.3] to obtain that

ϕ1(uk+1)+ 〈∇ϕ1(uk+1),uk −uk+1〉 ≤ ϕ1(uk)+
L1

2
‖uk+1 −uk‖2.

Moreover, we have:

1

2γ
‖vk −uk+1‖2

=
1

2γ
(‖vk −uk‖2 +2〈vk −uk,uk −uk+1〉+ ‖uk −uk+1‖2).

Combing all these three estimation together, we can obtain that:

ψE(sk+1) ≤ ψE(sk)− (
1

2γ
− L1

2
−γL2

1)‖uk+1 −uk‖2.

If 2γ2L2
1
+γL1 < 1, then we have:

ψE(sk+1) ≤ ψE(sk) ≤ T0 +1. �

By induction and Lemma I.4 we can prove the next theorem:

Theorem I.5. Assume (A.1)’, (A.2)–(A.6) hold and γ is sufficiently

small. Then we have:

ψE(sk+1) ≤ ψE(sk)−
(

(
1

2γ
− L1

2
−γL2

1)/(1+L1γ)

)

‖sk+1 − sk‖2.

Then all the convergence theorems in this paper can be stated

based on Theorem I.5. We now verify (A.1)’, (A.2)–(A.6) for the

physical simulation problem (33). In this case, ϕ1(x) = fA(x) =

f (W−1x). So for the case where f is the hyperelastic energy of StVK

material, then ϕ1 satisfies (A.1)’ because f satisfies (A.1)’. Notice

that g is bounded from below and level-bounded, so ϕ2 is lsc and

proper by [TP20, Theorem 5.11]. Moreover, it can be verified that

ϕ2 is also level-bounded. So (A.2) is satisfied. (A.3) comes from the

lower semi-continuity and level-boundedness of ϕ. (A.4) is trivial.

(A.5) holds for the choice in [ZPOD19, Assumption 3.5]. (A.6)

holds for for sufficiently small γ. Moreover, the aforementioned

analysis also shows that (B.2) and (B.4) hold. Finally, since f ,g are

polynomial and hence semi-algebraic, soDγ is also semi-algebraic,

and then (C.2) follows from Remark 4.7.
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