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Abstract

Recently, 3D face reconstruction from a single image has
achieved great success with the help of deep learning and
shape prior knowledge, but they often fail to produce ac-
curate geometry details. On the other hand, photometric
stereo methods can recover reliable geometry details, but
require dense inputs and need to solve a complex optimiza-
tion problem. In this paper, we present a lightweight strategy
that only requires sparse inputs or even a single image to
recover high-fidelity face shapes with images captured un-
der near-field lights. To this end, we construct a dataset
containing 84 different subjects with 29 expressions under
3 different lights. Data augmentation is applied to enrich
the data in terms of diversity in identity, lighting, expression,
etc. With this constructed dataset, we propose a novel neural
network specially designed for photometric stereo based 3D
face reconstruction. Extensive experiments and comparisons
demonstrate that our method can generate high-quality re-
construction results with one to three facial images captured
under near-field lights. Our full framework is available at
https://github.com/Juyong/FacePSNet.

1. Introduction

High-quality 3D face reconstruction is an important prob-
lem in computer vision and graphics [38] that is related to
various applications such as digital actor [3], face recogni-
tion [5, 48] and animation [3, 21, 40]. Some works have
been devoted to solving this problem at the source, using
either multi-view information [15, 43] or the illumination
conditions [1, 2, 37]. Although some of these methods
are capable of reconstructing high-quality 3D face mod-
els with both low-frequency structures and high-frequency
details like wrinkles and pores, the hardware environment
is hard to set up and the underlying optimization problem
is not easy to solve. For this reason, 3D face reconstruction
from a single image has attracted wide attention, with many
works focusing on reconstruction from an “in-the-wild” im-
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age [35, 17, 14, 18]. Although most of them can reconstruct
accurate low-frequency facial structures, few can recover
fine facial details. In this paper, we turn our attention to the
photometric stereo technique [42], and consider the near-
field point light source setting due to its portability. We aim
to reconstruct high-precision 3D face models with sparse
inputs using photometric stereo under near point lighting.

State-of-the-art sparse photometric 3D reconstruction
methods such as [9, 13] can reconstruct 3D face shapes
with fine geometric details. However, they are mainly based
on conventional optimization approaches with high compu-
tational costs. In recent years, great progress has been made
in deep learning-based photometric stereo [22, 12] that can
estimate accurate normals. However, these existing methods
cannot be directly applied to solve our problem. First, they
mainly focus on general objects with dense inputs, making
them not suitable for our 3D face reconstruction problem
with sparse inputs. Second, they assume parallel directional
lights, which is difficult to achieve in practice especially for
indoor lighting conditions. To solve the sparse photometric
stereo problem fast and well, we must address the following
challenges. First, without the parallel lighting assumption,
calibrating the lighting direction of near-field point light
sources is much more complex and needs to solve a non-
linear optimization problem. Moreover, the reconstruction
problem with less than three input images is ill-posed, and
thus prior knowledge of the reconstruction object is needed.

In this paper, we combine deep learning-based sparse
photometric stereo and facial prior information to recon-
struct high-accuracy 3D face models. Currently, there is
no publicly available dataset of face images captured un-
der near point lighting conditions and their corresponding
3D geometry. Therefore, we construct such a dataset for
the network training. We use real face images captured us-
ing a system composed of three near point light sources
and a fixed camera. Based on this system, we develop an
optimization method to recover 3D geometry along with
calibrating light positions and estimating normals. Using
our reconstructed 3D face models and publicly available
high-quality 3D face datasets, we augment our dataset by
synthesizing a large number of face images with their cor-
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Figure 1. We propose a convolutional neural network based method for face reconstruction under photometric stereo scenario. (a) & (b):
Our dataset for network training consists of photos with different expressions, captured using a system composed of three near point light
sources and a fixed camera. (c): Our proposed method can recover fine details even with a single image input (left). For images captured by
a smartphone, with a hand-held light at locations not seen in our training dataset, our method also works well in this casual setup. (right).

responding 3D shapes. With the real and synthetic data, we
design a two-stage convolutional neural network to estimate
a high-accuracy normal map from sparse input images. The
coarse shape, represented by a parametric 3D face model [6]
and the pose parameters, are recovered in the first stage. The
face images and the normal map obtained from the first stage
are fed into the second-stage network to estimate a more
accurate normal map. Finally, a high-quality 3D face model
is recovered via a fast surface-from-normal optimization.
Fig. 1 shows the pipeline of our method. Comprehensive
experiments demonstrate that our network can produce more
accurate normal maps compared with state-of-the-art pho-
tometric stereo methods. Our lightweight method can also
recover fine facial details better than state-of-the-art single
image-based face reconstruction methods.

2. Related work

Photometric Stereo. The photometric stereo (PS)
method [42] estimates surface normals from a set of images
captured under different lighting conditions. Since the semi-
nal work of [42], different methods have been proposed to
recover surfaces in this manner [44, 20]. Many such methods
assume directional lights with infinite light source positions.
On the other hand, some works focus on reconstruction un-
der near point light sources, using optimization approaches
that are often complex and time-consuming [46, 28, 32]. To
achieve efficiency for practical applications with near point
light sources, we only adopt optimization-based methods
to construct the training dataset and then train the neutral
model for lightweight photometric stereo for 3D face re-
construction. The most related work to our training data
construction step is [9], which proposed an iteration pipeline
to reconstruct high-quality 3D face models.

Deep Learning-Based Photometric Stereo. With the
development of convolutional neural networks, various deep
learning-based approaches have been proposed to solve pho-

tometric stereo problems. Most of them can be categorized
into two types according to their input. The first type requires
images together with corresponding calibrated lighting con-
ditions. Santo et al. [34] proposed a differentiable multi-
layer deep photometric stereo network (DPSN) to learn the
mapping from a measurement of a pixel to the correspond-
ing surface normal. Chen et al. [12] put forward a fully
connected convolutional network to predict the normal map
of a static object from an arbitrary number of images. A
physics-based unsupervised neural network was proposed
by Taniai et al. [39] with both surface normal map and syn-
thesized images as output. Ikehata [22] presented an obser-
vation map to describe pixel-wise illumination information,
and estimated surface normals with the observation map as
input to an end-to-end convolutional network. Furthermore,
Zheng et al. [47] and Li et al. [26] solved the sparse photo-
metric stereo problem based on the observation map. This
type of work assumes lighting directions as prior and can-
not handle unknown lighting directions. The second type
directly estimates lighting conditions and normal maps alto-
gether from the input images. A network named UPS-FCN
was introduced in [12] to calibrate lights and predict surface
normals. Later, Chen et al. [11] proposed a two-stage deep
learning architecture called SDPS-Net to handle this uncal-
ibrated problem. Both types focus on solving photometric
stereo problems under directional lights which is difficult
to achieve in practice, and most of these methods do not
perform well with sparse inputs. In this paper, we solve
the sparse uncalibrated photometric stereo problem under
near-field point light sources.

Single Image-Based 3D Face Reconstruction. 3D face
reconstruction from a single image has made great progress
in recent years. The key to this task is to establish a cor-
respondence map from 2D pixels to 3D points. Jackson
et al. [23] proposed to directly regress a volumetric repre-
sentation of the 3D mesh from a single face image with a
convolutional neural network. Feng et al. [16] designed a



2D representation called UV position map to record 3D po-
sitions of a complete human face. Deng et al. [14] directly
regressed a group of parameters based on 3DMM [6, 7, 31].
All these works can reconstruct the 3D face model from a
single image but cannot recover geometry details. Recently,
this issue has been addressed with a coarse-to-fine recon-
struction strategy. Sela et al. [36] first constructed a coarse
model based on a depth map and a dense correspondence
map and then recovered details in a geometric refinement
process. Richardson et al. [33] developed an end-to-end
CNN framework composed of a CoarseNet and a FineNet to
reconstruct detailed face models. Jiang et al. [24] designed a
three-stage approach based on a bilinear face model and the
shape-from-shading (SfS) method. Li et al. [27] recovered
face details using SfS along with an albedo prior mask and a
depth-image gradient constraint. Tran et al. [41] proposed
a bump map to describe face details and use a hole filling
approach to handle occlusions. Chen et al. [10] recovered
high-quality face models based on a proxy estimation and a
displacement map. For 3D face reconstruction from carica-
ture images, Wu et al. [45] proposed an intrinsic deformation
representation for extrapolation from normal 3D face shapes.

Most existing works approximated the human face as
a Lambertian surface and simulated the environment light
using the spherical harmonics (SH) basis functions, which
is not suitable for the near point lighting condition due to a
large area of shadows. Based on our constructed dataset, we
also design a network that can reconstruct a 3D face model
with rich details from a single image captured under the near
point lighting condition.

3. Dataset Construction
In this paper, we propose a lightweight method to recon-

struct high-quality 3D face models from uncalibrated sparse
photometric stereo images. As there is no publicly available
dataset that contains face images with near point lighting
and their corresponding 3D face shapes, we construct such
a dataset by ourselves. Given face images captured under
different light sources, we would like to solve for the albedos
and the normals of the face model such that the intensities
of the resulting images under calibrated lights are consistent
with the observed intensities from the input images. This
problem may be ill-posed with only three input images due to
the presence of shadows. Therefore, we utilize a parametric
3D face model as prior knowledge, and propose an opti-
mization method to estimate accurate normal maps. In this
section, we first introduce some related basic knowledge, and
then present how we construct the real image-based dataset
and synthetic dataset.

3.1. Preliminaries

Imaging Formula. We approximate the human face as
a Lambertian surface and simulate the near point lighting

condition using the photometric stereo. Given a point light
source at position Pj ∈ R3 with illumination βj ∈ R, the
imaging formula for a point i can be expressed as [46]:

Iij(Vi,Ni,ρi) , ρi

(
Ni ·

βj (Pj −Vi)

‖Pj −Vi‖32

)
, (1)

where Vi,Ni ∈ R3 are the position and normal of the point,
and Iij ,ρi ∈ R3 are the intensity and albedo in the RGB
color space, respectively. Given the captured images, the
photometric stereo problem with near point light sources is
to recover lighting positions and illuminations, the vertex
position, albedo and normal of a point on the object.

Parametric Face Model. 3DMM [6] is a widely used
parametric model for human face geometry and albedo. We
use 3DMM to build a coarse face model for further optimiza-
tion. In general the parametric model represents the face
geometry G ∈ R3nv and albedo A ∈ R3nv as

G = G + Bidαid + Bexpαexp, (2)

A = A + Balbedoαalbedo, (3)

where nv is the number of vertices of the face model; G ∈
R3nv and A ∈ R3nv are respectively the mean shape and
albedo; αid ∈ R100, αexp ∈ R79 and αalbedo ∈ R100 are cor-
responding coefficient parameters specifying an individual;
Bid ∈ R3nv×100, Bexp ∈ R3nv×79 and Balbedo ∈ R3nv×100

are principle axes extracted from some 3D face models by
PCA. We use the Basel Face Model (BFM) [31] for Bid and
Balbedo, and the FaceWarehouse [8] for Bexp.

Camera Model. We use the standard perspective projec-
tion to project the 3D face model to the image plane, which
can be expressed as

qi = Π(RVi + t), (4)

where qi ∈ R2 is the location of vertex Vi in the image
plane, and R ∈ R3×3 is the rotation matrix constructed from
Euler angles pitch, yaw and roll, t ∈ R3 is the translation
vector, and Π : R3 → R2 is the perspective projection.

3.2. Construction of Real Dataset

Our real dataset is derived from photometric face images
captured using a system consisting of three near point light
sources (on the front, left and right) and a fixed camera.
The dataset contains 84 subjects covering different races,
genders and ages, with each subject captured under 29 differ-
ent expressions. All images are captured at the resolution of
1600×1200. Similar to [9], we design an optimization-based
method to reconstruct a 3D face model with rich details from
a set of images captured under different near point light-
ing positions and illuminations. The method in [9] uses the
face shape prior for lighting calibration, then estimates the



(a)                        (b)

Figure 2. (a) Some results of our constructed real dataset. From left
to right: input images, estimated normals and the reconstructed face
models. (b) Updated normals with method in [9] that chooses at
least three reliable lights to update normals after handling shadows.
This method can only update a part of normals due to the large area
of shadows and only three input images. Thus it is not suitable for
our situation.

normals and recovers the depths in the image plane. Differ-
ent from existing photometric stereo methods which always
need more than three images, we have only three images as
input and there may exist under-determined parts caused by
shadows (Fig. 2 (b)). To alleviate this problem, we utilize
the parametric model to help recover the normals. From the
recovered coarse shape and updated normals, we can recover
the 3D face shape with fine details as shown in Fig. 2 (a).
Our algorithm pipeline is shown in Fig. 3.

In order to provide a good initial 3D face shape for the
following optimization, we first generate the coarse face
model with three image inputs using the optimization-based
inverse rendering method in [24]. Different from the problem
setting in [24] which has only one input image, we have
three face images that share the same shape, expression
and albedo parameters but with different lighting conditions.
After recovering the coarse face model, we calibrate the light
positions P ∈ R3×n and illuminations β ∈ Rn using the
calibration method proposed in [9]. Since the Lambertian
surface model is invalid in regions under shadows, we use a
simple filter to determine the available light sources Li for
each triangle of the 3D face mesh by

Li =
{
j | Nf

i · (Pj −Vf
i ) > 0, j = 1, . . . , n

}
(5)

where Pj ∈ R3 is the position of the jth light source, and
Nf

i ,V
f
i ∈ R3 are the normal and centroid of the ith triangle.

We only use available light sources in Li for each triangle to

Normal Estimation

Lighting Calibration

Vertex Recovery

Coarse Model

Figure 3. The algorithm pipeline of real dataset construction.

update its normal. During photometric stereo optimization,
we first optmize the triangle normals and then recover the
vertex positions from the updated normals.

Normal Update. As the 3D face mesh recovered by the
parametric model only contains low-frequency signals, rich
geometry details are lost. Thus we refine the normal of
each triangle based on the photometric stereo. The updated
normal N̂ and albedo ρ̂ are optimized via:

min
ρ̂,N̂

∑
i∈Fv

∑
j∈Li

∥∥∥Iij − Iij(V
f
i , N̂

f
i , ρ̂

f
i )
∥∥∥2

2

+ µ1

∥∥∥N̂−N
∥∥∥2

F
+ µ2

∑
i∈Fv

∥∥∥∥∥∥ρ̂f
i −

1

|Ωi|
∑
j∈Ωi

ρ̂f
j

∥∥∥∥∥∥
2

2

s.t.
∥∥∥N̂f

i

∥∥∥
2

= 1 (i = 1, . . . , |Fv|). (6)

Here the first term penalizes the deviation between the ob-
served intensity Iij from the input images and the intensity
resulting Iij evaluated with Eq. (1) using the updated albedo
ρ̂f
i and the updated normal N̂f

i at each triangle centroid Vf
i ,

with Fv representing the set of visible triangles on the initial
face model. Iij is determined by projecting the centroid Vf

i

onto the image plane and performing bilinear interpolation
of its nearest pixels. The second term penalizes the deviation
between the updated normals N̂ ∈ R3×|Fv| on visible tri-
angles and the corresponding normals N ∈ R3×|Fv| on the
initial face model. The last term regularizes the smoothness
of the updated albedo, with Ωi denoting the set of visible
triangles in the one-ring neighborhood of triangle i. We
solve Eq. (6) via alternating minimization. Specifically, we
optimize N̂ while fixing ρ̂, and then optimize ρ̂ while fixing
N̂. This process is iterated until convergence.

Vertex Recovery. After updating the triangle normals N̂,
we optimize the face shape as a height filed Z ∈ Rm over
the image plane to match the updated normals, where m is
the number of the pixels covered by the projection of the
coarse face model. We first transfer N̂ to pixel normals via
the standard perspective projection. Then we compute Z via:

min
Z

∥∥∥Ñ−N0
∥∥∥2

F
+ w1

∥∥Z− Z0
∥∥2

2
+ w2 ‖∆Z‖22 . (7)
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Figure 4. The process of our data augmentation methods. (a) We
generate different geometries by randomly generating shape and
expression parameters from 3DMM [6] and transfer albedos ob-
tained in our real dataset. (b) We use non-rigid ICP [4] to fit the
face models in Light Stage [29] with the mean shape, together with
albedos in our real dataset to generate training data.

Here Z0 ∈ Rm is the initial height field obtained from the
coarse face model. ∆Z ∈ Rm denotes the Laplacian of the
height field, and the third term in Eq. (7) is to regularize the
smoothness of height field. N0, Ñ ∈ R3×m collect the pixel
normals derived from the triangle normals N̂ and from the
height field Z, respectively. Specifically, to derive the normal
Np for a pixel p from the height field, we first project the
pixel back into its 3D location Vp by inverting the standard
perspective projection. Then Np is computed as

Np =
e2 × e1 + e3 × e2 + e4 × e3 + e1 × e4

‖e2 × e1 + e3 × e2 + e4 × e3 + e1 × e4‖
,

where e1, e2, e3, e4 denote the vectors from Vp to the 3D
locations of p’s four neighbor pixels in counter-clockwise
order. This non-linear least squares problem is solved with
Gauss-Newton algorithm.

3.3. Construction of Synthetic Dataset

To improve the coverage of our dataset, we further con-
struct a synthetic dataset. We use albedos and 3D face mod-
els obtained from the Light Stage [29], a publicly available
dataset containing 23 people with 15 different expressions
and their corresponding high-resolution 3D models, as the

ground truth. Then we render synthetic images under three
random point light positions and illuminations calibrated
from our real dataset using Eq. (1).
Data augmentation. In order to fit the requirement of fur-
ther network training we carry out a data augmentation pro-
cess mainly from the following two aspects. On the one
hand, we use the parametric model introduced in Sec. 3.1
to present different face geometry structures and albedos
by randomly generating parameters {αid,αexp,αalbedo}. We
transfer the albedos obtained from our real dataset to such
shape models with randomly generated shape parameters,
since our initial coarse model is based on the same topology.
On the other hand, to have accurate parametric models as
ground truth for network training on our synthetic dataset,
we register a neutral parametric model to 3D face models
obtained from the Light Stage using the non-rigid ICP [4],
and find closest points between these two types of models as
their correspondence. We further transfer albedos in our real
dataset according to this correspondence. After generating
those mentioned models, we render three images for each
model with point light sources calibrated in our real dataset.
The process is shown in Fig. 4.

4. Deep Photometric Stereo for 3D Faces
The optimization-based method described in Sec. 3.2

can recover high-quality facial geometry from several face
images captured under different point lighting conditions,
but the procedure is time-consuming and requires at least
three images as input due to the ambiguity of geometry and
albedo. To alleviate these problems, we propose a CNN-
based method to learn high-quality facial details from an
arbitrary number of face images captured under different
near point lighting conditions. Similar to the procedure in
Sec. 3.2, we use a two-stage network to regress a coarse face
model represented with 3DMM and a high-quality normal
map respectively. With the power of CNN and our well-
constructed dataset, our method can efficiently recover high-
quality facial geometry even with a single image, which
is not possible for optimization-based photometric stereo
methods and other deep photometric stereo methods that do
not utilize facial priors. Better results can be obtained with
more input images. The network structure is shown in Fig. 5.

4.1. Proxy Estimation Network

At the first stage, we learn the 3DMM parameters and
pose parameters directly from a single image to obtain a
coarse face model as a proxy for the second stage with a
ResNet-18 [19]. The set of regressed parameters is repre-
sented by χ = {αid,αexp, pitch, yaw, roll, t}. To train the
proxy estimation network, we use both the real data and the
synthetic data with ground truth parameters as described in
Sec. 3. To enrich the data, we also synthesize 5000 images
using the data augmentation strategy described in Sec. 3.3.
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Figure 5. The architecture of our two-stage network which consists of (a) Proxy Estimation Network and (b) Normal Estimation Network.
The connection between the two modules is a rendering layer which generates a coarse normal map with the estimated proxy parameters.

We use two loss terms to evaluate the alignment of dense
facial geometry and sparse facial features respectively. The
first term computes the distance between the recovered ge-
ometry and the ground truth geometry as follows:

Egeo(χ) = ‖G−Ggt‖22, (8)

where G is the geometry recovered with Eq. (2) and Ggt
is the ground truth geometry. As facial landmarks convey
the structural information of the human face, we design the
second term to measure how close the projected 3D landmark
vertices are to the corresponding landmarks in the imge:

Elan(χ) =
1

|L|
∑
i∈L
‖qi −Π(RVi + t)‖22, (9)

where L is the set of landmarks, qi is a detected landmark
position in the input image, and Vi is the corresponding
vertex location in the 3D mesh. The final loss function is a
combination of the two loss terms:

Eloss(χ) = Egeo(χ) + wlanElan(χ) (10)

where wlan is a tuning weight.

4.2. Normal Estimation Network

The recovered geometry at the first stage lacks facial de-
tails due to the limited representation ability of 3DMM. To
recover the facial geometry with final details, we learn an
accurate normal map by utilizing the appearance information
from face images and the geometric information from the
proxy model obtained at the first stage. Specifically, the in-
put to our normal estimation network is several face images

and the normal map rendered with parameters obtained from
our proxy estimation network, and the output is a refined
normal map that contains high-quality facial details. The net-
work architecture is similar to PS-FCN [12], which consists
of a shared-weight feature extractor, an aggregation layer,
and a normal regression module. One notable difference is
that PS-FCN requires lighting information as input, while
our normal estimation network requires proxy geometry as
input to utilize facial priors. The loss function for normal
estimation network is:

Enormal =
1

|M|
∑
i∈M

(1− nT
i n̂i), (11)

whereM is the set of all pixels in the face region covered by
the coarse face model, ni and n̂i is the estimated and ground
truth normals at pixel i, respectively.

With the estimated accurate normal map, we then obtain
a high-quality face model using the vertex recovery method
as explained in Sec. 3.2.

5. Experiments
5.1. Implementation Details

To evaluate the proposed method, we select 77 subjects
from our captured dataset and 18 subjects from the Light
Stage dataset to train our networks and use the other sub-
jects for testing, yielding 95 subjects with 2503 samples for
training and 12 subjects (7 from our constructed dataset and
5 from the Light Stage dataset) with 278 samples for testing.
We implement our method in PyTorch [30] and optimize the
networks’ parameters with Adam solver [25]. We first train
the proxy estimation network for 200 epochs with a batch
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Figure 6. Ablation studies that compare the proposed method with two approaches that exclude the proxy estimation module and data
augmentation respectively. For each method, we show the estimated normal maps and the corresponding angular error maps. And we use the
leftmost images for single image input.

Table 1. Average angular errors (in degrees) on test set with different
inputs. S1, S2, S3 represent the leftmost, the upper-right corner
and the lower-right corner image respectively.

S1 S2 S3 S1&S2 S2&S3 S3&S1 S1&S2&S3

10.641 10.635 10.705 8.245 8.476 8.328 6.498

size of 50. Then we train the normal estimation network for
100 epochs with a batch size of 6 for an arbitrary number of
input images. Specifically, we randomly choose one, two or
three images as input in every mini-batch during training. It
takes about one hour to train the proxy estimation network
and 12 hours to train a normal estimation network on a single
RTX 2080 Ti GPU. The results on our test set with different
inputs are shown in Tab. 1. It can be seen that better results
are achieved with more input images.

5.2. Ablation Study

To validate the design of our architecture, we compare
the proposed method with alternative strategies that exclude
some components. First, we demonstrate the necessity of
the proxy estimation network by conducting an experiment
that excludes the proxy estimation module and estimates the
normal map with only face images as input in the normal
estimation network. Secondly, we show the effectiveness of
data augmentation for training the proxy estimation network,
with another experiment that trains the proxy estimation net-
work without the 5000 synthesized images derived from data
augmentation. The comparison results on test set for both
experiments are shown in Tab. 2 and Fig. 6. We can see that
excluding each component will cause a drop performance
for both three image inputs and single image input.

Table 2. Average angular errors (in degrees) on test set for ablation
studies.

# Input w/o Proxy w/o Augmentation Ours

1 14.843 12.342 9.875
3 9.499 8.694 6.154

Table 3. Average angular errors (in degrees) on test sets.

UPS-FCN SDPS-Net Ours

Real Set 45.708 33.154 6.579
Light Stage [29] 31.254 15.592 5.007

5.3. Comparisons

Comparison with deep learning-based photometric
stereo. We further compare our network with UPS-
FCN [12] and SDPS-Net [11] that solve the uncalibrated
photometric stereo problem. Both methods estimate normals
for general objects under different directional lights, whereas
we focus on the human face under different point lighting
conditions. We take three images with different uncalibrated
lighting conditions from the test set as input and compare the
accuracy of the output normal map according to the angle
between the output and the ground truth normal map. We
show the results in Table. 3 and Fig. 7. It can be observed
from Table. 3 that all methods perform better on the Light
State test data, potentially due to noises in the real captured
data. On the other hand, our method performs better than
the other two methods both qualitatively and quantitatively,
due to the near point lighting hypothesis and the face prior
information.
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Figure 7. Estimated normal maps and their corresponding error
maps for UPS-FCN [12], SDPS-Net [11] and our network.

Comparison with 3D face reconstruction from a single
image. In order to evaluate the quality of our reconstructed
3D face models, we compare our deep learning-based recon-
struction method with some state-of-the-art detail-preserving
reconstruction methods from a single image. Most existing
methods focus on reconstruction from an “in-the-wild” im-
age and simulate the environment lighting condition using
the spherical harmonics (SH) basis functions, which per-
forms poorly in simulating the near point lighting condition
due to a large area of shadows. For a fair comparison, we
take only one photometric stereo image as input to our net-
work and one image captured in normal light as input to
compared methods. The results shown in Fig. 8 demonstrate
that our method can better recover facial details such as wrin-
kles and eyes. For quantitative evaluation, we compute a
geometric error for each reconstructed model, by first apply-
ing a transformation with seven degrees of freedom (six for
rigid transformation and one for scaling) to align it with the
ground-truth model, and then computing its point-to-point
distance to the ground-truth model. The average geometric
errors of Extreme3D [41], DFDN [10] and our method on
test set are 1.77, 1.54, 0.86 respectively, with four examples
shown in Fig. 9. It can be seen that our method significantly
outperforms other methods due to our accurate simulation
of the near point lighting condition.

6. Conclusion

We proposed a lightweight photometric stereo algorithm
combining deep learning method and face shape prior to

.
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Figure 8. Qualitative comparison between Pix2vertex [36],
DFDN [10], Extreme3D [41] and our method. Other methods
use the left image on the top row as input while ours uses the right
image as input. Our method can reconstruct more accurate face
models with fine details such as wrinkles and eyes.

Input GT Extreme3D DFDN Ours

0mm 10mm

Figure 9. Reconstructed results and geometric error maps of Ex-
treme3D [41], DFDN [10] and ours. Other methods use the left
image in the first column as input while ours uses the right image
as input.

reconstruct 3D face models containing fine-scale details.
Our two-stage neural network estimates a coarse face shape
with structure and a normal map with details, followed by
an optimization method to recover the final facial geome-
try. For the network training, we construct a real dataset
across different races, genders and ages, and a data augmen-
tation is applied to enrich the dataset. Extensive experiments
demonstrated that our method outperforms state-of-the-art
deep learning-based photometric stereo methods and 3D face
reconstruction methods from a single image.
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