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The dynamic behavior of the class of periodic waveguides whose unit cells are generated through a quasicrys-
talline sequence can be interpreted geometrically in terms of a trace map that embodies the recursive rule
obeyed by traces of the transmission matrices. We introduce the concept of canonical quasicrystalline waveg-

uides, for which the orbits predicted by the trace map at specific frequencies, called canonical frequencies, are
periodic. In particular, there exists three families of canonical waveguides. The theory reveals that, for those:
(i) the frequency spectra are periodic and the periodicity depends on the canonical frequencies, (ii) a set of
multiple periodic orbits exists at frequencies that differ from the canonical ones, and (iii) perturbation of the
periodic orbit and linearization of the trace map define a scaling parameter, linked to the golden ratio, which
governs the self-similar structure of the spectra. The periodicity of the waveguide responses is experimentally
verified on finite specimens composed of selected canonical unit cells.

The band structure of phononic spectra of periodic me-
chanical metamaterials has been extensively investigated
in the last forty years1–4. Theoretical and experimental
studies have shown how to take advantage of its prop-
erties to control several dynamical phenomena such as
negative refraction of elastic waves5–7, topological edge
modes8–10, wave focusing11,12, mode conversion13 and
gap tunability14,15. Recently, these analyses have been
extended to inspect the dispersive properties of quasiperi-
odic and quasicrystalline phononic media16–19. These are
characterized by distinctive self-similarity features which
can be explored to extend the range of capabilities of
metamaterials. A powerful tool to examine the properties
of dynamic spectra of uniaxial quasicrystalline-generated
periodic waveguides is the trace map which defines, at
each frequency, a discrete orbit on the corresponding in-
variant surface20–25 . For the class of quasicrystalline se-
quences coinciding with the Fibonacci chain, we show
in this Letter that some configurations of the waveguide
allow the orbit to be periodic at some particular frequen-
cies and the periodicity is reflected on the whole spectra.
Moreover, additional periodic orbits exist at frequencies
where the invariant vanishes and the scaling of the self-
similar structure of the spectra in the neighborhood of
those frequencies can be quantitatively defined in terms
of the golden ratio by linearizing the trace map.
We investigate a set of infinite two-phase structured

rod whose elementary cells are generated by adopting
the standard Fibonacci sequence. This is a particular
case of the class of generalized Fibonacci sequences that
follow the recursion rule26 Fi = Fm

i−1Fi−2 (i ≥ 2), with
F0 = S, F1 = L setting the initial conditions in terms
of the two basic constituents L and S (the natural ex-
ponent m implies repetition of the base m times). All
waveguides designed from elements of this class share
the same properties that are therefore illustrated with

a)Corresponding author: geim@cardiff.ac.uk

reference to the standard sequence that corresponds to
m = 127. Figure 1 shows two configurations where the
lengths of the two segments L and S are indicated with lL
and lS , while αj and ρj (j ∈ {L, S}) denote axial stiffness
and mass density per unit length of each element, respec-
tively. For any cell Fi

28, the Floquet-Bloch dispersion di-
agram for axial waves is governed uniquely by the trace
of the transmission matrix Ti(ω), i.e. xi(ω) = tr Ti(ω),
through the equation K(ω) = arccos (xi(ω)/2)

29, where
K(ω), the dimensionless Bloch number, is a real quantity
if |xi(ω)| ≤ 230. Due to the unimodularity of Ti(ω), i.e.
detTi(ω) = 1, traces satisfy the recursive rule31

xi+1 = xi−1xi − xi−2 (i ≥ 2), (1)

with initial conditions given by

x0 = 2 cos(γSω), x1 = 2 cos(γLω),

x2 = 2 cos(γSω) cos(γLω)− β sin(γSω) sin(γLω). (2)

The impedance mismatch β corresponds to β = (α2
LQL+

α2
SQS)/(αSαL

√
QSQL), with Qj = ρj/αj and γj =

√

Qj lj . For β = 2 the waveguide behaves as a homo-
geneous medium.
A new set of variables x̃i = xi+2, ỹi = xi+1, z̃i = xi

may be defined singling out the triplet Ri = (x̃i, ỹi, z̃i).
Exploitation of (1) leads to the definition to the following
trace map T determining the evolution of Ri

Ri+1 = T (Ri) = (x̃iỹi − z̃i, x̃i, ỹi), (3)

segment S

segment L !S !L

elementary cell F3

elementary cell F4

!L

FIG. 1. Schematic of infinite quasicrystalline-generated canonical
waveguides; sequences F3 and F4 are displayed.
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through which it is shown that the quantity

I(ω) = x̃2
i+ỹ2i+z̃2i−x̃iỹiz̃i−4 = (β2−4) sin2(γSω) sin

2(γLω)
(4)

is an invariant. In the three-dimensional space spanned
by the orthogonal co-ordinate system Ox̃ỹz̃,

x̃2 + ỹ2 + z̃2 − x̃ỹz̃ − 4 = I(ω) (5)

represents the invariant surface which possesses six sad-
dle points Pk (k = 1, . . . , 6), opposite in pairs32,33. Points
Ri obtained by iterating map (3) are all confined on this
surface. Consequently, for any given frequency ω, all
points of the orbit generated through (3) can be mapped
onto the surface defined by eq. (5). According to the
property of T and to the initial point taken as its ar-
gument, orbits can be either p-point periodic or non-
periodic. In the former case, the discrete trajectory re-
peats itself after p applications of T , i.e. T p(Ri) = Ri.
A close inspection shows that saddle points Pk

34 are
all part of a 6-Point Periodic Orbit (PPO), namely
T 6(Pk) = Pk; therefore, the question naturally arises:
which type of elementary cell can be represented by such
a close orbit on the surface (5)? The answer is that at
a certain frequency, one of the following three conditions
must be satisfied:

(1) ỹ0 = z̃0 = 0, (2) x̃0 = z̃0 = 0, (3) x̃0 = ỹ0 = 0. (6)

These requirements can be observed only for a particular
set of configurations, called here the class of canonical

sequences, and at particular values of the frequency, de-
noted as canonical frequencies. The three conditions (6)
imply that two of the traces (2) vanish, and then, sub-
stituting them into (6), the following relationships are
derived

C(1) =
1 + 2j

1 + 2k
, C(2) =

1 + 2j

2q
, C(3) =

2q

1 + 2k
, (7)

respectively, where C = γS/γL and j, k, q ∈ N. The su-
perscript simply indicates the number of the condition
concerned in (6) that will define the corresponding r−th
family (r = 1, 2, 3) of canonical configurations. In for-
mulae (7), it is important to remark that indices j, k, q
are such that fractions on the right-hand sides are in
lowest terms. We note that family no. 1 encompasses
odd/odd ratios, while odd/even and even/odd ratios are
associated with families no. 2 and 3, respectively. The
canonical frequencies for each family can be written as

ω
(r)
cn = ω

(r)
c (1 + 2n) (n ∈ N), where

ω(1)
c = ω(3)

c =
π

2γL
(1 + 2k), ω(2)

c =
π

γL
q. (8)

All conditions (6) force the functions xi(ω) for canoni-
cal rods to be periodic, a property that leads to periodic
Stop– and Pass–Band (SPB) layouts. By defining as pe-
riod of traces the least frequency range [0, ωt] such that
xi(ωt) = 2, it turns out that ωt = 4ωc. However, as
Im(K) = 0 ⇔ |xi| ≤ 2, the period of both the frequency
spectra and the invariant I(ω) is 2ωc.
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FIG. 2. Stop– (white)/Pass– (blue) band (SPB) diagrams and
function I(ω) for the first eight sequences of three representative
canonical rods within the dimensionless period of traces [0, γLωt].
(a) SPB diagrams for C = 1 and (b) for C = 3, (c) functions
I(ω) for C = 1, 3, (d) SPB diagram and (e) function I(ω) for
C = 3/2. ωc and ωc1 denote canonical frequencies, highlighted
with red arrows. Frequencies at which periodic orbits occur are
indicated in (c) and (e).

The periodic SPB layout up to F8 and the plot
of I(ω) of three representative canonical waveguides
in the dimensionless range [0, γLωt], namely C(1) =
1, 3 and C(2) = 3/2, are reported in Fig. 2 where canon-
ical frequencies are indicated with red arrows. The SPB
spectra appear at a first glance periodic with a period of
ωt/2, however a close inspection of transformation (3),
performed in the ensuing paragraph, shows that the pe-
riod is still ωt and the diagrams are symmetric with re-
spect to ωt/2.

In addition to that singled out by the saddle points,
a variety of periodic orbits on the invariant surface are
present, located at frequencies ω̂ for which I(ω̂) = 0. To
help to illustrate some of the cases, in Fig. 3(a) the in-
variant surface (5) for I(ω̂) = 0 (C = 3) is sketched.
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FIG. 3. Plots of the invariant surface for C = 3 (a) for frequencies ω̂: a 4-PPO (ω = ωt/3) (green points), a 3-PPO (ω = ωt/2) (red
points) and a fixed point (ω = ωt) (black) are displayed; (b) for canonical frequencies ωcn where three points of the 6-PPO are displayed.
(c) Close-up view of the neighborhood of R0 of the 4-PPO shown in (a) where the corresponding points R̄0, R̄4, R̄8 at the perturbed
frequency ω̄ = ωt/3 + δω (with γLδω = 0.001) are reported. R̄4 and R̃8 are the predictions of the linearization of the trace map. g

represents the normalized unit eigenvector associated with the maximum eigenvalues κ.
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FIG. 4. Scaling of the self-similar structure of the SPB layout
about frequencies where periodic orbits take place. (a) Plot of
traces x11(ω) and x12(ω), scaled traces x5(κω) and x6(κω), and
local SPB layout in the neighbourhood of ωc for C = 1. (b) Plot of
trace x11(ω), scaled trace x5(κω) and local SPB layout for C = 3
in the neighbourhood of ωc.

Inspection of the expression of the invariant shows that
∀C a fixed point Ri = (2, 2, 2) (i.e. T (Ri) = Ri) exists at
ωt (black point in Fig. 3(a)) whereas a 3-PPO is achieved
at ωt/2 (the three points are marked in red in Fig. 3(a)).

Additional possibilities arise depending on C. As an ex-
ample, in Fig. 2(b)(d), a 4-PPO is detected at both ωt/3
and 2ωt/3 and two out of the four points of the orbit are
depicted in green in Fig. 3(a) for the former frequency.
Other cases displayed in Fig. 2 and a general method to
establish the existence of periodic orbits are described in
the Supplementary Material (SM).

The SPB diagram in the neighbourhood of a frequency
at which a periodic orbit takes place displays a self-
similar pattern controlled by a scaling factor that is re-
vealed by perturbing the corresponding periodic orbit
and linearizing map (3)32. An example of perturbation
is illustrated in Fig. 3(c) (C = 3), where the 4-PPO
at ωt/3 is slightly changed by studying the open trajec-
tory at ω̄ = ωt/3 + δω composed of points R̄i = Ri(ω̄),
with γLδω = 0.001. In summary (see SM), by denoting
δr i = R̄i − Ri, it turns out that δr i+pv ≈ κvξg (v ∈ N),
where κ is the maximum eigenvalue of the matrix gov-
erning the linearized problem and ξg is the component
of δr along the normalized eigenvector g associated with
κ25. The golden ratio φ is the key parameter for scaling
at ω̂ as κ corresponds to φ6, φ2, −φ4 for the 3-PPO, the
fixed point and the 4-PPO, respectively.

In Fig. 3(c), red points mark the exact position of

R̄0, R̄4, R̄8, while black points R̃0, R̃4, R̃8 represent the
corresponding placements provided by the linearization.
The former are, by construction, aligned and belong to
the tangent plane at R0, whose equation is z̃ = 2. In
particular, with δr̃0 = ξg , R̃0 = R0 + δr̃0, R̃4 = R0 −
φ4δr̃0, R̃8 = R0 + φ8δr̃0.

Fig. 4 illustrates some representative cases of scal-
ing of self-similar SPB diagrams in the neighbourhood
of frequencies where periodic orbits occur. Fig. 4(a) is
related to the canonical frequency γLωc = π/2 for C = 1,
where the orbit is composed of six points and the scaling
factor is κ = 41.038. It is shown that the scaled traces
x5(κω) and x6(κω) are almost coincident with x11(ω) and
x12(ω), respectively, and the corresponding scaled SPB
layouts match almost exactly. Similar observations ap-
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FIG. 5. Comparison between experimental measurements (red line) and analytical predictions (black line) for the transmissibility T of
finite canonical waveguides. The response of (a) three-cell F2, (b) three-cell F l

2, (c) three-cell F3 and (d) two-cell F5 configurations for
C = 1 is reported as a function of the frequency ω. The stop bands characterizing the infinite periodic waveguides are represented by the
underlaid shaded areas. The insets show the geometry of the finite rods, where the red assemblies represent the elementary cells Fi.

ply, at the same dimensionless frequency, to Fig. 4(b) to
the pair x5(κω) and x11(ω) for C = 3. Here, κ = 6.854.

The periodicity of the dynamic spectra and the scaling
of the SPB diagram can be also observed in canonical
waveguides composed of an arbitrary finite number N of
elementary cells Fi. The transmission coefficient for a
finite specimen is proven to be T = T−1

G22, where TG22

represents the second diagonal term of the N -th power
of Ti (see SM). To experimentally prove the properties of
the frequency spectra, finite canonical Nylon rods with
C = 1 were manufactured, where the elements L and
S possess circular cross-sections of diameter 40 mm and
20 mm, respectively. The transmissibility of the rods,
defined as T = 20 log10(ar/al), was obtained from exper-
iments in which the accelerations of the excited end, ar,
and the free end, al, of the rod were measured. Details
of the experimental setup can be found in the SM.

Fig. 5 shows the measured transmissibility T of four
finite canonical waveguides, in excellent agreement with
analytical predictions for both the natural frequencies
and the regions where wave propagation is significantly
attenuated (numerical simulations confirming the agree-
ment are described in the SM). Three configurations,
namely three-cell F2 (a), three-cell F3 (c) and two-cell F5

(d) present a phase length of 70 mm and their dynamic
spectra, plotted over the first period, result symmetric
with respect to the canonical frequency ωc. The three-
cell F l

2 canonical rod (b), designed with a 140 mm phase
length, shows the periodic response of the frequency spec-
trum with a period 2ωl

c and the symmetry of the graph

of T with respect to the first two canonical frequencies ωl
c

and ωl
c1. It should be noted that ωc = 2ωl

c as the length
of each phase for F2, F3 and F5 is half of that of F l

2.
On each plot, the stop bands characterizing the infinite
periodic waveguides are shown as shaded areas, thus well
approximating the regions of negligible wave propagation
even for a small number of cells N . Exceptions are repre-
sented by limited extension stop bands, Fig. 5(d), which
can be detected only with a greater number of unit cells.
Finally, the mismatch between the measured and pre-
dicted response at high frequencies for F5 is attributed
to the large number of interfaces and the viscoelastic be-
havior of the constituent material, also testified by the
decrease in the height of the spikes as frequency increases.

We have shown that there are three families of
periodic phononic canonical quasicrystalline-generated
waveguides whose Floquet-Bloch spectra are periodic.
The period is set by canonical frequencies which geo-
metrically correspond to saddle-point periodic orbits on
the invariant manifold. A close inspection of the associ-
ated trace map has revealed that there could be multiple
periodic orbits at frequencies that differ from the canon-
ical ones. The SPB layout in the neighborhoods of those
frequencies is governed by scaling parameters that are
expressed in terms of the golden ratio. An experimental
verification carried out on finite-size canonical specimens
has confirmed the periodicity of the spectra and the ex-
tension of stop– and pass– bands. Our research provides
new analytical tools for controlling the filtering proper-
ties of periodic metamaterials and sets out a methodology
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that can be extended to waveguides composed of periodic
beams, plates and microarchitected materials.
See the Supplementary Material for further details on

the theory and description of experimental and numerical
methods.
M.G. and L.M. acknowledge funding from the EU’s
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