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Abstract—Numerous workflow systems span multiple scientific
domains and environments, and for the Internet of Things
(IoT), Node-RED offers an attractive Web based user interface
to execute IoT service-based workflows. However, like most
workflow systems, it coordinates the workflow centrally, and
cannot run within more transient environments where nodes are
mobile. To address this gap, we show how Node-RED workflows
can be migrated into a decentralized execution environment for
operation on mobile ad-hoc networks, and we demonstrate this
by converting a Node-RED based traffic congestion detection
workflow to operate in a decentralized environment. The ap-
proach uses a Vector Symbolic Architecture (VSA) to dynamically
convert Node-Red applications into a compact semantic vector
representation that encodes the service interfaces and the work-
flow in which they are embedded. By extending existing services
interfaces, with a simple cognitive layer that can interpret and
exchange the vectors, we show how the required services can
be dynamically discovered and interconnected into the required
workflow in a completely decentralized manner. The resulting
system provides a convenient environment where the Node-RED
front-end graphical composition tool can be used to orchestrate
decentralized workflows. In this paper, we further extend this
work by introducing a new dynamic VSA vector compression
scheme that compresses vectors for on-the-wire communication,
thereby reducing communication bandwidth while maintaining
the semantic information content. This algorithm utilizes the
holographic properties of the symbolic vectors to perform com-
pression taking into consideration the number of combined
vectors along with similarity bounds that determine conflict with
other encoded vectors used in the same context. The resulting
savings make this approach extremely efficient for discovery in
service based decentralized workflows.

Index Terms—Decentralized Workflows, Vector Symbolic Ar-
chitecture, Machine Learning, Dynamic Wireless Networks

I. INTRODUCTION

This article is an extension of the work presented at

WORKS 2018 [1] and describes a new technique that uses

dynamic vector truncation to enable improved economies

of bandwidth by exploiting the holographic nature of VSA

representations.

Data analytic applications are increasingly making use of

distributed software services that support the rapid construc-

tion of new applications by dynamically linking the services

into different workflow configurations. New virtualization

technologies (e.g., containers, virtual machines) have fuelled

this growth with a growing trend of constructing complex

applications from smaller, repeatable components (i.e., micro-

services). In addition, the emergence of smart devices and

sensors, many of which are located at the edge of wireless

networks, collectively known as The Internet of Things (IoT),

represents a rapidly burgeoning requirement for distributed

service workflows that can be rapidly reconfigured to perform

a variety of distributed data analytic tasks. Increasingly IoT

devices and services are being used in more challenging decen-

tralized communication environments, such as Mobile Ad-Hoc

Wireless Networks (MANETs) [2, 3, 4], where constructing

and running applications that support distributed analytics

introduces a much more diverse set of requirements [5]. In

such environments, specifically, this work is targeting military

environments such as the Internet of Battlefield Things (IoBT),

a MANET is an interconnected set of wireless (and satellite)

nodes that form a multi-hop network infrastructure which

often results in low bandwidth, highly transient connectivity

where endpoint stability, network bandwidth, and connectivity

remain limited and transient and it becomes impractical, if

not impossible, to support centralized service registries and to

manage workflows executing at the edge.

Due to the complexity in controlling distributed service

workflows, a Workflow Management System (WFMS) is often

employed to assist in the data and task partitioning. A WFMS

provides a robust means of describing applications, the control,

data dependencies and the logical reasoning necessary for

distributed execution. It is often used to automate processes



that are frequently executed or to formalize and standardize

processes. Such workflows may be used to define and run

computational experiments or to conduct recurrent processes

on observational, experimental and simulation data.

Some WFMS use a programmatic style for data and task

partitioning, for example, Swift/T [6] and the very successful

Pegasus [7] scientific WFMS. Whereas others, such as Triana

[8] and Node-red [9], use service-based workflows and in-

clude a visual programming environment to enable black box

compute/data nodes to be wired together graphically.

For resource allocation and scheduling, modern WFMS

typically rely on the high bandwidth, stable, networks to

maintain a world view of the available resources from which

it can employ complex resource allocation and scheduling

algorithms to optimize the throughput of a shared set of

compute resources. In addition, message passing between the

partitioned sub-tasks always flows through the WFMS engine

because, having scheduled and instantiated the tasks, it is the

single point of control that is aware of the network location

of each sub-task. In the emerging IoT type environments, this

type of WFMS becomes impractical and there is, therefore,

a need for a new bandwidth-efficient WFMS approach that

can enable distributed application construction and workflow

orchestration without the need for a central point of control.

In previous work [1, 5, 10, 11, 12], we have addressed

this challenge by making use of a Vector Symbolic Architec-

ture (VSA) [13, 14, 15, 16] to encode functional representa-

tions of micro-services and workflows into symbolic semantic

vector representations. In the previous implementations, we

used 10,000 bit binary vectors to represent service descriptions

and a hierarchical binding scheme to represent workflows. We

described how VSA vectors can then be exchanged across

a Mobile Ad-Hoc Network (MANET) using multicast, to

perform service discovery, workflow construction and execu-

tion. Using this approach, micro-services can, using efficient

vector matching operations, be discovered an organized into

the required workflow in a completely decentralized way. The

approach is ideally suited to the transient, low bandwidth,

environments typically found in MANET environments.

In [1] we showed specifically how a VSA can be used to

encode Node-Red IoT services and associated workflows and

how the component services could be dynamically discovered

and executed in a MANET without the need to specify IP

locations and presented an implementation of this approach.

In this paper, we augment our VSA approach to focus on

bandwidth efficiency for service discovery. Our research con-

tribution of this paper is to present a new dynamic VSA

vector compression that is capable of applying a lossless com-

pression scheme, which allows the vectors to be compressed

for communication, without effecting the VSA bindings and

comparison performance. In this scheme, we use the under-

lying VSA approach to bind services into Workflow vector

representations and then we dynamically reduce (truncate) the

size of the VSA binary vectors. The scheme leverages the

fact that VSA vectors represent a true superposition of their

sub-feature vectors, like a hologram, which enables partial

vectors to be transmitted when the information content of the

VSA vector being transmitted is low. We show that the size

of the truncated vector depends on the number and semantic

similarity of service vectors that are bound into the workflow

vector. Further, we present a theoretical proof of the capacity

of VSA vector superposition and show how this can be used to

perform dynamic message sizing while maintaining the ability

to discover and orchestrate complex workflows.

The rest of the paper is structured as follows. In the next

section, we provide an overview of related work. In Section

III, we describe how the VSA approach is used to encode

service representations and in Section IV we describe how

VSA enables workflows to be encoded and orchestrated. In

Section V, we outline a simple use case that demonstrates

how the VSA enabled Node-RED can perform decentralized

data analytics. Section VI describes the architecture we have

employed to enable existing services to participate in a dis-

tributed workflow. Section VII describes the implementation

and methods used to meld our VSA architecture with Node-

RED. In Section VIII, we then provide a description of our

compression scheme, along with a mathematical proof and

in Section IX we present some quantitative evaluation result

that demonstrates how the compression scheme works using

example workflows being constructed in an emulated MANET

environment. Finally in Section X we draw conclusions and

outline the scope of our future work.

II. RELATED WORK

For wired networks, there have been a wide variety of work-

flow systems developed [17, 18, 19, 20, 21, 22, 23, 24, 25, 26].

Many systems, such as Hadoop/mapReduce [27, 28] focus

on delivering high-speed data analytics via highly parallel

data processing techniques in high bandwidth communication

environments on single cluster server farms. Geo-Distributed

MapReduce, for example, G-Hadoop [29], attempts to imple-

ment Hadoop/MapReduce techniques across widely dispersed,

heterogeneous data centres. Dolev et al. [30], surveys such

attempts and concludes that geo-distributed big-data process-

ing is highly dependent on task assignment, data locality, data

movement, network bandwidth, security, and privacy. For IOT,

with the advent of 4G and 5G networks, more and more

research is focusing on moving the data analytics task to

the edge. For example, Apache Edgent [31] focuses on data

analytics at the edge, typically to exploit sensor data and

perform anomaly detection at the edge.

We are not proposing that this VSA architecture might

replace such systems because our VSA approach is tackling

a problem that such systems do not need to solve; that is,

the dynamic discovery of services without using centralized

registries. For more conventional data analytics environments,

it is significantly more practical and efficient to maintain

centralized catalogues with load balancing via a centralized

system when high bandwidth reliable connections are avail-

able. Whereas the target environment for our VSA architecture

is low bandwidth, highly transient MANET networks such as

those operating in military battlefield scenarios.



In such environments, it is impossible to rely on central

registries because a single node can never be guaranteed to

be available all of the time and consequently, a decentralized

approach is needed. On-demand distributed analytics work-

flows for general collaborative environments need spontaneous

discovery of multiple distributed services without central

control [5]. Applying the current state-of-the-art workflow

research to such dynamic environments is impractical, if

not impossible, due to the difficulty in maintaining a stable

endpoint for a service manager in the face of variable network

connectivity; such workflows are focused on operating in

highly available distributed computing infrastructures using

TCP, centralized management, and service discovery. Service-

oriented systems, such as Taverna, have some support for

discovery [32] but service providers are centralized and require

manual configuration.

Consequently, service discovery is a key component in a

transient distributed networked environment. Service discovery

is a difficult problem even when services are hosted in central-

ized repositories, mainly because services are developed and

deployed independently or developed by loosely cooperating

developers in open environments. This has led to a complex

mix of disparate service architectures employing different

methodologies for the description of their inputs, outputs,

and configurations. Even with standardized protocols, such

as Multicast Domain Name Service (mDNS, [33, 34]) there

are no conventions for service templates. In support of such

situations, we are investigating vector based representations

as a means of representing service descriptions that can

be semantically compared within particular contexts, in an

extremely resource-efficient way. Using such vectors, seman-

tically rich queries in the form of vectors, can be sent out

to the network, using protocols such as multicast for efficient

querying in a complex space.

Hyperflow [26] is based on a formal model of computation

called Process Networks, which uses asynchronous signals to

coordinate flow. Such signals could operate in a decentralized

way but currently, there is no service discovery component,

rather it relies on the node.js [35] execution environment

and employs third-party tools, such as RabbitMQ [36], to

coordinate services. Petri net workflows [37] offer a decen-

tralized approach by using directed bipartite graphs, in which

the nodes represent transitions (i.e., events that may occur,

signified by bars) and places (i.e., conditions, signified by

circles). However, such workflows require predefined DAG-

based workflows with concrete endpoints to be defined before

deployment.

Newt [38] is designed to address network edge workflow

environments by providing a reusable workflow methodology

for decentralized workflows that incorporates decentralized

execution and logic, support for group communication (one

to many) and support for multiple transports e.g., TCP, UDP,

multicast, ZeroMq. However, although Newt has discovery

interfaces available, it currently only supports pre-configured

profiles for its nodes, so dynamic service discovery is not

possible. In the Newt paper, the authors used the dialogue from

William Shakespeare’s Hamlet [39] as a workflow, where each

actor is a node that decides what line to say and who to say

it to, and the sending of those lines represents the network

payloads. They argued that this example is highly illustrative

of group conversations or distributed analytics at the edge,

where complex local decisions are made and communicated

to the distributed node(s) in a decentralized way. The play

contains several instances where an actor speaks to several

actors, thus creating natural distributed communications and

there are other instances where an actor will speak to himself,

causing looping.

The DENEB [40] business workflow system (based on a

high-level type of Petri nets) does support runtime discovery

of the service objects required to execute a business workflow

and is an excellent implementation for mainstream internet

eCommerce and business logic workflows since it can use

formal methods to prove that the selected Petri net network

will implement the desired business logic correctly. It also

uses semantic web standards to facilitate service discovery.

However, once again, the platform is designed around a set

of manager middleware components that are unlikely to be

effective in our transient, low bandwidth environments.

In summary, like mainstream SOC, the fundamental chal-

lenges continue to be 1) Discovery and 2) Interoperability.

However, to fulfil the time-critical operational goals of our

target environment, the discovery of alternate workflow paths

and services becomes a much more critical objective since the

‘best’ path or service may not be available or indeed part of

it may go out of service during workflow execution!

In terms of 1) Discovery, we believe that the VSA approach

offers advantages over the reference semantic Web service

architecture because, in short, VSA, being a distributed rep-

resentation, converts what would typically be a hierarchical

XML service description based on some ontology into a super-

position of sub-features, that is, it represents all of the category

and value data of the XML description, ’simultaneously’ as

a single value. XML service descriptions that are similar to

each other, regardless of order, create VSA vector values that

are near to each other in the VSA vector space. Thus, we

believe service matching and discovery is greatly simplified.

Calculating the hamming-distance between two VSA service

description vectors provides a simultaneous comparison of all

service sub-features in a position-independent way and gives a

graded match. In addition, semantic vector word embeddings

such as those built using word2vec [41] can be leveraged

to solve the ontology matching issues described in [42]. For

example, the category ‘LastName’ is easily matched with

‘Surname’ and ‘FamilyName’. (Note, it is straightforward

to convert real number word embeddings into binary VSA

embeddings that maintain the semantic relationships between

words). In addition, using VSA to describe workflows objects

as well as service objects will enable our VSA architecture

to mine alternate workflow paths through the resulting VSA

vector space, another future work objective.

With respect to 2) Interoperability, while we have not solid-

ified a new approach to this complex problem, our current test



cases achieve inter-service communication by simply posting

to known endpoints, the VSA architecture can support the cur-

rent state of the art in this respect. This can be achieved during

workflow discovery via the local arbitration step referred to

in Section IV and fully described in [11, Section 7.2, Page

79]. To support the conversational negotiation required to con-

nect service objects at discovery time the available protocols

supported by a particular service object can be encoded as a

sub-feature of the service’s binary VSA description vector. In

this way, when a VSA requester multicasts a request for a

partner service, the responding services that best match will

likely have a matching protocol. During the discovery process

the local arbitration step, carried out by the requester, is then

leveraged to negotiate a protocol and confirm that the selected

partner is indeed able to communicate with the requester.

Should this negotiation fail then the requester service can

simply choose another responder or re-issue the query for

another responder. In addition, we discuss in Section III-B and

in [11, Section 4, Page 74] how the interoperability problem

might be simplified using VSA because parameter positions

and data types can be encoded in a simple manner. Further,

using the role-filler pairs methodology, as described in Section

III-B and [11], we see it as quite feasible to pass small data

(numbers, strings, etc.) as parameters bound into in a VSA

vector. Large data can be passed indirectly as a VSA vector

by encoding a file name/ID, which is the method used for

our Pegasus example. In the traffic congestion example, we

encode the endpoint name directly in the VSA workflow for

return to the Node-Red WMS. A future work objective is to

consider how to pass all data as semantic VSA pointers since

this would potentially neutralize the interoperability problem

because, by definition, VSA vectors hold both the data value

and are a description of the data value, see semantic pointers

[43]. In addition, using VSA to describe workflows objects

as well as service objects enables the VSA architecture to

discover alternate workflow paths through the resulting VSA

vector space.

VSA, a term originally coined by Gayler [14], use very

large vectors to represent objects and features of objects

within a hyper-dimensional vector space such that objects and

concepts that are semantically similar to each other in the

real world are positioned closer to each other in the vector

space. VSAs can be based on real-valued vectors, such as in

Plate’s Holographic Reduced Representation (HRR) [13], or

large binary vectors, such as Kanerva’s Binary Spatter Codes

(BSC) [15] that, typically, have N ≥ 10,000. For this work,

we have chosen to use Kanerva’s BSCs but we note that

most of the equations and operations discussed should also

be compatible with HRRs [44].

Since VSA vectors are stochastic in nature [45] they are not

compressible in the traditional sense. However, because VSA

vectors represent data in a distributed manner, i.e., each vector

element participates in the representation of many sub-feature

entities, and each sub-feature entity is represented collectively

by many elements of the VSA vector [44], any reasonable

length sub-section of a VSA vector can equally represent all

of the original data. The decodability of such a sub-segment,

so that all sub-features of the original vector can be decoded,

is directly related to its dimensionality, i.e., its length, or its

number of bits. Plate, [13], gives a thorough mathematical

analysis of the capacity of real number VSA vectors including

a mathematical derivation for the capacity when vectors are

similar [13, Appendix B.2]. Recchia/Kanerva et al. perform

a computational efficiency analysis of binary VSA compared

to real number HRR VSAs and obtain some empirical results

for the capacity of binary VSA vectors in [46] and Kleyko

derives a formula for the capacity of VSA vectors from which

he calculates that the capacity of a 10kbit VSA vector to be

approximately 89 [16]. The idea of truncating VSA vectors

based on the number of sub-feature vectors contained does

not seem to appear in the literature probably because VSA

vectors have not been used as a basis for communication across

networks before this work.

III. ENCODING SERVICE REPRESENTATIONS USING THE

VECTOR SYMBOLIC ARCHITECTURE

In [10] we describe in detail the use of VSAs to represent

service workflows. This section provides a brief recap of

the core principals to provide context for the Node-RED

integration.

A. Vector Symbolic Architecture background

A common technique for achieving such semantic repre-

sentations is to represent a high-level concept or feature by

a collection of its sub-features in a hierarchically recursive

manner[47] so that the sub-features themselves are also built

up of their sub-features which in turn are built of their own

and so on. Descending in this way, we eventually get down

to a sub-feature that cannot sensibly be broken down further

and define this as an atomic vector.

A key feature of VSA architectures is that all vectors have

the same size; that is the vector for a high-level concept, such

as the entire play Hamlet, is the same size as each of its

sub-features, i.e., acts, scenes, stanzas, sentences, words. In

order to achieve this, sub-feature vectors are combined using

a suitable bundling operator, which for BSCs1 is majority-

vote addition[10, 15]. The resultant vector is a superposition

of all sub-features in the sum such that each vector element

participates in the representation of many entities, and each

entity is represented collectively by many elements [44].

Normalized hamming distance (HD) can be used to probe

such a vector for its sub-features without unpacking or de-

coding the sub-features. XOR binding is used to build roll-

filler pairs[13, 15] which allow sub-feature vectors to remain

separate and identifiable (although hidden) within a concept

vector superposition[10, 13, 15]. In addition, binding can be

used to maintain positional and temporal relationships such as

those needed for the execution of workflows.

Binding is commutative and distributive over superposition

as well as being invertible [15, page 147]. This means that,

1Further references to operations used in VSA architectures are expressly
talking about binary vector operations



if Z = X ·A then X ·Z = X · (X ·A) = X ·X ·A = A since X ·X = 0, the

zero vector2. Similarly A ·Z =X . Due to the distributive property

the same method can be used to test for sub-feature vectors

embedded in a compound vector as follows:

Z = X ·A+Y ·B (1)

X ·Z = X · (X ·A+Y ·B) = X ·X ·A+X ·Y ·B (2)

X ·Z = A+X ·Y ·B (3)

Where ′.′ indicates XOR binding and ′+′ indicates majority-vote-add

Examination of Eq. (3) reveals that vector A has been exposed,

thus, if we perform HD(X ·Z,A) we will get a match. The second

term X ·Y ·B is considered noise because X ·Y ·B is not in our

known vocabulary of features or symbols. XOR-binding also

preserves distance, but produces a result that is uncorrelated

to its operands. Hence, if V = R ·A and W = R ·B then HD(V,W ) =

HD(A,B) even though, R, A and B have no similarity to V or W .

These operations allow us to create semantically comparable

compound objects analogous to data structures as follows:

P1v = FNr · Johnv +SNr ·Charlesv +Ager ·55yrsv +Healthr ·T 2Diabeticv

P2v = FNr ·Lucyv +SNr ·Charlesv +Ager ·55yrsv +Healthr ·T 2Diabeticv

P3v = FNr ·Charlesv +SNr ·Smithv +Ager ·55yrsv +Healthr ·T 2Diabeticv

Note that without role vectors, e.g., FNr
3 then HD(P1,P2) =

HD(P1,P3) = HD(P2,P3) since each record would be an un-

ordered bag of feature values. Thus role vectors can be used

to perform the important function of categorization within a

superposition. To test P1 for the surname Charlesv we perform,

HD(xor(SNr,P1v),Charlesv) (4)

For 10kbit vectors, if the result of Eq.(4) is less than 0.47

then the probability of Charlesv being detected in error is less

than 1 in 109 [15, page 143]. If our person records are

distributed over a network we could transmit or multicast the

request vector Z = SNr ·Charlesv +Ager · 55yearsv to the network.

Any listening distributed microservice, or node in a Parallel

Distributed Processing network, having person records con-

taining the surname Charlesv and age 55yearsv can check for

a match and respond or become activated.

B. Encoding service descriptions into semantic vectors

As described in Section III-A a common approach for

creating semantically rich representations is to represent a

high-level concept as a collection if its sub-features in a

recursive manner. Reviewing that Xr represents a role vector

and Yv a value vector, one such arrangement for services might

be,

Zv = Servr ·Servv +Resourcer ·ResPv +QoSr ·QoSv (5)

Servv = Inputsr · Inpv +Namer ·Namev +Descr ·Descv +Out putsr (6)

Inpv = Oner ·Floatr +Twor ·Floatr +T hreer ·Floatr +Oner ·BitMapr (7)

2Throughout this text, unless otherwise stated ′.′ indicates XOR binding
and ′+′ indicates majority-vote-add

3Note that throughout this text, a symbol having suffix r, (Yr) represents a
known atomic, role vector. A symbol having suffix v (Xv) indicates a vector
that is representing a value.

Thus, Zv, the high-level semantic vector representation of the

service, is made up of a nested superposition of its sub-feature

vectors. Listing 1 is an example of a JSON service description

for one of the Node-RED object detectors in our Traffic

Congestion use case. We now describe a new methodology

for converting JSON service descriptions into a semantically

comparable service vector descriptions.

Listing 1: Service Vector Description

{”service”:
{”service name”:”object detector 1”,

”service inputs”:[
{”input name”:”image”,
”input data type”:”char64jpg”,
”input related concepts”:[{

”concept name”:”location”}],
”required”:true}],

”service outputs”:[
{”output name”:”object list”,
”output data type”:”list string”,
”output related concepts”:[

{”concept name”:”car”},
{”concept name”:”person”},
{”concept name”:”bus”}]}],

”service average response time ms”:5000}}

The field-names within the JSON must be converted to

unique role vectors and the JSON values must be converted

to semantically comparable vector values. The value fields

are encoded using Eq. (8) which is described fully in [10].

This means that values can be complex and are semantically

comparable as long as, within a superposition, they are bound

to the same roles.

When using field-names as roles to categorise the feature

values of a service vector concept, one important issue is, how

can we guarantee that the role vectors created are unique and

have the same value across distributed service implementa-

tions. This is a particularly relevant question for Node-RED

integration since Node-RED is open source and functional

nodes/services can be created arbitrarily by an unrelated set of

developers. In the original implementation we simply assigned,

known, random hyper-dimensional vectors to each role/field-

name, however, this does not allow for unrelated developers

to invent new field-names and would require some sort of

central database lookup so that distributed services agreed on

the vector value of a role/field-name, otherwise they would

not be able to perform semantic matching.

In this paper, we describe an alternate vector encoding

method that ensures roles are always unique based on their,

case insensitive, spelling. The encoding algorithm used for

the field-names is chained XOR of a shared vector alphabet.

Cyclic-shift per character position is used to ensure unique

encodings for words such as ’AA’ and ’AAA’ which would

otherwise collapse into similar values, since XOR(A, A) = 0 and

XOR(XOR(A, A), A) = A. The algorithm to convert a field name

to a vector is shown in Listing 2.



Listing 2: Field name to Vector.

def field name to vec(name, vec alphabet):
n = name.lower()
v = vec alphabet[n[0]]
shift = 0
for c in n[1:]:

shift += 1
v = XOR(v, ROLL(vec alphabet[c], shift))

return v

To recursively encodes each feature chaining all field-

names together with the sub-feature roll-filler pairs we use

the json to vecs() function listed in Listing 3.

Listing 3: Chaining Field Names.

def json to vecs(json input):
if isinstance(json input, dict):

dd = []
for k, v in json input.iteritems():

rv = json to vecs(v) # Recurse
if isinstance(rv, list):

dd.extend([(”{} * {}”.format(k, i[0]),
# Chain XOR field−names with
# sub role−filler found in i[1]
XOR(field name to vec(k, symbol dict), i[1]))
for i in rv])

else:
dd.append((”{} * {}”.format(k, rv[0]), XOR(

field name to vec(k, symbol dict), rv[1])))
return dd

elif isinstance(json input, list):
dd = []
for item in json input:

rv = json to vecs(item) # Recurse
if isinstance(rv, list):

dd.extend([json to vecs(i) for i in rv]) # Recurse
else:

dd.append(rv)
return dd

else:
if isinstance(json input, tuple):

return json input
else:

return json input,
chunkSentenceVector(str(json input)).myvec

Where chunkSentenceVector creates semantically compara-

ble vectors. The algorithm produces a ‘bag’ (python list) of

role-filler vectors that are then further combined into a single,

semantically comparable, vector using simple ma jority vote

addition. The output of json to vecs() for JSON Listing 1 is

shown in schematic form in Listing 4.

Listing 4: Output from json to vecs().

service * service name * object detector 1
service * service average response time ms * 5000
service * service inputs * input data type * char64jpg
service * service inputs * input related concepts * concept name * location
service * service inputs * required * True
service * service inputs * input name * image
service * service outputs * output data type * list string
service * service outputs * output name * object list
service * service outputs * output related concepts * concept name * car

service * service outputs * output related concepts * concept name * person
service * service outputs * output related concepts * concept name * bus

Note, in the listing ′∗′ indicates XOR binding.

Each line in Listing 4 represents a compound vector entry

in the returned list. The rightmost vector is the value vector,

all vectors to the left of this are unique role vectors. Each

vector is XOR chained with the one to its left. Precedence is

as follows:

sub f eaturev = service ∗ (service name ∗ ob ject detector 1)

In the above example, ob ject detector 1 is the value vector

and service and service name are both role vectors. If Zv is the

result of the final ma jority vote superposition, then to extract a

noisy copy of the ob ject detector 1 value we would perform

ob ject detectorv ≈ XOR(service namer, XOR(Zv, servicer))

Note, as mentioned above, that the output of json to vecs()
is combined as a simple ma jority vote bag of vectors, this

helps makes the vectorization of JSON service descriptions

immune to ordering issues but does limit the number of service

line entries to approximately 100, the maximum capacity of a

single 10kbit binary vector [16].

In Node-RED such vector encodings are representative of

the required function. The encoded JSON may be a specific

known function that has been previously used, or a generic

JSON representing the type of functional service needed.

IV. DESCRIBING WORKFLOWS USING VECTOR SYMBOLIC

ARCHITECTURE

A workflow is a set of inter-related tasks that must be

carried out in a specific order. To compose a workflow some

methodology is needed to describe the various steps and what

data must be passed between each cooperating node in the

workflow. In our previous work, we showed how Pegasus[48]

DAX files could be parsed and converted into a VSA workflow.

In the Pegasus implementation, such DAX files are written

directly in XML script language, or, they can be generated pro-

grammatically via the Pegasus API, available in Java, Perl or

Python. Node-RED provides a graphical means of describing a

workflow by allowing graphical icons representing functional

operations to have their input/outputs connected. Fig. 1 shows

an outline of the Pegasus Montage 20 workflow composed via

the Node-RED graphical interface.

In our previous work [10], we explained how we can

combine functional vector service descriptions into a workflow

via our hierarchical VSA binding scheme Eq. (8) and Eq. (9).

The execution flow is achieved by sequentially unbinding

using Eq. (10).
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x

∑
i=1

Zi
i .

i−1

∏
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p0
j +StopVec.

i

∏
j=0

p0
j (8)

Omitting StopVec for readability, this expands to,
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0.Z

1
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0.p
0
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0
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3
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Fig. 1: Pegasus Montage 20 composed using Node-RED.

In all of the above equations, the Zn terms are the semantic

vector representations built using the methods described in

Section III-B. In addition, for very large workflows the Zn

term may be a cleanup vector representing a large grouping

of smaller steps, or in Node-RED terms, analogous to a sub-

flow.

In [10] we also explain how discovery and workflow orches-

tration can be achieved using the above equations. For a linear

workflow, the workflow steps are bound and unbound using

Eq. (8) and Eq. (10) respectively. The p0, p1, p2, ... vectors

are role vectors used to define the current position/step in the

workflow. After the workflow has been built the unbinding

procedure essentially exposes each microservice description

in turn. Flow is controlled by the currently active node doing

its functional work and then performing the next unbinding

using Eq. (10) to activate the next node, no central controller

is needed.

Note that, because we are using semantic vector descriptions

for each exposed vector service request we fully expect to get

multiple replies. To avoid race conditions and to enable on the

fly load balancing we employ a method of local arbitration

described in [10, 11] whereby the currently active node acts

as the local arbiter for selection of the next workflow step.
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-1

= p-1
0 .T -1 + Z0
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1 .Z1
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1 .p-1
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1)

-1
= p-1

1 .p-2
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1 .Z-1
1 + Z0

2 + p-2
2 .Z1

3 + . . . (12)

Equations (11) and (12) show the state of the workflow

vector after the first and second unbinding. Only Z1 is visible

in Eq. (11) and Z2 is visible in Eq. (12) because all other

vectors are permuted by position vectors[10].

For DAG workflows we extend this mechanism by employ-

ing three phases:[10]

1) A recruitment phase where services are discovered, se-

lected and uniquely named.

2) A connection phase where the selected services connect

themselves together using the newly generated names.

3) An atomic start command indicates to the connected

services that the workflow is fully composed and can be

started.

Thus, in mathematical terms, using Eq. (9):

WP = p00.(RecruitNodes)
1 +

p00.p10.(ConnectNodes)
2 + p00.p10.p20.Start3

RecruitNodes = p00.Z1
1 + p00.p10.Z2

1 + ...p00.p10.p20.p30.Z4
1 . . .

ConnectNodes =
(
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1 + p00.p0

1.C
2
1

)

+
(

p00.p10.p20.P3
2 + p00.p10.p20.p30.C4

2

)

+ ...

The resulting workflow, WP, is a single vector superposition

representing the linear sequence of steps needed to discover,

connect and initiate the workflow. That is, the WP vector

completely encapsulates all three phases needed to discover,

connect and start the DAG workflow. Once injected into the

network, via a multicast transmission, the vector will activate

matching distributed nodes which, in turn, unbind and pass

the vector around in a peer-to-peer fashion with no central

point of control. Once the last connection is made and the

DAG is composed and fully connected the arbitrary node that

makes this final connection causes the workflow to start when

it unbinds WP exposing the Start vector and multicasts this to

the network.

During the Recruitment phase; (a) real services respond

to matches via their VSA cognitive layer; (b) the currently

active node uses local arbitration[10] to select the best node

for the next Recruit nodes step; (c) selected nodes build

representations of their parent and child vectors which will

be used during the Connection phase so that each service can

be informed of its inputs and outputs. Notice that, during the

Connection phase, the WP vector has become a sequential

list of alternating parent P and child C vectors. This is how

each recruited node learns of its partner connections. Control

continues to pass from node to node but, during the connection

phase, when a node becomes activated by seeing its parent

vector it simply unbinds/multicasts the next vector, since in do-

ing so it will activate its associated child service, automatically

informing the child service of its IP address. When a service

receives a multicast that matches its child vector it stores the

parent’s IP-address and multicasts a response informing the

parent of its IP-address before unbinding and multicasting the

next vector.

When the final child request is processed, this is detected by

the ConnectNodes cleanup service[10] causing it to unbind and

multicast the StartVec indicating to all nodes that the workflow

has been fully constructed and processing can be started.

At this point each VSA-Agent sends an /init/ message to its

associated Workflow-Agent and the proper work is initiated,

see Section VII-A.

The scheme supports encoding of DAG workflows having



one-to-many, many-to-many, and many-to-one connections. In

[10] we show that the result provides several desirable features

and byproducts: it can encode workflows /sub-workflows that

can be unbound on-the-fly and executed in a completely

decentralized way; associated metadata can also be embedded

into the vector, e.g., security, configuration.; the vector rep-

resentation is extremely compact and self-contained and can

be passed around using standard group transport protocols;

and semantic comparisons or searches are scoped within a

sub-group of services in a workflow, allowing scoped service

matchmaking.

V. TRAFFIC CONGESTION USE CASE

In prior work, we identified traffic monitoring as a plau-

sible use case involving sensing (e.g., via a network of

traffic cameras) and decision making (e.g., routing traffic to

avoid congested areas) supported by an interactive question-

answering interface ([49], [50]). The concept for this interface

is to provide decision support for a user tasked with managing

the state of city or region-wide traffic. In [49], we explored

detecting traffic congestion using a number of services which

could be both distributed and owned by multiple agencies (e.g.,

operating as a coalition). In [50], we explored how natural

language queries relating to traffic could be answered by

taking advantage of the output of distributed data sources and

processing services. In both these pieces of work, we did not

outline the co-ordination of these distributed resources, merely

providing specific architectures and the Node-RED workflows

that could provide the required answers.

In this and the following sections, we show how VSA

enabled Node-RED can be used to semantically describe and

cognitively wrap the existing services and how we construct

the workflow vector that is used to orchestrate the discovery

and execution of the workflow across the distributed resources.

A. Data Sources & Processing Resources

For this work, the example we use (counting the number

of cars on a given street) takes advantage of a subsection of

data sources and resources used in prior work but our solution

featured in this paper can be applied to working with a wider

range of available services.

The main data source we have taken advantage of is the

Transport for London (TFL) traffic camera API4. This allows

access to imagery and video from around one-thousand traffic

cameras situated around London. The imagery and video is

updated every five minutes and the video provided is a ten

second clip recorded at the beginning of the five minute

interval.

To detect cars, we process the imagery from the traffic cam-

era feeds using an object detector (MobileNetSSD5) supplied

within the OpenCV (Open Source Computer Vision) library 6.

Finally, to convert the list of detected cars to a count we use

a simple service that is designed to count the items in a list

4http://www.trafficdelays.co.uk/london-traffic-cameras/
5MobileNet-SSD: https://github.com/chuanqi305/MobileNet-SSD
6https://github.com/opencv/opencv

it receives. Having this as a service (and not hard coded in

to the interface’s processing of the result for example) allows

for this “list to count” function to be used within workflow

construction.

B. Moving to a Dynamic and Decentralized Environment

Within a decentralized environment, these resources need

to be discovered dynamically amongst a distributed array of

services. Once the nature of the query is established, the

correct services must be identified and chained together to

answer the query. During the discovery process there are

two key considerations, services may be replicated identically

providing redundancy and thus there may be multiple services

that provide a “perfect fit” or the required functionality. These

must be discovered and selected appropriately. Secondly there

may be services available which, although do not meet the

functionality exactly, still provide the functionality required.

For example, when counting the number of vehicles on a

road, a vehicle detector (a detector that identifies cars, bikes,

vans etc) is a “perfect fit” but if detectors for these individual

concepts exist (individual car detector, van detector etc), their

output could be aggregated and provide an output that may

still be appropriate if no vehicle detector is available.

A method of discovery and execution within a distributed

setting must factor these two properties in to best take ad-

vantage of the resources made available and to maximize the

queries that are answerable.

VI. ARCHITECTURE

To manage and fuse these sensor feeds, an architecture is

required that integrates the services in a loosely coupled way

to support decentralized discovery and execution. This loosely

coupled nature ensures that existing services and resources

can be quickly set up to be discovered and take part in query

responses without having to be re-written from the ground up.

In Fig. 2, we illustrate the three layers of architecture. The

lowest layer (in grey), contains the services and resources we

wish to make available. These can be existing or newly created,

and can be unique services or redundant replications of the

same service. Simply these are end points which can be sent

a request and respond in kind.

The second layer (in green), contains our proposed solution

to handling workflow execution, the workflow agents. These

decentralized wrapper services are light weight and encompass

the “real” services below them. They manage the address of

the end point, the collection of the required input data, the

retrieval of the end point’s response and finally the forwarding

of this response to the next workflow agent in the chain.

The highest layer (in orange), is where the VSA agents re-

side which, in our solution, handle the discovery of appropriate

services using vector representations of the task (as detailed

in section IV).They have the required information about the

location of the workflow agent and a representation of the

function the linked service provides.

In summary, within this architecture diagram, the vertically

aligned agents and services represent the connected VSA



Fig. 2: Distributed architecture for answering the question

”How many cars on Oxford Street?”

agent, the workflow agent and the service itself which work

together to offer discoverability and execution of a particular

function amongst the array of services. The distinct columns

(three in our diagram) represent categories of service i.e., the

different functions that can be provided. The depth shown

at each layer within these columns represents redundant or

similar services for a function.

The VSA agent and the workflow agent are co-located on

the same hardware but the service itself can be located on

another platform that the workflow agent can communicate

with. In our use case, for example, the camera service is

a remote web-service that is only reachable from the node

running the corresponding workflow agent. To participate in

the VSA discovery scheme each ‘real’ service starts an in-

stance of the VSA cognitive layer and associated flask wrapper

service. We have trailed various methods of communication

between the VSA cognitive layer and the real service. In the

flask wrapper method, a simple flask wrapper is used as an

interface between the ‘real’ service and the VSA layer. The

existing service passes a description of itself, either in JSON,

XML or DAX description language to the VSA cognitive

component via the flask wrapper service. The VSA cognitive

component builds a VSA vector that represents its associated

service, opens a multicast listener and commences listening

for discovery request on this vector. In this way, it enables

discovery of the real service. Since the VSA layer is running

on the same device as the flask wrapper, which is acting as a

proxy to the real service, it could communicate to the wrapper

via any number of standard IPC methodologies. As mentioned

above our current implementation uses known endpoints. The

wrapper is intended to be a lightweight bespoke interface

to the real service and as such must be coded to enable

communication with the original service. Section VII describes

this in more detail and [11, Section 6] gives full details of the

current communication stack.

VII. NODE-RED INTEGRATION

In Fig. 1, we illustrated a typical Node-RED workflow. To

illustrate the integration of Node-RED with VSA, we make

use of the linear workflow shown in Fig. 3 that is used in the

simple traffic congestion use case.

Fig. 3: Typical Node-RED workflow.

In a conventional Node-RED implementation all messages

travel through the Node-RED workflow engine. This requires

the location of external services to be specified and these

must be known in advance. In this example, the external

service, ob ject detector 1, is defined using an Node-RED

http-request node as shown in Fig. 4.

Fig. 4: HTTP Requester properties for Object Detector 1

The HTTP request is enacted via the NODE-Red workflow

engine. The Node-RED engine makes a POST to the address

shown, it collects the reply and passes it, as a Node-RED

payload message, to the next node in the flow. This means

that all messages must pass through the central Node-RED

controller and, since the external service endpoint is hard-

coded, no alternate service can be selected. The architecture

described in Section VI is largely independent of Node-RED.

However, we integrate with Node-RED in two ways. First,

Node-RED is used as a front end graphical composition

interface, acting as the interface component located in the

top left corner of Fig. 2. Second, we have extended the VSA

Importer toolkit to parse Node-RED workflows, so we can

export Node-RED workflows into a decentralized discovery

and execution environment.

To integrate Node-RED as the front end to our VSA

workflow architecture we implemented a new Node-RED



Fig. 5: VSA workflow composition using vsa service node.

Fig. 6: Node-RED vsa service properties.

node type, the ’vsa service’ node. This node type has its

message passing component disabled because message passing

between distributed components is carried out by our VSA

architecture. The vsa service node has two properties, see Fig.

6. The ’Name’ property is a standard Node-RED property. The

’JSON’ property is used as an entry field to accept either a

file name or a literal JSON string which is used to describe

the service attributes and features of the particular service it is

representing. This JSON description is encoded by the VSA

architecture in to a single 10Kbit semantic vector as described

in Section III-B. When passed as a filename, if the filename

type is .bin, then the VSA architecture will load a previously

built 10kbit vector during workflow encoding, otherwise it

reads and vectorizes the JSON on the fly.

Real microservices that are participating in our VSA archi-

tecture also encode their functional description using the same

methods, hence, when the Node-RED service request is de-

ployed, the service flow, via the VSA architecture, can discover

and utilize the real services. Message passing does not rely

on returning each payload to the Node-RED engine. Rather,

the VSA architecture performs the discovery, selection and

connection of real worker services that are listening for work

in a distributed network. Once the workflow nodes have been

discovered and recruited and connected the VSA Workflow-

Agents execute the workflow as described in Section VII-B,

all messages are passed directly between the Workflow-Agents

without a central point of control. When each terminal node

Workflow-Agent, defined as one having no child endpoints, has

completed its work, it returns its output, if any, to Node-RED

via a HTTP POST.

In Fig. 5, the top right node, ’Deploy VSA Flow’ is a

conventional Node-RED sub-flow that extracts the Node-RED

flow JSON description from the flow’s page and sends it to

the VSA Workflow Importer using a HTTP POST request.

A simplified listing of the JSON extracted by ’Deploy VSA

Flow’ is shown below. The wires:[] list field, id: field, and

JSON: field are used by the VSA Workflow Importer to build

the workflow vector.

The bottom right node, ’VSA Flow Result’ is a conventional

Node-RED sub-flow that implements a Node-RED ’HTTP in’

node having endpoint /vsa work done/. This endpoint is used

by the Workflow-Agents to return their results to Node-RED.

Listing 5: Node-RED flow JSON.

{ ”nodes”: [
{ ”wires”: [

[”695e3ae2.e16854”]
],
”name”: ”tfl−camera”,
”JSON”: ”tfl camera tenyson road.json”,
”y”: 295,
”x”: 495,
”z”: ”1592cb0c.f2c005”,
”type”: ”vsa service”,
”id”: ”226dec54.165fe4”

},
{ ”wires”: [

[”dee64892.9d1a28”]
],
”name”: ”Object−Detection”,
”JSON”: ”object detection.json”,
”y”: 295,
”x”: 702,
”z”: ”1592cb0c.f2c005”,
”type”: ”vsa service”,
”id”: ”695e3ae2.e16854”

},
{ ”wires”: [

[]
],
”name”: ”Count−Objects”,
”JSON”: ”count objects.json”,
”y”: 295,
”x”: 915,
”z”: ”1592cb0c.f2c005”,
”type”: ”vsa service”,
”id”: ”dee64892.9d1a28”

}
],
”id”: ”1592cb0c.f2c005”,
”label”: ”VSA Car Counter”

}
# Node−RED JSON listing with non−vsa service nodes removed.

A. Implementation

We simulate real world operation using CORE/E-

MANE [51], a real-time network emulator. From Fig. 2, each

VSA-Agent and Workflow-Agent are co-located and run in



their own VM, each of which has its own IP-Address on

a simulated wireless mesh network. We instantiate multiple

similar services in separate VMs so that we simulate having

multiple possible services capable of satisfying a particular

workflow step. Node-RED runs on the host ubuntu server, thus,

we simulate an extended distributed/MANET environment for

our services and request flows from Node-RED. Between and

during runs we can move services in and out of range taking

them in and out of service.

Our VSA platform is implemented in Python2 and has a

modular architecture with several components that are capable

of being reused as plugins to other systems:

1) CORE/EMANE All VSA and Workflow agents are

started by loading a CORE configuration file defining

each of our services. Each service starts in its own

VM. the VSA-Agent loads its semantic vector service

description and starts listening on the VSA multicast

address for semantic vector messages.

2) The Workflow Importer component uses a general

plugin infrastructure that allows VSA to parse multiple

formats. It has an implementation for the Pegasus work-

flow description(DAX) and for this new implementation,

we added a module for parsing Node-RED workflows.

Once parsed the resulting graph is formed using VSA

primitives: NodeVectors and EdgeVectors for further pro-

cessing by the VSA Creator.

3) The VSA Creator is used to bind the lists of vectors into

a single vector, a reduced representation, of the workflow

using Eq. (8) and chunking[10, page 3]. Chunking is

performed bottom-up and vectors are recursively rebound

until the vector list (workflow) is reduced to a single

vector. The NodeVectors list and the EdgeVectors list are

combined separately producing two high level vectors,

the RecruitNodes vector and the ConnectNodes vector. The VSA

Creator then binds these two vectors together with the

Start vector into a single vector representing the entire

workflow, the WorkFlow vector. This WorkFlow vector

and all its associated sub-vectors are encapsulated in a

chunk tree object[10, page 3] which is then passed to the

VSA executor.

4) The VSA Executor implements the Workflow Agents part

of Fig. 2 by providing a decentralized overlay for wrap-

ping the underlying services. The services themselves

can be conventional request/response e.g., Web/REST

interfaces, and the role of the Workflow Agents are to

bind to these underlying services and wiring the inputs

and outputs to such services to serve the service in a

decentralized way. This local wrapping aspect of the im-

plementation is important because it enables decentraliza-

tion over non-decentralized services. The VSA Executor

essentially flattens the workflow by distributing copies of

all non-terminal chunk vectors into the terminal (bottom

level/worker) nodes. Non-terminal nodes are distributed

to the first child of a parent node to decode the first vector

in a higher level vector. For robustness, the VSA Executor

can be made to distribute more than one copy of the

cleanup objects into other terminal node objects.

5) The Logging Component collects metrics as the work-

flow runs to feed into external processors. Logging cur-

rently collects a trace of the nodes and edges that are

being processed by the workflow.

6) The Visualization Component takes the log output and

generates a DAG layout graph using Graphviz [52].

B. Workflow Execution

The Workflow-Agents (WA) are currently implemented as

python flask services. The VSA component knows the end-

point of the WA which is wrapping the underlying functional

service. The WA has a number of HTTP endpoints/routes that

are used to control it and facilitate message passing between

nodes.

1) /init/ The VSA-Agent POSTs the list of its discovered

input/outputs to its partner Workflow-Agent. The parent

addresses are used as keys in a python tracker dictionary

to collect data on this WA’s inputs.

{
”name”: ”tfl camera”, ”server id”: ”192.168.0.72:4612”),
”child connections”: [[’192.168.0.72’, 4612], [’192.168.0.72’, 4614]],
”parent connections”: [[’192.168.0.72’, 4623], [’192.168.0.72’, 4617]]
}
# /init/ input message from VSA−Agent

{
”192.168.0.72:4623”: ”False”,
”192.168.0.72:4617”: ”False”
}
# Input tracker Dictionary

2) /start/ Those services that do not have any input(parent)

connections call their DoWork() function and send the

resulting data to each /work/ endpoint in this worker’s

child list. Those services that do have parent connections

return and await /work/ messages. All messages are

currently passed as a JSON dictionary with the following

format, (Note that the sender’s listening address:port is used for the

server id field because it uniquely identifies the sender.)

{
”name”: ”tfl camera” # The Sender’s name string
”server id”: ”192.168.0.72:4612” # The Sender’s server address
”data”: ”A valid JSON serializable python object”
”status”: ”good” # Alternatively ”UNEXPECTED”
}
# Workflow Agent: Work data message.
# Input and output messages have the same format.

3) /work/ On receipt of a ’work’ message each work mes-

sage is stored in the input tracker until all inputs have

been received. At this point, the DoWork() function is

called passing in the data from the messages it received.

Any output from the DoWork() function is then sent to

each /work/ endpoint in this worker’s child list. If the

Workflow-Agent receives an empty child connections list

via the /init/ message it is considered a terminal node and

POSTS its output, if any, back to the known Node-RED

listener.



4) DoWork() The DoWork function is specific to each

task and must be customized by the developer who is

implementing, or wrapping, a real service. For a producer

service, e.g., a tfl camera, it simply packages and returns

its data. For a producer-consumer, it processes the data

collected and returns a packaged response which will

usually be some transformation of its input data.

Further details of the VSA platform and workflow execution

can be found in [11].

VIII. A MATHEMATICAL MODEL FOR VSA VECTOR

TRUNCATION OPTIMIZATION

In Section III-A we explained that the symbolic vectors we

use are typically 10,000 bit vectors. In previous work, we

have maintained the vector size and have exchanged vectors

of this size irrespective of the number of bound sub-vectors

that it contains. One of the important properties of these large

binary vectors is that they are a distributed or holographic

representation of the bound sub-vectors. As such, if the

number of sub vectors is small then successful comparisons

can still be made if both vectors are truncated to the first

n-bits. This holographic property of the symbolic vectors sug-

gests an approach for compressing the message payloads that

are exchanged over the communications network. Essentially

vectors can be truncated without effecting the VSA bindings

and comparison performance. In this section, we consider the

mathematical basis for such a scheme and later, in Section IX,

we describe how the scheme is used in practice and the typical

network bandwidth savings that are possible.

When multiple VSA sub-feature vectors are combined using

majority vote addition the resultant vector is a single VSA

vector of the same size as its sub-features and represents the

set of sub-features. This can be an ordered set, for example,

a workflow composed via Eq. 10, or an un-ordered bag of

roll-filler pairs as described in Section III-B describing the

functionality of a micro-service.

Such compound vectors might be thought of as a represen-

tation of the concept implied by the collection of sub-feature

vectors be it ordered, in the case of a workflow, e.g., track car,

or unordered such as a person record. In VSA, these type

of compound vectors are commonly called chunk vectors and

the number of sub-feature vectors in a chunk is its ChunkSize

[46, 53].

An important property of such chunk vectors is that the

distribution of 1s and 0s remains random. This is because

chunks are ultimately made from random atomic vectors at

the bottom of the chunk hierarchy. Note that, when binding

via Eq. 8 the permutation vectors ensure that each sub-feature

vector is orthogonal to the other vectors in the sum.

Another important property is that for VSA vectors ma-

jority vote addition creates a superposition of the sub-vectors

such that each sub-vector is represented by many, but not all,

binary bits of the chunk vector and each sub-vector has a

unique random distribution of bits in the chunk vector. Hence,

the chunk vector could be considered a digital analogue of

a hologram in that each sub-vector is represented equally in

any reasonably long sub-segment of the chunk vector. For

example, the expected hamming distance of a chunk vector

S containing two sub-vectors S = [A+B] is HD = 0.25. This

means that 75% of the bits in S will match to A and a different

75% of the bits in S will match with B. If we compare S to

a random vector not contained S then it is easy to see that

50% of the bits will match. Thus, 25% of the bits in A, (or B)

actively differentiate it from a random vector. If we take any

reasonable length segment of S, for example, the first 1000

bits and perform a hamming distance comparison to A we

will still get approximately the same 0.25 result. Hence, if

there are only a small number of sub-vectors in a chunk then

we can truncate the chunk vector before transmission and any

listening VSA-Service agent will still be able to match to the

vector. On ’seeing’ a truncated vector the VSA-Service simply

truncates its vector description to the same length and performs

a hamming distance match.

The limit to which a chunk-vector can be truncated whilst

maintaining the ability to detect the sub-vectors it contains

is directly related to the number of sub-vectors contained.

The degree of similarity between sub-vectors in the known

vocabulary/cleanup memory is also an important factor in

determining the minimum size to which a chunk vector can

be truncated. When matching to a truncated chunk vector, it

is necessary to be able to distinguish between the actual sub-

vector embedded in preference to some similar sub-vector that

is not part of the chunk. Truncating a chunk vector to its

minimum useful size is a direct corollary for the capacity of a

chunk vector which has been extensively studied [13, 16, 53].

Since VSA vectors are effectively an IID sequence of 1s and

0s with probability 0.5 they can be effectively modelled via

the binomial distribution as shown in Fig. 7.

For a VSA vector of dimension D, Eq. 13 shows the

expected value (normalized hamming distance) µy of a single

sub-vector when it is compared to a chunk vector containing

n sub-vectors.

µy = 1− 1

2m

m

∑
i=⌊m/2⌋

(

m

i

)

{

m = n i f n even.

m = n−1 i f n odd.
(13)

where
(

m

i

)

(14)

is the number of combinations of i from m. The corresponding

variances are given by:

σy =
√

µy ∗ (1−µy)/D

σx =
√

µx ∗ (1−µx)/D

(15)

The combined probability distribution is:

N(µx −µy, σ
2
x +σ

2
y ) (16)

The probability of decoding one sub-vector successfully is

given by:
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Fig. 7: Vector hamming distance distributions for random

vectors with mean µx = 0.5 and a vector comprising m

sub-vectors having a mean µy. Also shown is the resulting

combined probability distribution.

P1 =
∫ 0

∞
N(µx −µy, σ

2
x +σ

2
y )

= 0.5

(

1+ er f

(

−(µx −µy)√
2
(

σ2
x +σ2

y

)1/2

))

(17)

and similarly probability of decoding all m vectors is given

by:

Pm = (1−P1)
m(m−1) (18)

Using Eq. 13 through Eq. 17 it is possible to compute

the minimum number of bits that are required to ensure that

the unbound target service vector will be correctly matched

with the corresponding service vector, in cases where all the

service vectors are orthogonal (i.e., 0% similarity) and for

different levels of similarity between the target service and

other services. This is shown in Fig. 8.

The different curves show the minimum number of bits

needed for various levels of similarity between the target ser-

vice vector and other service vectors. The greatest compression

is obtained when all services are orthogonal to each other.

When a potentially matching cognitively enabled service

is attempting to make a comparison between the unbound

vector and its vector it needs to use an appropriate hamming

distance threshold to determine if it does indeed match. The

threshold value is again obtained from Using Eq. 13 through

Eq. 17. The HD-Expected curve is the expected hamming

distance whilst the HD-Upper Bound is the required threshold

value, taking account of variance, to ensure that a match is

only possible with an error of 1 in 10e6. This upper-bound

occurs when the compression method assumes zero similarity

between listening VSA-Services because, referring to Fig 8,

the highest similarity is obtained when expected similarity

between alternate services is zero.
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In the following section we show how the theoretical model

is used in practice.

IX. APPLICATION OF THEORETICAL MODEL IN PRACTICE

The mathematical model presented in Section VIII can be

applied to complex workflows, which involves multiple levels

of symbols that are combined (bound) together to represent

higher concepts (services and workflows). In practice, the

binding strategy, along with the data representation, ultimately

has an impact on the level we can compress (truncate)

the vectors whilst maintaining the comparable integrity of

the vectors we wish to differentiate between. To highlight

this, consider the extreme case in which we are required to

differentiate between two vectors that are only different in

one, unknown, bit position. Clearly, no compression would be

possible. In other words, the number of symbols we choose

to combine along with commonality, (or similarity factor)



of those combined vectors between different higher level

concepts defines the probabilistic bounds on the the amount we

can truncate the vectors during transmission on the network.

As a simplified example, consider the case where we want to

compare workflow vectors built from a limited set of defined

symbols:

1) SINE +FFT +POWER SPECT RUM

2) SINE +FFT +AUTO CORRELAT ION

3) AUDIO ST REAM+AUTO CORRELAT ION

+EV ENT DET ECT ION

4) SINE +EV ENT DET ECT ION +DEEP LEARNING

In the above simple example, comparing at the workflow

level, workflow 1 has a 66% similarity to any other workflow

in the network. This is the same for Workflow 2. Workflow 3,

due to ordering (recall that the binding process contains a per-

mutation, see Eq. (8), to establish ordering), has 0% correlation

with other workflows. Workflow 4 has 33% correlation with

other workflows in the system. It is intuitive to see, in this case,

that Workflow 3 should have the best level of compression,

followed by Workflow 4, then Workflows 1 and 2 would have

the worst rate of compression. This concept is used within the

overall strategy, which can be described with the aid of Fig.

8 and Fig. 9.

We applied these ideas to our original test-cases which

were fully described in [10]. All service descriptions (service

objects) and workflows graphs are still built with 10kbit

VSA vectors as described in III-B and workflow objects are

built using Eq. (8). The discovery and orchestration scheme

remains unchanged as described in Section III-B, except for

the inclusion of the minimum vector size calculation and

truncation of the vectors before transmission.

Workflow 10k s60 s50 s60% s50%

ACT 1 72.71 57.15 49.57 78.60 68.18

ACT 2 61.74 48.74 43.14 79.37 69.87

ACT 3 78.25 62.21 54.39 79.50 69.52

ACT 4 55.55 45.25 38.72 81.46 69.71

ACT 5 59.37 46.93 40.86 79.06 68.83

TABLE I: Bandwidth savings (MB) and compression ratio

for Hamlet workflow, chunk size variable based on sentence

length.

Workflow 10k s50 s40 s50% s40%

Epigen 24 0.87 0.45 0.35 53.23 41.94

Montage 25 1.24 0.66 0.52 56.51 44.15

Inspiral 40 1.43 0.77 0.60 58.08 45.54

Inspiral 100 3.66 2.03 1.59 53.85 41.96

Montage 100 6.07 3.43 2.68 55.46 43.44

Epigen 997 34.48 19.95 15.62 58.09 45.35

Inspiral 1k 33.69 19.57 15.28 51.72 40.23

Montage 1k 59.07 34.31 26.90 57.86 45.30

TABLE II: Bandwidth savings (MB) and compression ratio

for discovery of various Pegasus worklfows, ChunkSize = 23.

The interest here was to investigate how much bandwidth

could be saved by truncating the vector requests for both

Workflow 10k s50 s40 s50% s40%

Epigen 24 0.83 0.51 0.40 60.94 48.19

Montage 25 1.22 0.79 0.62 64.96 50.82

Inspiral 40 1.39 0.90 0.69 64.32 49.64

Inspiral 100 3.57 2.49 1.92 67.71 53.78

Montage 100 5.89 4.16 3.24 70.56 55.01

Epigen 997 32.54 23.55 18.69 72.39 57.44

Inspiral 1k 31.97 23.13 18.18 72.36 56.87

Montage 1k 57.07 41.51 32.44 72.74 56.84

TABLE III: Bandwidth savings (MB) and compression ratio

for discovery of various Pegasus worklfows, ChunkSize = 29.
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Fig. 10: Minimum message size (No Bits) for chunk vectors

containing n sub-feature vectors.

discovery and orchestration, on the fly, based on the number

of sub-vectors that each VSA concept vector contains. The

owner of every VSA concept vector knows how many sub-

vectors it contains (since it was built by adding sub-vectors)

and therefore it can use the information contained in Fig. 8

to calculate the minimum vector size needed to transmit its

vector. For example, the ’Hamlet’ workflow vector contains

seven sub-vectors (the five acts plus some meta-data). If the

system can assume it is safe to use a similarity factor of 50%

the Fig. 8 indicates that the 10kbit vector can be truncated

to 1680 bits. This vector is unbound to reveal the Act 1

vector and multicast to the network. Each service compares

this vector with the first 1680 bits of their vector and measure

the hamming distance. Since the number of bits is now 1680

the service computes the threshold from the information in Fig.

9, which is a value of 0.42, and if the measured hamming

distance is less than the threshold then the service follows

the protocol for determining if it should respond or not. If it

responds and is selected then it takes its clean vector which

is 5 scenes long and requiring ten vectors so it truncates the

vector to 2751 bits and the process continues.

Table I shows the results obtained for the bandwidth savings

achieved using the Hamlet linear workflow test-case. For this

test-case we used two different word binding methods, posi-

tional and XOR chaining, when building the representation so



that we were able to manufacture different levels of similarity.

The positional binding scheme creates words vectors that

are similar to each other whereas the XOR chaining scheme

creates unique vectors for words (but not sentences, since the

positional scheme was used at the sentence level in both cases).

In Table I, column ’10k’ is the bandwidth consumed without

vector truncation. Columns ’s60’ and ’s50’ are the bandwidths

consumed when a similarity factor of s60=60% (used for

the positional binding scheme) and s50=50% (used for the

XOR binding scheme). Columns ’s60%’ and ’s50%’ are the

compression ratios obtained for the respective similarity factor.

It is interesting to note that we could not get consistently

clean runs when using a similarity factor of ’s50%’ and the

positional binding scheme, nevertheless the positional binding

scheme allows for better semantic matching of the sentence

and word concepts we are using to model workflow and service

objects in this test-case.

Tables II and III show the bandwidth savings obtained

using the same approach for discovery and connection of

various Pegasus workflow examples. There is less similarity

between differing service objects in these Pegasus examples

and so these runs were conducted at similarity factors of

’s50’ and ’s40’. Note that, the Pegasus workflow examples

were used as a means to test that the VSA architecture could

successfully encode, discover and connect DAG workflows

in a verifiable way. The savings listed represent purely the

savings in the message bandwidth generated for discovery

and parameter passing. We do not suggest that it would be

sensible to attempt to execute these highly data intensive tasks

in our low bandwidth transient environment. No actual data

processing was executed since our CORE/EMANE network

emulator does not have enough compute power. The Pegasus

runs were used to verify that such DAG workflows could be

discovered and connected without a central point of control

and had more hardware been available these workflow tasks

would have been executable.

Fig. 10 shows how compression ratio varies with chunk

size and similarity factor and is an experimental verification

of the theoretical compression ratios shown in Fig. 8. All

graphs where obtained by building the Montage 100 test

case at various chunk sizes and then running discovery on

these workflows using different similarity factors. The obvious

conclusion from Fig. 10 is that small chunk sizes give better

compression ratios and it should be noted that the recursive

nature of Eq. (8) enables the use of small chunk sizes for

concepts containing many sub-features, however, in [11] we

showed that smaller chunk sizes reduce the semantic matching

capabilities of the resulting concept vectors. This is an area

for future investigation.

X. CONCLUSIONS AND FUTURE WORK

In this paper we have identified that the majority of exist-

ing workflows rely on centralized management and therefore

require a stable endpoint to deploy such a manager. One such

workflow system is Node-RED, which is designed to bring

workflow-based programming to the IoT. However, the ma-

jority of scientific workflow systems, and specifically systems

like Node-RED, are designed to operate in a fixed networked

environment, which rely on a central point of coordination to

manage the workflow.

In more dynamic settings, such as MANETs, on demand

workflows that are capable of spontaneously discovering mul-

tiple distributed services without central control are essen-

tial. In these types of environments distributed pathways are

complex, and in some cases impossible to manage centrally

because they are based on localized decisions, and operate

in extremely transient environments. Consequently, in dy-

namic environments, a new class of workflow methodology is

required—i.e., a workflow which operates in a decentralized

manner.

We have described how to migrate Node-RED workflows

into a decentralized execution environment, so that such work-

flows can run on Edge networks, where nodes are extremely

transient in nature. We have demonstrated that such a new

class of workflow can be realized by using vector symbolic

architectures (VSA) in which symbolic vectors can be used

to encode workflows containing multiple coordinated sub-

workflows in a way that allows the workflow logic to be

unbound on-the-fly and executed in a completely decentralized

way.

We have demonstrated the feasibility of such an approach by

showing how we can migrate a centralized Node-RED based

traffic congestion workflow into a decentralized workflow by

adding a cognitive-aware wrapper which uses the VSA to se-

mantically represent the component services and the associated

workflow. The traffic congestion algorithm is implemented as

a set of Web services within Node-RED and we have archi-

tected and implemented a system that proxies the centralized

Node-RED services using cognitively-aware wrapper services,

designed to operate in a decentralized environment.

We further extend this work by introducing a new dynamic

VSA vector compression scheme that compresses vectors

for on-the-wire communication, thereby reducing communi-

cation bandwidth while maintaining the semantic information

content. This algorithm utilizes the holographic properties

of the symbolic vectors to perform compression taking into

consideration the number of combined vectors along with

similarity bounds that determine conflict with other encoded

vectors used in the same context. From the test-case results we

note that, while the resulting bandwidth savings may appear

low in terms of MB saved, and would be not important in

a fixed network infrastructure, savings of 45% in our target

environment will prove to be extremely important. This is

because, for tactical edge military networks, bandwidth can

become a critical resource when unmanned aerial vehicles or

even soldiers move around, distancing themselves from their

nearest neighbour with increasingly less bandwidth and even

becoming fragmented from the network.

Symbolic vector representation can also be used to represent

not just the workflow but also the semantics of the component

services at various levels of semantic abstraction. This leads



directly to the concept of self-describing services and data. We

believe that in future the VSA approach offers the potential

to combine the workflow, self-describing services and data

into vector representations that will enable alternative service

compositions to be automatically constructed and orchestrated

to perform tasks specified at higher levels of semantic de-

scription. Our future work will therefore focus on such self-

describing service compositions in order to realize the vision

set out in [5].
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