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ABSTRACT: A manganese-catalyzed electrochemical deconstructive chlorination of cycloalkanols has been developed. This
electrochemical method provides access to alkoxy radicals from alcohols and exhibits a broad substrate scope, with various
cyclopropanols and cyclobutanols converted into synthetically useful β- and γ-chlorinated ketones (40 examples). Furthermore,
the combination of recirculating flow electrochemistry and continuous inline purification was employed to access products on a
gram scale.

Alkoxy radicals are highly transient species that exhibit
diverse reactivity, including hydrogen atom transfer,1

addition to π systems,2 and β-scission processes (Scheme 1A).3

The generation of alkoxy radicals directly from aliphatic
alcohols is challenging, partly due to the high dissociation
energy of RO−H bonds (∼105 kcal/mol).2b As such,

traditional methods for alkoxy radical generation involve the
homolysis of weak oxygen-heteroatom bonds within prefunc-
tionalized radical precursors in combination with radical
initiators and/or thermal or photochemical activation (Scheme
1B).1,2 Alternatively, transition metal salts can be employed in
combination with stoichiometric oxidants (e.g., K2S2O8 or
hypervalent iodine reagents) for the generation of alkoxy
radicals.4 Recent advances have developed photocatalytic
approaches for alkoxy radical generation employing various
radical precursors5 including peroxides,6 N-alkoxyphthali-
mides,7 N-alkoxypyridiniums,8 N-alkoxybenzimidazoles,9 N-
alkoxytriazoliums,10 and unprotected alcohols.11 Despite these
important advances, many existing approaches require the use
of prefunctionalized substrates, (super)stoichiometric reagents
(generating waste/byproducts), and/or precious metal
(photo)catalysts.
Organic electrochemistry represents one of the cleanest

possible chemical processing technologies,12 which has
recently undergone a renaissance due partly to the increasing
availability of standardized batch and flow electrochemical
reactors.13 By careful tuning of electrochemical parameters,
specific single electron transfer processes can be targeted,
accessing powerful radical intermediates.14 Despite these
characteristics, the development of electrochemical methods
for the generation of alkoxy radicals from alcohols has received
little attention and remains largely limited to the generation of
methoxy radicals,15 which requires expensive boron-doped
diamond or platinum anodes.16 To this end, herein we report
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Scheme 1. Context and Outline of Electrochemical Strategy
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the manganese-catalyzed electrochemical deconstructive
chlorination of cycloalkanols via alkoxy radical intermediates,17

accessing synthetically useful β- and γ-chlorinated ketones
(Scheme 1C). Furthermore, by employing microreactor
technology and recirculating flow, the electrochemical method
can be performed on gram scale, with continuous inline
purification incorporated.
To commence our studies, 1-phenylcyclobutan-1-ol 1 was

selected as the model substrate (Table 1). After extensive

optimization,18 it was found that an electrochemical system
composed of MnCl2.4H2O (10 mol %) as catalyst,19 MgCl2 (5
equiv) as chloride source, and LiClO4 as supporting electrolyte
in MeCN/AcOH (7:1, [1] = 0.05 M) using galvanostatic
conditions (i = 10 mA, janode = 7.8 mA/cm2, Q = 3.73 F/mol)
and graphite electrodes at 25 °C for 3 h under N2, enabled the
deconstructive chlorination of 1, giving γ-chlorinated ketone 2
in 82% NMR yield (entry 1). No conversion occurs in the
absence of electricity or the manganese catalyst (entries 2 and
3). Employing a constant cell potential (Ecell = 2.4 V) or
variation of the current (i = 12.5 mA or 7.5 mA) lowered the
NMR yield of 2 (entries 4−6). Employing TBAPF6 as
electrolyte (entry 7) or substituting the graphite cathode for
Pt foil or Ni plate (entries 8 and 9) each had a negligible
impact on conversion. However, upon evaluating alternative
Mn(II) salts (entries 10 and 11), it was found that 97%
conversion was obtained using Mn(OTf)2 as catalyst, which
was adopted for further optimization. Employing LiCl or NaCl
as the chloride source was detrimental to conversion,
presumably due to decreased solubility in MeCN/AcOH
(entries 12 and 13).20 Gratifyingly, the quantities of MgCl2 and

Mn(OTf)2 could be lowered to 2 equiv and 5 mol %,
respectively, without significant reduction in conversion
(entries 14 and 15). A Faradaic efficiency of 67% was obtained
when 2 F/mol of charge was passed (entry 16), which
indicated that most of the electricity passing through the cell is
utilized productively.
The full scope of the electrochemical process was explored

starting with the deconstructive chlorination of cyclobutanols
to form γ-functionalized ketones (Scheme 2A). From the
outset, it was found that 1-arylcyclobutan-1-ols containing
aromatic systems with electron-releasing groups at the 2- or 4-
positions (e.g., 4-tBu) or extended π systems (e.g., 4-Ph)
undergo decomposition using the optimized reaction con-
ditions (Table 1, entry 11). This instability was attributed to
ionization of the C−OH bond in the presence of Brønsted
and/or Lewis acids, forming stabilized carbocations that are
unproductive for the desired transformation. In such cases, this
issue was addressed by employing syringe pump addition of
the substrate over 2 h and using TBAOAc as the supporting
electrolyte. With a choice of two suitable reaction conditions in
hand, a variety of 1-arylcyclobutan-1-ols were converted to the
corresponding γ-chlorinated ketone products in good to
excellent isolated yields (products 2−20). Within the aryl
unit, various alkyl and aryl substitution was tolerated at the 4-,
3-, and 2-positions in addition to halides and electron-
withdrawing substituents (e.g., 4-CF3). The electrochemical
method exhibits good functional group tolerance as demon-
strated by the presence of aldehyde, carboxylic acid, methyl
ester, primary amide, nitrile, benzylic primary alcohol, and silyl
ether functionalities present within products 14−20. A
selection of 1-alkylcyclobutan-1-ols were also converted into
the corresponding γ-chlorinated ketones in good isolated yields
(products 21−26). Benzo-fused cyclobutanols participated in
deconstructive chlorination, giving benzyl chloride products
27−31, including the formation of 7-, 8-, 9-, and 10-membered
rings. This strategy was also applied to the formation of
disubstituted cycloheptane 32 in 77% isolated yield. Additional
substitution at the 2- and 3-positions of the cyclobutanol was
tolerated, accessing γ-chlorinated ketones 33−35 in high
yields. We also investigated the deconstructive chlorination of
cyclopropanols (Scheme 2B). Gratifyingly, it was found that a
representative selection of 1-arylcyclopropan-1-ols and 1-
alkylcyclopropan-1-ols could be readily converted to the
corresponding β-chlorinated ketones in good yields (36−39).
Additional substitution is tolerated within the cyclopropanol,
giving secondary radical derived product 40 as the major
regioisomer. Furthermore, bicyclo[4.1.0]heptan-1-ol was con-
verted to 3-chlorocycloheptan-1-one 41 in 48% isolated yield.
At the current stage of development, the electrochemical
method does not tolerate larger ring sizes with reduced ring
strain. For example, despite assessing various reaction
conditions, 1-phenylcyclopentan-1-ol underwent decomposi-
tion, whereas 1-phenethylcyclopentan-1-ol was unreactive.21

In order to demonstrate scalability, the batch process was
translated to a flow electrochemical setup.22 By employing the
commercially available Ammonite8 flow electroreactor,23 a
variety of reaction parameters were evaluated including
electrolyte loading, temperature, solvent ratio, residence time,
charge, and mixing efficiency (Scheme 2C). However, by using
MnCl2·4H2O (10 mol %) as catalyst, the conversion to 2 could
not be increased beyond 20% using single-pass flow electro-
chemistry.18 The yield was increased by applying the optimized
reaction parameters to a recirculating flow electrochemical

Table 1. Optimization of Electrochemical Processa

entry variation from “standard” conditions yieldb (%)

1 none 82
2 no electricity <2
3 no MnCl2.4H2O <2
4 Ecell = 2.4 V 66
5 i = 12.5 mA, janode = 9.8 mA/cm2 74
6 i = 7.5 mA, janode = 5.9 mA/cm2 80
7 TBAPF6 instead of LiClO4 82
8 Pt foil cathode instead of graphite 82
9 Ni plate cathode instead of graphite 75
10 Mn(OAc)2·4H2O instead of MnCl2·4H2O 82
11 Mn(OTf)2 instead of MnCl2·4H2O 97 (78)
12c LiCl instead of MgCl2 64
13c NaCl instead of MgCl2 <2
14c MgCl2 (2 equiv) 76
15c Mn(OTf)2 (5 mol %) 75
16c,d Q = 2 F/mol 67

aReactions performed with 0.3 mmol of cyclobutanol 1 using the
ElectraSyn 2.0 batch electrochemical reactor. [1] = 0.05 M. bYield
after 3 h as determined by 1H NMR analysis of the crude reaction
mixture with 1,3,5-trimethylbenzene as the internal standard. Isolated
yield given in parentheses. cMn(OTf)2 as catalyst.

d96 min reaction
time.

Organic Letters Letter

DOI: 10.1021/acs.orglett.9b03652
Org. Lett. 2019, 21, 9241−9246

9242

http://dx.doi.org/10.1021/acs.orglett.9b03652


Scheme 2. Substrate Scope: Batch and Flow Electrochemistry*

*Reactions performed with 0.3 mmol of cycloalkanol using the ElectraSyn 2.0 batch electrochemical reactor with isolated yields after
chromatographic purification quoted unless stated otherwise. aCycloalkanol was added over 2 h via syringe pump, TBAOAc (0.1 M) as electrolyte.
bTBAOAc (0.1 M) as electrolyte. cYield as determined by 1H NMR analysis of the crude reaction mixture with 1,3,5-trimethylbenzene as the
internal standard. d6 h.
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setup, which provided access to 2 in 84% isolated yield
(Scheme 2D).24 Advantageously, due to the decreased distance
between the electrodes in flow, a supporting electrolyte was
not required. Furthermore, by employing a 6-port 2-position
switching valve, the flow could be redirected from recirculation
to continuous inline purification (Scheme 2E). Once the
electrochemical reaction was complete, the valve was switched
from position 1 to position 2 to redirect the flow into the path
of workup solvents. The flow was passed through a mixing unit
before entering a liquid/liquid phase separator containing a
hydrophobic membrane that allowed separation of the organic
layer, which was subsequently dried over MgSO4, filtered, and
concentrated in vacuo to provide 1.2 g of product. This flow
setup, which combines recirculating flow electrochemistry and
continuous inline purification for the first time, might be
suitable for >1 g scale processing by increasing reactor volume
and operation time.
Cyclic voltammetry was employed in order to gain

mechanistic insight into the electrochemical process.18 In
accordance with the literature,19d the combination of
Mn(OTf)2 and MgCl2 produced a new quasi-reversible redox
event at ∼0.8 V vs Fc/Fc+,25 which provided evidence for the
generation of a Mn(III)X2Cl species from [Mn(II)X2Cl]

−.
Furthermore, an increase in the oxidation current was observed
upon addition of 1-phenylcyclobutan-1-ol 1, which suggested
that Mn(III)X2Cl is consumed by 1. When methyl ether
cyclobutane 42 was employed as the substrate using the
standard electrochemical reaction conditions, no γ-chlorinated
ketone 2 was observed, with 82% starting material recovered
(Scheme 3A). This indicated that the proposed Mn(III)X2Cl
species does not promote cyclobutane ring opening in the
absence of a hydroxyl functional group. As such, a plausible
reaction mechanism initiates with the formation of

[Mn(II)X2Cl]
− from Mn(II)X2 and MgCl2, which is oxidized

at the anode to form Mn(III)X2Cl (Scheme 3B). This
intermediate undergoes ligand exchange with the cycloalkanol
to form a Mn(III) alkoxide, with subsequent homolysis
generating an alkoxy radical, which can undergo reversible β-
scission. Alternatively, the Mn(III) alkoxide may undergo
reversible β-scission, rather than a free alkoxy radical
intermediate. Trapping of the transient primary carbon-
centered radical with the persistent Mn(III)X2Cl species
forms a new C−Cl bond.26 Hydrogen gas is generated via
proton reduction at the cathode.
In conclusion, we have developed a new electrochemical

method for alkoxy radical generation from alcohols and utilized
this for the manganese-catalyzed electrochemical deconstruc-
tive chlorination of cycloalkanols. The method is applicable
across various cyclopropanols and cyclobutanols, accessing a
broad range of synthetically useful β- and γ-chlorinated ketones
(40 examples). Furthermore, the combination of recirculating
flow electrochemistry and continuous inline purification was
employed to access products on gram scale. Ongoing studies
are focused on further applications of earth-abundant
transition metals in synthetic organic electrochemistry, and
these results will be reported in due course.27
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Y.; Göttemann, L. T.; Sarpong, R. Deconstructive diversification of
cyclic amines. Nature 2018, 564, 244−248.
(18) See the Supporting Information for full experimental details.
(19) For examples of Mn-mediated electrochemical reactions, see:
(a) Shundo, R.; Nishiguchi, I.; Matsubara, Y.; Hirashima, T. Mn3+-
Mediated Coupling-Cyclization of 5-Arylpent-1-enes with Active
Methylene Compounds by Electrooxidation. Chem. Lett. 1991, 20,
235−236. (b) Shundo, R.; Nishiguchi, I.; Matsubara, Y.; Hirashima,
T. Carbon-Carbon Bond Formation Using Manganese(III) Acetate as
an Electrochemical Mediator. Tetrahedron 1991, 47, 831−840. (c) Fu,
N.; Sauer, G. S.; Saha, A.; Loo, A.; Lin, S. Metal-catalyzed
electrochemical diazidation of alkenes. Science 2017, 357, 575−579.
(d) Fu, N.; Sauer, G. S.; Lin, S. Electrocatalytic Radical Dichlorination
of Alkenes with Nucleophilic Chlorine Sources. J. Am. Chem. Soc.
2017, 139, 15548−15553. (e) Ye, K.-Y.; Pombar, G.; Fu, N.; Sauer,
G.; Keresztes, I.; Lin, S. Anodically Coupled Electrolysis for the
Heterodifunctionalization of Alkenes. J. Am. Chem. Soc. 2018, 140,
2438−2441. (f) Ye, K.-Y.; Song, Z.; Sauer, G. S.; Harenberg, J. H.; Fu,
N.; Lin, S. Synthesis of Chlorotrifluoromethylated Pyrrolidines by
Electrocatalytic Radical Ene-Yne Cyclization. Chem. - Eur. J. 2018, 24,
12274−12279. (g) Merchant, R. R.; Oberg, K. M.; Lin, Y.; Novak, A.
J. E.; Felding, J.; Baran, P. S. Divergent Synthesis of Pyrone
Diterpenes via Radical Cross Coupling. J. Am. Chem. Soc. 2018, 140,
7462−7465. (h) Fu, N.; Sauer, G. S.; Lin, S. A general, electrocatalytic
approach to the synthesis of vicinal diamines. Nat. Protoc. 2018, 13,
1725−1743. (i) Fu, N.; Shen, Y.; Allen, A. R.; Song, L.; Ozaki, A.; Lin,
S. Mn-Catalyzed Electrochemical Chloroalkylation of Alkenes. ACS
Catal. 2019, 9, 746−754. (j) Zhang, Z.; Zhang, L.; Cao, Y.; Li, F.; Bai,
G.; Liu, G.; Yang, Y.; Mo, F. Mn-Mediated Electrochemical
Trifluoromethylation/C(sp2)-H Functionalization Cascade for the
Synthesis of Azaheterocycles. Org. Lett. 2019, 21, 762−766. (k) Lu,
L.; Fu, N.; Lin, S. Three-Component Chlorophosphinoylation of
Alkenes via Anodically Coupled Electrolysis. Synlett 2019, 30, 1199−
1203. (l) Strehl, J.; Hilt, G. Electrochemical, Mangenese-Assisted
Carbon-Carbon Bond Formation between β-Keto Esters and Silyl
Enol Ethers. Org. Lett. 2019, 21, 5259−5263.
(20) The substitution of MgCl2 with other halide salts, namely KBr
or NaI, resulted in >90% recovery of cyclobutanol 1.
(21) Wilsey, S.; Dowd, P.; Houk, K. N. Effect of Alkyl Substituents
and Ring Size on Alkoxy Radical Cleavage Reactions. J. Org. Chem.
1999, 64, 8801−8811.
(22) (a) Yoshida, J.-i.; Nagaki, A. Electrochemical Reactions in
Microreactors. In Microreactors in Preparative Chemistry;
Reschetilowski, W., Ed.; Wiley-VCH: Weinheim, Germany, 2013;
pp 231−242. (b) Folgueiras-Amador, A. A.; Wirth, T. Electrosyn-
thesis in Continuous Flow. Science of Synthesis: Flow Chemistry in
Organic Synthesis 2018, 147−189. (c) Laudadio, G.; de Smet, W.;
Struik, L.; Cao, Y.; Noel̈, T. Design and application of a modular and
scalable electrochemical flow microreactor. J. Flow Chem. 2018, 8,
157−165. (d) Pletcher, D.; Green, R. A.; Brown, R. C. D. Flow
Electrolysis Cells for the Synthetic Organic Chemistry Laboratory.
Chem. Rev. 2018, 118, 4573−4591. (e) Atobe, M.; Tateno, H.;
Matsumura, Y. Applications of Flow Microreactors in Electrosynthetic
Processes. Chem. Rev. 2018, 118, 4541−4572.
(23) Green, R. A.; Brown, R. C. D.; Pletcher, D.; Harji, B. A.
Microflow Electrolysis Cell for Laboratory Synthesis on the
Multigram Scale. Org. Process Res. Dev. 2015, 19, 1424−1427.
(24) (a) Kawamata, Y.; Vantourout, J. C.; Hickey, D. P.; Bai, P.;
Chen, L.; Hou, Q.; Qiao, W.; Barman, K.; Edwards, M. A.; Garrido-
Castro, A. F.; deGruyter, J. N.; Nakamura, H.; Knouse, K.; Qin, C.;
Clay, K. J.; Bao, D.; Li, C.; Starr, J. T.; Garcia-Irizarry, C.; Sach, N.;
White, H. S.; Neurock, M.; Minteer, S. D.; Baran, P. S. Electro-
chemically Driven, Ni-Catalyzed Aryl Amination: Scope, Mechanism,

and Applications. J. Am. Chem. Soc. 2019, 141, 6392−6402. (b) Peters,
B. K.; Rodriguez, K. X.; Reisberg, S. H.; Beil, S. B.; Hickey, D. P.;
Kawamata, Y.; Collins, M.; Starr, J.; Chen, L.; Udyavara, S.; Klunder,
K.; Gorey, T. J.; Anderson, S. L.; Neurock, M.; Minteer, S. D.; Baran,
P. S. Scalable and safe synthetic organic electroreduction inspired by
Li-ion battery chemistry. Science 2019, 363, 838−845.
(25) Sandford, C.; Edwards, M. A.; Klunder, K. J.; Hickey, D. P.; Li,
M.; Barman, K.; Sigman, M. S.; White, H. S.; Minteer, S. D. A
synthetic chemist’s guide to electroanalytical tools for studying
reaction mechanisms. Chem. Sci. 2019, 10, 6404−6422.
(26) (a) Studer, A. The Persitent Radical Effect in Organic
Synthesis. Chem. - Eur. J. 2001, 7, 1159−1164. (b) Fischer, H. The
Persistent Radical Effect: A Principle for Selective Radical Reactions
and Living Radical Polymerizations. Chem. Rev. 2001, 101, 3581−
3610.
(27) A prior version of the present article was deposited as a preprint
on ChemRxiv: Allen, B. D. W.; Hareram, M. D.; Seastram, A. C.;
McBride, T.; Wirth, T.; Browne, D. L.; Morrill, L. C. Manganese-
Catalyzed Electrochemical Deconstructive Chlorination of Cyclo-
alkanols via Alkoxy Radicals. ChemRxiv 2019. DOI: 10.26434/
chemrxiv.9275441.v1.

Organic Letters Letter

DOI: 10.1021/acs.orglett.9b03652
Org. Lett. 2019, 21, 9241−9246

9246

http://pubs.acs.org/doi/suppl/10.1021/acs.orglett.9b03652/suppl_file/ol9b03652_si_001.pdf
http://dx.doi.org/10.26434/chemrxiv.9275441.v1
http://dx.doi.org/10.26434/chemrxiv.9275441.v1
http://dx.doi.org/10.1021/acs.orglett.9b03652

