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I 
 

Summary 

 

The selective oxidations of cinnamyl alcohol, trans-stilbene and 3-pyridinemethanol 

were investigated using Au-Pd catalysts. These reactions were carried out under industrially 

relevant conditions. The tested monometallic and bimetallic heterogenous Au-Pd catalysts 

were prepared by sol-immobilisation (SIm) and impregnation (Imp) methods.  

Oxidation of cinnamyl alcohol performed at elevated temperatures leads to 

autoxidation hence its role has been examined in the catalytic process using supported AuPd 

nanoparticles. 0.50 %(wt)Au 0.50 %(wt)Pd/ TiO2 (SIm) catalyst was shown to prevent the 

autoxidation process while promoting the selective catalytic pathway. 0.50 %(wt)Au 0.50 

%(wt)Pd/ TiO2 (Imp) catalyst appeared to only limit autoxidation enabling co-existence of 

these two processes. Further optimisation of metal ratio revealed that the most active 

catalyst is 0.75 wt.% Au- 0.25 wt.% Pd/ TiO2 (SIm). Furthermore, this metal ratio was found 

to be stable under the reactions conditions with only minor change observed over multiple 

uses, highlighting the synergistic effect.  

The effectiveness of the Au-Pd system for cinnamyl alcohol oxidation has been 

contrasted with that of trans-stilbene and 3-pyridinemethanol oxidation due to the different 

chemical nature of these substrates. 0.50% Au 0.50% Pd/TiO2 (SIm) catalyst demonstrated 

similar behaviour in the oxidations of cinnamyl alcohol and trans-stilbene regarding 

excluding undesired non-selective reactions under optimised conditions, despite the 

difference in the mechanisms of these two processes. This is suggested to be due to the 

effectiveness of smaller nanoparticles in limiting uncontrolled oxidation pathways. 

3-Pyridinemethanol oxidation using Au-Pd supported nanoparticles is extremely 

difficult due to the chemical stability of this substrate. The presence of N- heteroatom in 

the structure presumably leads to the catalyst poisoning due to interaction between N and 

Pd. Despite this, the Au-Pd catalysts were found to be more active than monometallic ones 

which indicates synergistic effect. Furthermore, optimisation of reactions conditions 

enabled total selectivity to the desired aldehyde product.  
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Chapter 1 

1. Introduction 

 

1.1. Catalysis  

While the phenomenon of catalysis was always present in nature, it was first 

observed by Swedish chemist J.J. Berzelius. This eminent chemist suggested based on 

his scientific work the existence of a force, which he called the “catalytic force” and 

he called “catalysis” the process caused by this force. He wrote in his paper published 

in 1836[1]: 

“It is, then, proved that several simple or compound bodies, soluble and insoluble, 

have the property of exercising on other bodies an action very different from chemical 

affinity. By means of this action they produce, in these bodies, decompositions of their 

elements and different recombination of these same elements to which they remain 

indifferent.” 

The earliest recorded example of catalytic activity is associated with decomposition 

of ammonia into nitrogen and hydrogen when passed over red-hot metals. It was first 

observed by Louis Jacques Thenard in 1813 and then ten years later Pierre Dulong 

determined metal activity for the process to be in the order Fe>Cu>Ag>Au>Pt. L.J. 

Thenard was working also on the decomposition of hydrogen peroxide and as an effect 

of his work he announced in 1818 the existence of a chemical substance that speeds 

up a chemical reaction without being changed.[1] 

Fermentation and enzymes in human body are the examples of homogeneous 

biocatalysis. In general, pioneers in the rationalisation of the theory of homogeneous 

catalysis were Charles Bernard Desormes and Nicolas Clement.[1] The researchers 

studied the homogeneous catalytic effect of nitrogen oxides in the lead chamber 

process to produce sulphuric acid in large amounts and were the authors of the 

intermediate compound theory. The process of sulphuric acid synthesis by this method 

was discussed later in detail by Humphry Davy who is also known as the inventor of the 

Davy lamp (miner’s safety lamp for use in flammable atmospheres). During the 

research work on safety lamp, Davy made phenomenal observations of heterogeneous 

catalytic oxidation. In the safety lamp, the platinum wire was attached over the flame. 

Davy observed that after the introduction of coal gas into the lamp the flames went 

out, while the platinum wire remained hot for a long time. In addition, the hot wire 

introduced into the mixture of coal gas and oxygen became incandescent. Davy drew 



Chapter 1 
 

2 
 

the conclusion that oxygen and coal gas combined in the presence of a platinum wire 

and the heat generated by the reaction kept the wire hot. The description of this 

phenomenon, namely the chemical reaction between two gaseous reactants on the 

surface of the metal without its chemical change, was published by the Royal Society 

in 1817. Thus, Davy started the foundations of heterogeneous catalysis.[1]  

The brief historical outline described above provides information only on the 

first mention of catalysis. Since then, a huge amount of scientific information has been 

accumulated. Despite numerous theoretical discussions, the catalytic process is still a 

mystery. Many factors influence every catalytic process in a different way, which 

points to the need for a separate and systematic investigation of each process. 

Catalysis still remains a challenge to the chemist since Davy’s discovery in 1817. 

Nevertheless, the huge progress made in this area has led to the situation where 

catalytic processes have found a comprehensive application in today's global industry 

to produce materials (e.g. plastics), pharmaceuticals, fine chemicals, fuels and to 

remove pollutants from car engines. According to the American Chemical Society, 60 

% of global chemical production takes place as a result of catalytic processes, 

accounting for 90 % of all chemical processes. The current definition of a catalysis and 

a catalyst presented by American Chemistry Society[2] is: 

 

“Catalysis has been defined as the process by which chemical reaction rates are altered 

by the addition of a substance (the catalyst) that is not itself changed during the 

chemical reaction”. 

 

A catalyst can change the kinetic pathway of the reaction by lowering 

activation energy of the reaction and creating other intermediates/transition 

complexes in relation to the reaction carried out in a non-catalytic manner (figure 1-

1). Then, the catalyst regenerates to its original form completing a catalytic cycle. 

Catalysts enable a different reaction pathway (shown in red) with a lower activation 

energy, however, does not change the overall thermodynamics (the equilibrium 

constant).[3] 

A homogeneous catalyst is one that is in the same phase as the reagents (dissolved in 

solution), while the heterogeneous catalyst forms a separate phase (e.g., V2O5 catalyst 

in the oxidation of SO2 to SO3; solid Fe catalyst in the Haber process). 
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From a kinetic point of view, catalytic reactions are chemical reactions therefore the 

reaction rate depends on the rate-determining step. Usually, the catalyst is involved 

in the slowest step and rates are limited by its activity. However, in heterogeneous 

catalysis also the diffusion of reagents to/ from the surface can be rate determining. 

Figure 1-2 shows the catalytic cycle at the molecular level for CO oxidation on a metal 

surface. This reaction is extremely important as it takes place in automobile exhaust 

catalysts. The first step is diffusion of the molecules (CO and O2) to the metal surface 

(figure 1-2: 1) where the adsorption process takes place (figure 1-2: 2). In the case of 

O2, dissociative adsorption (figure 1-2: 3) enables surface diffusion of oxygen molecules 

(figure 1-2: 4). CO is fairly stable compared to O2, which dissociates easily; the reason 

of different behaviour of these two molecules is the different internal bond strength: 

1076 kJ and 500 kJ, respectively. The surface reaction step (figure 1-2: 5) is very often 

the rate determining step in heterogeneous catalysis; in the described example oxygen 

atoms combine with CO to form the adsorbed product CO2 (figure 1-2: 6). In the last 

step, CO2 undergoes desorption from the catalyst surface (figure 1-2: 7).[4]   
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Ea (no catalyst) 
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Figure 1-1 General diagram presenting the basis of catalysis. Catalyst lowers activation energy 
(shown in red) by different reaction pathway leading to the same Z-products.  
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Another example of a catalytic process is alcohol oxidation in liquid phase 

utilizing a heterogeneous catalyst. The mechanism is widely accepted in academic 

circles and is the so-called “classical” dehydrogenation mechanism consisting of two 

steps (figure 1-3).[5]  In the first step, the O-H bond of alcohol breaks upon adsorption 

on the catalyst surface resulting in an adsorbed alkoxide and hydrogen. In the second 

step, which is considered to be rate-determining, the β-C-H bond in the adsorbed 

alkoxide breaks (as this bond is weaker than other C-H bonds due to the electron 

withdrawing effect of oxygen) yielding the corresponding aldehyde. Co-product 

hydrogen is oxidised by adsorbed oxygen shifting the equilibrium toward the carbonyl 

compound and liberating active sites on the catalyst surface. 

 

Oad (2 OHad)                                     H2Oad (2 H2Oad) 

Had                       Had 

RCH2OHad              RCH2Oad               RCHOad 

 

 

Support 

Metal 

1 

2 

3 4 
5 

6 

7 

Figure 1-2 Molecular and atomic steps during catalytic oxidation of CO to CO2 with molecular 
oxygen. [4]  1: gas phase diffusion; 2: molecular adsorption; 3: dissociative adsorption; 4: 
surface diffusion; 5: surface reaction; 6: adsorbed product; 7: product desorption 

 

 

Figure 1-3 Classical dehydrogenation mechanism of alcohol oxidation over Pt-group metal 
catalysts.[5] 
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1.2. Phenomenon of gold as a catalyst 

Gold nanoparticles have been produced by mankind for over 2000 years. In 

Indian ayurvedic medicine, a powdered substance called Swarna bhasma contains gold 

nanoparticles (around 56 nm) and was used to treat a lot of diseases e.g. asthma and 

arthritis. Romans applied nanoparticles to colour glass (4th century glass beaker, the 

Lycurgus cup, can be seen in the British Museum in London). Similar techniques were 

often used to colour church windows. Interestingly, Michael Faraday reported in 19th 

century that a rosy glow could observed by aqueous solutions of gold particles and he 

also mentioned their dimensions.[6], [7]  

Nevertheless, the catalytic value of gold was overlooked for years in modern 

chemistry laboratories. Indeed, bulk gold is catalytically inactive, however 

nanoparticles of gold have been found to be extremely active for many reactions, 

especially oxidations. The high electrode potential of gold (E=+1.69 V) is the reason of 

its high stability and selectivity as a catalyst compared even to traditional precious 

metal catalysts such as platinum (E=1.20V) and palladium (E=0.99 V).[8]  

The first work where gold was successfully employed as a catalyst was reported 

by Bond et al. and was related to the hydration of olefins.[9] Nevertheless, this 

publication did not receive much interest at the time. A real gold rush began 10 years 

later after discoveries made by Haruta and Hutchings. Haruta et al. proved high 

catalytic activity of gold supported on iron oxide for CO oxidation. Their detailed study 

revealed the importance of preparation method, depending on which it was possible 

to obtain different sizes of nanoparticles, hence different catalytic activity.[10] In the 

same year, 1985, Hutchings reported the best catalyst available for the 

hydrochlorination of acetylene to vinyl chloride, which turned out to be supported gold 

catalyst.[11] Other important applications of gold catalysts were found in following 

processes: oxidation of propene to propylene oxide (by Haruta et al.)[12], selective 

oxidations of diols (by Prati and Rossi)[13]  and direct synthesis of hydrogen peroxide 

under non explosive conditions (by Hutchings and Kiely)[14].  

Many valuable scientific papers have been published since these breakthrough studies. 

All these works stress the importance of many factors necessary for the synthesis of 

highly active and selective gold catalyst such as preparation method, particle size, 

support, alloying of gold to another metal and employed conditions. The following 

literature review presents the latest reports on the use of precious metals as catalysts 

in liquid phase oxidation reactions.  
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1.3. Selected preparation methods of heterogeneous 

catalysts. 

There are many methods for synthesizing heterogeneous catalysts. The design 

of a heterogeneous catalyst containing precious metals is demanding for several 

reasons. Alloying Au with Pd enables to obtain more active catalysts, however 

preparation method is the key as it enables tailoring of the necessary features of 

nanoparticles. The biggest challenges in catalyst synthesis are the following: control 

of the particle morphology, control of the particle size distribution and control of 

the nanoparticle composition.[15]   

In general, the most common methods applied in synthesis of heterogeneous Au-Pd 

bimetallic catalysts are: impregnation, modified impregnation, sol-immobilisation 

and deposition-precipitation. Modifications, variations and optimizations of these 

methods are common.[16]–[22] 

The impregnation method seems to be relatively straightforward. Suitable 

aqueous salts (HAuCl4 and PdCl2) are simply impregnated on the support by stirring 

at elevated temperature forming a smooth paste. The paste undergoes further heat 

treatment stages (drying and calcination), which control the final morphology. 

Obtained nanoparticles have a broad range of sizes from 5 to 25 nm and even larger 

clusters are observed. In general, the nanoparticles exist as alloys, however the small 

nanoparticles contain mainly Pd and the large mainly Au. Moreover, in this method 

the support plays an important role. It has been shown that random Au-Pd nanoalloys 

are formed on carbon while following the same procedure core-shell structures are 

formed on oxides (Au-rich core, Pd-rich shell). Nanostructures are formed during 

calcination step. The temperature of calcination should be optimised as too high will 

decrease the catalyst activity due to sintering. In case of Au-Pd/ TiO2, 400 °C allows 

full formation of core-shell structures without significant loss of activity. Moreover, 

during calcination the oxidation of Pd surface takes place, which influences the 

active sites. Even though the metals are not very well dispersed, it is still possible to 

synthesise active catalysts for many reactions utilizing this method. Au-Pd/TiO2 

prepared by impregnation has been found to be active for the oxidation of alcohols 

under solvent-less mild conditions and also for the direct synthesis of hydrogen 

peroxide.[15], [23], [24] 

The sol-immobilisation method allows to obtain a very narrow particle size 

distribution, usually 4-6 nm. The nanoparticles are synthesized by a reduction of a 

metal precursor with a reducing agent (e.g., BH4
−) in the presence of a protective agent 

to prevent aggregation (e.g., PVA or PVP). The nanoparticles can be easily supported and 
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dried without significant change in the mean particle size. As in the case of impregnation 

method the nature of support influences the behaviour of nanoparticles. Nanoparticles do 

not appear to wet carbon, which means that sintering takes place easily above 200 °C. 

Contrary to carbon, TiO2 interacts with the nanoparticles which makes them resistant to 

sintering. Generally, sol-immobilisation method allows to obtain homogeneous Au-Pd 

nanoalloys, however, small nanoparticles contain mainly Au and large nanoparticles mainly 

Pd (opposite trend to impregnation method). Core-shell structures might be obtained 

simply by forming either Au or Pd nanoparticles first and then using these as templates for 

the deposition of another metal. An important observation is that the composition of the 

nanoparticle is often related to the nanoparticle size. 

A drawback for sol-immobilisation method is presence of stabilizing/ coating agent. 

A possible way of removing PVA/PVP is heat treatment in air, however this would 

result in the loss of the small nanoparticles through sintering. The other solution 

might be removing of water-soluble polymer by treatment with water at elevated 

temperature. The presence of coating agent should not be a massive issue for the 

reactions performed in the liquid phase, however problem escalates in case of 

gaseous reactants e.g. oxidation of CO.[15], [16], [25], [26] 

In the modified impregnation method, an excess of anion is being used by 

addition of aqueous HCl to the metal precursor solutions, PdCl2 and HAuCl4. It has 

been proposed by Sankar et al.[18] that the presence of Cl- ions facilitates the 

formation of AuCl4
- and PdCl4

2- species whose coexistence in the aqueous medium 

enables a homogeneous mixture of metal ions, hence better dispersion of the metals 

onto the support. In the case of standard impregnation method, in the absence of 

excess Cl-a [Au(OH)x(Cl)4-x]
- species is formed and PdCl2 which is only partially soluble 

in water, therefore the observed dispersion in the catalysts is rather poor and the 

formation of large nanoparticles is very common. Presence of the halide during 

synthesis increases the dispersion of Au as the occurrence of large clusters is 

significantly limited (the mean value of Au-Pd nanoparticles is around 2.9 nm). 

Modified impregnation method allows to obtain AuPd nanoparticles with the 

character of random alloy and particle sizes ranging from 2 to 6 nm. Nevertheless, 

halide needs to be removed from the material by a reduction treatment in order to 

obtain the most active catalysts. 

In general, two steps in the synthesis of catalysts by modified impregnation method 

are crucial and influence massively the formation of nanoparticles: heat treatment 

and the concentration of the HCl.  
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Figure 1-4 HAADF-STEM images of 0.50 %Au 0.50 %Pd/ TiO2 catalysts: A – catalyst prepared 
by standard impregnation method B- catalyst prepared by modified impregnation method 
with 0.58 M HCl. a,b- dried only at 120 °C; c,d- calcined in air at 400 °C; e,f- reduced in 5 % 
H2/Ar at 400 °C. Experiment carried out by Sankar at al.18   

A)                                                            B) 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It has been presented by Sankar et al. [18] that dried only 0.50 wt % Au 0.50 wt% 

Pd/TiO2 catalysts prepared by impregnation and modified impregnation showed 

rather similar morphologies with vast majority of Pd-rich nanoparticles being 1-2 nm 

and some large Au-rich particles being in micrometre range (figure 1-4, A-a,b and B-

a,b). After calcination at 400 °C in air, also similar morphologies (Au-core, Pd-shell) 

have been observed with larger particles being in the range of 5-10 nm (figure 1-4, 

A-c,d and B-c,d). Applying reduction in 5 % H2/Ar instead of calcination in air allows 

for enhanced dispersion in case of modified impregnation method and also impacts 

the morphology as observed structures are rather random alloys. Also, particle size 

distribution varies with the mean value for the reduced catalyst prepared by standard 

impregnation method being 4.7 nm and 2.9 nm for the reduced catalysts prepared by 

modified impregnation method (figure 1-4, A-e,f and B-e,f).  

Second factor, Cl- concentration, influences the composition of nanoparticles. It has 

been observed that after reduction varying Cl- concentration results in systematic 

change in Au-Pd ratio (the higher Cl- concentration, the higher Au content within Au-
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Pd nanoalloy). However, the amount of Cl- used influences the activity and reusability 

of catalysts prepared by modified impregnation method. An optimal concentration 

of HCl used in the preparation of AuPd catalysts tested in the oxidation of benzyl 

alcohol and also in the direct synthesis of hydrogen peroxide has been established to 

be 0.58 M. In summary, the composition and particle size can be tuned by the excess 

of chloride anion. The researchers tested different palladium precursors and the 

excess of anion methodology seems to be beneficial only if chloride ions are 

applied.[15], [18]  

In the deposition- precipitation method, the support is suspended in a solution 

containing metal salts. The nanoparticles are precipitated onto the support after the 

addition of base to the solution. The particle size distribution is narrower than in 

previous method, usually 1-10 nm. Here, the synthesis is more detailed as there are 

more steps and different factors such as temperature and pH that should be 

controlled throughout the whole process. In this thesis the catalysts have been 

prepared using methodologies described earlier hence the reader should refer to the 

literature if interested in deposition- precipitation method. [27]–[31] 

 

1.4. Literature review 

It is extremely difficult to compare and contrast the literature reports due to 

the variety of catalytic systems, catalysts synthesis and applied conditions. Neverthless 

the key scientific knowledge has been presented as the basis to the experimental work 

on Au-Pd supported nanoparticles in the oxidation reactions discussed in this thesis. 

 

1.4.1. Alcohol oxidation: Cinnamyl alcohol 

The desired product of cinnamyl alcohol oxidation, cinnamaldehyde, is an 

insecticide and common additive in food and perfume industry. Moreover, the reaction 

network is interesting hence this reaction is a model reaction from an academic 

viewpoint. In general, aldehydes are extremely important compounds due to their 

applications, however existing methods of carbonyl compound synthesis utilise toxic 

and stoichiometric oxidants such as chromate and permanganate. Precious metals have 

been found to be active in oxidation of alcohols thus being an alternative, greener 

route for these reactions. 

 Baiker et al.[32] published in 1994 their work on the oxidation of cinnamyl 

alcohol to cinnamaldehyde with air using Bi-Pt/Alumina catalysts. The bimetallic Bi-Pt 

system has been found to be more active than the counterpart monometallic Pt system. 
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The researchers reported that the presence of Bi limited but did not stop the formation 

and irreversible adsorption of by-products. It was also mentioned that the partial 

coverage of active sites with oxygen enabled oxidative removal impurities from the 

surface. The scientists suggested that Bi acted as a geometric (blocking) element which 

decreased the size of Pt clusters. Adsorption of cinnamyl alcohol on the noble metal 

was pointed as a possible reason of the catalyst deactivation. Also, chemisorption of 

by-products limited the number of available free Pt0 active sites.  

A few years later, Baiker and co-workers[33] investigated the positive effect of Bi as a 

promoter in the oxidation and dehydrogenation of alcohols over Pt-group metal 

catalysts. The promoter itself was inactive. The researchers tested Pd/Al2O3 and Bi-

Pd/Al2O3 in the oxidation of phenylethanol and cinnamyl alcohol. It was found that 

higher conversion was obtained for phenylethanol than for cinnamyl alcohol in the 

same conditions. The researchers suggested that it might be due to side reactions in 

case of cinnamyl alcohol, mostly decarbonylation of cinnamaldehyde which was 

intensified at higher temperature. The conversion of cinnamyl alcohol using Pd/Al2O3 

was close to 100 % after an hour, however Bi-Pd/Al2O3 catalyst showed much lower 

conversion at the same time (below 30 %). It was suggested that coverage of the Pd 

surface by Bi decreased the availability of active sites for hydrogen adsorption and 

hence alcohol dehydrogenation in the Bi-promoted catalyst. 

Bi has also been investigated by Prati and co-workers[34] in the oxidation of glycerol 

and by Besson and co-workers[35] in the oxidation of 3-pyridinemethanol as a promoter 

improving overall activity of noble metals catalysts. In both cases, Bi was deposited on 

preformed precious metal nanoparticles and did not interfere with the size of the 

nanoparticles or interfere with the formation of homogeneous metallic phases. Also, 

in both cases Bi enhanced processes by interaction with active sites leading to 

switching off undesired side reactions and processes. 

Baiker[36] and co-workers carried out studies on the oxidation of cinnamyl alcohol 

using different catalysts, including 5 %wt Pd/Al2O3. Generally, the reported mechanism 

of the reaction was in line with the principles of classical dehydrogenation mechanism. 

The reaction scheme has been shown in figure 1-5.  
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Figure 1-5 Reaction network in the oxidation of trans-cinnamyl alcohol over alumina-
supported Pd proposed by Baiker and co-workers.[36] 

 

The researchers stated that cinnamaldehyde was formed as the effect of 

dehydrogenation; 3-phenyl-1-propanol and dihydrocinnamaldehyde were formed as 

the effect of hydrogenation of the substrate and major product (cinnamaldehyde) 

respectively; methylstyrene was formed as the effect of hydrogenolysis of C-O bond; 

styrene and ethylbenzene were formed in the process of decarbonylation. Based on 

the presented reaction network, the researchers stretched that Pd is particularly 

active for two processes in the case of allylic alcohols: hydrogen transfer and an 

aldehyde decarbonylation. The presence of an allylic bond in aromatic allylic alcohols 

results in them behaving like hydrogen donors and acceptors on the surface of Pt group 

metals, including Pd.  

Baiker and Mallat[37] studied also the epoxidation of various allylic alcohols, including 

cinnamyl alcohol using titania-silica aerogel. It was reported, that cinnamyl alcohol 

was oxidised mostly to cinnamaldehyde, regardless of the conditions applied. 

The researchers concluded based on their wide studies on the cinnamyl alcohol 

oxidation that many factors influence the course of the reaction: catalyst composition, 

reaction atmosphere, solvent, and the reaction temperature.[36] Baiker’s further work 

focused mainly on studying these factors, determining the role of oxygen and the origin 

of the catalyst deactivation. The change of the reaction conditions led to different 

selectivities, nevertheless the general reaction network remained valid for all 

cases[36]. Interestingly, further oxidation of cinnamaldehyde to cinnamic acid has not 

been observed in toluene, which was explained by the differences in the reactivity of 

the carbonyl group. In general, the direct oxidation of the carbonyl group is slow, and 

dehydrogenation through hydration of the carbonyl group (the predominant mechanism 

in the aqueous environment) is faster. Thus, the hydration of the carbonyl group in 

toluene is hindered not only because of the availability of water, but also by the 

stability of the aldehyde and the inert apolar organic medium. The scientists focused 

on determining the role of oxygen in the oxidation of cinnamyl alcohol, as it is generally 
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accepted that oxygen may be directly involved in hydrogen abstraction from the 

adsorbed alcohol. In a specially designed experiment, cinnamyl alcohol was oxidised 

in an atmosphere of argon for 90 minutes and then in air. The reaction temperature 

remained the same, 65°C and the amount of substrate was 1 g in 30 ml toluene. It can 

be seen from figure 1-6 that the reaction profile in argon was rather steady within 90 

min with conversion around 15 % and selectivity around 60 %. When the atmosphere 

was switched to air the selectivity to cinnamaldehyde slightly increased, however the 

conversion increased significantly up to 100 % in a short period of time (around 100 

minutes). The results of Baiker’s work have shown that the reaction takes place under 

inert gas hence oxidation of the co-product hydrogen by oxygen is not necessary. 

Further investigation using in situ Attenuated Total Reflectance- Infrared Spectroscopy 

(ATR-IR) spectroscopic analysis of adsorbed species on Pd/Al2O3 under reaction 

conditions revealed that oxygen is necessary to oxidise and remove strongly adsorbed 

CO (formed as by-products during decarbonylation) from the catalyst surface. 

Furthermore, the researchers proposed that the active sites in this process are Pd0.  

 

Figure 1-6 Oxidation of cinnamyl alcohol carried out in argon and then in air. Conditions: 5 
wt% Pd/Al2O3;1.0 g cinnamyl alcohol; 30 ml toluene; reaction temperature, 65 °C; mixing 
frequency, 1250 min−1; air flow rate, 60 ml min−1.[36]  

 

Baiker et al.[36] suggested two possible reasons for catalyst deactivation. The first 

would be CO poisoning, which can be easily reversed by air (leading to higher reaction 

rates anyway). However, the researchers suggested that the catalyst may undergo so 

called overoxidation leading to decreased yield of the process. The second suggested 

reason of catalyst deactivation is also poisoning by short-chain hydrocarbons 

(degradation products formed during the decarbonylation processes), impossible to 

remove by oxygen under reaction conditions.  

Baiker and co-workers[38] carried on their works on the oxidation of alcohols using 

heterogeneous Pd supported catalyst. Based on their observations they stated that 
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aldehydes decarbonylate on Pd surface to form CO and hydrocarbon fragments which 

adsorb strongly causing catalyst deactivation. To remove hydrocarbon residue, one 

needs to apply reducing conditions while to remove CO adsorbed oxygen is needed. 

The authors pointed an amazing feature of the aerobic oxidation of alcohols on Pt-

group metals, that under specific conditions these two processes may run parallel 

leading to a high yield of the reaction. This work has shown that complete removal of 

degradation products is not necessary to obtain good reaction rates. ATR-IR 

spectroscopic analysis revealed the presence of carboxylate species, even at low 

alcohol conversion. Carboxylic acid adsorbed strongly on the catalyst surface, mainly 

on the support, and was not found in the liquid phase by GC analysis.  

The researchers also discussed the importance of water in the alcohol oxidations. 

Water is formed from the oxidation of hydrogen in equimolar amounts to formation of 

the aldehyde. Water may also be formed as the effect of hydrogenolysis of the C-O 

bond. Their ATR-IR study confirmed presence of water on the catalyst surface even if 

the reaction has been carried out in a non-aqueous media. In that case water removal 

from the catalyst is extremely important. In case of aqueous reaction solutions, water 

speeds up further oxidation of aldehyde to carboxylic acid through hydration of the 

carbonyl group followed by dehydrogenation of the geminal diol as this is a faster route 

than direct oxidation.  

In his later paper, Baiker[39] investigated structural changes of a Pd/Al2O3 catalyst 

during oxidative dehydrogenation of cinnamyl alcohol using in situ Extended X-ray 

Absorption Fine Structure (EXAFS) and quick EXAFS (QEXAFS) techniques. Additionally, 

the reactions carried out in batch and in flow fixed-bed cell of EXAFS reactor have 

been contrasted (the results were fairly comparable). High selectivity to the major 

product has been obtained (around 58-63 %) and also a large amount of 1-phenyl-3-

propanol has been detected (20-35 %) which indicated that the substrate played the 

role of hydrogen acceptor. This hypothesis has been confirmed further by EXAFS 

analysis. Interestingly, the QEXAFS study revealed that the 5 %wt Pd/Al2O3 catalyst has 

been reduced within 1 hour during exposure to cinnamyl alcohol in toluene under an 

argon atmosphere. When the atmosphere was switched to oxygen, a similar product 

distribution was still observed. Moreover, hydrogenation and hydrogenolysis processes 

took place even though there was oxygen available in the feed. It is quite intriguing as 

according to the classical dehydrogenation mechanism, hydrogen abstraction is 

catalysed from the adsorbed reactant and then hydrogen is oxidised by adsorbed 

oxygen.   

In his next publication, Baiker and co-workers[40] oxidised cinnamyl alcohol to 

cinnamaldehyde in a continuous fixed-bed reactor with molecular oxygen using 0.5 
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%Pd/Al2O3 catalyst in supercritical carbon dioxide with toluene as a co-solvent. This 

method has been found to be especially effective for solid alcohols. A slightly different 

reaction network was observed compared to that reported previously, mostly due to 

benzaldehyde presence (figure 1-7). In situ X-ray Absorption Near Edge Structure 

(XANES) and EXAFS revealed that alcohol dehydrogenation was the first reaction taking 

place in the process after which hydrogenated by-products were formed as the effect 

of internal hydrogen transfer reactions. During the same analysis, the researchers also 

observed that Pd was mainly in a reduced state and it was possible to oxidise its surface 

only in the complete absence of cinnamyl alcohol in the feed. Detailed study of the 

catalyst surface and bulk phase of the reaction mixture revealed the presence of 

cinnamaldehyde and carbon dioxide inside the porous catalyst, but no toluene and 

cinnamyl alcohol; these last two compounds were present only in the reaction mixture. 

 

 

Figure 1-7 Reaction network in the oxidation of cinnamyl alcohol in supercritical CO2 over 
supported Pd catalyst proposed by Baiker et al.[40] 

 

The scientists observed a strong dependence of reaction rate on pressure and oxygen 

concentration (table 1-1). 

Table 1-1 Influence of oxygen on the oxidation of cinnamyl alcohol at 80 °C (0.15 mol% 
alcohol, 1.9 mol% toluene in CO2 (0.233 mol/min), 2.5 g of 0.5 wt% Pd/Al2O3.[40] 

Gas pressure 
and oxygen 

content   

Conversion 
(%) 

Selectivity (%) 

Cinnamaldehyde 
3-Phenyl-

1-
propanol 

Methylstyrene Benzaldehyde 

120 bar 
absence O2 

12.4 57.6 11.2 30.9 - 



Chapter 1 
 

15 
 

120 bar 
0.15%mol O2 

58.7 79 19 traces - 

120 bar  
10 mol% O2 

51.4 82.2 3.6 traces 11.7 

150 bar 
10%mol O2 

53 72.9 5.2 traces 20 

Conditions: temperature, 80°C; 0.15 mol% alcohol; 1.9 mol% toluene in CO2 (0.233 mol/min); 
2.5 g of 0.5 wt% Pd/Al2O3 

 

Generally, with increasing oxygen partial pressure, the amounts of MS and PP 

decreased, and the amount of benzaldehyde increased. The researchers linked this 

fact with the greater availability of surface oxygen on the palladium active sites.  It 

was mentioned that benzaldehyde might be formed from toluene and from cinnamic 

acid (by oxidative cleavage of the C=C double bond), however it was excluded as these 

both reactions take place in extremely harsh conditions.  

The nature of active sites is not clear in the oxidation of cinnamyl alcohol. 

Baiker determined throughout his research that Pd0 is the active species in the process. 

However, a different suggestion was made by Lee et al.[41] pointing to PdO as an 

active site in the oxidation of cinnamyl alcohol. During this study, Pd was deposited 

onto alumina grafted SBA-15 support which showed the high dispersion and surface 

oxidation typical for alumina as well as the high surface area of SBA-15. The obtained 

activity data have been shown in table 1-2.  

 

Table 1-2 Cinnamyl alcohol oxidation using supported Pd catalysts.[41]  

Catalyst Conversion Cinnamaldehyde [%] TOF (h-1) 

Pd/Al-SBA-15 95 64 13600 

Pd/meso-Al2O3 56 39 13391 

Pd/SBA-15 21 16 6108 

Conditions: temperature, 90 °C; time, 30 minutes; oxygen, 1bar; catalyst mass, 0,05g; 8.4 
mmol cinnamyl alcohol; toluene, 10 ml.   

 

The researchers performed operando liquid-phase XAS measurements based on which 

the strong correlation between dissolved oxygen and the oxidation state of Pd has been 

noted. It was observed that flowing oxygen under ambient pressure hindered the 

reduction of PdO to Pd0, while under static oxygen rapid PdO reduction was taking 

place. High catalytic activity was observed under flowing oxygen for the first 30 

minutes whereas the catalyst deactivation occurred instantly under static oxygen. The 

catalyst tested under flowing air deactivated after 30 minutes leading to the same 

results as the catalyst tested under static air. The scientists suggested that the reason 

of deactivation might be a formation of decarbonylation products (CO and 
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hydrocarbons) that adsorb strongly on the catalyst surface, which is in line with 

Baiker’s observations. High yield to cinnamaldehyde was linked to the presence of PdO, 

however full suppression of the catalyst reduction with flowing oxygen was 

unsuccessful. The group carried on research on the oxidation of allylic alcohol using 

Pd nanoparticles supported over various supports (C, Al2O3, KIT-6, SBA-16, SBA-15) and 

they noted similar observations regarding active sites being PdO.[42]–[48] It was stated 

mostly based on the analysis of the reaction rate, product distribution and catalyst 

characterization techniques (XPS and EXAFS).  

Prati and co-workers[49] tested monometallic and bimetallic Pt, Pd and Au 

systems supported over carbon in the oxidation of alcohols. The only observed products 

were cinnamaldehyde and 3-phenyl-1-propanol. The reactions were carried out at 60 

°C, under 1.5 atm O2 in both toluene and water. The researchers tested monometallic 

Au, Pt, Pd catalysts and bimetallic Au-Pt, Au-Pd catalysts. The results presented in 

table 1-3 revealed that the most suitable solvent in the oxidation of cinnamyl alcohol 

in mild conditions is water, however the activity in toluene is considerable. Moreover, 

bimetallic Au-Pd system have been found to be more active than their monometallic 

counterparts (table 1-3). Interestingly, although Au-Pd demonstrated a 

positive/synergistic effect, Au-Pt showed a negative effect, as the conversions in case 

of Au-Pt were even lower than for their monometallic counterparts (table 1-3). It was 

also noted that a decreased selectivity to cinnamaldehyde when using Pt as opposed 

to Pd indicates the ability of the latter metal to promote hydrogen transfer.   

 

Table 1-3 Oxidation of cinnamyl alcohol.[49] 

Catalyst Solvent 
Conversion 
(%) 

Sel. 
Cinnamaldehyde (%) 

Sel. 3-phenyl-
1-propanol (%) 

TOF 
(h-1) 

0.73 %Au-
0.27 %Pd 

Toluene 

72 85 13 180 

0.6 %Au- 
0.4 %Pt 

5 100 0 12 

1 %Au 0 0 0 0 
1 %Pd 24 86 14 61 
1 %Pt 15 100 0 38 
0.73 %Au-
0.27 %Pd 

Water 

95 83 17 237 

0.6 %Au- 
0.4 %Pt 

18 100 0 45 

1 %Au 0 0 0 0 
1 %Pd 36 86 14 90 
1 %Pt 27 100 0 67 

Conditions: cinnamyl alcohol, 0.3M; cinnamyl alcohol/metal, 1/500 (mol/mol); temperature, 
60°C; oxygen, 1.5 atm; time, 2 hours. 
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In their other work, the group under the leadership of Prati[50] studied the effect of 

the base in the oxidation of alcohols, including cinnamyl alcohol using various ratios of 

Au-Pd nanoalloys supported on carbon. The results (table 1-4) revealed that bimetallic 

catalysts are more active than their monometallic counterparts, especially for 9:1, 

8:2, 6:4 Au-Pd ratios. TEM analysis demonstrated uniform alloyed phases in these 

catalysts opposed to 2 Au: 8 Pd where inhomogeneity in the structure was noticed. 

Generally, the addition of base improved the activity of all tested catalysts, however 

the increase observed was especially significant for Au-rich catalysts. The addition of 

base also changed the product distribution as the formation of ester has been 

observed. The different behaviour of Au-rich and Pd-rich catalysts in the presence of 

base indicated possibly two different mechanisms. The authors noted that in case of 

Pd, transfer of H atom to the β-carbon of the adsorbed alkoxide leading to the aldehyde 

and a Pd-hydride is the rate determining step. In case of Au, the rate determining step 

is the H-abstraction by a superoxo-like oxygen species adsorbed on Au. Other research 

groups have reported similar observations and hypotheses supporting Prati’s work.[51]–

[53] In summary, base seems to be involved in the hydride abstraction and also in the 

hydration of the aldehyde intermediate which leads to the formation of the 

corresponding carboxylate. 

 

Table 1-4 Oxidation of cinnamyl alcohol as reported by Prati and co-workers.[50] 

Catalyst Base 

Selectivity at 90 % conversion 

TOF (h-1) CinnALD 
3-phenyl-1-
propanol 

Ester+ 
acid 

1% Au/AC 

– 

25 80 18 – 

1% Pd10@Au90/AC 520 77 22 – 

1% Pd20@Au80/AC 630 75 24 – 

1% Pd40@Au60/AC 539 75 24 – 

1% Pd80@Au20/AC 394 74 25 – 

1% Pd/AC 120 70 28 – 

1% Au/AC 

1 equiv. 
NaOH 

470 27 10 63 

1% Pd10@Au90/AC 858 28 16 56 

1% Pd20@Au80/AC 861 32 21 47 
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1% Pd40@Au60/AC 669 50 24 26 

1% Pd80@Au20/AC 480 58 23 19 

1% Pd/AC 143 62 25 13 
Conditions: cinnamyl alcohol, 0.3M; cinnamyl alcohol/metal, 1/500 mol/mol; temperature, 
60°C; oxygen, 1.5 atm. 

 

Rossi and Costa[54] investigated the solventless oxidation of cinnamyl alcohol 

using Au-Ag nanotubes. The reactions have been carried out at 100 °C under different 

oxygen pressures. The only observed products were cinnamaldehyde and benzaldehyde 

with negligible traces of unidentified substances. The researchers noticed the 

dependence of oxygen pressure and selectivity: the higher oxygen pressure, the higher 

benzaldehyde formation (figure 1-8).  

 

 

Figure 1-8 The influence of oxygen pressure on the oxidation of cinnamyl alcohol using Au-
Ag supported catalyst.[54] 

 

It was suggested that benzaldehyde might be formed through oxidative cleavage of the 

C=C double bond in two possible ways: an epoxidation involving a cis-diol intermediate 

or via a radical mechanism. The scientists carried out a set of experiments to 

investigate this, the results of which have been presented in table 1-5. 

 

Table 1-5 Oxidation of cinnamyl alcohol.[54] 

Entry Catalyst BHT Conv. (%) CinnALD (%) BenzALD (%) Other (%) 

1 

Au-Ag NT 

- 99.1 21.1 73 5.9 

2 - 28 53 44 3 

3 present 69.2 96.7 0.9 2.4 

4 - 2.6 63.8 36.2 0 

8 - 28 44.5 53 2.5 
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9 
No 

catalyst 
present 10.4 94.7 3.9 1.4 

Conditions: temperature, 100 °C; oxygen, 6 bar; time, 2.5 hours; cinnamyl alcohol, 10 mmol; 
catalyst/alcohol, 1/2000. 

 

The standard reaction carried out at 100 °C under 6 bar O2 achieved 99.1 % conversion 

after 2.5 hours, only 21.1. % selectivity to cinnamaldehyde and 73.0 % selectivity to 

benzaldehyde (entry 1, table 1-5). The same reaction stopped earlier (after 1 hour) 

showed only 28 % conversion, however higher selectivity to cinnamaldehyde (53 %) and 

lower selectivity to benzaldehyde 44.0 % was observed (entry 2, table 1-5). The 

addition of a radical trap (BHT = Butylated hydroxytoluene; 2,6-di-tert-butyl-4-

methylphenol) to the standard reaction massively influenced the reaction product 

distribution; the conversion (69.2 %) was lower compared with the standard reaction, 

however the selectivity to cinnamaldehyde was 96.7 % and selectivity to benzaldehyde 

was below 1 % (entry 3, table 1-5). The reaction carried out under an inert atmosphere 

had only 2.6 % conversion, and still large amounts of benzaldehyde had been identified 

(entry 4, table 1-5). Based on these experiments, the researchers linked the formation 

of benzaldehyde with a radical-chain oxidation pathway. The researchers carried out 

the autoxidation of cinnamyl alcohol (blank reaction) under the given conditions and 

they reported 28 % conversion with 44.5 % selectivity to cinnamaldehyde and 53 % 

selectivity to benzaldehyde (entry 8, table 1-5). The blank reaction carried out under 

the same conditions but with the addition of the radical scavenger showed lower 

conversion, 10.4 %, however mostly cinnamaldehyde was formed (94.7 %) and only 

minor amounts of benzaldehyde (below 4 %) (entry 9, table 1-5). The researchers 

suggested that the trace amounts of hydroperoxides (from the substrate or by the 

activation of oxygen over Au surface) played the role of the chain initiator. The 

absence of epoxides pointed to polyperoxides which can decompose via cleavage of 

the O-O bond (and an adjacent C-C bond) yielding the products of oxidative cleavage.  

The group focused also on identification of other small molecules by-products. For this 

purpose, the reactor gas phase was transferred to a gas cell and analysed by FT-IR. 

The researchers identified CO2 and formaldehyde. In the next step, the gas phase was 

frozen and reacted with 2,4-dinitrophenylhydrazine (DNPH) which reacts with 

aldehydes yielding hydrazones. Hydrazones were then dissolved with an organic solvent 

and analysed by High Performance Liquid Chromatography (HPLC). This experiment 

confirmed the presence of formaldehyde. The reaction scheme presents the obtained 

product distribution (figure 1-9).  
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Figure 1-9 Reaction network for the oxidation of cinnamyl alcohol using Au-Ag NT proposed 
by Rossi and Costa.[54] 

 

Moreover, the researchers investigated the dynamic of product formation using 

Surface-enhanced Raman spectroscopy (SERS). The results of their studies have shown 

that cinnamaldehyde was formed on the catalyst surface as a product of metal 

catalysed oxidation. However, benzaldehyde was not observed on the catalyst surface, 

hence it was suggested that its formation takes place in the bulk solution via a radical 

chain pathway. These observations are in line with the activity data. 

Rossi and Costa drew attention to a very important aspect in organic chemistry 

and also in catalysis, i.e. autoxidation. Although in different context, Niklasson et 

al.[55] studied stability of cinnamyl alcohol in detail. The researchers designed a set 

of experiments, where the samples of cinnamyl alcohol were exposed to air under 

different conditions. The conclusion drawn from these experiments was that cinnamyl 

alcohol undergoes autoxidation no matter what conditions are applied. The topic of 

autoxidation will be discussed in more detail later in this chapter. 

 

1.4.2. Alcohol oxidation: 3-pyridinemethanol oxidation 

Heterocyclic carbonyl derivatives are used in the pharmaceutical industry as 

precursors of important drugs e.g. antiviral and antitumor. In general, the aerobic 

oxidation of pyridine-derived alcohols is challenging due to the presence of heteroatom 

in the structure which stabilizes the molecule making it more difficult to oxidise. 

Therefore, many different approaches have been applied.  

Rostami et al.[56] prepared VO(ephedrine)2 supported over magnetic nanoparticles 

which allows for easy separation of the catalyst by a magnet. The researchers pointed 

to the fact that alcohols containing a heterocyclic atom in the structure very often 

interact with transition metals which leads to the deactivation of the catalyst. 

VO(ephedrine)2@MNPs was found to be very active for the oxidation of 3-

pyridinemethanol with the use of TBHP as oxidant. The isolated yield of 3-

pyridinecarboxyaldehyde after 15 hours was 92 %. The reaction was carried out at 80 

BHT, 

catalyst, 

O2 

[O] 

+CO2 

+HCHO 

O2, catalyst 
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°C in PEG as solvent. The catalyst showed only mild deactivation after 6 reuses for 

benzyl alcohol oxidation. 

Karimi and Esfahani[57] demonstrated an unusual approach in performing the catalytic 

oxidation of alcohols at room temperature. Here, rather than immobilising gold 

nanoparticles onto a support prior to reaction, the researchers simply added NaAuCl4 

and Cs2CO3 to the reaction mixture of a substrate in toluene. It was observed that 

under reaction conditions, nanoclusters of gold were formed, followed by their 

immobilisation on Cs2CO3 (3 equiv.) which acted as a solid support. Oxidation of 3-

pyridinemethanol did not take place under air (1 atm), however under the oxygen the 

isolated yield after 16 hours was 87 %, with 100 % selectivity to the aldehyde. This in-

situ formed Au–Cs2CO3 catalyst was recovered by simple filtration and reused without 

any further treatment. The catalyst remained active for 3 runs, after which its activity 

significantly decreased as a result of agglomeration. The choice of the type of base 

was crucial, as in the presence of K2CO3 agglomeration of gold nanoparticles occurred 

instantly resulting in no conversion and in the presence of Cs2CO3 the reactions took 

place. Optimisation of the reaction time and ratio of alcohol to NaAuCl4 enhanced the 

catalytic process. 

Zhou et al. oxidised a range of alcohols in the presence of isobutyraldehyde with the 

use of metalloporphyrin-intercalated hydrotalcites CoTSPP-Zn2Al-LDH, originated from 

metalloporphyrins (MTSPP; M = Co, Fe, and Mn). The reactions were carried out in 

acetonitrile at 60°C with the addition of 3 mmol isobutyraldehyde per 1 mmol of 

substrate. Oxygen was bubbled through the reaction mixture (10 ml/min). The 

conversion of 3-pyridinemethanol to its aldehyde after 40 min was 44 % with a 

selectivity of 89 %.[58] The basic properties of hydrotalcite can be simply altered by 

substituting cations and anions. The same group studied the influence of basicity on 

the oxidation of various alcohols by replacing Ni2+ by Mg2+ in a series of hydrotalcites: 

CO3
2−-Ni2MgxAl-LDHs, x = 0, 0.5, 1.0, 1.5, and 2.0.  The researchers proved that the 

type of basic site affects the catalytic performance with only Bronsted OH basic sites 

being able to accelerate the reaction.[59] Zhou et al. continued works on Co-

containing hydrotalcites for oxidation of alcohols by changing the Co/Fe ratio. 

Exchanging Al with Fe improved the catalytic performance of CO3
2_–CoxFe–LDHs 

hydrotalcites. The increase in activity was found to be caused by a synergistic effect 

between Co and Fe and also between their cations. Oxidation of 3-pyridinemethanol 

performed in acetonitrile at 60 °C with TBHP as an oxidant gave almost 100 % 

conversion to 3-pyridinecarboxyaldehyde within 12 hours.[60] 

Chen and co-workers synthesised and tested Cu(II)-based metal-organic frameworks 

(MOFs)for the oxidation of alcohols to aldehydes in the presence of TEMPO. Oxidation 
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of 1 mmol of 3-pyridinemethanol was carried out for 16 hours at 75 °C in acetonitrile 

(5ml) with the addition of TEMPO (0.5 equiv.) and Na2CO3 (1 equiv.). This resulted in 

an isolated yield of 83 % to 3-pyridinecarboxyaldehyde. The MOFs were easily 

recovered from the liquid phase and reused.[61]  

Besson et al.[35], [62]–[64] tested 1.95 wt% Pt/C for the oxidation of pyridine-

derivative alcohols. The catalyst showed different activity towards various substituted 

alcohols. The choice of solvent influenced massively the overall catalyst performance 

in terms of activity and product distribution. The problem of Pt- group metals being 

poisoned by N-containing compounds has been highlighted. Findings reported by Besson 

are described in detail in Chapter 5, where they were then contrasted to the 

experimental results obtained in the oxidation of 3-pyridinemethanol using Au-Pd 

supported nanoparticles. 

 

1.4.3. Alkene epoxidation: trans-stilbene  

Supported nanoparticles of precious metals have been shown to be efficient not 

only in the selective oxidation of alcohols but also in the oxidation of alkenes. Epoxides 

are important intermediates used in various syntheses on the industrial scale. One 

model reaction is the oxidation of trans-stilbene. 

Lignier et al.[65] tested heterogeneous Au/TiO2, Au/Fe2O3 and Au/C catalysts in 

the process of trans-stilbene epoxidation under atmospheric pressure of air at 80 °C. 

Pt/ C was found to be inactive under these conditions and Au/TiO2 showed the highest 

activity among tested catalysts. The authors investigated the effect of the solvent and 

they reported its significant influence on the course of the reaction. Au/TiO2 tested in 

toluene and acetonitrile yielded less than 5 % epoxide while in methylcyclohexane the 

yield to epoxide was 53 %. The researchers proved a free-radical mechanism of the 

studied reaction by carrying out a set of experiments. In the first experiment, the 

oxidation of trans-stilbene was performed in the absence of TBHP which resulted in no 

conversion (less than 1 % epoxide). In the next experiment, 5 mol% TBHP was used 

instead of 400 mol% which resulted in significantly decreased conversion. In the last 

experiment, the reaction has been carried out with the addition of radical scavenger, 

which led to less than 5 % trans-stilbene oxide in 24 h. The researchers proved that the 

molecular oxygen from the air is necessary as less than 5 % trans-stilbene oxide has 

been obtained in the reaction carried out under argon (in standard conditions). 

Moreover, it was noted that oxygen activation is related to the nature of the solvent 

as the epoxidation of trans-stilbene involves a co-oxidation of the solvent 

(methylcyclohexane).  
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Figure 1-10 Mechanism for the oxidation of trans-stilbene in methylcyclohexane proposed by 
Lignier et al.[65] 

 

The scientists proposed the following mechanism that has also been shown in figure 1-

10: Initiation- thermolysis of TBHP (1) → Formation of the methylcyclohexyl radical 

(2) → Propagation- formation of the methylcyclohexyl peroxy radical (3) → Reaction 

with trans-stilbene (5) → Regeneration of the methylcyclohexyl radical and then 

methylcyclohexyl hydroperoxide (4) → Decomposition: formation of the epoxide and a 

methylcyclohexoxy radical (6) → Abstraction of  the tertiary hydrogen from 

methylcyclohexane to produce methylcyclohexan-1-ol and regeneration of the 

methylcyclohexyl radical → Termination: via recombination of the peroxo radicals. 

Direct addition of hydroxyl radicals to trans-stilbene is also possible in excess 

of TBHP. The researchers performed another experiment where instead of TBHP, H2O2 

has been used obtaining 30 % conversion however no epoxide was detected. This 

indicated that the excess of hydroxy radicals (also in case of TBHP) led to an 

unselective degradation process in which products of a total oxidation such as CO2 have 

been detected. Therefore, the selective epoxidation reaction was induced by the tert-

butoxy radical. 

The same group tested Au/TiO2 in the oxidation of both forms, trans-stilbene 

and cis-stilbene.[66]  Interestingly, the produced epoxide was formed always in trans 

form. This was explained by adsorption effects to a solid surface where steric 

hindrance forces the formation of specific products by decreasing symmetry and 

accessibility of the molecule. The group carried out the reaction using 50 ppm of free 

gold and they reported its inactivity towards epoxide formation which indicated that 
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the reaction was heterogeneous. Moreover, it was suggested that both gold and titania 

take part in the mechanism, by trapping the unselective hydroxyl radicals, catalysis of 

radical formation and stabilisation the intermediate (adduct of the methylcyclohexyl 

peroxy radical to the trans-stilbene). 

Lignier et al.[67] extended their research on trans-stilbene epoxidation using 

1.5 %Au/TiO2 with systematic studies of solvents and radical initiators. The applied 

conditions remained the same: 80 °C, 24 h, and atmospheric air pressure. Three radical 

initiators were tested: tert-Butylhydroperoxide (70 % TBHP in H2O), di-

tertbutylperoxide (98 % DTBP) and hydrogen peroxide (29–32 % H2O2 in H2O). It can be 

seen from table 1-6 that di-tertbutylperoxide and hydrogen peroxide degraded about 

20 % of trans-stilbene. TBHP has been found to be an effective radical initiator for the 

oxidation of trans-stilbene.  

 

Table 1-6 Influence of radical initiators on the oxidation of trans-stilbene in 
methylcyclohexane.[67] 

Entry Peroxide 
Catalytic properties 

Conv. (%) Yield (%) Sel. (%) 

1 TBHP 42 27 64 

2 DTBP 20 0.5 3 

3 H2O2 24 0.5 2 

Conditions: trans-stilbene, 1 mmol; solvent, 20 ml; Au/TiO2, 27+/- 2 mg/ 2.1+/- 0.2 μmol Au; 
TBHP, 0.05 mmol; air, atmospheric pressure; temperature, 80 °C; time, 24 hours. 

 

The researchers drew interesting conclusions based on the solvent studies presented 

in table 1-7.  

 

Table 1-7 Influence of solvent on the oxidation of trans-stilbene.[67] 

Entry Solvents 
Catalytic properties (%) 

Conversion Yield Selectivity 

1 n-Heptane 13 2.4 19 

2 Cyclohexane 1.6 1 61 

3 Methylcyclohexane 42 27 64 

4 1,3-Dimethylocyclohexane 67 43 63 

5 1,4-Dimethylocyclohexane 63 41 65 

6 Toluene 3.2 2 61 

7 1-Methylpiperidine 0.2 <0.1 - 

8 Piperidine 3.1 <0.1 - 

9 Benzyl alcohol 2.1 0.2 9.5 

10 Acetophenone 5.6 1.7 31 
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11 Propionitrile 9.4 4.7 50 

12 Dimethylformamide 3.7 0.4 10 

13 Acetonitrile 3.8 2.5 67 

14 Dimethylsulfoxide 6.7 <0.1 - 

Conditions: trans-stilbene, 1 mmol; solvent, 20 ml; Au/TiO2, 27+/- 2 mg/ 2.1+/- 0.2 μmol Au; 
TBHP, 0.05 mmol; air, atmospheric pressure; temperature, 80 °C; time, 24 hours. 

 

It can be noted, that only mono- and di-substituted cyclohexanes are efficient as 

solvents to achieve high yields of epoxide. Polarity does not seem to play a significant 

role. The researchers suggested that the molecular structure of the solvent, especially 

the presence of tertiary alkyl groups enables to obtain higher epoxide yields. Keeping 

in mind that epoxide formation was associated with partial oxidation of the solvent 

molecule (tertiary C-H bonds: 1-Methylcyclohexanol, 1,3-dimethylcyclohexanol and 

1,4-methylcyclohexanol) it was stated that the epoxidation process and the oxidation 

of the solvent are interconnected. 

The group decided to investigate the anatase titania morphology in gold catalysts on 

the epoxidation of trans-stilbene.[68] Three kinds of TiO2 with similar surface areas 

have been tested: AK350 (less hydroxylated), UV100 and PC500. All tested catalysts 

showed similar selectivity, however with a different overall yield of the epoxidation 

of stilbene. Au catalysts supported over PC500 and UV 100 have been found to be more 

active than when supported over AK500 due to the presence of titanol groups. 

Moreover, the researchers linked the higher activity of Au/ UV100 to the presence of 

boron and its possible role as a promoter. It has been shown that UV100 is more suitable 

support in the oxidation of stilbene by gold than TiO2-P25. 

Fkiri et al.[69] tested unsupported monodisperse gold octahedra in polyol (PVP 

K30 as a stabilizing agent) using an excess of TBHP as oxidant in the selective oxidation 

of trans-stilbene. 1,3-propanediol served as both solvent and reducing agent. The 

addition of a small amount of surfactant played a significant role in this process. It was 

reported that the carbon balance was only 5 % for the uncatalyzed reaction which 

means that 95 % of the substrate has been changed into total oxidation products. The 

other reported product was benzaldehyde (around 3 % yield), no epoxide was observed.  

The researchers stated that their method of gold nanoparticles synthesis utilizing PVP 

coupled with 1,3-propanediol allows to control the shape and monodispersity. A low 

PVP/Au molar ratio R=0.03 has been suggested to be optimal for the oxidation of trans-

stilbene (table 1-8).  
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Table 1-8 Influence of a stabilizing agent on the oxidation of trans-stilbene.[69] 

R(PVP/Au) 
Induction 
period [min] 

Conversion (%) 
Benzaldehyde 
yield (%) 

Epoxide 
yield (%) 

0.025 

400-500 

66 7 

Below 1 
0.035 62 7 

0.02 50 7 

0.045 50 7 

0.015 no 82 15 40 

0.03 no 66 15 40 

Conditions: trans-stilbene, 1mmol; Au colloidal solution in ethanol, 2 ml/2 μmol Au; 
methylcyclohexane, 18 ml; TBHP, 909 μl of the 5-6 M decane solution/ 5 mmol; air, 
atmospheric pressure; temperature, 80 °C; time, maximum 97 hours. 

 

Caps and co-workers[70] designed and developed a reference catalyst that is 

suitable to be used in apolar media. Au(PPh3)Cl was employed as a gold precursor in 

three different protocols of catalyst synthesis. Commercially available silica 

functionalized with dimethylsiloxane, Aerosil R972 was successfully used as a 

hydrophobic support. Enhanced wettability of the catalyst in the organic solvent 

leading to minimal diffusion limitations allowed to obtained high yield in trans-stilbene 

epoxidation as opposed to the gold nanoparticles supported over TiO2 (table 1-9, 

Protocol no 2 has been shown). Moreover, the catalyst can be easily scaled-up to 5 g 

and more. 

 

Table 1-9 Influence of support on the oxidation of trans-stilbene using Au nanoparticles 
(catalysts prepared by Protocol 2).[70] 

Support 

24 h 72 h 

Conver. (%) Sel. (%) Conver. (%) Sel. (%) 

Aerosil R812 25 60 >60 >60 

Aerosil R972 53 74 97 73 

TiO2 (P25) 36 56 50 82 

Conditions: trans-stilbene, 1 mmol; Au catalyst, 1 μmol; methylcyclohexane, 20 ml; tert-butyl 
hydroperoxide, 0.05 mmol/7 μl of a 70 % TBHP in water; temperature, 80 °C; air, atmospheric 
pressure.  

 

In their next work, the group focused on determining a key reaction intermediate in 

aerobic epoxidation of trans-stilbene in methylcyclohexane using optimised Au/SiO2-

R972 catalyst.[71] The researchers monitored the concentration of 1-methylcyclohexyl 

hydroperoxide (GC–MS in SIM (selective ion monitoring) mode by triphenylphosphine 

titration followed by 31P NMR) and found that the autoxidation and epoxidation 
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pathways co-exist in the process. Moreover, it was noted that 1-methylcyclohexyl 

hydroperoxide accumulates during the reaction. It was suggested that the Au catalysed 

decomposition of hydroperoxide might be the limiting step in the oxidation of trans-

stilbene in methylcyclohexane.  

Crites et al.[72] carried out epoxidation of cis-stilbene in cumene using 

Au/TiO2. The reactions were performed at 80 °C, for 24 hours, using TBHP as a radical 

initatior. Interestingly, the formation of two forms of oxides, cis- and trans-stilbene 

oxide, have been reported (table 1-10).  

Table 1-10 Oxidation of cis-stilbene in cumene.[72] 

Catalyst Conversion (%) 
Yield trans-

stilbene oxide 
(%) 

Yield cis-
stilbene oxide 

(%) 

Au/ TiO2 18.7 16.3 2.6 

TiO2 48 0 0 

No catalyst 0 0 0 

Conditions: temperature, 80°C; time, 24 h; 0.5 mmol cis-stilbene; cumene, 10 ml; AuNO@TiO2. 

 
Electron Paramagnetic Resonance (EPR) spin trap technique was employed to identify 

the radical species. It can be seen from table 1-10 that oxides were obtained only when 

the catalyst was used. Previous work[73] of this group provided the proof that peroxyl 

radicals can be decomposed on the surface of gold nanoparticles leading to the formation 

of surface-oxygen species. Based on that and on the activity data, the researchers put 

forward the hypothesis that a cumyl peroxyl radical can decompose on the Au nanoparticles 

surface followed by an electron transfer from cis-stilbene to the oxygen bound Au 

nanoparticle adduct (figure 1-11). The reported epoxide stereochemistry would be a result 

of the suggested mechanism.  

Figure 1-11 Mechanism for the epoxidation of cis-stilbene using Au nanoparticles proposed by 

Crites et al.[72] 

H abstraction to 

cumyl alcohol 
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The proposed pathway is in contradiction with previous literature reports regarding the 

direct involvement of a free peroxyl radical in the attack and epoxidation of stilbene.  

 

1.5. Synergy between Au and Pd 

 It has been shown above that bimetallic Au-Pd supported catalysts have been 

found to be superior to their monometallic counterparts in the oxidation of cinnamyl 

alcohol. However, this synergistic effect between Au and Pd has been observed for 

several other reactions which have been briefly described below. 

The desired product in the oxidation of benzyl alcohol is benzaldehyde, a 

common food and perfume additive (almond flavour and aroma), and also a precursor 

to the wide range of chemicals.[74] Hutchings and co-workers carried out thorough 

research on the oxidation of benzyl alcohol using Au, Pd and Au-Pd heterogeneous 

catalysts prepared by different methods, immobilized on different supports, applying 

various conditions.[17], [18], [82], [83], [20], [75]–[81] In general, the most active 

catalysts for the oxidation of benzyl alcohol were prepared by sol-immobilisation 

method (1 % Au-Pd/TiO2 showed 70 % conversion and 80 % selectivity after 3 hours 

under 1 bar O2 at 120 C)[78]. As an example of enhanced yield to benzaldehyde using 

bimetallic Au-Pd system, the work of Enache et al.[84] has been presented in the table 

1-11 below.  

 

Table 1-11 Oxidation of benzyl alcohol and direct synthesis of hydrogen peroxide using 
bimetallic Au-Pd supported catalysts.[84] 

Catalyst 

Benzyl alcohol oxidation 
H2O2 

synthesis 

Conversion 
(%) 

Selectivity 
(%) Productivity  

[mol/(hour/ 
kgcat)] 

Productivity 
[mol/(hours/

kgcat)] 0.5 
hour 

8 
hours 

0.5 
hour 

8 
hours 

2.5%Au-
2.5%Pd/Al2O3 

2.6 83.3 90.5 86.6 174 23 

2.5%Au-
2.5%Pd/TiO2 

3.7 74.5 95.2 91.6 165 64 

2.5%Au-
2.5%Pd/SiO2 

3.6 35.7 97.3 88 76 80 
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2.5%Au-
2.5%Pd/Fe2O3 

3.6 63.4 74.9 66.4 102 16 

2.5%Au-
2.5%Pd/C 

2.9 69.2 53.9 46.4 78 30 

2.5%Au/TiO2 0.6 15.3 96.7 63.9 24 <2 

2.5%Pd/TiO2 13.4 60.1 51.3 54.4 79 24 

Conditions: temperature, 100 °C; oxygen, 0.2 MPa; catalyst 

The catalysts have been prepared by impregnation method, followed by calcination 

process during which the segregation of the metals occurred leading to a Pd-rich shell 

and Au-rich core. The researchers suggested that some Au atoms were still present at 

the surface based on the activity data indicating that Au is more than just a Pd 

promoter and the enhancement is related to bifunctional active sites. Moreover, it can 

be seen from table 1-11 that the support plays a significant role and its optimization 

can improve the overall yield of the catalytic process. In this case, the most efficient 

support has been found to be TiO2 compared to the Al2O3 and Fe2O3 supports. The 

researchers linked the inferior behaviour of the latter oxides with their acidic 

character leading to enhanced by-product formation. The group proved in their other 

publications[85]–[87] that simply by changing support from TiO2 to MgO or ZnO, it is 

possible to switch off the formation of toluene as a side reaction in the oxidation of 

benzyl alcohol. Moreover, as they showed later, the addition of Pt to the supported 

AuPd nanoparticles switches off the formation of toluene immediately.[88] The 

researchers hypothesised that the reason for that lies in the relative stability of Pt 

hydride compared to Pd hydride. The characterisation of this trimetallic catalyst 

revealed the presence of a homogeneous nanoalloy.  

Another process where bimetallic Au-Pd system has been employed is glycerol 

oxidation.[89], [90] Glycerol is a by-product of biodesel production, one of the major 

alternatives to petroleum fuels. Glycerol is a highly functionalized molecule that can 

be used as a platform chemical for the synthesis of fine chemicals and 

pharmaceuticals.[26], [91]–[94] However, the current supply of glycerol greatly 

outstrips demand and therefore its transformation into other useful compounds is of 

great academic interest. Prati and co-workers[89] designed and synthesised 1% 

Pd@Au/C catalyst with homogeneous alloy by two step synthesis: preformed metallic 

sol of Au was immobilised on carbon followed by deposition of Pd. EDX and HRTEM 

techniques confirmed no phase segregation, random character of Au-Pd alloy, and 

metal ratio Au-Pd being 6: 4. The catalyst has been tested in the oxidation of glycerol 
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and it was reported that TOFs measurements showed a six fold increase from about 

1000 h−1 for monometallic to 6400 h−1 for bimetallic. The researchers linked enhanced 

activity with homogeneous alloyed phased. Moreover, it was highlighted that the 

increase in selectivity of the bimetallic system was significant with respect to 

monometallic Au and close to the selectivity of monometallic Pd. In terms of 

conversion, the worst performance was demonstrated by monometallic Pd, whereas 

bimetallic and Au were more active. It was suggested that deactivation of Pd was 

caused by poisoning. It was also suggested that Au-Pd bifunctional sites were 

responsible for the enhancement in catalytic activity as the number of Pd and Au 

monomers decreased. The researchers linked their results with the report about active 

sites for CO adsorption[95] determined at the edge of Au islands on Pd(111) surface. 

Therefore, the overall improved activity should be considered a result of two effects: 

electronic and geometric. A year later, the group published their further findings.[90] 

A series of catalysts with various Au-Pd metal ratio (9.5:0.5, 9:1, 8:2, 6:4, and 2:8) 

were prepared in the same way as described above. The characteristic studies have 

been correlated with the oxidation of glycerol to glyceric acid. The synergistic effect 

has been observed based on the activity data (figure 1-12). The most active catalyst 

was the 9: 1 ratio of Au-Pd. 

 

Figure 1-12 Influence of Au-Pd metal ration on the oxidation of glycerol.[90] 

 

In general, all tested catalysts had similar particles sizes. Pure Au and Au-rich catalysts 

showed multiply twinned structure with mainly (111) surfaces and occasionally (100); 

good Pd dispersion was observed. However, in the monometallic Pd catalyst, Pd-rich 

2Au: 8Pd and 9.5Au:0.5 Pd, the researchers noticed irregularities in shape. They 

pointed to the fact that the surface Au-Pd ratio can be different from the nominal 

calculated value simply due to an insufficient number of atoms, for example 2 Au: 8Pd, 

hence Pd segregation is expected. The scientists linked high catalytic activity with 
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uniformed alloyed bimetallic particles observed in Au-Pd 9:1, 8:2, and 6:4 ratios. The 

inhomogeneity of Pd in other studied ratios was indicated as a reason of inferior 

activity due to depletion of isolated Pd monomer sites. Many other scientific reports 

confirmed the validity of the hypothesis about greatly enhanced catalytic activity of 

the highly dispersed Pd sites diluted with Au.[96]–[98] 

Hydrogen peroxide has been known for years as a domestic chemical used 

mostly as a bleach and disinfectant. For chemists, hydrogen peroxide is an excellent 

oxidant, considered as green oxidant, hence widely used in the production of fine 

chemicals. The major problem of the currently used anthraquinone process used for 

production of hydrogen peroxide is the generation of harmful wastes: oxanthrones and 

anthrones, and also the requirement for this process to be conducted on large 

scales.[99] The direct synthesis of hydrogen peroxide from O2 and H2 is therefore of 

great academic and industrial importance. Active catalysts used for the direct 

synthesis of H2O2 are effective hydrogenation catalysts (hydrogenation of oxygen). This 

fact implies the consequences of further hydrogenation of hydrogen peroxide to 

water.[100] Initially, the direct synthesis of hydrogen peroxide from H2 and O2 has been 

investigated with the use of catalysts containing mostly Pd. Growing interest in the 

catalysis of gold has led to breakthrough discoveries for the discussed process. It was 

reported that only a small amount of added Pd is enough to significantly increase the 

activity of Au catalysts (table 1-11).[84], [90] 

The great advantage of bimetallic Au-Pd catalysts over monometallic Pd catalyst is the 

fact that no promoters (e.g. halide, acid) are needed to obtain high rates and high 

concentrations of hydrogen peroxide formed. Extensive research is being undertaken 

by many groups to improve the direct synthesis of hydrogen peroxide by Au-Pd 

nanoparticles.[24], [101]–[106]  

Carter et al.[107] contrasted reactions for which addition of Au to Pd leads to 

a synergistic effect (such as mentioned earlier) with the reactions that Au-Pd shows 

anti-synergy such as CO oxidation. The case of CO oxidation using bimetallic Au-Pd 

system is confusing because there are a lot of theoretical reports[108], [109] that 

predict high activity of the system, however experimental reports[110], [111] seem to 

be in contradiction with theoretical works. The authors noticed that electronic effect 

is presumably responsible for the synergistic effect for alcohol oxidations and hydrogen 

peroxide synthesis which does not play a role in the oxidation of CO. CO Diffuse 

Reflectance Infrared Fourier Transform Spectroscopy (CO-DRIFTS) and X-ray 

Photoelectron Spectroscopy (XPS) techniques were used to determine the active sites 

which were called rather active centres due to their structure: metal atoms placed at 

the periphery of the nanoparticles placed closely to adsorption sites on the support 
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material. Therefore, enhancing this interface by optimisation of support and 

maximizing by using nanoparticles is a way to design highly active catalysts. In view of 

these observations, the addition of Pd to Au system in the oxidation of CO is not 

beneficial due to the formation of less active Pd sites at the metal-support 

interface.[107]  

Based on the presented processes, the synergy of the Au-Pd nanoparticles is 

clearly visible. Metal ratio, coordination and electronic configuration plays an 

enormous role in nanoparticles catalytic activity. Understanding of the synergistic 

effect at atomic level would enable conscious and targeted optimization/tuning of 

catalysts. However, the origin of this phenomenon is still not clear and is under 

debate.[21], [84], [112]  The literature reports suggest that the synergy of Au and Pd 

is caused by two effects: ensemble and ligand effects. The ensemble effect is simply 

related to the dilution of one metal by another, e.g. more active Pd diluted by less 

active Au. Therefore, isolated Pd can form active sites on increased surface. Moreover, 

side reactions are limited due to absence of Pd ensembles which improves selectivity. 

The ligand effect is related to the electronic interaction between Au and Pd (by charge 

transfer or by changing in bond lengths).[21]  

Petkov et al.[113] studied Au-Pd nanoparticles supported on carbon for CO oxidation in 

the context of the synergy between Au and Pd (using resonant High-Energy X-ray 

Diffraction (HEXRD). The researchers supported their experimental work also with 

theoretical DFT calculations based on a refined version of d-band centre theory. They 

reported that the activity enhancement is due to formation a specific “skin” on top of 

the nanoalloys involving atomic pairs. Their research confirmed previous reports about 

electronic effect of Au and Pd in the outer layer: Au atoms shrink and acquire a partial 

positive charge of 5d-character whereas Pd atoms expand and become 4d-electron 

deficient. The reactivity of Au increases whereas Pd atoms become less reactive, hence 

some reactions are intensified and some reactions are limited (side reactions caused 

by Pd). 

Detailed investigation of d- band centre theory allows for deeper understanding 

the phenomenon of metals catalytic activity. The mechanism of reactions utilizing 

metals as catalysts is described in the literature as breaking bonds between valence 

electrons at the Fermi level of surface metal atoms and frontier orbitals of reactants. 

Therefore, the catalytic properties of metals and their alloys depend on the number 

and character of valence electrons at the Fermi level. It is possible to calculate the 

valence electrons available for bonding for Au and Pd knowing their number of the 

respective row in the periodic table (m) and applying to the formula: md, (m+1)s and 

(m+1)p. Thus, the electron configuration for Au is 5d10s1(11 valence electrons 
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altogether) and for Pd is 4d10s0 (10 valence electrons). It was noted that at the bulk 

scale sp-d hybridization occurs which pushes into higher-energy s and p states a small 

number of the valence d electrons of Pd and Au. As a result, bulk Pd has actual valence 

electron structure: 4d9.45(sp)0.6 and the actual valence structure for Au is: 5d9.66(sp)1.4 

Valence electrons of s- and p-character and their interactions with the adsorbate 

orbitals are fairly similar for all transition metals with regard to bonding. Valence 

electrons of d-character in metals show differences in binding. Moreover, it has been 

shown that the catalytic activity and selectivity of transition metals, including Au, Pd 

and their alloys, are influenced by sp-d hybridization, width and position of d-electron 

bands with respect to the Fermi energy. From this point of view, the low reactivity of 

Au can be explained by the fact that its 5d band is fully occupied and positioned below 

the Fermi energy, hence the valence electrons of 5 d- character responsible for 

chemisorption are inaccessible. Following this path, the 4d band of Pd extends through 

the Fermi level hence strong chemisorption bonds can be easily formed, which explains 

high reactivity of Pd. [21], [113], [114] 

Gao and Goodman[21] explained catalytic activity of Au-Pd system by combined 

ensemble and ligand effects: Au gains 6(sp) electrons and loses 5d electrons, whereas 

Pd loses 5(sp) electrons and gains 4d electrons. Chemisorption and catalytic properties 

of transition metals (including Pd and Au) are determined rather by the d-character 

than s,p-character, hence in case of Pd gaining d electrons shifts the d band centre 

away from the Fermi level. The authors linked this fact to enhanced activity as “self-

poisoning” is eliminated by weaker binding of reactants and products to Pd. 

Interestingly, catalytic activity of diluted Pd with Au is close to the catalytic activity 

of pure Pd.[21]  The observations and activity data based on model reactions have been 

supported by theoretical calculations.[112], [115], [116] 

In summary, it has been shown that the size of nanoparticles, their shape, 

interaction with the support and oxidation state determine the catalytic performance. 

Morphology of nanoparticles seems to be crucial element to understand, as it massively 

influences the activity and selectivity nanometals by affecting the availability of active 

sites, binding strength of reactants, metal-support interaction, and both electronic 

and geometric effects.  Another issue would be determination of nanoparticles 

interaction under realistic reaction conditions. There is a possibility that morphology 

may change during a reaction due to high temperature or interactions with the 

reactants in an unexpected and unpredictable way which means that the state of the 

catalyst during a reaction is different than that determined by characteristic 

techniques before and after a reaction. Development of operando and in-situ 
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techniques coupled with experimental chemistry seems to be necessary to fully 

understand the dynamic nature of supported heterogeneous nanoparticles.[117]–[120]   

 

1.6. Autoxidation 

Oxidation reactions are used to produce all kinds of chemicals, from fine 

chemicals, through additives to food, to pharmaceuticals. Oxidations performed with 

the use of supported nanoparticles of noble metals are characterized by two features: 

conversion and selectivity. Currently, research is focused on achieving the highest 

possible conversion and selectivity, which is very often linked to the catalyst design, 

such as particle size, nanoalloy formation and metal-support interaction. The lack of 

selectivity in catalytic process is a complex issue. One of the reasons of low selectivity 

(apart of the catalyst itself and active sites issue) in oxidation reactions is related to 

the presence of oxygen and presence of radical species very often leading to the side-

reactions or autoxidation processes.[121]  

Autoxidation is not always an undesirable process. Partial oxidation of hydrocarbons, 

autoxidations, mediated by free radical intermediates are challenging reactions in an 

industry. Examples of this type of processes used deliberately in bulk scale are: the 

oxidation of p-xylene to terephthalic acid (44 × 106 tons per year), the oxidation 

of cyclohexane to cyclohexanol and cyclohexanone (6 × 106 tons per year), and the 

synthesis of ethylbenzene hydroperoxide (6 × 106 tons per year).[122]  

Oxidation of cyclohexane is especially interesting as the products, cyclohexanol and 

cyclohexanone (figure 1-13), are precursors of nylon-6,6 and nylon-6 respectively. The 

reaction is performed industrially at elevated temperature (140 °C) using Co(II)-

naphthenate, Co(II)-(acac)2 or Fe(III)-(acac)3 and the conversion is deliberately maintained 

at around 4-5 %. The reason for that is to maintain selectivity to alcohol and ketone above 

85 % and to limit the formation of by-products. The catalyst Co(II)-naphthenate acts rather 

as a promoter of a free radical autoxidation pathway (in a Haber-Weiss cycle), hence 

selectivity is almost impossible to control at higher conversion. [121], [123], [124] 

 

 

Figure 1-13-Scheme for the autoxidation of cyclohexane using air and metal salts proposed 
by Hermans et al.105 

 

 

https://www-sciencedirect-com.abc.cardiff.ac.uk/topics/chemical-engineering/cyclohexane
https://www-sciencedirect-com.abc.cardiff.ac.uk/topics/chemical-engineering/ethylbenzene
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Another benchmark reaction is oxidation of the renewable olefin α-pinene, the 

products of which (figure 1-14) have found applications in the fragrance and flavour 

industry. For example, the epoxide is the starting material for the synthesis of 

sandalore (Givaudan) and polysantol (Firmenich)- sandalwood-like aroma.[122], [125] 

 

Figure 1-14 Scheme of the thermal α-pinene oxidation proposed by Hermans. 103 

 

Also oxygenated compounds such as aldehydes can be subjected to autoxidation. The 

aerobic oxidation of valeric aldehyde (n-pentanal) leads to the formation of valeric 

acid (n-pentanoic acid) applied in the production of lubricants, PVC stabilizers and 

fragrances (scheme 1-15). The scale of this process is about 2 × 104 t/a 

worldwide.[126] 

 

Figure 1-15 Thermal autoxidation of valeric aldehyde.[126] 

 

The autoxidation pathways are possible thanks to the diradical nature of molecular oxygen. 

O–O bond is relatively weak (about 40 kcal mol−1) and can be thermally activated at 

elevated temperatures. Therefore, several activated oxygen species can be present over 

heterogeneous oxides supported catalysts, such as O2 (adsorbed or peroxide group), 

O2−(oxide anion), O2
2− (peroxide anion), and O2

− (superoxide).[121], [126] 

A general oxidation mechanism via radical chain[126] has been shown in figure 1-16, 

which can be summarized in a few steps: 1a,b) Initiation of a dialkylperoxide (ROOR) 

or a hydroperoxide (ROOH) with a substrate molecule (RX) → 2) formation of alkoxyl 

(RO•) and alkyl (R•) radicals → 3,4) abstraction of hydrogen from the substrate and 

generation an alkyl radical → 5) termination[126] 

 

1a)  ROOR → 2 RO•     1b)  ROOH + RH → RO• + H2O + R• 

2)    R• + O2 → ROO• 

3)    ROO• + RH → ROOH + R• 

4)    RO• + RH → ROH + R• 

5)    ROO• → ROH + Q=O + O2 

Figure 1-16 General mechanism of autoxidation proposed by Neuenschwander and 
Hermans.[126] 

O2 

https://www-sciencedirect-com.abc.cardiff.ac.uk/topics/chemical-engineering/olefin
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It has been shown in this brief review that autoxidation is a valued process in 

industry. However, its presence is very often negligible or overlooked during catalytic 

studies. Conte et al.[127] investigated the mechanism of benzyl alcohol oxidation by 

unsupported and supported Au nanoparticles. The researchers employed Electron 

Paramagnetic Resonance (EPR) spectroscopy and spin trapping to confirm the 

formation of Au-H intermediates formed as the effect of C-H cleavage in the alcohol 

molecule. C-H bond cleavage has been pointed as a rate determining step occurring 

via transfer of either a hydrogen atom or hydride. The role of oxygen was identified as 

a catalyst activity regenerator (removing H from the catalyst surface) rather than 

direct oxidant. Also, the support was found to play a role as an oxygen activator, which 

facilitates faster restoration of the supported catalysts as opposed to unsupported Au. 

Nevertheless, the most interesting finding proved the existence of autoxidation 

products during the catalytic oxidation of benzyl alcohol by Au. Despite the minor 

character of the observed process and very little amount of formed by-products, 

reported peroxyl radicals were in line with a free radical autoxidation mechanism. This 

work confirmed the co-existence of two mechanisms: catalytic and radical (figure 1-

17). The mechanism of alcohol formation is in line with the classical dehydrogenation 

mechanism and formation of free peroxyl radicals is much slower than hydride 

transfer, hence the catalytic reaction is dominant.[127]  

 

 

Figure 1-17 Mechanism for the oxidation of alcohols catalysed by Au proposed by Conte et 
al.[127] 

 

In summary, transition metals have been found to be extremely active catalysts in 

oxidation reactions especially coupled with molecular oxygen as an oxidant. However, 

activated oxygen at elevated temperature and in the presence of metals can produce trace 

amounts of peroxides. This fact can cause further consequences in regard to the selectivity 

and mechanism of the process. Oxidation reactions are complex, and every factor should 

O2 

- 
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be taken into consideration during catalytic studies, even autoxidation pathways, to gain 

unadulterated insight into the process.  

The above oxidation reactions are currently performed industrially using 

stoichiometric toxic oxidants such as permanganates and chromates. Bimetallic Au-Pd 

catalysts have been found to be extremely active for the oxidation reactions carried 

out in line with green chemistry rules. The reactions described in the literature are 

usually performed at low temperatures for long times which is undesirable from an 

industrial point of managing energy. Supported precious metal catalysts will be 

employed under elevated, industrially relevant temperatures with the aim of high 

activity and selectivity over shorter reaction times. The catalysts will be tested for a 

range of substrates with regards to their chemical reactivity and stability. 

 

1.7. Aims of the study 

The aim of this project is to utilize bimetallic Au-Pd supported nanoparticles 

inspired from recent advances in field of heterogeneous catalysis for the production of 

value-added chemicals in industrially relevant conditions, in a green and sustainable 

manner. 

The first reaction to be investigated is the oxidation of cinnamyl alcohol to yield 

cinnamaldehyde carried out in toluene in the absence of any additives under 

autoxidation conditions. The third chapter contains a detailed study of both catalytic 

and radical pathways. 

The fourth chapter examines the effect of Au-Pd ratio on cinnamaldehyde yield.  

In the fifth chapter, the oxidations of trans-stilbene and 3-pyridinemethanol will 

be carried out to investigate the effect of the chemical nature of the substrate on the 

catalytic activity of Au-Pd supported nanoparticles. Trans-stilbene is an example of 

alkenes and the desired product is trans-stilbene oxide. The Au-Pd system is also 

studied in the oxidation of N- containing and chemically stable 3-pyridinemethanol to 

yield 3-pyridinecarboxyaldehyde. The reaction has been described in the literature as 

challenging due to rapid deactivation of Pd catalysts, hence alloying Au with Pd is 

investigated.  
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Chapter 2 

2. Experimental 
 

2.1. Chemicals 

Listed below chemicals were used as received: 

 

▪ Cinnamyl Alcohol (98 %, Sigma Aldrich) 

▪ Cinnamaldehyde (Sigma Aldrich) 

▪ 3-Phenyl-1-propanol (Sigma Aldrich) 

▪ Methylstyrene (Sigma Aldrich) 

▪ Styrene (Sigma Aldrich) 

▪ 3-Phenyl-1-propanol (Sigma Aldrich) 

▪ Benzaldehyde (Sigma Aldrich) 

▪ Benzoic Acid (Sigma Aldrich) 

▪ Toluene (HPLC grade, Fisher Scientific) 

▪ Water (HPLC grade, Fisher Scientific) 

▪ Titania (Degussa P25) 

▪ Sodium Borohydride (98 %, Sigma Aldrich) 

▪ Palladium Chloride (Johnson Matthey) 

▪ Hydrogen tetrachloroaurate (III) hydrate (49% Au assay, Strem) 

▪ Activated Carbon 

▪ Mesoporous silica (Sigma Aldrich) 

▪ Mesoporous alumina (Sigma Aldrich) 

▪ Xylene (HPLC, Fisher Scientific) 

▪ Mesitylene (HPLC, Fisher Scientific) 

▪ 3-Pyridinemethanol (HPLC, Sigma Aldrich) 

▪ 3-Pyridinecarboxyaldehyde (HPLC, Sigma Aldrich) 

▪ Niacin (99 % Sigma Aldrich) 

▪ Trans-Stilbene (99% Sigma Aldrich) 

▪ Trans-Stilbene oxide (99% Sigma Aldrich) 

▪ Benzil (99% Sigma Aldrich) 

▪ Water (HPLC, Fisher Scientific) 
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2.2. Definitions 

Conversion of tested substrates was calculated with the use of following 

equation (C subA, C subB- represent the substrate concentrations [mol/dm3] at the 

beginning of the reaction and at the end of the reaction, respectively): 

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 =
𝐶 𝑠𝑢𝑏𝐴 − 𝐶 𝑠𝑢𝑏𝐵

𝐶 𝑠𝑢𝑏𝐴
х 100 % 

 

Selectivity to each compound has been calculated according to the following 

equation: 

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝐶 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑

∑ 𝐶 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠
х 100 % 

 

S:m ratio has been evaluated using following formula: 

𝑠: 𝑚 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑚𝑒𝑡𝑎𝑙 𝑜𝑛 𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡 𝑢𝑠𝑒𝑑
 

 

Turnover frequency (TOF) has been calculated using following formula: 

𝑇𝑂𝐹 =  

𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡
𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑚𝑒𝑡𝑎𝑙 𝑖𝑛 𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡⁄

𝑡𝑖𝑚𝑒 (ℎ)
 

 

2.3. Acronyms 

Listed below acronyms have been used throughout this thesis:  

TOF Turnover Frequency 

PVA Polyvinyl Alcohol 

NMR Nuclear Magnetic Resonance 

SEM Scanning Electron Microscope 

XPS X-ray Photoelectron Spectroscopy 

MP-AES Microwave Plasma – Atomic Emission Spectroscopy 

ICP-OES Inductively Coupled Plasma – Optical Emission Spectroscopy 

GC Gas Chromatograph/Chromatography 

HPLC High Performance Liquid Chromatography 

GC/MS Gas Chromatography/Mass Spectrometry 

FID Flame Ionisation Detector 

MS Methylstyrene 

PP 3-Phenyl-1-propanol 

CinnALD Cinnamaladehyde 
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BenzACID Benzoic acid 

BenzALD Benzaldehyde 

 

2.4. Catalyst preparation 

Catalysts have been prepared according to the procedures described in papers 

where oxidation of benzyl alcohol has been studied.[1], [2] 

2.4.1. Sol-immobilisation method 

The catalysts have been synthesised according to the protocol described by Prati 

and co-workers.[2]–[5] 

 For preparation of a 0.50 %Au 0.50 %Pd/TiO2 catalyst, aqueous solutions of PdCl2 

(1.1494 ml, concentration: 4.35 mg/ml) (Alfa Aesar) and HAuCl4·H2O (0.4082 ml, 

concentration: 12.25 mg/ml) (Strem) were added to deionized water under vigorous 

stirring, followed by PVA (1wt% aqueous solution, Aldrich, MW= 10,000) (PVA/(Au + Pd) 

(wt/wt) = 1) and a freshly prepared solution of NaBH4 (0.1 M, NaBH4/(Au + Pd) 

(mol/mol) = 5). After an hour, the formed nanoparticles were immobilised onto a TiO2 

support by addition of TiO2 and acidification of the solution to pH=1 with sulphuric 

acid. The solid was filtered and washed with 800 ml distilled water followed by drying 

overnight at 110 °C in an oven. The obtained solid was then ground in pestle and 

mortar. These values were changed accordingly to prepare catalysts with various metal 

ratios. 

2.4.2. Impregnation method 

The catalysts have been prepared according to the protocol described by 

Hutchings and co-workers.[6]–[8] 

For preparation of a 0.50 %Au 0.50 %Pd/TiO2 catalyst, PdCl2 (0.0083 g) (Alfa 

Aesar) was dissolved in an aqueous solution of HAuCl4·H2O (0.4082 ml, concentration: 

12.25 mg/ml) (Strem). TiO2 (0.99 g) (Evonik, P25) was added to the solution with the 

addition of small amount of water. The slurry was heated at 90 °C until the consistency 

of toothpaste was obtained. The paste was dried overnight at 110 °C in an oven after 

which the solid was ground in a pestle and mortar and calcined in static air at 400 °C 

for 3 h. These values were changed accordingly to prepare catalyst with various metal 

ratios. 
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2.4.3.  Modified Impregnation method 

The catalysts have been synthesised according to the protocol described by 

Sankar et al.[8] 

For preparation of a 0.50 %Au 0.50 %Pd/TiO2 catalyst, first stock solutions have 

been prepared. PdCl2 (Alfa Aesar) was dissolved in an aqueous solution of 0.58 M HCl 

resulting in a Pd concentration of 9 mg/ml. As a precursor of Au, HAuCl4·H2O in water 

(concentration: 12.25 mg/ml) (Strem) has been used. The requisite amounts of Pd and 

Au solution were charged into the round bottom flask with the addition of water (to a 

total volume of 16 ml) and heated in oil bath up to 60 °C under stirring. In the next 

step, TiO2 (0.99 g) (Evonik, P25) was slowly added to the solution and heated at 60 °C 

for another 30 minutes. After that time, the temperature was raised to 90 °C and the 

slurry was further heated under stirring for 16 hours. Obtained solid powder was ground 

in a pestle and mortar and calcined at 400 °C in 5 %H2 in Ar for 4 hours at a heating 

rate of 10 °C/min.  

 

2.4.4. Alumina grafted SBA-15 support preparation 

Alumina grafted SBA-15 support has been prepared according to the protocol 

described by Landau and Wilson.[9], [10] Aluminium-tri-sec butoxide (14.5 g) was 

dissolved in anhydrous toluene (100 ml) at 85 °C under stirring. In the next step 

triethylamine (2.1 ml) and SBA-15 (1 g) have been added to the solution. After 6 hours 

of stirring the slurry was filtered and dried. Obtained solid was washed with toluene 

(35 ml) 3 times in total. Subsequently, the solid has been placed in ethanol (318 ml) 

mixed with small amount of water (1.6 ml) and hydrolysed for 24 hours at room 

temperature. The slurry was filtered, washed with ethanol (300 ml) and dried under 

vacuum (0.25 bar) at 50°C on a rotary evaporator. The powder was dried at 110 °C 

followed by a 3-step calcination sequence with ramp rate 1 °C min-1: 1 hour at 250°C, 

then 1h at 400°C and finally 4 hours at 500°C. Three grafting cycles have been 

performed. 

2.5. Catalyst Evaluation 

2.5.1. Cinnamyl alcohol oxidation 

The oxidation of cinnamyl alcohol was carried out in Radleys starfish reactor at 

120 °C under an oxygen pressure of 3 bar. Cinnamyl alcohol (0.5 M in toluene, 5 ml) 

was charged into the reactor, followed by addition of the catalyst (0.01 g). The glass 

reactor flasks were purged with oxygen 3 times before caps were sealed and placed on 
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the hot plate. The stirring rate was set to 1000 rpm. Following the reaction, a sample 

of product mixture was centrifuged to separate the catalyst. Samples were diluted 

with mesitylene as internal standard and analysed by gas chromatography (Agilent 

Technologies 7820 A) fitted with a CPwax 52 CB capillary column and a flame ionization 

detector. Conversion and selectivity values are reported within ± 3 % error (calculated 

as a standard deviation).  

 

2.5.2. 3-Pyridinemethanol oxidation 

The oxidation of 3-pyridinemethanol was carried out in Radley reactor at 

various temperatures under an oxygen pressure of 3 bar. 3-pyridinemethanol (0.5 M in 

toluene, 5 ml) was charged into the reactor, followed by addition of the catalyst (0.06 

g). The glass reactor flasks were purged with oxygen 3 times before caps were sealed 

and placed on the hot plate. The stirring rate was set to 1000 rpm. The collected 

mixture of products was centrifuged to separate the catalyst. Samples were diluted 

with mesitylene as internal standard and analysed by gas chromatography (Agilent 

Technologies 7820 A) fitted with a CPwax 52 CB capillary column and a flame ionization 

detector. Conversion and selectivity values are reported within ± 5 % error (calculated 

as a standard deviation).  

 

2.5.3. Trans-Stilbene oxidation 

The oxidation of trans-stilbene was carried out in Radley reactor at various 

temperatures under an oxygen pressure of 3 bar. Trans-stilbene (0.05 M  in 

methylcyclohexane or cyclohexane, 5 ml) was charged into the reactor, followed by 

addition of the catalyst (0.06 g). The glass reactor flasks were purged with oxygen 3 

times before caps were sealed and placed on the hot plate. The stirring rate was set 

to 1000 rpm. The collected mixture of products was centrifuged to separate the 

catalyst. Samples were diluted with mesitylene as internal standard and analysed by 

gas chromatography (Agilent Technologies 7820 A) fitted with a CPwax 52 CB capillary 

column and a flame ionization detector. Conversion and selectivity values are reported 

within ± 5 % error (calculated as a standard deviation).  
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2.6. Catalyst Characterisation 

 

2.6.1. Scanning Electron Microscopy (SEM)[11] 

In the characterization of heterogeneous catalysts, various microscopic 

methods are used, such as Transmission Electron Microscopy (TEM), Scanning Electron 

Microscopy (SEM) and Scanning Transmission Electron Microscopy (STEM). 

Scanning electron microscopy is a very useful technique for imaging surface 

microstructures. A simplified diagram of a SEM system is shown in figure 2-1. The idea 

of this technique is to scan the surface of the sample with an electron beam formed 

by the electron-optical microscope system. This beam is focused by a system of 

condenser lenses to be deflected over a rectangular area of the sample surface using 

scanning coils. The signal from the surface of the sample, usually in the form of 

secondary or backscattered electrons, reaches the detector consisting of, most 

importantly, a scintillator and a photomultiplier. The scintillator converts the energy 

of secondary electrons into light pulses, which are then amplified by a photomultiplier. 

The signal coming from the detector controls the brightness of the image generated 

on the monitor. 

 

 

 

 

There are three main types of electron sources used in the electron microscope: 

tungsten, lanthanum hexagon (LaB6) and Field Emission Gun (FEG). Usually, an electron 
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Figure 2-1 Simplified diagram of an SEM system.  
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beam is emitted from an electron gun fitted with a tungsten filament cathode, heated 

in a vacuum of 10-4 Pa to a temperature of 2800 K, in order to provide electrons with 

more energy than the work function. When creating the primary electron beam, in 

addition to the electron source, an electron accelerating field is also needed. The 

electrons produced by the cathode (source) are accelerated by being attracted by the 

anode and passing through the hole in it. The typical anode potential for SEM is usually 

1-20 kV, and for TEM 100-200 kV (and sometimes even more). The generated electron 

beam has a wave-particle duality nature.  

The interaction between electrons and the sample has the shape of a pear (figure 

2-2) and is understood as the interaction volume in which 95 % of the primary electrons 

have been scattered. A sample made of material with a high atomic number will show 

a smaller depth of electron penetration compared to a sample made of material with 

a lower atomic number. Electrons falling on a sample collide with its atoms, resulting 

in:  

▪ loss of kinetic energy;  

▪ being completely absorbed;  

▪ deflection from the sample;  

▪ emission of radiation;  

▪ penetration through the sample.  

Thus, several signals can be obtained from the effect of the primary beam on the 

sample (figure 2-2): secondary electrons, backscattered electrons, Auger electrons and 

X-rays. 

Secondary electrons (SE) have low energy (conventionally kinetic energy is less 

than 50 eV), most often knocked out of the atoms closest to the surface of the material 

in a phenomenon called secondary emission. The number of SE electrons is very large 

in relation to the number of backscattered electrons. The efficiency of the SE emission 

strongly depends on the magnitude of the accelerating voltage. There are two subtypes 

of secondary electrons: SE I - emitted as a result of the interaction of the primary 

beam with the electrons of the sample; SE II - emitted from electrons of the sample 

with backscattered electrons. 

Backscattered electrons (BSE) are high-energy electrons that have been 

resiliently reflected and at the same time left the surface of the material with virtually 

no loss of kinetic energy. The number of BSE electrons is very small in relation to the 

number of secondary electrons. The efficiency of BSE emission strongly depends on the 

atomic number. With the increase of the atomic number, the number of emitted 

backscattered electrons increases. It is possible to estimate the hemispherical region 

from which backscattered electrons are emitted. 

https://en.wikipedia.org/wiki/Electron_gun
https://en.wikipedia.org/wiki/Cathode
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Auger electrons are low energy electrons (100-1000 eV conventionally) emitted 

as a result of a nonradiometric jump of another electron to a lower electron shell. The 

excited atom emits excess energy, which can cause the emission of the Auger electron 

or X-rays. For this reason, the emission of the Auger electron is competitive to the 

emission of characteristic X-rays and more often occurs in light materials. Auger 

electrons are not collected in the standard equipment of a scanning electron 

microscope. The Auger spectrometer can be a separate device or act as an additional 

module in SEM. 

X-rays - an excited atom gives off excess energy by emitting X-rays with a given 

energy. The energy of radiation results from the difference in energy between the 

energy levels of electrons. 

The specific feature of SEM images, especially in the contrast of secondary 

electrons, is their "three-dimensional" character. The reason for this phenomenon is 

the significant depth of sharpness of scanning images, often compared to images seen 

with the human eye. 

 

 

 

 

Experimental 

Microscopy was performed by a technician on a Tescan Maia3 field emission gun 

scanning electron microscope (FEG-SEM) operating at 15KV.  Images were obtained 

using the backscattered electron detector. Samples were dispersed as a powder onto 

300 mesh copper grids coated with holey carbon film. 

 

 

Figure 2-2 Interactions between electrons and the sample in SEM technique. 
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2.6.2. X-ray photoelectron spectroscopy (XPS)[12], [13] 

X-ray photoelectron spectroscopy (XPS) is a surface characterization technique 

that can analyse a sample to a depth of 2 to 5 nanometres (nm). In XPS, a focused X-

ray beam bombarding the sample causes the emission of electron from the inner shell 

of the atom (figure 2-3). 

 

 

 

The photo-ejected electrons become excited enough to escape the atom with a certain 

energy Ekinetic. The basic equation that describes the photoelectric effect on which 

photolelectron spectroscopy is based is the Einstein equation: 

Ephoton=Ekinetic+ Ebinding 

where Ebinding is the binding energy of the electron measured against the level of 

vacuum, Ephoton is the energy of the X-ray photons being used, Ekinetic is the kinetic 

energy of the electron measured by the instrument.  

As a result of electrical contact, the Fermi levels of the sample and the spectrometer 

equalize. The kinetic energy of the emitted photoelectron depends on its binding 

energy on the corresponding electron shell of the atom and is described by the 

dependence: 

Ekinetic = Ephoton – Ebinding – Ф 

where Ф is the work function dependent on both the spectrometer and the material. 

It is an adjustable instrumental correction factor. In electron spectrometers, electron 

binding energy in a solid sample is measured relatively to the Fermi level of the 

analyser material. The above equation shows that if the kinetic energy Ek of 

photoelectrons is measured, it becomes possible to determine the binding energy of 

electrons on individual shells. The energy of an X-ray with particular wavelength is 

known (for Al Kα X-rays, Ephoton = 1486.7 eV), hence:  

Ebinding= Ephoton – Ekinetic – Ф 

The XPS idea seems quite simple. However, the technical conditions that the apparatus 

must meet are quite restrictive (high vacuum, P ~ 10−8 millibar), therefore unique 
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Figure 2-3 Basic principle of XPS.  
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apparatus is necessary to carry out the XPS measurement. A simplified diagram of the 

XPS test instrument is given in the figure below (figure 2-4). The basic components of 

the apparatus are: a vacuum system, an X-ray source, an electron energy analyser and 

a detector. 

 
 

 

  

 

The radiation beam is directed to the sample which results in the emission of electrons 

(photoelectrons) from atoms located on the surface of the tested material. Once these 

photo-ejected electrons are in the vacuum, they are collected by an electron analyzer 

and then the detector measures their kinetic energy. An electron energy analyzer 

generates an energy spectrum of intensity (number of photo-ejected electrons versus 

time) versus binding energy. The binding energy of the characteristic photoelectron 

peaks (1s, 2s, 2p) are standardized and therefore XPS allows for an easy qualitative 

analysis of the chemical composition of the surface layer. Quantitative analysis is also 

possible by measuring peak intensities.  

The advantages of this method are measurement capabilities. XPS enables detection 

and quantitative analysis of all elements with a good sensitivity (except hydrogen); 

allows to identify chemical and electronic states of elements; enables determination 

of the type of chemical bonds of elements in the surface. The main disadvantage of 

this XPS is occurrence of thermal effects (surfaces with poor thermal conductivity), 

e.g. local surface level, thermal desorption, layer decomposition, segregation. It 

should be kept in mind that the surface being analysed is large due to the difficulty of 

focusing the X-ray beam (in fact we get an average result from a large area). As 

mentioned earlier, XPS can only probe to approximately 3-5 nm and therefore can only 

be considered as a surface sensitive technique.  

 

 

 

Figure 2-4 Simplified diagram of XPS apparatus.  
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Experimental 

X-ray photoelectron spectroscopy (XPS) data was collected on a Thermo-Fisher 

Scientific K-Alpha+ X-ray photoelectron spectrometer using a monochromatic Al Kα X-

ray source operating at 72 W. Survey scans and high-resolution scans were obtained at 

a pass energy of 150 eV and 40 eV respectively. Charge neutralization was achieved 

using a combination of low energy electrons and argon ions, resulting in a C(1s) binding 

energy of 284.8 eV; experimental binding energies are quoted ±0.2 eV 

 

2.6.3. Gas Chromatography[14], [15] 

Gas chromatography is a relatively "young" method, as the first works appeared 

in 1952. Gas chromatography is a fast and effective method of separating mixtures of 

volatile compounds. It has found wide application in the identification and 

quantification of complex mixtures, control of technological processes, determination 

of some physicochemical constants and reaction kinetics studies. 

Gas chromatography, as any chromatographic method, is based on the occurrence of 

intermolecular interactions between the chemical compounds being components of 

the analysed mixture and that which fills the column. In the case of gas 

chromatography, the mixture to be analysed is first converted into a vapor phase in a 

vaporizer, which is a key element of the injection system (if the analysed sample is a 

gas it can be fed to the column without the vaporizer). Then, the sample is swept by 

a carrier gas (usually helium or nitrogen) and passes through a long column where the 

mixture is separated into individual chemical compounds. At the output there is a 

detector by means of which the concentration of subsequent components of the 

mixture in the carrier gas is detected and measured. The rate at which a given 

chemical compound progresses throughout the column is called retention time and 

depends on the strength of adsorption. Conditions of the analysis have a very strong 

influence on the retention time, such as the temperature and velocity of the carrier 

gas, forced by the pressure applied to the top of the column. The retention time under 

given conditions is a specific value for each component of the analysed mixture. This 

allows a very approximate identification of the component, by comparison with a 

known, pure substance. The sample components analysed by gas chromatography must 

be volatile and stable at the analysis temperature.  

The basic elements of gas chromatography are: injector, column, detector (figure 2-

5). 
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Injector (figure 2-6). The traditional injection system usually consists of a membrane, 

which is punctured with a needle of a special chromatographic syringe and a vaporizer, 

in which all components of the analysed sample evaporate. The steam separator is a 

short (5-10 cm) metal or glass tube surrounded by a heating coil that allows the tube 

to be heated to over 200 °C. In some devices the vaporizer works constantly at the 

same temperature, while in others it is possible to regulate its temperature in a wide 

range. Injections are done manually or automatically. The following injection systems 

are distinguished: split dispenser and on-column dispenser. In the case of split 

dispenser the injected sample goes to a special distributor, in which only a strictly 

determined part of the injection is directed to the vaporizer, while the rest goes to 

the so-called dead loop; this system guarantees that the column always gets a 

repeatable amount of the sample. On-column dispenser means that the whole sample 

goes straight to the column. The split dispenser allows to reduce the load by setting 

large division ratios (e.g., 50: 1, 100: 1 or 500: 1, i.e. it is discarded 50, 100 or 500, 

respectively, and one part of the sample goes to the column). The on-column dispenser 

is usually used when the sample being tested is thermally unstable so that it could 

decompose at the temperature of the split dispenser. 

Figure 2-5 Simplified scheme of gas chromatography apparatus. 
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Column. Capillary columns for GC are most often made of molten quartz or silicon 

dioxide. Molten quartz is easy to mold, flexible and much stronger than other glasses, 

which means that an inner diameter of capillaries can be 0.1 to 1 mm with a length of 

10 to 30 m. The capillary columns are stored in a roll in protective holders to prevent 

damage. Adsorbents used in gas chromatography are carbon adsorbents, gels, siliceous, 

molecular sieves, porous polymers. Stationary phases in capillary columns can be both 

adsorbents and liquids and can be deposited on the capillary walls in a variety of ways. 

Detector (figure 2-7). The flame ionisation detector (FID) is a universal detector and 

reacts with a signal for the presence of organic compounds. It uses a change in the 

electrical conductivity of the flame atmosphere (hydrogen - air) when the organic 

compound formed in the combustion process appears in the flame. The resulting 

ionization current is amplified and registered by the computer. The signal from this 

detector is proportional to the number of carbon atoms not related to oxygen, and 

hence to the mass of the substance. It also depends on the nature of the compounds, 

generally is a very sensitive detector and allows detection in a low range (10-12 g) of 

the test substance. Unfortunately, it is not sensitive to inorganic compounds as well as 

to such carbon compounds as: CO, CO2, CS2, HCOOH and COCl2. In the case of FID, the 

most suitable carrier gas is nitrogen and helium. 

Figure 2-6 Scheme of injection system in GC apparatus.  
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Previously, analog recorders were used as recorders, sometimes provided with an 

integrator, which simply "drew" changes in the electrical voltage generated by the 

detector. These charts are traditionally called chromatograms. Chromatograms usually 

take the shape of a series of sharp peaks whose height corresponds to the instant 

concentration of a chemical coming out of the column, and the area under the peak 

can be converted into the total concentration of a given chemical in the whole sample 

analysed. Nowadays, PCs are used as recorders with software enabling both the control 

of the work parameters of the whole apparatus and the automatic collection and 

analysis of chromatograms. The software using numerical methods determines the 

maximum peak (retention time) and the beginning and end of the peak, then by 

integration in the beginning and end of the peak, calculates the area of the field. 

 

Experimental 

GC analysis was carried out using an Agilent 7280A chromatograph equipped 

with an autosampler and a CP-wax 52 column. Products were identified by comparison 

with authentic samples. For the quantification of the amounts of reactants consumed 

and products generated, an external calibration method was used.  

 

2.6.4. High Performance Liquid Chromatography[16] 

High performance liquid chromatography (HPLC) is, as in the name, a type of 

liquid column chromatography. This means that the analysed sample is dissolved in a 

Figure 2-7 Scheme of FID detector in GC apparatus. 
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suitably chosen solvent, which is dependent on the properties of the substance and 

the system used, and is in the form of a solution of known concentration and volume 

is directed to a column that is filled with a special adsorbent material. The carrier 

liquid (mobile phase) is a properly selected mixture (the so-called eluent). As a result 

of varying extents of intermolecular interactions between analytes and the column 

filling, the analytes can be separated. Depending on the system used, several retention 

mechanisms can be distinguished, e.g. analytes that interact more strongly with the 

adsorbent (they have so-called higher affinity to the adsorbent) and less with the 

mobile phase: flow slower through the column; analytes that have less impact on the 

filling of the column and more strongly with the mobile phase: flow faster. However, 

in some specific HPLC systems retention mechanisms are more complex. 

HPLC differs from the usual liquid chromatography by the pressure at which the eluent 

is applied to the columns. These are quite significant pressures, exceeding 100 atm. 

The high pressure in the HPLC system results from the construction of HPLC pumps 

(narrow capillary sections), column filling grains (several micrometres) and the mobile 

phase flow used in the application (from fractions ml / min to even tens mL / min in 

the case of preparative chromatography). Small particle size distribution of the 

stationary phase results in more favourable parameters of efficiency and separation of 

the HPLC system. As a result, it is possible to separate the analysed mixtures into 

individual chemical compounds in a much shorter time, with less consumption of the 

eluent and smaller amount of the analysed sample than in classical column 

chromatography.  

In HPLC, phase polarity is of great importance for the separation. Initially, a 

normal phase system (NP) was used, in which the stationary phase is much more polar 

than the mobile phase (eg, the system: silica gel - hexane). Currently, the reversed 

phase system (RP) is most often used, in which the stationary phase is less polar than 

the mobile phase, e.g. the system: silica gel with chemically modified surface 

(octadecylsilane groups, octylosilane, diols, modified substituents and others, more 

complex) - a mixture of methanol, acetonitrile, water, specially selected buffers, etc. 

The separation depends on the binding of hydrophobic molecules dissolved in the 

mobile phase to immobilized, hydrophobic ligands bound to the stationary phase. The 

strength and nature of interaction between sample molecules and the stationary phase 

depends both on hydrophobic interactions and polar interactions. The dissolved 

substances are eluted in the order of increasing molecular hydrophobicity. RP systems 

have more durable fillings, are characterized by a lower cost of the mobile phase and, 

above all, are characterized by different selectivity than NP systems, which are used 

in the analysis of samples with a large polar range of components. 
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A basic flowchart showing the principle of HPLC operation is shown in figure 2-

8. The pump draws the mobile phase from the tank (or tanks) and pushes it into the 

chromatographic column. The column is sometimes placed in the thermostat. The 

analyzed sample is injected at the top of the chromatographic column, and then the 

mixture of components is separated in the column and at the exit from it the 

components are detected by the detector. Column flow and pressure are carefully 

controlled factors and are extremely important during the method optimisation 

process. 

 

 

 

 Ultraviolet (UV) or ultraviolet and visible (UV-VIS) light detectors are the best 

and most common detectors used in HPLC. They are used to detect compounds 

containing unsaturated bonds and chromophore groups, olefins, aromatic compounds 

and dyes in the molecule. The UV-VIS radiation absorption is related to transitions of 

valence electrons and electrons of free electron pairs from a lower energy orbital to a 

higher energy orbital. 

The simplest monochrome UV detectors enable the detection of chromatographed 

substances at one wavelength - 254 nm. It is the wavelength of light absorbed by most 

organic substances (about 65 %). Currently, spectrophotometric detectors are widely 

used, in which it is possible to smoothly adjust the wavelength (e.g. Diode Array 

Figure 2-8 Simplified flowchart of HPLC system. 
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Detector- DAD). Such a detector, after stopping the mobile phase flow, makes it 

possible to register the absorption spectrum of the substance and to determine the 

wavelength at which the absorption maximum occurs therefore the substance can be 

detected with maximum sensitivity. 

The light from a deuterium lamp is focused by the optical system in a flow cell in which 

part of the light is absorbed by the substances contained in the sample. Then a beam 

of light split on a diffraction grating falls on the diode array. The diodes of this matrix 

can record the intensity of light in the range of 190-600 nm in 10 ms. The sensor has, 

for example, 211 photodiodes, each of which is designed to measure a narrow spectrum 

of light. Simultaneous recording of currents from individual photodiodes enables the 

recording of the entire absorption spectrum of the analyzed chemical. This spectrum 

can be represented in a three-dimensional system - retention time, wavelength and 

absorbance. It is also possible to record a normal chromatogram with the maximum 

absorbance for each component of the sample recorded in the chromatogram as a 

peak. The UV spectrophotometric detector is insensitive to changes in the mobile 

phase flow and temperature changes. Detection of the analysed substance at a well-

chosen ultraviolet wavelength is on average 1 ng in the sample. 

Another widely used detector is RID- Refractive Index Detector, which is based on the 

deflection principle of refractometry and measures the change in refractive index of 

the effluent passing through the flow-cell. 

 

Experimental 

HPLC analysis was carried out using an Agilent 1260 Infinity instrument 

equipped with an autosampler and a C18 column with a mobile phase being a mixture 

of acetonitrile and water. Products were identified by comparison with authentic 

samples. For the quantification of the amounts of reactants consumed and products 

generated, an external calibration method was used.  

 

2.6.5. Inductively Coupled Plasma- Mass Spectrometry (ICP-

MS)[17] 

Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) is a technique of mass 

spectrometry for the detection of elements (mainly of metals and a few non-metals) 

in very small concentrations (one part in 1015, part per quadrillion, ppq). This is 

achieved by complete vaporisation, atomisation and ionization of the sample in an 

inductively coupled plasma, after which the the mass spectrometer determines the 

amounts of ions (figure 2-9).  
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A liquid sample must be sprayed by a nebuliser prior to ionisation in the plasma. The 

basic task of the nebuliser (igure 2-10) is to convert the analysed solution into an 

aerosol form, i.e. a suspension of fine droplets (with diameter in the range of 5-10 

micrometres). The most common method of aerosol generation is to pass a gas (argon) 

through a perpendicular liquid stream (figure 2-10). 

 

 

 

Plasma is generated in a specially designed plasma torch (figure 2-11). Argon (usually 

13-18 liters per minute) flows tangentially within the torch tube (figure 2-11A). The 

generation of an electromagnetic field occurs as a result of a high-frequency current 

passing through the generator's coil which is placed at the end of the torch (figure 2-

11B). As a result, electric discharge is initiated in the area of the alternating 

electromagnetic field which results in the formation of free electrons figure(2-11C). 

Free electrons are accelerated in the electromagnetic field (Lorentz force), collide 

with the atoms of argon and cause its ionization (figure 2-11D). At the plasma torch 

output a plasma is formed in which the sample is introduced through the sample 

injector (figure 2-11E). The temperature of the plasma is very high (10 000 K) and also 

ultraviolet light is produced so for safety reasons it should not be viewed directly. 

Figure 2-10 Nebulized sample 

Figure 2-9 Scheme of ICP-MS apparatus. 
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Positive ions generation (from sample injector to mass spectrometer) takes places in 

four steps: 

1) evaporation of water (desolvation) 

2) evaporation of a solid sample (vaporization) 

3) dissociation into atoms (atomization) 

4) ionization 

Analytical problems in ICP-MS measurements are related mostly with spectral 

interferences, matrix effect and charge-related effects. A solution to the problem of 

spectral interference is the collision/reaction chamber which is placed in front of the 

quadrupole analyser. The collision/reaction cell eliminates some of the interfering ions 

by ion-neutral reactions with gases such as ammonia, methane, oxygen or hydrogen: 

Ar+ + NH3→ NH3
+ + Ar 

Ca+ + NH3→ no reaction 

 

The ions from the plasma are extracted into a mass spectrometer, usually a quadrupole 

where the ions are separated on the basis of their mass-to-charge ratio and a detector 

receives an ion signal proportional to the concentration. The concentration of a sample 

can be determined by calibration with standard (reference) material. 

Figure 2-11 Simplified process of plasma generation. 

https://en.wikipedia.org/wiki/Quadrupole_mass_analyzer
https://en.wikipedia.org/wiki/Proportionality_(mathematics)
https://en.wikipedia.org/wiki/Certified_reference_material
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Experimental 

The analyses were carried out by a technician using Agilent 7900 ICP-MS with I-AS 

autosampler. Five point calibration using Certified Reference material from Perkin Elmer 

(1000/100/10/1/blank ug/l) and Internal Standard also certified from Agilent. All 

calibrants were matrix mapped with samples.  

 

2.6.6. Microwave Plasma - Atomic Emission Spectroscopy 

(MP-AES)[18]  

MP-AES is an elemental analysis technique used for simultaneous multi-analyte 

determination of major and minor elements. MP-AES measurement protocol is rather 

straight forward (figure 2-12). The injected sample is nebulized prior to further 

interaction with the plasma. A nitrogen plasma is formed within a quartz torch and 

heated to around 5000 K using microwave and magnetic excitation techniques.  After 

atomisation, electrons are promoted to the excited state in the plasma. 

After relaxation of the electrons, emitted photons of defined energies and wavelengths 

which are characteristic for each element are separated into a spectrum and the 

intensity of each emission line measured at the detector. The main advantage of this 

method is a high sensitivity and low interference for each element as each wavelength 

can be analysed individually and sequentially using a monochromator detector. It is 

also possible to use multiple emission wavelengths for each element which is useful in 

case of analysed solutions containing more than one element to avoid interferences 

and hence mistakes in analysis. Most commonly determined elements can be analysed 

within a range of low part per million (ppm) to weight percent. The main limitation of 

this method is the necessity of analysed samples being in liquid form e.g. soluble or 

digestible catalysts. In comparison, inductively coupled plasma optical emission 

spectrometers can analyse solid samples via a laser ablation system. 

 

 
Figure 2-12 Basic principles of MP-AES. 
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Experimental 

MP-AES technique has been used to evaluate leaching of Au and Pd in 

heterogeneous catalysts during oxidations of alcohols in water. Post reaction mixtures 

were diluted using deionised water (to the desired order of magnitude metals 

contained) and filtered using PTFE syringe filters (0.45 µm). Samples were then 

analysed using an Agilent MP-AES 4100 and tested for Au and Pd using multiple 

wavelength calibrations for each element.  

 

2.6.7. Nuclear Magnetic Resonance (NMR)[19], [20] 

Nuclear Magnetic Resonance is a spectroscopic technique of observing local 

magnetic fields around atomic nuclei. The sample is placed in a strong magnetic field 

and nuclei are perturbed by a weak oscillating magnetic field. The intramolecular 

magnetic field around the atom in the molecule changes the resonance frequency, thus 

giving information about the details of the electronic structure of the molecule and its 

individual functional groups. Because fields are unique and highly characteristic of 

individual compounds, NMR spectroscopy is a precise method for identifying organic 

compounds. Moreover, NMR provides detailed information on the structure and 

chemical environment of molecules. The most common types of NMR are proton and 

carbon-13 NMR spectroscopy. 

In the case of a substance consisting of only one type of atoms - e.g. hydrogen gas, the 

spectrum of electromagnetic radiation usually consists of one sharp line, because all 

nuclei are equal and are in the same magnetic field. In the case of a substance 

consisting of more complex molecules, e.g. ethanol, different hydrogen atoms will 

emit electromagnetic radiation at a slightly different frequency. This is due to the 

screen effect of the electrons around these nuclei. The electrons are also in constant 

motion and also have an electric charge, which is why their motion generates a 

magnetic field with a different polarity than the external magnetic field generated by 

the NMR apparatus. As a result, the nuclei of atoms are actually in a slightly different 

field than that generated by the NMR apparatus: the field being the resultant field of 

the apparatus and the field generated by electrons. This resultant field is different for 

each of the nuclei of the atoms forming the given molecule, because around each of 

them is a different set of electrons, resulting from the system of chemical bonds. 

Therefore, the same type of nuclei (e.g. hydrogen), but placed elsewhere in the 

molecule, generates electromagnetic radiation at a slightly different frequency and 

the result is a set of sharp signals in the spectrum, the number of which corresponds 
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to the number of chemically different atoms in a given molecule. The position of the 

signal in the NMR spectrum is determined by the so-called chemical shift. Chemical 

shifts in NMR are expressed in ppm. The ranges of chemical shifts corresponding to 

absorption by nuclei in the environment of specific chemical groups are tabulated. 

Comparison of recorded chemical shifts with table values enables identification of the 

chemical structure of the tested compound. 

 

Experimental 

1H NMR spectra were obtained using a Bruker Avance 400 MHz DPX 

spectrometer, equipped with Silicon Graphics workstation running X win 1.3. All 

chemical shifts for 1H NMR were recorded in deuterated chloroform (d-CDCl3). 
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Chapter 3 

 

 Cinnamyl alcohol oxidation: an investigation of the 

autoxidation and catalytic pathways with the use of 

bimetallic Au-Pd supported nanoparticles.[1]  
 

3.1. Introduction 

Alcohol oxidation is an important reaction both in academia and in industry. A 

considerable number of experiments have been performed with the use of bimetallic 

catalysts consisting of gold and palladium, which were found to be highly active for 

oxidation reactions with molecular oxygen.[2] The application of Au-Pd catalysts in the 

process of oxidation is an excellent alternative to existing methods of carbonyl 

compound synthesis which utilise toxic and stoichiometric oxidants such as chromate 

and permanganate. The oxidation of cinnamyl alcohol has attracted much attention as 

a model reaction. Cinnamyl alcohol is an example of an allylic alcohol and represents 

one of the main components of plant biomass derivatives. The transformation of 

alcohols to carbonyl products is meaningful for industrial applications. 

Cinnamaldehyde, the desired product of cinnamyl alcohol oxidation, is an insecticide 

and common food/perfume additive. The reaction network is also interesting from an 

academic viewpoint, due to the formation of different by-products and the substrate 

being prone to the process of autoxidation.  

Autoxidation is very common and advantageous in the chemistry of hydrocarbons, 

such cyclohexane[3], [4], p-xylene[5], α-pinene[6], [7] and cumene[8] as it enables 

the formation of oxygenated derivatives. A lot of effort has been made to understand 

the mechanism of autoxidation.[9]–[11] However, despite these extensive 

investigations, there is still a lot of uncertainty surrounding this process as it strongly 

depends on the conditions and character of the substrate which makes it hard to 

predict and design. 

 

3.2. Reaction network  

It is known from the literature that the reaction network for cinnamyl alcohol 

oxidation is extremely interesting due to its complexity. Depending on the catalyst 

used and /or the applied conditions, the product distribution varies considerably. 

Corma and co-workers achieved an excellent yield to cinnamaldehyde (99 %) by using 
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an Au/nCeO2 catalyst[12].  Prati and co-workers obtained a high conversion of cinnamyl 

alcohol over AuPd/TiO2 to cinnamaldehyde and 3-phenyl-1-propanol at only 60 °C 

under oxygen[13]. Baiker and co-workers oxidised cinnamyl alcohol with the use of 

Pd/Al2O3 at 65 °C in air and detected the presence of numerous products: 

methylstyrene, 3-phenyl-1-propanol, propylbenzene, ethylbenzene, 3-

phenylpropionaldehyde[14] (Figure 3-1). Also benzaldehyde was observed as a by-

product in several investigations[15]–[17]. Most of the studies on oxidation of cinnamyl 

alcohol have been conducted at a temperature not exceeding 90 ºC. From an 

environmental point of view, researchers are stressing the need to develop chemical 

processes taking place under mild conditions. However, from an industrial point of 

view, running a process at a temperature higher than the room temperature, but lower 

than the boiling point of water is considered as a waste of energy, and thus money. 

Usually, the chemical plant is designed so that it is possible to collect heat (energy) 

and further transfer it where needed. Assuming that the chemical process is conducted 

at 60 ºC, this means that energy must be delivered to the system, but it is too low to 

be recovered. To ensure the industrial relevance, the studies presented in this thesis 

have been performed at elevated temperature (120 ºC). 

 

 

Figure 3-1 Reaction network presented by Baiker et al.[14] 

 

Due to the remarkable variety of possible products, it was important to 

establish the reaction network and product distributions for the experiments 

conducted during my studies. The oxidation of cinnamyl alcohol was carried out at 

120°C in a Radley reactor under oxygen pressure of 3 bar. Reactions were performed 

in the absence and presence of the 0.50 %wt Au 0.50 %wt Pd/ TiO2 catalysts prepared 

with two different methods: impregnation (Imp) and sol- immobilisation (SIm). 

In general, the reaction network observed was similar with that in the literature 

although not identical (Figure 3-2). The following products have been detected: 

cinnamaldehyde (CinnALD), benzaldehyde (benzALD), 3-phenyl-1-propanol (PP), 

methylstyrene (MS), styrene, benzoic acid (BenzACID), CO, CO2 and unidentified 
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organic substances were observed in traced amounts hence neglected (usually less than 

5 %). Other compounds reported in the literature such as propylbenzene, 

ethylbenzene, and 3-phenylpropionaldehyde have not been observed. Moreover, 

oxidation process was taking place in the absence of a catalyst (due to elevated 

temperature) which has been taken into consideration and carefully studied. 

 

 

 

 

Figure 3-2 Products obtained during current investigation. 

 

3.3. Results and discussion 

 

3.3.1.  Reaction network and product distributions in the 

presence and absence of a catalyst 

Unless otherwise stated, the reactions have been performed according to the 

procedure described in chapter 2.  

Figure 3-3 plots the conversion and selectivity as a function of time-online for the 

blank reaction of cinnamyl alcohol oxidation. Interestingly, the reaction carried out in 

the absence of any catalyst showed significant conversion and high selectivity to 3 

major products: cinnamaldehyde, benzaldehyde and benzoic acid. As can be seen, the 

conversion after 4 hours was exceptionally high at 60 %. Selectivity to cinnamaldehyde 

was at 30 %, benzaldehyde reached 60 %, benzoic acid was 10 % and PP was below 1 %. 

The obtained values were high enough to be taken into consideration and therefore 

this phenomenon was further investigated as part of this work. Figure 3-4 displays the 

results for the reaction carried out with the use of catalyst prepared by impregnation 

method (0.50 %Au 0.50 %Pd/TiO2 (Imp).  

MS 

PP Cinnamyl alcohol 

CinnALD Styrene 

BenzALD BenzACID 
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After careful analysis of Figures 3-3 and 3-4, it is clear that the reaction with 

the use of the 0.50 %Au 0.50 %Pd/TiO2 (Imp) catalyst had a lower conversion than the 

blank reaction, which is most notable during the first two hours. The difference in 

conversion diminished after 4 hours of reaction (blank: 57 %, catalysed: 48 %). 

Importantly however, a higher selectivity to cinnamaldehyde (60 %) is observed in 

favour of the catalysed reaction. Furthermore, the formation of benzoic acid 

decreased and selectivity to benzaldehyde was lower (30%). The selectivity to 

products, which indicate hydrogen transfer processes (methylstyrene and 3-phenyl-1-

propanol), was below 5%. 

As detailed in Figure 3-5 the reaction carried out with the use of the catalyst 

made by sol-immobilisation method (0.50 %Au 0.50 %Pd/TiO2 (SIm) had a high 

conversion (85 %) and high selectivity to cinnamaldehyde (80 %). No benzoic acid was 

detected and the amount of benzaldehyde was low (around 3 %) compared to the 

reactions described previously. The amount of PP formed as the effect of 

hydrogenation was slightly higher (10 %), and the selectivity to MS through 

hydrogenolysis was relatively low (3 %). 

 

 

Figure 3-3 Time online profile for the autoxidation of cinnamyl alcohol. Reaction conditions: 
oxygen pressure: 3 bar; temperature, 120 °C; 0.5 M cinnamyl alcohol in toluene. Conversion 
( ); Carbon balance ( ); CinnALD ( ); BenzALD ( ); PP ( ); BenzACID ( ) 
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Figure 3-4 Time on-line profile for the catalytic oxidation of cinnamyl alcohol using 0.50 %Au 
0.50 %Pd/TiO2 (Imp). Reaction conditions: catalyst, 10 mg; oxygen pressure, 3 bar; 
temperature, 120 °C; 0.5 M cinnamyl alcohol in toluene. Conversion ( ); Carbon balance 
(); CinnALD ( ); BenzALD ( ); PP ( ); BenzACID ( ); MS () 

 

Figure 3-5 Time on-line profile for the catalytic oxidation of cinnamyl alcohol using 0.50 %Au 
0.50 %Pd/TiO2 (SIm). Reaction conditions: catalyst, 10 mg; oxygen pressure, 3 bar; 
temperature, 120 °C; 0.5 M cinnamyl alcohol in toluene. Conversion ( ); Carbon balance 
( ); CinnALD ( ); BenzALD ( ); PP ( ); MS ( ); Styrene ( I ) 

 

These time on-line studies revealed that the selectivity to major products 

achieved after 30 minutes was stable for the continuation of the reaction. The bare 

support, namely TiO2, did not play the role in the oxidation of cinnamyl alcohol as the 

results were the same (within ± 3 % experimental error) as the results of the reaction 

carried out in the absence of the catalyst (see Figure 3-3 and Figure 3-6). 
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Figure 3-6 Time on-line profile for the oxidation of cinnamyl alcohol using TiO2. Reaction 
conditions: TiO2, 10 mg; oxygen pressure, 3 bar; temperature, 120 °C; 0.5 M cinnamyl alcohol 
in toluene. Conversion (  ); Carbon balance ( ); Cinnamaldehyde ( ); Benzaldehyde 
(); 3-Phenyl-1-propanol ( ); Benzoic acid ( ) 

 

3.3.2.  Purity of the substrate 

The high conversion of cinnamyl alcohol in the absence of the catalyst led to 

the presumption that the substrate could be contaminated. To exclude this possibility, 

cinnamyl alcohol was first purified by crystallization in pentane[18], and then used in 

reaction. Figure 3-7 compares the conversion of cinnamyl alcohol when using the as 

received and purified substrate.  

Considering, that the experimental error is ± 3 %, the purification process did 

not improve the results of the experiment. In addition, measurements of NMR of 

cinnamyl alcohol were done before and after purification. Based on the spectra (Figure 

3-8a and 3-8b), it can be stated, that cinnamyl alcohol as received is free of impurities 

and can be used without prior treatment. 
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Figure 3-7 Time on-line for the oxidation of cinnamyl alcohol (as received and purified) carried 
out in the absence of a catalyst. Reaction conditions: oxygen pressure, 3 bar; temperature, 
120 °C; 0.5 M cinnamyl alcohol in toluene. Conversion-substrate as received ( ); Carbon 
balance- substrate as received ( ); Conversion- purified substrate ( ); Carbon balance- 
purified substrate ( ) 
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Figure 3-8 NMR spectra of cinnamyl alcohol (a) before and (b) after purification. 

 

a 

b 
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3.3.3.  Catalyst characterisation 

 

3.3.3.1. SEM 

Following the confirmation of a significant blank reaction, an in-depth study of 

the catalysts was conducted to investigate the discrepancies observed between 

preparation methods and their influence on this reaction. The detailed analysis of 

catalysts at the molecular level has been carried out using the SEM technique. The SEM 

images obtained for the catalysts prepared with the same ratio of Au-Pd but by two 

different preparation methods are presented in figure 3-9, showing significant 

differences in the particles size. Figure 3-9A shows an image of the 0.50 %Au 0.50 

%Pd/TiO2 (Imp) from which one can immediately see an extremely large ~100 nm metal 

particles. Strangely, no smaller metal particles were detected which might suggest 

that there are either no smaller nanoparticles or they are sufficiently small that they 

are below the detection limit of the SEM. Another explanation refers to the morphology 

of AuPd nanoparticles, obtained by impregnation method, comprising mostly of a Pd-

rich core and an Au-rich shell. The poor detection of Au suggests the presence of core-

shell structures as Au would be ‘coated’ by Pd. The impregnation method has been 

widely used for catalyst synthesis and generally gives a broad particle size distribution 

with large particles but also small particles < 20 nm.[19] In the studied case of the 

impregnation catalyst, a particle size distribution was impossible to be determined due 

to the size of the metal clusters. In contrast to the impregnation method, the 

nanoparticles synthesised by sol-immobilisation method were very well dispersed and 

easily detectable (figure 3-9B). As expected, the nanoparticles were all smaller than 

10 nm, with the majority being 2-4 nm. This is in good agreement with previous 

reports.[20] 
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Figure 3-9 a) BSD-SEM image of the 0.50 %Au 0.50 %Pd/TiO2 (Imp) catalyst; b) BSD-SEM image 
and associate particle size distribution of the 0.50 %Au 0.50 %Pd/TiO2 (SIm) catalyst. 

 

3.3.3.2. XPS 

The conclusions drawn from the SEM imaging were confirmed by XPS analysis. 

Figure 3-10 shows the Au(4f) and Pd(3d)/Au(4d) core-level spectra for both catalysts. 

In the case of 0.50 %Au 0.50 %Pd/TiO2 (Imp) catalyst, the Au(4f) signal is weak, which 

can be explained by the fact that the nanoparticles are large and poorly dispersed. 

Gold is found in its metallic state and the Pd is mostly present as Pd(II), which based 

on the Pd(3d5/2) binding energy of 336.2 eV, is assign as PdO. However, the presence 

of Pd-Cl bonds is possible as Cl is found at a binding energy of ca. 198 eV, consistent 

with metal chlorides.[21] 

In contrast to the Imp catalyst, the SIm catalyst shows an intense Au and Pd 

signal, corresponding to the smaller particle size and improved dispersion correlating 

with results obtained from SEM. The predominant binding energies of Au(4f7/2) at 82.9 

eV and Pd (3d5/2) at 334.3 eV are consistent with their metallic states.[21] Trace 

amounts of Pd(II) were found at 335.8 eV. 

a b 
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Figure 3-10 XPS (a) Au(4f) and (b) Pd(3d)/Au(4d) core-level spectra for (i) 0.50 %Au 0.50 
%Pd/TiO2 (SIm) and (ii) 0.50 %Au 0.50 %Pd/TiO2 (Imp) catalysts. 

 

3.3.4.  Support comparison study 

Several supports with different surface areas, pore volume and pH have been 

tested using Au-Pd system deposited by sol-immobilisation method for the oxidation of 

cinnamyl alcohol. The reactions were carried out under standard conditions for 4 

hours. Au-Pd nanoparticles supported over TiO2 (P25, Evonik) showed high activity in 

the preliminary test, nevertheless the other supports have been tested towards 

optimisation of the process and understanding of the role of support.   

The most common material used as a catalyst support is carbon due to its 

stability in both acidic and basic media, high corrosion resistance, surface properties 

and high surface area. Vulcan XC-72R (Cabot) has been chosen as a representative of 

carbon materials. It consists of an aggregation of spherical particles within the size 

range of 30 to 60 nm. It has a large surface area (SBET) of 238 m2/g and a total pore 

volume of 0.38 cm3/g.[22] It can be seen from figure 3-11 that 0.50 %Au 0.50 %Pd/ C 

catalyst showed higher conversion (94 %) than its counterpart supported over TiO2 (87 

%), however lower selectivity to cinnamaldehyde was observed. Furthermore, the 
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carbon balance was significantly lower for the carbon supported catalyst, and the fact 

that the formation of any other compounds has not been observed suggests possibility 

that combustion processes are taking place. The other possibility is that the reactants 

are adsorbed onto carbon as it is known that aromatic compounds can absorb strongly 

onto high surface area carbon supports.[23] 

Other tested supports were chosen inspired by work related to oxidations using 

mesoporous silicas and aluminas as catalysts supports carried out under leadership of 

Lee. Mesostructured aluminas exhibit the high dispersion and surface oxidation 

whereas high surface area and thermal stability is typical for mesoporous silicas. Lee 

and co-workers[24] were the first to report the use of alumina- grafted SBA-15 as a 

catalyst support for oxidation reactions. The researchers tested Pd nanoparticles 

deposited by incipient wetness impregnation and observed an enhanced catalytic 

performance when Pd was supported over alumina-grafted SBA-15 than either pure 

alumina (mesoporous) or SBA-15 (table 1). This was ascribed to higher nanoparticle 

dispersions and surface PdO concentrations on the modified support. This was said to 

be crucial as the researchers suggest that PdO species are an active site for the 

oxidation of cinnamyl alcohol.  

 

 

Table 1 Catalysts comparison.[24] [25] [26] 

Catalyst Conversion [%] 
 Selectivity to 

cinnamaldehyde [%] 

Pd/Al-SBA15 95  64 

Pd/m-Al2O3 56  39 

Pd/SBA15 21  16 

Conditions: Radley reactor; catalyst mass, 50 mg; substrate, 8.4 mmol in 10 cm3 toluene; 
temperature, 90 °C; oxygen pressure, 1bar; time, 0.5 h. 

 

Catalysts with 1 % total metal loading (1:1 by weight) of Au-Pd have been 

prepared by sol-immobilisation method using purchased mesoporous aluminium oxide 

and SBA-15 (Sigma Aldrich). Alumina grafted SBA-15 was prepared from purchased 

powders according to the procedure described in the literature[24]  and shortly 

presented in the experimental 2.4.3. section in chapter 2. The results have been 

presented in figure 3-11. Au-Pd/ m-Al2O3 demonstrated a relatively low conversion (64 

% after 4 hours) and acceptable carbon balance (92 %), while Au-Pd/ SBA-15 led to a 

higher conversion (99 % after 4 hours), however carbon balance was relatively low (86 

%). One on the reasons of lower carbon balance might be adsorption of the reactants 
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or products on the catalyst surface (due to high surface area). Baiker and co-workers 

proved that very small amounts of carboxylic acids are able to be adsorbed on the 

catalyst, especially on the support and their presence is not detectable on GC.[27] Au-

Pd nanoparticles supported over m-Al2O3/SBA-15 demonstrated 75 % conversion thus 

the resultant value between those two pure powders. Surprisingly, the selectivity to 

cinnamaldehyde was higher than for both pure supports and carbon balance was 

closed. The results differ from the results reported in the literature because the 

conversion for m-Al2O3/ SBA-15 is not the highest, however by showing higher 

selectivity to cinnamaldehyde the overall catalytic performance has been enhanced 

compared to the pure powders.  

 

Figure 3-11 Catalysts screening for the oxidation of cinnamyl alcohol. Reaction conditions: 
catalysts prepared by sol-immobilisation method, 10 mg; oxygen pressure, 3 bar; temperature, 
120 °C; 0.5 M cinnamyl alcohol in toluene; time, 4 hours. Conversion ( ) ; Carbon balance 
( ); Cinnamaldehyde ( ); Benzaldehyde ( ); Styrene ( ); 3-Phenyl-1-propanol 
(  ); Methylstyrene (  ) 

 

The influence of bare m-Al2O3/SBA-15 support was tested on the oxidation of cinnamyl 

alcohol (figure 3-12) and has been contrasted with the blank reaction.  The support 

leads to a lower conversion during the first 2 hours, however after 4 hours the 

conversion is the same as for the blank reaction. The selectivity is also comparable to 

the blank reaction (figure 3-13). Taking into consideration that TiO2 does not influence 

the blank reaction, different behaviour of m-Al2O3/SBA-15 implies different radical 

scavenging properties. The reason might be related to the adsorption effect as the 

surface area of TiO2 (35-65 m2/g) is lower than the surface area of m-Al2O3/SBA-15 

(224 m2/g). Radical species are more likely to be quenched due to its collision with the 
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support surface what would explain why the autoxidation is limited during the first 2 

hours.   

 

Figure 3-12 Effect of (m-Al2O3/SBA-15) on the conversion in the process of cinnamyl alcohol 
oxidation. Reaction conditions: support, 10 mg; oxygen pressure, 3 bar; temperature, 120 °C; 
0.5 M cinnamyl alcohol in toluene. Full figures- conversion:  blank reaction ( ); reaction 
carried out using bare m-Al2O3/SBA-15 support ( ). Empty figures- carbon balance: blank 
reaction ( ); reaction carried out using bare m-Al2O3/SBA-15 support ( ) 

 

Figure 3-13 Effect of (m-Al2O3/SBA-15) on the selectivity in the process of cinnamyl alcohol 
oxidation. Reaction conditions: support, 10 mg; oxygen pressure, 3 bar; temperature, 120 °C; 
0.5 M cinnamyl alcohol in toluene. Cinnamaldehyde ( ); Benzaldehyde ( ); Benzoic 
acid ( ); 3-Phenyl-1-propanol ( )  

 

To decide which support is more beneficial for the studied process, more detailed 

experiments have been carried out. Figures 3-14 and 3-15 present time online studies 

using Au-Pd nanoparticles supported over m-Al2O3/SBA-15 and TiO2 by sol-

immobilisation method. It can be seen that the 0.50 %Au 0.50 %Pd/ TiO2 (SIm) has 
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higher conversion than 0.50 %Au 0.50 %Pd/(m-Al2O3/SBA-15) (SIm). The latter displays 

higher selectivity towards cinnamaldehyde, however the difference is not significant 

enough to compensate lower conversion.  

 

Figure 3-14 Time on line profile for the oxidation of cinnamyl alcohol using catalysts prepared 
by sol-immobilisation method. Reaction conditions: catalyst, 10 mg; oxygen pressure, 3 bar; 
temperature, 120 °C; 0.5 M cinnamyl alcohol in toluene. Full figures-conversion: 0.50 %Au 
0.50 %Pd/(m-Al2O3/SBA-15) ( ); 0.50 %Au 0.50 %Pd/TiO2 ( ). Empty figures- carbon 
balance: 0.50 %Au 0.50 %Pd/(m-Al2O3/SBA-15) ( ) ; 0.50 %Au 0.50 %Pd/ TiO2 ( ). 

 

Figure 3-15 Effect of catalysts prepared by sol-immobilisation method on the selectivity in 
the process of cinnamyl alcohol oxidation. Reaction conditions: catalyst, 10 mg; oxygen 
pressure, 3 bar; temperature, 120 °C; 0.5 M cinnamyl alcohol in toluene. Cinnamaldehyde      
( ); Benzaldehyde ( ); Styrene ( ); 3-Phenyl-1-propanol (  ); Methylstyrene 
(  ) 

 

The activity of the catalysts prepared by impregnation method have been found to be 

at a comparable level with only minor differences during the first two hours; the 

activity lined up in fourth hours of the experiment (figure 3-16). Interestingly, Au-Pd 
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nanoparticles deposited by impregnation method over m-Al2O3/ SBA-15 showed higher 

selectivity than supported over pure m-Al2O3 and SBA-15 (figure 3-17).  

 

Figure 1-16 Time on line profile for the oxidation of cinnamyl alcohol using catalysts prepared 
by impregnation method. Reaction conditions: catalyst, 10 mg; oxygen pressure, 3 bar; 
temperature, 120 °C; 0.5 M cinnamyl alcohol in toluene. Full figures-conversion: 0.50 %Au 
0.50 %Pd/ m-Al2O3 ( ); 0.50 %Au 0.50 %Pd/ SBA-15 ( ); 0.5 %Au 0.5 %Pd/(m-Al2O3/SBA-
15) ( ). Empty figures- carbon balance: 0.50 %Au 0.50 %Pd/ m-Al2O3 ( ); 0.50 %Au 0.50 
%Pd/ SBA-15 ( ); 0.50 %Au 0.50 %Pd/(m-Al2O3/SBA-15) ( ) 

 
Figure 3-17 Effect of catalysts prepared by impregnation method on the selectivity in the 
process of cinnamyl alcohol oxidation. Reaction conditions: catalyst, 10 mg; oxygen pressure, 
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3 bar; temperature, 120 °C; 0.5 M cinnamyl alcohol in toluene. Cinnamaldehyde ( ); 
Benzaldehyde ( ); Benzoic acid ( ); 3-Phenyl-1-propanol ( ); Methylstyrene          
( ) 

Summarizing the considerations on the selection of the best support, TiO2 is definitely 

more beneficial than carbon, m-Al2O3, SBA-15 or m-Al2O3/ SBA-15. Therefore, other 

experiments have been carried out using Au-Pd nanoparticles supported over TiO2. 

 

3.3.5.  Catalyst mass studies 

The investigation of the effect of substrate to metal ratio has been carried out 

using 0.50 %Au 0.50 %Pd/TiO2 (SIm) catalyst. As is presented in figures 3-18 and 3-19, 

the conversion increases with decreasing s:m (an equivalent to the increase in the 

amount of catalyst) which is in line with other catalytic reactions.[28], [29] 

 

Figure 3-18 The effect of substrate metal ratio on the conversion of cinnamyl alcohol. 
Reaction conditions: 0.50 %Au 0.50 %Pd/TiO2 (SIm) catalyst; oxygen pressure, 3 bar; 
temperature, 120 °C; 0.5 M cinnamyl alcohol in toluene; reaction time, 2h.  

 

The mass transfer limitation means that the catalyst in a given process is not being 

effectively used. To assess whether the process of cinnamyl alcohol oxidation is mass 

transfer limited, the test reactions have been carried out (figure 3-19). It can be seen, 

that the conversion is not proportional to the catalyst mass when extremely low 

amount of the catalyst has been applied (below 10 mg). The conversion of cinnamyl 

alcohol increased proportionally to the increasing mass of the catalyst when 10 mg to 

50 mg has been used. The presented research aims to underpin the work towards 

developing of greener alcohols oxidations methods hence low metal loading and low 

catalyst usage are the key points. When 50 mg of the catalyst has been tested, the 
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carbon balance was relatively low (91 %). The difference in conversion between 10 and 

20 mg of the catalyst was only 6 % (carbon balance was closed) hence it was reasonable 

to do further work using 10 mg which is efficient, transfer limited free and is beneficial 

from an environmental point of view.  

 

Figure 3-19 The effect of catalyst mass on the oxidation of cinnamyl alcohol. Reaction 
conditions: 0.50 %Au 0.50 %Pd/TiO2 (SIm) catalyst; oxygen pressure, 3 bar; temperature, 
120°C; 0.5 M cinnamyl alcohol in toluene; reaction time, 2h. Conversion ( ); Carbon balance 
( ) 

As can be seen in figure 3-20, the catalyst mass of the catalyst does not affect 

massively the selectivity.  

 

Figure 3-20 The effect of catalyst mass on the selectivity in the oxidation of cinnamyl alcohol.  
Reaction conditions: 0.50 %Au 0.50 %Pd/TiO2 (SIm), 10 mg; oxygen pressure, 3 bar; 
temperature, 120 °C; 0.5 M cinnamyl alcohol in toluene; reaction time, 2h.   Cinnamaldehyde 
( ); Benzaldehyde ( ); Styrene ( ); 3-Phenyl-1-propanol ( ); Methylstyrene 
( ) 
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3.3.6. Effect of scavengers 

Niklasson et al. proved that cinnamyl alcohol undergoes autoxidation under 

various conditions.[30] In addition it was pointed out that the process of autoxidation 

starts easily and has a high rate of reaction once started.[30] Costa et al. also reported 

the phenomenon of autoxidation of cinnamyl alcohol in their work on the catalytic 

oxidation of alcohols by Au-Ag nanotubes. Furthermore, researchers obtained large 

amounts of benzaldehyde which was suggested to be formed from cinnamaldehyde via 

a radical pathway in the liquid phase, not on the catalyst surface.[17] The reaction 

was carried out at elevated temperature (100 °C) and under a relatively moderate 

oxygen pressure (6 bar). The reaction performed in the absence of a catalyst 

demonstrated 28 % conversion after 2.5 h with a selectivity profile of 44.5 % to 

cinnamaldehyde and 53 % to benzaldehyde. The reaction catalysed by Au-Ag NT showed 

99.1 % conversion with slightly different selectivity profile of 21.1 % cinnamaldehyde 

and 73 % benzaldehyde. The researchers hypothesised two possible reasons for the 

activation of a radical pathway: the presence of hydroperoxides originating from the 

substrate or due to the activation of molecular oxygen by Au.  

In my opinion, the formation of benzaldehyde was not clear enough and this 

phenomenon required further investigation. To confirm the radical mechanism, the 

oxidation of cinnamyl alcohol was performed with the addition of radical scavengers 

in the absence of a catalyst. Two types of scavengers were tested: hydroquinone as a 

scavenger for oxygen centred radicals[31] and diphenylamine as a scavenger for carbon 

centred radicals[32]. As evidenced in Figure 3-21, scavengers significantly decreased 

the conversion of cinnamyl alcohol, indicating the radical character of the reaction 

which is in good agreement with the literature. Moreover, reaction in the absence of 

a catalyst did not take place in the atmosphere of inert gas hence we can be sure that 

autoxidation was taking place due to the presence of oxygen. 
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Figure 3-21 Reaction carried out in the absence of a catalyst with the addition of scavengers. 
Conditions: oxygen pressure, 3 bar; temperature, 120 °C; 0.5 M cinnamyl alcohol in toluene; 
scavengers: hydroquinone/ diphenylamine, 2 mg. Full figures- conversion; empty figures- 
carbon balance: reaction with diphenylamine (⚫ ), reaction with hydroquinone ( )  

 

Figure 3-22 Time on-line for the oxidation of cinnamyl alcohol with the addition of scavenger 
(hydroquinone). Reaction conditions: catalyst, 10 mg; oxygen pressure, 3 bar; temperature, 
120 °C; 0.5 M cinnamyl alcohol in toluene; scavengers: hydroquinone/ diphenylamine, 2 mg. 
Blank ( ); 0.50 %Au 0.50%Pd/TiO2 (SIm) ( ); 0.50 %Au 0.50 %Pd/TiO2 (Imp) ( ); blank + 
scavenger ( ); 0.50 %Au 0.50%Pd/TiO2 (Imp) + scavenger ( ); 0.50 %Au 0.50 %Pd/TiO2 (SIm) 
+ scavenger ( ) 

 

The presence of scavengers only slightly decreased the conversion for the 

reaction utilising the 0.50 %Au 0.50 %Pd/TiO2 (SIm) (figure 3-22) whereas the drop for 

blank and for the 0.50 %Au 0.50%Pd/TiO2 (Imp) catalyst was dramatic. 
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Figures 3-23 and 3-25 summarise selectivity to products for the catalysed 

reactions carried out with the addition of scavengers. It can be seen from Figure 3-23, 

that both scavengers completely inhibit the formation of benzaldehyde in case of the 

reaction with the 0.50 %Au 0.50 %Pd/TiO2 (SIm) catalyst.  

 

 

Figure 3-23 Time on-line for the oxidation of cinnamyl alcohol using of 0.50 %Au 0.50 %Pd/ 

TiO2 (SIm) catalyst. Reaction conditions: catalyst; 10 mg; oxygen pressure, 3 bar; 

temperature, 120 °C; 0.5 M cinnamyl alcohol in toluene; scavenger, 2mg.Conversion ( ); 

Carbon balance ( ); Cinnamaldehyde ( ); 3-Phenyl-1-propanol ( );  

Methylstyrene ( ) 

 

Addition of scavengers to the reaction carried out with the use of the 0.50 %Au 

0.50%Pd/TiO2 (Imp) catalyst provided interesting results (Figure 3-24). In addition to 

lowering conversion, the scavengers significantly reduced formation of benzaldehyde, 

simultaneously increasing selectivity to cinnamaldehyde (80 %). It seems reasonable to 

suggest that the scavengers limit the autoxidation of cinnamyl alcohol and therefore 

leads to a low selectivity to benzaldehyde and low conversion (20 % after 4 hours). It 

supports the hypothesis that benzaldehyde might be formed in more than one way, not 

only from cinnamaldehyde but also from cinnamyl alcohol. If benzaldehyde was 

created only from cinnamaldehyde, addition of scavengers would differently affect the 

profile of benzaldehyde and cinnamaldehyde. There is a possibility that benzaldehyde 

plays a promoting role on the oxidation of cinnamyl alcohol.[33] To test this 

hypothesis, the catalysed and uncatalysed oxidations of the substrate with the addition 

of benzaldehyde were performed. The results revealed that the presence of additional 

benzaldehyde had no influence on the oxidation of cinnamyl alcohol. The experiment 

was carried out twice using two types of benzaldehyde: standard benzaldehyde and F-

benzaldehyde which showed no difference compared to the standard compound. 
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Figure 3-24 Oxidation of cinnamyl alcohol using of 0.50 %Au 0.50 %Pd/ TiO2 (Imp) catalyst. 
Reaction conditions: catalyst; 10 mg; oxygen pressure, 3 bar; temperature, 120 °C; 0.5 M 
cinnamyl alcohol in toluene; scavenger, 2mg. Conversion ( ); Carbon balance ( ); 
Cinnamaldehyde ( ); Benzaldehyde ( ); Benzoic acid ( ); 3-Phenyl-1-propanol  
( ); Methylstyrene ( ) 

 

It is known from literature that metal ions (e.g. Co2+/Co3+/ Mn2+/Mn3+, Fe2+/Fe3+, 

Cu+/Cu2+) are able to split the hydroperoxides which prevents the processes of 

autoxidation.[34] It seems that the studied Au-Pd system has similar properties which 

depend on the size of metal nanoparticles. Based on the gathered knowledge, the 

formation of benzaldehyde has been considered as a proof of autoxidation taking place 

in the selective oxidation of cinnamyl alcohol.   

 

3.3.7.  Atmosphere of inert gas 

There is a big gap in understanding the role of oxygen in the oxidation of 

cinnamyl alcohol. Several groups of researchers have different views and put different 

hypothesis in relation to this issue. Baiker and co-workers oxidised cinnamyl alcohol 

with the use of Pd/Al2O3 catalyst.[35] Their detailed studies delivered very important 

findings. One of many significant observations was confirmation of the 

dehydrogenation mechanism for this reaction. Moreover, the researchers proved that 

the process is independent of the presence of oxygen in the system. Increased 

selectivity to the products being formed under anaerobic conditions due to the effect 

of hydrogen transfer, namely 3-phenyl-1-propanl and methylstyrene, showed that 

cinnamyl alcohol acts as a hydrogen acceptor.[12], [35] It was concluded that the 

oxygen takes part in the process as a  “cleaner” for catalyst surface from e.g. excess 

of hydrogen.34 Another group under the leadership of Lee suggested that PdO is the 
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active centre hence oxygen plays a direct and important role in the catalytic process 

to constantly regenerate the active sites.[26] 

To examine the influence of oxygen under the currently studied conditions, 

reactions of cinnamyl alcohol oxidations were carried out under nitrogen and under 

oxygen. The studies on the aerobic oxidation have been shown in the later part of this 

work. Anaerobic conditions have been discussed in this section. 

As stated before autoxidation did not take place under nitrogen (anaerobic) 

conditions. The results for the catalysed reactions carried out under either oxygen or 

nitrogen (4 hours) have been contrasted in table 2. Time online studies were also 

conducted for the same reactions to get a better insight into the process (Figure 3-25 

and 3-26). Analysing those two figures one can see the same trend as for the reactions 

carried out under standard conditions and that the selectivity to each product is fairly 

steady over time. 

The 0.50 %Au 0.50 %Pd/TiO2 (Imp) catalyst (table 2, figure 3-25) was less active under 

nitrogen than under oxygen. Interestingly, the formation of benzaldehyde was stopped 

and the selectivity to cinnamaldehyde remained the same. Higher selectivities to 3-

phenyl-1-propanol and methylstyrene indicate that the processes of hydrogenation and 

hydrogenolysis were more prevalent under nitrogen than under oxygen. This result is 

in excellent agreement with Baiker’s work.[14], [35] It can be seen from table 2, that 

there was only a minimal difference in conversion for the reactions with 0.50 %Au 0.50 

%Pd/TiO2 (SIm) catalyst carried out under nitrogen and oxygen whereas the difference 

in selectivity was significant, especially towards formation of methylstyrene (see table 

2 and Figure 3-26).  The results of experiments carried out under inert gas are in line 

with mentioned above literature.[14], [35] It seems very likely that hydrogen is 

abstracted on the catalyst surface, followed by another molecule of the substrate 

acting as a hydrogen acceptor. Overall, the studied process is in good agreement with 

the mechanism of oxidative dehydrogenation/ dehydrogenation described in the 

literature.[35]  

 

Table 2 Effect of oxygen and nitrogen on catalysed and uncatalysed reaction of cinnamyl 
alcohol oxidation under standard conditions after 4 h. 

Reaction 
Conversion 

 [%] 

C bal 

[%] 

Selectivity [%] 

CinnALD BenzALD PP MS BenzACID Styrene 

Blank- O2 54 81 31 58 1  - 10  - 

Blank-N2  -  -  -  -  -  -  -  - 

         

Imp-O2 48 91 60  28  6 2 5  - 
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Imp-N2 19 103 56   - 27 18  -  - 

         

SIm-O2 87 100 82 2 10 5  - 2 

SIm-N2 86 100 58  - 13 30  -  - 

 

 

Figure 3-25 Time on-line for the oxidation of cinnamyl alcohol using 0.50 %Au 0.50 %Pd/TiO2 

(Imp). Conditions: catalyst, 10 mg; nitrogen pressure, 3 bar; temperature, 120 °C; 0.5 M 
cinnamyl alcohol in toluene. Conversion ( ); Carbon balance ( ); Cinnamaldehyde ( ); 
3-Phenyl-1-propanol ( ) ; Methylstyrene ( ). 

 

 

 

Figure 3-26 Time on-line for the oxidation of cinnamyl alcohol using 0.50 %Au 0.50 %Pd/TiO2 

(SIm). Conditions: catalyst, 10 mg; nitrogen pressure, 3 bar; temperature, 120 °C; 0.5 M 
cinnamyl alcohol in toluene. Conversion ( ); Carbon balance ( ); Cinnamaldehyde ( ); 3-
Phenyl-1-propanol ( ); Methylstyrene ( ).  
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3.3.8.  Effect of oxygen and oxygen pressure  

Following the significant differences observed between nitrogen and oxygen, 

further studies were conducted to investigate the role of the latter. Figure 3-27 

illustrates the influence of oxygen pressure on the conversion for the reaction carried 

out in the absence and presence of the 0.50 %Au 0.50 %Pd/TiO2 (Imp) catalyst. It can 

be seen that on increasing pressure, a higher conversion is achieved. This is particularly 

notable in the case of catalysed reaction (Imp).  

 

Figure 3-27 Time on-line for the oxidation of cinnamyl alcohol under different oxygen pressure 
carried out in the presence and absence of the 0.50 %Au 0.50 %Pd/TiO2 (Imp) catalyst. Reaction 
conditions: catalyst, 10 mg; oxygen pressure, 1-3 bar; temperature, 120 °C; 0.5 M cinnamyl 
alcohol in toluene. Full figures- reactions carried out in the absence of a catalyst: 1 bar 
( ); 2 bar ( ), 3 bar ( ); empty figure- reactions carried out in the presence of a 
catalyst: 1 bar ( ); 2 bar ( ); 3 bar ( ) 

 

 Figures 3-28 and 3-29 demonstrate the selectivities to major products as a 

function of oxygen pressure. The results for the catalysed (Imp) and uncatalysed 

reactions have been combined in order to emphasize the partly similarity in the 

mechanisms for both. In the case of the blank reaction, the mechanism is purely radical 

and increased pressure only slightly influenced the product distribution. The relation 

of selectivities to pressure is plotted in figure 3-29 from which it is clear that selectivity 

to benzaldehyde increased with increasing pressure at the expense of cinnamaldehyde. 

Pressure massively influenced the reaction carried out with the use of catalyst 

prepared by impregnation method. The selectivity to cinnamaldehyde under 1 bar 

oxygen pressure was high (around 70 %). The increase in pressure to 2 bar resulted in 
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decreased selectivity to cinnamaldehyde (around 60 %) and increased selectivity to 

benzaldehyde (15 % under 1 bar and 25 % under 2 bar). A further increase in pressure 

to 3 bar led to significant decrease in selectivity to cinnamaldehyde (ca. 30 %) and an 

even higher selectivity to benzaldehyde (ca. 50 %). Interestingly, there is no benzoic 

acid at low pressure (1 bar) and quite large amounts have been formed at higher 

pressures (ca. 10 % under 2 bar and 15 % under 3 bar). 

In general, the increase in pressure resulted in increased selectivity to 

benzaldehyde at the expense of cinnamaldehyde  which is consistent with the findings 

reported by Costa and co-workers[17]. The conversion under 3 bar is significantly 

higher than at lower pressures and selectivity to benzaldehyde is especially high. These 

experiments imply that benzaldehyde might be formed from cinnamaldehyde at lower 

pressures and additionally from cinnamyl alcohol at higher pressure.  

The product distribution for catalysed reactions is different from blank reaction 

in the range of lower pressure: 1 bar and 2 bar. However, under the pressure of 3 bar 

the product distributions are almost identical for both reactions. Moreover, the low 

conversion for the 0.50 %Au 0.50 %Pd/TiO2 (Imp) catalyst under 1 and 2 bar increased 

dramatically under 3 bar. The described dependencies indicate that catalyst plays a 

role of a radical scavenger under low pressure. Presumably, the increase in pressure 

to 3 bar ensured high availability of oxygen which coupled with high temperature 

enabled quicker formation of active oxygen species. As a result, the radical pathway 

has dominated the catalytic performance and autoxidation of cinnamyl alcohol took 

place. This is indicated by higher conversion and larger amount of formed 

benzaldehyde. 

 

 



Chapter 3 
 

 

94 
 

 

 

 

Figure 3-28 The effect of pressure on the oxidation of cinnamyl alcohol; time on-line. Reaction 
conditions: oxygen pressure,1, 2 and 3 bar; temperature, 120 °C; 0.5 M cinnamyl alcohol in 
toluene; 0.50 %Au 0.50 %Pd/TiO2 (Imp), 10 mg. Conversion ( ); Carbon balance ( ); 
Cinnamaldehyde ( ); Benzaldehyde ( ); Benzoic acid ( ); 3-Phenyl-1-propanol      
(  ); Methylstyrene (  ) 
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Figure 3-29 Oxidation of cinnamyl alcohol under different oxygen pressure carried out in the 
presence and absence of the catalyst. Selectivity to cinnamaldehyde and benzaldehyde as a 
function of oxygen pressure. Reaction conditions: 0.50 %Au 0.50 %Pd/TiO2 (Imp), 10 mg; oxygen 
pressure, 1-3 bar; temperature, 120 °C; 0.5 M cinnamyl alcohol in toluene. Full figures- 
reactions carried out in the absence of the catalyst: CinnALD ( ); BenzALD ( ); BenzACID 
(); empty figure- reactions carried out in the presence of the catalyst: CinnALD ( ), 
BenzALD ( ); BenzACID ( ) 

 

The pressure to a lesser extent determined the process of cinnamyl alcohol oxidation 

performed using 0.50 %Au 0.50 %Pd/TiO2 (SIm) catalyst. Figure 3-30 shows the 

conversions of cinnamyl alcohol at 120 °C and under two pressures: 1 and 2 bar. Taking 

into account the experimental error of 3%, the difference is minimal. Despite the 

negligible difference in conversion, the analysis of selectivity showed subtle but 

interesting differences (figure 3-31). Whereas benzaldehyde is formed from the very 

beginning during a reaction carried out at 3 bar, at lower pressure (1 bar), 

benzaldehyde is formed only in the second hour of the experiment. In addition, a 

slightly increased selectivity towards MS and PP can be observed under reduced 

pressure.  Although the pressure effect in the case of 0.50% Au 0.50% Pd / TiO2 (SIm) 

catalyst is relatively low, it can be seen that the influence of oxygen is not without 

significance on the course of the reaction. The slightly increased amount of hydrogen 

transfer compounds suggests that more hydrogen is present at the surface of the 

catalyst at a pressure of 1 bar, and thus cinnamyl alcohol behaves like a hydrogen 

acceptor. There are two views in the literature about the role of oxygen in the 

oxidation of alcohols: oxygen is directly involved in the oxidation of alcohols, and 

oxygen purifies the surface of the catalyst from excess of hydrogen. More thought 

about the role of oxygen is presented in Chapter 4 of this thesis. 
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Figure 3-30 Time on-line for the oxidation of cinnamyl alcohol using 0.50 %Au 0.50 %Pd/TiO2 

(SIm) under different oxygen pressure. Reaction conditions: catalyst, 10 mg; oxygen pressure, 
1 and 3 bar; temperature, 120 °C; 0.5 M cinnamyl alcohol in toluene. Full figures- conversion: 
3 bar (); 1 bar (); Empty figures- carbon balance: 3 bar (); 1 bar () 

 

  

Figure 3-31 The effect of pressure on the oxidation of cinnamyl alcohol; time on-line. Reaction 
conditions: oxygen pressure,1 and 3 bar; temperature, 120 °C; 0.5 M cinnamyl alcohol in 
toluene; 0.50 %Au 0.50 %Pd/TiO2 (SIm), 10 mg. Conversion ( ); Carbon balance ( ); 
Cinnamaldehyde ( ); Benzaldehyde ( ); Benzoic acid ( ); 3-Phenyl-1-propanol     
(  ); Methylstyrene (  ) 

 

3.3.9.  Effect of temperature 

Considering the acquired knowledge from the literature and from the current 

work, the questions arose as to what conditions should be applied to avoid 

autoxidation, whether the autoxidation should be avoided and how important is the 

process in terms of catalysis. To elucidate these points, a number of detailed 

experiments were designed. Initially, a series of one-hour reactions were conducted 
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at different temperatures under an oxygen pressure of one bar to check the influence 

of temperature on the process of autoxidation. The lower pressure was applied to 

minimise the effect of oxygen radicals. The results revealed that the autoxidation 

process took place between 60 and 70 °C, and above (Table 3) and that the 

temperature has a large influence on the product distribution. The only products 

detected at 80 °C and below were cinnamaldehyde and 3-phenyl-1-propanol. 

Benzaldehyde and benzoic acid appeared at 90 °C and above. 

 

Table 3 The presence of autoxidation of cinnamyl alcohol at low temperatures and low oxygen 
pressure (1 bar), in the short term (1h). The conversion and selectivity are reported within ± 
3 % error. 

Temperature 

[°C] 

Conversion 

[%] 

C bal 

[%] 

Selectivity [%] 

CinnALD BenzALD PP BenzACID 

60 - - - - - - 

70 7 95 80 - 20 - 

80 10 99 80 - 20 - 

90 8 99 46 46 8 - 

100 9 101 39 47 4 10 

120 31 98 33 51 1 14 

 

The autoxidation increases with temperature even under low oxygen pressure. 

Also, it is clear that autoxidation is very hard to be avoided as it takes place at low 

temperatures.  

Figure 3-32 presents the process of autoxidation time on-line at different 

temperatures. Generally speaking, the higher the temperature, the higher the 

conversion caused by the autoxidation process. As expected, the conversion increases 

with time.  
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Figure 3-32 The influence of the temperature on the oxidation of cinnamyl alcohol carried 
out in the absence of a catalyst. Reaction conditions: oxygen pressure, 3 bar; 0.5 M cinnamyl 
alcohol in toluene. Temperature: 80 °C ( ); Temperature: 100 °C ( ); Temperature: 120 
°C ( ) 

 

It can be seen from figure 3-33 that the temperature influences the reaction 

carried out with the use of the catalyst prepared by impregnation method. The 

presence of the catalyst limited the autoxidation significantly at 80 °C and 100 °C as 

the conversion did not exceed 20 % after 4 hours. This trend can be compared with the 

results of experiments carried out for the blank reaction presented in figure 3-32 from 

which it can be seen that the conversion was lower than 40 % after 4 hours. Increasing 

the temperature to 120 °C resulted in an increase in conversion of catalysed reaction 

to ca 50 % thereby achieving the value similar to the blank reaction at that 

temperature. It has been suggested before that the Au-Pd nanoparticles acts as a 

scavenger, which would explain the behaviour of the catalyst in this case. The number 

of radicals formed at lower temperatures was lower compared with elevated 

temperatures, therefore the catalyst was able to efficiently decompose these to 

prevent autoxidation.  
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Figure 3-33 The influence of the temperature on the oxidation of cinnamyl alcohol using 0.50 
%Au 0.50 %Pd/TiO2 (Imp). Reaction conditions: catalyst, 10 mg; oxygen pressure, 3 bar; 0.5 M 
cinnamyl alcohol in toluene. Temperature: 80 °C ( ); Temperature: 100 °C ( ); 
Temperature: 120 °C ( ) 

 

Figure 3-34 plots the conversion against the temperature for the reactions 

carried out in the absence and presence of the 0.50 %Au 0.50 %Pd/TiO2 (Imp) catalyst. 

It can be clearly seen that there is a similar pattern of dependence for the catalysed 

(Imp) and blank reactions. Conversion increases with temperature in both reactions. 

As mentioned earlier the increase at 120 °C is particularly noticeable, possibly due to 

the formation of radicals overwhelming the effect of the catalyst. 
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Figure 3-34 Dependence of activity on the temperature for the process of cinnamyl alcohol 
oxidation performed in the absence and presence of the 0.50 %Au 0.50 %Pd/ TiO2 (Imp) catalyst. 
Reaction conditions: catalyst, 10 mg; oxygen pressure, 3 bar; 0.5 M cinnamyl alcohol in 
toluene; time, 4h. Blank reactions ( ); reactions carried out in the presence of 0.50 %Au 
0.50 %Pd/ TiO2 (Imp) catalyst ( ) 

 

Analysis and comparison of the product distribution for each reaction is 

presented in Figure 3-35. Generally, the product distribution for the reactions carried 

out in the absence of a catalyst was fairly steady over time: the selectivity profile was 

around 45 % benzaldehyde, 30-35 % cinnamaldehyde and around 10-15 % benzoic acid.  

As expected, the selectivity to the desired product for the catalysed reactions 

decreased with increasing temperature (around: 80 % at 80 °C, 70 % at 100 °C and 60 

% at 120 °C) which is related to the intensification of the autoxidation reaction and 

hence non-selective oxidation to benzaldehyde. Also, the formation of benzoic acid 

and 3-phenyl-1-propanol took place at elevated temperatures (above 80 °C). A lower 

carbon balance was observed for the blank reaction, which is caused by 

decarbonylation of the substrate in the radical pathway.[27], [35] Improvement of 

carbon balance could be noticed for catalysed reaction.  
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Figure 3-35 The influence of the temperature on the selectivity in the process of of cinnamyl 
alcohol oxidation conducted in the absence and presence of the  0.50 %Au 0.50 %Pd/TiO2 (Imp) 
catalyst. Reaction conditions: catalyst, 10 mg; oxygen pressure, 3 bar; 0.5 M cinnamyl alcohol 
in toluene. Conversion ( ); Carbon balance ( ); Cinnamaldehyde ( ); 
Benzaldehyde ( ); Benzoic acid ( ); 3-Phenyl-1-propanol ( ); Methylstyrene        
( ) 

 

Similarly, the temperature influenced the activity of the 0.50 %Au 0.50 %Pd/TiO2 (SIm) 

catalyst considerably. The conversion has been compared over various temperatures 

in figure 3-36. The catalyst was the most active at 120 °C. The reactions carried out 

0

20

40

60

80

100

0 1 2 4

S
e
le

c
ti

v
it

y
 [

%
]

Time [%]

blank: 80 °C

0

20

40

60

80

100

0 1 2 4

S
e
le

c
ti

v
it

y
 [

%
]

Time [%]

Imp: 80 °C

0

20

40

60

80

100

0 1 2 4

S
e
le

c
ti

v
it

y
 [

%
]

Time [h]

blank: 100 °C

0

20

40

60

80

100

0 1 2 4

S
e
le

c
ti

v
it

y
 [

%
]

Time [h]

Imp: 100 °C

0

20

40

60

80

100

0 1 2 4

S
e
le

c
ti

v
it

y
 [

%
]

Time [h]

blank: 120 °C

0

20

40

60

80

100

1 2 4

S
e
le

c
ti

v
it

y
 [

%
]

Time [h]

Imp: 120 °C



Chapter 3 
 

 

102 
 

under the same oxygen pressure (3 bar) but at lower temperatures (100 °C) gave 

significantly lower conversions.  

 

 

Figure 3-36 The influence of the temperature on the oxidation of cinnamyl alcohol using 0.50 
%Au 0.50 %Pd/TiO2 (SIm). Reaction conditions: oxygen pressure, 3 bar; 0.5 M cinnamyl alcohol 
in toluene. Full figures- conversion: Full figures- temperature: 80 °C ( ); 100 °C ( ); 120 
°C ( ); Empty figures- carbon balance: 80 °C ( ); 100 °C ( ); 120 °C ( ) 
 

Interestingly, the only products formed at 100 °C and below are 

cinnamaldehyde, and a side product of hydrogenation: 3-phenyl-1-propanol (figure 3-

37). The increase in the temperature to 120 °C led to the formation of small amounts 

of benzaldehyde and styrene at the expense of cinnamaldehyde. Nevertheless, the 

improvement in the activity of the catalyst is high enough to warrant a small decrease 

in the selectivity to cinnamaldehyde. The presence of benzaldehyde is puzzling as it 

might be formed as a result of two different pathways: transformation of 

cinnamaldehyde or in the radical pathway as result of autoxidation of cinnamyl 

alcohol.  The formation of benzaldehyde has been discussed in detail in the next 

section. 
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Figure 3-37 The influence of the temperature on the selectivity in the process of cinnamyl 
alcohol oxidation conducted in the presence of the 0.50 %Au 0.50 %Pd/TiO2 (SIm) catalyst. 
Reaction conditions: catalyst, 10 mg; oxygen pressure, 3 bar; 0.5 M cinnamyl alcohol in 
toluene. Conversion ( ); Carbon balance ( ); Cinnamaldehyde ( ); 
Benzaldehyde ( ); Benzoic acid ( ); 3-Phenyl-1-propanol ( ); Methylstyrene        
( ) 

 

3.3.10. Cinnamaldehyde oxidation 

Few studies have reported that benzaldehyde might be formed from 

cinnamaldehyde and it has been proved that benzaldehyde is formed in the bulk phase 

of the reaction mixture, not on the catalyst.[14], [15], [17] The time online data for 

the reactions carried out in the presence and absence of  a catalyst presented at the 

beginning of this chapter (Figure 3-3 and 3-4) suggest that all the products have been 

obtained simultaneously, which is especially confusing for the formation of 

benzaldehyde. As this is not a trivial issue, an attempt was made to elucidate the 

possible routes of benzaldehyde formation. As a starting point, the oxidation of 

cinnamaldehyde was carried out under standard conditions in the absence of a catalyst 

(figure 3-38). The results revealed that cinnamaldehyde was transformed into 

benzaldehyde. The analysis of molar concentrations of both compounds suggests that 
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cinnamaldehyde is converted directly to benzaldehyde. Subsequently, benzaldehyde is 

further oxidised to benzoic acid. Side reactions were also present, however the 

contribution towards selectivity is minor, as carbon balance after 4 hours was 90 % (not 

shown in figure).  

 

 

Figure 3-38: The molar concentration of cinnamaldehyde and benzaldehyde during the 
oxidation of cinnamaldehyde carried out in the absence of a catalyst as a function of reaction 
time. Reaction conditions: oxygen pressure, 3 bar; temperature, 120 °C; 0.5 M cinnamaldehyde 
in toluene. Cinnamaldehyde, ( ); Benzaldehyde ( ); Benzoic acid ( )  
 

Following these results, a set of experiments were performed to evaluate the 

influence of the studied catalysts on the oxidation of cinnamaldehyde (figure 3-39a). 

Surprisingly, the amount of benzaldehyde formed was nearly the same for the blank 

reaction and for the catalysed reactions. In the case of 0.50 %Au 0.50 %Pd/TiO2 (SIm) 

catalyst, the amount of consumed cinnamaldehyde was smaller which is related to 

reduced side reactions. From the comparison of the number of moles of benzaldehyde 

formed during cinnamyl alcohol oxidation in figure 3-39b one can see that the 0.50 

%Au 0.50 %Pd/TiO2 (SIm) catalyst enabled the highest conversion of alcohol and in the 

same time, only small amount of benzaldehyde has been formed. The blank reaction 

and 0.50 %Au 0.50 %Pd/TiO2 (Imp) catalyst gave very similar results, which supports 

the hypothesis that the mechanisms taking part in those two reactions are similar.  

It is clear, that the oxidation of cinnamyl alcohol and cinnamaldehyde are 

different. The reason why the 0.50 %Au 0.50 %Pd/TiO2 (SIm) catalyst is so highly 

selective to cinnamaldehyde during cinnamyl alcohol oxidation is presumably the 

ability of radical quenching coupled with a competitive adsorption effect. The 
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presented studies might indirectly imply that benzaldehyde is formed not only from 

cinnamaldehyde but also from cinnamyl alcohol. 

 

 

Figure 3-39 Oxidation of cinnamaldehyde (a) carried out in the presence and absence of a 
catalyst as a function of reaction time contrasted with the reaction of cinnamyl alcohol 
oxidation (b). Reaction conditions: 0.50 %Au 0.50 %Pd/ TiO2 (SIm) or (Imp), 10 mg; oxygen 
pressure, 3 bar; temperature, 120 °C; 0.5 M cinnamaldehyde or cinnamyl alcohol in toluene.  
Cinnamaldehyde consumed ( ); Benzaldehyde ( ) ; Cinnamyl alcohol consumed ( ) 

 

The presented experimental data is in line with the general knowledge 

gathered in Ullmann's Encyclopedia of Industrial Chemistry regarding oxidation.[34] All 

organic structures (paints, polymers and various chemicals) have one feature in 

common: aging. From a chemical point of view, the aging is natural as all organic 

matter strive to achieve a stable state and only CO2 is stable.[34] Although, this fact 

is the reason of autoxidation, the actual mechanism is unknown or at least not clear. 

Clearly, the process depends on the conditions and on the character of the substrate. 

Cinnamyl alcohol represents an allylic alcohol, which means that contains chemically 

active allylic group in its structure. The reason of this activity is the difference in 

strength between normal sp3 C-H bonds and allylic C-H bonds, which are roughly 15 % 

weaker.[36] In theory, direct reaction of oxygen with hydrocarbon is spin-

forbidden[37], however there is a possible way of breaking allylic C-H bonds by oxygen. 

It was mentioned before that the conditions play a very important role as in the 

presence of oxygen and at elevated temperatures, radicals (peroxides, 

hydroperoxides) are formed quickly and easily.[34], [37] The radical pathway does not 

require activation energy hence the reaction of hydrocarbons with oxygen is 

possible.[34]  

The oxidation of cinnamyl alcohol has been performed in this work at elevated 

temperature above the boiling point of water. Taking into consideration the chemical 

constitution of the substrate containing weaker allylic C-H bonds, the heat is most 
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likely the initiation factor for autoxidation.[34] Radicals are easily attached to the 

double bond what is the cause of its cleavage.[34] Experimental data presented in this 

section coupled with the literature supports the hypothesis that benzaldehyde is 

formed from cinnamyl alcohol in the radical pathway as a result of autoxidation.  

 

3.3.11. Effect of water 

It has previously been demonstrated that in the oxidation of alcohols by 

permanganate, the presence of moisture is beneficial and enables higher yields of the 

desired product.[38] Kozhevnikov and Stuchinskaya managed to enhance the activity 

of Pd-M oxide catalysts in the oxidation of alcohols by addition of water.[39] Studies 

by Mullins and co-workers showed examples of various reactions where the 

enhancement effect of water is explained by the presence of oxygen adatoms and 

hydroxyl species on gold surfaces.[40] Hermans and Neuenschwander extensively 

studied autoxidation of hydrocarbons where water was formed as a by-product. The 

researchers reported that water is an effective shield between radicals and might be 

hydrogen-bonded to the alkoxyl radical.[11] By following this route, water can prevent 

recombination of radicals and the interaction of a radical with a substrate or other 

compounds in the system. Qiu and co-workers demonstrated the promotion effect of 

water on the oxidation reaction of alcohols over Au/TiO2, including cinnamyl alcohol, 

although base was also required here. It was suggested that water facilitates the 

adsorption of oxygen on TiO2 which leads to the formation of active oxygen species. 

Activated oxygen can further react with the alcohol and as the effect, hydrogen 

abstraction takes place more easily.[41] Prati and co-workers used water instead of 

toluene in the oxidation of cinnamyl alcohol and obtained higher yields to 

cinnamaldehyde. The researchers suggested that the water might behave as a weak 

base, which supports dehydrogenation.[13] 

 In this work, the influence of water was examined by adding a small amount (2 

ml) to the standard reaction mixture. The results are summarised in Table 4 from which 

it can be seen that the conversion of the blank reaction decreased significantly after 

addition of water. Keeping in mind that blank reaction has a purely radical character, 

the understanding of the role of water given by Hermans and Neuenschwander seems 

to be reasonable. Water may possibly be able to quench and deactivate radicals to 

some extent, decreasing conversion from 54 to 17% after 4 hours. This is supported by 

an increased selectivity to cinnamaldehyde and also by the formation of benzoic acid 

which was completely stopped. Time on-line data for the reactions carried out with 

0.50 %Au 0.50 %Pd/TiO2 (Imp) catalyst is shown in figures 3-40 and 3-41. The addition 
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of water resulted in only slightly different conversion, although the selectivity to 

cinnamaldehyde increased significantly. Moreover, the formation of benzoic acid has 

been stopped. The result of this experiment suggests that the water deactivated 

radicals, which enabled activation of a catalytic mechanism that led to a relatively 

high selectivity towards cinnamaldehyde. 

Oxidation of cinnamyl alcohol performed with 0.50 %Au 0.50 %Pd/TiO2 (SIm) catalyst 

takes place on the catalytic route. Figure 3-40 shows that water significantly enhanced 

the activity of 0.50 %Au 0.50 %Pd/TiO2 (SIm) catalyst. The comparison of two reactions 

with 0.50 %Au 0.50 %Pd/TiO2 (SIm) catalyst shown in figure 3-42 suggests that the 

addition of water caused moderately decrease in selectivity to cinnamaldehyde in 

favour of 3-phenyl-1-propanol. This appears to be in accordance with the results 

reported by Prati that water acts as a weak base facilitating the abstraction of 

hydrogen, which is further transferred to another molecule of the substrate causing 

further hydrogenation and higher selectivity to by-products, as 3-phenyl-1-propanol. 

Small amounts of benzaldehyde have been presumably formed from cinnamaldehyde 

as radical pathway is switched off.  

In conclusion, the results of experiments with the addition of water and the 

behaviour of the reactions support the hypothesis that the autoxidation is a radical 

process which does not occur when the sol catalyst is employed. 

 

Table 4 Effect of the small addition of water (2 ml) on catalysed and uncatalyzed reaction 

of cinnamyl alcohol oxidation under standard conditions after 4 h. 

Reaction Conversion 
[%] 

C bal 
[%] 

Selectivity [%] 

CinnALD BenzALD PP MS BenzACID Styrene 

Blank 54 81 31 59 1  - 10  - 

Blank+water 17 95 41 54 5  -  -  - 

         

Imp 47 91 60 28 6 2 5  - 

Imp+water 36 100 87 10 3  -  -  - 

         

SIm 87 100 82 2 10 5  - 2 

SIm+water 100 100 72 7 19 2  -  - 
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Figure 3-40 The influence of water on the catalysed (SIm and Imp) oxidation of cinnamyl 
alcohol as a function of reaction time. Reaction conditions: oxygen pressure, 3 bar; 
temperature, 120 °C; 0.5 M cinnamyl alcohol in toluene; water, 2 ml; catalyst, 10 mg. Full 
marker: reactions carried out using 0.50 %Au 0.50 %Pd/TiO2 (SIm): catalysed reaction (), 
catalysed reaction with the addition of 2 ml water( ). Empty markers: reactions carried 
out using 0.50 %Au 0.50 %Pd/TiO2 (Imp): catalysed reaction ( ), catalysed reaction with 
the addition of 2 ml water ( ). 

 

 

Figure 3-41 The influence of water on the selectivity in catalysed oxidation of cinnamyl 
alcohol using 0.50 %Au 0.50 %Pd/TiO2 (Imp). Reaction conditions: oxygen pressure, 3 bar; 
temperature, 120 °C; 0.5 M cinnamyl alcohol in toluene; water, 2 ml; catalyst, 10 mg. 
Conversion ( ); Cinnamaldehyde ( ); Benzaldehyde ( ); Benzoic acid ( ); 3-
Phenyl-1-propanol ( ); Methylstyrene ( ) 
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Figure 3-42 The influence of water on the selectivity in catalysed oxidation of cinnamyl 
alcohol using 0.50 %Au 0.50 %Pd/TiO2 (SIm). Reaction conditions: oxygen pressure, 3 bar; 
temperature, 120 °C; 0.5 M cinnamyl alcohol in toluene; water, 2 ml; catalyst, 10 mg. 
Conversion ( ); Cinnamaldehyde ( ); Benzaldehyde ( ); 3-Phenyl-1-propanol      
( ); Methylstyrene ( ) 
 

 

Another point worth considering is solubility of oxygen in different media. In general, 

the solubility of oxygen is higher in organic solvents than in water. An attempt has 

been made to calculate the amount of oxygen that could be dissolved in the 

experimental system, nevertheless this theoretical consideration has not been 

evaluated experimentally. The amount of dissolved oxygen in 2 ml of water was 

calculated based on the following equation (taking into account the pressure and 

temperature) developed by Tromans[42]: 

𝐶 𝑎𝑞 = 𝑃 𝑜𝑥𝑦𝑔𝑒𝑛 
0.046𝑇2+ 203.357𝑇𝑙𝑛 (

𝑇
298

) − (299.378 + 0.092𝑇)(𝑇 − 298) − 20.591 ∗ 103

(8.3144)𝑇
 

The amount of dissolve oxygen in toluene has been calculated based on the method 

developed by Liang[43]: 

XO2 = 
𝒏 𝑜𝑥𝑦𝑔𝑒𝑛 𝑖𝑛 𝑡𝑜𝑙𝑢𝑒𝑛𝑒

(𝒏 𝑡𝑜𝑙𝑢𝑒𝑛𝑒)+(𝒏 𝑜𝑥𝑦𝑔𝑒𝑛 𝑖𝑛 𝑡𝑜𝑙𝑢𝑒𝑛𝑒)
 

*X=mole fraction of oxygen: a) temperature, 10.71 ºC; O2 pressure, 1 bar: XO2: 0.000922; b) 

temperature, 120 ºC; O2 pressure, 3 bar: XO2: 0.00359 

 

Calculated values have been compared in the table 5.  
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Table 5 Theoretical amounts of dissolved oxygen in 2 ml of water and in 5 ml of toluene in 
different conditions. 

Medium 
Amount of dissolved oxygen [g] 

25 ºC; 1 bar O2 120 ºC; 3 bar O2 

Water: 2 ml 4.60E-05 8.78E-05 

Toluene: 5 ml 0.001388 0.005419 

 

It can be seen, that the possible amount of dissolved oxygen in water is very small and 

increases around twice as much in its order of magnitude under reaction conditions. 

The solubility of oxygen is significantly higher in toluene and increases almost five 

times under elevated reaction conditions. Hypothetically, adding water may reduce 

the solubility or available amount of oxygen in the reaction mixture. Lower oxygen 

availability hinders its activation, hence the formation of radicals. 

3.3.12.  Kinetics 

Reaction rates of a process can be determined by observing the changes in the 

concentrations of reactants over a specific time. In order to establish the order of the 

reaction of cinnamyl alcohol oxidation, the consumption of the substrate with time has 

been calculated based on the experimental data. 

The rate constants have been determined using the following expressions:  

0 order: k0 = 
C0−C

t
 

1st order: k1 = 
1

𝑡
 ln 

𝐶0

𝐶
 

2nd order: k2 = 
1

𝑡
 (

1

𝐶
−

1

𝐶0
) 

3rd order: k3= 
1

2𝑡
  (

1

𝐶2 −
1

𝐶02) 

 

The results for these calculations have been shown in table 6 below:  
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Table 6 Kinetic data for cinnamyl alcohol oxidation at 120 ºC.  

Time [min] 0 5 10 15 20 25 30 
Standard 
deviation Concentration 

0.5 0.46 0.41 0.4 0.34 0.32 0.29 
[mol/l] 

zero order 0 0.007213  0.00856 0.00691 0.00808 0.00712 0.0071 0.000724 

first order 0 0.014973 0.018785 0.015487 0.019517 0.017613 0.018507 0.001854 

second order 0 0.031095 0.041331 0.034867 0.047748 0.044257 0.049486 0.007248 

third order 0 0.07259 0.097442 0.075 0.116263 0.115313 0.13151 0.023932 

  

 

 The calculated values are based on the experimental data hence remain 

affected by error to some extent. In theory, the identical values should be obtained 

for the actual order of the reaction. It can be seen from the table 6 that the closest 

values for each time are presented for zero order.  

Another way to confirm the order of the reaction is to plot the change in concentration 

of the substrate vs time and a straight line should be obtained. Figure 3-43 confirms 

that the oxidation of cinnamyl alcohol using 0.50 %Au 0.50 %Pd/TiO2 (SIm) catalyst is 

the zero order reaction as the R2=0.99. 

 

 

Figure 3-43 Reaction order determination for the reaction of cinnamyl alcohol oxidation 
using 0.50 %Au 0.50 %Pd/TiO2 (SIm).  

The activation energy can be calculated using Arrhenius Equation: 

 k=Ae-Ea/RT 

The rate constants for the reactions carried out at different temperatures have been 

calculated based on the data presented in previous section (figure 25 and 26).  
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Taking the natural log of both sides of Arrhenius Equation gives the following: 

 ln k=ln A- 
𝐸𝑎

𝑅𝑇
 

Plotting ln k vs 1/T gave a straight line (R2=0.97) with a slope of -Ea/R and y-

intercept of ln A (figure 3-44). As the gradient of the line tgα was equal to -Ea/R, the 

activation energy was calculated giving a value of 58 kJ. 

 

Figure 3-44 Activation energy determination. Arrhenius plot. 

The activation energy can also be calculated given two known temperatures and a 

rate constant at each temperature:  

Ln k1=ln A- 
𝐸𝑎

𝑅𝑇1
    and   Ln k2=ln A- 

𝐸𝑎

𝑅𝑇2
 

Ln k2 has been subtracted from ln k1: Ln k2-ln k1= (−
𝐸𝑎

𝑅𝑇1
+ ln 𝐴) −  (−

𝐸𝑎

𝑅𝑇2
+ ln 𝐴) 

After rearrangement: ln(
𝑘1

𝑘2
) = (

1

𝑇2
−

1

𝑇1
)

𝐸𝑎

𝑅
 

The activation energy directly calculated taking into account the lowest tested 

temperature (80 °C) and the highest tested temperature (120 °C) gave the same value 

of 58 kJ. The reaction of cinnamyl alcohol oxidation carried out in the absence of a 

catalyst and the reaction carried out using Au-Pd catalyst prepared by impregnation 

method have not been analysed as their character is radical and partly radical, 

respectively. An Arrhenius plot of a radical reaction has no slope and is independent 

of temperature. The reaction rate does not depend on the concentration of the 

y = -7048.1x + 12.583
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reagents but possibly on the surface area of the catalyst, metal ratio, metal loading, 

and catalyst mass. 

 

3.4. Conclusions 

The approach used in this study aimed to examine the autoxidation 

phenomenon and its influence on the catalytic oxidation of cinnamyl alcohol. Although 

the oxidation of cinnamyl alcohol has been widely studied in the literature, usually 

mild conditions were applied. From an industrial viewpoint, it is economically more 

efficient to perform oxidation processes at elevated temperature for the purpose of 

heat recapture. However, these conditions very often lead to the autoxidation of the 

substrate. Autoxidation in terms of catalysis is reluctantly discussed in academia, 

however it is extremely important issue in the industry.  

 The conversion of cinnamyl alcohol carried out at 120 °C under molecular 

oxygen was relatively high, however non-selective to the desired product, 

cinnamaldehyde. Instead, a large amount of benzaldehyde was formed, hence close 

attention has been paid to the mechanism of its formation.  Au-Pd supported 

nanoparticles have been tested to limit the autoxidation and enhance the selectivity 

to cinnamaldehyde. Catalysts have been prepared by two different methods (sol-

immobilisation and impregnation) to obtained nanoclusters in various sizes.   

 The oxidation of cinnamyl alcohol occurred via two mechanistic pathways as 

indicated by the product distributions and dependence on the method of catalyst 

preparation. The nature of blank reaction has been proven to be purely radical. The 

size of Au-Pd nanoparticles appeared to have a strong influence on the reaction 

mechanism. Small particles (3-5 nm confirmed by SEM and XPS) obtained by sol-

immobilisation method were suggested to be able to split peroxides/hydroperoxides 

caused by the autoxidation process thus enabled high selectivity to cinnamaldehyde. 

Autoxidation seemed to be switched off and high conversion could be achieved.  Larger 

particles (100 nm confirmed by SEM and XPS) achieved via impregnation method were 

less active in the oxidation of cinnamyl alcohol and the product distribution suggested 

that autoxidation and catalytic mechanisms were taking place simultaneously. 

Conversion was lower than for the blank reaction, however higher selectivity to 

cinnamaldehyde has been obtained. There was still large amount of benzaldehyde, a 

by-product which serves as proof of autoxidation, which means that larger particles 

were able only to limit autoxidation and not stop entirely. 

 Large amounts of benzaldehyde have been obtained at elevated temperatures 

and at higher pressures in the case of blank and catalysed reactions using 0.50 %Au 
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0.50%Pd/ TiO2 (Imp). Larger clusters prepared by impregnation method were able to 

limit the autoxidation at milder conditions, however their catalytic activity was 

significantly lower at 120 °C and 3 bar. 0.50 %Au 0.50%Pd/ TiO2 (SIm) catalyst have 

been found to be extremely active and selective, the product distribution remained 

fairly steady in different conditions, however the temperature significantly influenced 

the conversion. 

 Small addition of water improved the overall yield of the process in case of 

blank reaction and catalysed reaction using 0.50 %Au 0.50%Pd/ TiO2 (Imp) confirming 

radical/ partly radical nature respectively. The same addition of water to the reaction 

using 0.50 %Au 0.50%Pd/ TiO2 (SIm) improved significantly conversion without major 

differences in selectivity.  

 The presented findings are proof that the autoxidation is an important issue 

that should be taken into consideration while establishing the mechanism of a catalytic 

process under industrially relevant conditions. Moreover, the selectivity and overall 

yield of the process can be finely tuned by proper design of a heterogeneous catalyst. 

Therefore, the further optimisation of this catalytic system is described in the 

following chapter 4. 
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Chapter 4 

4. Cinnamyl alcohol oxidation using supported bimetallic Au-Pd 
nanoparticles under autoxidation conditions continued: an 
optimization of metal ratio and investigation of deactivation 
behaviour. 

 

4.1. Introduction 

In the previous chapter the phenomenon of autoxidation of cinnamyl alcohol in 

terms of catalysis has been studied. The effect of reaction conditions and the impact 

of Au-Pd catalysts obtained by two different methods on the reaction have been 

investigated.[1] Bimetallic Au-Pd nanoalloys supported over titania were found to be 

superior to monometallic supported nanoparticles. The size of nanoparticles appeared 

to influence the reaction and resulted in large differences in selectivities between the 

two sets of catalysts. The sol immobilisation catalyst was found to be extremely 

selective to the desired product, cinnamaldehyde. It is known that these two 

preparation methods vary not only in the size of the nanoparticles obtained, but also 

in the morphology and composition, which subsequently effects activity and 

selectivity. Furthermore, the chosen bimetallic ratio has been found to heavily 

influence catalyst performance in a number of reactions. This chapter considers the 

aforementioned variables in an attempt to optimise the present catalytic system. 

There are numerous studies, which have investigated the effect of bimetallic 

ratio on both activity and selectivity for a number of reactions. The study of benzyl 

alcohol oxidation has demonstrated a large synergistic effect between Au and Pd with 

the optimum ratio being 50:50 (wt:wt).[2]  Similar results have been obtained in the 

synthesis of hydrogen peroxide.[3] Carter et al. contrasted reactions for which addition 

of Au to Pd leads to a synergistic or anti-synergistic effect.[4] Synergy between Au and 

Pd was observed for e.g. selective oxidation of benzyl alcohol, which is explained by 

the electronic interaction around active sites. So called anti-synergy was suggested to 

be a result of different active centres/ sites for specific reactions. 

 Prati and co-workers have carried out fascinating studies on the glycerol 

oxidation reaction using gold and palladium nanoparticles supported over carbon. A 

detailed review of their studies is included in Chapter 1, section 1.4.  It has been 

confirmed that also in this case bimetallic catalysts were more active than their 

monometallic counterparts.[5] The authors ascribed the higher activity to the Au-Pd 

bifunctional sites and in general to a combination of electronic and geometric effects. 



Chapter 4 
 

119 
 

It was observed that the separated Pd phases forming inhomogeneity in certain metal 

ratios might be the cause of inferior catalytic performance for the oxidation of 

glycerol, as the synergistic effect between Au and Pd is weakened. The researchers 

demonstrated that optimization of the metal ratio is extremely important in order to 

obtain the best possible results.[6]  

Prati and co-workers studied oxidation of cinnamyl alcohol at 60 °C under 

oxygen. Here, the researchers tested monometallic and bimetallic Au- Pd and Au-Pt 

systems supported over TiO2 by the sol-immobilisation method, with products of 

cinnamaldehyde and 3-phenyl-1-propanol. The conversion and selectivity varied for 

mono- and bimetallic catalysts. The Au-Pd system was more active than Au-Pt for the 

oxidation of cinnamyl alcohol both in water and in toluene. 0.73 wt% Au-0.27 wt% Pd 

catalyst was found to be superior to its monometallic counterparts (conversion was 72 

% after 2 h, selectivity to cinnamaldehyde was 85 % and selectivity to 3-phenyl-1-

propanol was 13 %).[7]  

In their other work, Prati and co-workers extended their studies by examining the 

influence of previously tested Au-Pd metal ratios on the oxidation of benzyl alcohol, 

cinnamyl alcohol, 2-octen-1-ol and 1-octanol. The reactions were performed in water 

at 60 °C under 1.5 atm of oxygen pressure. These conditions were relatively mild, 

therefore no autoxidation was observed.  The only products detected during cinnamyl 

alcohol oxidation under these conditions were cinnamaldehyde and 3-phenyl-1-

propanol. The optimum ratio for synergy was for 80 Au: 20 Pd (mol:mol) in case of 

benzyl and cinnamyl alcohols, whereas the most effective metal ratio for aliphatic 

alcohols was found to be 60 Au: 40 Pd (mol:mol).[8]  

It is clear from the literature reports that the activity of catalysts can be tuned 

by optimisation of Au-Pd metal ratio under relatively mild conditions. The data 

presented in this chapter address whether a similar optimisation is possible under 

harsher, autoxidation conditions.  

 

4.2. Results and discussion 

 

4.2.1.  Metal ratio studies 

The influence of metal ratio in bimetallic catalysts prepared by wet 

impregnation (Imp) and sol immobilisation (SIm) has been tested for the oxidation of 

cinnamyl alcohol under autoxidation conditions. The following metal ratios of TiO2 

supported Au-Pd nanoparticles have been studied: 1 %Au/ TiO2; 0.95 %Au 0.05 %Pd/ 

TiO2; 0.75 %Au 0.25 %Pd/ TiO2; 0.50 %Au 0.50 %Pd/ TiO2; 0.25 %Au 0.75 %Pd/ TiO2; 1 
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%Pd/ TiO2. In the case of the impregnation catalysts the amount of converted alcohol 

is the resultant of the autoxidation and catalytic processes taking place 

simultaneously. It has been demonstrated in Chapter 3 that the formation of 

benzaldehyde might be an indicator that autoxidation is present. Therefore, the 

investigation of the influence of Au-Pd metal ratio on the reaction should be focused 

on the selectivity profile.  

 

4.2.1.1.  Impregnation method 

Figure 4-1 presents the results of the catalytic oxidation of cinnamyl alcohol 

with the use of a number of catalysts prepared by impregnation method. The reference 

point is the blank reaction (marked as a blue line on the graph) from which the 

catalysed reactions have been contrasted.  

 

 

Figure 4-1 Time on-line for the oxidation of cinnamyl alcohol using the range of catalysts 
prepared by impregnation method. Reaction conditions: catalyst, 10 mg; oxygen pressure, 3 
bar; temperature, 120 °C; 0.5 M cinnamyl alcohol in toluene. Blank reaction (blue line); 1 
%Au/ TiO2( ); 0.95 %Au 0.05 %Pd/ TiO2 ( ); 0.75 %Au 0.25 %Pd/ TiO2 ( ); 0.50 %Au 
0.50 %Pd/ TiO2 (); 0.25 %Au 0.75 %Pd/ TiO2 ( ); 1 %Pd/ TiO2 ( ). 

 

It can be seen, that all tested impregnation catalysts limited conversion in the first 

hour of the experiment when compared to the blank reaction. The analysis of the 

results in the following hours of the experiment showed that Pd- rich catalysts are 

most active. Conversion of Pd-rich catalysts (1 %Pd/ TiO2 (Imp), 0.25 %Au 0.75 %Pd/ 

TiO2 (Imp)) is comparable to the blank reaction during the second and the third hours 

of the experiment, however the selectivity profile differs significantly (figure 4-2). The 
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selectivity to benzaldehyde for the blank reaction is around 57 % after 4 hours and 

selectivity to cinnamaldehyde is below 40 % (Chapter 3).  

 

 

 

 

Figure 4-2 Time on-line profile for the oxidation of cinnamyl alcohol using the range of 
catalysts prepared by impregnation method. Reaction conditions: catalyst, 10 mg; oxygen 
pressure, 3 bar; temperature, 120 °C; 0.5 M cinnamyl alcohol in toluene. Conversion ( ); 
Cinnamaldehyde ( ); Benzaldehyde ( ); Benzoic acid ( ); 3-Phenyl-1-propanol 
( ); Methylstyrene ( ) 

 

Pd-rich (Imp) catalysts limited formation of benzaldehyde to around 10 %, which 

suggests that the catalytic mechanism is dominant over autoxidation. As a result, the 

selectivity to cinnamaldehyde is high (around 75-80 %). Moreover, Pd-rich (Imp) 
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catalysts not only significantly reduced formation of benzaldehyde but also completely 

stopped formation of benzoic acid. The advantage of the catalytic process over 

autoxidation is manifested in carbon balance which is almost closed for the Pd-rich 

(Imp) catalysts (figure 4-3). 

 

 

Figure 4-3 Carbon balance for the oxidation of cinnamyl alcohol using the range of catalysts 
prepared by impregnation method. Reaction conditions: catalyst, 10 mg; oxygen pressure, 3 
bar; temperature, 120 °C; 0.5 M cinnamyl alcohol in toluene. Blank reaction (blue line) ;         
1 %Au/ TiO2( ); 0.95 %Au 0.05 %Pd/ TiO2 ( ); 0.75 %Au 0.25 %Pd/ TiO2 ( ); 0.50 %Au 
0.50 %Pd/ TiO2 ( ); 0.25 %Au 0.75 %Pd/ TiO2 ( ); 1 %Pd/ TiO2 ( ). 

 

1 %Au/TiO2 imp catalysts limited the conversion in comparison with the blank 

reaction (figure 4-1), however the large amount of benzaldehyde (figure 4-2) suggests 

that autoxidation was still taking place. Presumably, the catalyst acted as a scavenger 

to some extent but was not active enough to perform catalytic dehydrogenation 

towards cinnamaldehyde. This has been explained in Chapter 3 with reference to the 

larger size of gold nanoparticles and their poor dispersion in the absence of palladium, 

which is typical for the impregnation method.  

The activity of 0.95 %Au 0.05 %Pd/ TiO2 (Imp) is interesting and is an ideal 

example of the phenomenon studied in the literature on the dispersion properties of 

palladium against gold. Miedziak et al.[9], [10] proved that even a small addition of 

palladium improves significantly dispersion of gold and therefore activity of the 

catalyst. From figure 4-1 it is clear, that an extremely small amount of Pd changed the 

activity of pure Au catalyst in such a way that selectivity (figure 4-2) remained the 

same but conversion increased (by 20 % after 4 hours). This is not a particularly great 

achievement with respect of enhancement of overall yield of the studied process, 

however it implies that even a minimal change of Au-Pd metal ratio can possibly change 
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the properties of bimetallic nanoalloys. This observation is in line with the previously 

cited literature in that the combination of alloying Au with Pd and better dispersion 

leads to an enhanced catalytic activity of nanoclusters. 

Increasing the percentage of palladium to 25 %, and then up to 50 %, resulted 

in the limiting of autoxidation, evidenced by the product distribution, as the selectivity 

to cinnamaldehyde was higher in each case (figures 4-1 and 4-2). This indicates a 

relatively strong synergistic effect and implies that every metal ratio varies in terms 

of electronic properties. From figure 4-2 it can be seen, that Au-rich (Imp) catalysts 

are not active enough to prevent autoxidation and C=C cleavage hence the carbon 

balance is lower than in the case of Pd-rich (more active) catalysts. Even though 0.75 

%Au 0.25 %Pd/ TiO2 (Imp) and 0.50 %Au 0.50 %Pd/ TiO2 (Imp) catalysts have been found 

to be more suitable for the oxidation of cinnamyl alcohol than 1 %Au/ TiO2 (Imp) and 

0.95 %Au 0.05 %Pd/ TiO2 (Imp) catalysts, large amounts of benzaldehyde were still 

formed, which suggests that the impregnation catalysts are not ideal to effectively 

suppress the autoxidation.   

Figure 4-4 plots catalytic activity and yield of cinnamaldehyde produced in relation to 

weight percentage of gold. It can be seen, that the conversion trend is reflected in the 

yield to cinnamaldehyde trend. Pd-rich catalysts are the most effective towards 

formation of cinnamaldehyde; initial activity of 0.25 %Au 0.75 %Pd/TiO2 (Imp) (after 

0.5 h) is especially noteworthy. Surprisingly, 0.50 %Au 0.50 %Pd/TiO2 (Imp) catalyst 

demonstrated a lower activity compared to other metal ratios, which is particularly 

noticeable after longer reaction times (4h). In conclusion, the change in metal ratio 

leads to significant differences in the activity of impregnation catalysts as well as in 

the product distribution. A point worthy of further emphasis is that it is possible to 

increase the selectivity of even poor activity catalysts by optimising the metal ratios. 
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Figure 4-4 Influence of Au-Pd metal ratio on the oxidation of cinnamyl alcohol: a) conversion 
vs gold percentage b) yield to cinnamaldehyde vs gold percentage. Reaction conditions: 
catalysts made by impregnation method, 10 mg; oxygen pressure, 3 bar; temperature, 120 °C; 
0.5 M cinnamyl alcohol in toluene. 0.5 hour ( ); 1 hour ( ); 2 hours ( ); 4 hours ( ). 

 

4.2.1.2.  Sol-immobilisation method 

In Chapter 3 it has been shown that the 0.50 %Au 0.50 %Pd/TiO2 (SIm) catalyst 

was extremely active for the studied reaction. Moreover, the catalyst was highly 

selective resulting in only a small amount of undesired benzaldehyde, which is formed 

in large amounts as a by-product of non-selective oxidation.  

Extended research on various Au-Pd metal ratio supported over titania by sol-

immobilisation showed that this method allows the formation of extremely active 

catalysts for the oxidation of cinnamyl alcohol. Analysing the data presented in figure 
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4-5 it can be seen that monometallic 1 % Au/ TiO2 (SIm) has low activity in comparison 

to the other tested catalysts. As in the case of the (Imp) catalyst, the small addition 

of Pd sufficiently improved the activity of pure Au catalyst.  

 

 

Figure 4-5 Time on-line for the oxidation of cinnamyl alcohol using the range of catalysts 
prepared by sol-immobilisation method. Reaction conditions: catalyst, 10 mg; oxygen pressure, 
3 bar; temperature, 120 °C; 0.5 M cinnamyl alcohol in toluene. 1 %Au/ TiO2( ); 0.95 %Au 
0.05 %Pd/ TiO2 ( ); 0.75 %Au 0.25 %Pd/ TiO2 ( ); 0.50 %Au 0.50 %Pd/ TiO2 ( ); 0.25 
%Au 0.75 %Pd/ TiO2 ( ); 1 %Pd/ TiO2 ( ); 0.60 %Au 0.40 %Pd/ TiO2 ( ); 0.85 %Au 0.15 
%Pd/ TiO2 ( ). 

 

The effect of Pd addition is also noticeable in product distribution (figure 4-6). 0.95 % 

Au 0.05 %Pd/ TiO2 (Imp) significantly decreased formation of benzaldehyde (around 7 

%) in comparison to the 1 % Au/ TiO2 (SIm) (around 35 %).  

Further analysis of the data presented in figures 4-5 and 4-6 shows that the highest 

conversion (nearly 96 % after 4 hours) and selectivity to cinnamaldehyde (80 %) was 

achieved using the 0.75 %Au 0.25 %Pd/ TiO2  (SIm) catalyst. This finding is in good 

agrement with Prati’s work reporting 0.73 wt% Au-0.27 wt% Pd/C catalyst made by sol-

immobilisation which was more active than monometallic catalysts.[7]  
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Figure 4-6 Time on-line profile for the oxidation of cinnamyl alcohol using the range of 
catalysts prepared by sol-immobilisation method. Reaction conditions: catalyst, 10 mg; oxygen 
pressure, 3 bar; temperature, 120 °C; 0.5 M cinnamyl alcohol in toluene. Conversion ( ); 
Cinnamaldehyde ( ); Benzaldehyde ( ); 3-Phenyl-1-propanol ( ); Methylstyrene 
( ); Styrene (  ) 

 

To be sure that exactly this composition (75Au:25Pd) is optimal to obtain the best 

possible results, an additional two catalysts have been prepared: 0.60 %Au 0.40 %Pd/ 

TiO2 (SIm) and 0.85 %Au 0.15 %Pd/ TiO2 (SIm). The data presented in figure 4-7 revealed 

that the tested catalysts are active but still not as active as 0.75 %Au 0.25 %Pd/ TiO2 

(SIm).  
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Figure 4-7 Time on-line profile for the oxidation of cinnamyl alcohol using the catalysts 
prepared by sol-immobilisation method. Reaction conditions: catalyst, 10 mg; oxygen pressure, 
3 bar; temperature, 120 °C; 0.5 M cinnamyl alcohol in toluene. Conversion ( ); 
Cinnamaldehyde ( ); Benzaldehyde ( ); 3-Phenyl-1-propanol ( ); Methylstyrene 
( ); Styrene ( ) 

 

Interestingly, the correlation in metal ratio and activity again dipped at 50Au:50Pd as 

with the impregnation catalysts. The data suggests a strong synergistic effect between 

Au-Pd leading to an excellent catalytic performance towards obtaining 

cinnamaldehyde from cinnamyl alcohol. The product distribution (figure 4-6) and 

closed carbon balance (figure 4-8) strongly indicate that the dominating process is 

catalytic dehydrogenation over autoxidation which is presumably switched off. 

 

 

Figure 4-8 Carbon balance for the oxidation of cinnamyl alcohol using the range of catalysts 
prepared by sol-immobilisation method. Reaction conditions: catalyst, 10 mg; oxygen pressure, 
3 bar; temperature, 120 °C; 0.5 M cinnamyl alcohol in toluene. 1 %Au/ TiO2 ( ); 0.95 %Au 
0.05 %Pd/ TiO2 (); 0.75 %Au 0.25 %Pd/ TiO2 ( ); 0.50 %Au 0.50 %Pd/ TiO2 (); 0.25 %Au 
0.75 %Pd/ TiO2 ( ); 1 %Pd/ TiO2 ( ); 0.60 %Au 0.40 %Pd/ TiO2 ( ) 
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Figure 4-9 plots catalytic activity and yield of cinnamaldehyde produced in relation to 

weight percentage of gold.  

 

 

Figure 4-9 Influence of Au-Pd metal ratio on the oxidation of cinnamyl alcohol: a) conversion 
vs gold percentage b) yield to cinnamaldehyde vs gold percentage. Reaction conditions: 
catalysts made by sol-immobilisation method, 10 mg; oxygen pressure, 3 bar; temperature, 
120 °C; 0.5 M cinnamyl alcohol in toluene. 0.5 hour ( ); 1 hour ( ); 2 hours ( ); 4 hours 
( ). 

 

It can be seen, that the conversion trend is reflected in the yield to cinnamaldehyde 

trend, similarly to the (Imp) catalysts. Whilst 0.75 %Au 0.25 %Pd/TiO2 (SIm) showed 

the highest activity, 0.50 %Au 0.50 %Pd/TiO2 (SIm) catalyst showed an unexpected drop 

in activity compared to other bimetallic catalysts. This observation is similar to the 

range of (Imp) catalysts. The presented results show that not only the size of 

nanoparticles is important but also their morphology and composition. However, after 
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more careful consideration it should be stated that sizes of various alloys prepared by 

sol immobilisation method are similar but not identical, hence more detailed research 

should be performed to determine the effect of the size of the individual alloys on the 

oxidation of cinnamyl alcohol. It is not quite clear what causes different behaviour of 

bimetallic alloys with different metal ratio. In theory, a series of factors such as 

different extents of alloying, phase separation or presence of inhomogeneities might 

influence overall geometric and electronic effects. Prati and co-workers’ work on 

glycerol and alcohols oxidations proved that inhomogeneities or segregation of Pd 

phase in bimetallic catalysts with certain metals ratios are the reason of weaker 

catalytic performance.[6], [8], [11], [12] These findings can be addressed to the 

presented research on the oxidation of cinnamyl alcohol under autoxidation 

conditions. Tested catalysts (both, SIm and Imp) with various metals ratios showed 

different catalytic activity, which may indicate different electronic properties caused 

by mutual interactions of different metals on each other. Prati reported the most 

suitable Au-Pd metal ratio being 80 Au: 20 Pd (by mol) supported over carbon for the 

oxidation of cinnamyl and benzyl alcohols under mild conditions. The results obtained 

during this investigation on the oxidation of cinnamyl alcohol under autoxidation 

conditions revealed that the most suitable metal ratio is 75 Au: 25 Pd by weight, which 

is 62 Au: 38 Pd by mol supported over titania. Prati has found very close metal ratio 

(60: 40 by mol) to be an ideal for the oxidation of aliphatic alcohols.[8] The difference 

regarding optimal metal ratio might be due to the fact, that harsher conditions have 

been applied in this study, which influences the behaviour of the catalysts. The 

additional reaction carried out using 85 Au: 15 Pd by weight, which is 75 Au: 25 Pd by 

mol again showed lower catalytic activity than 75 Au: 25 Pd by weight (62 Au: 38 Pd 

by mol). In addition to the reaction conditions, other differences in methodology could 

have an impact on the results. The catalysts in Prati’s work have been prepared by a 

sequential deposition of Au and Pd while in this work, the precursors of metal have 

been reduced simultaneously. This should not be a major issue hence the group 

established that their alloys were homogeneous in certain ratios as described before. 

Moreover, in Prati’s work the metal to substrate ratio was 500 while in this work s:m 

is 3455. Keeping in mind the differences in methodology and applied conditions it is 

expected to notice some differences in the results. However, by contrasting TOF’s 

obtained during these two studies (table 4-1) it is possible to notice similar volcano 

trend throughout the whole range of Au-Pd catalysts. 
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Table 4-1 Comparison of TOF for the range of Au-Pd catalysts prepared by sol-immobilisation 
method in the oxidation of cinnamyl alcohol. 

Source Catalyst TOF (h-1) 

*This work 

1%Au/ TiO2 248 

0.95 %Au 0.05 %Pd/ TiO2 831 

0.85 %Au 0.15 %Pd (75 Au: 25 Pd by mol)/ TiO2 3651 

0.75 %Au 0.25 %Pd (62 Au: 38 Pd by mol)/ TiO2 4075 

0.50 %Au 0.50 %Pd/ TiO2 2454 

0.25 %Au 0.75 %Pd/ TiO2 2498 

1 % Pd/ TiO2 2000 

**Prati and 
co-

workers[8] 

1% Au/AC 25 

1% Pd10@Au90/AC 520 

1% Pd20@Au80/AC 630 

1% Pd40@Au60/AC 539 

1% Pd80@Au20/AC 394 

1% Pd/AC 120 

*Conditions: Reaction conditions: catalyst, 10 mg; oxygen pressure, 3 bar; temperature, 120°C; 

0.5 M cinnamyl alcohol in toluene. TOF calculated after 1 hour of reaction. 

**Conditions: cinnamyl alcohol 0.3 M, cinnamyl alcohol/metal 1/500 mol/mol, T = 60 °C, 

pO2 = 1.5 atm; stirring rate 1250 rpm. TOF calculated after 15 min of reaction. 
 

4.2.2. Reusability  

Reusability is an essential property of any catalyst applied in the industry. 

Among various reasons of catalyst deactivation, the most common are metal leaching, 

surface changes and poisoning.[13]  Reusability tests have been performed for the 

range of studied catalysts prepared by both methods, impregnation and sol-

immobilisation (figures 4-10 and 4-11) for the oxidation of cinnamyl alcohol under 

autoxidation conditions. Elemental analysis (ICP-MS) of the post reaction mixtures (Imp 

and SIm catalysts) showed that leaching has been negligible (Au< 0.05 %; Pd~0.3 %).  

Au-rich (Imp) catalysts (1 %Au/TiO2 and 0.95 %Au 0.05 %Pd/ TiO2) showed 

minimal loss of activity, however it should be emphasised that in case of impregnation 

method the autoxidation is dominant hence the catalytic performance is quite low for 

0.95 %Au 0.05 %Pd/ TiO2 (Imp) and negligible for 1 %Au/TiO2 (Imp). A more pronounced 

loss of activity is noticeable for 0.75 %Au 0.25 %Pd/ TiO2 (Imp) and 0.50 %Au 0.50 %Pd/ 

TiO2 (Imp), however the selectivity seems to be maintained at similar level after every 

cycle. A significantly worse reusability is evident for Pd-rich (Imp) catalysts not only in 

regard of conversion but also selectivity. Larger amounts of benzaldehyde and benzoic 

acid have been formed after every use, which implies intensification of the 

autoxidation process due to weakening of catalytic performance.  
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Figure 4-10 Reusability studies of the range of catalysts prepared by impregnation method. 
Reaction conditions: catalyst, 10 mg; oxygen pressure, 3 bar; temperature, 120 °C; 0.5 M 
cinnamyl alcohol in toluene; time, 4 hours. Conversion ( ); Carbon balance ( ); 
Cinnamaldehyde ( ); Benzaldehyde ( ); Methylstyrene ( ); 3-Phenyl-1-propanol 
( ); Benzoic acid ( ) 
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Reusability studies of (SIm) catalysts revealed gradual mild deactivation. 

Exceptionally low deactivation showed 0.75 %Au 0.25 %Pd/ TiO2 (SIm): 94, 92 and 90 % 

after first, second and third use, respectively. This result can be understood as only 

slight deactivation or this catalyst is extremely stable within experimental error. To 

determine which hypothesis is true, the experiment would have to be repeated at low 

conversions (in this case at shorter time e.g. 15 or 30 minutes) to compare the initial 

rates. Nevertheless, as in the case of Au-rich (Imp) catalysts, Au-rich (SIm) catalysts 

have a low catalytic activity, hence autoxidation is dominant. It may seem that 1 

%Au/TiO2 (SIm) is more active with every use, however it is the opposite. The increased 

conversion is caused by autoxidation due to worse scavenging properties of the catalyst 

after every cycle, which is reflected in larger amount of formed benzaldehyde. 

Noticeably more benzaldehyde has been formed after every cycle using 0.95 %Au 0.05 

%Pd/ TiO2 (SIm), which also suggests that the autoxidation is taking place. In general, 

0.50 %Au 0.50 %Pd/ TiO2 (SIm) and Pd-rich (SIm) catalysts maintained high selectivity 

to cinnamaldehyde with every use, however conversion decreased. Especially high 

selectivity to cinnamaldehyde (97 %) has been obtained after third cycle using 1 %Pd/ 

TiO2 (SIm). This reading appears to be incorrect due to analysis error, hence it should 

be repeated before drawing any conclusions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 
 

133 
 

 

 

 

Figure 4-11 Reusability studies of the range of catalysts prepared by sol-immobilisation 
method. Reaction conditions: catalyst, 10 mg; oxygen pressure, 3 bar; temperature, 120 °C; 
0.5 M cinnamyl alcohol in toluene; time, 4 hours. Conversion ( ); Carbon balance ( ); 
Cinnamaldehyde ( ); Benzaldehyde ( ); Methylstyrene ( ); 3-Phenyl-1-propanol 
( ); Benzoic acid ( ) 
 

Poisoning is an especially common and difficult to manage reason of catalyst 

deactivation in the oxidation of allylic alcohols. Two research groups under the 

leaderships of Baiker and Wilson proved that CO formed during decarbonylation can 

adsorb on Pd, which diminishes overall yield of the catalytic process.[14]–[17] A small 

amount of CO is produced during the oxidation of cinnamyl alcohol, which can explain 

lower carbon balance in case of the range of (Imp) catalysts. Therefore, poisoning 
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coupled with probable nanoparticle agglomeration might explain gradual loss of 

activity of the studied catalysts. To verify this hypothesis, detailed SEM and XPS 

analysis have been performed, which is presented in the next section.   

 

4.2.3.  Characteristics 
 

4.2.3.1.  SEM 

It has been demonstrated in Chapter 3 that the size of Au-Pd nanoparticles 

obtained by impregnation and sol-immobilisation methods varies heavily as expected. 

In this chapter, SEM has been used to investigate the characteristics of the metal 

nanoparticles in used catalysts in 3 consecutive cycles.  The analysis has been carried 

out on the example of following catalysts: 0.50 %Au 0.50 %Pd/ TiO2 (Imp), 0.50 %Au 

0.50 %Pd/ TiO2 (SIm) and 0.75 %Au 0.25 %Pd/ TiO2 (SIm). The catalysts prepared by 

impregnation method showed a similar deactivation pattern, hence 50:50 metal ratio 

has been chosen as an example. Deactivation of 0.75 %Au 0.25 %Pd/ TiO2 (SIm) catalyst 

was unusally minor compared to the rest of the catalysts prepared by sol-

immobilisation method, hence two catalysts have been chosen for the investigation. 

From figure 4-12a it can be seen that the nanoparticles in 0.50 %Au 0.50 %Pd/ 

TiO2 (Imp) are large (around 100 nm) with occasional occurences of smaller clusters 

(from 3 to 100 nm). Comparison of the size of nanoparticles on the fresh (4-12a) and 

used catalyst (4-12b) showed that there is no massive change noticed in the particle 

size. The poor gold dispersion has been confirmed by XPS results (section 4.2.3.2). 

Based on that and on the activity data it can be assumed that similar behaviour would 

show any other catalyst prepared by impregnation method. 

 

 

Figure 4-12 BSD-SEM image of the 0.50 %Au 0.50 %Pd/ TiO2 (Imp): a) fresh, b) spent   
 

a b 
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In the case of the same catalyst but made by the sol-immobilisation method, the 

difference between the fresh and the catalyst used is significant. Figure 4-13 shows a 

comparison of catalyst after first use (4-13a) 0.50 %Au 0.50 %Pd/ TiO2 (SIm), after 

second (4-13b) and third cycle (4-13c). Initially the nanoparticles were very small, in 

range 1-8 nm with an average of 2-3 nm. Slighlty larger clusters have been observed 

after second use, the size range has increased (3-13 nm) with the majority being 5-7 

nm. After 3rd use a minimal particle growth has been obtained with more 7 and 8 nm 

clusters noticed.  

From figure 4-14 it is clear that for 0.75 %Au 0.25 %Pd/ TiO2 (SIm) the particle growth 

is neglible which can explain the extraordinary reusability of this catalyst. The 

nanoparticles were in range 1-8 nm after all 3 cycles, with an average of 2-3 nm after 

first and second use, and 4-5 nm after third use. 
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Figure 4-13 BSD-SEM image of the 0.50 %Au 0.50 %Pd/ TiO2 (SIm) and associated particle size 
distribution: a) fresh catalyst b) spent catalyst: 2nd use c) spent catalyst: 3rd use 
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Figure 4-14 BSD-SEM image of the 0.75 %Au 0.25 %Pd/ TiO2 SIm and associated particle size 
distribution: a) fresh catalyst b) spent catalyst: 2nd use c) spent catalyst: 3rd use 

 

In conclusion, the agglomeration in case of 50Au:50Pd and minor particle growth in 

case of 75Au:25Pd can explain the deactivation of the range of 1 %AuPd/TiO2 (SIm) 

catalysts with the exception of 75Au:25Pd ratio presenting outstanding stability and 

activity. 

 

0

10

20

30

40

1 2 3 4 5 6 7 8 9

F
re

q
u
e
n
c
y
 [

%
]

Particles diameter [nm]

1st use

0

10

20

30

40

1 2 3 4 5 6 7 8 9

F
re

q
u
e
n
c
y
 [

%
]

Particles diameter [nm]

2rd use

0

10

20

30

40

2 3 4 5 6 7 8 9

F
re

q
u
e
n
c
y
 [

%
]

Particles diameter [nm]

3rd use

a 

b 

c 



Chapter 4 
 

138 
 

4.2.3.2.  XPS 

XPS analysis of catalysts prepared by the impregnation method revealed the 

existence of Pd (II) and Pd (0) species (with binding energies of 336.4 and 335.3 eV, 

respectively), which occur in approximately a 1:1 ratio (figure 4-15). Gold was found 

in its metallic form (binding energy of 83.2 eV). Moreover, the signal of Au (4f) for 

catalysts in the range of increasing gold content was very weak, which generally means 

poor dispersion of gold. Thus, the XPS analysis confirmed the results obtained from the 

SEM analysis that the nanoparticles are large and poorly dispersed. 

In the case of the catalysts prepared by the sol-immobilisation method, the effect of 

gold dilution by palladium occurred, which was determined by lower Au coordination 

(lowering of the Au (4f) peak to a maximum of 0.4 eV). Furthermore, both Au (4f) and 

Pd (3d) peaks were observed for all bimetallic catalysts. The fact that Pd was 

detectable even in the case of low metal concentrations (e.g., 0.95% Au, 0.05% Pd / 

TiO2 (SIm)) indicates excellent overall dispersion. 

Pd (II) has not been detected in 0.75 %Au 0.25 %Pd/TiO2 (SIm) catalyst, however the 

reason for this may be its low concentration. It can definitely be stated, that Pd (II) 

species are easily detectable in catalysts with a higher content of Pd, that is, above 

0.25 %. The Pd (II) concentration is relatively low for 0.50 %Au 0.50 %Pd/TiO2 (SIm), 

which may cause a relatively lower activity compared to other bimetallic catalysts 

(figure 4-16). The significance of PdO is discussed in more detail in the following 

section 4.2.4. 

 

Figure 4-15 Presence of Pd (0) and Pd (2+) species in the range of catalysts prepared by 
impregnation method. Conversion after 4 hours ( ); Pd (2+)/ Pd (0) ratio ( ) 
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Figure 4-16 Presence of Pd (0) and Pd (2+) species in the range of catalysts prepared by sol-

immobilisation method. Conversion after 4 hours ( ); Pd (2+)/ Pd (0) ratio ( ) 

 

4.2.4.  The importance of oxygen in the catalytic process 

As already discussed in Chapter 3, the role of O2 in the oxidation of cinnamyl 

alcohol (and other allylic alcohols) is contentious.[18], [19] Baiker et al. reported that 

dehydrogenation of cinnamyl alcohol over Pd/Al2O3 catalysts took place in the absence 

of oxygen in the system and increased selectivity to 3-phenyl-1-propanol and 

methylstyrene indicated that cinnamyl alcohol acted as a hydrogen acceptor. The 

researchers stated that oxygen might clean the catalyst surface and therefore takes a 

part in the process.[18] Lee et al. on the other hand suggested that PdO is the active 

centre and oxygen plays a direct, important role in the catalytic process.[19] In 

Chapter 3, the role of oxygen in cinnamyl alcohol oxidation has been investigated in 

terms of its influence on the products distribution. Little attention has been paid to 

the subtle matter of the influence of oxygen on the catalysts itself. It is extremely 

difficult to indicate active centres of the catalysts even with the participation of 

modern technologies. Lee and Wilson delivered valuable publications on the active site 

in Pd supported catalysts in the oxidation of various alcohols in mild conditions (air as 

an oxidant, low temperatures ~60 °C).[13], [20] The researchers investigated the 
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crucial for high catalytic performance.[20] In a later paper the scientists emphasize 

the importance of high Pd dispersion for enhanced catalytic activity.[13] Appreciable 

Pd dispersion was observed up to 1 wt% bulk loading; higher Pd content (up to 8.55 

wt%) resulted in lower dispersion and occurrence of larger Pd particles. The 

phenomenon of dispersion was directly linked with the palladium oxide presence as 

the researchers noticed the relation between increasing TOF in cinnamyl alcohol 

oxidation with increasing surface layer of PdO (%).[13] Wilson et al. made efforts to 

improve Pd catalytic performance by changing support to mesoporous alumina and 

three-dimensional silicas (KIT-6, SBA-16). Indeed, these supports were found to be 

more suitable than SBA-15 or ɣ-Al2O3 which was explained by enhanced Pd nanoparticle 

stabilization hence a high concentration of palladium oxide has been maintained.[21] 

[22]  

XPS analysis carried out during this study revealed the presence of PdO (section 

4.2.3.2) however there is no actual trend in terms of the influence of PdO on the 

activity. The most active catalyst for the oxidation of cinnamyl alcohol under 

autoxidation conditions has been found to be 0.75 %Au 0.25 %Pd/TiO2 (SIm) and no PdO 

has been detected on it. Anyway, small quantities may still be present, taking into 

consideration that XPS technique is not ideal for such subtle measurements. Moreover, 

XPS analysis should be carried out also after the reaction to verify the existence of 

PdO. Unfortunately, the role of oxygen is not fully understood. Nevertheless, some 

additional experiments have been carried out to verify whether the change of oxygen 

to air would benefit the overall yield of the studied reaction. Moreover, the catalyst 

has been tested in low temperature, where autoxidation did not take place.  

From figure 4-17 it can be seen that, the use of oxygen allows to obtain higher reaction 

rate within the first 2 hours compared to the use of air. However, after this time the 

same results are possible to obtain using air as an oxidant. The reactions carried out 

at 60 °C gave considerably lower conversion than the reaction performed at standard 

temperature (120 °C) regardless of which oxidant has been used (molecular oxygen or 

air).  
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Figure 4-17 Influence of different conditions on the oxidation of cinnamyl alcohol using 0.75 
%Au 0.25 %Pd/ TiO2 (SIm) catalyst. Reaction conditions: catalyst, 10 mg; oxygen pressure, 3 
bar; temperature, 120 °C; 0.5 M cinnamyl alcohol in toluene.  Full markers- atmosphere of 
oxygen:  120 °C ( ); 60 °C ( ). Empty markers- air: 120 °C, ( ); 120 °C; 60 °C () 

 

Figure 4-18 presents selectivity profiles for the above discussed reactions. When 

oxygen has been replaced with air, benzaldehyde has not been immediately formed, 

however it is observed after 30 minutes of reaction. Interestingly, a higher selectivity 

to methylstyrene has been noticed at the expense of cinnamaldehyde. From this 

experiment it is clear, that oxygen is more suitable oxidant than air as it leads to lower 

formation of by-products from hydrogen transfer processes, which allows for higher 

selectivity to cinnamaldehyde.  

The product distribution of the reaction carried out at 60 °C differed from the reaction 

carried out at 120 °C. The most noticeable difference is related to benzaldehyde. 

Benzaldehyde has been detected after 2 hours of the experiment under oxygen, while 

there was no benzaldehyde formed under air. Similar to the experiments performed at 

120 °C, at 60 °C under oxygen the formation of methylstyrene was minimal and only 

appeared after 2 hours of the experiment, while under air the formation of 

methylstyrene was intensified. These observations support the hypothesis that oxygen 

may act not only as an oxidant but also as a cleaning agent, responsible for removing 

reactants of the catalyst surface. Smaller amounts of detected by-products generally 

mean better overall performance of the catalytic process hence the reaction has been 

carried out for longer to ensure higher conversion. Unfortunately, after 24 h the 

conversion did not exceed 32 %.  
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Figure 4-18 Influence of different conditions on the selectivity profile of the oxidation of 
cinnamyl alcohol using 0.75 %Au 0.25 %Pd/TiO2 (SIm). Reaction conditions: catalyst, 10 mg; 
oxygen pressure, 3 bar; temperature, 120 °C; 0.5 M cinnamyl alcohol in toluene. Conversion 
( ); Cinnamaldehyde ( ); Benzaldehyde ( ); 3-Phenyl-1-propanol ( ); 
Methylstyrene ( ) 

 

4.2.5.  Studies of the most active catalysts prepared by sol-

immobilisation and impregnation methods. 

As already mentioned, the size of Au-Pd nanoparticles strongly influences their 

catalytic activity. However, as has been shown, variation in metal ratio also affects 

the course of the catalytic process, which implies different properties and possibly 

different morphologies of clusters with different metal content in the same size range. 

The most active (Imp) and (SIm) catalysts have been chosen and tested in detail to 

verify possible differences to the 50:50 (Imp) and (SIm) catalysts which have been 

analysed in Chapter 3. The main reason of these tests is relatively weaker activity of 

(SIm) and (Imp) catalysts with 50:50 metal ratio compared to the other bimetallic 

catalysts. An attempt has been made to investigate the behaviour of the most active 

catalysts and verify possible different trends in their performance. 
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4.2.5.1. Different Solvents 

In this section, the most active catalysts 0.75 %Au 0.25 %Pd/ TiO2 (SIm) and 

0.25 % 0.75 %Pd/ TiO2 (Imp) have been tested in two different solvents: xylene and 

water. 

 

4.2.5.1.1.  Xylene 

It has been demonstrated in Chapter 3 that the increase in 0.50 %Au 0.50 %Pd/ 

TiO2 (SIm) catalyst mass from 10 to 20 mg resulted in a minor increase in conversion 

(around 6 % after 4 hours) hence the lowest possible amount of catalyst showing 

satisfying results has been applied for further work. Also doubled mass (20 mg) has 

been tested in xylene. Three isomeric forms of xylene have been tested (o-, m- and p) 

showing the same results. Xylene (dimethylbenzene) has been chosen as an example 

of another organic solvent with variation in methyl groups in relation to toluene 

(methylbenzene).  

The reaction carried out with the use of 10 mg 0.75 %Au 0.25 %Pd/TiO2 (SIm) in 

toluene had 97 % conversion after 4 hours and selectivity profile to 80 % 

cinnamaldehyde, 3 % benzaldehyde, 10 % PP, and 7 % MS (figure 3-5). The change of 

solvent from toluene to xylene (figure 4-19) had a minimal influence on the process; 

the results after 0.5 and 4 hours are the same. A two-fold increase in catalyst mass 

resulted in increase of the conversion (from 75 % to 97 %) while maintaining the 

selectivity profile.  

In the case of 0.25 %Au 0.75 %Pd/TiO2 (Imp) catalyst, the conversion in toluene 

was 70 % after 4 hours with selectivity to cinnamaldehyde around 75 % and selectivity 

to benzaldehyde around 10 %. The selectivity to products, which indicate hydrogen 

transfer processes (methylstyrene and 3-phenyl-1-propanol), was below 5%. The course 

of the reaction in xylene (figure 4-20) is similar for the first 2 hours, however after 4th 

hour the conversion is lower (50 %). A two-fold increase in catalyst mass resulted in 

significant increase in conversion (93 % after 4 hours) while maintaining selectivity 

profile.  

To conclude, the course of reaction has been found to be similar in tested 

organic solvents with a minimal advantage for toluene. Doubling the amount of catalyst 

led to minor improvement of the overall yield of the process in the case of (SIm) 
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catalyst, however in the case of (Imp) catalyst the yield of the reaction increased 

significantly. 

 

 

Figure 4-19 Influence of the catalyst mass on the oxidation of cinnamyl alcohol using 0.75 %Au 
0.25 %Pd/ TiO2 (SIm). Reaction conditions: catalyst, 10 mg; oxygen pressure, 3 bar; 
temperature, 120 °C; 0.5 M cinnamyl alcohol in xylene. Conversion ( ); Cinnamaldehyde 
( ); Benzaldehyde ( ); 3-Phenyl-1-propanol ( ); Methylstyrene ( ); Styrene 
( ) 

 

 

Figure 4-20 Influence of the catalyst mass on the oxidation of cinnamyl alcohol using 0.25 %Au 
0.75 %Pd/ TiO2 (Imp). Reaction conditions: catalyst, 10 mg; oxygen pressure, 3 bar; 
temperature, 120 °C; 0.5 M cinnamyl alcohol in xylene. Conversion ( ); Cinnamaldehyde 
( ); Benzaldehyde ( ); 3-Phenyl-1-propanol ( ); Methylstyrene ( ); Styrene 
( ) 
 

4.2.5.1.2.  Water 

In addition to organic solvents, the reaction of cinnamyl alcohol oxidation has 

also been carried out in water using 0.75 %Au 0.25 %Pd/ TiO2 (SIm). The compounds 

have been retrieved from aqueous phase by extraction with toluene. The table 4-2 

contains obtained data compared with the reaction carried out in toluene under 

standard conditions. 
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Table 4-2 Effect of water used as a solvent on the oxidation of cinnamyl alcohol. 

Experiment 
Conversion C bal Selectivity [%] 

[%] [%] CinnALD BenzALD PP BenzACID MS 

Water as a solvent 99 47 50 28 12 10  - 

Standard reaction 95 100 79 2 10  - 9 

Reaction conditions: 0.75 %Au 0.25 %Pd/ TiO2 (SIm) catalyst, 10 mg; oxygen pressure, 3 bar; 
temperature, 120 °C; 0.5 M cinnamyl alcohol in water or in toluene. 

 

It can be seen, that the carbon balance of the extracted organic phase from water is 

rather low (47 %). One reason might be inefficient extraction process. The other reason 

might be large amount of cinnamic acid, the presence of which has been confirmed by 

GC-MS analysis, however cinnamic acid is undetectable during standard analysis on GC 

with CPwax column. Despite the fact, that the experiment with the use of water as a 

solvent is poor quality, it has not been repeated as these preliminary results were 

sufficient to evaluate the product distribution. The presence of benzaldehyde and 

benzoic acid in large amounts indicates that the process of autoxidation was taking 

place, which is not desirable. Moreover, cinnamic acid formation suggests that the 

mechanism of cinnamyl alcohol oxidation under autoxidation conditions in water is 

different to the mechanism in organics. It has been shown in Chapter 3 that a small 

addition of water to the organic reaction solution improved greatly the overall yield 

to cinnamaldehyde, presumably by quenching radical species. Interestingly, in this 

experiment using water as the only solvent not only did not improve the reaction but 

the opposite, large amounts of unwanted by-products have been detected.  

Prati and co-workers tested various Au-Pd metal ratio on the oxidation of 

cinnamyl alcohol in water. The reactions have been performed at 60 °C under 1.5 atm 

of oxygen pressure. These conditions were relatively mild, there was no autoxidation 

observed and the only products detected were cinnamaldehyde and 3-phenyl-1-

propanol. The researchers tested also the influence of base which led to the formation 

of acids and esters.[8] Earlier studies from the same group on the oxidation of cinnamyl 

alcohol using 0.73 %Au 0.27 %Pd/ C made by sol-immobilisation method showed that 

the catalyst is more active in water (95 % conversion) than in toluene (72 % 

conversion).[7]  It is known, that the mechanism of oxidation in water and in toluene 

is different for Pt and Pd systems, which can be addressed to Au-Pd system accordingly. 

Better properties of water as a solvent have been explained by two possible reasons. 

First is mechanistically approach where water would react with aldehyde forming 

hydrate, which would react further with oxygen leading to carboxylic acid.  This would 

explain why water applied as a solvent in the oxidation of cinnamyl alcohol under 

autoxidation conditions yielded large amounts of carboxylic acid. The other possible 
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influence of water on the reaction is promoting reactivity by facilitating H abstraction 

from alcohol which is caused by the fact that water is a weak base.[7]  This property 

of water might explain the higher activity of the Au-Pd supported catalyst in the 

oxidation of alcohols in mild conditions. In the presented research the small addition 

of water (2 ml) to the organic reaction solution led to significantly improved overall 

yield, which might be supported by this hypothesis.[7]  

 

4.2.5.2.  Inert gas 

Another test that the most active catalysts have undergone is the oxidation of 

cinnamyl alcohol in an inert gas atmosphere. The same experiment has been performed 

for 0.50 %Au 0.50 %Pd/ TiO2 (SIm) and (Imp) catalysts described in Chapter 3. In both 

cases significant differences have been noticed: the formation of benzaldehyde has 

been stopped and selectivity to the products being formed as the effect of hydrogen 

transfer (PP, MS) increased.[18], [23] The behaviour of the (Imp) catalyst differed from 

(SIm) catalyst in terms of conversion. The 0.50 %Au 0.50 %Pd/TiO2 Imp catalyst (table 

2, figure 3-25) was less active under nitrogen than under oxygen (19 and 48 %, 

respectively after 4 hours) whereas there was only a minimal difference in conversion 

(within an experimental error) for the reactions with the use of 0.50 %Au 0.50 %Pd/TiO2 

(SIm). Figure 4-21 shows the comparison of the most active (Imp) and (SIm) catalysts 

tested in oxygen and in nitrogen. It can be seen, that the trend for 0.25 %Au 0.75 %Pd/ 

TiO2 (Imp) is similar to the studied earlier 50:50 (Imp), namely the conversion is lower 

under nitrogen than under oxygen with intensified role of cinnamyl alcohol as a 

hydrogen acceptor which is indicated by larger amounts of PP and MS (figure 4-22).[18], 

[24] The results for the 0.75 %Au 0.25 %Pd/TiO2 (SIm) are somewhat more intriguing 

than would be expected given the previous 50:50 (SIm) tests. 0.75 %Au 0.25 %Pd/TiO2 

(SIm) tested under nitrogen demonstrated significantly lower conversion than under 

oxygen (figure 4-21). The selectivity profile is in line with expectations as large 

amounts of PP and MS have been detected (figure 4-23).  
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Figure 4-21 Influence of inert gas on the conversion of cinnamyl alcohol using 0.75 %Au 0.25 
%/ TiO2 SIm and 0.25 %Au 0.75 %/ TiO2 (Imp). Reaction conditions: catalyst, 10 mg; oxygen/ 
nitrogen pressure, 3 bar; temperature, 120 °C; 0.5 M cinnamyl alcohol in toluene. Full 
markers- reactions carried in the atmosphere of oxygen: 0.25 %Au 0.75 %/ TiO2 (Imp) (); 
0.75 %Au 0.25 %/ TiO2 (SIm) ( ). Empty markers- reactions carried out in the atmosphere 
of nitrogen: 0.25 %Au 0.75 %/ TiO2 (Imp) ( ); 0.75 %Au 0.25 %/ TiO2 (SIm) ( ) 

 

 

Figure 4-22 Influence of inert gas on the selectivity profile in the oxidation of cinnamyl alcohol 
using 0.25 %Au 0.75 %Pd/ TiO2 (Imp). Reaction conditions: catalyst, 10 mg; oxygen/nitrogen 
pressure, 3 bar; temperature, 120 °C; 0.5 M cinnamyl alcohol in toluene. Conversion ( ); 
Cinnamaldehyde ( ); Benzaldehyde ( ); 3-Phenyl-1-propanol ( ); Methylstyrene 
( ) 
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Figure 4-23 Influence of inert gas on the selectivity profile in the oxidation of cinnamyl alcohol 
using 0.75 %Au 0.25 %Pd/ TiO2 (SIm). Reaction conditions: catalyst, 10 mg; oxygen/nitrogen 
pressure, 3 bar; temperature, 120 °C; 0.5 M cinnamyl alcohol in toluene. Conversion ( ); 
Cinnamaldehyde ( ); Benzaldehyde ( ); 3-Phenyl-1-propanol ( ); Methylstyrene 
( ) 

 

These experiments confirmed what has been stated before that the process takes place 

according to the dehydrogenation mechanism.[18] However, the fact that 75: 25 (SIm) 

showed different trend to 50: 50 (SIm) in nitrogen leads to a discussion on the cause. 

There are two approaches to the role of oxygen in the literature; oxygen as a “cleaner” 

for catalyst surface from e.g. excess of hydrogen[18] and oxygen playing a direct and 

important role in the catalytic process to constantly regenerate the active sites.[19] 

Both hypotheses seem to be very likely and it is extremely difficult to verify the actual 

role of oxygen. In regard to the data presented, if the only role of oxygen was catalyst 

surface cleaning, the trend in activity for both, 50:50 and 75:25 (SIm) should be the 

same, that is minimal difference under oxygen and nitrogen. The fact that extremely 

active 75:25 (SIm) catalyst under oxygen has lost significantly its catalytic activity 

under nitrogen suggest that the oxygen plays direct role in the process. It also suggests 

that nanoclusters with various metal ratio interact differently with oxygen. 

Nevertheless, the presented results prove that the synergistic effect and hence the 

electronic effect between Au and Pd is an extremely important factor to consider in 

alcohols oxidations.  

 

4.2.5.3. Influence of scavengers on the catalysed reaction  

The radical mechanism of autoxidation in the non-selective oxidation of 

cinnamyl alcohol has been confirmed by the addition of radical scavengers to the 

system in the absence of a catalyst. Two types of scavengers were tested: 

hydroquinone as a scavenger for oxygen centred radicals[25] and diphenylamine as a 

scavenger for carbon centred radicals[26]. The presence of scavengers only slightly 

0

20

40

60

80

100

0.5 1 2 4

S
e
le

c
ti

v
it

y
 [

%
]

Time [h]

atmosphere of oxygen

0

20

40

60

80

100

0.5 1 2 4

S
e
le

c
ti

v
it

y
 [

%
]

Time [h]

atmosphere of nitrogen



Chapter 4 
 

149 
 

decreased the conversion for the reaction carried out with the use of 0.50 %Au 0.50 

%Pd/TiO2 (SIm) (figure 3-22) whereas the drop for blank and for the 0.50 %Au 

0.50%Pd/TiO2 (Imp) catalyst was dramatic. In the case of 0.75 %Au 0.25 %Pd/TiO2 (SIm) 

catalyst, the addition of diphenylamine did not affect significantly the conversion, 

however hydroquinone caused decrease in conversion in a small but visible degree 

(figure 4-24). Similar to the previous experiments, scavengers limited formation of 

benzaldehyde. From figure 4-25 it can be seen that product distributions for the 

reactions carried out with both type of scavengers were almost identical. The 

exception is the 4 hour point in the experiment utilising diphenylamine, where small 

amount of benzaldehyde has been formed. It means that diphenylamine was able to 

quench radicals up to 2 hours after which its effectiveness decreased. The drop in 

conversion due to the addition of hydroquinone might be caused by a slower removal 

of hydrogen from the catalyst surface as a result of possible interaction of scavenger 

with oxygen.  

 

 

Figure 4-24 Influence of the scavengers on the oxidation of cinnamyl alcohol using 0.75 wt%Au 
0.25 wt%Pd/ TiO2 (SIm). Reaction conditions: catalyst, 10 mg; oxygen pressure, 3 bar; 
temperature, 120 °C; 0.5 M cinnamyl alcohol in toluene; scavenger, 2 mg. No scavengers 
addition ( ); diphenylamine ( ); hydroquinone (◼ ) 
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Figure 4-25 Influence of the scavengers on the selectivity profile in the oxidation of cinnamyl 
alcohol using 0.75 wt%Au 0.25 wt%Pd/ TiO2 (SIm). Reaction conditions: catalyst, 10 mg; oxygen 
pressure, 3 bar; temperature, 120 °C; 0.5 M cinnamyl alcohol in toluene; scavenger, 2 mg. 
Conversion ( ); Cinnamaldehyde ( ); Benzaldehyde ( ); 3-Phenyl-1-propanol       
( ); Methylstyrene ( ) 

 

Addition of scavengers to the reaction carried out with the use of the 0.50 %Au 

0.50%Pd/TiO2 (Imp) catalyst (Figure 3-24) lowered conversion and significantly reduced 

formation of benzaldehyde, simultaneously increasing selectivity to cinnamaldehyde 

(80 %). Both scavengers, diphenylamine and hydroquinone gave reasonable similar 

results. In the case of 0.25 %Au 0.75 %Pd/TiO2 (Imp) catalyst the trend is slightly 

different (figures 4-26 and 4-27). Scavengers completely stopped formation of 

benzaldehyde and selectivity to cinnamaldehyde was high (around 80 %). 

Diphenylamine did not affect massively the course of the reaction however 

hydroquinone has lowered greatly the conversion (figure 4-26), which presumably 

indicates stronger interaction of the latter scavenger with oxygen radicals.  
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Figure 4-26 Influence of the scavengers on the oxidation of cinnamyl alcohol using 0.25 %Au 
0.75 %Pd/ TiO2 (Imp). Reaction conditions: catalyst, 10 mg; oxygen pressure, 3 bar; 
temperature, 120 °C; 0.5 M cinnamyl alcohol in toluene; scavenger, 2 mg. No scavengers 
addition ( ); diphenylamine ( ); hydroquinone ( ) 

 

 

Figure 4-27 Influence of the scavengers on the selectivity profile in the oxidation of cinnamyl 
alcohol using 0.25 wt%Au 0.75 wt%Pd/ TiO2 (Imp). Reaction conditions: catalyst, 10 mg; oxygen 
pressure, 3 bar; temperature, 120 °C; 0.5 M cinnamyl alcohol in toluene; scavenger, 2 mg. 
Conversion ( ); Cinnamaldehyde ( ); 3-Phenyl-1-propanol ( ); Methylstyrene     
( ) 
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conversion of cinnamyl alcohol within first hour of the experiment after which the 

reactions proceeded in the same way as the control reaction (without scavengers). In 

terms of product distributions (figures 4-29 and 4-25), it is clear, that scavengers did 

not influence the selectivity profile in the atmosphere of nitrogen. 

 

 

Figure 4-28 Influence of the scavengers on the oxidation of cinnamyl alcohol using 0.75 %Au 
0.25 %Pd/ TiO2 (SIm). Reaction conditions: catalyst, 10 mg; nitrogen pressure, 3 bar; 
temperature, 120 °C; 0.5 M cinnamyl alcohol in toluene; scavenger, 2 mg. No scavengers 
addition ( ); diphenylamine (  ); hydroquinone ( ) 

 

 

Figure 4-29 Influence of the scavengers on the selectivity profile in the oxidation of cinnamyl 
alcohol using 0.75 wt%Au 0.25 wt%Pd/ TiO2 (SIm). Reaction conditions: catalyst, 10 mg; 
nitrogen pressure, 3 bar; temperature, 120 °C; 0.5 M cinnamyl alcohol in toluene; scavenger, 
2 mg. Conversion ( ); Cinnamaldehyde ( ); 3-Phenyl-1-propanol ( ); 
Methylstyrene ( ) 
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Comparing the data shown in figure 4-30 where the 0.25 0.75%Au/TiO2 (Imp) catalyst 

has been tested in the atmosphere of nitrogen and then the same reaction has been 

repeated with the addition of scavengers, one can see that there is no significant 

difference other than the experimental error (3 %) between sets of data. Also, 

selectivity profiles for the contrasted reactions are comparable within experimental 

error (figures 4-31 and 4-22). 

 

Figure 4-30 Influence of the scavengers on the oxidation of cinnamyl alcohol using 0.25 %Au 
0.75 %Pd/ TiO2 (Imp). Reaction conditions: catalyst, 10 mg; nitrogen pressure, 3 bar; 
temperature, 120 °C; 0.5 M cinnamyl alcohol in toluene; scavenger, 2 mg. No scavengers 
addition ( ); diphenylamine ( ); hydroquinone ( ) 

 

 

Figure 4-31 Influence of the scavengers on the selectivity profile in the oxidation of cinnamyl 
alcohol using 0.25 %Au 0.75 %Pd/ TiO2 (Imp). Reaction conditions: catalyst, 10 mg; nitrogen 
pressure, 3 bar; temperature, 120 °C; 0.5 M cinnamyl alcohol in toluene; scavenger, 2 mg. 
Conversion ( ); Cinnamaldehyde ( ); 3-Phenyl-1-propanol ( ); Methylstyrene       
( )   
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4.3. Conclusions 

The catalyst synthesis method and metal ratio have an enormous impact on the 

size and morphology of nanoparticles, which in turn determines the catalyst's activity.  

The sol-immobilisation method has been found to be more suitable to produce 

active and selective catalysts for the oxidation of cinnamyl alcohol than impregnation 

method under industrially relevant conditions. The highest conversion (nearly 96 % 

after 4 hours) and selectivity to cinnamaldehyde (80 %) was achieved using the 0.75 

%Au 0.25 %Pd/ TiO2  (SIm) catalyst. Generally SIm catalysts showed gradual mild 

deactivation within 3 cycles. Exceptionally low deactivation showed 0.75 %Au 0.25 

%Pd/ TiO2 (SIm): 94, 92 and 90 % after first, second and third use, respectively. SEM 

analysis revealed negligible particle growth within 3 cycles for this catalyst; the 

nanoparticles were in range 1-8 nm, with an average of 2-3 nm after first and second 

use, and 4-5 nm after third use. To highlight the extraordinary stability of 0.75 %Au 

0.25 %Pd/ TiO2 (SIm) catalyst, the SEM analysis has been shown and contrasted to re-

used 0.50 %Au 0.50 %Pd/ TiO2 (SIm), which revealed more prominent particle growth 

ranging from small particles 1-8 nm in fresh catalyst to slighlty larger clusters observed 

after second use (3-13 nm with the majority being 5-7 nm) and third use (mostly 7-8 

nm clusters observed). The agglomeration observed for 50Au:50Pd metal ratio and 

minor particle growth in case of 75Au:25Pd can explain the deactivation of the range 

of 1 %AuPd/TiO2 (SIm) catalysts with the exception of 75Au:25Pd ratio presenting 

outstanding stability and activity. 

Study of various metal ratios in catalysts prepared by impregnation method 

proved that it is possible to increase the selectivity of even poor activity catalysts by 

simply optimising the metal ratio. Au-rich Imp catalysts showed low catalytic activity 

towards dehydrogenation to cinnamaldehyde and hence low selectivity due to co-

existing autoxidation. Surprisingly, Pd-rich catalysts have been found to be much more 

selective towards formation of cinnamaldehyde and were able to significantly limit the 

autoxidation of the substrate. Unfortunately, one drawback of Pd-rich Imp catalysts is 

the relatively poor reusability with regards to both conversion and selectivity. Larger 

amounts of autoxidation products have been formed after every use, which implies 

intensification of the autoxidation process due to weakening of catalytic performance. 

Therefore, poisoning coupled with probable nanoparticle agglomeration might explain 

gradual loss of activity of the studied catalysts. 

Experimental work presented in this thesis proved that optimisation of Au-Pd 

metal ratio is a crucial step towards improving the overall efficiency of oxidation in 

the liquid phase under autoxidation conditions. It is not quite clear what causes 

different behaviour of bimetallic alloys with different metal ratio. Significant 
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difference in catalytic activity showed by tested catalysts (both, SIm and Imp) with 

various metal ratios may indicate the presence of geometric and electronic effects 

leading to different properties of each alloy. As suggested in the literature, a series of 

factors such as different extents of alloying, phase separation or presence of 

inhomogeneities might influence overall geometric and electronic effects.[6], [8], 

[11], [12] Observations of such small structures are very difficult and require 

specialized techniques and a lot of work and combined strengths from specialists in 

the field of chemistry, engineering, and physics. One of the most important challenges 

is the improvement of technologies to observe nanostructures without interfering. 

Recent achievements in the field of computational chemistry provide valuable 

guidance and information to come closer to achieving success in the design of excellent 

catalysts. 
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Chapter 5 

 
5. Evaluation of supported Au-Pd nanoparticles in the 

oxidation of different substrates: trans-stilbene and 3-

pyridinemethanol. 
 

 

5.1. Introduction 

In the previous chapters, the oxidation of cinnamyl alcohol was studied under 

industrially relevant conditions where a high blank reaction is normally observed due 

to autoxidation. It was found that by using a bimetallic Au-Pd nanoalloys supported 

over titania, catalytic oxidation could dominate over the un-catalysed reaction. 

Furthermore, optimisation of the nanoparticle size and composition allowed higher 

activity and selectivity to the desired product, cinnamaldehyde, to be achieved. In this 

chapter the activity of a similar Au-Pd system has been tested in the oxidation of trans-

stilbene and in the oxidation of 3-pyridinemethanol with molecular oxygen.  

Catalytic oxidation is an extremely important process not only for the 

transformation of alcohols but also in many other processes such as the oxidation of 

alkenes.[1]–[3] Petroleum and biomass feedstocks can be converted into numerous 

types of chemicals and enriched with oxygen making them valuable intermediates and 

fine chemicals. Epoxides are especially useful intermediates on the industrial scale.[4]–

[6] One model reaction used to study the epoxidation process is the oxidation of trans-

stilbene. Various groups have studied the oxidation of trans-stilbene in many different 

ways.[7]–[10] The most common methods currently used in the industry are methods 

based on stoichiometric oxidants, analogous to the case of alcohol oxidation.[11] These 

methods are incredibly harmful for the environment, hence it is extremely important 

to develop green methods and to improve carbon efficiency.  

3-Pyridinemethanol has been chosen as an example of an extremely stable 

molecule which does not easily undergo autoxidation. Moreover, the heterocyclic 

carbonyl derivatives are used in the pharmaceutical industry as precursors of important 

drugs e.g. antiviral and antitumor.[12]  In general, the aerobic oxidation of pyridine-

derivative alcohols using Pt-group metals is challenging which has been confirmed in 

this thesis. 
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5.2. Results and discussion 
 

5.2.1. Epoxidation of trans-stilbene. Alcohol vs alkene. 

The studies presented in Chapters 3 and 4 of this thesis concerned the oxidation 

of cinnamyl alcohol under autoxidation conditions. It has been shown that Au-Pd 

nanoparticles are able to significantly limit non-selective oxidation, thus directing 

selectivity to the desired product. As mentioned, cinnamyl alcohol is a representative 

of the allylic alcohol family, which means that the allylic C-H bonds are 15 % weaker 

in comparison to standard C-H bonds and thus reactions including dehydrogenation 

occur relatively easily. In this section, the oxidation of cinnamyl alcohol will be 

compared with the oxidation of an alkene with the example of trans-stilbene, which 

is more stable from a chemical point of view (figure 5-1). 

 

 

 

 

Figure 5-1 Trans-stilbene and cinnamyl alcohol. 

 

 The double bond C=C is surrounded on two sides by phenyl groups, which means that 

there are two possible isomeric forms, cis- and trans-, although the cis-form is 

sterically hindered and is possible to obtain from the trans- form photochemically. 

Nevertheless, the desired product of trans-stilbene oxidation, trans-stilbene oxide is 

obtained only in its trans- form, even if the substrate is cis-stilbene.[13], [14] Cis-

stilbene oxide is definitely more difficult product to obtain, which is reflected in the 

relative price of each isomer: 1 g of trans- stilbene oxide costs less than £ 20 while 1 

g of cis-stilbene oxide costs around £ 100.  

Caps and co-workers carried out gold-catalysed aerobic oxidation of trans-stilbene in 

methylcyclohexane. The reaction has been performed under atmospheric pressure of 

air at 80 °C with the addition of a catalytic amount of TBHP and showed 65 % 

conversion after 24 hours with 45 % yield to trans-stilbene oxide.[15]  

While testing the Au-Pd system for this reaction, my experimental work relied heavily 

on the work of this research group. A detailed literature review on this topic can be 

found in chapter 1 in section 1.4.3. 
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5.2.1.1.  Influence of Au, Pd and Au-Pd supported nanoparticles 

on the oxidation of trans-stilbene 

The main purpose of this short section on trans-stilbene epoxidation is to 

contrast the behaviour of Au-Pd catalysts with respect to the oxidation of cinnamyl 

alcohol. The most important point is the verification of the superiority of monometallic 

catalysts over bimetallic and the evaluation of selectivity. Therefore monometallic (1 

%Au/TiO2, 1 %Pd/TiO2) and bimetallic (0.50 %Au 0.50 %Pd/TiO2) catalysts prepared by 

impregnation and sol-immobilisation methods have been tested. Molecular oxygen has 

been used as a standard oxidant during my studies on the oxidation of cinnamyl alcohol 

hence further experiments have been carried out using oxygen instead of air. The most 

suitable solvents for the epoxidation of trans-stilbene have been determined in the 

literature cited before, hence only two solvents have been tested: cyclohexane and 

methylcyclohexane.[15] The reactions have been carried out at 80 °C under 3 bar 

oxygen pressure for 24 hours. The weight of the catalyst used was 50 mg, which is 5 

times more than in the case of cinnamyl alcohol. The concentration of the reaction 

mixture was lower than for cinnamyl alcohol (0.5 mol/l) and was 0.05 mol/l 14 

microliters of TBHP was added to every reactor loading for initiation of the reaction. 

 

5.2.1.1a. Impregnation method 

Monometallic and bimetallic Au-Pd nanoparticles supported over TiO2 by 

impregnation method have been tested in cyclohexane and methylcyclohexane (figure 

5-2). It can be seen, that the choice of solvent significantly influences the reaction 

profile. The reactions carried out in cyclohexane showed moderate conversions, 

however the carbon balance was closed. Large amounts of benzaldehyde (around 60 % 

selectivity) points to the conclusion that degradation (overoxidation of the substrate) 

is the dominant process. Selectivity to trans-stilbene oxide is relatively low (just below 

20 %). Nevertheless, bimetallic 0.50 %Au 0.50 %Pd/TiO2 (Imp) showed the highest 

conversion compared with its monometallic counterparts. The same reactions carried 

out in methylcyclohexane have a completely different course. Monometallic 1 

%Au/TiO2 (Imp) showed higher conversion in methylcyclohexane than in cyclohexane 

(40 % and 20 % respectively) and also selectivity was slightly higher in 

methylcyclohexane (around 25 %). Bimetallic 0.50 %Au 0.50 %Pd/TiO2 (Imp) and 

monometallic 1 % Pd/TiO2 (Imp) showed significantly higher conversion, however 

carbon balance has been found to be relatively low (70 % and 77 % respectively). 

Interestingly, in case of these two reactions, especially in case of the reaction utilising 

monometallic 1 %Pd/TiO2 (Imp), formation of benzoic acid is significant. Clearly, 
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bimetallic and monometallic Pd Imp catalysts are more active than monometallic Au 

imp catalyst which suggests that carbon might have been lost in favour of CO2. 

 

Figure 5-2 Monometallic vs bimetallic imp catalysts in the oxidation of trans-stilbene in 
cyclohexane and methylcyclohexane. Reaction conditions: catalyst, 50 mg; oxygen pressure, 3 
bar; temperature, 80 °C; 0.05 M trans-stilbene in methylcyclohexane or cyclohexane; time, 24 
hours. Conversion ( ); Carbon balance ( ); trans-Stilbene oxide ( ); Benzaldehyde   
( ); Benzoic acid ( ); Benzil ( ) 

 

5.2.1.1b.  Sol- immobilisation method 

Analysing the data for cyclohexane shown in figure 5-2 and comparing them to 

the figure 5-3 it is clear, that the same catalysts prepared by sol-immobilisation 

method are more active. The highest conversion (60 %) and selectivity to trans-stilbene 

oxide (36 %) was obtained with the bimetallic 0.50 %Au 0.50 %Pd/ TiO2 (SIm) catalyst.  

Based on the product distribution it might be reasonable to suppose that catalytic 

process and degradation processes take place simultaneously. The reactions carried 

out in methylcyclohexane using monometallic Au and Pd (SIm) catalysts showed similar 

conversion (just below 60 %), however Pd showed slightly higher selectivity to trans-

stilbene oxide than Au (32 % and 26 %, respectively). Bimetallic 0.50 %Au 0.50 %Pd/TiO2 

(SIm) catalyst presented definitely the highest conversion (83 %), however carbon 

balance was incredibly low (65 %). Selectivity to trans-stilbene oxide was around 30 % 

and the amount of formed benzoic acid (55 % selectivity) at the expense of 

benzaldehyde (14 % selectivity) was large.  
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Figure 5-3 Monometallic vs bimetallic (SIm) catalysts in the oxidation of trans-stilbene in 
cyclohexane and methylcyclohexane. Reaction conditions: catalyst, 50 mg; oxygen pressure, 3 
bar; temperature, 80 °C; 0.05 M trans-stilbene in methylcyclohexane or cyclohexane; time, 24 
hours. Conversion ( ); Carbon balance ( ); trans-Stilbene oxide ( ); Benzaldehyde   
( ); Benzoic acid ( ); Benzil ( ) 

 

One striking conclusion is that oxygen is not a suitable oxidant for the epoxidation of 

trans-stilbene due to excessive degradation of the substrate. The results presented in 

this section coupled with the literature findings make it clear that air is a better 

oxidant as it enables to achieve high selectivity to trans-stilbene oxide using Au-Pd 

supported nanoparticles.  

Time on-line studies have been performed for trans-stilbene oxidation in cyclohexane 

using monometallic and bimetallic (SIm) catalysts (figure 5-4). In general, conversion 

increases with time for all tested catalysts. The reaction time found in the literature 

is even longer than 24 hours and can be up to 80 hours which suggests that prolonged 

reaction times leads to a correspondingly higher conversion.[15] The drop in carbon 

balance is observed mostly within the first 4 hours in all three experiments. Also, 

trends in selectivity profiles are similar. It can be noticed that selectivity to trans-

stilbene oxide slightly increases with time. Selectivity to benzaldehyde decreased with 

time in favour of benzoic acid; benzaldehyde is transformed into benzoic acid. It is 

worth noting that benzaldehyde has been formed in large amounts within the first 

hours of the experiments, which is a similar trend to the oxidation of cinnamyl alcohol. 

Moreover, the size of Au-Pd nanoparticles influenced massively the process of cinnamyl 

alcohol oxidation. In the epoxidation of trans-stilbene under oxygen, the process of 

degradation is intense and the catalytic process does not take place selectively. 

External radical initiators coupled with pure oxygen as an oxidant are likely the reasons 

of dominant degradation/overoxidation over the catalytic process. Presumably, the 

reactions using the same catalysts carried out under low pressure of air would enable 

better catalytic performance which will be investigated in the next section. 
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Figure 5-4 Time on-line profile for the oxidation of trans-stilbene. Reaction conditions: 
catalyst, 50 mg; oxygen pressure, 3 bar; temperature, 80 °C; 0.05 M trans-stilbene in 
methylcyclohexane or cyclohexane. Conversion ( ); Carbon balance ( ); trans-Stilbene 
oxide ( ); Benzaldehyde (◆ ); Benzil (); Benzoic acid ( ) 
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5.2.1.2.  Optimisation of selected factors in the oxidation of 

trans-stilbene 
 

The oxidation of trans-stilbene dissolved in methylcyclohexane carried out at 

80 °C under 1 bar air in the absence of both catalyst and radical initiator showed no 

conversion. From the literature reports presented earlier, the addition of radical 

initiator is essential for the reaction to take place, which was reflected also in my 

experiment. It has been proved that the best possible radical initiator for the 

epoxidation of trans-stilbene is TBHP. Three different amounts of TBHP have been 

tested: 7, 14 and 100 microliters. The reactions have been performed in the absence 

(uncat) and in the presence of 0.50 %Au 0.50 Pd/ TiO2 (SIm) catalyst. Keeping in mind 

that the oxidant pressure played an important role in the oxidation of cinnamyl 

alcohol, the same reactions of trans-stilbene epoxidation have been carried out also 

under higher air pressure (3 bar). These tests have surprisingly yielded much 

information (figure 5-5). In the presence of TBHP, the uncatalyzed reaction (uncat) 

demonstrated 20 % conversion under 1 bar air and around 40 % under 3 bar with around 

35 % selectivity to trans-stilbene oxide in both cases. Similar to the reaction of 

cinnamyl alcohol oxidation, large amounts of benzaldehyde (43 % selectivity) and 

benzoic acid (20 % selectivity) have been found. To investigate the ongoing process, 

the reaction of trans-stilbene in methylcyclohexane has been carried out at 80 °C 

under 3 bar nitrogen. The conversion was lower than 1 % and only traces of trans-

stilbene oxide have been detected, no presence of benzaldehyde or benzoic acid have 

been observed. These results suggest that in the epoxidation of trans-stilbene, even in 

the presence of radical initiator, oxygen is essential for the reaction to take place. 

The analysis of the selectivity profile for the catalysed reaction carried out under 1 

bar air (figure 5-5) shows that the amount of added radical initiator is irrelevant as the 

results are roughly the same with the addition of 7, 14 or 100 microliters. The only 

difference that should be noticed is the lower carbon balance (80 %) for the reaction 

where excess of TBHP has been applied. It may be caused by total oxidation processes 

being intensified due to increased amount of radical initiator. The key observation is 

that the presence of the 0.50 %Au 0.50 %Pd/TiO2 (SIm) catalyst significantly increased 

the conversion (60 %) and selectivity to the desired product (60 %) compared to the 

uncatalysed reaction, which is in excellent agreement with the results obtained in the 

oxidation of cinnamyl alcohol. Despite the differences in general mechanism of 

oxidation of trans-stilbene and cinnamyl alcohol, the way of catalyst behaviour showed 

the same pattern for these two processes. Moreover, the yield for the catalysed 

reaction carried out under 1 bar air is around 40 % which is in good agreement with 

the results obtained by Caps and co-workers (yield 45 %).[15] 
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Further analysis of the results obtained from the reactions performed under higher 

pressure of air (3 bar) revealed that even small increase in oxidant pressure massively 

influences the course of the process. It can be seen from figure 5-5 that increased 

pressure not only decreased selectivity to trans-stilbene oxide (around 40 %) but also 

significantly lowered carbon balance. As the conversion is significant (around 75 %), 

this indicates that the carbon has probably been lost due to the total combustion 

process which would be in line with the literature findings.[16] 

 

 

Figure 5-5 The influence of the amount of radical initiator, 0.50 %Au 0.50 %Pd/ TiO2 (SIm) 
catalyst and air pressure on the oxidation of trans-stilbene. Reaction conditions: catalyst, 50 
mg; air pressure, 1 or 3 bar; temperature, 80 °C; 0.05 M trans-stilbene in methylcyclohexane; 
time, 24 hours. Conversion ( ); Carbon balance ( ); trans-Stilbene oxide ( ); 
Benzaldehyde ( ); Benzoic acid ( ) 

 

Further optimisation of the reaction conditions and Au-Pd metal ratio could lead 

towards higher overall yield of the process.  
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5.2.2.  Oxidation of 3-pyridinemethanol. 

In this study, the product distribution for the oxidation of 3-pyridinemethanol 

was limited to aldehyde, 3-pyridinecarboxyaldehyde and the acid, niacin (figure 5-6). 

No other compounds have been observed during these experiments. The desired 

product in this process is the aldehyde, hence the optimisation has been conducted to 

achieve the maximum yield of 3-pyridinecarboxyaldehyde.  

 

 

 

 

 

 

 

 

 

5.2.2.1.  3-Pyridinemethanol oxidation in water  

 

5.2.2.1.1.  Conditions establishing 
 

The most desirable solvent in the design of the green chemical process is water. As 

both 3-pyridinemethanol and 3-pyridinecarboxyaldehde are soluble in water, this 

solvent was selected as first choice. Literature findings presented earlier suggested 

that the alkaline environment might be beneficial for the reaction therefore the effect 

of base and TBHP on the oxidation of 3-pyridinemethanol have been tested. From 

figure 5-7, it can be observed that the addition of TBHP does not play a role in the 

process. KOH slightly improved activity, however the aqueous alkaline environment 

promoted higher selectivity to niacin at the expense of 3-pyridinecarboxyaldehyde. 

Furthermore, the use of KOH with higher concentration (0.5 mol/l instead of 0.05 

mol/l) during the reaction carried out in the absence of the catalyst (blank reaction) 

resulted in 63 % of conversion with selectivity profile of 5 % aldehyde and 95 % niacin 

(results not shown).  The conclusion is that the reaction should be carried out in the 

absence both radical initiator and base as the aldehyde is the target molecule.  

 

Figure 5-6 Oxidation of 3-pyridine methanol to 3-pyridinecarboxyaldehyde and niacin. 
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Figure 5-7 Influence of KOH and TBHP on the oxidation of 3-pyridinemethanol using 0.5 %Au 

0.5%Pd/ TiO2 SIm: A) absence of TBHP and KOH B) presence of TBHP only C) presence of TBHP 

and 0.05 M KOH. Reaction conditions: 0.5%Au 0.5%Pd/TiO2 (SIm), 60 mg; oxygen pressure, 3 

bar; temperature, 120 °C; 0.5 M 3-pyridinemethanol in water; time, 24 h; TBHP, 14 µl. 

Conversion, ◼ ; 3-Pyrididnecarboxyaldehyde,  ; Niacin,  

 

The above data are in line with findings reported by Besson et al.[17]  who tested 1.95 

wt% Pt/C for the oxidation of benzyl alcohol, 2-pyridinemethanol and 4-

pyridinemethanol under 10 bar of air at 100 °C. It was suggested that by tuning the 

solvent of the reaction, different product distributions can be obtained. The group 

synthetized aldehydes by applying dioxane and other organic solvents. Carboxylic acids 

have been formed in water or dioxane/water solvent mixtures with the addition of 

sodium hydroxide. The researchers observed relatively easy formation of 

corresponding acids in water, however, the catalytic activity towards formation of 

aldehydes in organic solvents was low (did not exceed 30 %). The proposed mechanism 

followed the rules of classical dehydrogenation mechanism where dehydrogenation of 

the adsorbed alcohol takes place on the catalyst surface followed by the reaction of 

formed metal hydride with the adsorbed oxygen. If water is present in the system, the 

aldehyde can easily form a hydrate which leads to the carboxylic acid. If there is a 

limited amount of water in the system, usually the aldehyde is yielded as the hydration 

and further dehydrogenation of an aromatic aldehyde is low due to conjugation of the 

carbonyl group. In general, organic solvents seem to prevent formation of the geminal 

diol and subsequent dehydrogenation to the acid. Also, high temperature might play a 

role in preferential formation of aldehyde in organics by the rapid removal of co-

product water.  
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5.2.2.1.2. Base free, green reaction. Monometallic and 

bimetallic catalysts. 

The exclusion of base and the lack of any additives such as radical initiators raised 

the possibility of developing a safer and greener process for the production of 

aldehydes. Moreover, the use of AuPd bimetallic catalysts could provide a highly 

efficient process. Although it is widely known that bimetallic Au-Pd catalysts are 

usually more active than their monometallic counterparts for oxidation reactions, 

mono- and bimetallic systems of Au, Pd and additionally Pt were tested to confirm this 

for the oxidation of 3-pyridinemethanol. It can be seen from table 5-1 that 

monometallic SIm catalysts are practically inactive for the studied reaction. Bimetallic 

Au-Pd and Au-Pt showed moderate conversion, 26 and 15 % respectively. The amounts 

of aldehyde and acid formed were roughly similar for both systems with selectivities 

of around 50 % to aldehyde and acid. The question arose whether acid is formed due 

to the catalytic pathway or rather as non-selective over oxidation of the aldehyde. To 

determine the mechanism, a blank reaction of 3-pyridinecarboxyaldehyde oxidation 

was performed under standard conditions. HPLC analysis showed only trace amounts 

of acid hence it is clear that the presence of the catalyst is necessary to further oxidise 

3-pyridinecarboxyaldehyde to niacin.  

 
Table 5-1 Oxidation of 3-pyridinemethanol using monometallic and bimetallic catalysts. 

Catalyst [SIm] Conversion [%] C bal [%] 
Selectivity [%] 

Aldehyde Acid 

1 %Pt/TiO2 1 102 88* 12* 

1 %Au/TiO2 4 100 78* 22* 

1 %Pd/TiO2 2 105 68* 32* 

0.5 %Au 0.5 %Pt/TiO2 15 101 49 51 

0.5 %Au 0.5 %Pd/TiO2 26 107 41 59 

Reaction conditions: Sim catalysts, 60 mg; oxygen pressure, 3 bar; temperature, 120 °C; 0.5 M 

3-pyridinemethanol in water; time, 24 h. 

*The results are not fully reliable due to low conversion being within experimental error. 

 

 

The results discussed in the previous chapters on the oxidation of cinnamyl alcohol 

proved that optimisation of the catalyst metal ratio is one of the key factors towards 

achieving maximum yield of the desired product. Therefore, three batches of Sim 

prepared 1 wt% catalysts with the following Au:Pd metal ratios have been tested: 

0.25:0.75 /TiO2, 0.5:0.5/TiO2, and 0.75:0.25/TiO2 (figure 5-8). The results revealed 

significant fluctuations between 3 batches of the same catalyst in every case, 

especially with regard to selectivity. Therefore, all catalysts have been retested with 

the obtained results again varying significantly (figure 5-9). 
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Figure 5-8 Reproducibility of SIm catalysts. Reaction conditions: SIm catalysts, 60 mg; oxygen 

pressure, 3 bar; temperature, 120 °C; 0.5 M 3-pyridinemethanol in water; time, 24 h. 

Conversion,  ; Carbon balance,  ; 3-Pyrididnecarboxyaldehyde,  ; Niacin,        

 

 

 
 
Figure 5-9 Repeated reproducibility of SIm catalysts. Reaction conditions: SIm catalysts, 60 
mg; oxygen pressure, 3 bar; temperature, 120 °C; 0.5 M 3-pyridinemethanol in water; time, 
24 h. Conversion,  ; Carbon balance,  ; 3-Pyrididnecarboxyaldehyde,  ; Niacin,        

 

The above phenomenon was explored further by analysis of the post-reaction mixture 

for leaching using MP-AES (table 5-2). Surprisingly Au was found to be extremely stable, 

contrary to Pd which leached more than 80 %. A popular method to reduce leaching is 

thermal treatment of the catalyst.[18] Such attempts were made in this case with 0.5 

%Au 0.5 %Pd/ TiO2 SIm catalyst being calcined at 200 °C for 2 hours in static air. The 
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leaching in this case was lowered by only 5 % under identical reaction conditions; 

calcination did not greatly influence the conversion which was 12 %. Due to the 

possibility that the temperature was too low, another catalyst 0.75 %Au 0.25%Pd/ TiO2 

SIm was calcined at 600 °C for 2 hours in static air. In this case leaching was lowered 

from 92 % to 61 %, however this is still unsatisfactory. The conversion was 13 % which 

is comparable with the results obtained for standard reactions. In the case of 1 %Pd/ 

TiO2 Sim, the leaching observed was 100 %. Despite this, there was no conversion 

detected hence it is clear that there is no homogeneous catalysis contribution from 

Pd. 

 
Table 5-2 Determination of Pd leaching for SIm catalysts. 

Catalyst  Treatment 
Leaching [%] 

Pd 

0.25 %Au 0.75%Pd/ TiO2 - 82 

0.50 %Au 0.50%Pd/ TiO2 - 90 

 calcination: 200 °C 85 

0.75 %Au 0.25%Pd/ TiO2 - 92 

 0.75 %Au 0.25%Pd/ TiO2 calcination: 600 °C 61 

1 %Pd/ TiO2 - 100 

 

Further attempts at forming a stable catalyst were conducted by variation of the 

catalyst preparation methods described in experimental sections 2.4.2 and 2.4.3 in 

chapter 2. 0.5 %Au 0.5 %Pd/ TiO2 catalysts were prepared by the standard impregnation 

(imp) and modified impregnation (mod imp) and were tested under standard conditions 

(table 5-3). The imp catalyst was found to be inactive and the mod imp catalyst gave 

15 % conversion. In case of both catalysts, heavy Pd leaching of 67 % was observed; Au 

was stable. SEM analysis of the imp catalyst (figure 5-10 A) revealed presence of large 

nanoclusters (ca. 100 nm) which could explain its inactivity. Interestingly, 

nanoparticles obtained by modified impregnation method (figure 5-10 B) are quite well 

dispersed (1-6 nm) however showed lower activity (15 %) compared to the catalyst 

prepared by sol-immobilisation method (26 % average). If the leaching was minimal it 

would suggest that not only size but also morphology influences the catalyst activity, 

however it cannot be definitely stated, as the systems are not stable enough.  

 
Table 5-3 Au-Pd nanoparticles supported on TiO2 using different methods. 

Method 
Conversion 

[%] 
C bal [%] ALD [%] Acid [%] Pd leaching [%] 

Standard impregnation Inactive 67 

Modified impregnation 15 107 27 73 67 
Reaction conditions: 0.5 %Au 0.5 %Pd/ TiO2 SIm, 60 mg; oxygen pressure, 3 bar; temperature, 

120°C; 0.5 M 3-pyridinemethanol in water; time, 24 h. 
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Figure 5-10 BSD-SEM images:  A) 0.5 %Au 0.5 %Pd/ TiO2 prepared by standard impregnation 
method; B) 0.5 %Au 0.5 %Pd/ TiO2 prepared by modified impregnation method 

 

5.2.2.2. 3-Pyridinemethanol oxidation in toluene. 
 

5.2.2.2. 1. Conditions establishing 

In the previous section, the Au-Pd system was found to be unstable in water 

under the reaction conditions.  Thermal treatment of the catalysts and variation of 

preparation method did not prevent heavy Pd leaching, with only slight improvements 

observed. Therefore, to optimise the effectiveness of Au-Pd supported nanoparticles 

in the oxidation of 3-pyridinemethanol and to minimise leaching, the solvent was 

switched from water to toluene. Toluene is generally regarded as one of the safer 

organic solvents (is still problematic due to its flammability but is not excessively 

hazardous)[19] and can be recovered after the reaction and reused. Therefore, it can 

be stated that the process remained relatively green even though the solvent was not 

water. Similar initial experiments were conducted in which, as in case of water as a 

solvent, the addition of base and/or TBHP was not beneficial to this process. The major 

advantage of performing the reaction in toluene is the ability to obtain 100 % 

selectivity to the desired product, 3-pyridinecarboxyaldehyde.  

 

5.2.2.2.2. Support comparison study 

Support studies for the oxidation of 3-pyridinemethanol were carried out in a 

similar way as that for the previously investigated oxidation of cinnamyl alcohol 

(chapter 3). Several supports with different surface areas have been tested using the 

Au-Pd system with 50:50 metal ratio deposited by the sol-immobilisation method. The 

supports studied were carbon (Vulcan XC-72R, Cabot), meso-alumina, meso-silica (SBA-

B A 
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15), alumina grafted SBA-15 and titanium dioxide. The reactions were conducted at 

140 °C for 24 hours under oxygen (3 bar). 

 

Figure 5-11 Influence of support on the oxidation 3-pyridinemethanol using Au-Pd (50:50 wt.) 
system. Reaction conditions: 5 ml 0.5 M 3-pyridinemethanol in toluene; catalyst mass, 60 mg; 
oxygen pressure 3 bar; reaction time 24 h; temperature, 140 °C. Conversion,  ; Carbon 
balance,   

 

It can be seen from figure 5-11 that the lowest conversion was achieved when carbon 

was employed as a support. Other supports have allowed for reasonable catalytic 

activity. However, in case of SBA-15 the carbon balance was low (92 %) compared to 

the other systems tested (ca. 97-104 %). There are two possible explanations of this 

fact. The first one is an experimental error as the reactions have been carried out only 

twice and the presented result is an average for each reaction. The experimental error 

has been calculated for the oxidation of 3-pyridinemethanol in toluene as a standard 

deviation and was 5 %. The other reason might be related to the structure of SBA-15 

and its high surface area (700 m2/g compared to 238 m2/g for carbon, 35-65 m2/g for 

TiO2 and 224 m2/g for alumina grafted SBA-15) as the substrate might have interacted 

with the support and therefore be adsorbed.  

A particularly noticeable difference in activity was observed between carbon and 

titania. The conversion for titania was the highest within the tested range of supports 

(29 %) while for carbon the activity is barely detectable (3 %). This particular type of 

carbon (Vulcan XC-72R) contains a mainly mesoporous structure but also contains 

around 30 % micropores. For this reason, it is not recommended for electrocatalysts 

due to sinking of nanoparticles into micropores which hinders accessibility of 

reactants.[20] Poor accessibility seemed not to be a case in the oxidation of cinnamyl 

alcohol therefore it should not be the case in the oxidation of 3-pyridinemethanol 
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either as the sizes of these molecules are fairly comparable (Van der Waals radius of 

nitrogen is 155 pm and C-C bond in benzene ring are around 140 pm hence nitrogen 

should not be a steric hindrance).  

The cause of the different behaviour of Au-Pd supported over titania and carbon might 

be a different metal-support interaction and morphology of the nanoparticle. It is well 

known that Au-Pd nanoparticles form ideal spheres on carbon while the same Au-Pd 

nanoparticles on titania form rather elongated shapes.[21] Detailed studies conducted 

by Xu et al.[22] confirmed that freshly prepared Au-Pd clusters were spherical, 

however immediately after immobilisation on TiO2 their shape became elongated 

which indicates a strong metal-support interaction. This proves that the support plays 

an enormous role in nanoparticle behaviour during chemical processes. The resulting 

conclusion is that the support might influence the electronic properties of the Au-Pd 

clusters which points to the possibility of different active sites presence. The 

discussion about presumably different active site will be presented in further part of 

this chapter. 

In conclusion, TiO2 has been chosen as a suitable support for further studies as due to 

the fairly high conversion achieved. This allows reliable comparison of catalysts for the 

oxidation of 3-pyridinemethanol and furthermore allows for comparisons to be made 

to the use of this system with the previously studied cinnamyl alcohol oxidation. 

 

5.2.2.2.3. Influence of temperature on the reaction 
 

Temperature studies for 3-pyridinemethanol in toluene were performed using 

0.50 %Au 0.50 %Pd/TiO2 SIm catalyst in the standard set up. A Radleys starfish reactor 

was pressurised with oxygen (3 bar) and the reaction time was 24 h. For safety reasons 

associated with reactor design and operating with the use of organic solvent, the 

tested temperature range was limited to a maximum of 140 °C. The results have been 

presented in figure 5-12 from which it can be seen the general trend of increasing 

conversion with increasing temperature.  

Taking into consideration safety reasons and the results of the temperature studies, it 

seems reasonable to be conducting a reaction at the level of 30 % conversion, i.e. at a 

temperature of 140 °C. The reaction carried out in the absence of a catalyst at 140 °C 

under oxygen (3 bar) gave no conversion; the substrate was stable for 24 hours. 
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Figure 5-12 Influence of temperature on the oxidation of 3-pyridinemethanol. Conditions: 5 
ml 0.5 M 3-pyridinemethanol in toluene; 0.50 %Au 0.50 %Pd/TiO2 SIm catalyst mass, 60 mg; 
oxygen pressure 3 bar; reaction time 24 h. Conversion,  ; Carbon balance,  

 

 

5.2.2.2.4. Catalyst mass studies 
 

The results of the influence of the catalyst amount on the oxidation of 3-

pyridinemethanol have been presented in figure 5-13. It is clear, that an increase in 

catalyst mass increases the overall conversion. In general, the trend line suggest linear 

increase. Discrepancies from linear trend appeared when 80 mg of catalyst was tested 

which was indicated by slightly lowered carbon balance (93 %). However, taking into 

consideration the experimental error being around 5 %, it can be assumed that only 

minor diffusion limitation occurred. The carbon balance for the tested catalyst in 

amount of 100 mg was significantly low (76 %). Here, the reaction has presumably 

become mass transport limited and therefore is not operating in the kinetic regime. 

To ensure a lack of mass transport limitations, relatively high conversion and high 

carbon balance, the amount of 60 mg of catalyst has been chosen for further studies.  
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Figure 5-13 Mass study using 0.50 %Au 0.50 %Pd/ TiO2 SIm. Reaction conditions: oxygen 

pressure, 3 bar; temperature, 140°C; 0.5 M 3-pyridinemethanol in toluene; time, 24 h. 

Conversion, ◆; Carbon balance .                   

 

The investigation of the effect of substrate to metal ratio has been carried out using 

0.50 %Au 0.50 %Pd/TiO2 (SIm) catalyst. As is presented in figures 5-13 and 5-14, the 

conversion increases with decreasing s:m (an equivalent to the increase in the amount 

of catalyst). The relationship is not a linear dependence that can be caused by not 

closed carbon balance due to diffusion limitations (presented in figure 5-13).  

 

Figure 5-14 The effect of substrate metal ratio on the conversion of 3-pyridinemethanol. 
Reaction conditions Reaction conditions: oxygen pressure, 3 bar; temperature, 140°C; 0.5 M 
3-pyridinemethanol in toluene; time, 24 h. 
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5.2.2.2.5. Time on-line 

Using the optimised conditions, a time on-line study was conducted for the 

oxidation of 3-pyridinemethanol. The results are presented in figure 5-15 below: 

 

Figure 5-15 Time-online in the oxidation of 3-pyridinemethanol. Reaction conditions: oxygen 
pressure, 3 bar; temperature, 140°C; 0.5 M 3-pyridinemethanol in toluene; time, 24 h; 60 mg 
catalyst 0.50 %Au 0.50 %Pd/TiO2 SIm. 

Interestingly, one can observe relatively high conversion (8 %) within the first 30 

minutes of the reaction. After this time the reaction progresses, however the increase 

in conversion is slow. To verify whether longer reaction time would allow for higher 

conversion, the process was conducted for 96 hours, and samples have been withdrawn 

every 24 hours. The results of further tests carried out over longer time periods 

revealed that no great increase in conversion occurred.  

 

 

5.2.2.2.6. Influence of metal ratio on the oxidation of 3-

pyridinemethanol. 
 

According to the results obtained in earlier studies, the metal ratio comparison was 

performed (figure 5-16). It is clear from figure 5-16 that monometallic catalysts are 

active, however they are less active than the bimetallic analogues which indicates a 

synergistic effect. A physical mixture of monometallic catalysts (30 mg 1 %Au/TiO2+ 30 

mg 1 %Pd/TiO2) showed 19 % conversion which is comparable with monometallic 1 

%Pd/TiO2 (16%) and 1 %Au/TiO2 (13 %). The most active catalyst, 0.60 %Au 0.40 %Pd/ 

TiO2 SIm resulted in 42 % conversion. The other tested bimetallic catalysts, 0.85 %Au 

0.15 %Pd/ TiO2, 0.75 %Au 0.25 %Pd/ TiO2 and 0.50 %Au 0.50 %Pd/TiO2 SIm showed 
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similar conversions around 30 %. Pd-rich 0.25 %Au 0.75 %Pd/ TiO2 SIm has been found 

less active than Au-rich bimetallic catalysts. Although differences in activity of 

bimetallic catalysts have occurred, they are not as significant as in the case of 

oxidation of cinnamyl alcohol. Also, a different metal ratio has been found to be 

optimal for the oxidation of 3-pyridinemethanol (60 Au:40 Pd) compared to the 

oxidation of cinnamyl alcohol (75 Au:25 Pd).  

 

 

 
Figure 5-16 Metal ratio study of SIm catalysts. Reaction conditions: SIm catalysts, 60 mg; 
oxygen pressure, 3 bar; temperature, 140 °C; 0.5 M 3-pyridinemethanol in toluene; time, 24 
h. Conversion, ; carbon balance, . 

 

The possible reason of rather consistent conversion for all bimetallic catalysts might 

presumably be poisoning, which limits the catalytic activity of different alloys to a 

similar value. Nevertheless, bimetallic Au-Pd catalysts showed higher activity than 

their monometallic counterparts even in such a challenging process as oxidation of 3-

pyridinemethanol. 

The possibility of catalyst poisoning by the product, 3-pyridinecarboxyaldehyde, 

causing catalyst deactivation has been subjected for further investigation. To verify 

this hypothesis, 30 % (0.054 g/ 5ml) aldehyde has been added to the starting reaction 

solution and the reaction has been performed in standard conditions (oxygen pressure 

3 bar; reaction time 24 h; temperature, 140 °C) using 60 mg 0.75 %Au 0.25 %Pd/TiO2 

SIm catalyst. The results of this experiment showed that the addition of the product 

had no influence on the reaction as the conversion was 29 % which is the same as for 

the standard reaction at 140 °C. Indeed, the poisonous effect of the product on the 

catalyst seemed to be excluded, however it cannot be completely ruled out. 

Hypothetically, small amounts of Pd present in the experimental set up could interact 
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with small amount of product or even substrate (especially at 140 °C) which resulted 

in its poisoning hence further addition of larger amount of product would not make 

any difference.   

The problem of Pt-group metals being poisoned by N-containing compounds is 

widely known, however the nature of the N- Pd interactions and the exact deactivation 

pathways in heterogeneous catalysts have not been clearly determined. Arrigo et 

al.[23] investigated the nature of the N-Pd interaction in nitrogen-doped carbon 

nanotube catalysts by a combined theoretical and experimental study. Their work was 

inspired by the fact that Pd has high affinity to form σ or π bonds with carbon and also 

with N-containing ligands enabling formation of organometallic complexes (with a 

variety of Pd(0) and Pd (II) species). In their carbon nanotubes, N species have been 

found in pyridine-like configuration with high thermal stability. The researchers used 

these N-doped carbon nanotubes as a support for Pd catalysts prepared by 

impregnation method. The result of their work stated that the interaction of pyridine 

N with Pd can be described as a covalent chemical bond with partial ionic character. 

Despite the fact that the quoted work was aimed at presenting the modification of 

carbon as an option for tuning selectivity by site-blocking strategies, it also shows the 

versatility and strength of the N-Pd interaction/ bond.  

Prati and co-workers[24] investigated the role of N-heteroatom location in the activity 

of Pd-based catalysts for alcohol oxidation. The researchers reported that N groups in 

a solution or weakly bound to the support in the form of pyridine is detrimental to the 

catalytic activity and stability. However, simply by chemically/ covalently bonding of 

N moieties to the support structure (not to the Pd nanoparticles) improved catalytic 

performance by limiting the Pd leaching and coarsening of metal particles.  

Besson in his extensive research on the oxidation of pyridine derivative alcohols using 

Bi-Pt system, also suggested complexation of N atoms with the catalyst as a major 

problem and challenge in this process.[12], [25]  

In conclusion, the results of the presented work on the oxidation of 3-

pyridinemethanol, in the context of several literature reports[12], [23], [25], lead to 

the hypothesis about the possibility of forming complex compounds between 3-

pyridinemethanol/3-pyridinecarboxyaldehyde and Pd in the catalyst. Assuming, that 

there is some kind of interaction formed at elevated temperature between the pyridine 

N and Pd, it would explain the limitation of the conversion to 30 % in almost each 

performed experiment. Keeping in mind that water (even in small amounts) caused 

heavy Pd leaching it might suggest further hydration of complexes and hence 

deactivation of the catalyst. However, without further research, this is only a timid 

hypothesis that may be clarified further using diffuse-reflectance FTIR spectroscopy 
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(DRIFTS) with pyridine. This experiment would allow to determine whether specific 

active centres have been modified during the reaction.  

 

5.2.2.2.7. Leaching 

Keeping in mind that the studied reaction is extremely demanding due to 

possible interaction of pyridine N atoms with Pd in the catalyst, the metal leaching has 

been checked. The leaching of catalysts with different metal ratios has been evaluated 

using ICP MS technique and the results have been presented in table 5-4.  

 
Table 5-4 Leaching of SIm catalysts.  

Catalyst 
Leaching [%] 

Au Pd 

0.25 %Au 0.75%Pd/ TiO2 0.1 1.9 

0.50 %Au 0.50%Pd/ TiO2 <0.1 2.1 

0.75 %Au 0.25%Pd/ TiO2 <0.1 2.4 

Reaction conditions: SIm catalysts, 60 mg; oxygen pressure, 3 bar; temperature, 140 °C; 0.5 

M 3-pyridinemethanol in toluene; time, 24 h. 

 

The change of solvent from water to toluene significantly limited Pd leaching (from 

around 80 % to around 2 %), although this is still too high to meet industrial 

requirements. The loss of Au is again minimal (less than 0.1 %), hence it can be stated 

that Au leaching is negligible. The amount of leached Pd was only slightly influenced 

by the metal ratio of a catalyst (table 5-4).  

The plateau in conversion occurred after 24 hours hence the samples have been 

analysed for metal leaching after 48 and 96 hours using 0.50 %Au 0.50 %Pd/TiO2. The 

results revealed moderate Pd leaching after 48 hours (2.37 %) and quite heavy leaching 

after 96 hours (2.7-3.00 %); Au remained stable at all times. Unfortunately, progressing 

with time Pd leaching is a serious problem and might be a main reason of catalyst 

deactivation. Observed leaching can be a result of complexation or adsorption, 

however further studies are needed to fully determine the nature of these 

interactions.  

 Thermal treatments (calcination at 200, 400, and 600 °C under static air) were 

applied in an attempt to improve the stability of the 0.75 %Au 0.25 %Pd/TiO2 SIm 

catalyst (table 5-5). Unfortunately, calcination at any of the tested temperatures did 

not stop Pd leaching. Moreover, the treated catalysts showed unusual results in terms 

of activity where the catalysts calcined at 200 and 400 °C have slightly higher 

conversion than the untreated catalyst and the catalyst calcined at 600 °C is essentially 

the same as the standard catalyst. It can be noticed that carbon balance varies and 

significantly influences the conversion and when the experimental error is taken into 
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consideration (5 %), one can assume that the results for all compared catalysts are 

roughly similar. Another hypothesis is that the reaction depends on the size of 

nanoparticles, however to a small extent. SEM analysis confirmed the occurrence of 

particle growth (figure 5-17). It is clear from the graphs in figure 5-17 that as 

calcination temperature increases, larger clusters are obtained. Calcination at 200 °C 

did not greatly influence the size of nanoparticles compared to the uncalcined sample 

with the majority of particles being approximately 1.9-2.8 nm. Calcination at 400 °C 

clearly influenced the size of nanoparticles as the majority of clusters were 

approximately 2.8- 4.6 nm. As expected, calcination at 600 °C caused an even larger 

agglomeration as most particles were in the range of 5.2- 8.0 nm. Also, higher 

calcination temperatures caused larger range of size distribution than in catalyst 

calcined at lower temperature (200 °C). 

 
Table 5-5 Influence of calcination on Pd leaching for 0.75 %Au 0.25 %Pd/ TiO2 SIm catalyst. 

Catalyst 
Conversion [%] C bal [%] Pd leaching [%] 

    

standard 30 97 2.4 

200 °C 38 96 2.3 

400 °C 35 97 2.3 

600 °C 29 98 2.2 

 
Reaction conditions: 0.75 %Au 0.25 %Pd/ TiO2 SIm, 60 mg; oxygen pressure, 3 bar; temperature, 

150°C; 0.5 M 3-pyridinemethanol in toluene; time, 24 h. Calcination: static air; time, 2 h. 
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Figure 5-17 SEM analysis of 0.75 %Au 0.25 %Pd/TiO2 SIm after heat treatment. 
Conditions: temperature: 200, 400 and 600 °C; static air; time: 2h. 

 

The aim of this work was to evaluate and contrast the same Au-Pd system as a 

heterogeneous catalyst for various substrates with different chemical nature. Intrigued 

by the fact that calcination of catalysts did not influence conversions in the oxidation 

of 3-pyridinemethanol massively, the same catalysts were tested in the oxidation of 

cinnamyl alcohol. From figure 5-18 it is clear, that in the case of cinnamyl alcohol, 

calcination caused a significant drop in conversion. The catalyst calcined at 200 °C had 
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similar activity to the standard fresh catalyst, however after calcination at 400 and 

600 °C the activity and selectivity to the desired product decreased dramatically. This 

is particularly evident for 600 °C where the amount of benzaldehyde (product formed 

as a result of autoxidation) increased significantly. 

 

 
Figure 5-18 The influence of calcination on the activity of 0.75 %Au 0.25 %Pd/TiO2 SIm in the 
oxidation of cinnamyl alcohol. Conditions: Radley reactor; temperature, 120 °C; O2 pressure, 
3 bar; catalyst mass, 10 mg; 5 ml 0.5 M cinnamyl alcohol in toluene; time, 1h. Conversion (); 
Carbon balance (); Cinnamaldehyde ( ); Benzaldehyde ( ); 3-Phenyl-1-propanol 
( ); Methylstyrene ( ) 

 

Many of the literature reports mentioned and cited repeatedly in this thesis 

have proven the existence of a synergistic effect between Au and Pd. In addition to 

purely experimental work, many reports have been recently published based on 

computational chemistry and theoretical works supported by experiments with the use 

of modern techniques attempting to explain this challenging phenomenon.[26]–[29] It 

is tempting to put forward a hypothesis that the active sites in the oxidation of 

cinnamyl alcohol and 3-pyridinemethanol are different. In the case of cinnamyl alcohol 

oxidation it has been proven that the Au-Pd synergistic effect plays an enormous role 

in the process. This synergy is extremely sensitive to both metal ratio and preparation 

method. It has been also confirmed by the experiment with the calcined catalysts that 

agglomeration dramatically lowered catalytic activity for cinnamyl alcohol oxidation. 

In case of oxidation of 3-pyridinemethanol, calcination and hence changes in particles 

size and morphology influenced the catalytic activity only slightly. Based on these 

observations and contrasting the two different behaviours it may suggest that active 

sites for the oxidation of 3-pyridinemethanol are rather placed on the metal-support 

interface than on the Au-Pd alloy itself. It would also explain extremely low activity 
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of Au-Pd system supported over carbon (section 5.2.2.2.2). Another explanation of the 

difference between these two studied processes might be that the oxidation of 

cinnamyl alcohol is more sensitive to the nanoparticles size and relies on a much 

smaller range than the oxidation of 3-pyridinemethanol.[30] To verify these 

hypotheses, further research would have to be done using advanced technology (e.g. 

operando spectroscopic techniques) and perhaps even to be supported by 

computational chemistry.[31]  

 

 

5.2.2.2.8. Determination of pre-leaching  
 

Following the literature reports regarding the interaction of N atom located in 

the alcohol with Pt group metal on the catalyst[12], it seems reasonable to suppose 

that this could be  the reason of Pd leaching observed in this study. To verify how 

strong this interaction might be, the catalyst has been added to the stock solution of 

3-pyridinemethanol in toluene and kept under stirring at room temperature for 2 hours. 

In the next step the catalyst was filtered off and the solution has been submitted for 

ICP. The results presented in table 5-6 revealed that Pd leaching occurred almost 

instantly, even at room temperature. In case of both tested catalysts, 0.50 %Au 

0.50%Pd/ TiO2 SIm and 0.75 %Au 0.25%Pd/ TiO2 SIm, pre-leached Pd was approximately 

0.12-0.22 % which shows that the substrate was able to strongly interact with metal, 

causing it to leach. The solvent has been excluded as a reason of leaching due to the 

fact, that no leaching has been observed in the oxidation of cinnamyl alcohol in toluene 

using the same catalyst.  

 

Table 5-6 Determining of pre-leaching in the oxidation of 3-pyridinemethanol. 

Catalyst 
Pd leaching [%] 

pre-leachinga standard reactionb 

0.50 %Au 0.50%Pd/ TiO2 0.12 2.1 

0.75 %Au 0.25%Pd/ TiO2 0.22 2.4 
a Pre-leaching conditions: catalyst mass, 60 mg; room temperature; 0.5 M 3-pyridinemethanol 

in toluene; time, 2 h. 
b Reaction conditions: catalyst mass, 60 mg; oxygen pressure, 3 bar; temperature, 140°C; 0.5 

M 3-pyridinemethanol in toluene; time, 24 h.  

 

 

 

Interesting results were provided by an experiment carried out with a small addition 

of water. In the case of the oxidation of cinnamyl alcohol, the addition of 1 ml of water 

to 5 ml of the reaction mixture in toluene significantly improved the efficiency of the 

process. However, when 1 ml of water was added to the 3-pyridienemethanol mixture 

in toluene, the complete opposite effect occurred. First of all, there was a clear 
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separation of the aqueous and organic phases, which was emphasized by the change in 

colour of the aqueous phase to yellow. Analysis by MP-AES of the yellow aqueous phase 

revealed the presence of Pd equivalent to 60 % of that in the catalyst used. Similar 

observations of yellow tinted mixture caused by leached Pt have been made by Besson 

and co-workers who studied the oxidation of 2-pyridienemethanol and 4-

pyridinemethanol in various solvents[12], [17] Therefore it can be stated that even a 

small addition of water caused heavy Pd leaching which practically prevented the 

progress of the reaction. Comparison of this experiment for two different processes 

using the same Au-Pd catalyst suggests that 3-pyridinemethanol in the presence of 

water strongly interacts with Pd and, as a result, causes a particularly heavy leaching. 

The other reason might be higher temperature applied in the oxidation of 3-

pyrididnemethanol (140 °C) than in the oxidation of cinnamyl alcohol which affected 

metal-support interaction and intensified Pd leaching. 

In the earlier section (5.2.2.1), leached Pd was shown to be inactive when 

water was used as a solvent. To determine whether homogeneous catalysis took place 

in organic solvent, a hot filtration was carried out. The catalyst was filtered off after 

2 hours of reaction and the solution was further oxidised for 22 h. The leaching was 

checked for the control reaction and for the supernatant (table 5-7). Taking into 

consideration 5 % experimental error, the conversion values for all reactions are in 

close proximity, hence it can be stated that leached Pd is inactive. No further reaction 

is observed after removal of the solid catalyst. 

 
Table 5-7 Investigation of homogeneous catalysis. 

  
Conversion [%] C bal [%] 

Leaching 
[%]   

Control reaction 11 103 2 

After filtration (2h) 9  97  

After filtration (24) 13 98 3 

Reaction conditions: 1 %Pd/ TiO2 SIm, 60 mg; oxygen pressure, 3 bar; temperature, 140°C; 0.5 

M 3-pyridinemethanol in water; time, 24 h. 

 

5.2.2.2.9. Reusability studies in the oxidation of 3-

pyridinemethanol  
 

Reusability studies of the 0.50 %Au 0.50 %Pd/ TiO2 SIm catalyst revealed gradual 

mild deactivation up to 5 reuses and massive drop after 6th use (table 5-8). Pd leaching 

has been monitored up to 6 cycles. ICP analysis revealed that Pd leaching remained at 

the same level after 3 reuses (around 2 %) and decreased after 5th (0.5%) and 6th cycle 
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(0.8 %). Gradual Pd leaching coupled with the observed particle growth (presented in 

figure 5-19) is presumably the reason of deactivation.  

 

 

Table 5-8 Reusability of 0.50 %Au 0.50 %Pd/ TiO2 SIm catalyst.  

 

 
Reaction conditions: 0.50 %Au 0.50 %Pd/ TiO2 SIm, 60 mg; oxygen pressure, 3 bar; temperature, 

140°C; 0.5 M 3-pyridinemethanol in toluene; time, 24 h. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Run Conversion [%] 
C bal 
[%] 
  

Pd leaching 
[%] 

  

1 29 96 2.1 

2 23 98 2.5 

3 22 98 2.6 

4 21 99 n/a 

5 18 96 0.5 

6 11 104 0.8 
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Figure 5-19 SEM images of 0.50 %Au 0.50 %Pd/ TiO2 SIm catalyst after 5th and 6th cycle. 

 

0.75 %Au 0.25 %Pd/ TiO2 SIm has previously been found to be more stable than 0.5 %Au 

0.5 %Pd/ TiO2 SIm in case of cinnamyl alcohol oxidation. Therefore, reusability studies 

have been carried out for this catalyst in the oxidation of 3-pyridinemethanol (table 

5-9). Interestingly, Pd leaching occurred only during the first cycle and decreased with 

every use. Therefore, the catalyst deactivation may be linked with Pd leaching. Similar 
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to the oxidation of cinnamyl alcohol, 0.75 %Au 0.25 %Pd/TiO2 is more stable than 0.50 

%Au 0.50 %Pd/TiO2. Once again, no leaching of Au was observed.  

 
Table 5-9 Reusability studies using 0.75 %Au 0.25 %Pd/ TiO2 SIm 

Run 
Conversion 

[%] 
C bal 
[%] 

Pd leaching 
[%] 

     

1 30 97 2.5 

2 30 100 0.9 

3 33 101 0.0 
*Au leaching: < 0.09 % 
Reaction conditions: 0.75 %Au 0.25 %Pd/ TiO2 SIm, 60 mg; oxygen pressure, 3 bar; temperature, 

150°C; 0.5 M 3-pyridinemethanol in toluene; time, 24 h. 

 

 

5.2.2.2.10. Different solvents  
 

Besson and co-workers[12], [17] tested a 1.95 wt.% Pt/C catalyst in the 

oxidation of substituted aromatic alcohols with air under mild pressure (<20 bar) at 

100 °C. The researchers focused their attention on the influence of solvents on the 

reaction. In case of benzyl alcohol and substituted benzyl alcohols (with electron 

donating and withdrawing groups), the reactions carried out in dioxane were highly 

selective, producing aldehydes only with almost total conversion (ca. 99 %). When 

dioxane was diluted with water (70/30 vol.% dioxane/water) and used as a solvent, 

the reaction rate increased significantly up to the total conversion of alcohol. The 

selectivity to benzaldehyde remained the same as for the pure dioxane. In a 50/50 

vol.% mixture, benzoic acid was observed as the only product and addition of base 

caused even more rapid oxidation to benzaldehyde which was immediately oxidised 

further to benzoic acid. The same pattern was observed for other substituted benzyl 

alcohols with some minor differences for some compounds. The researchers tested in 

similar way the oxidation of 2-pyridinemethanol and 4-pyridinemethanol. The results 

revealed that conversions were lower compared to the oxidation of substituted benzyl 

alcohols. The reactions carried out in organic solvents such as dioxane, toluene, 

acetonitrile, THF, monoglyme and dichloromethane had low conversions, not 

exceeding 30 %. A slightly higher conversion, 46 %, was obtained in the oxidation of 4-

pyridinemethanol carried out in THF. Addition of water to dioxane prevented the 

reaction to take place. Interestingly, the reactions performed in water only had high 

conversions (isolated yields about 80 %) to the corresponding acids which were the only 

products. The experiments carried out in water (section 5.2.2.1) yielded mostly niacin 

which is in line with reported observations by Besson.  Substituted pyridinemethanol 

compounds (4-methoxy-3,5-dimethyl-2-pyridinemethanol and 3-hydroxy-6-methyl-2-
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pyridinemethanol) showed behaviour similar to benzyl alcohols: relatively high 

conversions have been obtained in organic solvents; addition of water to dioxane 

increased the reaction rates; and corresponding acids have been obtained in pure 

water as the only products.[17] 

 The results presented in this thesis for the oxidation of 3-pyridinemethanol 

using Au-Pd/ TiO2 catalysts are in line with Besson’s work on the oxidation of 

pyridinemethanol derivatives using Pt-Bi system (table 5-10).[17]  It has been shown 

that the solvent plays an important role in this process. Therefore, various solvents 

have been tested here in the oxidation of 3-pyridinemethanol. Besson et al.[17] 

reported dioxane as a suitable solvent for the oxidation of 4-pyridinemethanol (30 % 

conversion) and completely inefficient for the oxidation of 2-pyridinemethanol (no 

conversion) therefore it was implemented for the AuPt/TiO2 system for the oxidation 

of 3-pyridinemethanol to evaluate its suitability. The results of the reaction carried 

out in dioxane have been contrasted to the standard reaction carried out in toluene in 

figure 5-20. 

Table 5-10 Effect of solvent on the oxidation of pyridinemethanol derivatives from Besson 
and co-workers.[17] 

Solvent 

Conversion [%] 

2-
pyridinemeth
anol 

4-
pyridinemeth
anol 

4-methoxy-
3,5-dimethyl-
2-
pyridinemeth
anol* 

3-hydroxy-6-
methyl-2-
pyridinemeth
anol* 

Dioxane 0 30 40 100 

Dioxane/water:
90/10 vol.% 

- - 70 100 

Toluene 5 - 65 - 

Acetonitrile 8 - - - 

THF 20 46 50 - 

Monoglyme 11 - 70 - 

CH2CL2 18 - 27 - 
Only aldehyde was detected. Conditions: substrate 50mmol/l, I g 1.95 wt.%Pt/C catalyst, 100 
ml solvent, 100 °C, 20 bar, 15 h of reaction. 
*Reaction conditions: the same as above but less catalyst: 0.15 g 
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Figure 5-20 Effect of dioxane used as a solvent on the oxidation of 3-pyridinemethanol. 

Reaction conditions: 0.50 %Au 0.50 %Pd/ TiO2 SIm, 60 mg; oxygen pressure, 3 bar; temperature, 

140°C; 0.5 M 3-pyridinemethanol in dioxane; time, 24 h. Dioxane,  ; Toluene, . 
 

Dioxane did not improve the efficiency of the catalytic performance using 0.5 %Au 

0.5%Pd/ TiO2 SIm and conversion was rather lower than in toluene. Furthermore, 

dioxane caused slightly higher Pd leaching than toluene. Taking into consideration that 

The United States Environmental Protection Agency classifies dioxane as a probable 

human carcinogen at high concentrations[32], [33], toluene is definitely a more 

suitable solvent. In addition to dioxane, other solvents have also been tested, table 5-

10 shows the preliminary results.  

 

Table 5-10 Solvent testing for the oxidation of 3-pyridinemethanol. 

Solvent  Conversion [%] C bal [%] 

Toluene 29 96 

o-Xylene 48 87 

m-Xylene 43 165 

Mesitylene 51 130 

Acetonitrile* <4   

*Solvent has partially evaporated (2 reactions have been carried out). 
Reaction conditions: 0.75 %Au 0.25 %Pd/ TiO2 SIm, 60 mg; oxygen pressure, 3 bar; temperature, 

140°C; 0.5 M 3-pyridinemethanol in toluene; time, 24 h. 

 

3-Pyridinemethanol is miscible with toluene and acetonitrile and is not miscible with 

o-xylene, m-xylene, mesitylene. Miscibility problems affected the analysis and even 

addition of acetonitrile or acetone to make the reaction mixture homogeneous did not 

improve massively the accuracy of the results for some solvents. The addition of 

acetonitrile to xylene (reaction mixture: 70% vol toluene 30% vol acetonitrile) enabled 

to obtain reproducible results in two trials using various Au-Pd catalysts: 0.75 %Au 0.25 
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%Pd/ TiO2 SIm, 0.50 %Au 0.25 %Pd/ TiO2 SIm and 0.25 %Au 0.75 %Pd/ TiO2 SIm (figure 

5-21).  

 

Figure 5-21 Effect of xylene/acetonitrile used as a solvent in the oxidation of 3-
pyridinemethanol. Reaction conditions: catalyst mass, 60 mg; oxygen pressure, 3 bar; 
temperature, 140°C; 0.5 M 3-pyridinemethanol in dioxane; time, 24 h. Conversion,  ; 
Carbon balance,  

 

It can be seen from figure 5-21 that conversion in xylene/ acetonitrile is higher than 

in standard toluene for all tested catalysts (over 40 %), however carbon balance is low 

(around 70-80 %). Pd leaching has also been limited in xylene/acetonitrile to only 0.07 

% while compared to 2 % in toluene. This observation highlighted further the tunability 

of these reaction systems by seemingly minor factors. Unfortunately, the discrepancies 

in carbon balance observed for this particular solvent mix ultimately limits its 

implementation. The cause for this is unknown however similar phenomena have been 

reported. Besson et al.[12] reported in his work lower carbon balance depending both 

on the substrate and product. It was hypothesised that insoluble by-products might be 

formed, or adsorption effect occurred on the catalyst surface. The oxidation of 1-

phenylethanol has been contrasted to the oxidations of different alpha-substituted 

pyridinemethanol derivatives: alpha-methyl or phenyl pyridinemethanol. The 

oxidation reactions were performed using Pt/C and Pt-PBi/C catalysts under air (10 

bar) at 373 K to the corresponding ketone. The catalytic activity in the oxidation of 1-

phenylethanol increased by increasing the amount of water in the solvent with total 

conversion and selectivity to acetophenone. Addition Bi to Pt increased greatly the 

reaction rate. Moreover, no metal leaching has been detected. In general, N containing 

pyridinemethanol derivatives showed completely different behaviour to 1-

phenylethanol. The solvent was selected depending on the solubility of the substrate: 
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either pure dioxane, water or mixture of both. Obviously, the presence of N 

dramatically changes the chemical nature of a compound in terms of its interaction 

with the Pt/ C catalyst. It is well known in the literature that N in N-containing 

compounds is able to adsorb on the metal surface and even coordinate strongly to the 

metal which is presumably the reason of catalyst deactivation.[25], it was more 

difficult to obtain high yields using a Pt/C catalyst. The other peculiarity presented in 

the discussed paper is the influence of the position of the substituent (ortho, meta or 

para position) in the substrate.  The highest conversions have been obtained for ortho 

methyl- or phenyl-substituted pyridinemethanol (38 and 100 %, respectively). 

Bimetallic Pt-Bi/ C catalyst showed greater activity than monometallic Pt/C 

(enhancing conversions from 30 to 76 % in the case of the ortho methyl substituent). 

Conversions for the pyridinemethanol derivatives with the substituents in meta and 

para positions were significantly lower. The researchers suggested that the observed 

phenomenon can be related with different adsorption effects of the N and hydroxyl 

group in the compounds structure on the metal surface. The phenyl substituent in 

ortho position is a steric hindrance limiting the interaction of the pyridine N with the 

metal surface which makes the hydroxyl group more accessible thus dehydrogenation 

process is facilitated. The researchers hypothesised that also an internal hydrogen 

bond could be formed which would limit the N doublet to the metal. Substituents 

placed in the meta and para positions are more distant from N hence there is no steric 

hindrance and nitrogen doublet strongly interacts with metal surface which puts 

hydroxyl group away. In the oxidation of pyridinemethanol derivatives the researchers 

also noticed Pt leaching. The leaching was dependent on the nature of the substrate 

and also was correlated to the position of substituent. In case of the phenyl derivative, 

(which is a steric hindrance itself) leaching was negligible. In case of methyl 

substituent, the lowest leaching occurred when in the ortho position (5 %) which might 

be explained by lower accessibility of pyridine N to metal surface than in position meta 

(21 % leaching) and para (49 % leaching). The addition of Bi significantly reduced 

leaching for all ortho, meta and para substituents (from 5 to 1 %, from 21 to 8 % and 

from 49 to 18 %, respectively). The researchers explained the role of bismuth as a 

diluent for platinum, shielding Pt from interaction with pyridine N.  
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5.3. Conclusions 

Au-Pd supported nanoparticles have been tested in the epoxidation of trans-

stilbene and contrasted to the oxidation of cinnamyl alcohol. In this reaction, the 

choice of solvent plays an enormous role, hence the most suitable solvents reported in 

the literature have been chosen- cyclohexane and methylcyclohexane. As expected, 

catalyst preparation method influenced the course of the process. Similar to the 

oxidation of cinnamyl alcohol, the most active catalysts have been obtained by sol-

immobilisation method. Large amounts of benzaldehyde obtained as a by-product 

suggested that degradation/ overoxidation of the substrate took place simultaneously 

next to the catalytic pathway.  

The reactions carried out in cyclohexane using Au-Pd catalysts prepared by 

impregnation method showed that bimetallic 0.50 % 0.50 %Pd/TiO2 (Imp) had the 

highest conversion compared to its monometallic counterparts. However, the change 

in solvent to methylcyclohexane resulted in higher conversion and selectivity of 

bimetallic 0.50 %Au 0.50 %Pd/TiO2 (Imp) and monometallic 1 % Pd/TiO2 (Imp). Analysis 

of the selectivity profile has shown increase in the formation of benzoic acid, which 

coupled with lower carbon balance (around 70-77 %) led to the conclusion that 

bimetallic and monometallic Pd Imp catalysts are more active than monometallic Au 

imp catalyst and combustion processes presumably took place. 

The highest conversion and selectivity to trans-stilbene oxide was obtained 

with the bimetallic 0.50 %Au 0.50 %Pd/ TiO2 (SIm) catalyst, however carbon balance 

was low (65 %), which indicated intense combustion processes. Replacement of an 

oxidant from oxygen to air enabled to maximise the formation of desired product, 

trans-stilbene oxide. The yield for the catalysed reaction carried out under 1 bar air 

was around 40 % which is in good agreement with the results obtained by Caps and co-

workers (yield 45 %).[15] Moreover, increase in air pressure caused a significant drop 

in carbon balance, decrease in selectivity to trans-stilbene oxide and increase in 

conversion, which indicated intensified processes of total combustion. The key 

observation is that the presence of the 0.50 %Au 0.50 %Pd/TiO2 (SIm) catalyst 

significantly increased the conversion and selectivity to the desired product compared 

to the uncatalysed reaction carried out under 1 bar air, which is in excellent agreement 

with the results obtained in the oxidation of cinnamyl alcohol. Despite the differences 

in general mechanism of trans-stilbene epoxidation and cinnamyl alcohol oxidation, 

the way of catalyst behaviour showed the same pattern for these two processes in 

terms of switching off undesired unselective reactions in optimised conditions. 

3-pyridinemethanol oxidation using supported Au-Pd nanoparticles can be 

performed both in water and in organic solvents leading to the different product 
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distributions. The reaction carried out in water yielded both aldehyde and carboxylic 

acid. The addition of base caused further oxidation of aldehyde to acid. Moreover, 

base caused the oxidation of 3-pyridinemethanol to acid even in the absence of a 

catalyst. Monometallic catalysts showed rather low activity in this case. Bimetallic Au-

Pd catalysts showed synergistic effect and led to moderate conversion of 3-

pyridinemethanol. Unfortunately, water caused heavy Pd leaching (more than 80 %) 

hence toluene had to be employed as an organic solvent to minimise this. Previous 

literature studies on Pt-Bi/C catalysts using toluene as a solvent resulted in little to no 

activity in pyridine methanol derived oxidations compared to other organic solvents 

such as dioxane. However, in this study activity was observed at temperatures as low 

as 80 °C, and by implementing raised reaction temperatures such as 140 °C, significant 

levels of oxidation can be achieved. Furthermore, 3-pyridinecarboxyaldehyde was 

obtained as the only product, with no acid formation detected. Bimetallic Au-Pd 

catalysts have been found to be more active than their monometallic counterparts 

indicating a synergistic effect. Pd leaching was found to be around 2 %, however the 

catalysts have been reusable up to 5 times with gradual loss of activity. Deactivation 

reason might be particle growth coupled with leaching. The efforts of catalysts 

stabilisation have been undertaken by calcination at different temperatures, however 

the outcome was rather poor. The most active and reusable tested catalyst for this 

reaction has been found to be 0.75 %Au 0.25 %Pd/ TiO2 (SIm). The observed loss in 

activity within 3 cycles was extremely low. Nevertheless, the inhibition of the reaction 

took place as the reaction proceeded in case of all tested Au-Pd metal ratios catalysts. 

The reason of that is presumably catalyst poisoning due to strong interaction between 

Pt-group metal with N contained in pyridine structure of the reactants.  
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Chapter 6 

 

6. General Discussion, Conclusions and Future Work   

 

6.1. Cinnamyl alcohol oxidation 

6.1.1. General Discussion and Conclusions  

Cinnamyl alcohol is an example of an allylic alcohol and represents one of the 

main components of plant biomass derivatives. The transformation of alcohols to 

carbonyl products is meaningful for industrial applications. The desired product of 

cinnamyl alcohol oxidation- cinnamaldehyde is an insecticide and common 

food/perfume additive. Also, the character of the substrate is very interesting as it is 

prone to the process of autoxidation.   

Although the oxidation of cinnamyl alcohol has been widely studied in the literature, 

usually mild conditions are applied. From an industrial viewpoint, it is economically 

more efficient to perform oxidation processes at elevated temperature for the purpose 

of heat recapture.  

Reactions have been performed with the use of bimetallic catalysts comprising 

of gold and palladium which were found to be very active for oxidation reactions with 

molecular oxygen. Platinum group metals have been studied for nearly 200 years due 

to several reasons such as their high catalytic activity under mild conditions, high 

selectivity towards a specific product, high stability under different reaction 

conditions and resistance to poisoning. Platinum has been utilised as a catalyst in many 

reactions, however palladium is another element gaining popularity as a catalyst as it 

is similar to platinum with regards to catalytic properties with the added economic 

benefit of being cheaper and more abundant. Since the discoveries made by Haruta[1] 

and Hutchings[2], it has been established that nanoparticles of gold alloyed with 

platinum group metals show unexpected, specific catalytic properties. It is widely 

accepted that electronic and geometric effects are responsible for the catalytic 

performance of Au-Pd bimetallic catalysts. Selectivity and resistance to deactivation 

are superior for bimetallic nanoparticles compared to monometallic Au catalysts.[3] 

Heterogeneous catalysts are more attractive from an industrial viewpoint than 

homogeneous catalysts mainly because they are easier to separate from the product 

mixture, possible to recycle hence cheaper and more sustainable. The research and 
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development of heterogeneous catalysis provides promise for developing green, 

environment-friendly processes for producing commodity chemicals.  

The presented process of cinnamyl alcohol oxidation using Au-Pd supported 

nanoparticles is potentially an excellent alternative to existing methods for the 

synthesis of carbonyl compounds based on procedures which use toxic and 

stoichiometric oxidants like chromate and permanganate.  

The approach used in this study aimed to examine the autoxidation 

phenomenon and its influence on catalytic oxidation of cinnamyl alcohol. The 

conversion of cinnamyl alcohol in the blank reaction, carried out at 120 °C under 

molecular oxygen, was relatively high however non-selective to the desired product. 

Close attention has been paid to the mechanism of benzaldehyde formation, a by-

product being proof of autoxidation process. The phenomenon of autoxidation in the 

blank reaction cannot be neglected and character of the substrate should be taken 

into consideration in this and every other process which is considered to be performed 

on the industrial scale. Oxidation of cinnamyl alcohol likely occurs via two mechanistic 

pathways as indicated by the product distribution. The size of Au-Pd nanoparticles has 

strong influence on the reaction mechanism. Small particles (3-5 nm) obtained by sol-

immobilisation method are suggested to be able to split peroxides/hydroperoxides 

caused by autoxidation process thus enable high selectivity to cinnamaldehyde. Larger 

particles (around 20 nm) achieved via impregnation method are less active in the 

oxidation of cinnamyl alcohol and the product distribution suggests that autoxidation 

and catalytic mechanisms take place simultaneously.  

Conditions also have strong impact on the reaction of cinnamyl alcohol 

oxidation. An important obstacle to overcome in order to apply Au catalysts on the 

industrial scale (especially for the oxidations)  is the necessity of the presence of base, 

which is undesired.[4] In this reaction, the yield of the process was excellent in the 

absence of base.  The activity of the catalysts depends on the preparation method and 

also on the metal ratio. The results revealed that catalysts made by sol-immobilisation 

method are more active for cinnamyl alcohol oxidation and more selective to 

cinnamaldehyde than catalysts made by impregnation method under industrially 

relevant conditions. The explanation is most likely related to the dramatically 

different particle sizes obtained during two preparation methods. The highest 

conversion (nearly 96 % after 4 hours) and selectivity to cinnamaldehyde (80 %) was 

achieved using the 0.75 %Au 0.25 %Pd/ TiO2  (SIm) catalyst. Generally SIm catalysts 

showed gradual mild deactivation within 3 cycles. The 0.75 %Au 0.25 %Pd/ TiO2 (SIm) 

catalyst demonstrated exceptionally low deactivation with 94, 92 and 90 % conversion 

after first, second and third use, respectively. SEM analysis revealed negligible particle 
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growth within 3 cycles for this catalyst. The agglomeration observed for relatively 

unstable 50Au:50Pd metal ratio and lack of particle growth in case of the extremely 

stable 75Au:25Pd can help to explain the deactivation of the range of 1 %AuPd/TiO2 

(SIm) catalysts. 

The experimental work presented in this thesis proved that optimisation of Au-

Pd metal ratio and catalyst preparation method is essential towards improving the 

overall efficiency of oxidation in the liquid phase under autoxidation conditions.  

Although the existence of a synergistic effect has been observed and reported based 

on experimental works, the nature of this phenomenon has not been entirely 

understood from a surface science viewpoint. The reason for this is the complexity of 

the processes and factors such as influence of the reactants, composition of the 

catalyst and experimental conditions.[5], [6] 

Systematisation and rationalisation of the structure- activity relationship of 

bimetallic Au-Pd nanoparticles could provide guidelines for the development and fine-

tuning of catalysts for crucial industrial reactions. This task is difficult and requires 

specialised techniques and a lot of work and combined strengths from specialists in 

the field of chemistry, engineering, and physics. Recent achievements in the field of 

computational chemistry coupled with experimental works would provide valuable 

guidance and information to come closer to achieving success in the design of excellent 

catalysts.  

The presented findings are proof that there is plenty of room for greater improvement 

in understanding the mechanism of autoxidation and selective oxidation in general. 

 

6.1.2. Future work 

 The most active and reusable catalyst for the oxidation of cinnamyl alcohol is 

0.75 %Au 0.25% Pd/ TiO2 prepared by sol-immobilisation method. Modifications to the 

synthesis of this catalyst should be investigated such as employment of other stabilising 

agents. An interesting idea would be to remove stabilising agent to achieve even higher 

yield. Calcinations of the catalysts led to a decrease in conversion, however it is 

possible to remove PVA by refluxing a catalyst prepared by sol-immobilisation in 

water.[7] This method prevents sintering of metal particles.  

All tested catalysts had 1 % of total metal loading which was sufficient to achieve high 

yield in the oxidation of cinnamyl alcohol. Further tests could be performed by using 

Au-Pd catalysts with even lower metal loading. That would lower the cost of catalyst 

synthesis which is always desired in the industry. 
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It has been concluded that the reaction of cinnamyl alcohol oxidation is 

extremely particle size sensitive. Further research towards catalyst optimisation could 

be carried out by preparing a closer controlled nanoparticle size range using specific 

methods which would help to clarify the optimum particle size for activity and 

selectivity, as has been achieved in the analogous benzyl alcohol oxidation 

reaction.[8], [9] 

Another step would be investigation of Au-Pd synergistic effect in detail by 

analysing various composition of metals on the molecular level. Here, in-depth 

characteristic investigation would be essential coupled with computational chemistry 

and experimental data.[10] Recent developments of microscopic techniques enable 

new insights into atomic-level catalytic mechanisms by employing enhanced detectors 

to capture structural and chemical changes in operando under synthesis and reaction 

conditions.[11] 

It has been presented in section 4.2.2. of chapter 4 that monometallic 1 % Pd/ 

TiO2 (SIm) showed high selectivity to cinnamaldehyde after being reused. This 

experiment should be repeated to exclude any possible reason such as analysis error. 

If the result would be positive, then it means that rearrangements of nanoparticles on 

the molecular level during reactions lead to optimal catalyst composition including 

size and oxidation state. This could direct future catalyst synthesis in order to achieve 

immediate high selectivity.  

It has been demonstrated that catalysts can be applied under autoxidation 

conditions in order to increase selectivity to desired product in the oxidation of 

cinnamyl alcohol. Referring to this, Au-Pd supported nanoparticles could be used for 

other reactions where autoxidations take place or simply when harsh conditions can 

be applied. Keeping in mind that every process and every reaction is unique, 

optimisation of a catalyst and conditions should be carefully performed in every 

occasion.  

 

6.2. Oxidation of trans-stilbene 

6.2.1. General Discussion and Conclusions 

In this part, the experimental conditions were based largely on the literature 

reports. The aim was to contrast the oxidation reactions of trans-stilbene with 

cinnamyl alcohol, due to the different chemical nature of these substrates, and study 

the effectiveness of the Au-Pd system. Trans-stilbene is an alkene and for the reaction 

to take place, the addition of a radical initiator is required. Also, choice of solvent is 
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crucial, as it takes part in the reaction mechanism. The most suitable solvents for this 

process have been reported to be cyclohexane and methylcyclohexane. 

As expected, the catalyst preparation method heavily influenced the reaction. Similar 

to the oxidation of cinnamyl alcohol, the most active catalysts were obtained by sol-

immobilisation methods. Benzaldehyde has been also observed in this reaction as a by-

product, formed as a result of degradation/overoxidation of the substrate. It is 

interesting that the catalytic reaction proceeded simultaneously with the degradation 

process. The highest conversion and selectivity to trans-stilbene oxide was obtained 

using 0.50% Au 0.50% Pd/TiO2 bimetallic catalyst (SIm), however the carbon balance 

was low (65 %), which indicated intensive combustion processes. The change of one 

constituent in the system, namely replacement of oxygen with air, maximised the 

formation of the desired product, trans-stilbene oxide. The efficiency of the catalysed 

reaction carried out at 1 bar was approximately 40 %, which is consistent with the 

results obtained by Caps and co-workers (45 % yield).[12] 

The key observation is that the presence of a 0.50% Au 0.50% Pd/TiO2 catalyst (SIm) 

significantly increased the conversion and selectivity to the desired product compared 

to a non-catalysed reaction under air (1 bar), which is in perfect agreement with the 

results obtained in the oxidation of cinnamyl alcohol. Despite differences in the 

general mechanism of trans-stilbene epoxidation and cinnamyl alcohol oxidation, the 

catalyst behaviour showed the same pattern for these two processes in terms of 

excluding undesired non-selective reactions under optimized conditions. 

 

6.2.2. Future work 

It was found that milder conditions are more suitable for the oxidation of trans-

stilbene. More work towards optimisation of this reaction could be carried out in terms 

of conditions and catalyst synthesis. Since solvent plays a direct role in the mechanism, 

various solvents or their mixtures could be tested. Low metal loading catalysts (below 

1 %) could be prepared using various methods and compositions to investigate the 

influence of the nanoparticles size and morphology on the course of the reaction. Also, 

various supports could be tested as an important factor conditioning activity of 

embedded Au-Pd nanoparticles. Oxidation of trans-stilbene could be another case 

study where experimental work coupled with theoretical work would lead to deeper 

understanding of the nature of the Au-Pd synergistic effect. 
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6.3. Oxidation of 3-pyridinemethanol 

6.3.1. General Discussion and Conclusions 

3-Pyridinemethanol was selected due to the chemical stability of this substrate 

and the presence of N-heteroatom in its structure.  Oxidation of 3-pyridinemethanol 

using Au-Pd nanoparticles is extremely difficult due to catalyst poisoning as the effect 

of the strong interaction between Pd and N- heteroatom present in pyridine-derivative 

reagents. This effect may also lead to Pd leaching, which is a huge obstacle in 

commercialisation of any catalyst. 

The most active and reusable catalyst for this reaction was found to be 0.75% 

Au 0.25% Pd/TiO2 (SIm). The observed loss of activity during 3 cycles was extremely 

low. Nevertheless, the inhibition of the reaction followed a similar trend to that of all 

tested Au-Pd supported catalysts. 

The reaction conditions have a huge impact on the process. Literature reports on the 

oxidation of 3-pyridinemethanol using Pt-Bi/C catalysts in toluene indicated rather 

moderate catalytic activity. However, in this study the activity was observed at 

temperatures as low as 80 ° C, and by introducing elevated reaction temperatures, 

such as 140 °C, significant levels of conversion can be achieved. In addition, 3-

pyridinecarboxaldehyde was obtained as the only product, without detection of acid 

formation. The acid, on the other hand, has been obtained in large quantities when 

water was used as a solvent. 

Despite the fact, that the reaction is complicated, and difficulties are 

encountered mainly due to the possible poisoning of the catalyst, it can be concluded 

that the bimetallic catalysts are more active than monometallic ones. Once again, a 

synergistic effect has been observed. 

 

6.3.2. Future work 

An essential requirement for industrially employed catalysts is their stability 

and reusability. Pd leaching in the oxidation of 3-pyrididnemethanol was found to be 

around 2 %, however the catalysts have been reusable up to 5 times with gradual loss 

of activity. One possible cause for deactivation might be particle growth coupled with 

leaching. Calcination did not improve stabilisation of Pd. The fact that leaching has 

been limited in case of 0.75 % 0.25 %Pd/ TiO2 (SIm) indicates that more work could be 

carried out to develop method of metals stabilisation. It has been suggested in the 

literature that sacrificially embedding Bi can shield Pd against leaching while 

maintaining access to the active sites.[13], [14] A similar procedure could be 
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performed on the Au-Pd catalysts coupled with further optimisation of particles size 

and metal ratio. It was concluded that the reaction is less size sensitive, however if 

poisoning takes place then the effect of size is impossible to analyse. If there was 

possibility to introduce sacrificial protection without limiting the active sites, full 

catalyst optimisation would be possible. 

Following that reasoning, a support study should be considered and performed 

in detail as perhaps they would enable designing more stable catalysts even at the 

expense of activity. 

A Pyridine DRIFTS experiment could result in determination of active sites and 

would shed more light on the deactivation issues. Reacting pyridine with the catalyst 

would enable determination of whether N reacts with Pd leading to catalyst poisoning. 

XPS has been carried out on the fresh sample, however XPS of spent catalyst would 

enable detection of any carbon deposit leading to possible poisoning. This is important 

considering the incomplete carbon balance for these reactions. Moreover, this 

experiment would hopefully show any change in oxidation state of the metal leading 

to deactivation.  

Finally, with comparison to Besson’s work[13], 1 % Au-Pd/ TiO2 catalysts could be 

tested for the other substituted pyridine- derivative alcohols to evaluate whether they 

are more active than the reference Pt-Bi/C catalysts.  
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