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Synopsis
Diffusion-weighted magnetic resonance spectroscopy benefits from the use of ultra-strong gradients. Slow diffusing metabolites necessitate a large range of b-values to accurately model the diffusion properties.
Ultra-strong gradients open the possibility of higher b-values and reduced diffusion times, alleviating some of these constraints. We present initial data acquired with DW-PRESS on a 300mT/m gradient Connectom
scanner, and introduce the practical considerations associated with ultra-strong gradients.

Introduction
The ubiquity of water molecules, and their presence both within cells, and in the extracellular space, complicates the interpretation of diffusion-weighted imaging data. Diffusion-weighted magnetic resonance
spectroscopy (DWMRS) utilises MRS as a filter, sensitising the MR signal to different metabolites, which are almost exclusively intra-cellular, with some considered predominantly glial – Myo‐inositol (Ins) and
choline compounds (TCho) – and others predominantly neuronal – N‐acetyl‐aspartate (NAA) and glutamate [1].

The apparent diffusion coefficients (ADC) of metabolites are typically smaller than those of water [2], which necessitates a larger range of b-values to characterise metabolite diffusion properties. DW-STEAM can
reach high b-values by facilitating long diffusion times independent of T  relaxation, providing an attractive approach. DW-PRESS offers improved SNR, however diffusion times are coupled to T , reducing its
effective b-value range. Ultra-strong gradients remedy this, providing access to larger b-values for a given T  (Fig.1). Ultra-strong gradients also allow shorter diffusion times, while maintaining the required b-value
range. This can reduce the variability resulting from pulsation, and can provide additional cell-specific microstructural properties [3, 4].

In this work, we present initial data acquired using a DW-PRESS sequence, and practical considerations of introducing ultra-strong gradients. Specifically, SNR will be low at very high b-values, and eddy currents
become increasingly prevalent at larger gradients amplitudes, an issue which is further compounded by the low SNR of water for high b-values. This necessitates efficient pre-processing of MRS data, to maximise
the available SNR. Finally, gradient non-linearities modulate the b-matrix and voxel geometry, this must be corrected in order to obtain reliable estimates [5].

Materials and methods
Two healthy subjects were recruited for this study, and scans were conducted using a 3T Connectom research only scanner equipped with 300mT/m gradient coil and a modified 32-channel head coil (Siemens
Healthcare, Erlangen, Germany). DW-PRESS data were acquired with T =2500ms, T =70ms, bandwidth=4000Hz, and 2048 complex points. Diffusion weighting was applied along three orthogonal axes using
single gradients, with 7 b-values in each case, plus an acquisition at b=0. The diffusion time,  T /2=35ms, and nominal b-values were: 0, 620, 1395, 2480, 5579, 9918, 15497, and 21578 s/mm . 24 water-
suppressed, and 8 water-unsuppressed averages were acquired with cardiac triggering. Voxel positioning and diffusion directions can be found in Fig.2.

Weighted coil combination and phasing was performed using the water-unsuppressed b0 acquisition [6]. To reduce the effects of motion, corrupted averages were identified using a likeliness metric, and omitted
prior to spectral registration [7]. Eddy current correction was performed using unsuppressed water, with the phase extracted via LPSVD [8]. Tarquin [9] was used for spectral fitting, incorporating macromolecular
and lipid models into a fitting basis set, with the baseline approximated by a Gaussian window function.

Results & discussion
Representative spectra following pre-processing are shown in Fig.3. Eddy current correction was found to be robust for the b-value range acquired, but the SNR of water would eventually restrict this approach,
highlighting a need for alternative methods. Metabolite signals were extracted for each diffusion condition for TNAA(NAA+NAAG), TCr(Cr+PCr), and TCho(PCho+GPC). The b-matrix was corrected for gradient non-
linearities using the spatially varying gradient coil tensor provided by the vendor. Effective b-values were obtained by averaging the deviations within a mask localising the voxel (Fig.4). The effect of gradient non-
linearity varies with voxel position/dimension and applied diffusion gradient. In our data we observed b-value changes up to 4% of the nominal value. Which, if not corrected, will result in incorrect diffusivity
estimates in the ultra-strong gradient regime.

A mono-exponential model was used to fit the b-value dependence of the metabolite amplitudes for the first 5 points, and diffusion coefficients extracted (Fig.5). Fit accuracy inevitably decreases with SNR, so
consideration of the Cramer-Rao lower bound was important for maintaining data quality. Metabolite diffusivities, D, along a given axis reflect a mixture of fibre orientations within the voxel. Voxels dominated by
fibres parallel or orthogonal to the diffusion gradient result in high or low diffusivities, respectively. Ronen et al [10] found NAA diffusivity values of 0.076 and 0.34  m  /ms for diffusion gradients orthogonal and
parallel to the main fibre orientation, respectively. The voxels considered in this study contain mixed fibre orientations, and obtained TNAA diffusivities between 0.12 and 0.16  m  /ms are consistent with the
findings of other DW-MRS studies [11, 12, 13, 14].
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Conclusion
DWMRS with ultra-strong gradients yields improved SNR for large b-values, and allows shorter diffusion times. Our results are in line with literature values, and pave the way to study the diffusion of metabolites in
previously inaccessible regimes.
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Figures

Fig.1. This figure highlights the potential of ultra-strong gradients for DW-MRS. The left panel shows the maximum achievable b-value for DW-PRESS as a function of the echo time for three gradient strengths; 40,

80, and 300 mT/m. The right panel shows the SNR gains resulting from reduced echo time, as a function of b-value. SNR gains calculated using estimates for metabolite T  [15, 16].

Fig.2. Voxel positioning for the three acquired data sets. Two voxels, predominantly placed in white matter, were acquired, as well as one in the occipital lobe.

Fig.3. Representative spectra as a function of b-value, following pre-processing. Main features of N‐acetyl‐aspartate (NAA), creatine (Cr) and choline (Cho) are labelled, for illustration.
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Fig.4. Corrections applied to b-values as a result of gradient non-linearities. The left panel shows the corrected b-values plotted against the corresponding nominal values. The right panel shows the absolute
difference as a function of nominal b-value. Colours indicate the directional dependence of the b-value correction.

Fig.5. An example of fitting results achieved using a mono-exponential model for the initial 5 points of a single data set. Error bars indicate fit error of metabolites, represented by Cramer-Rao lower bounds.
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