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Metal–organic frameworks (MOFs) based on 2,5-
dihydroxyterepthalic acid (DOBDC) as the linker show very
high CO2 uptake capacities at low to moderate CO2

pressures; however, these MOFs often require expensive
solvent for synthesis and are difficult to regenerate. We
have synthesized a Mn-DOBDC MOF and modified it to
introduce amine groups into the structure by functionalizing
its metal coordination sites with ethylenediamine (EDA).
Repeat framework synthesis was then also successfully
performed using recycled dimethylformamide (DMF)
solvent. Characterization by elemental analysis, FTIR and
thermogravimetric studies suggest that EDA molecules are
successfully substituting the original metal-bound DMF.
This modification not only enhances the material’s carbon
dioxide sorption capacity, increasing stability to repeated CO2

sorption cycles, but also improves the framework’s stability
to moisture. Moreover, this is one of the first amine-modified
MOFs that can demonstrably be synthesized using recycled
solvent, potentially reducing the future costs of production at
larger scales.
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1. Introduction

Among the greenhouse gases highlighted under the Kyoto Protocol, carbon dioxide is a significant
contributor to climate change [1]. Significant effort has been made to develop materials that can capture
and remove carbon dioxide from process streams and flue gases. These materials include porous
adsorbents, which are solid-state alternatives to the well-known amine scrubbing technologies for CO2

capture and sequestration; they have potentially lower energetic costs, greater environmental
sustainability and regenerability [2]. Adsorption processes can be operated in either the pressure or
temperature swing mode, or in conjunction with membrane systems. Metal−organic frameworks (MOFs)
are a class of nanomaterials comprising metal coordination sites bridged by organic ligands [3–5]. These
organic/inorganic three-dimensional hybrid networks often have well-defined structures, are commonly
highly crystalline and can have very high surface areas. MOF materials with tunable physical and
chemical properties have a wide range of applications in gas sorption and separations [6–12], catalysis
[13–15] and contaminant removal [16,17]. Substantial research efforts have been made on CO2 gas
adsorption applications. However, many MOFs adsorb CO2 by weak physisorption, such that their CO2

selectivity from low-pressure flue gases is very low [18]. Humidity presents a significant challenge for
porous adsorbents, as water can hydrolyse and denature the framework materials [19]. Water molecules
can disrupt coordination bonds between the organic ligands and the metal centres, resulting in the
disintegration of the MOF structure. Increasingly, however, water-stable MOFs are being reported
including examples such as UiO-66, MIL-101, NOTT-400 and NOTT-401 [20–22].

Post-synthetic MOF functionalization can impart desirable properties to the MOF materials which
were not attainable using direct synthesis. Framework stability enhancement achieved by amine
functionalization has been attributed to masking of the coordinately unsaturated hydrophilic metal
sites by the linking amino groups, while the alkyl groups such as ethylene bridges in ethylenediamine
(EDA) can impart hydrophobicity to the MOF structure, thus minimizing water uptake and
consequent dissociation of the coordination bonds [23]. Numerous functionalization methods have
been reported, ranging from ‘click’ chemistry, to linker modification, and to pore impregnation [24].
Encapsulation of active species within MOF networks using impregnation enables MOF morphology
preservation and enhanced adsorption applications, especially for carbon dioxide gas capture [25,26].

2,5-Dihydroxyterephthalate linker-based MOFs have been reported to have attractive carbon dioxide
capture due to their very high CO2 uptake, favourable structural characteristics, enhanced surface areas
over zeolites and ease of synthesis [27]. The large density of unsaturated metal centres and cylindrical
pore structure of the MOF-74 family of frameworks provides readily accessible strong binding sites for
CO2, but these MOF materials are moisture sensitive [28]. Additionally, while MOF materials based on
the 2,5-dihydroxyterephthalic acid (DOBDC) linker have shown exceptionally high CO2 uptake
capacities at low to moderate CO2 pressures, these MOFs often require expensive solvent for synthesis
and are difficult to regenerate [29]. Even though Mn-DOBDC MOFs have been synthesized in ‘green’
solvents, including water, there are no reports of re-using the original synthesis solvent to make
additional batches of MOF material [30]. We have recently reported the modification of a copper-
based MOF during synthesis by doping with hexamethylenetetramine, resulting in the enhancement
of carbon dioxide sorption over the unmodified framework [31]. This present study is an attempt to
(i) improve on this method by incorporating basic EDA molecules within a new Mn-DOBDC MOF
structure to enhance carbon dioxide capture and increase water stability, and (ii) cut the cost for large-
scale MOF synthesis by producing the Mn-DOBDC MOF using recycled solvent, demonstrating the
potential for routes towards low-cost efficient solid-state amino-MOF adsorbents.
2. Material and methods
All the chemicals were purchased from Merck Sigma-Aldrich and used as received.

2.1. {C14H18MnN2O8}∞ (Mn-DOBDC) synthesis
To prepare Mn-DOBDC, Mn(NO3)2.6H2O (574 mg, 2 mmol) and 2,5-dihydroxyterephthalic acid (396 mg,
2 mmol) were dissolved in 50 ml of dimethylformamide (DMF). The contents were sonicated at 30°C for
20 min then the solution was dispensed into five pressure tubes which were heated at 110°C for 26 h. The
solid product was collected by filtration. Crystals obtained thus were washed three times with 10 ml
methanol and then three times with 10 ml DMF. The resulting crystals were activated by heating at



Figure 1. Reaction scheme for EDA-Mn-DOBDC synthesis.
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130°C under dynamic vacuum on a Schlenk line for 14 h. This yielded brown crystals of Mn-DOBDC
(89% yield).

2.2. Mn-DOBDC post-synthetic amine modification
Synthesized Mn-DOBDC crystals were modified using EDA. About 200 mg of Mn-DOBDC crystals
were added to 20% EDA solution in ethanol (5 ml). Contents were heated under reflux with stirring
for 8 h. The product obtained was filtered and then washed, first with DI water then with ethanol,
to remove any unreacted EDA. The sample was dried for 8 h at room temperature to afford off-
white crystals of EDA-Mn-DOBDC. The crystalline product was activated by heating at 140°C under
dynamic vacuum on a Schlenk line for 14 h. Synthesis experiments were performed thrice, to ensure
reproducibility of results, with an average yield of 76%. The reaction scheme for EDA-Mn-DOBDC is
shown in figure 1.

2.3. Solvent recovery and recycling
DMF is a commonly used aprotic solvent with a high boiling point. It decomposes at much higher
temperatures than those used in this study and can hydrolyse in the presence of acid/base [32]. Pure
dry DMF was used and solvent recycling was trialled in this study. All reagents used in these MOFs
synthesis are low-cost except the solvent (dimethylformamide; Sigma-Aldrich Corporation online (UK)
pricing 31 July 2019 of £61.40 for 1 l, ACS Reagent grade, 99.8%, product code 33120–1 L-M). Fresh
DMF was used for batch-I synthesis. Filtrate solvent after crystal collection by sintered filtration was
used for batch-II synthesis. The batch-II MOF obtained was characterized using powder X-ray
diffraction (PXRD) and compared against synthesized batch-I MOF.

2.4. Characterization
Single-crystal X-ray diffractiondata forMn-DOBDCMOFwas collected on anAgilent SuperNovaDualAtlas
diffractometer with a Mo source and a CCD detector. Data reduction and integration were performed using
CrysAlisPro. PXRD patterns were collected on X’PertPro Panalytical Chiller 59 diffractometer using copper
Kα (1.54 Å) radiation. The 2θ range to record diffraction pattern was from 5 to 40 degrees. A Shimadzu IR
Affinitt-1S spectrometer was used to obtain IR spectra. Thermogravimetic analyses (TGA) were performed
using a Perkin Elmer Pyris 1 TGA equipment. The temperature was increased from 25°C to 700°C at a
heating rate of 5°Cmin−1 under a flow of air (20mlmin−1). Elemental analyses were performed using a
FlashSmart NC ORG elemental analyser.

CO2 adsorption experiments were performed on a Quantachrome Isorb-HP100 volumetric type
sorption analyser. Samples were degassed at 150°C under vacuum for 10 h and then back-filled with
helium gas, prior to CO2 sorption studies. Sorption studies were performed at two selected
temperatures, 273 and 298 K, over a pressure range of 0.5–15 bar. N2 adsorption studies of prepared
samples were conducted to analyse surface area and pore volume using a Quantachrome Nova 2200e
at 77 K at a relative pressure of P/PO= 0.05–1.0.
3. Results and discussion
3.1. Characterization
The Mn-DOBDC MOF crystallizes in a monoclinic cell with a=9.6916(5) Å, b=11.8690(6) Å and
c=15.3430(9) Å, and α=90°, β=102.788(6)° and γ=90°, with broadly rhomboidal pores occupied by
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Figure 2. Crystal structure of Mn-DOBDC. (a) Unit cell showing the Mn (II) and ligand coordination environments; (b) view down the
b-axis of the structure, showing the carboxylate bridging of adjacent Mn (II) ions; (c) view down the a-axis of the structure showing
the rhombohedral channels. DMF molecules are omitted in (b) and (c) for clarity. Purple atoms represent Mn, red are oxygen, grey
are carbon, blue are nitrogen and white are hydrogen atoms.
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Figure 3. (a) PXRD patterns for Mn-DOBDC (black, simulated from SCXRD), Mn-DOBDC (red, synthesized herein), EDA-Mn-DOBDC
(blue, EDA modified). (b) Mn-DOBDC synthesis with fresh DMF (batch-I) and Mn-DOBDC synthesis with recycled DMF (batch-II).
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metal-bound DMF solvent molecules. Use of pure DMF as solvent produced this distinct structure
compared to related DOBDC linker-based MOFs [23]. The Mn-DOBDC cell comprises one Mn,
fourteen carbon atoms, two nitrogen, eight oxygen and eighteen hydrogen atoms. Each Mn atom is
octahedrally coordinated with six oxygen atoms; two from axially coordinated DMF and four from
carboxylate groups that each bridge two adjacent Mn ions. Further details are given in electronic
supplementary material, table S1 and the structure is shown in figure 2.

Electronic supplementary material, figure S1 shows the Fourier transform infrared (FTIR) spectra of
unmodified Mn-DOBDC and EDA-modified Mn-DOBDC. FTIR collected for prepared materials
confirmed the presence of representative functional groups indicative of Mn-DOBDC MOF formation.
Sharp peaks representative of symmetric and asymmetric stretching of carboxylates bonded to Mn are
observed at 1535 and 1367 cm−1 in Mn-DOBDC sample [33]. Both samples contain a broad band at
around 3250 cm−1, which can be attributed to O–H stretching vibrations of adsorbed atmospheric
water. This broad band centred around 3250 cm−1 is notably reduced in the EDA-Mn-DOBDC sample,
which is perhaps indicative of slower water adsorption as a result of pore-blocking by adsorbed EDA
molecules incorporated into the MOF structure and is consistent with the improved water stability of
the modified MOF (see below) [34]. Bands in the 1600 to 800 cm−1 region are due to aromatic ring
stretching [35,36]. In addition to peaks coincident with Mn-DOBDC sample, the EDA-Mn-DOBDC
spectrum has new peaks at 2915 and 2830 cm−1 that can be ascribed to stretching vibrations of C–H
bonds introduced by the incorporation of EDA molecules [37,38] and bands at 3375, 3280, 2935, 2815
and 1540 cm−1 which match well with the FTIR spectrum of EDA, confirming that EDA has been
successfully incorporated into the Mn-DOBDC MOF [39,40].

The PXRD patterns of the as-synthesized Mn-DOBDC, the pattern simulated from the single-crystal
XRD and the EDA-Mn-DOBDC-modified material are shown in figure 3a. The similarity of all three is
excellent, indicating the absence of amorphous material, good phase purity and retention of the
overall MOF structure on modification with EDA.

The FTIR spectrum of fresh DMF used for the batch-I Mn-DOBDC synthesis closely resembles the
FTIR spectrum of the recycled DMF recovered after the collection of the batch-I product (electronic
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Figure 4. (a) PXRD patterns for Mn-DOBDC as-synthesized (black), after soaking in water for 24 h (red), 48 h (blue) and after 72 h
(green). (b) PXRD patterns for EDA-Mn-DOBDC as-synthesized (black), after soaking in water for 24 h (red), 48 h (blue) and after
72 h (green).
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Figure 5. CO2 adsorption isotherms in mmol g
−1 for Mn-DOBDC and EDA-Mn-DOBDC at 273 K (a) and 298 K (b).
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supplementary material, figure S2). The latter solvent was then used to successfully make batch-II of
Mn-DOBDC. Figure 3b compares the batch-I and batch-II product PXRD patterns, which indicate that
the second synthesis produced highly crystalline Mn-DOBDC using the recycled DMF (figure 3b).
SEM images of batch-I and batch-II products are shown in electronic supplementary material,
figure S4. Small changes in some peak intensities observed for these MOF samples may be ascribed to
differences in crystallite size between samples, or preferred orientation effects obtained by slight
changes in sample preparation [36,38].

Water stability of the MOFs was also explored: the as-synthesized samples of Mn-DOBDC and
EDA-Mn-DOBDC were soaked in water at room temperature for three days. PXRD patterns were
collected and compared for both materials every 24 h (figure 4a,b). The corresponding experimental
PXRD results indicate that Mn-DOBDC MOF suffers significant loss of crystallinity after 24 h of water
exposure while EDA-Mn-DOBDC retains a high degree of crystallinity even after 48 h of soaking,
demonstrating the much improved water stability of EDA-Mn-DOBDC.

TGAwas performed on both Mn-DOBDC and EDA-Mn-DOBDC (electronic supplementary material,
figure S3). For both MOFs, there is no significant weight loss observed below 100°C, indicating there was
little surface-adsorbed moisture. In both samples, there is then an initial weight loss step, between
approximately 100 and 200°C which we ascribe to the loss of coordinated DMF in Mn-DOBDC and
the loss of coordinated EDA in EDA-Mn-DOBDC. This weight loss step occurs at approximately 25°C
lower for the EDA-Mn-DOBDC, consistent with the higher volatility of EDA than DMF. For both
samples, linker degradation (about 47% in Mn-DOBDC and 51% in EDA-Mn-DOBDC) occurs as a
gradual weight loss in both MOFs as temperature increases above approximately 200°C. No further
weight losses were observed above 460°C for Mn-DOBDC and 500°C for EDA-Mn-DOBDC.

The SEM images of particles of Mn-DOBDC and EDA-Mn-DOBDC (electronic supplementary
material, figure S4) show a range of particle sizes including well-formed hexagonal crystals measuring
approximately 2–4 µm that maintain their morphology after amine functionalization.
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Table 1. Surface area, CO2 uptake and Qst values for selected DOBDC linker-based MOFs.

material
BET
(m2/g)

temperature
(K)

pressure
(bar)

CO2 adsorption
(wt.%)

Qst
(KJmol−1) reference

Fe2(DOBDC) 1345 298

308

318

1 30.8

27.3

22.9

33 [42]

Mg2(DOBDC) 313 1 30.8 [43]

Mg(DOBDC)

EDA

298 1 7.04 30 [44]

Mg(DOBDC) 1525 298

313

328

10 37.4

32.6

29.9

[25]

Py-Ni-DOBDC 409 298 1 12 [25]

Ni-MOF 74 1252 298 1 19.4 [45]

Mg-MOF-74 1416 298 1 30.1 [45]

Mg-DOBDC 1415.1 298 1 25 47 [46]

Co-DOBDC 1089.3 298 1 21.6 37 [46]

Ni-DOBDC 1017.5 298 1 20.5 42 [46]

Mn-DOBDC 1256 273

298

1

15

1

15

33

57.3

26.4

44.5

29 present

study

EDA-Mn-DOBDC 1203 273

298

1

15

1

15

40.9

70.4

33.5

57.2

32 present

study
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To confirm the chemical composition of both samples, elemental analyses were performed (electronic
supplementary material, table S2). The empirical formulae calculated on the basis of elemental analysis
for Mn-DOBDC and EDA-Mn-DOBDC are C14H18MnN2O8 and C12H22MnN4O6, respectively, consistent
with a metal : linker :DMF ratio of 1 : 1 : 2 for Mn-DOBDC and metal : linker : EDA molar ratio of 1 : 1 : 2
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for EDA-Mn-DOBDC. This is consistent with the removal of the axially coordinated DMF molecules

(figure 2a) from Mn-DOBDC and replacement with EDA molecules in the amine modification process.

3.2. CO2 adsorption capacities of Mn-DOBDC and EDA-Mn-DOBDC
The CO2 adsorption capacity for both MOF materials was evaluated by monitoring pseudo equilibrium
adsorption uptakes. Initially, samples were degassed at 150°C for 10 h using a heating rate of 5°Cmin−1.
About 200 mg of each sample was used for three consecutive adsorption–desorption cycles at 273 and
298 K with adsorbate pressure ranging between 0.1 and 15 bar. The CO2 capacities calculated at 273 K and
15 bar pressure were 12.5 and 16 mmol g−1 for Mn-DOBDC and EDA-Mn-DOBDC, respectively. This
trend also occurs for adsorption capacities recorded at 298 K (figure 5a). Here we observed that CO2

uptake for Mn-DOBDC was higher for initial adsorption cycles at both 273 and 298 K, but adsorption
capacity declined considerably under successive cycles (figure 6). This fact perhaps implies that Mn-
DOBDC demands more energy input for its regeneration than applied in this work, possibly making a
CO2 capture process with this adsorbent significantly more energy intensive [41]. By contrast, EDA-Mn-
DOBDC indicated complete regenerability under the desorption conditions used here, showing negligible
decline in CO2 adsorption capacity over six successive test cycles. The N2 adsorption isotherm for the
MOFs was recorded at 77 K (electronic supplementary material, figure S5). The Langmuir and BET
surface areas for Mn-DOBDC MOF were found to be 1583 and 1256 m2 g−1, respectively, while EDA-Mn-
DOBDC revealed lower values of 1415 m2 g−1 (Langmuir) and 1203 m2 g−1 (BET) (table 1). Although the
introduction of the amine into EDA-Mn-DOBDC slightly reduces MOF surface area, CO2 adsorption
noticeably increased compared to various other DOBDC linker-based MOF materials (table 1). The
presence of additional binding sites in MOFs by amine/amide incorporation has been shown to induce
dispersion and electrostatic forces that enhance CO2 gas adsorption [47]. Isosteric heats of adsorption for
Mn-DOBDC and EDA-Mn-DOBDC were calculated from isotherms recorded at 273 and 298 K (see
electronic supplementary material, S1 and Figure S6). Qst at zero loading is approximately 3 kJ mol−1

higher for the amine-modified framework.
4. Conclusion
Competitive carbon dioxide adsorbent-based technologies need sorbents with high gas uptake capacities
and low production cost. Low-cost amine-doping of Mn-DOBDC has produced EDA-Mn-DOBDC,
which demonstrates high CO2 uptake capacity and enhanced stability to water. The addition of
nitrogen atoms by the incorporation of EDA molecules leads to the enhanced adsorption of CO2 gas,
which we ascribe to favourable interactions between CO2 molecules and the nitrogen-modified pores
[48]. Stability enhancement as achieved by amine functionalization may be partially attributed also to
masking of the co-ordinately unsaturated hydrophilic metal sites by the linking amino groups, thus
minimizing water absorption by the MOF, hence minimizing competition between water and CO2 at
the amine binding sites [23]. The moderate isosteric heat of CO2 adsorption (Qst) for EDA-Mn-
DOBDC is highly desirable because of the anticipated lower regeneration energy demand. CO2 uptake
was good, and, significantly, almost negligible CO2 uptake loss was observed over six consecutive
adsorption cycles for EDA-Mn-DOBDC, while only relatively mild regeneration conditions were
required. We were also able to re-use the original synthesis solvent to successfully make a new batch
of the MOF, which is a very promising strategy to improve the cost effectiveness of MOF synthesis.
Finally, the improvement in framework stability to water exposure after modification with EDA makes
this strategy potentially applicable in real-world carbon dioxide capture applications in the future.
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