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Summary  

       Patlak analysis techniques based on linear regression are often applied to positron 

emission tomography (PET) images to estimate a number of physiological parameters. 

The Patlak equation forms the basis for most extension works regarding graphical 

analysis of many tracers in quantitative PET measurements. Patlak analysis is primarily 

used to obtain the rate constant Ki, which represents the tracer transfer rate from plasma 

to the targeted tissue. One of the most common issues associated with Patlak analysis is 

the introduction of statistical noise, adopted originally from the images, that affects the 

slope of the graphical plot, leading to bias, and causes errors in the calculation of the 

rate constant Ki i. In this thesis, several statistical and noise reduction methods for 2 and 

3 dimensional data are proposed and applied to simulated 18F-FDOPA brain images 

generated from a PET imaging simulator. The methods were applied to investigate 

whether their utilisation could reduce the bias and error caused by noisy images and 

improve the accuracy of quantitative measurements. Then, validation step extended to 

18F-FDOPA PET images obtained from a clinical trial for Parkinson’s disease. The 

minimum averaged SE, SSE and the highest averaged reduction of noisy Ki values were 

found with the feasible generalised least squares (FGLS) model. Battle-Lemarie wavelet 

(BLW) showed significant change in data for the 3D PET images. Savitzky-Golay 

filtering (SGF) demonstrated significant change for most of the noise levels applied to 

2D data. In clinical 18F-FDOPA images, the mean and standard deviation of standard 

error (SE) and sum-squared error (SSE) were significantly reduced in both baseline and 

after therapy groups. This work has the potential to be extended to other graphical 

analysis in quantitative PET data measurements. 

 
 



	 VIII	

Statements and Declaration 

Statement 1  

This thesis is being submitted in partial fulfillment of the requirements for the degree of 

PhD.   

Signed ___________________________ 

Date     ___________________________ 

 Statement 2  
This work has not been submitted in substance for any other degree or award at this or 

any other university or place of learning, nor is being submitted concurrently for any 

other degree or award (outside of any formal collaboration agreement between the 

University and a partner organisation) 

Signed ___________________________ 

Date     ___________________________ 

Statement 3  

I hereby give consent for my thesis, if accepted, to be available in the University’s Open 

Access repository (or, where approved, to be available in the University's library and for 

inter-library loan), and for the title and summary to be made available to outside 

organisations, subject to the expiry of a University-approved bar on access if applicable.  

Signed ___________________________ 

Date     ___________________________ 

Declaration 
This thesis is the result of my own independent work, except where otherwise stated, 

other sources are acknowledged by explicit references. The thesis has not been edited 

by a third party beyond what is permitted by Cardiff University's Use of Third Party 

Editors by Research Degree Students Procedure. 

Signed ___________________________ 

Date     ___________________________ 

WORD COUNT ___________________  

(Excluding summary, acknowledgements, declarations, contents pages, appendices, 

tables, diagrams and figures, references, bibliography, footnotes and endnotes) 



	 IX	

List of Figures 

Figure 2-1. Positron decay. A positron (β+) is emitted and interacts with an 
electron (β-) to form an annihilation reaction that results in the emission of 
two 511-keV photons (gamma rays) roughly 180° apart (Mettler and 
Guiberteau 2011). ........................................................................................ 8 

Figure 2-2. A multiple full-ring system of PET cameras, with each ring 
consisting of multiple blocks. ................................................................... 10 

Figure 2-3. A PET scintillation block detector. ................................................ 10 
Figure 2-4. A PET/CT scanner. ......................................................................... 13 
Figure 2-5. The EXPLORER (EXtreme performance Long REsearch scanneR) 

PET scanner. ............................................................................................. 14 
Figure 2-6. FDOPA decarboxylation. ............................................................... 16 
Figure 2-7. Steps for developing a model. ........................................................ 24 
Figure 2-8. Tracer delivery, uptake, binding, and clearance in the ROI tissue. 25 
Figure 2-9. Common quantification methods in PET image analysis. ............. 27 
Figure 3-1. Summary of graphical analysis characteristics and tracer behaviour 

options. ...................................................................................................... 38 
Figure 3-2. (A) Example of the irreversible compartment where the tracer is 

trapped in the ROI. (B) Two compartmental models, including both 
reversible and irreversible compartments. ................................................ 40 

Figure 3-3. (A) Example of data represented by points on the plot (B) Shows 
the best fitting line (regression line) .......................................................... 42 

Figure 3-4. The compartmental model suggested by Gjedde et al. (1991) and 
applied in Dhawan et al. (1996) study shows FDOPA and its metabolites.
 ................................................................................................................... 53 

Figure 3-5. ADD (summed) and net influx rate constant (Ki) maps of single 
slices from a healthy subject (top) and a subject with PD (bottom). The 
subject with PD shows reduced uptake in the caudate and putamen, which 
is greater on the right-hand side (Whone et al. 2004). .............................. 56 

Figure 5-1. Two-tissue compartmental model where Cp(t) is the plasma tracer 
concentration at time (t). C1 is the free tracer concentration in tissue and 
C2 is the trapped tracer concentration. K1, k2, and k3 are unidirectional rate 
constants of the tracer between plasma and tissues. ................................. 78 

Figure 5-2. PET activity measured from ROI is divided by the reference tissue 
activity that represents y-axis, and plotted against the integral of the 
reference TAC from the injection time divided by the reference activity, 
which represents x-axis. The model plot resulted in a straight line after t* 
= 30 min in this analysis. .......................................................................... 79 

Figure 5-3. An example showing how the OLS method is used to construct the 
regression line from PET dynamic data; y-axis represents the amount of 
radioactivity (kBq/cc) and x-axis represents time points in minutes when 
the radioactivity was recorded. ................................................................. 81 

Figure 5-4. Ordinary least squares (A) and total least squares (B) fit of the set 
of m = 20 data points in the plane. (¢---) data points, [aibi ] , x- 
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1 Introduction 

1.1  Background and overview 

Positron emission tomography (PET) is considered one of the most powerful diagnostic 

tools in various applications of clinical imaging. For instance, PET plays a major role in 

the progress of functional brain imaging and research. With a PET scanner, the brain 

mapping of in vivo functions can be studied and evaluated; metabolism, receptor 

binding, and density in neurons can all be analysed via PET images. A PET scanner 

measures and detects the emission of radioactive isotopes (that produce gamma rays), 

which usually have a short half-life of between two minutes and two hours. For a 

typical PET scan, a tracer labelled with a radioisotope is administered to the patient, 

usually intravenously (Turkheimer et al. 2014).  

PET allows for the study of the molecular function of tissue via the tracer’s emission 

recorded with the scanner. With it, one can reconstruct three-dimensional (3D) images 

for the region of interest (ROI). Therefore, the cross-section images of the human body 

can be viewed as a single plane or a 3D volume. Physiological and pathological 

information or parameters can be obtained, which are valuable for the diagnosis and 

evaluation of diseases. PET was recently combined with an X-ray computed 

tomography (CT) or Magnetic resonance imaging (MRI) scanners so the necessary 

images can be obtained in the same session. This process allows for the more precise 

alignment and correlation of the body’s activity and the anatomical region. This 

combination of functional and anatomical images has influenced many diagnostic 

procedures recently in neurology, oncology, radiation therapy, and cancer staging 

(Salomaki et al. 2017). 



	 2	

PET was the first imaging tool that allowed for direct measurement of dopamine-system 

(DA) mechanisms in the living human brain (Hou et al. 2012). In functional brain 

studies, the radiotracer crosses the blood-brain barrier (BBB) and might be metabolized 

or bind to neuroreceptors, or it might be stored in the vesicles in neurons. With the 

emission data obtained over the duration of the scan, images of the radiotracer 

distribution in the tissue of interest can be reconstructed, and appropriate algorithms, 

including physical corrections, such as scatter and attenuation, can used to 

quantitatively obtain the distribution of radiotracer activity in the ROI tissue. 

The primary objective of my PhD project is to improve the quantitative analysis of 18F-

FDOPA dynamic images to enable greater sensitivity and accuracy in the detection of 

changes in sequential 18F-FDOPA images, which are obtained from positron emission 

tomography/computed tomography (PET/CT) imaging modality. The optimization 

process will be applied to images obtained from a clinical trial with the aim of assessing 

the safety and efficacy of intermittent, bilateral, and intraputamenal glial cell line-

derived neurotrophic factor (GDNF) infusions administrated via convection-enhanced 

delivery (CED) in subjects with Parkinson’s disease (PD). The clinical trial is a 

placebo-controlled, randomised, double-blind study that will include baseline and post-

therapy scans. PET ligands can demonstrate dopamine terminal dysfunction that relates 

to PD, which is a chronic and progressive degenerative neurological disorder and could 

affect other central neurotransmitter systems (Brooks and Pavese 2011). A 

comprehensive model that represents tracer distribution (18F-FDOPA) in the brain and 

ROIs will be selected and modified to be compliant with and suitable for available 

analytical tools. 18F-FDOPA as a PET tracer is used to image the presynaptic side in the 

dopaminergic system and can assess the uptake of radiolabelled dopamine. Therefore, 

during the progression of PD, the level of FDOPA declines, thereby reflecting the level 

of L-dopa and dopamine in ROIs (Sioka et al. 2010). 18F-FDOPA is the tracer that can 
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most frequently be used to investigate dopamine synthesis (Hou et al. 2012). A 

validation step using a simulation of the phantom process should also be performed for 

the suggested model before applying it to PET data. Additional programs will be 

developed to process the phantom’s output data and to perform the kinetic analysis. 

Several quantification approaches will be used to analyse the PET data, including 

mathematical expressions and graphical analysis. In addition, Patlak analysis, which is 

based on regression analysis, will be selected to investigate PET data in this research. 

All data should be obtained from dynamic and possibly static images.  

1.2 Research problem and motivation 

18F-FDOPA tracer is considered irreversible (trapped in tissue), and due to the lack of 

arterial blood sampling in a GDNF clinical trial, images are used as an input function 

for the analysis. Various quantification methods have been introduced to provide more 

accurate results and parameters that allow us to understand the distribution of labelled 

compounds inside the body. In this case, Patlak graphical analysis is the best option as a 

quantitative technique to use for 18F-FDOPA brain images. The Patlak equation is based 

on linear regression to analyse activity in the ROI and requires an input function (blood 

samples or reference tissue images) and dynamic images to obtain diagnostic 

parameters.  

Graphical analysis methods are independent of any particular model structure and are 

considered to be simple for PET analysis. They could be used for a wide range of 

tracers without complicated mathematical compartmental modelling. However, this type 

of analysis can lead to issues. One is the bias or variance introduced, which stems from 

the sensitivity to statistical noise of outlier data. This limitation usually affects the 

parameter estimates’ accuracy when one uses the ordinary least squares method in 

regression analysis. In some images’ voxels, outliers are likely to exist in the regression 



	 4	

analyses and could cause higher false negative rates or higher false positive rates, 

ultimately affecting the diagnosis decision. The effect of outliers is particularly 

problematic, as a simple correction is not available. One could reduce this issue by 

applying other regression methods and reducing noise in PET dynamic images prior to 

the quantification process. Improved methods that optimise the statistical process in the 

Patlak equation and that reduce the noise in images are developed in this thesis and 

implemented on all PET data obtained from the simulated phantom and the GDNF 

clinical trial. The accuracy of the estimates is improved where bias in estimates is 

reduced without a significant rise in variance. 

1.3 Research objectives 

The research methodology in this thesis can be summarised as follows. The first step is 

to generate simulated PET data from the simulated phantom similar to data generated 

from the PET scanner. The features and settings of the scanner, scan protocol, and 

reconstruction algorithms are all considered to obtain dynamic images. Then, improved 

statistical and denoising methods are applied to the simulated PET data. The most 

successful methods are applied again to clinical PET data obtained from the patients. 

These two major steps can be broken down into smaller steps as follows: 

• Using the setting parameters of the PET scanner in PETIC as input for the 

simulated phantom. The values of the time activity curves are simulated to 

generate PET data (chapter5). 

• A Noise is applied to all groups first only for time activity curves (TACs) 

extracted from images (reference tissue and ROI) and then for all dynamic 

images (chapter 5 and 6). 

• The Patlak equation with improved statistical models is applied to quantify and 

analyse PET data from the phantom and the clinical trials (chapter 5, 6, 7 and 8). 
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• PET denoising methods are applied using MATLAB codes and specific image 

processing software. 2D and 3D data-denoising methods are used to reduce bias 

introduced within the data of simulated and clinical PET data (chapter 6 and 7).  

1.4 Thesis structure (outline) 

The rest of this thesis is structured as follows: Chapter 2 provides the medical and 

physical backgrounds of the PET scanner as well as its specifications and applications. 

In addition, the basic concepts of the PET quantification methods are available to obtain 

physiological parameters and evaluate biological systems in the human body. Chapter 3 

first presents the methodology and application of tracer kinetic modelling in PET data, 

and describes the requirements for quantifying images. The second section describes the 

sources of errors in kinetic modelling and the impact on quantitative measurements. The 

third part covers the application of 18F-FDOPA in neurology, including the review of 

previous studies and analysis methods used to monitor and diagnose PD. Chapter 4 

describes all of the methods and materials used and proposed to generate and analyse 

the PET data, including mathematical expressions, functions, and equations applied to 

the data. Chapter 5 reveals all of the results obtained from statistical models 

implemented in the experiments, followed by a discussion and analysis. Chapter 6 

describes methods used to reduce noise in PET dynamic images followed by results and 

discussion. In Chapter 7, approaches were applied to reduce noise in 2D data (TACs) 

are shown and discussed. Successful methods that are approved by simulated data 

applied on clinical FDOPA images in chapter 8 for extra validation. Chapter 9 includes 

a conclusion of all of the results and contributions followed by research directions for 

future work resulting from this thesis. 
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2 Medical and Physical Background 

2.1 Overview 

PET, which involves the labelling of positron-emitting radionuclides, has evolved over 

the past 35 years to become a routine clinical imaging modality. PET allows for the in 

vivo imaging of physiologically and pathologically important molecules such as those 

that contain essential organic elements (e.g. carbon, hydrogen, and oxygen). PET data 

provide relevant molecular and/or metabolic information, which is valuable in providing 

accurate diagnoses and disease evaluations (Mettler and Guiberteau 2011). Labelled 

substances have several advantages, including the high specificity of molecular 

targeting, the ability to use biologically active materials without changing their 

behaviour, and the success of the tracer principle (Ziegler 2005). Unlike X-ray, CT or 

MRI scans, which usually provide anatomical information, PET also gives information 

about the chemical activity in normal and abnormal tissue; various radiotracers are 

available for neurologic, cardiologic, and oncologic applications and for both clinical 

and research purposes (Christian and Waterstram-Rich 2013; Ziegler 2005). This 

chapter provides an overview of PET imaging, as well as discussions of the basic 

concepts of tracer kinetic modelling (TKM) and PET quantification methods.
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2.2  Basic positron physics 

Positrons (positive electrons) are subatomic particles that have a positive charge and the 

same mass and charge magnitude as electrons (which are negatively charged); in other 

words, the positron is the antiparticle of the electron. Positron-emitting radionuclides 

are usually produced when a stable element is bombarded with protons, deuterons, or 

helium nuclei, typically in a cyclotron. The product has an excess of protons, which 

decay by emitting positrons. The five positron-emitting isotopes that are most 

commonly used in PET imaging are carbon-11 (C-11), nitrogen-13 (N-13), oxygen-15 

(O-15), flourine-18 (F-18), and rubidium-82 (Rb-82) (Mettler and Guiberteau 2011). 

The positron travels from its site of origin, loses its kinetic energy, and then reacts with 

a resident electron in an annihilation reaction that generates two gamma photons (511 

keV), which are emitted in opposite directions (Fig. 2-1). This annihilation defines a 

line, and the PET scanner records the interaction so that the data about the event can be 

reconstructed and displayed (Christian and Waterstram-Rich 2013; Mettler and 

Guiberteau 2011). The production of PET tracers requires very expensive equipment 

(e.g., a cyclotron, an automated synthesis module, and a hot cell) to ensure 

radiopharmaceutical quality control (QC) and prepare the precursor (Christian and 

Waterstram-Rich 2013). The radioisotopes used in PET scanning usually have short 

half-lives: C-11, 20.4 min; N-13, 9.97 min; O-15, 2.2 min; F-18, 110 min. and Rb-82, 

0.75 min (Jadvar and Parker 2006). 
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Figure 2-1. Positron decay. A positron (β+) is emitted and interacts with an electron (β-) to form an 
annihilation reaction that results in the emission of two 511-keV photons (gamma rays) roughly 180° 
apart (Mettler and Guiberteau 2011). 

2.3 PET instrumentation 

2.3.1 PET camera overview 

A PET camera consists of multiple rings of detectors that contain scintillation crystals; 

these crystals are linked to photomultiplier tubes (PMTs). The ring design helps detect 

the two photons that emerge in opposite directions from a single annihilation event. The 

simultaneous detection provides localization information, as the event can be assumed 

to have happened on a line between the two detectors. This line is called the line of 

response (LOR), and it helps researchers construct raw data sets to represent the 

projections of the positron tracers that are distributed in the body being scanned. A 

cross-sectional image can be produced using a reconstruction process that is based on 

several algorithms. For a photon to be accepted and used in imaging, it must be 

recorded at a specific energy (about 511 keV) and paired with another photon that 

reaches an opposing detector within a short time window (typically 6 to 12 

nanoseconds, though it varies from one camera to another). These events are used in 

constructing valuable PET images (Mettler and Guiberteau 2011). Scattered photons, 

which have lost most of their energy during Compton scattering before reaching the 

511	keV	photon	

180°	+/-	0.25°	
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detectors, are excluded using an energy window-based methods; photons with specific 

energies that are indicative of random events are excluded, in addition to calculation-

based methods including a single scatter simulation (SSS) technique (Ibaraki et al. 

2016). This imaging method is 3D (i.e. volume-based), which is required so as to 

significantly increase the sensitivity of the camera and compensate for the increase in 

scatter rates (Hogg and Testanera 2010). 

2.3.2 PET scintillation detectors 

Scintillation is the most common principle in PET scanning; it is used in all positron 

systems. In this method, a flash of light is produced when photons interact with crystals 

that are coupled with PMTs. Current PET scanners are full-ring (360-degree) 

multidetector systems that surround the patient. The crystals are grouped together in 

6×6 or 8×8 blocks (i.e., 36 or 64 crystals/block) that are each coupled to about four 

PMTs (Figs. 2-2, 2-3); there are 200–400 blocks per PET camera scanner. Ideal crystals 

should have the following: (1) high stopping power for photons with 511-keV energy, 

thus providing high efficiency and high spatial resolution; (2) low system dead time via 

the rapid decay of intense output light; and (3) accurate scatter rejection due to good 

energy resolution. The dead time is the period when the crystal and PMT are busy 

producing and detecting an event, thus causing a slight delay before another event can 

be detected. All the events that occur during this dead time are lost and cannot be 

recorded. Decreasing dead time is highly important, particularly in 3D acquisitions and 

for short-lived radionuclides (e.g. oxygen-15) (Mettler and Guiberteau 2011). Silicon 

photomultipliers (SiPMs) are an alternative to PMTs; they offer good timing, spatial 

resolution and energy SiPMs can be integrated into PET or MRI scanners because of 

their robustness to magnetic fields. Both types of SiPMs analogue (A-SiPM) and digital 

(D-SiPM) are used in PET applications (Wehner et al. 2014; Xu et al. 2013). New 
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combination PET and CT systems with SiPMs outperform standard scanners in terms of 

image quality; adding the use of time of flight (TOF) could also be advantageous in 

detecting small tumorous lesions, which can lead to more precise disease staging. A 

SiPM array provides close-to-ideal time resolution, and its measured spatial resolution 

is much better than that of currently available scanners (Berg and Cherry 2018; Park et 

al. 2017).  

  

Figure 2-2. A multiple full-ring system of PET 
cameras, with each ring consisting of multiple blocks. 

Figure 2-3. A PET scintillation block 
detector. 

2.3.3 Attenuation correction 

Attenuation the loss of true events due to absorption by the body or scattering out of the 

detector’s field of view (FOV) is usually worse in PET imaging than in other types of 

imaging. In PET, the attenuation likelihood is high because both photons in a pair must 

escape the patient to be detected; PET attenuation could reach as high 95%, which 

means that PET produces more noise, artefacts, and distortion than other imaging 

modalities. Thus, attenuation correction (AC) is necessary; more accurate qualitative 

assessments and more precise quantitative measurements can be performed based on the 

tracer’s uptake. The tracer’s delivery, retention, and clearance determine its uptake in a 

specific tissue. Two methods of correction are commonly used in PET imaging. The 

first is calculated correction, which assumes uniform attenuation and is typically applied 

Groups	of	detector	blocks	

Multiple	full-ring	system	

Crystal	detector	block	

γ	Gamma	ray	
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to the head or brain. The second method, measured correction, uses authentic 

measurements of transmission data and is applied when attenuation is variable; in this 

method, a map of body density is used to correct for the attenuation in various tissues. 

In combination PET and CT scans, X-rays can be used for attenuation correction, as this 

is faster than using radionuclide transmission data and provides an accurate alignment 

of the PET data with the X-ray’s high-resolution anatomical information. Two steps are 

mandatory after obtaining the transmission images but before applying the 

reconstruction algorithms to the PET data, Firstly, as the X-ray’s energy must be lower 

than 511 keV, all transmission data must be adjusted to construct a suitable attenuation 

map for the annihilation photons. Secondly, image segmentation must be used to reduce 

pixel noise in the images. This process involves selecting image regions for several 

types of identified tissues. All regions with the same tissue type are identified, and the 

pixel values are replaced with new values that represent the known linear-attenuation 

coefficients for that type of tissue (Christian and Waterstram-Rich 2013; Mettler and 

Guiberteau 2011). 

2.3.4 System sensitivity 

A PET camera’s sensitivity is defined as the number of true events recorded divided by 

the activity concentration; multiple factors including scanner geometry, crystal 

efficiency, and photon attenuation in tissue can influence this measure (Christian and 

Waterstram-Rich 2013; Mettler and Guiberteau 2011). The detectors’ stopping 

efficiency for 511-keV particles also affects the system’s sensitivity. The scintillation 

detectors provide the highest stopping power of any detector type and also have good 

energy resolution. A highly sensitive scanner records a high number of coincidental 
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events in a fixed amount of time and has a fixed radioactivity amount in its FOV; such 

scanners have a strong signal-to-noise ratio (SNR) (Bailey et al. 2005a). 

2.4 PET image acquisition and processing 

A common mode in PET imaging is to scan the whole-body by moving the table in 

steps to obtain segmental views, which can then be used to construct contiguous images. 

The scan usually extends from the base of the brain to the mid-thigh area. For low-

scatter scans such as those in brain studies, 3D imaging is routinely used. The data are 

then processed and converted to images using either filtered back projection (FBP) or 

iterative reconstruction. The FBP method is simple and fast; the iterative algorithms are 

used due to the complexity of the 3D data (Tong et al. 2010). The iterative methods are 

used to refine the pixel-estimation values and thus obtain more accurate reconstructions 

of the tracers’ distribution in the body. The iterative process starts with a guess about 

the radioactivity distribution. The data are then forward-projected based on the 

scanner’s geometry, and the results of these projections are compared to the measured 

raw data; error-projection is then used to correct the estimate. The new estimate is then 

forward-projected again, and the same process of comparison and correction is repeated 

to produce a new estimate. These steps are continued until statistical agreement between 

the estimated and measured data is reached (Ziegler 2005). Iterative reconstruction is 

common because it produces higher image quality than the FBP method. However, 

iteration reduces the images’ SNR. The most common types of iteration are the 

maximum likelihood expectation maximization (MLEM) and ordered subset 

expectation maximization (OSEM) methods (Alessio and Kinahan 2006). Increasing the 

number of iterations also increases the likelihood that the estimated image (representing 
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the radiotracer distribution within the patient) is accurate. The process of estimating the 

distribution is known as convergence (Zaidi 2006). 

2.5 Combination PET/CT imaging 

Determining the anatomic location of an event in a PET scan is quite difficult due to 

increased uptake in some areas. Knowing the exact location of the uptake is essential 

when considering normality and abnormality, so it is best to perform PET and CT scans 

sequentially, CT then PET and from the same position; this eliminates the need to fuse 

separate scanned images. The advantages of using PET and CT in combination include 

accurate AC, short imaging time, accurate anatomic localization for detecting lesions, 

equivocal interpretation reduction, and simultaneous anatomic and physiologic 

information. A modern PET/CT combination scanner appears to be a single machine but 

actually comprises a CT and a PET together in one scanner (Fig. 2-4). The CT data are 

also used to provide precise anatomic localization in the AC of the PET data. The 

combination CT and PET imaging is used to progressively strengthen the metabolic and 

anatomic information, which can then be used in diagnosis, staging, and therapy (Pinilla 

et al. 2011; Vaidya et al. 2012). 

 

 
Figure 2-4. A PET/CT scanner. 

2.6 Full-body PET scanner  

The EXPLORER (EXtreme performance Long REsearch scanneR) scanner is a 2-

meter-long total-body PET system that is meant to overcome the limitations of current 
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PET scanners (Fig. 2-5). The FOV of a current clinical PET scanner is between 15 and 

25 cm, which limits coverage of the body. Moreover, the EXPLORER system offers 30 

or more times better efficiency than current scanners; as a result, the radiation activity 

for EXPLORER can be as low as 10 MBq, as opposed to the 200-500 MBq required in 

current PET scanners. Consequently, PET can be allowed for paediatric and adolescent 

populations, which will help in the study and monitoring of many chronic diseases 

(Xuezhu et al. 2017). 

 

Figure 2-5. The EXPLORER (EXtreme performance Long REsearch scanneR) PET scanner. 

2.7 Radiopharmaceuticals: Fluorine-18 

Fluorine-18 is a common radioisotope that is commonly used in PET. It has a half-life 

of 109.7 minutes and can be produced using a nuclear reaction with either 18O(p,n) or 

20Ne(d,a). The preferred method is to use 18O-labelled water targets, as this produces 18F 

in yields greater than 74 GBq. However, this process has high costs and low availability 

of materials. One of the most common PET tracer labels involving 18F is 2-deoxy-2-

[18F]fluor-D-glucose (FDG) (Bailey et al. 2005b). The use of 18O gas produces 18F2, 

which allows for efficient production of another tracer, such as 18F-FDOPA (6-

[18F]fluoro-L3,4-dihydroxyphenylalanine). The [18O]2 double-shoot radionuclide 

production approach yields more [18F]F2 but less carrier F2 than the 20Ne production 

method, which yields a low specific activity of 18F-FDOPA. The [18O]2 double-shoot 

radionuclide production method also leads to higher amounts of FDOPA and a higher 
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specific activity (Luurtsema et al. 2017). 18F-FDOPA is used in the imaging of brain 

dopamine neurons. As an investigational diagnostic PET pharmaceutical, 18F-FDOPA is 

approved for clinical use in the United Kingdom. The normal biodistribution for 18F-

FDOPA is also the normal distribution of L-DOPA (Heiko Schöder 2013); 18F-FDOPA 

is also known as 

• L-3,4-Dihydroxy-6-[18F]fluorophenylalanine, 

• Fluorodopa F18, 

•  [18F]Fluorodopa, 

• 18F-6-L-fluorodopa, 

• [18F]-fluoro-L-DOPA, 

• L-6-[18F]fluoro-3, 4- dihydroxyphenylalanine, and 

• 6-[18F]Fluoro-L-DOPA. 

The common abbreviations for this substance are FDOPA, 18FDOPA, 18F-FDOPA, and 

18F-DOPA. In neuroimaging, the most common targets for 18F-DOPA are the dopamine 

receptors in the brain; in oncology, the tracers’ targets are amino acid transporters and 

overexpressed DOPA decarboxylase. The image processing is usually focused on the 

regional distribution of neurotransmitter dopamine in the brain and on the amino acid 

uptake and metabolism in tumours (Heiko Schöder 2013; Leung 2011). The main 

clinical applications of PET/CT imaging with 18F-DOPA are assessments of the 

striatum, brain tumours, neuroendocrine tumours (NETs), and congenital 

hyperinsulinemic hypoglycaemia (Chondrogiannis et al. 2013). The positron-emitting 

fluorinated L-DOPA analogue is 6-18F-fluoro-L-3,4-dihydroxyphenylalanine (Fig. 2-6). 

Dopamine is unable to cross the BBB, but 18F-FDOPA, which is the analogue of L-

DOPA, can cross the BBB; once in the brain, it is converted to 6-18F-fluorodopamine 

through decarboxylation (Fig. 2-6) . 
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Figure 2-6. FDOPA decarboxylation. 

2.8 Biodistribution and metabolism of 18F-DOPA in neurology and 

oncology 

Because 18F-FDOPA can cross the BBB, where it is converted in the striatum by dopa 

decarboxylase (the enzyme used is amino acid decarboxylase, or AADC) into 18F-

fluorodopamine (FDA) and then stored in intraneuronal (presynaptic) vesicles. Next, 

when the neuron activation triggers the presynaptic vesicles, 18F-fluorodopamine 

releases and binds to the dopamine receptors. Catechol-O-methyl transferase (COMT), 

which is distributed uniformly throughout the brain, converts 18F-FDOPA to 3-O-

methyl-6-fluoro-L-DOPA (3-OMFD). The administration of carbidopa and entacapone 

inhibits dopa decarboxylase and COMT, respectively, and can enhance the availability 

of FDOPA in the brain. Entacapone enhances the metabolism of plasma FDOPA from 

16% to about 50% at 80 minutes after the injection (Ruottinen et al. 1995). The non-

dopaminergic brain regions have limited metabolic processes (Heiko Schöder 2013). In 

neurology, 18F-FDOPA is used for the study of presynaptic striatal dopaminergic 

function in neurologic disorders. Several psychiatric syndromes have been associated 

with abnormalities in dopamine synthesis or storage, as well as with dopamine-receptor 

expression, density, and activation (Leung 2011; Patel et al. 2010). PET imaging could 

be helpful for Parkinson’s disease evaluation and for the differential diagnosis of 

various related syndromes (Sioka et al. 2010). In oncology, 18F-FDOPA is an excellent 

tracer for imaging NETs, including pheochromocytomas, extra-adrenal paragangliomas, 

L-Amino Acid Decarboxylase 
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medullary thyroid carcinomas, and gastro-entero-pancreatic tumours (Balogova et al. 

2013). Researchers have also used 18F-FDOPA to image brain tumours. This tracer 

accumulates in both high-grade and low-grade gliomas. In addition, based on limited 

data, the uptake of 18F-FDOPA in radionecrosis is lower than in recurrent brain tumours 

(Chen et al. 2006). The intensity of tumour uptake may correlate with the tumour’s 

grade and cellularity (Pafundi et al. 2013). Changes in 18F-FDOPA uptake in brain 

tumours may be useful in the creation of early-response assessments (Harris et al. 

2012). 

2.9 PET’s advantages in neuroimaging 

Neuroimaging has been used to image the brain non-invasively and to provide both 

structural and functional information. PET is steadily progressing and expanding 

understanding regarding the pathophysiological mechanisms of neurological and 

psychiatric diseases; it is also useful in the clinical management of patients. PET allows 

for in vivo, non-invasive, 3D imaging of functional disorders. In recent years, the non-

invasive tomographic imaging of the brain with PET has improved through the use of 

dedicated instrumentation and advancements in radiopharmaceutical synthesis. The 

major advantage of PET is its ability to provide an absolute measure of regional 

cerebral blood flow; this measure is significant in cognition studies. Another major 

strength of PET is its ability to map the distribution of particular receptors in the brain 

using appropriate radioligands (i.e. radioactive chemicals that are lodged in the 

receptors and that behave like neurotransmitters). Furthermore, this method allows for 

the imaging and mapping of receptor regions (Kosslyn et al. 2001). 
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2.10  Dopaminergic areas in the brain 

Dopamine plays important roles inside the brain, including in motor control, motivation, 

arousal, cognition, and reward. There are relatively few dopaminergic neurons (i.e. 

those neurons that have dopamine as a primary neurotransmitter)—about 400,000 in the 

human brain—and their cell bodies are confined to seven relatively small brain regions 

(Schultz 2007). These regions are assigned labels that start with the letter A (for 

aminergic). The regions A8 through A14 are the dopamine neurotransmitters (the 

regions A1 through A7 contain norepinephrine neurotransmitters) (Ferry et al. 2014). 

The dopaminergic regions are the substantia nigra, ventral tegmental area (VTA), 

posterior hypothalamus, arcuate nucleus, periventricular nucleus, and zona incerta. The 

substantia nigra is a small midbrain region that is part of the basal ganglia. In this 

region, the dopamine neurons are found mainly in a section called the pars compacta 

(cell group A8)—or nearby (group A9) (Björklund and Dunnett 2007). The dopamine is 

transmitted from the substantia nigra pars compacta to the dorsal striatum (specifically, 

the caudate nucleus and putamen). Parkinsonian syndrome results when a large fraction 

of neurons in this area have died (Christine and Aminoff 2004). 

The VTA cell group (A10) is the largest group of dopaminergic cells in the human 

brain. The nucleus accumbens and prefrontal cortex (among other areas) receive 

projections from these dopaminergic neurons (Björklund and Dunnett 2007). Neurons 

in this area play a main role in reward and other motivational aspects. The striatum is 

involved in the highest levels of motor control, including motivation and decision-

making; the nucleus accumbens is the limbic part of the striatum. Thus, the VTA’s role 

in motivation and decision-making is structurally analogous to the substantia nigra’s 

role in low-level motor control (DeLong and Wichmann 2010). The dopaminergic cells 

of the posterior hypothalamus (group A11) project to the spinal cord, but their function 
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is not well-established. There is some evidence that pathology in this area plays a role in 

restless-legs syndrome (Paulus and Schomburg 2006). Dopamine in the cells of the 

hypothalamus’ arcuate nucleus (cell group A12) and periventricular nucleus (cell group 

A14) influences the pituitary gland’s secretion of the hormone prolactin (Ben-Jonathan 

and Hnasko 2001). The zona incerta cells (group A13) project to several areas of the 

hypothalamus; these cells influence the gonadotropin-releasing hormones, which are 

necessary for activating the development of reproductive systems during puberty in both 

males and females (Ben-Jonathan and Hnasko 2001). 

2.11 Dopamine receptors 

Dopamine receptors are G-protein-coupled receptors that are commonly found in the 

central nervous system. Dopamine is the primary endogenous ligand for dopamine 

receptors . Dopamine receptors are involved in many neurological procedures, including 

motivation, pleasure, cognition, memory, learning, and fine motor control, as well as the 

modulation of neuroendocrine signalling. Abnormal dopamine receptor signalling or 

dopaminergic nerve function cause several neuropsychiatric disorders (Lalchandani et 

al. 2013). There are five subtypes of dopamine receptors: D1, D2, D3, D4, and D5. 

Another categorization has been suggested in which there are two families of receptors: 

the D1-like family (D1 and D5), and the D2-like family (D2, D3, and D4). The D1 

receptors have extensive expression throughout the brain, and the D1 and D2 receptor 

subtypes are found at 10–100 times the levels of the D3, D4, and D5 subtypes 

(Ellenbroek et al. 2014; Hurley and Jenner 2006). The D2 gene product permits a short 

form (D2S) and a long form (D2L), the latter of which includes an additional 29 amino 

acids. The D1 and D2 receptors comprise the majority of dopamine receptors in the 

striatum (Cumming 2009). The D1-like family receptors couple to the Gs protein and 

activate adenylyl cyclase, whereas the D2-like family receptors are prototypical of the 
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G-protein-coupled receptors, which inhibit adenylyl cyclase and activate K+ channels 

(Missale et al. 1998). 

2.12 PET tracers in the dopaminergic system 

The dopaminergic system has been implicated in several neurological and psychiatric 

disorders. The evaluation of altered dopamine synthesis and receptor densities is 

essential in determining the mechanisms that underlie the pathogenesis of these diseases 

and of developing therapies for them. Various suitable radiopharmaceuticals are used in 

combination with PET to investigate these factors in vivo, including 18F-FDOPA, 18F-

FMT, 11C-dihydrotetrabenazine, 11C-nomifensine, and various radiolabelled cocaine 

derivatives. These tracers can be used to measure dopamine synthesis and transport; 

such measurements are required to investigate presynaptic functions. In addition, 

[11C/18F]-labelled tropane analogues are clinically used. Postsynaptically, the five 

subtypes of the dopamine-receptor family (D1 through D5) require the investigation of 

high-affinity PET radioligands. The tracers for the D1 receptor subtype are 11C-SCH 

23390 and 11C-NNC 112, whereas 11C-raclopride, 11-CMNPA, and 18F-DMFP are the 

usual tracers for the D2 and D3 subtypes (Sioka et al. 2010). For extrapyramidal D2-

receptors, 18F-Fallypride and 11C-FLB-457 are suitable PET tracers (Cervenka 2018; 

Elsinga et al. 2006). The [11C/18F]N-methylspiperone radioligand shows a high affinity 

for the D4 receptor (Mach and Luedtke 2018). However, there is no suitable radioligand 

for PET imaging of the D4 receptor in vivo. Various promising clinical trial studies 

(both in vitro and ex vivo) could lead to a suitable D4-selective PET radioligand, 

however. The D5 receptor subtype is closely related to the D1 subtype, as the ligands 

for D5 also show high affinity for D1 as well. An issue related to imaging D5 in brain is 

that its density is quite low compared with that of the D1 subtype; as a result, no 

successful PET ligand for D5 has yet been reported (Prante et al. 2013). 
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2.13 Basics and concepts of PET tracer kinetic modelling 

2.13.1 Overview 

Quantitative radioactivity measurements are produced from a ROI, tissue, or organ. 

With respect to the appropriate selection of tracer and imaging conditions, the 

physiological characteristics of the ROI (blood flow, receptor concentration, etc.) 

significantly influence the measured activity values. TKM is meant to describe, in 

detail, the relationship between the measurements and the ROI’s physiological or 

biochemical parameters while considering all of the biological factors that contribute to 

the tissue’s radioactivity. Two factors contribute significantly to the radioactivity 

concentration in any ROI tissue. Firstly, the most important factor is the tissue’s 

physiology or biochemistry (e.g. its blood flow or metabolism); the next most important 

factor is the input function, which controls the delivery of the tracer to the target tissue 

or organ. This is represented by a time course (which shows the varying activity over 

time following the administration) for the tracer’s concentration in the blood or plasma. 

The relationships between these factors and radioactivity concentration in tissue can be 

described using mathematical equations; together, these equations comprise a model. 

The model is considered to be full if the prediction of the radioactivity concentration’s 

time course is known; this information is usually extracted from the tissue’s 

physiological or biochemical variables and from the input function. A simpler model 

could be used to predict only certain aspects, such as the initial slope, the area under the 

curve, and the activity concentration of both the ROI and a reference region from the 

tissue-concentration curve (Carson 2005).  

There are no absolute rules regarding the essential components in designing a model, 

which can make the process very complex. A successful method for developing a model 

must consider limitations related to instrumental availability, statistics, and patient 
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logistics. Compromises must be made to establish a useful model; any model with 

100% accuracy is likely to be impractical. Thus, a simpler model with less accuracy is 

often more useful. In model-based methods, knowing the tracer’s behaviour and the 

study’s conditions (e.g. the tracer administration, the scheme, the methods for scanning 

the blood, and the data collection and processing methods) can help in defining the 

physiological parameters (Carson 2005). Study conditions are used to create a dynamic 

data-acquisition protocol, in which multiple scans are performed after the tracer 

administration so as to provide functional information. Dynamic data acquisitions are 

used to extract physiological or biochemical parameters through the use of 

mathematical tools; this step is known as kinetic analysis. Dynamic data can be used to 

produce time-activity curves (TACs), which illustrate the change in the activity 

concentration over time for various ROIs, volumes of interest (VOIs), or voxels 

(Erlandsson 2011). 

TKM analysis is based on a compartmental model of tracer behaviour and consists of a 

series of compartments. These compartments show the tracer concentrations in various 

regions, as well as the rate constants that govern the transfer of the tracer between these 

compartments. The model parameters can be determined using information about the 

tracer’s delivery (as an input function); this information is represented by the time 

course of the tracer’s concentration in the arterial blood or plasma. Scholars in various 

clinical areas (e.g. cardiology, oncology, and neurology) have found kinetic analysis to 

be very useful for quantification as part of diagnoses (Erlandsson 2011). The basic 

mathematical tools and concepts used in TKM are discussed later in this chapter.
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2.13.2  Dynamic PET scan 

The rate of metabolism which can be calculated by applying a pharmacokinetic model 

to dynamic PET data is the gold standard of PET quantification. This method requires at 

least 60 minutes; in addition, when used with a CT study, this method for example will 

cover field of view (FOV) around 70 cm ✕ 15 cm in brain studies. One advantage of this 

method is that has high validity because it is a simplified quantitative method 

(Boellaard 2009). 

2.13.3 PET image quantitation 

Visual inspection of PET images is still the main interpretive tool for many diseases. 

This method is satisfactory, but in some cases, visual interpretations are challenging, 

which can affect the results. Thus, various quantification methods have been introduced 

to provide more accurate and less observer-dependent evaluations for clinical cases 

(Boellaard 2009). Quantitative techniques are important. Firstly, they ensure the 

accuracy of the interpretations as long as there are no physical artefacts. Secondly, they 

enable the use of the TKM methodology to model the distribution of a labelled 

compound in the body based on the tracer’s time variance; this model subsequently can 

be used to estimate other physiological parameters (Meikle and Badawi 2005). During 

image reconstruction, the images’ intensity should be proportional to the ROI activity 

concentration. This is preferable for comparison with different activity distributions in 

different regions, as it creates distinctions between normal and diseased tissue; this 

method is essential to dynamic and metabolic studies.  

The image’s voxel intensity is also proportional to the radioactivity in the voxel. It is 

often helpful to calculate the amount of radioactivity in a voxel or other volume in the 

ROI, which is known as PET image quantification (Cherry et al. 2012). There are 
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several methods for quantifying tissue radioactivity and uptake, and each is discussed 

below either briefly or in detail, as they relate to this research. 

2.13.4  TKM in PET 

A tracer’s uptake represents its concentration during the acquisition and is dependent on 

the tracer’s kinetics in a specific tissue. Kinetics require a characterization process that 

provides improved information from the biological data and images. TKM is meant to 

describe the relationship between the physiological parameters and the measurable data 

with regard to the uptake and tracer metabolism. TKM is based on mathematical 

concepts that can be applied to the tissue. The advantages and disadvantages of TKM 

are discussed in depth in the next chapter, as are the ways of developing such models. 

Many researchers have successfully applied TKM models in their analyses. 

2.13.5 Modelling process 

After selecting the radioactive tracer, several steps must be considered to ensure that the 

model is useful. These steps are illustrated in Figure 2-7 (Carson 2005). 

 

Figure 2-7. Steps for developing a model. 

A priori information about in vivo tracer behaviour is essential to overcome statistical 

noise when specifying a complete model that involves many parameters. An initial 

modelling study is performed to design a simple model and to determine which 

parameters can be identified and developed. A validation step must then be performed 

to improve the model and to prove that its assumptions and physiological parameters are 
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accurate. After that, a simpler protocol can be applied for routine patient use. This step 

may involve limited blood measurements and simple data analysis. The optimization 

process follows; it involves determining the sources of error and reducing them so as to 

finalize the development of a model-based method for producing reliable physiological 

measurements. The characteristics of the instrumentation used in scans are important, as 

they affect the form of the model; the measurements’ reconstruction algorithms, 

accuracy, and noise level could also affect the number of parameters that can be 

estimated (Carson 2005). 

2.13.6 Types of tracers and models 

Tracers are present in tissue at negligible mass concentrations, so they cause little or no 

change in the saturation of enzymes or receptors. Figure 2-8 shows the paths of a tracer 

after intravenous injection. 

 
Figure 2-8. Tracer delivery, uptake, binding, and clearance in the ROI tissue. 

 
The tracer in this example is delivered to the ROI tissue through arterial inflow and then 

carried away through venous outflow; the transfer occurs when it crosses the capillary 

membrane. In the tissue, the tracer may bind (irreversibly or reversibly) to intra- or 

extracellular sites; it can also be metabolized (XP in Fig. 2-8) into another chemical 

form and thus move out of the tissue and into the blood. Each tracer is designed to 

provide information about a specific function of the ROI, such as blood flow or 

metabolic processes. Although the physiological process under study is the primary 

factor in the control of tracer uptake and distribution, other factors also slightly affect 
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the concentration, distribution, and kinetics of receptor-binding radiotracers; these 

include regional blood flow, plasma–protein binding, capillary permeability, non-

specific tissue binding, receptor association and dissociation rates, free-receptor 

concentration, the tracer’s clearance from the blood, the tracer’s metabolism, and the 

regional uptake of the radioactive metabolites. These factors have only a minor net 

effect if the tracer is well-designed, however. A tracer can be a direct radiolabelled 

version of a natural compound, an analogue of a natural compound, or a unique 

radiolabelled drug. The chemical features of the analogue compound differ significantly 

from the original compound, so the measured kinetics are different from that of the 

natural element; this needs to be corrected. Firstly, the relationship between the 

radiolabelled analogue material and the natural compound must be determined, and then 

the relationship must be assessed under various pathological conditions (e.g. the lumped 

constant in FDG) (Carson 2005). 

Several approaches have been suggested for extracting useful physiological information 

from tissue radioactivity in PET images. All these approaches share basic assumptions, 

particularly the principle of mass conservation. The stochastic or non-compartmental 

approach requires minimal assumptions regarding the underlying physiology of the 

uptake and metabolism. These methods’ measurements do not require explicit details 

for all the specific pools or compartments that a tracer can enter. In contrast to the 

stochastic model, the distributed model provides a full description of the radiotracer, 

including its physical locations, biochemical forms, and concentration gradients within 

various physiological domains. Scholars have developed many distributed models for 

capillary–tissue exchange, which is noteworthy, as this exchange is usually the first step 

in the uptake of any tracer. Another approach, compartmental modelling (CM), is meant 

to reduce the complexities found in the stochastic and distributed models. 

Compartmental models provide some details about the underlying physiology but do 
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not include the concentration gradients. One of the most common applications of CM is 

for the mathematical description of a tracer’s distribution in the body. The main 

principle of this type of modelling involves assigning organs or tissues (or groups of 

them) to individual compartments, after which the kinetics are defined both within and 

outside of each compartment. This is very useful when the TAC of blood or urine is the 

primary measurable data. In a compartmental model, if the tracer both enters and leaves 

the ROI through the blood, there is no need to consider other bodily regions when 

evaluating the ROI’s physiological features (Carson 2005). Scholars have introduced 

several quantification models to provide more accurate results and more parameters; 

this allows for more knowledge regarding the distribution of labelled compounds inside 

the body. Figure 2-9 shows an example of the most common methods in PET imaging 

analysis, which are usually categorized as semi-quantitative and quantitative methods. 

Semi-quantitative methods include the standardized uptake value (SUV) and the ratio of 

tissue to normal (reference) tissue (T/N). These types of analysis do not require an input 

function or a dynamic image acquisition. The quantitative methods include fractional 

uptake rate (FUR), graphical analysis (GA), and CM; each of these requires an input 

function and dynamic images to ensure that the quantification analysis is complete 

(Turkheimer et al. 2014). 

  

Figure 2-9. Common quantification methods in PET image analysis. 
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2.13.6.1  Standardized uptake value 

SUV is one of the most commonly used methods in PET imaging quantification. 

Accurate SUVs are usually calculated from images of the targeted organ or ROI that 

have undergone physical corrections including AC, scatter, decay, deadtime and partial 

volume corrections. These images are created using special software that extracts pixel 

values from the images’ uptake regions at any time but usually 1 hour or 90 min after 

injection is preferable where the tracer distribution is stable; there is some evidence 

suggesting that 2 hours may be a more appropriate waiting period for certain types of 

tumours (Mettler and Guiberteau 2011). SUV is defined by Eq. 2-1 below: 

SUV= Mean ROI activity (mCi/mL)
Administered activity (mCi/body weight (g)

=grams/mL  Eq. 2-1 

SUV represents the PET tracer’s uptake within the ROI, as measured at a certain 

interval after the tracer’s injection and normalized to the dose criteria (e.g. body 

weight); Eq. 2-1 shows how to normalize SUV to body weight. The mean ROI activity 

represents the average activity concentration in the specified volume of interest or the 

maximum value. The administered activity is the dose of tracer that is administered 

after correcting for physical decay (Boellaard 2009). 

2.13.6.2 Ratio of tissue to normal (reference) tissue 

The T/N ratio does not demand cross-calibration of the PET scanner and the dose 

calibrator, and the PET data do not need to be corrected for physical decay. Thus, the 

T/N ratio is considered more robust than the SUV. The T/N technique is often the first 

option for brain-receptor studies, and it can be used before validating any model. In 

receptor studies, a reference tissue such as the cerebellum must be established; in 

diagnostic brain studies, the other hemisphere can be used to calculate an asymmetry 

index. For tumours, healthy tissue can be used as a reference when calculating the T/N 
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ratio. The limitations of this technique include the difficulty of finding ideal reference 

tissue and the significant noise in the data obtained from the tissue due to the low tracer 

uptake (Ciarmiello and Mansi 2016; Kostakoglu and Valk 2006).  

2.13.6.3 Fractional uptake rate 

FUR is a measurement of the rate of a tracer’s movement from the blood into various 

organs. It is simply the fraction of the tracer that organs have taken up from the blood 

(per unit time). FUR is calculated as a ratio of tissue activity at time T to the integral of 

the plasma activity from time 0 to time T; it can be expressed as in Eq. 2-2: 

FUR = Ctissue (T )

Cplasma (t)dt0

T
∫

 Eq. 2-2 

The unit of FUR is min-1, and blood sampling is required from the injection until the 

end of scan. SUV can be calculated from the late PET scan. In this calculation, plasma 

TAC is integrated from the beginning of the injection time (0) to the midpoint of the 

PET time frame, either for each time (if the PET scan involves several frames) or for the 

middle time of the PET scan (if the scan has a single frame). The FUR value is obtained 

by dividing the mean tissue concentration by the integral of the plasma activity 

(Kotasidis et al. 2014; Rutland et al. 2000). 

2.13.6.4  Graphical analysis 

Another approach involves the integration of the differential equations that describe the 

kinetic models. This method can produce other equations and yield data that can be 

plotted in a graph. A straight line is then fitted to the points, and the slope and intercept 

of this line indicate various characteristics of the tracer. This approach is also termed 

linearization because it involves converting nonlinear parameters into estimated linear 

ones. This method is useful in voxel-based analysis as well (Erlandsson 2011). A 

method known as Logan GA (Logan et al. 1990) is used for reversible tracer’s 
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behaviour; another method, Patlak plot analysis (Patlak and Blasberg 1985) is used for 

irreversible tracers. The selection of the quantification method includes trade-offs 

regarding bias, variance, and practicality. To increase the validity and accuracy of a 

chosen model, various iterations can be used a simplified model and a complex one, for 

example so as to compare the estimated outcome measures (Erlandsson 2011). More 

discussion of Patlak GA and the methods for selecting the appropriate model are 

covered in the following chapter. 

2.13.6.5 Compartmental modelling 

Serious assumptions are required in TKM. Firstly, the physiological processes that 

affect the measurements must remain in a static state. Secondly, the administered 

radioligands (tracers) must not affect the physiological or biochemical processes being 

investigated. Thirdly, the tracer concentration must be homogeneous within each 

compartment. Scholars have often used compartmental models to describe physiological 

or biochemical systems. In these systems, the tracer is transported between 

compartments, which are represented by separate regions in the body (e.g. vascular, 

interstitial, and intracellular space). The transfer rate from one compartment to another 

is proportional to the original compartment’s concentration and the first-order rate 

constant. A differential equation system is applied to describe the compartmental 

model; in this system, each equation relates to the sum of all transfer rates (both to and 

from any specific compartment, i), thus forming the following equation (Erlandsson 

2011): 

d
dt
Ci = (kijC j (t)− k jiCi (t));i =1,..N

j−1,..N
j/i

∑  Eq. 2-3 

In this equation, Ci(t) is the tracer concentration in compartment i, N is the number of 

compartments in the model, and kij is the constant rate of transfer of the tracer from 
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compartment j to compartment i. Compartmental models can be categorized as 

reversible or irreversible. In the latter type, at least one compartment does not have an 

outflow. A tracer’s rate constants are usually termed as K1 (capitalized) when the 

transfer is from the blood to the tissue and as k2 (lowercase) when the transfer is from 

the tissue to the blood. Any additional rate constants in the model are referred to as k3, 

k4, and so on. K1 corresponds to a clearance term and has a similar unit to that of blood 

flow: mL/min/mL or mL/min/g (i.e. mL of blood or plasma per minute per mL or g of 

tissue). On the other hand, ki  must be greater than or equal to 2 and is expressed in min-1 

(Erlandsson 2011). This inverse time unit reflects the fraction of tracer molecules in a 

specific compartment that will move to another compartment each minute. The tracer’s 

movement-rate constants are defined based on physiological interpretations of the 

source and destination compartments; this allows for the quantitative estimates or 

indices of the physiological parameters to be obtained. Estimation of one or more of 

these rate constants based on the tissue’s radioactive measurements is the underlying 

goal of all modelling methods (Carson 2005). Figure 2-10 shows examples of various 

compartmental models in which the compartments are represented by rectangular boxes. 

The rate constants are labels on the arrows between compartments; the arrows also 

show the tracer’s movement direction. The blood is usually considered a compartment 

and is accounted for with a primary data set, which is used to estimate the rate constants 

for the model. Blood measurements are sometimes treated as known values rather than 

as concentration values that the model needs to predict (i.e. the blood is not counted as a 

compartment) (Carson 2005). 
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Figure 2-10. Examples of compartmental models. Ca is the tracer concentration in arterial blood, and C1, 
C2, and C3 are the concentrations in compartments 1, 2, and 3, respectively. K1 is the rate constant for 
transfer from the blood to the tissue, and k2, k3, and so on are the rate constants of the tracer movements 
between compartments. (A) is the simplest compartmental model; it shows only one tissue compartment, 
with irreversible uptake. This is used for radioactive microspheres or for tracers that are trapped in tissue. 
(B) shows one tissue compartment that exhibits reversible tracer uptake, which is common in tracer 
measures of local blood flow. (C) includes two tissue compartments, which is usually used when the 
tracer is either metabolized into another form (such as deoxyglucose) or returned to the blood. (D) is a 
three-tissue compartmental model, which usually represents a receptor-binding ligand; the compartments 
represent a free tracer, a tracer specifically bound to a receptor, and a tracer non-specifically bound to 
other tissue elements (Carson 2005). 

The interpretation of the compartmental models starts by solving Eq. 2-3 with the 

Laplace transform tool. The resulting equation is commonly used in solving linear, first-

order differential equations such as Eq. 2-3, and it can be defined as: 

F (s) = est f (t)dt
0

∞

∫  Eq. 2-4 

In this equation, s is a complex Laplace-space variable. Complex compartmental 

systems can be solved and translated using the properties illustrated in Table 2-1 

(Erlandsson 2011).	

Table 2-1. Laplace transform properties. 

Time domain Laplace domain 
f(t) F(s) 
k k/s 
ekt 1/(s k) 
ag(t)+bh(t) aG(s)+bH(s) 
gʹ(t) sG(s) g(0) 
g(t)⊗ h(t) G(s)H(s) 
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In this table, k, a, and b are constants; t and s are variables; g(t), G(s), h(t) and H(s) are 

all derivation functions; and ⊗  is the convolution operation. 

The solution of a biological systems model is usually expressed as: 

CT (t) = HN (t)⊗Ca (t)  Eq. 2-5 

Here, Ca (t) is the input function, and CT (t) 	is the output function; ⊗  represents the 

convolution operation, and HN (t) 	is the model-impulse response function. HN (t) 	has 

the following general form (Erlandsson 2011): 

HN (t) = φi
i=1

N

∑ eθit  Eq. 2-6 

Here, φi and θi are rate constants functions of the model, and N is the number of 

compartments. The number of model-tissue compartments is equal to the number of 

terms in the impulse equation. After this impulse function is determined, the rate 

constants and individual parameters can be estimated (Erlandsson 2011). 

2.13.7 Input-function methods 

The distribution of the tracer in the body during PET imaging is represented as a 

function of time and the ROI; it can be observed in the vascular system. The measured 

signal in the PET image can be produced from the labelled molecules as administered 

(as with the free radiotracer); accumulated and transformed within the cells (as in 

metabolism); rejected to the blood (as with metabolites); or excreted from cells, at 

which point the kidneys filter them out or they re-enter the cells (as in recirculation). 

The factors that affect the PET data include the administered tracer dose, the duration of 

tracer administration, the tracer’s behaviour in tissue, and the data-collection time. The 

process of delivering the tracer to the tissue is a function of time, and it represents the 



	

	 34	

input (also known as the excitation); the data measured with a PET camera is the output 

(also known as the response). The input function is defined as the radiotracer’s 

concentration in the blood, which is also called the blood curve or the plasma curve 

(Bentourkia 2011). 

Many equations need to be applied to the input function in order to produce the output 

PET data. The input function is essential to any PET quantification process, but the 

importance of the measurement and analysis protocols also must be stated. The 

measured data is reconstructed in various time frames; in order to observe the uptake of 

the radiotracer, the first frame must be narrow (especially for a bolus injection). Errors 

in the shape and amplitude of the input function lead to inaccurate tissue data and biased 

constant rate values. For image-based TKM, several techniques can be used, including 

manual sampling, automatic sampling, and image-based input functions (Bentourkia 

2011). The manual and automatic sampling techniques are based on blood samples 

collected during the scan. Due to that procedure’s difficulty for the patients, we instead 

used the image-based technique to obtain the input function for our quantification 

project.  

In the image-based technique, there is no need for blood sampling or for measurement 

or calibration procedures. There also is no or a little mathematical delay or dispersion in 

the input function; in addition, the limitation in PET’s spatial resolution has a 

considerable affect. The image-based input function takes the same unit of the same 

tissue’s TAC, which is expressed as the count per voxel per second or as Becquerels per 

voxel (Bentourkia 2011).  

2.13.8  Standards and recommendations for PET quantification 

The standards of the National Electrical Manufacturers Association (NEMA), number 2 

(NU2) standardized the basic characteristics of a PET, or PET/CT, scanner. These 

standards allow for the evaluation of many features, including sensitivity, spatial 
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resolution, noise-equivalent count-rate curve, scatter fraction, counting-rate linearity, 

and image quality. This protocol standardizes the outcome of PET scans, but the 

differences between scans are still considerable due to variance in the patient-

preparation methods, the acquisition settings, the reconstruction algorithms, and the 

data-analysis software. This explains why it is difficult to produce the same SUV across 

PET centres. The NEMA’s NU2 recommendations for PET quantification reflect the 

chronological order of PET imaging scans, which is as follows: patient preparation, 

procedures and interventions, dose administration, PET acquisition, analysis of image 

quality and SNR, image reconstruction, clinical-image resolution, data analysis and 

SUV normalization, and QC of the instrumentation and personnel (Boellaard 2009). 

Cardiff University’s PET/CT systems follow the QC standards that the Institute of 

Physics and Engineering in Medicine (IPEM) established. These standards were 

published mainly to provide quality assurance programs and support for clinical 

PET/CT services and research. The standards describe the minimum recommended QC 

for PET and PET/CT, and they are based on consultations with relevant specialists as 

well as on a review of present practices. Report 108 is a useful reference for scientists in 

the PET services field; this report covers various aspects, including acquisition 

techniques, clinical applications, acceptance testing, requirements for QC testing, PET 

data management, image display, and additional equipment that is relevant to PET/CT 

scanning (Morgan 2012). 
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 Literature Review 3

3.1 Introduction 

Tracer kinetic modelling (TKM) and other PET quantification procedures, helps to 

represent acquired dynamic images in ROI tissue based on the molecular interactions of 

the radiotracer in this tissue. PET quantification refers to expressing images as an 

amount or number in addition to measuring or estimating the quantity of radioactivity 

from the images. In this thesis, the term is usually used to refer to the process of 

analysing dynamic images numerically to extract physiological parameters that are 

clinically beneficial in diagnosis or for monitoring diseases (Erlandsson 2011). Nuclear 

medicine imaging including PET and SPECT is a successful sensitive imaging modality 

that can provides in vivo assessment of pathophysiology and quantification 

measurements (Dickson et al. 2019). TKM can be applied either to a homogeneous ROI 

or to individual voxels if the noise in these voxels is within acceptable range. The 

parameters produced from a single voxel are averaged due to inhomogeneity of the 

cells. More precise kinetic parameters can be obtained if the voxels represent a 

homogeneous tissue (Bentourkia 2011). Several factors can affect the calculation of 

parameter values, including the imaging protocol, the kinetic model choice, and the 

choice of input function for the model (Lammertsma 2014).  

In chapter 2, several quantification approaches to parameter estimation from the data 

were discussed, including model-based techniques, spectral analysis, and graphical 

analysis. Model-based kinetic modelling techniques (compartment models) have been 

validated by different approaches, such as biopsies, autoradiography, biochemical 

analysis, and in vitro experiments (Turkheimer et al. 2014). Compartment models allow 

isolated components of the signal measured to be reconstructed through applying 
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mathematical equations suited to the tracer behaviour in the targeted tissue. The images, 

which will be used for PET quantification, must be dynamic and start from the tracer 

injection time. The time frame should be optimal for both collecting enough photons to 

measure the physiological and/or pathological changes and for obtaining precise PET 

data. Spectral and graphical analysis are widely used due to their ease of use and rely on 

calculating statistical parameters (slopes and intercepts), which sometimes need to be 

rearranged to correspond to standardized parameters (Bentourkia 2011). 

In this chapter, background information about the Patlak principle and sources of errors 

in PET quantification will firstly be described generally; then, errors in graphical 

analysis specifically will be discussed. Different methods and strategies proposed earlier 

by literature to improve parameter estimation and reduce bias and noise are reviewed as 

well. In addition, clinical studies using the Patlak technique in brain studies are also 

reviewed, focusing on PD studies that use 18F-DOPA as a tracer along with blood 

sampling as a general input function, specifically with reference tissue. A review of 

clinical studies adds better understanding of image-processing strategies applied for 

diagnosing and evaluating disease progression. This literature review will close with a 

conclusion and recommendations as a consequence of the discussion and clarify how 

the research will proceed. 
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3.2 Background information 

Graphical analysis (GA) or multigraphical analysis (MTGA) is a technique used for 

quantifying dynamic PET data that includes studying a tracer over time during its 

accumulation in tissue. The main assumption is that the tracer will accumulate in a 

specific anatomic region. If this accumulation continues, and there is never a net egress 

of tracer, then the tracer is known as an irreversibly bound tracer, and a Patlak analysis 

is suitable. If tracer accumulation washes out after a certain time period, the tracer is 

considered a reversible bound tracer, and a Logan analysis is more appropriate (Logan 

et al. 1990; Patlak and Blasberg 1985). Figure 3-1 shows a summary of the graphical 

analysis options. 

 

 
 
 
 
 
 
  

Figure 3-1. Summary of graphical analysis characteristics and tracer behaviour options. 
 

The input data required for GA include a dynamic series of tomographic PET data 

(images) and an input function or time-activity curve (TAC) of the tracer concentration 

in the blood. This technique has been used for many neurotransmitters (18F-F-DOPA, 

18F-FMT, 11C-raclopride, etc.), metabolism markers (18F-FDG), and even cardiac 

applications. The underlying goal of this type of GA is to reduce a series of 

observations to a single value that can be compared across subjects (Patlak and Blasberg 

1985). Since the concentration of most PET tracers in tissue changes over time, a single 

high-statistic image is not appropriate. On the other hand, an image acquired over a 

short time period with minimal change in tracer concentration will have relatively poor 
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signal, or low noise qualities. Thus, various graphical approaches have been developed 

to use short time frames with acceptable temporal resolution, while still effectively 

using all of the events counted over an extended period of time (Logan 2003). 

GA is based on combining the tissue region of interest and arterial plasma tracer 

concentration curves into a single curve that approaches linearity when certain 

conditions are reached. With traditional regression methods, the data can be plotted in a 

graph, and the line can be fitted to the linear phase. The slope of the fitted line 

represents the net uptake rate of the tracer or the volume of distribution (Patlak and 

Blasberg 1985; Patlak et al. 1983).  

In some instances, the arterial plasma input can be replaced by a reference region curve. 

One feature of GA is the independence of any particular model structure, although the 

slope can be interpreted as a combination of model parameters for some model 

structure. Munk (Munk 2012) recommends using vi-plots to study at which time point 

the quasi-steady state is reached, allowing Logan or Patlak linear fitting plots. The vi-

plot shows the time course of the instantaneous distribution volume and the 

instantaneous influx rate, plus visualises physiological information that 

facilitates model selection. Direct physiological interpretation appears on both axes of 

the vi-plot and shows kinetic parameter in close agreement with non-linear kinetic 

modelling estimates. The Patlak option is a graphical method that can analyse 

irreversible tracer 18F-FDOPA images and is used to diagnose and monitor PD.  

3.2.1 Principles of Patlak analysis 

Patlak analysis does not depend on any specific compartmental model configuration for 

the tracer used. The minimal assumption is that the tracer’s behaviour can be 

approximated by two compartments: a “central” (or reversible) compartment, which is 

in rapid equilibrium with plasma and must remain stable, and a “peripheral” (or 
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irreversible) compartment, where tracer enters without leaving during the measurements 

(Patlak and Blasberg 1985; Patlak et al. 1983). 

 

 

 

 

Figure 3-2. (A) Example of the irreversible compartment where the tracer is trapped in the 
ROI. (B) Two compartmental models, including both reversible and irreversible 
compartments. 

This tracer movement can happen after the initial sharp concentration changes, when the 

plasma curve (input function) falls slowly enough for the tissue compartments to follow. 

Any number of reversible compartments can exist, where the tracer can come and go. 

After some time, the tracer concentrations in these compartments will start to follow the 

tracer concentration changes in plasma (the ratio does not change). Then, any change in 

the total tissue concentration (measured by PET) per plasma concentration represents 

the change in irreversible compartment(s) (Lammertsma 2014). The amount of tracer in 

the ROI accumulates according to the Patlak equation (Patlak and Blasberg 1985): 

R(t) = K Cp (τ )dτ +V0Cp (t)0

t
∫  Eq. 3-1 

t: time after tracer injection. 

R(t): amount of tracer in the region of interest 

Cp(τ): the concentration of tracer in plasma or blood during the scan time. 

K: the clearance determining the rate of entry into the irreversible compartment, 

represented by Ki as well (influx rate). 

V0:  the distribution volume of the tracer in the central compartment. 

A	 B	
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The first term of the right-hand side represents the tracer in the peripheral compartment, 

and the second term is the tracer in the central compartment. Dividing both sides by 

Cp(t) obtains: 

R(t)
Cp (t)

= K
Cp (τ )dτ0

t
∫
Cp (t)

+V0  Eq. 3-2 

The unknown constants K and V0 can be obtained by linear regression from a graph of: 

R(t)
Cp (t)

 and 
Cp (τ )dτ0

t
∫
Cp (t)

 

3.2.2 Making plots with Patlak equations 

In statistics, linear regression is an approach for modelling the relationship between a 

scalar dependent variable y (criterion variable) and one or more explanatory variables 

(or the independent variable the predictor variable) denoted as x. When there is only 

one predictor variable, the prediction method is called simple regression. In simple 

linear regression, the predictions of y when plotted as a function of x form points. 

Linear regression consists of finding the best-fitting straight line through the points (see 

Figure 3-3 (A)). The best-fitting line is called a regression line. The black diagonal line 

in Figure 3-3 (B) is the regression line and consists of the predicted score for y for each 

possible value of x. The vertical lines from the points to the regression line represent the 

prediction errors (Montgomery et al. 2012). 
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A 

 

B 

 
Figure 3-3. (A) Example of data represented by points on the plot (B) Shows the best fitting line (regression line) 
 between plotted data. 

The first two points in Figure 3-3 (B) is very near the regression line, so their prediction 

errors are small. The green point is much further away from the regression line; 

therefore, its prediction error is large. The Patlak plot becomes linear during the 

equilibrium in tracer concentration between the plasma and reversible compartment. 

The slope of the linear phase represents the net transfer rate Ki (influx constant) 

and represents the amount of accumulated tracer in relation to the tracer in plasma. The 

y-axis of the plot contains the ratio of tracer concentrations in tissue to that in plasma 

(distribution volumes). On the x-axis is the ratio of the integral of the plasma 

concentration to the plasma concentration. It may be possible to use a reference 

region instead of a plasma concentration curve (ex. the cerebellum in FDOPA studies) 

(Gunn et al. 1997; Lammertsma et al. 1996). The reference region contains only 

reversible compartments and must be in equilibrium with the plasma. The reference 

region can be included in the model, and the plasma curve is cancelled out (Patlak and 

Blasberg 1985). In practice, the only difference in the calculation using plasma input is 

that the plasma curve is replaced with a reference region curve. 

Several conditions exist when choosing the reference region tissue to use as an input 

function in PET quantification: the reference region has no specific uptake of the 

radioligand, the uptake must not be affected by disease processes or treatment, and the 
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non-specific binding must be similar for both the reference region and regions of 

interest. The reference region chosen should be near the tissue of interest so it will 

available in the same PET images. The ratios of the reference tissue and plasma input 

curves must be in equilibrium, called steady state or quasi-steady state; at this time 

point, linear fitting can be allowed for Patlak plots (Munk 2012). This approach is still a 

preferred analysis method due to its ease (it is non-invasive) and low labour cost, which 

makes it possible to use in small PET centres. In chapter 4, these methods of 

quantification will be discussed in steps, with 18F-FDOPA selected as the tracer for our 

clinical trial and quantification research project. 

3.3 Sources of errors in PET quantitative analysis 

GA involves converting equations into linear plots, and the slope of the resulting fitted 

line represents the tracer binding measurements. The slope is related to the model 

parameters after making assumptions about the structure for that model (Logan 2000). 

Despite the ease of GA, however, some problems are encountered in GA that could 

affect its accuracy. These problems include separating the tracer activity between 

delivering and binding (Logan 2000); limitations to reference tissue options, as they are 

available for only a few brain receptor tracers; and the spillover or scatter of 

radioactivity from adjacent tissues (Carson 2005). Another issue that produces negative 

bias in GA is that the noise level of the tissue tracer concentration may affect the 

model’s parameter estimation (Kimura et al. 2007; Zhou et al. 2010). Several 

approaches have been proposed to remove or reduce the bias caused by noise in PET 

data, which are all applicable to input functions obtained by blood sampling from 

reference tissue (Ichise et al. 2002; Joshi et al. 2008; Logan et al. 2001; Varga and 

Szabo 2002). However, the proposed methods remove only part of the bias or removed 

bias at the expense of precision, and were validated only in Logan plots, without 

application in Patlak analysis. Errors in GA can come from three sources: design of 
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acquisition protocols, physical aspect errors, and data analysis errors. Sources of error 

in PET quantification in general will be discussed in detail in the following sections of 

this chapter. Then, errors and limitations related to the Patlak method will be reviewed 

in another section. 

3.3.1 Acquisition protocol design 

The half-life, amount, and injection duration of the tracer all affect the images. The half-

life should be enough to produce images with contrast. With no deadtime issues and 

after applying the appropriate corrections, the measured signal is proportional to the 

amount of the injected dose, considering the saturation in receptors or transporters and 

the demand limitations (Carson 2005). The duration of PET data collection must be 

optimal. The first frame of dynamic imaging should be shorter than later frames to give 

a better explanation of the tracer uptake (tissue perfusion; K1 rate constant). Later 

frames usually take a longer time because the radiopharmaceutical reach the optimal 

distribution in tissue and allows better temporal resolution and SNR, and they allow for 

more variations in the signal intensity as well, so the optimal duration of the scan must 

be considered (Bentourkia 2011). Patient preparation has an essential role in obtaining 

accurate PET data. The subjects sometimes need to be fast, cease medication before the 

study, and should sit comfortably on the scanner bed without moving until the scan’s 

completion. A patient moving during the scan could easily degrade the data, neck and 

leg support is always recommended. Explaining the scan procedure and the patient 

emptying his or her bladder could facilitate the scan procedure and help to gain precise 

data. Patients who have claustrophobia or issues with blood samples being drawn are 

usually excluded from quantitative studies (Boellaard et al. 2015). Parameters/settings 

and the methods used during PET acquisition, image reconstruction, and data analysis 

play main roles in the quantification of PET studies (Hogg and Testanera 2010).  
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3.3.2 Physical aspects data errors 

PET imaging playing an important role in the diagnosis and monitoring response to 

treatment. Significant improvements have been achieved to meet the challenge of 

improving the PET modality performance. using quality assurance (QA) programmes 

when using PET/CT systems, including quality control (QC) procedures is a legal 

requirement and must be followed. The subsequent QA programme includes periodic 

service visits, regular calibration for PMTs, a timing calibration for coincident events, 

and detector normalization (Hogg and Testanera 2010). Daily QC should be performed 

before starting the scan to ensure there are no errors that could produce inaccurate data. 

Applying QA and QC programmes successfully will reduce the likelihood of scanning 

patients with malfunctioning equipment, which will reduce image artefacts (Hogg and 

Testanera 2010). Accurate transmission measurement is essential for attenuation and 

scatter corrections, as pitfalls in transmission measurement will lead to less accurate 

image . AC based on CT and the scatter will produce substantial changes in TAC and 

provoke the smoothing of neighbouring voxels. The accuracy of the emission sites’ 

positioning could be affected by nonlinear photon emissions (diverging from 180°) and 

positron displacement (1 mm or less), with effects including marginal uncertainty. 

Using a cylinder phantom filled by a uniform concentration of radioactivity will help to 

verify the operational integrity of the PET system, maintain consistent and high image 

quality and minimize chances for artefacts (Bentourkia 2011; Boellaard et al. 2015; 

Daube-Witherspoon et al. 2002). 
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3.3.3 PET data errors 

PET data errors can categorised into data processing and data analysis errors related 

quantitative PET measurements (Lammertsma 2019). Data-processing corrections can 

be performed before or after image reconstruction. Before image reconstruction and at 

the level of grouping sonograms or projections, a balance should be performed between 

the image statistical quality and the spatial resolution, as they have an inverse 

relationship. Another compromise during the reconstruction is to sort high-resolution 

images with noise to one side and low-noise smooth images on the other side. 

Smoothing images with less noise allows suitable fit for the PET data in kinetic 

modelling while minimizing variation in the parameter values at the same time 

(Bentourkia 2011). The variation directly affects the value of Ki, which is inversely 

proportional to the integration of the input function and proportional to the signal rise in 

tissue TAC, and could cause errors to other values (Selivanov et al. 2001).  

Organ or patient motion could introduce uncertainty into parameter estimation as well 

as heterogeneous voxels due to tissue motion. Homogeneous tissue is a requirement to 

obtain accurate TAC in a quantitative process. The aim of applying kinetic modelling to 

the images is to appropriately fit the parameters to the PET data. Thus, decay correction 

and delineation of tissue on images to be modelled must be considered to prevent errors 

in TAC (Bentourkia 2011).  

Other corrections that should be performed during PET image reconstruction include for 

detector efficiency (normalization), system dead time, random coincidences, scatter, 

attenuation, and sampling non-uniformity (Boellaard 2009; Delbeke et al. 2006). PET 

data correction is mandatory to achieve high quantitative accuracy. Factors like detector 

dead time, variable detector efficiencies, scatter and random coincidence events, and 

limited image resolution can significantly undermine quantitative accuracy and possibly 

result in failing to resolve small tissue regions accurately (Markiewicz et al. 2018; 
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Meikle and Badawi 2005). Additional corrections emphasized by Vaquero and Kinahan 

(2015) include, in rough order of effect size, patient movement, geometry-based 

variations in efficiency, signal gain, energy resolution, and event positioning.  

The data-analysis stage starts by defining the ROI and input function data (blood or 

reference tissue activity), to be able to extract the quantitative measurements. Several 

methods are available to draw the ROI, including manually drawing contours and semi-

automated and fully automated methods based on PET and/or MRI templates that are 

usually provided by recent processing software. A special PET template for a specific 

tracer can also be generated for clinical and research purposes. It should be considered 

that different ROI methods can lead to different quantitative outcomes (Boellaard et al. 

2004). A consistent ROI methodology should be used for images during a longitudinal 

study to avoid differences in measurement outcomes (Shankar et al. 2006).  

Dynamic PET images require blood samples for quantitative analysis to define the 

radiotracer blood clearance and specific biological analyses (e.g. glucose concentration 

in FDG studies) and to determine radiotracer metabolites. An automated blood sampling 

system can perform this process, in which blood is collected by vascular access and 

counted in an external activity-counting system. The blood counter system must be 

calibrated with the scanner to relate the resulting activity information to the image data. 

A phantom measured using a dose calibrator (with known activity) is imaged in the PET 

scanner, with several samples from the phantom counted in the blood system counter.  

The values obtained from all counting sources are used to calculate the standard units of 

activity concentration, such as kBq/ml (Muzi et al. 2012). Counting the blood activity 

provides a direct measure of tracer clearance and availability for tissue uptake. Samples 

are collected usually about 20–30 times from the arterial vessel, for routine quantitative 

analysis of a dynamic PET image immediately after bolus injection of the radiotracer. 

Blood sample measurements are used as an input function and must be robust and 
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reproducible, as any failure or change in these measurements will lead to failed data 

analysis for the experiment (Turkheimer et al. 2014).  

Replacing the arterial input function with a tissue concentration has been validated and 

can be used in certain conditions, as mentioned earlier. Sometimes called a reference 

tissue or image-derived input function (IDIF), it is an alternative to arterial blood 

sampling, but the method must be validated with the arterial input function before being 

used clinically (Christensen et al. 2014). However, some limitations with this method 

include the availability of few radiotracers and sometimes requiring blood samples to be 

collected unless a form of calibration is performed (Zanotti-Fregonara et al. 2011; 

Zanotti-Fregonara et al. 2014).  

Another issue resulting from using image-based input functions is the partial volume 

effect (PVE), which is caused by image-sampling factors, where the image voxel might 

contain only part of the ROI tissue. The PVE is also caused by low scanner spatial 

resolution and can lead to blurred images. PVE can severely compromise both visual 

and quantitative PET and reduce the ability to map underlying physiological processes 

accurately (Dickson et al. 2015). Tumour and brain studies usually have this effect as a 

spill-out of radioactivity from a hot region into adjacent tissues, causes underestimation 

of tracer uptake, and spill-over (spill-in) into VOI in other studies, leading to 

overestimation of the uptake (Aston et al. 2002). A study of the PVE’s impact on 18F-

FDOPA brain imaging shows that PVE leads to severe underestimation of Ki in certain 

brain structures (Rousset et al. 2000). With PVE, hot lesions sometimes appear to have 

reduced activity (less aggressive) and to be more spread out and larger in images than in 

actuality. Due to the negative impact of the PVE on images, partial volume correction 

(PVC) becomes necessary for accurate quantitative measurements. PVC is critically 

important for aging studies, where apparent reduction in metabolic activity usually 

disappears after applying PVC (Giovacchini et al. 2004). PVC can improve quantitative 
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accuracy and provides better differentiation between normal and abnormal studies 

(Dickson et al. 2015). 

When the point–spread function (PSF) is known for the scanner, more corrections can 

be achieved. Clinical studies have used PSF in the image-reconstruction process as an 

alternative to PVC but with possible serious image artefacts (Munk et al. 2017). Two 

approaches can be implemented to perform PVC. The first method is called geometric 

transfer matrix (GTM), introduced by Rousset et al. (2008) and  Rousset et al.  (1998). 

This correction assumes that the volume of images is separated into homogeneous 

uptake VOIs and that by knowing the PET scanner resolution, the contaminated mutual 

signals in these VOIs can be calculated and corrected. Information derived from high-

definition morphologic images could be used to improve the PET images’ quality. 

Structures can be much better delineated in MRI-guided PET PVC for real brain data. In 

addition, MRI-guided PET image filtering can produce less noise in images and less 

bias; plus, it can reduce the coefficient of variation (Yan et al. 2015). The second 

approach is to use MRI in addition to PET images. It is assumed that white matter 

(WM) and grey matter (GM) in an MRI brain image have homogeneous uptake levels. 

All image pixels are categorized into WM or GM segments; then, the spill-out from 

WM to GM and from GM into surrounding tissues can be estimated based on these 

segments and the PET scanner resolution (Giovacchini et al. 2004; Müller-Gärtner et al. 

1992).  

3.4 Sources of errors in Patlak analysis 

The main limit of Patlak analysis is the bias introduced in the parameter estimations 

obtained from the images. This bias is caused by statistical noise during the regression 

analysis plus the noise in the images themselves. Also, noise can introduce bias into the 

distribution volume, which is the slope of the graphical analysis of reversible tracers. 

For irreversible tracers, if the Patlak model does not fit properly the data, bias can be 
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introduced into the output parameters. Bias is introduced into linearized equations from 

noisy data because the error term exists at any given time point (Abi-Dargham et al. 

2000). The graphical method, on average, will underestimate the GA parameters, and 

the effect on any data set will depend upon the nature of the noise. When one particular 

data set diverges in a non-random way from the original data, the analysis methods will 

show an obvious bias.  

Another issue with GA is the difficulty of obtaining true estimates of the tracer with 

slow kinetics that have a short half-life, such as C11 (Logan et al. 2001). Simulated noise 

with zero mean, which is similar to the noise within PET data, causes the graphic 

technique to underestimate the outcome measure slope systematically, and the amount 

of underestimation increases proportionally as the standard deviation of the noise 

increases (Slifstein and Laruelle 2000). Estimates using ordinary regression line 

estimation (OLE) will be correlated with the activity rate from blood to tissue. With a 

low amount of activity moving to the ROI, the estimates will be lower, and the noise 

level will become larger, which will lead to underestimating the GA parameters 

(Kimura et al. 2007). The introduced bias is caused mainly by the statistical noise in the 

ROI activity concentration involved in the GA equations, and the determination of t*, 

which is the equilibration time where activity ratio between ROI and reference become 

constant, also affects the estimates’ accuracy (Ikoma et al. 2008). The underestimation 

induced in GA analysis can reduce contrasts in the binding potential (BP) estimates 

among ROIs and reduce the statistical power of discrimination of populations of interest 

by a specific tissue BP (Zhou et al. 2008; Zhou et al. 2010).  

PVE influences Patlak analysis negatively on the slopes due to the loss in counts 

produced by the blurring of counts from the ROIs. Freedman et al. (2003) found a 

disagreement between their clinical data and the tumour sizes, suggesting that the 
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blurring of counts in the tumour ROI is time dependent, consequently affecting the Ki 

value of Patlak analysis.  

3.5 PET imaging quantification methods in PD with 18F-FDOPA tracer 

FDOPA has been used for brain imaging for many years. The first PET study to use 

FDOPA in brain imaging was conducted in 1983 (Garnett et al. 1983). The study 

showed a localized tracer in the striatum and that only 1% of tracer entered the brain. 

FDOPA is used extensively in diagnosing Parkinson’s disease (PD), addiction, 

schizophrenia, and attention deficit hyperactivity disorder (ADHD). PD is a common 

progressive neurodegenerative disorder characterized by progressive damage of the 

dopaminergic neurons in the brain striatum (Leung 2011). Tremor, rigidity, and 

bradykinesia are the clinical symptoms of PD. When at least 50% of the dopaminergic 

cells are lost, some or all of these symptoms occur. Two of these syndromes being 

present will confirm a diagnosis of PD. The loss of dopaminergic cells is associated 

with exhaustion of striatal dopaminergic transporter (DAT) (Gerasimou 2006). In 

patients with bilateral PD, FDOPA showed bilateral reductions of the influx constant in 

the caudate and putamen compared to normal subjects (Vingerhoets et al. 1994). 

FDOPA allows the monitoring of PD progression, progression and the evaluation of 

neuroprotection therapies, and of early diagnosis (Leung 2011). In this section, studies 

about FDOPA quantification in brain imaging with patients with PD will be reviewed, 

and the quantification approaches used will be discussed.  

Using the keywords “18F-FDOPA” (in all chemical name forms) and “quantification” in 

the PUBMED database shows few articles about quantification methods used for 

FDOPA images. FDOPA has been used as an investigation tracer for many years in 

neuroimaging, but few methods of quantification have been suggested. Among the 

conducted studies, few models have been suggested and developed to quantify the 
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images. The differences between these models are usually based on the assumptions 

made and parameters that are estimated (Dhawan et al. 1996).  

Wahl et al. (1996) proposed a mathematical approach that includes designing a two- 

compartment, three-parameter model relating the radioactivity in blood to the 

radioactivity in the brain, and Patlak plots are used as well. The compartmental model 

had better data fit than Patlak plots. The models used were usually categorized into 

graphical analyses or compartmental analyses. A number of investigators have used 

graphical techniques to answer clinical questions (Brooks et al. 1990; Chan et al. 1992; 

Eidelberg et al. 1993; Martin et al. 1989). The main purpose of Wahl et al.’s study was 

to investigate the simplest compartmental model that would fit the measured time 

course of radioactivity in the striatum after F-DOPA injection. In total, 28 subjects 

between the ages of 21 and 70 volunteered in this study. Six subjects were normal, 

while 20 subjects were diagnosed for idiopathic Parkinson’s disease for 3–5 years. Two 

subjects fulfilled DSM III (Diagnostic and Statistical Manual for Mental Disorders) 

criteria for schizophrenia. Blood samples were collected during each scan after a bolus 

injection of F-DOPA at different time frames. Each scan lasted 2.5 hrs, and 

radioactivity in plasma was counted and corrected for the time of injection. The ROIs 

were placed to the right and left of the striatum, and the time course of activity was 

expressed in counts per second per pixel for each region. All counts were corrected for 

injected dose and were expressed in the same units used for the plasma counts. 

Additional rate constants or compartments did not significantly improve the fit to the 

measured data. The influx constants of the compartmental and graphical methods 

showed excellent agreement and good correlation (Wahl and Nahmias 1996). Their 

study yields useful mathematical approaches and results about quantifying the FDOPA 

using compartmental modelling and/or graphical analysis. However, the data will only 

support a two-compartment, three-parameter model for the striatum; plus, the study 
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could reveal more accurate results if the FDOPA model is only applied on Parkinson’s 

and normal patients. Moreover, recent studies suggest using entacapone and carpidopa 

to inhibit causes of metabolite products (Heiko Schöder 2013), which have not been 

used. The study analyses the arterial blood sampling method only and does not include 

image-based input functions.  

Dhawan et al. (1996) studied three normal volunteer subjects and five classical 

Parkinson’s disease patients (mild/moderate) without dementia. The study was based on 

a model suggested by Kuwabara et al. (Gjedde et al. 1991). The aim of the study was to 

address the issue of FDOPA metabolites by performing two scans for each patient, with 

18F-FDOPA and then 3OMFD. Before the FDOPA scan (1.5 hr) the subjects had 

received 200 mg carbidopa. Arterial blood sampling and plasma centrifugation were 

applied with each subject in the study. The kinetic measures were obtained by applied 

graphical analysis and tissue to reference tissue ratio methods. From a practical 

standpoint, the authors suggested using GA to calculate Ki in the striatum rather than 

calculate it from the compartmental model. Complete pharmacological suppression of 

3OMFD formation by tolcapone was suggested to simplify the FDOPA quantification 

analysis model. The study illustrated that increasing the parameters number will rarely 

improve the curve fit; in contrast, the number should be reduced by further assumptions.  

 
Figure 3-4. The compartmental model suggested by Gjedde et al. (1991) and applied in Dhawan 
et al. (1996) study shows FDOPA and its metabolites. 
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Ruottinen et al. (1995) studied entacapone use in advanced Parkinsonian patients and 

healthy controls using a FDOPA tracer. All subjects in the study received carbidopa 

(150 mg) and had two PET scans performed, with and without (baseline) entacapone. 

Arterial blood samples were collected for further analysis during the PET scan. ROIs 

were drawn on the head of the caudate, the putamen, and the occipital region (grey and 

white matter) as reference regions due to the lack of dopaminergic neurons. This 

reference region activity was considered non-specific uptake and was assumed to be 

equal to the striatum non-specific activity. The striatal structures represent the activity 

concentration 20-90 minutes after FDOPA injection. The average concentration for each 

ROI was calculated and averaged before statistical analysis. Based on other studies 

(Leenders et al. 1986; Martin et al. 1986; Melega et al. 1991), the authors considered the 

radioactivity concentration in the striatal structures to consist of FDOPA and FDOPA 

metabolites. Patlak GA was used to calculate the metabolic rate of FDOPA in striatal 

regions, using the occipital region as a reference (input function).  

Dhawan et al. (2002) compared the ratio method to the GA for FDOPA uptake in 

striatal structures. They investigated 21 patients with moderate PD and performed a 

dynamic scan for 100 min after injection. All of the frames were realigned to the images 

at 55 min using the Statistical Parametric Mapping software (SPM99). Images taken 

between 40 and 100 min were averaged. The values of the right and left sides of the 

reference (occipital region) were averaged to reduce the noise. The TACs of the 

caudate, putamen, and occipital regions were computed by using single-slice PET 

images, and striatal-to-occipital ratio (SOR) values were also generated for each region. 

The SOR was calculated every 10 min for frames 65–95 min after injection. Graphical 

analysis over 40–100 min was performed to calculate Ki. Data from the PD patients 

were compared to data from the healthy group using discriminant function analysis (F-

test). SOR versus Ki values was correlated at late images between 65 and 95 min, and 
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the highest was correlation was at 95 min. Both parameters can be discriminated 

between PD from the healthy subjects in both sides of the striatal structures. The study 

recommends performing SOR and Ki analysis separately for the anterior and posterior 

parts of the putamen. The SOR is used as index with which to map the changes in 

FDOPA uptake after therapeutic treatment (Nakamura et al. 2001). For the PD subjects, 

it was difficult to decide which side of the brain was more affected. The correlation 

between SOR and Ki suggested that these parameters can reflect PD progression in 

similar quantitative manners, which has been validated before (Vingerhoets et al. 1996).  

In another study performed by Whone et al. (2004) on a data set obtained from six PET 

centres worldwide to analyse the FDOPA scans, images were analysed after a 

randomized controlled clinical trial in those centres, to compare ropinirole to the L-

DOPA treatment (Whone et al. 2003). The group size was 186, and the analyses were 

conducted at a single site. The aim was to provide further details about centralized PET 

analysis. A standard method was used to assess the FDOPA uptake, by assuming only 

mono-directional uptake via the exchangeable pool from the blood into the basal 

ganglia. The influx rate constant (Ki), which measures the radiotracer accumulation 

rate, was obtained by applying the Patlak technique. FDOPA PET was performed 

between 4 weeks and 3 months after starting the medication. The mean percentage 

reduction in the side-to-side averaged putamen FDOPA influx constant (Ki) between 

both scans (baseline and follow up) was the primary outcome (Whone et al. 2004). All 

data were in 3D, and dynamic data were obtained from the start of injection; the entire 

time series lasted at least 90 min. At each centre, the standard manufacturer-supplied 

3D reconstruction programme provided with the camera was used for image 

reconstruction. Each site selected their preferred method from the options supplied with 

their programme. The fully 3D filtered back projection algorithm was used in all centres 

for the reconstruction procedure. Specific FDOPA influx constants (Ki) were created 
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for the whole brain on a voxel-wise basis as parametric images, and the input function 

was obtained from the occipital cortex as the reference region. IDL software 

(Interactive DATA Language; Research Systems International) was used to form the 

parametric images, which was validated in another study (Rakshi et al. 1996). For each 

pixel individually, the net influx rate constant (Ki) was calculated within the range 30–

90 min. The outputs of this program were a parametric whole brain volume showing the 

net influx rate constant (Ki) and an image of the integrated FDOPA signal from 30 to 

90 min (ADD or summed image), both represented in Figure 3–5 (Whone et al. 2004).  

 

Figure 3-5. ADD (summed) and net influx rate constant (Ki) maps of single slices from a healthy 
subject (top) and a subject with PD (bottom). The subject with PD shows reduced uptake in the 
caudate and putamen, which is greater on the right-hand side (Whone et al. 2004). 

In terms of reducing the variations in this study, standards were establishing for ROIs to 

be applied to the data sets. A single template of predefined volumes of interest was used 

and applied to each spatially transformed parametric image. SPM99 software (Veltman 

and Hutton 2001) was used for spatial normalization by applying the software’s 

algorithm to transform each individual Ki image to the Montreal Neurological Institute 

(MNI) space, similar to the MRI template space in SPM99. This normalization process 

allowed the same ROIs to be assessed between pairs of scans. The Ki maps were also 

analysed using SPM software to localize significant mean differences between the 



	 	 	

	 57	

baseline and follow-up scans by investigating the whole brain imaging volume for each 

subject in the two groups based on the type of medication (L-DOPA or ropinirole). The 

putamen FDOPA signal decline was significantly (one third) slower in the ropinirole 

group compared to the L-DOPA group.  

Bruck et al. (2009) studied the progression of striatal dopaminergic function among 16 

subjects with PD who underwent three FDOPA scans over a follow-up time of 5 years. 

The smallest uptake values were found in the dorso-caudal part. The rate of decline in 

the contralateral putamen was faster and significantly changed in the early stage of the 

disease, with annual decline in Ki of 0.5 (x 10-3 min-1), on average, during the first 2 

years and 0.2 (x 10-3 min-1) during the subsequent 3 years. In the caudate, the rate of 

decline was slower than in the putamen and did not change significantly during the 

follow-up time. The annual decline in the contralateral caudate was 0.1 (x 10-3 min-1) 

between the baseline and 2 years and 0.3 (x 10-3 min-1) between 2 and 5 years. All 

subjects were given 150 mg carbidopa to exclude structural abnormalities; for co-

registration purposes, all subjects underwent MRI scans. A voxelbased statistical 

analysis was performed using SPM and Matlab. Parametric images were calculated with 

the Patlak GA method. ROIs were defined on the co-registered MR image, which was 

in the same standard space as the subjects’ PET images. Putamen and caudate nucleus 

ROIs were defined bilaterally, and the putamen was divided into the following sub-

regions: the dorsal part of the rostral putamen, ventral part of the rostral putamen, dorsal 

part of the caudal putamen, and ventral part of the caudal putamen. The head of the 

caudate nucleus was divided into the dorsal and ventral caudate. The Ki in the time 

range from 15 to 90 min following the injection was calculated using the occipital 

cortex as the reference region. In contrast, a similar longitudinal study conducted by 

Gallagher et al. (2011) in PD subjects and healthy controls over 4.5 years showed that 
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the slope of decline did not differ between sub-regions among the PD subjects. These 

two studies found that the decline rates were greater at earlier time stages. 

Akamatsu et al. (2017) used a newer high-resolution PET/CT scanner with 18F-

FDOPA synthesized from 18F-F,- rather than 18F-F2, which has a low specific activity, in 

order to re-evaluate this technique on normal subjects and patients with PD, together 

with D2 receptor imaging with 11C-raclopride (RAC). The image-reconstruction 

parameters were optimized with phantom and Patlak analysis, and the ratio method was 

performed for the late-phase images to quantify the striatal uptakes. Appropriate 

reconstruction parameters were empirically determined to obtain high-resolution images 

with enough quantitative accuracy. Both 18F-FDOPA (4000 MBq/nmol-specific 

activity) and 11C-RAC PET showed higher uptake values than in previous studies. The 

quantified ratio values were correlated with the graphical values for both tracers, 

and FDOPA uptake in the substantia nigra was clearly observed in most of the subjects.  

Glaab et al. (2019) used machine-learning techniques to investigate whether the joint 

data analysis of blood metabolomics and PET data would provide improved diagnostic 

discrimination and further pathophysiological insights. The data sets were analysed 

using two machine learning approaches: linear support vector machines and random 

forests. The diagnostic predictive performance (DPP) was highest when combining 

imaging features with metabolomics data and lower with only PET attributes or only 

metabolomics signatures. 

3.6 Conclusion 

PET quantification measurements can help with obtaining further physiological 

information, to diagnose diseases and evaluate therapeutic procedures. Sources of error 

that can affect the calculation of quantitative parameter values were discussed, including 

the imaging protocol, the kinetic model choice, and the input function chosen for the 
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model. Clinical brain studies using the Patlak technique were also reviewed, specifically 

PD studies that used 18F-F-DOPA as the tracer. In the following four chapters, methods 

and strategies will be proposed to improve parameter estimation and to reduce bias and 

noise in the Patlak model, dynamic images, and TAC data required for plots. The next 

chapter will describe the methodology used in the experiments, immediately followed 

by three technical chapters that show the experimental work on simulation. Finally, 

successful methods will be applied to clinical PET data obtained from the GDNF trial.
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4 Methodology 
	

4.1 Materials and methods 

4.1.1 Scanner and reconstruction parameters 

The scanner available in the PET Imaging Centre at the University Hospital of Wales is 

a GE Discovery 690 PET/CT (General Electric Healthcare), and it is made for clinical 

and research use. The reconstruction method used with FDOPA imaging is a maximum 

likelihood ordered subset estimation maximisation (ML OSEM) using a Vue Point FX 

algorithm with time of flight (TOF) correction. The scanner is illustrated in Figure 4-3, 

and the reconstruction parameters are summarised in Table 4-1. 

Table 4-1. PET/CT scanner parameters for FDOPA imaging 

Reconstruction	
Parameter	

Value	 Reconstruction	Parameter	 Value	

Reconstruction	
algorithm	

Vue	Point	FX	TOF-corrected	 PET	3D	sensitivity	 7	cps/kBq	

Algorithm	settings		
3D	ML	OSEM	-	24	subsets	-	
2	iterations	cut-off	with	PSF	

Scatter	fraction	 0.37	-	0.3436	

Field	of	view	 700	mm×153	mm	 Random	fraction	 0.07	
Bed	position	and	
scan	duration	

A	single	position	dynamic	
PET	scan	over	94.5	min		

Scale	factor	to	multiply	the	input	
function	with	concentration	

1	Kbq/ml	

Time	frames	
26	time	frames;	(1×30	sec,	
4×1	min,	3×2	min,	3×3	min,	
and	15×5	min)	

Half-life	of	nuclide	(18F)	 6.5863e	+	3	sec	

Post-processing	filter	
cut-off	

6.4	mm	 Convolution	time	step	 0.5	sec	

CT-based	attenuation	
correction	

Yes	 Diameter	of	the	scanner	ring	 810	mm	

Scatter	correction	 Yes	 Set’s	initial	projection	data	size	 288	mm	

Dead	time	correction	 Yes	
Maximum	allowed	ring	
difference	

11	mm	

Detector	
normalisation	

Yes	 PSF	for	the	system	 4.3	(FWHM)	

Matrix	size	CT		 512×512×47	(voxels)	 Correction	 4.3	(FWHM)	
Matrix	size	PET	 256×256×47	(voxels)	 Size	of	dynamic	image	FOV	 157	mm	

Voxel	size	CT	 1.37×1.37×3.75	mm	
Matrix	size	of	reconstructed	
image	

256,256,47,26	
(mm,	mm,	
slices,	frames)		

Voxel	size	PET	 2.73×2.73×3.27	mm	
Post-recon	Z-axis	filter	3-point	
smoothing	

None	
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4.1.2 Simulation parameters of dPETSTEP 

The dynamic PET simulator dPETSTEP can generate PET brain images and allows full 

simulation of kinetic modelling (Haggstrom et al. 2016). The dynamic PET data can 

then be model-fitted to produce physiological parameter estimates. In addition, 

dPETSTEP uses the MATLAB platform and works as an extension of the PETSTEP 

application, and they share some commands. In PETSTEP, PET images can be 

simulated with a full simulation of a user defined activity distributions or insertion of 

realistic user defined tumours into existing patient’s images. This simulator is written in 

Matlab and designed as a plugin for CERR (Computational Environment for 

Radiological Research) and the input and output files must be in DICOM format 

(Berthon et al. 2015). This application is considered as a faster and more accessible 

alternative tool to Monte Carlo (MC) simulation particularly for studies assessing image 

features and segmentation techniques methods. The 3D PET images can be generated in 

PETSTEP from PET/CT data or synthetic CT and PET maps in short time (4-6 min), 

with adding user-drawn lesions, acquisition and user sets reconstruction parameters.  

 The dPETSTEP is a fast, simple tool and can be used as well as an alternative to MC 

simulation to produce dynamic PET data, as it is 8000 times faster than MC. In terms of 

kinetic analysis, dPETSTEP is helpful for the evaluation of different processing choices 

with dynamic and parametric images that usually require a long time for image analysis 

where each pixel is analysed. To generate the dynamic data, the simulation settings 

must first be adjusted to be consistent with the PET scanner features that are targeted by 

the analysis or evaluation. TACs are generated for each voxel, and imaging effects, such 

as blurring, counting noise, scatter, randoms, and attenuation, are simulated for all 

frames. Each frame is then reconstructed into images according to user specified 

methods, settings, and corrections. This application useful for educational, research 

purposes as it allows evaluation of the effects of the clinical environment, plus the post-
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processing choices. It provide the researchers a better understand of the bias and 

uncertainty trade-offs through simulating and evaluating several choices, such as 

reconstruction parameters, post-filtering, and parameter fitting models. Finally, 

dPETSTEP will help to obtain reliable and actionable kinetic parameters and possibly 

have better knowledge about sources and magnitude of bias and uncertainty associated 

with selected parameters. In addition, this tool could provide more understanding how 

these parameters are affected by the acquisition environment and reconstruction 

parameter choices (Haggstrom et al. 2016). Both applications are open source and 

available on the GitHub© website. 

Table 4-1 shows all required simulation settings to generate simulated dynamic PET 

data for 18F-FDOPA images performed for a PD patient. The	simulated dynamic PET 

scan is acquired as 26 time frames over 94.5 min (1 × 30 sec, 4 × 1 min, 3 × 2 min, 3 × 

3 min, and 15 × 5 min) with a dose of 111 MBq. The cerebellum region from each time 

frame is used as the reference region tissue (input function) for the quantitative analysis. 

The output after running the simulator is a 4D matrix with reconstructed dynamic 

images based on OSEM with point spread function (PSF) correction, which is similar in 

features to the dynamic PET data produced by the real scanner. The noise level of the 

4D matrix is kept at a minimum in its sonogram. The entire volume of images is 

separated into single slices as 2D images (Figure 4-1), and these are saved to a 

MATLAB version 4 file (MAT-file), which allows them to be loaded in any MATLAB 

version with 2D double, character, and sparse arrays without compression. In this 

version, each variable has a maximum size of 100 million elements per array and 231 

bytes per variable, which allows all data information to be kept without losing any 

details. Scatter and decay correction is applied during the reconstruction process by 

setting the parameters file within the simulation codes. All slices introduced by the 4D 
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matrix are exported to PMOD 3.4 software to perform further analysis in kinetic 

modelling with specific ROI. 

  

Figure 4- 1. (Left) The entire volume of images is separated into single slices as 2D images, 
which are saved to a MATLAB version 4 (MAT-file), which allows them to be loaded to PMOD 
software (Right). 

4.1.3 PMOD software 

PMOD software is designed for researchers in the molecular imaging field and provides 

suitable tools for all quantitative data processing steps. This allows researchers to pay 

more attention to content and clinical data rather than programming new tools from 

scratch. PMOD can process various types of images, such, as CT, MR, and SPECT, in 

many imaging formats, from simple processing tasks to sophisticated protocols and 

analysis. It is validated and referred to in more than 1000 peer-reviewed publications on 

kinetic modelling and biomedical research (PMOD 2017). 

In this experiment, two applications are used for the analysis: PBAS and PKIN, which 

permit the importation of simulated dynamic PET images and application of kinetic 

analysis, respectively. PBAS is the main tool in PMOD and can receive images in 

various formats, including v4 MAT-files, which should be imported to PBAS in a 

double SE data form. The images imported must be in Bq/cc units, and the images 
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orientation should be corrected if it looks different from the original position. The 

simulator makes all corrections, so PMOD should do nothing in terms of corrections. 

Firstly, all slices are merged into frames again, and the times for each frame are 

consistent with the protocol used with the simulator. Secondly, all frames are saved in 

the Digital Imaging and Communications in Medicine (DICOM) standard format. This 

format is data rich, and the header information includes attenuation, scatter and decay 

correction, normalisation, frame timing, and reconstruction parameters, as well as the 

standard required details of matrix dimensions and pixel size. 

PBAS was used to draw and analyse the VOIs (left striatum) and reference tissue 

(cerebellum). The left striatum was chosen because it is assumed that in simulated 

images, the left and right sides will have the same amount of radioactivity. The net 

influx rate constant (Ki) is usually calculated over a range of 30–90 minutes for 

dynamic images, so all frames between 30 and 90 minutes were averaged into slices, 

and the ROIs were drawn on all slices to show them. Two volumes of interest (VOIs) at 

minimum must be created: one VOI for the cerebellum represents the reversible region, 

and another one for the left striatum represents the irreversible region. For regional 

analysis, within each VOI the ROIs were drawn freehand as complete contours (Figure 

4-2).  
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Figure 4- 2. For regional analysis, the ROI is drawn as one complete contour. The ROI 
objects were drawn freehand: simulated striatum (Left) and part of simulated cerebellum 
(Right). 

Each VOI included contours that were drawn over the simulated anatomical region 

required for the analysis, and all VOIs were saved in a single file to be used again as a 

template. In fact, even the ROIs’ contours were drawn on the averaged dynamic frames; 

however, the TACs then will be obtained from the original dynamic PET volume. Thus, 

the images were averaged to guide the drawing on all slices that show ROIs. Then, the 

TACs were generated from the contours of regions required for the analysis. TACs for 

all regions must be checked, and the tracer in the reversible curve should show a clear 

washout. PMOD uses an algorithm to determine the best time for t*. In this experiment, 

the Patlak reference tissue analysis was based on t* = 30 min. This is important for 

slope calculations (Ki value). For regional analysis, the result will be (Ki) value, which 

is the slope. For each specific ROI made, the intercepts that represent (V), standard 

errors (SE), and Chi-square are calculated within the analysis. 
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4.1.4 Thesis strategy 

In Chapter 5, for the first data group, the simulation of the FDOPA dynamic PET data 

was repeated 10 times and simulated different Ki values within normal healthy subjects, 

which are between 0.0122 and 0.014 according to the literature (Akamatsu et al. 2017; 

Jokinen et al. 2009; Laakso et al. 2002), considering that the imaging protocol of 

FDOPA for scanning patients is based on giving both carbidopa and entacapone. These 

simulated images were generated by dPETSTEP, then these volumes of images were 

exported to PMOD to further processing with PBAS tool and extract TACs. PKIN tool 

is receiving directly TACs required to run the kinetic analysis and apply Patlak model. 

After finishing the kinetic modelling analysis, Gaussian noise with a zero mean was 

applied in 10 levels (5, 10, 15, 20, 25, 30, 35, 40, 45 and 50%) for the reference and 

targeted tissue TACs. These steps are repeated for the second and third data categories, 

however Ki values include normal and abnormal data in these groups, and each point of 

the Ki was repeated 10 times and averaged. The Ki values simulated are six points: 

0.0122 and 0.014 represent healthy subjects, whereas 0.010, 0.0075, 0.0050, and 0.0025 

represent diseased subjects. The difference between the second and third data categories 

is the implementation of noise, which is applied to the second group for the TACs 

required for regression analysis and the third group, noise was added on dynamic 

images. All TACs were exported to MATLAB for additional analysis and to evaluate 

our suggested statistical calculation methods: ordinary least squares (OLS), feasible 

generalised least squares (FGLS), total least squares (TLS) and robust fitting regression 

(RFR). Codes were written in MATLAB software with using statistical tool to analyse 

all TACs obtained from the simulated images processed by PMOD, and the Ki results 

were saved to Excel sheets. The results section in chapter 5 illustrates the results for the 
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simulated data, including statistics, which were calculated to evaluate how the methods 

affected the estimate of the final Ki values. 

In chapter 6, simulated FDOPA dynamic PET data was produced for a range of 

different Ki values corresponding to normal and abnormal subjects (0.014 – 0.0025 min-

1) according to the literature (Cropley et al. 2008; Moore et al. 2003; Whone et al. 2004) 

using an the imaging protocol based on administering both carbidopa and entacapone. 

After generating the dynamic images, Gaussian noise with a zero mean was applied in 

10 levels between 5 and 50% to the all frames of simulated FDOPA. The Ki values 

simulated are six points: 0.0122 and 0.014 min-1 represent healthy subjects, whereas 

0.010, 0.0075, 0.0050, and 0.0025 min-1 represent diseased subjects. Noise reduction 

methods suggested were  applied on 4D images and then Patlak regression analysis 

performed to investigate the impact of those methods quantitatively. Methods were used 

including anisotropic diffusion (Gradient and curvature) and wavelets (Daubechies and 

Battle-Lemarie). The results section in the chapter illustrates the output for the 

simulated data, including statistics, which were calculated to evaluate how the methods 

affected the estimate of the final Ki values.  

In chapter 7, several data smoothing algorithms and filters are discussed and applied to 

our simulated 2D PET data set (TACs) that are required for Patlak analysis. The aim is 

to remove or reduce included noise and improve the accuracy of final results with lower 

fitting standard errors. These methods include the moving averaging filter, Savitzky-

Golay, polynomial curve fitting, and the median filtering method. Each chapter 

discusses the theory behind each method, followed by the result of the experiment 

performed. 
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4.2 GDNF analysis and chapter 8’s materials and methods 

4.2.1 Study design and subjects 

A placebo double-blind randomized controlled clinical trial was completed at a single 

site at the Wales Research and Diagnostic PET Imaging Centre (PETIC), Cardiff, UK. 

This study aims to assess the efficacy of a novel drug using intermittent bilateral 

intraputamenal glial cell line-derived neurotrophic factor (GDNF) for PD patients. The 

trial’s main objective	is to test whether GDNF administration achieves neurorestoration 

and causes significant clinical benefit (Whone et al. 2019). 

The treatment infusions were administered via convection enhanced delivery (CED). 

Thirty-five subjects were involved in the primary stage of this trial (N=35; female=17, 

male=18). All were randomised (1:1 ratio) and assigned to two groups. The GDNF 

group received the treatment and placebo, and both groups received artificial cerebral 

spinal fluid (aCSF). GDNF, placebo, and aCSF were visually identical. Patients and 

investigators were blinded to treatment and placebo groups to avoid bias. Each subject 

received two scans (baseline and after treatment). Patients involved in this study were 

aged 35 to 75 years, diagnosed with bilateral idiopathic PD according to UK Brain Bank 

criteria, and underwent full assessment. See appendix D (Figure D-2) for the 

CONSORT (Consolidated Standards of Reporting Trials) flow diagram followed in 

designing the clinical trial. All subjects had been treated with an anti-Parkinson’s drug 

for longer than	6 weeks and had motor symptoms associated with moderate severity of 

the disease for 5 years or longer. 

A T1-weighted MRI scan was performed after CED implementation for each subject to 

assess the CED infusion system and for later use for PET co-registration. The therapy 

plan lasted 40 weeks, and all subjects received a FDOPA PET tracer to image the brain 

before and after treatment. A low dose CT scan was performed for each subject prior to 
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the PET scan at the same position and used during the quantification analysis for AC for 

PET dynamic images. Parkinson’s medication was not ceased during the study, and 

modification were allowed to control symptoms. Another T1-weighted MRI was 

performed for each subject at the end of treatment (Week 40) to determine maintenance 

of CED system. This study followed a previous randomised controlled pilot stage 

(N=6). FDOPA PET and T1-weighted MRIs were co-registered and quantified by 

applying VOIs on ROIs (striatum, caudate nucleus, and putamen). Patlak graphical 

analysis was the standard method used for assessment. This type of analysis is based on 

the assumption of the unidirectional uptake from the blood into the midbrain and basal 

ganglia, particularly in striatum, after the tracer injection. The main parameter is Ki, 

which measures the rate of tracer accumulation in the targeted ROI. The mean 

percentage change in the side-to-side averaged striatum (caudate and putamen) Ki 

between the baseline and after therapy scans is the main output. This analysis was 

repeated after applying our suggested methods, statistical models, and noise reduction to 

FDOPA images. Appendix D (Figure D-2) shows the GDNF clinical trial outline 

followed in PETIC department in the University Hospital of Wales. 

4.2.2 Scanner and reconstruction parameters 

All baseline and after therapy scans were obtained from the same scanner, a GE 

Discovery 690 PET/CT available in PETIC (Figure 4-1). Acquiring images from the 

same scanner helps to avoid bias that could be caused by using different tomographs. 

All subjects followed the same protocol designed by the PETIC department. Image 

acquisition settings and parameters are mentioned earlier in Table 4-1. 
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Figure 4- 3. GE Discovery 690 PET/CT scanner available in PETIC and used for clinical and 
research studies obtained from GE Healthcare (2019). 

 

4.2.3 Protocol scan 

The Administration of Radioactive Substances Advisory Committee (ARSAC) certified 

approved the protocol scan, and Cardiff University was responsible for supplying the 

radiopharmaceuticals. All radiographer and operators were trained and qualified to 

perform PET/CT imaging of subjects and familiar with the FDOPA GDNF trial 

procedures. For scan preparation, subjects received 150 mg of carbidopa and 400 mg of 

entacapone. After 1 hour, a low dose CT scan was acquired including vertex to C1. 

Thereafter, a dynamic PET scan was acquired as 26 time frames over 94.5 min ( 1 × 30 

sec, 4 × 1 min, 3 × 2 min, 3 × 3 min, and 15 × 5 min). 18F-FDOPA administered in 

normal saline immediately after the scan commences with a dose of 111 MBq through a 

long connecting tube as a bolus injection. The cerebellum region from each time frame 

was used as reference region tissue (input function) for quantitative analysis. Both scans 

(baseline and after therapy) were acquired, reconstructed, and attenuated using the same 

PET scanner in PETIC, and blinded investigators were assigned to the therapy group to 

obtain all scans.  
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4.2.4 Image reconstruction and data transfer 

The computer used for reconstruction images is a 2.7 GHz quad-core Intel Core i5. The 

computer used for quantifying the FDOPA phantom images has a 3.20 GHz Intel ® 

Core ™ i7 CPU running the Windows 7 Enterprise 64-bit OS and 32 GB RAM. PMOD 

version 3.409 and MATLAB version R2016a software were used to quantify dynamic 

FDOPA images. Image reconstruction was performed using the standard manufacturer-

supplied 3D reconstruction program provided with the PET cameras. Various choices 

can be made within this reconstruction program (e.g. filter window, zoom factor, 

whether to decay correct). AC for baseline and follow-up images using a CT scan is 

performed before PET dynamic acquisition. The reconstruction method used with 

FDOPA imaging is ML OSEM for 3D imaging using the Vue Point FX algorithm with 

TOF correction. Scatter correction was applied during the reconstruction process, and 

detector normalization and geometric corrections were applied using the scanner 

manufacturer’s standard methods. The image files were all formatted using the DICOM 

standard. This format is data rich, and the header information includes attenuation, 

scatter and decay correction, normalization, frame timing, and reconstruction 

parameters, as well as the standard required details of matrix dimensions and pixel size. 

When dynamic files reconstruction was complete, data were copied to CD-ROM to 

allow transfer to the research office where the image analysis is performed using PMOD 

and MATLAB. Images were uploaded to the TeleHERMES™ system and PETDATA 

folder and made available for viewing at any time. Two pilot baseline and follow-up 

scans were sent before transferring all studies to verify compatibility of reconstructed 

images with our software for analysis and to ensure that all corrections required for 

quantification process were performed. A further inspection step was taken to verify 

that all time frames were present and that the duration was 94.5 min.  
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4.2.5 Regional and sub regional analysis  

The PMOD software, and specifically its PVIEW and PKIN tools, is used to draw and 

analyse ROIs and reference tissue. Ki is usually calculated over the range 30–94.5 min 

for dynamic images. Three VOIs at minimum must be created: one VOI for reversible 

regions, representing the cerebellum, and two VOIs for the right and left striatum. For 

regional analysis, VOI are drawn as one complete contour including the striatum 

(caudate and putamen) for each side of the brain, whereas in sub regional analysis, each 

side of the striatum is divided into two regions (caudate and putamen). The putamen is 

then divided into three parts (Figure 4-4: A, B, & C). Each VOI includes contours that 

are drawn over the anatomical region required for the analysis, and VOIs are saved as a 

template in a single file to be used again for the follow-up scan analysis. Then, the 

TACs are generated from the contours of ROIs required for the Patlak analysis (Figure 

4-5: Top). TACs for all regions must be inspected, and the tracer in reversible curve 

(cerebellum TAC) should show a clear washout to confirm the absence of specific 

binding. PMOD has an algorithm to determine the best time for t*, and because frames 

from 30–94.5 min will be analysed, the Patlak equation begins calculations at t* =30 

min. For regional and sub-regional analysis, the result will be the mean (Ki) value, the 

slope Figure (4-5: Bottom), and the intercept that represents V for each specific ROI 

made. Standard error (SE), sum squared error (SSE) and Chi-square are calculated 

within the analysis. An image of integrated FDOPA signals from 30–94.5 min (summed 

or ADD image) (Figure 4-6: Left) is created for use when applying ROIs contours to 

individual FDOPA dynamic images. Where a single template of predefined volumes of 

interest including all ROIs contours is prepared by the PVIEW tool, these are then 

applied to each subject PET dynamic image. The SPM software was used to perform 

spatial normalization, image smoothing (8-mm FWHM smoothness parameter), and co-

registration processes in which each PET image registered into the MRI scan is taken 
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from the same patient (Figure 4-6: Right). This allows the drawing of VOI templates 

(objects maps) accurately on MRIs. Using the PVIEW tool, a template can be applied 

immediately to the PET images. The object map defines both putamen (left and right), 

putamen parts, and heads of caudate nuclei. ROI objects were drawn freehand on the 

single-subject MRI. Comparisons were made to localize significant mean (Ki) 

differences between baseline and follow-up scans in ROIs. 

   

   

Figure 4- 4. Example of drawing contours on ROIs. The first row shows MRI images (A) in 
which the ROI left striatum is drawn in one complete contour. (B) ROIs in sub-regional analysis 
are divided into two regions: caudate and putamen. (C) The putamen as an ROI in sub-regional 
analysis is divided into three parts: 1 (Anterior), 2 (Central), and 3 (Posterior). The second row 
illustrates PET images where contours are copied from MRIs to generate TACs. 
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Figure 4- 5. (Top) The TACs from the contours of regions (right, left striatum, and cerebellum) that are 
required for the Patlak analysis. Cerebellum TAC (blue line) shows a clear washout, and it is the 
reference input function for the analysis as an alternative to blood input data. (Bottom) The Patlak 
regression model results in straight line after applying the equation; (Ki) is equal to the slope value. 
	
 

 

 

 

 

 

 

Figure 4- 6. The summed (ADD) image on the left was obtained from a single slice of FDOPA 
scan (30–94.5 min) from a PD subject. Fused PET-MRI images were used to prepare the VOIs 
template for analysis. 
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4.3 Conclusion 

The experimental work in this thesis will first generate simulated PET data that mimics 

the FDOPA images obtained by the scanner available in the PETIC department. In this 

step, dPETSTEP will be used as a dynamic PET simulator for brain images that allows 

full simulation of kinetic modelling. After generating the simulated data, various 

statistical and mathematical methods will be applied to the data generated to reduce or 

remove noise and bias introduced in quantitative analysis. MATLAB and PMOD will 

be used as a platform and a tool to apply and evaluate suggested methods, respectively. 

Successful approaches will then be applied to the FDOPA clinical images for further 

validation and evaluation following procedures and steps validated in the published 

literature. The next chapter covers the experiments dealing with statistical noise in PET 

data and focus on statistical models used to remove or reduce the noise.
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5 Impact of Noise on Quantitative 18F-FDOPA 
Images in Phantom Dynamic PET Data  

5.1 Introduction 

This chapter describes our first experiment in the optimization process for 18F-FDOPA 

quantification in Parkinson’s disease (PD) images. Patlak graphical analysis, using the 

various statistical methods, was first applied to the simulated positron emission 

tomography (PET) data in order to investigate their ability to reduce the effects of bias 

and noise as well as to maintain the accuracy of the result. The calculation of goodness 

of fit of the slope and the SEs of the regression line (RL) are the reference for the 

evaluation of the performance of each statistical method. Graphical techniques are 

considered simple for the PET data analysis, as it could be used for a wide range of 

tracers without complicated mathematical compartmental modelling. One issue usually 

associated with graphical techniques is the introduction of bias, which is caused by the 

sensitivity of the method to statistical noise and data outliers (Logan 2003) that affect 

the result accuracy using the ordinary least squares (OLS) method. In some voxels, 

outliers are likely to exist in the regression analysis and will cause errors in the 

calculated values, which could result in higher false negative rates (FNRs) or higher 

false positive rates (FPRs) and affect the diagnosis decision (Wager et al. 2005). This 

unpredictability of the effects of outliers is particularly problematic, as a simple 

correction (e.g. an alpha or p value correction) is not available. 

The errors and bias associated with the OLS method could be overcome by selecting 

and applying several other methods. Examples of other methods include the following: 

1. Feasible generalized linear least squares (FGLS),  

2. Total least square (TLS), and 



	 	 	

	 77	

3. Robust fitting regression (RFR).  

In this chapter, these methods will be applied to Patlak equation with simulated 

phantom PET data generated from the dPETSTEP simulation tool (Haggstrom et al. 

2016) in the first instance to see how they affect the result of image analysis and how 

they perform with increasing levels of noise. The simulated PET data are categorised 

into three groups, and the first group represents 10 normal Ki values with added noise 

calculated from TACs obtained from simulated PET images. With this group, statistical 

models suggested before were used in Patlak analysis and comparison performed for 

them. 

In second group, these various statistical methods again applied to a set of simulated 

PET images containing both normal and abnormal Ki values not only normal Ki values 

like in first group. As with the first set of data, increased levels of noise will be applied 

as well to the same TACs data previously involved in the Patlak regression only. 

Finally, for the last group of analysis, we investigated the various methods on the 

simulated PET images of normal and abnormal Ki values and the noise this time is 

applied to the images before extracting the data required for regression analysis. Thus, 

for the first two groups noise was added to TACs required to Patlak analysis and for the 

third group noise added on the simulated images. The equations, materials, algorithms, 

and tools used in the experiment will be described, and the results will be discussed and 

evaluated in the rest of the chapter.   



	 	 	

	 78	

5.2 Theory  

5.2.1 FDOPA kinetic analysis method  

The main feature distinguishing reversible from irreversible tracers is the experiment’s 

length; in other words, a tracer can be reversible over a long period, but it can be 

irreversible during the experiment or scanning time (Logan 2000). For irreversible 

tracers, the Patlak reference model is used to calculate the tracer uptake in a ROI using 

the blood data as an input function. For 18F-FDOPA, the Patlak reference model is used, 

and it is possible to replace the blood activity using a reference region to generate a time 

activity curve (TAC). The reference region must be devoid of targeted receptors (Patlak 

and Blasberg 1985; Patlak et al. 1983). The Patlak method can be modelled as two-

tissue compartments (Figure 5-1). 

 

Figure 5-1. Two-tissue compartmental model where Cp(t) is the plasma tracer concentration at time (t). 
C1 is the free tracer concentration in tissue and C2 is the trapped tracer concentration. K1, k2, and k3 are 
unidirectional rate constants of the tracer between plasma and tissues. 

With FDOPA, the regions used to generate Patlak parameters include one reversible 

region (cerebellum) and one irreversible region (striatum). In this instance, the TACs of 

the cerebellum are used, instead of directly measuring blood plasma, as an input 

function for Patlak analysis. The Patlak equations with reference tissue as an input 

function can be described by 

CT (t)
CT ' (t)

= K
CT ' (τ )dτ0

t
∫
CT ' (t)

+V  Eq. 5-1 

where K = slope =
K2K3

(K2 + K3)
, CT (t)  is the TAC values of the ROI tissue (striatum), 

and CT ' (t)   is the TAC values of the reference tissue (cerebellum) at time (t) . The 

equation works for t > t*, where t* is the equilibration time where the radioactivity ratio 

C1	 C2	Cp	
k2	

K1	 k3	
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between reference and ROI tissue becomes reasonably constant (Ikoma et al. 2008). K 

represents the tracer net uptake calculated from the regression slope, and V is the 

intercept, which is equal to the volume fraction of blood in ROI tissue at time 0.  

This means the activity in the striatal VOI is divided by the reference tissue activity 

(cerebellum), representing the y-axis, and plotted against the integral of the reference 

tissue activity from the injection time divided by the reference tissue activity, 

representing the x-axis. As 18F-FDOPA is a tracer that targets brain receptors in the 

striatum, the model plot will result in a straight line (Figure 5-2) after t* (Patlak and 

Blasberg 1985).  

 

Figure 5-2. PET activity measured from ROI is divided by the reference tissue activity that represents y-
axis, and plotted against the integral of the reference TAC from the injection time divided by the 
reference activity, which represents x-axis. The model plot resulted in a straight line after t* = 30 min in 
this analysis. 

Graphical analysis is based on regression, so in many cases, it cannot fit all data 

accurately generated from reference tissue or striatal VOI, where outliers exist in some 

voxels of brain images. When this happens, a bias can be introduced into the parameters 

(Logan et al. 2001). In the Patlak equation, this bias is usually introduced in the tracer 

net uptake. Also, bias is present due to errors within the linearized equations during all 

the time points (Feng et al. 1996; Feng et al. 1993). The effect of bias depends on the 
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type of noise present. Most of the analysis introduces bias and can usually be addressed 

by reducing the source of noise in the data or averaging the dataset (Logan et al. 2001). 

5.3 Bias and Statistical Noise-Reduction Methods 

5.3.1 Ordinary least squares  

OLS is one of the simplest methods of linear regression, and it is frequently used to 

analyse both experimental and observational data. It aims to closely “fit” a function to 

the data by minimizing the sum of squared differences between the observed responses 

in the given dataset and those predicted by a linear function. On a plotted graph, this is 

seen as the sum of the squared vertical distances between each data point in the set and 

the corresponding point on the regression line (RL) (Figure 5-3). When the differences 

are smaller, the model of the data has a better fit (Hayashi 2000). In the case of a model 

with p explanatory variables, the OLS regression model is expressed as the following: 

Y = β0 + =1..pβ j X j +εj=1

p
∑  

Eq. 5-2 

where Y is the dependent variable, β0 is the intercept of the model,	 X j  corresponds to 

the jth explanatory variable of the model (j=1 to p), and ε is the random error with 

expectation 0 and variance σ². With n observations, the estimation of the predicted 

value of the dependent variable Y  for the ith observation is given by 

yi = β0 + j =1..pβ j X ij∑  
Eq. 5-3 
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Figure 5-3. An example showing how the OLS method is used to construct the regression line from 
PET dynamic data; y-axis represents the amount of radioactivity (kBq/cc) and x-axis represents time 
points in minutes when the radioactivity was recorded. 

 

The OLS method corresponds to minimizing the sum of squared differences between 

the observed and predicted values of a dataset. In a model, this leads to the following 

estimators of the parameters: 

y = X (X 'DX )−1X 'Dyσ 2 =1/ (w− p∗) =1..nwi (yi − yi )i= j

n
∑  

Eq. 5-4 

where β is the vector of the estimators of the βi parameters, X is the matrix of the 

explanatory variables preceded by a vector of 1, y is the vector of n observed values of 

the dependent variable, p* is the number of explanatory variables to which we add 1 if 

the intercept is not fixed, wi  is the weight of the ith observation, w is the sum of the wi  

weights, and D is a matrix with the wi weights on its diagonal. The vector of the 

predicted values can be written as follows (Freedman 2009): 

y = X (X 'DX )−1X 'Dy  Eq. 5-5 

The OLS estimation tool has assumptions in linear regression to provide the best 

possible estimates; in a model, the result could be doubted if these assumptions are 

violated and other estimation methods are suggested to be used. In contrast, unbiased 

coefficient estimates can be generated when the linear regression analysis satisfies the 

OLS assumptions. In this case, coefficients become somewhat close to the minimum 
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variance level that represents the true population values (Frost 2018). Because the 

population value’s error term is unknown , residuals of the observational sample (fitted 

points) are the best option to estimate the error. The OLS assumptions are six 

assumptions, and some reviews make them seven. All of them are summarized as 

follows (de Souza and Junqueira 2005; Frost 2018; Lewis-Beck and Lewis-Beck 2015): 

The first assumption indicates the existence of linearity in the functional form of the 

model, coefficients, and error term. The second assumption is with regards to the error 

term, where the average value must have a population mean equal to zero. The third 

assumption addresses the independent variables, as they must be uncorrelated with the 

error term that is related to the dependent variables. Observations of the error terms 

should not correlate to each other, so one observational error is assumed not to predict 

the next one, and this is the fourth assumption that must be considered. Assumption five 

states that the homoscedasticity is the case of the error term variance for the 

observations where the variance is considered to be constant. The sixth assumption 

concerns the independent variables, as each variable must not act as a linear function for 

another one, so the change in any independent variable should not change another by a 

fixed proportion; this issue is usually referred to as a multicollinearity condition. The 

last assumption, which is the normality of error distribution, is not compulsory for the 

quality of OLS estimates; however, it is very useful in the statistics to select the suitable 

hypothesis test. 

Although OLS is commonly used for its simplicity, there are some problems and pitfalls 

that can be introduced within data using OLS analysis. Outliers, which refer to the large 

or small data points compared to the rest of dataset, can affect not only the final 

resulting constants of the analysis but even all data points. Large or small outliers have 

effects on other types of regression (linear or nonlinear) and could result in largely 

excessive regression constants. In some cases, it is difficult to know exactly what the 
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best error measurement to minimize, and that leads to trying other methods of least 

squares though some choices that could be better than others. For that reason, applying 

other least squares methods such as generalized linear least squares (GLLS), RFR, and 

TLS could provide fewer error measurements for our dataset. 

5.3.2 Generalized linear least squares  

GLLS was originally developed by Feng et al. (1993) and has been applied in various 

PET quantitative model equations (Logan et al. 2001) to remove bias. GLLS is used for 

estimating the unknown parameters in models based on a linear regression when 

calculated data show a certain degree of correlation in the residuals. Based on this 

correlation, calculated data are categorized into two parts: for times 0 to T1 and from T1 

to the end time, and then another estimation is calculated. The parameters generated a 

curve used as input to the linear regression analysis (Logan et al. 2001). The two types 

of GLLS are called weighted least squares (WLS) and feasible generalized least squares 

(FGLS). WLS can be applied when all the off-diagonal entries of the covariance error 

matrix (W ) are 0. In FGLS, the opposite occurs when the covariance of errors is 

unknown (Strutz 2010). With FGLS, the calculation progresses through two steps: 

Firstly, the residuals are obtained by using OLS to establish the errors covariance matrix 

that shows a consistency in estimation. The second step is the implementation of GLLS, 

which is to divide the given data into two parts. The part that has the low variance is 

given more weight than the other parts to generate a more accurate fitted line. With 

finite samples, an estimator’s accuracy with FGLS can be improved by an iterative 

process where residuals are used to update the errors covariance estimator, and, 

consequently, the FGLS estimation is updated (Freedman 2008; Gujarati 2009; Long 

and Trivedi 1992). The FGLS estimator may or may not be unbiased in small samples, 

but if Ŵ is a consistent estimator of W , the FGLS estimator is asymptotically unbiased, 
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efficient, and consistent. Monte Carlo (MC) studies have shown that the FGLS 

estimator generally yields better estimates than the OLS estimator (Kennedy 2008).  

The general linear regression model is defined by the following set of assumptions:  

• Linearity in parameters is the functional form  

y = Xβ +µ  
Eq. 5-6 

• Error term has a mean of zero 

E(µ) = 0  
Eq. 5-7 

• Errors are non-spherical   

Cov(µ) = E(µµT ) =W  Eq. 5-8 

where W is any non-singular T ×T variance–covariance matrix of disturbances.  

• Error term has a normal distribution 

µ ~ N  
 

• Error term is uncorrelated with each independent variable 

Cov(µ,X ) = 0  
Eq. 5-9 

There are two types of non-spherical errors: Firstly, when an error term does not have 

constant variance, this is called heteroscedasticity. In this type of error, the disturbances 

are drawn from probability distributions that have different variances, and the error term 

has non-constant variance; the variance–covariance matrix of disturbances is not given 

by a constant multiplied by the identity matrix (i.e. W ≠ σ2I). Secondly, the errors are 

correlated, which is called autocorrelation or serial correlation, where disturbances are 

correlated with one another. This occurs when using time-series data. When the 

disturbances are correlated, the variance–covariance matrix of disturbances is not given 

by a constant multiplied by the identity matrix (i.e. W ≠ σ2I). This is because the 

elements of the principal diagonal of W, which are the covariance of the disturbances, 

are non-zero numbers (Granger 1994).    
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In a general linear regression model stated in matrix format, the sample of T 

multivariate observations (Yt, Xt1, Xt2, …, Xtk) is generated by a process explained below:  

y = Xβ +µ, 				µ ~ N (0,W )  
Eq. 5-10 

or  

y ~ N (Xβ ,W )  
 

An FGLS estimator uses the sample of data to obtain an estimate of W, where the true 

W is replaced with its estimate Ŵ . The FGLS estimator is given by the following rule:   

     

β̂ FGLS = (X TŴ −1X )−1X TŴ −1y  Eq. 5-11 

The variance covariance matrix of estimates for the GLS estimator is  

Cov(β̂) = (X TŴ −1X )−1  Eq. 5-12 

 

The FGLS estimator is also a WLS estimator. The WLS estimator is derived as follows. 

Find a T ×T  transformation matrix P, such that µ* = Pµ, where µ* has the variance–

covariance matrix Cov(µ*) = E(µ* µ*T) = σ2I. This transforms the original error term µ 

that is non-spherical into a new error term that is spherical. Use the matrix P to derive a 

transformed model (Granger 1994; Kennedy 2008):  

 

Py = PXβ + Pµ  
Eq. 5-13 

or      

y*= X *β +µ *  
Eq. 5-14 

where  y* = Py, X* = PX, and µ* = Pµ. The FGLS estimator is the OLS estimator 

applied to the transformed model, which is considered a computational device only to 

obtain efficient estimates of the parameters and SEs of the original model of interest.  
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5.3.3 Robust fitting regression 

Robustness denotes the solidity of conclusions and how their differences from 

assumptions are assigned to a certain model. This means that small changes in the data 

distribution do not cause large changes in the variance of the estimates (Western 1995). 

RFR provides an alternative to OLS when the underlying assumptions are invalid within 

the model. RFR provides much improved regression coefficient estimates when data 

noise or outliers are present. The influence of outliers is down-weighted by making the 

outlying residuals larger and simpler to detect, plus performing an iterative procedure to 

identify outliers and to reduce the impact on the coefficient estimates. Robust regression 

implements its own residual analysis and reduces or completely removes numerous data 

points, so a decision should be made as to whether these observations are essential in 

the analysis (Hintze 2001; Kutner et al. 2004). The most common general method of 

robust regression is a class of techniques called M-estimators that discount the impact of 

outlying observations (Fox 2002) introduced by Huber (1964). Consider the linear 

model 

 

yi =α +β1xi1 +β2xi2 + ...+βk xik +εi = x 'β +εi  Eq. 5-15 

The fitted model for the ith of n observations is 

yi =α +β1xi1 +β2xi2 + ...+βk xik + ei = x 'i b+ ei  Eq. 5-16 

 The general M-estimator minimizes the objective function 

p(ei )i=1

n
∑ = p(yi − x 'i b)ii=1

n
∑  Eq. 5-17 

The function ρ gives the contribution of each residual to the objective function and 

should have the following properties: 
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• ρ(e) ≥ 0   

• ρ(0) = 0   

• ρ(e) = ρ(−e)   

• ρ(ei) ≥ ρ(ei’) for |ei| > |ei’|   

For least squares estimation, ρ(ei)=ei
2, let ψ=ρ’  be the derivative of ρ, differentiating 

the objective function while considering the coefficients b, and assume the partial 

derivatives to be 0, which enervates a system of k+1 estimating equations for the 

coefficients: 

ψ(yi − x 'i b)x 'i=1

n
∑ = 0  Eq. 5-18 

Assume the weight function w(e) = ψ(e)/e , and let wi = w(ei), so that the estimating 

equations can be written as 

wi (yi − x 'i b)x 'i=1

n
∑ = 0  Eq. 5-19 

 

An iterative solution called iteratively reweighted least squares (IRLS) is required due 

to the dependency between weights, residuals, and estimated coefficients. The iteration 

is performed by following these steps: 

 1. Select initial estimates b(0); for example, the least squares estimates. 

2. At each iteration t, calculate residuals ei
(t−1)  and related weights wi

(t−1) = w[ei
(t−1) ]  from 

the previous iteration. 

3. Apply for new weighted least squares estimates. 

b(t) = [X 'W (t−1)X ]−1X 'W (t−1) y  Eq. 5-20 

X is the model matrix, with x 'i as its ith row, and wi
(t−1) = diag {wi

(t−1)}  is the current 

weight matrix. These steps are repeated until the estimated coefficients converge and 

the covariance matrix of b is 
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Vb = E(ψ 2 )
[E(ψ ')]2

(X 'X )−1  
Eq. 5-21 

Using [ψ(ei )]
2∑ to estimate E(ψ 2 ) and [ ψ '(ei ) / n∑ ]2  to estimate [Eψ '∑ ]2 produces the 

estimated covariance matrix V̂ (b) . 

5.3.4 Total least squares 

The TLS method, also known as the error-in-variables method or orthogonal regression 

method, is a general approach that can be used in n-dimensional space (Petras and 

Podlubny 2010). Many areas of application use the TLS method such as signal 

processing, image processing, and economics. The orthogonal distance (i.e. distance 

between the data point and fitted line) is the main category of TLS, as illustrated in 

Figure 5-4, and it can be mathematically expressed by the following relation (Petráš and 

Bednárová 2010): 

R = dii=1

n
∑  Eq. 5-22 

d is the orthogonal distance, and the target is to find a minimum of R; the TLS approach 

minimizes the sum of the squared d from the data points to the fitting line. With the 

TLS method, the well-known mathematical tools are usually used.  

 

For the linear regression model of the expression, 

y = bx + a  
Eq. 5-23 

The coefficients a and b can be derived from the following relations: 

a =
yi −bi=1

n
∑ xii=1

n
∑

n
= y −bx  Eq. 5-24 
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B = 1
2

( y2i − ny
2 )− (

i=1

n
∑ x2i − nx

2 )
i=1

n
∑

nxy − xi yii=1

n
∑

 
Eq. 5-25 

where b = −B± B2 +1  can be obtained from correlation coefficient r. 

The OLS and TLS methods assess the fitting accuracy in various ways: the OLS method 

minimizes the sum of the squared vertical distances from the data points to the fitting 

line, whereas the TLS method minimizes the sum of the squared d from the data points 

to the fitting line. Figure 5-4 shows OLS and TLS fitting lines as well as the data 

approximation. In the least squares case, the data approximation is obtained by 

correcting the second coordinate only. In TLS, the data approximation is obtained by 

correcting both coordinates (Markovsky and Van Huffel 2007). This method takes into 

account the noise in the independent and dependent variables (Varga and Szabo 2002). 

 

Figure 5-4. Ordinary least squares (A) and total least squares (B) fit of the set of m = 20 data points in the 

plane. (¢---) data points, [aibi ] , x- approximations [âib̂i ] , solid line (—) fitting model âx̂ = b̂ , dashed 
lines (---) approximation errors. 

5.4 Results 

5.4.1 Normal simulated Ki values 

TACs for reference tissue (cerebellum) and ROI (left striatum) that were obtained from 

the first simulation data without noise are plotted as an example in Figure 5-5. The 

A	 B	

}	d	
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curves show that activity in the cerebellum starts to increase significantly, reaching 

12000 kBq/cc, and then decreases (washout) to around 4000 kBq/cc, as well as starts 

what is known as the equilibration stage, which is the time point most preferable for 

Patlak analysis. The activity washout confirms the reversibility of the cerebellum 

region. In contrast, the left striatum TAC increased until it reached a stable level for the 

remainder of the scan, which confirms the irreversibility. The (Ki) results from all 

simulated data are presented in figure 5-6, 5-7, 5-8 and 5-9 and in Appendix A: Tables 

A-1, A-2, A-3, and A-4 for OLS, FGLS, TLS, and RFR calculation, respectively; the 

results include noisy and non-noisy data. After fitting the data into the statistical 

models, two numerical methods used to evaluate the goodness of fit for all linear 

regression analyses were included: the sum of squares due to error (SSE) and the 

standard error (SE), known as the root mean squared error (RMSE) as well. The 

numerical measures are more closely concentrated on a specific aspect of the data and 

often try to compress that information into a single number. SSE measures the total 

deviation of the response values from the fit, where a value closer to 0 indicates a 

smaller random error component within the model selected, and the fit will be more 

useful for prediction. It is also known as the summed square of residuals.  

SSE = (yi − ŷi )
2

i=1

n
∑  Eq. 5-26 

 

SE is an estimate of the standard deviation of the random components in the data and is 

similar to the SSE. An SE value closer to 0 indicates a fit that is more useful for 

estimation. SE is described as 

SE = MSE  Eq. 5-27 

MSE = SSE
v

 Eq. 5-28 

v = n−m  Eq. 5-29 
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where MSE is the mean square error or the residual mean square, and v indicates the 

number of independent pieces of information involving the n data points that are 

required to calculate the sum of squares, calculated as the number of response values n 

minus the number of fitted coefficients m estimated from the response values. 

 

Figure 5-5. TACs for the reference tissue (cerebellum) and ROI (left striatum) that were obtained from the 
first simulation data without noise are plotted as an example. 
	

  

Figure 5-6. OLS regression method used for kinetic Patlak analysis on all simulation data and Ki values 
illustrated within 10 noise levels. 

  

Figure 5-7. FGLS regression method used for kinetic Patlak analysis on all simulation data and Ki values 
illustrated within 10 noise levels. 
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Figure 5-8. TLS regression method used for kinetic Patlak analysis on all simulation data and Ki values 
illustrated within 10 noise levels. 

 

 
 

Figure 5-9. RFR regression method used for kinetic Patlak analysis on all simulation data and Ki values 
illustrated within 10 noise levels. 

A one-way repeated measured analysis of variance (ANOVA) was conducted to 

evaluate the null hypothesis that there is no change in the simulations’ Ki value when 

calculated with various statistical regression models in all four groups (N = 10). The 

results are summarized in Table 5-1. The ANOVA test results indicated a significant 

effect, Wilks’ Lambda = .001, F(3, 7) = 41.17, p < 0.01, η2 = .75. Thus, there is 

significant evidence to reject the null hypothesis. Follow-up comparisons indicated that 

each pairwise difference was significant, p < 0.01, except between OLS and TLS, where 

p = 0.09. There was a significant difference between the statistical models used, 

suggesting that using a different linear regression model reveals a different Ki value, 

which is the main parameter used in diagnosis. A repeated measured ANOVA is 

performed when the samples are considered to be related (dependent) and more than 
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two groups. The measurements of SE, SSE, and fold changes are summarized in Table 

5-2. With the OLS method, the min SE in all simulations, including noisy data, was 

0.057, and the max was 1.01070; the average SE was 0.236. For SSE, the min was 

0.0003, the max was 0.093, and the average was 0.007. The fold change range was 

between 0.0004 and 2.097. FGLS calculations with the data showed that the SE min 

was 0.0012, the max was 0.0106, and the average was 0.0042. The SSE min was 1×10-7, 

the max was 1×10-5, and the average was 2×10-6, with a general fold change range of 

0.003-2.381. For TLS analysis, the min SE was 0.0697, the max was 1.3071, and the 

average SE in all data calculations was 0.4505. The SSE min was 0.0004, the max was 

0.1553, and the average was 0.0237. The fold change range was 0.005-2.096. The min 

SE in the RFR analysis was 0.070, the max was 0.922, and the average was 0.379. The 

SSE min was 0.0005, the max was 0.077, and the average was 0.0180, with a fold 

change range of 0.008-2.838. 

Table 5-1. A one-way repeated measured analysis of variance (ANOVA) result. 

Test Wilks’ 
Lambda 

F(3, 7) p -value 

ANOVA 
(N=10) 

.001 41.17 p < 0.01 

pairwise 
difference 

OLS and TLS, 
pairwise 

η 2 

p < 0.01 p = 0.09 .75 
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Table 5-2. SE, SSE, and fold change values for each method applied to simulation data. 

Stat. Model SE SSE fold change 
OLS Min 0.0568 0.0003 0.0004 

Max 1.0107 0.0929 2.0956 
Avg. 0.2355 0.0074 0.4290 

FGLS Min 0.0012 0.1 E-06 0.0032 
Max 0.0106 10.2 E-06 2.3815 
Avg. 0.0042 2.0 E-06 0.5842 

TLS Min 0.0697 0.0004 0.0051 
Max 1.3071 0.1553 2.0957 
Avg. 0.4505 0.0237 0.4820 

RFR Min 0.0703 0.0005 0.0075 
Max 0.9216 0.0772 2.83823 
Avg. 0.3795 0.0180 0.4728 

 

5.4.2 Averaged Ki values (normal and abnormal) 

5.4.2.1 2D data analysis (Curve data) 

An ANOVA was conducted to evaluate the null hypothesis that there is no change in the 

simulations’ Ki value when calculated with various statistical regression models in all 

four groups and each group contains six simulations of Ki values  (N = 6). The results 

are summarized in Table 5-3. The ANOVA test results indicated a significant effect, 

Wilks’ Lambda = .068, F(3, 3) = 13.743, p < 0.05, η2 = .932. Thus, there is significant 

evidence to reject the null hypothesis. Follow-up comparisons indicated that each 

pairwise difference was not significant, p > 0.05, p=1. There was a significant 

difference between the statistical models used, suggesting that using a different linear 

regression model reveals a different Ki value, which is the main parameter of diagnosis. 

The measurements of SE, SSE, and fold changes are summarized in Table 5-4. 

Table 5-3. A one-way repeated measured analysis of variance (ANOVA) result to average 2D 
simulation data. 

Test Wilks’ 
Lambda 

F(3, 3) p -value 

ANOVA 
(N=6) 

.068 13.743 p < 0.05 
p=0.029 

pairwise difference 
between stat. models 

η2 

p > 0.05 
p = 1 

.932 
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Table 5-4. SE, SSE, and fold change values for each method applied to average 2D simulation data. 
Stat. Model SE SSE fold change 

OLS Min 0.0354 0.0001 0.0916 

Max 1.1634 0.1231 2.0716 

Avg. 0.3893 0.0180 0.7560 
FGLS Min 0.0004 1.16E-08 0.1613 

Max 0.0282 7.22E-05 2.9431 

Avg. 0.0059 4.89E-06 1.0210 
TLS Min 0.0259 6.10E-05 0.0915 

Max 1.0646 0.1030 2.0770 

Avg. 0.3078 0.0122 0.7711 
RFR Min 0.0238 5.15E-05 0.0162 

Max 0.9610 0.0838 2.0702 

Avg. 0.2704 0.0097 0.6382 
 

5.4.2.2 Dynamic images (3D data analysis)  

An ANOVA was conducted to evaluate the null hypothesis that there is no change in the 

simulations’ Ki value when calculated with various statistical regression models in all 

four groups (N = 6). The results are summarized in Table 5-5. The ANOVA test results 

indicated a significant effect, Wilks’ Lambda = .099, F(3, 3) = 9.079, p < 0.05, η2 = 

.901. Thus, there is significant evidence to reject the null hypothesis. Follow-up 

comparisons indicated that each pairwise difference was not significant, p > 0.05. There 

was a significant difference between the statistical models used, suggesting that using a 

different linear regression model reveals a different Ki value, which is the main 

parameter of diagnosis. The measurements of SE, SSE, and fold changes are 

summarized in Table 5-6. 

Table 5-5. A one-way repeated measured analysis of variance (ANOVA) result to average 3D 
simulation data. 

Test Wilks’ 
Lambda 

F(3, 3) p -value 

ANOVA 
(N=6) 

.099 9.079 p = 0.05 

pairwise difference between 
stat. models 

η2 

p > 0.05 .901 
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Table 5-6. SE, SSE, and fold change values for each method applied to average 3D simulation 
data. 

Stat. Model SE SSE fold change 

OLS Min 0.0274 6.81E-05 0.0040 

Max 1.1881 0.1283 0.7924 

Avg. 0.3331 0.0109 0.0998 
FGLS Min 0.0005 2.51E-08 0.0029 

Max 0.0361 0.0001 1.9704 

Avg. 0.0040 2.39E-06 0.2083 
TLS Min 0.0342 0.0001 0.0050 

Max 2.9391 0.7853 0.7967 

Avg. 0.1526 0.0047 0.0943 
RFR Min 0.0369 0.0001 2.77E-05 

Max 0.9945 0.0899 0.3334 

Avg. 0.1189 0.0019 0.0883 
 

 

5.5 Discussion 

For most of the Ki values, they increase in proportion to the level of noise. SE and SSE 

also increase with a higher noise level. In all data groups, repeated measures ANOVA 

tests indicated that there is significant evidence to reject the null hypothesis p < 0.01 in 

the first group and p ≤ 0.05 in the 2nd and 3rd groups. This confirms that those 

statistical models reveal different results for the final Ki value for both 2D and 3D data 

sources. Each statistical regression model dealt with the simulation data in a different 

way, and based on the goodness of fit evaluations, the regression model with the best fit 

can be chosen. In the first group of data, in simulations 1-5, the data behaved quite 

similarly with the noise effect compared to simulations 6-10, which had more 

scattering, and increasing the Ki amount for the data without noise could have caused 

this. Follow-up comparisons indicated that each pairwise difference was significant, p < 

0.01, except between OLS and TLS, where p = 0.09. The p value between OLS and 

TLS confirms the similarity between these two calculations. The second and third 

datasets show a p value higher than 0.05, p > 0.05, indicating that there is no significant 

differences between each individual statistical model used in the last two experiments. 
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There was a significant difference between the statistical models used, suggesting that 

using a different linear regression model reveals a different Ki value, which is the main 

parameter of PD diagnosis. The min SE and SSE were found with FGLS, and this 

suggests that FGLS is the best of these models to fit the noisy data. RFR had the lowest 

fold change rate among all results, this can be noticed when measure the change 

difference from the noisy Ki value from values without noise, then the absolute amounts 

in percentages are obtained. This indicates more resistance to the noise effect than the 

other methods. The big difference within the SE from one noise level to another 

indicates the high sensitivity to noise in linear regression analysis, which confirms the 

previous results in the published literature review. The experiment has contributed to 

the knowledge in the field by suggesting the use of FGLS as a linear regression method 

for Patlak graphical analysis in clinical data that are assumed to have low noise. From 

the above results, using FGLS could provide better data fitting with low SE and SEE. In 

the case where PET data may include a high level of noise, the RFR statistical model 

would be better in achieving high accuracy than FGLS, but this might generate high SE 

and SSE records. Repeating the experiment with various equivalent time (t*) points 

could reveal more details and alter the accuracy of those methods. It would be useful to 

apply those models on clinical data obtained from patient dynamic images and compare 

the results to the outcome of this experiment. 

5.6 Conclusion 

Graphical techniques in PET data analysis from reference tissue are considered simple 

means of analysis to obtain physiological parameters. Patlak equations for irreversible 

tracers were used to measure the Ki rate constant, which is used to diagnose and 

evaluate FDOPA PD images. One issue usually generated with this type of analysis is 

the introduction of bias, caused by the sensitivity to statistical noise that is usually 
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present when using the OLS method. The study shows that selecting and applying other 

statistical methods could reduce bias and sensitivity to noise. The min SE and SSE were 

found with FGLS, and this suggests that FGLS is the best of these models to fit the 

noisy data. The simulated phantom PET data generated from the dPETSTEP simulation 

tool illustrated how various statistical methods can affect the image analysis result and 

how they behave with various levels of noise. There was a significant difference 

between the statistical models used, suggesting that using a different linear regression 

model reveals a different Ki value. Analysing the PET data with various statistical 

regression approaches and evaluating each approach graphically and numerically could 

improve the final result for more accurate diagnosis. 
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 Noise Reduction Techniques in Simulated 18F- 6
FDOPA Dynamic PET Data 

6.1 Introduction 

PET is a medical imaging modality that allows researchers and clinicians to 

noninvasively image and evaluate physiological and functional processes that are 

valuable in patient diagnosis, monitoring, and therapy outcomes. The quantification of 

PET data in conjunction with CT or MRI data provides additional information alongside 

visual inspection of the images. One of the confounding factors that affects the 

quantification of PET images is noise in the images. In fact, PET images have increased 

noise levels compared to other imaging modalities such as CT, MRI, or US 

(Teymurazyan et al. 2013). In recent years, new image processing methods and 

techniques have been introduced in imaging equipment of different modalities. Some of 

these methods were introduced to reduce the effect of noise, although understanding and 

categorising PET imaging noise is challenging. Positron decay events from a 

radioactive tracer have a Poisson distribution, and the scanner’s components add noise 

to that characteristic distribution, which is further altered during image reconstruction 

and the application of corrections (Teymurazyan et al. 2013). The reduction of noise in 

PET images can be performed by applying post-process quantification. The noise model 

found in PET images is usually characterized as Gaussian (Boyat and Joshi 2015; 

Coxson et al. 1995; Ollinger and Fessler 1997). Post-processing techniques are an 

alternative way to increase the signal to noise ratio rather than increasing the injected 

dose, which is considered unethical and increases the risk of harm to the patient.  
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18F-FDOPA is used to scan and quantify the function of dopaminergic receptors in the 

brain. It is assumed to be an irreversible tracer and can be analysed using Patlak 

graphical analysis. This type of model is very sensitive to the noise in PET images due 

to several factors, including nonspecific binding in tissue or plasma proteins, model 

linearity introducing bias from early time points, and dependency on regression 

estimation analysis (Logan 2003; Varga and Szabo 2002). Some physiological 

parameters, such as influx rate (Ki), that are obtained by quantification models 

sometimes become meaningless and include errors due to the amplification of noise 

during the analysis (Axelsson and Sörensen 2013). This could lead to a false positive 

and/or negative result, which consequently affects diagnosis and treatment decisions.  

In this chapter, we have identified several methods of noise reduction, including 

anisotropic diffusion (gradient and curvature) and wavelet (Daubechies and Battle-

Lemarie wavelets) and applied them to simulated PET dynamic images to evaluate the 

effects of these methods. Simulated PET data used in the studies mimics the 18F-

FDOPA tracer brain images. The dose, scan protocol, scanner characteristics, 

reconstruction algorithm, and all physical corrections have been simulated using 

dPETSTEP (Haggstrom et al. 2016). The Ki values used in the experiment represent 

both normal and abnormal subjects, and Patlak analysis was performed based on 

reference tissue as an input function, so no blood time activity curve was required. The 

aim of this study was to optimise the quantification of PET analysis by identifying the 

most suitable method of noise reduction whilst preserving the pixel and voxel 

quantitative values. The theory and equations behind each method are illustrated in the 

following theory section.  
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6.2 Theory 

Several noise reduction methods applicable to 3D images are used in this study, and the 

theory behind these methods will be explained in the following section. Each method 

was applied on noisy simulated PET data for 0.014, 0.012, 0.010, 0.0075, 0.0050 and 

0.0025; various Ki values represent normal and abnormal influx rates and each Ki value 

was exposed to ten levels (between 5% and 50%) of Gaussian noise with mean=0. After 

performing Patlak graphical analysis on the appropriate statistics, standard errors (SEs) 

and sum-squared errors (SSEs) were presented for evaluation. The SE of the regression 

or estimate is the average distance between observational points and the regression line 

and evaluates how the regression model is wrong using the units of response variable. 

SEs were used to measure the accuracy of the predictions; a smaller value indicates 

better accuracy and closer observations to the fitting line. SSE refers to the sum of the 

squared differences between the prediction of each observation and its group mean. A 

small SSE value indicates a tight fit of the model to the data and can be used as a 

measurement of variation within a data group (Lewis-Beck and Lewis-Beck 2015; 

Montgomery et al. 2012).  

6.2.1 Gradient anisotropic diffusion filter  

Anisotropic diffusion, also known as the Perona-Malik (Perona and Malik 1990) 

diffusion method, was originally introduced as an alternative to the linear-filtering 

method, which tends to blur sharp boundaries and makes separating the anatomical 

structures in the images more difficult. A gradient anisotropic diffusion filter (GADF) 

aims to reduce the noise whilst preserving the image contents that are essential for 

interpretation (Sapiro 2006). In this approach, groups of successively blurred 

parameterized images are generated based on the diffusion process, then each image 

within this group is given as a convolution to a 2D isotropic Gaussian filter. The width 
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of this filter is increased proportionally to the parameter. Thus, each resultant image is a 

combination of the original image (based on its content) and a filter. As a consequence, 

anisotropic diffusion is a non-linear and space variant transformation of an original 

image, considering that the diffusion process is a linear and space-invariant 

transformation (Guidotti 2009; Méndez-Rial and Martín-Herrero 2018). This can be 

described using a mathematical expression: 

∂g(x, y,t)
∂t

=∇.∇g(x, y,t)  Eq. 6-1 

The input image is g(x, y,t), g(x, y,t) =G( 2t)⊗ f (x, y), and G(σ ) 	is a Gaussian filter 

with standard deviation σ ;	 x  and y  make up the coordinate system used to locate the 

image’s pixels (line, column), and t 	refers to time or iteration steps in a discrete case.	

The variable conductance term is included within anisotropic diffusion. It depends on 

the differential structure of the image, can be devised to constrain the smoothing at the 

“edges”, and is measured by a high gradient magnitude	(Johnson et al. 2017); 

gt =∇.c(∇g )∇g  Eq. 6-2 

c(∇g ) = e
∇g

2

2 k2  Eq. 6-3 

The diffusion coefficient c controls the rate of diffusion and the conductance term 

introduces a free parameter k (Eq. 6-3) to be quite effective; the conductance parameter 

k controls the sensitivity of the procedure to the contrast of the image’s edge. Thus, 

anisotropic diffusion demands two free parameters: k and t, the conductance parameter 

and the time parameter, respectively, that correspond to σ . When using Gaussian 

kernels, it is the effective width of the filter. The smoothed image can only be acquired 

by an iterative process without a convolution or non-stationary linear filter. Equation 6-

2 can be solved on a discrete grid using finite forward differences where it is a nonlinear 
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partial differential equation. Thus, few iterations are required for practical results and 

this technique can be applied effectively to 3D images at the cost of more processing 

time (Johnson et al. 2017). 

Gradient anisotropic diffusion applies an N-dimensional version of the standard Perona-

Malik anisotropic diffusion calculation for scalar-valued images, where at each point of 

the image, a conductance term for this operation is selected as a function of the gradient 

magnitude, and the strength of the diffusion at the edge pixels is reduced (Perona and 

Malik 1990). 

C(x) = e
−(

∇U (x )
K

)2

 Eq. 6-4 

U (x) is an image and K is the constant that controls the sensitivity to edges, it is usually 

selected as a function of noise in the image or experimentally. Gradient magnitude 

estimation is a more robust technique with more generalization to N dimensions. Three 

parameters are usually required to start this method: iteration number, the time step, and 

the conductance level. A time step equal to 0.125 in 3D images is highly recommended, 

and the number of iterations is usually set to 5, as increasing it leads to more image 

smoothing and costs more tim and the conductance level is set to 1 (Johnson et al. 

2017). Figure 6-1 illustrates the effect of this filter on a simulated 18F-FDOPA image of 

the brain, where the gradient anisotropic diffusion filter was run with a time step of 

0.125 and conductance = 1 for 5 iterations. The figure shows how the image is 

smoothed, noise reduced and edges are more preserved. 
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Figure 6-1. Effect of the gradient anisotropic diffusion image filter on a slice from an image of 
the brain (right); noise reduction can be seen compared to the noisy image (left). 

6.2.2 Curvature anisotropic diffusion filter 

The curvature anisotropic diffusion filter (CADF) uses a modified curvature diffusion 

equation (MCDE) to perform anisotropic diffusion on images without exhibiting the 

edge-enhancing properties of classic anisotropic diffusion, which undergoes a 

“negative” diffusion that can enhance the contrast of edges. The conductance term in 

CADF is the only parameter that plays a role in varying the strength of diffusion. For 

visual assessment, CADF performs very well in comparison to the other non-linear 

diffusion techniques. It has lower sensitivity to contrast than the original Perona-Malik 

diffusion technique and provides superior preservation of detailed structures in images. 

There is a potential speed trade-off for using this function in place of GADF, as a low 

number of iterations may be required to reach an acceptable solution (Johnson et al. 

2017).  

The MCDE equation can be written as 

ft = ∇f ∇.c(∇f ) ∇f
∇f

 
Eq. 6-5 

and the conductance modified curvature term is 
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∇. ∇f
∇f

 
 

Similar to GADF, this technique requires three parameters: iteration numbers, time 

steps used in the computation, and the value of conductance. Parameter values of a time 

step of 0.0625 and conductance of 3 were recommended by (Johnson et al. 2017) when 

using this method on 3D images. In our experiment, we varied the number of iterations 

from 1 to 3. Increasing the number of iterations increases the processing time as well, 

further smoothing the image.  

6.2.3 Wavelets 

A wavelet is a wave-like oscillation with amplitude that begins at zero, increases, and 

then decreases back to zero. Wavelets were originally designed to produce useful 

characterisations of signals in signal and imaging processing fields. The aim of a 

wavelet is to merge with known parts of the signal and provide details about unknown 

parts of the signal using several convolutional techniques, such as shifting, reversing, 

and integrating signals. There are different types of wavelets, and each type has 

applications in many fields. Generally, the full data set is analysed using a set of 

wavelets by cutting the original signal into various components based on frequency. 

Then, the original signal is recovered with minimal information loss depending on 

compression and decompression algorithms. In general, wavelets under certain 

mathematical conditions are used to represent original data sets or functions after 

resolving missing parts, gaps, or overlap at different scales within the signal. These 

advantages of wavelets make them desirable in many applications instead of the 

classical Fourier methods, particularly in fields in which the signal includes sharp 

spikes or discontinuities (Chui 2016; Graps 1995).  

Briefly, a wavelet-based denoising algorithm usually has these steps:  
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(1) A wavelet is applied to transform the noisy data.  

(2) Soft thresholding is performed on the wavelet coefficients to establish the noise 

variance.  

(3) Coefficients obtained from step 2 are then padded with zeros to produce a matrix. 

(4) The signal estimation is obtained later by inverting the matrix.  

Wavelet transforms can be categorised into three types: continuous, discrete, and multi-

resolution basis. Daubechies’ and Battle-Lemarie wavelets are two varieties that have 

been widely applied in medical image processing for noise reduction. In this section, 

these two techniques will be discussed theoretically and applied to our PET data set to 

evaluate their impact on quantification analysis. 

6.2.3.1 Daubechies’ wavelet  

Daubechies’ wavelet (DW) is frequently used in smoothing and denoising 2D and 3D 

images. Due to the limitations of imaging equipment and reconstruction algorithms, 

pre- and post-processing filtering methods are desirable for many radiologists. The 

ultimate aim of applying DW to our data is to extract the quantity value from the 3D 

volume’s voxels and remove or at least reduce the noise. Wavelet methodology has 

been used in many studies to remove noise from medical images and signals in general 

(Jansen 2012; Nowak 1999; Pizurica et al. 2003). The main assumption in this analysis 

is that the added noise has different frequencies than the useful data (Wang 2001). 

When the wavelet technique is applied to the raw imaging data, many of the artefacts 

caused by interfering signals and/or waves picked up by the scanner are disregarded. 

This could improve the signal to noise ratio for the data and is applicable in all medical 

imaging modalities (Singh and Urooj 2015).  

The DW method was originally developed to overcome the limitations of discontinuous 

step functions, such as Haar’s wavelet technique (Stanković and Falkowski 2003). 

Medical images regularly contain smooth regions and thus are not suitable for Haar’s 
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wavelet base functions or other discontinuous step functions, and analysing smoothing 

with continuous derivative construction could introduce unsatisfactory analysis results. 

Haar’s orthogonal wavelet bases (Wang 2001) are defined on [0,1], namely 

h0 (x),h1(x),......,hn (x) and for any continuous function f (x)  on [0,1], the series can be 

expressed as 

< f ,hj > hj (x)
j=1

∞

∑  
Eq. 6-6 

Uniformly on [0,1], this converges to f (x) ; 

< u,υ >= u(x)υ(x)d(x)
0

1
∫  Eq. 6-7 

< u,υ >  denotes the inner product of u  and υ , where υ  is the complex conjugate of υ  

and they are equal in the case of real-valued function. An example of Haar’s structure 

(Porwik and Lisowska 2004) can be written as 

h(x) =
1,x ∈ [0,0.5)
−1,x ∈ [0.5,1)
0,elsewhere

⎧

⎨
⎪⎪

⎩
⎪
⎪

 
Eq. 6-8 

hn (x) = 2
j/2h(2 j x − k) 	 Eq. 6-9 

where	n = 2 j + k,k ∈ [0,2 j ),x ∈ [k2− j ,(k +1)2− j ) .		

In DW, the orthonormal basis for L2 (R) for	each integer r  is defined as		

φr , j ,k (x) = 2
j/2φr (2

j x − k), j,k ∈z	
Eq. 6-10 

r, j ,	and	 k 	are the filtering, scaling, and shifting indexes, respectively, and f j 	at	 scale	

2− j 	in the function f ∈ L2 (R) can be expressed as	

f j (x) = < f ,φr , j ,k > φr , j ,k (x)
k
∑ 	

Eq. 6-11 
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The fluctuations’ function (details) can be defined as 

d j (x) = f j+1(x)− f j (x) 	 Eq. 6-12 

These details can be analysed on a certain scale by giving the properties of φr (x) to 

another orthonormal basis noted as ψr (x) ; φr (x)  and ψr (x)  are usually called the father 

wavelet and the mother wavelet, respectively, and they are both required for the rest of 

the DW analysis. The properties of this method can summarized as follows (Singh and 

Urooj 2015; Wang 2001); 

• ψr (x) has the compact support interval [0,2r +1]  

• ψr (x) has about r / 5 	continuous derivatives 

• ψr (x)dx = ...=−∞

∞

∫ xr
−∞

∞

∫ ψr (x)dx = 0  

Due to these characteristics, DWs can deliver exceptional results in image processing. 

The detail analysis of a function can be implemented by convolving it with low- and 

high-pass filters.  

6.2.3.2 Battle-Lemarie wavelet 

The Battle-Lemarie wavelet (BLW) family is one of the common classical orthonormal 

wavelets constructed using spline functions. Using cardinal B-splines, BLW bases can 

be constructed with unique characteristics such as symmetry and exponential decay 

(Xiao et al. 2003). BLW shifts from orthonormal bases of the spline-wavelet spaces and 

the shapes of its magnitude spectra tend to be rectangular as the order of spline function 

increases (Averbuch et al. 2015).  

The B-spline function has simple, clear formulas in the time-domain and the frequency-

domain of degree m, Nm, and generally, the time-domain form of the cardinal B-spline 

of degree m can be given by 
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N̂m(ω) =
sinω / 2
ω / 2

⎛

⎝
⎜

⎞

⎠
⎟

m+1

.e−iλω /2m = 0,1,2Λ 	 Eq. 6-13 

where λ=0, Nm(t) is symmetrical around t=0 if m is odd, λ=1; Nm(t) is symmetrical 

around t=1/2 if m is even. 

The ϕHaar (Haar scaling function), m(t), and the {Nm (−k): k ∈ Z}, m ≥ 1 are  not 

orthonormal, with the exception of N0(t) or the cardinal B-spline of degree zero. Ortho-

normalization deception is applied to the Nm(t), and (orthonormal) BL scaling 

function ϕBL, m(t) can be obtained and the function of the resultant filter can be written as 

HBL,m(ω) =
1
2m

2m(ω)∑
2m(ω)∑

e−iλω /2 = hk
k∈Ζ
∑ e−ikω 	 Eq. 6-14 

Σm(co)=∑k∈Z 1/(ω+2kπ)m, hBL,m={hk:k∈Z} is the Fourier series coefficient set 

of HBL,m(ω), and it is called the scaling filter coefficient or sometimes the mask of ϕBL,m. 

HBL,m(ω) filter function has a concise expression. An example of the lower order case: 

HBL,0 (ω) =
1
2
+
1
2
e−iω = HHaar (ω) 	 Eq. 6-15 

6.3 Results 

6.3.1 GADF result 

A one-way repeated measured analysis of variance (ANOVA) was conducted to 

evaluate the null hypothesis that there would be no change in the simulations’ Ki, SE, 

and SSE values when calculated with the GADF in all groups of 5 and 10 iterations (N 

= 6). The results are summarized in Tables 6-1, 6-2, and 6-3. The ANOVA test results 

indicated no significant effect of GADF in noisy images for all noise levels, Wilks’ 

lambda > 0.005, and p > 0.05. Thus, there is no significant evidence to reject the null 

hypothesis for GADF (5 and 10 iterations). A repeated-measures ANOVA was 
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performed when the samples were considered related (dependent) and in more than two 

groups. The average reduction in Ki mean values for 5 and 10 iterations was -2% and -

1%; for SE, +9.7% and 0%; and for SSE, +23% and -4%, respectively. Note the 

increasing percentage in the mean values in SE and SSE for the 5-iteration process. 

More details and comparisons of results are presented in Table 6-13 for GADF and all 

remaining methods at the end of the result section. 

Table 6-1. A one-way repeated measured analysis of variance (ANOVA) result for Ki values in 
simulations before and after applying GADF at 5 and 10 iterations. 

Test	
(Ki)	 Statistics	 Noise	levels	

0.05	 0.1	 0.15	 0.2	 0.25	 0.3	 0.35	 0.4	 0.45	 0.5	

RM-	
ANOVA	
(n=6)	

p-value	 0.62	 0.259	 0.683	 0.541	 0.407	 0.825	 0.388	 0.334	 0.317	 0.246	

Wilks’	lambda	 0.79	 0.509	 0.826	 0.735	 0.638	 0.908	 0.623	 0.422	 0.563	 0.496	

η2	 0.21	 0.491	 0.174	 0.265	 0.362	 0.092	 0.377	 0.578	 0.437	 0.504	

SD	

Sim	 0.0045	 0.0050	 0.0048	 0.0058	 0.0051	 0.0052	 0.0047	 0.0051	 0.0043	 0.0055	

GADF	5	 0.0044	 0.0048	 0.0053	 0.0047	 0.0047	 0.0054	 0.0049	 0.0053	 0.0043	 0.0056	

GADF10	 0.0042	 0.0048	 0.0047	 0.0056	 0.0050	 0.0052	 0.0052	 0.0057	 .00440	 0.0060	

μ	

Sim	 .0089	 0.0095	 0.0094	 0.0098	 0.0092	 0.0096	 0.0093	 0.0097	 0.0083	 0.0010	

GADF	5	 .0088	 0.0093	 0.0096	 0.0090	 0.0092	 0.0097	 0.0084	 0.0098	 0.0084	 0.0010	

GADF10	 .0086	 0.0093	 0.0093	 0.0096	 0.0094	 0.0096	 0.0087	 0.0100	 0.0086	 0.0010	
 

Table 6-2. A one-way repeated measured analysis of variance (ANOVA) result for SE values in 
simulations before and after applying GADF at 5 and 10 iterations. 

Test	
(SE)	 Statistics	 Noise	levels	

0.05	 0.1	 0.15	 0.2	 0.25	 0.3	 0.35	 0.4	 0.45	 0.5	

RM-	
ANOVA	
(n=6)	

p-value	 .556	 .933	 .550	 .578	 .585	 .591	 .412	 .248	 .636	 .411	

Wilks’	lambda	 .745	 .966	 .742	 .760	 .765	 .769	 .642	 .498	 .798	 .641	

η2	 .255	 .034	 .258	 .240	 .235	 .231	 .358	 .502	 .202	 .359	

SD	

Sim	 .0387	 .0561	 .0490	 .0414	 .0347	 .0545	 .0444	 .0582	 .2413	 .0590	

GADF5	 .0445	 .0587	 .0663	 .2526	 .0978	 .1039	 .1704	 .0393	 .2216	 .0685	

GADF10	 .0425	 .0574	 .0464	 .0491	 .0313	 .0333	 .1430	 .0345	 .1659	 .0709	

μ	

Sim	 .3014	 .2864	 .2939	 .2922	 .3076	 .3239	 .3140	 .3230	 .4130	 .2925	

GADF5	 .3127	 .2872	 .3109	 .3884	 .3432	 .3625	 .3766	 .3163	 .4044	 .2941	

GADF10	 .3071	 .2869	 .2924	 .2806	 .2941	 .3115	 .3558	 .3070	 .3782	 .2874	
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Table 6-3. A one-way repeated measured analysis of variance (RM-ANOVA) result for SSE 
values in simulations before and after applying GADF at 5 and 10 iterations. 

Test	
(SSE)	 Statistics	 Noise	levels	

0.05	 0.1	 0.15	 0.2	 0.25	 0.3	 0.35	 0.4	 0.45	 0.5	

RM-	
ANOVA	
(n=6)	

p-value	 .510	 .832	 .574	 .604	 .586	 .575	 .444	 .255	 .650	 .398	

Wilks’	
Lambda	

.714	 .912	 .758	 .777	 .765	 .638	 .666	 .505	 .806	 .631	

η2	 .286	 .088	 .242	 .223	 .235	 .242	 .334	 .495	 .194	 .369	

SD	

Sim	 .0022	 .0028	 .0025	 .0022	 .0020	 .0034	 .0026	 .0035	 .0258	 .0030	

GADF	5	 .0025	 .0030	 .0038	 .0268	 .0073	 .0081	 .0156	 .0022	 .0230	 .0035	

GADF10	 .0024	 .0029	 .0024	 .0026	 .0017	 .0019	 .0118	 .0019	 .0151	 .0036	

μ	

Sim	 .0084	 .0077	 .0080	 .0079	 .0087	 .0098	 .0091	 .0097	 .0199	 .0080	

GADF	5	 .0090	 .0078	 .0091	 .0185	 .0114	 .0128	 .0151	 .0092	 .0186	 .0082	

GADF10	 .0087	 .0077	 .0079	 .0073	 .0079	 .0089	 .0131	 .0087	 .0151	 .0079	
 

6.3.2 CADF result 

The results of multiple one-way RM-ANOVAs were used to evaluate the CADF effect 

on removing noise from simulated data. Ki values of three levels of CADF iterations 

were compared during all ten noise stages (5%-50%). The null hypothesis was that there 

would be no change in the simulations’ Ki, SE, and SSE values when calculated with 

CADF. The results are summarized in Tables 6-4, 6-5, and 6-6 and comparisons made 

for Ki, SE, and SSE, respectively. Sample size is N = 6 for all analyses; for Ki, the 

statistical test results indicated that in most of the noise levels (6 of 10), CADF had no 

significant filtering effect for noisy images, p > 0.05, and Wilks’ lambda > 0.05 in all 

data analysis; p–values at noise levels of 10%, 30%, 35%, and 45% were all 

significantly affected by CADF where p < 0.05. Thus, as most of the noisy data showed 

no significant difference, there was not enough evidence to reject the null hypothesis for 

CADF’s effect on noise reduction in data. The average reduction in Ki mean value for 

CADF 1, 2, and 3 iterations was -1.32%, -1.12%, and -1.02%; for mean SE, -1.55%, -

2.46, and -3.27%; for mean SSE, -3.54%, 1.52%, and -7.34%, respectively. More 

details and comparisons of results are presented in Table 6-13 for CADF and all 

remaining methods. 
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Table 6-4. A one-way repeated measured analysis of variance (ANOVA) result for Ki values 
in simulations before and after applying CADF at 1, 2, and 3 iterations. 

Test	
(Ki)	 Statistics	

Noise	levels	
0.05	 0.1	 0.15	 0.2	 0.25	 0.3	 0.35	 0.4	 0.45	 0.5	

RM-	
ANOVA	
(n=6)	

p-value	 .081	 .039	 .562 .084	 .156	 .039	 .046	 .707	 .017	 .055	

Wilks’	
lambda	 .136	 .082	 .549 .139	 .214	 .081	 .091	 .665	 .047	 .104	

η2	 .864	 .918	 .451 .861	 .786	 .919	 .909	 .335	 .953	 .896	

SD	

Sim	 .0045 .0050 .0048 .0058 .0054 .0053 .0055 .0055 .0064 .0056 

CADF1	 .0044 .0050 .0048 .0056 .0053 .0047 .0051 .0051 .0060 .0055 

CADF2	 .0044 .0050 .0048 .0054 .0052 .0048 .0048 .0050 .0057 .0056 

CADF3	 .0043 .0048 .0047 .0054 .0051 .0047 .0047 .0049 .0056 .0055 

μ	

Sim	 .0089 .0095 .0094 .0102 .0099 .0098 .0099 .0099 .0108 .0102 

CADF1	 .0089 .0095 .0094 .0101 .0098 .0094 .0097 .0097 .0105 .0102 

CADF2	 .0089 .0096 .0095 .0100 .0097 .0096 .0097 .0098 .0103 .0103 

CADF3	 .0090 .0095 .0096 .0100 .0098 .0096 .0096 .0098 .0103 .0103 
 

Another RM-ANOVA was made to compare the SE between data groups after applying 

CADF for all iterations. Table 6-5 illustrates these results, which indicate that there was 

no significant difference for any level in most groups of noise. The exceptions were at 

stages 10% and 20%, which showed significant effects of CADF on SE values. P-values 

equalled 0.005 and 0.05 for the two noise levels, respectively. The majority of non-

significant effects suggest accepting the null hypothesis that no change would occur in 

population. SD and the µ were reduced with more in SD in all iterations; the reduction 

percentages in SD were -8%, -13.1%, and -17.1% for CADF 1, 2, and 3, respectively. 

Table 6-5. A one-way repeated measured analysis of variance (ANOVA) result for SE values 
in simulations before and after applying CADF at 1, 2, and 3 iterations. 

Test	
(SE)	 Statistics	 Noise	levels	

0.05	 0.1	 0.15	 0.2	 0.25	 0.3	 0.35	 0.4	 0.45	 0.5	

RM-	
ANOVA	
(n=6) 

p-value .753 .005 .098 .049 .059 .633 .245 .326 .733 .206 

Wilks’ lambda .705 .021 .154 .096 .109 .606 .294 .361 .687 .260 

η2 .295 .979 .846 .904 .891 .394 .706 .639 .313 .740 

SD 

Sim .0398 .0560 .0490 .0452 .0389 .0658 .0535 .0814 .0737 .0603 

CADF1 .0405 .0539 .0490 .0512 .0371 .0517 .0459 .0644 .0564 .0683 

CADF2 .0403 .0531 .0474 .0504 .0343 .0472 .0450 .0555 .0492 .0676 

CADF3 .0395 .0530 .0465 .0490 .0325 .0424 .0468 .0495 .0418 .0661 

µ 

Sim .3002 .2866 .2939 .2730 .2857 .3108 .2978 .2850 .2802 .2853 

CADF1 .2978 .2794 .2831 .2678 .2786 .3011 .2917 .2853 .2863 .2826 

CADF2 .2954 .2765 .2786 .2680 .2785 .2962 .2863 .2823 .2883 .2770 

CADF3 .2932 .2761 .2759 .2634 .2761 .2935 .2844 .2793 .2885 .2734 
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Table 6-6 illustrates the comparison SSE result for CADF and p-values in all analyses > 

0.05, clearly indicating the non-significant effect of CADF on SSE. Thus, the null 

hypothesis is accepted; the minimum Wilks‘ lambda was 0.123, and the SD showed 

more reduction in data than those in Ki and SE. The percentages of reduction were -

9.5%, -14.2%, and -21.4% for CADF 1, 2, and 3, respectively. The averaged µ showed 

reduction in CADF 1 and 3 only, whereas in CADF 2, there was a small increase in the 

mean.  

Table 6-6. A one-way repeated measured analysis of variance (ANOVA) result for SSE 
values in simulations before and after applying CADF at 1, 2, and 3 iterations. 

Test	
(SSE)	 Statistics	 Noise	levels	

0.05	 0.1	 0.15	 0.2	 0.25	 0.3	 0.35	 0.4	 0.45	 0.5	

RM-	
ANOVA	
(n=6)	

p-value	 .070 .109 .170 .072 .287 .172 .076 .133 .754 .225 

Wilks’	
Lambda	

.123 .166 .227 .125 .330 .229 .129 .190 .705 .277 

η2	 .877 .834 .773 .875 .670 .771 .871 .810 .295 .723 

SD	

Sim	 .0022 .0028 .0025 .0023 .0019 .0039 .0030 .0043 .0035 .0031 

CADF1	 .0023 .0027 .0024 .0026 .0019 .0029 .0023 .0033 .0028 .0035 

CADF2	 .0024 .0029 .0026 .0028 .0020 .0026 .0023 .0023 .0018 .0036 

CADF3	 .0021 .0026 .0022 .0024 .0016 .0022 .0023 .0025 .0021 .0032 

μ	

Sim	 .0083 .0077 .0080 .0069 .0075 .0091 .0083 .0079 .0076 .0077 

CADF1	 .0082 .0073 .0075 .0067 .0072 .0084 .0079 .0077 .0077 .0076 

CADF2	 .0084 .0076 .0078 .0074 .0078 .0086 .0077 .0085 .0087 .0077 

CADF3	 .0079 .0071 .0071 .0065 .0070 .0080 .0075 .0073 .0077 .0071 
 

6.3.3 DW analysis 

In Table 6-7, the result of the RM-ANOVA is summarised and shows no significant in 

all data analysed with DW. P-values during all noise levels was > 0.05 for Ki values. 

Wilks’ lambda was > 0.440, η2 was > 0.250 in all stages, and SD showed reduction in 

all new Ki points after applying the DW technique and µ; there was also a slight 

reduction in all levels. The reduction percentage for the averaged Ki was -3.55%, and 

for SD, it was equal to -6%. In SD, the reduction started from -2% at low noise levels 

and reached -14% at high levels of noise. Similarly, reduction in the µ started from -1% 

at 5% noise and reached -7% at 45% and 50% noise points. The technique was applied 

to the 3D PET images, maintaining the time and the coefficients at 20%. 
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The coefficients to keep determine the level of smoothing: the lower the % value 

entered, the smoother the image. 

Tables 6-8 and 6-9 illustrate the results of SE and SSE analyses where there was no 

significant change, at p-value > 0.05 and Wilks’ lambda > 0.537 at all noise levels. SD 

increased in SE and SSE with 6% and 12%, respectively, and µ showed a slight 

reduction with -1.17% and -1.77%, respectively. 

Table 6-7. A one-way repeated measured analysis of variance (ANOVA) result for Ki values 
in simulations before and after applying DW with 20% coefficients to keep. 

Test	
(Ki)	 Statistics	 Noise	levels	

0.05	 0.1	 0.15	 0.2	 0.25	 0.3	 0.35	 0.4	 0.45	 0.5	

RM-	
ANOVA	
(n=6)	

p-value	 .193 .203 .053 .110 .177 .253 .120 .148 .099 .088 

Wilks’	
lambda	 .689 .700 .440 .570 .670 .750 .588 .632 .549 .528 

η2	 .311 .300 .560 .430 .330 .250 .412 .368 .451 .472 

SD	
Sim	 .0046 .0050 .0048 .0058 .0054 .0053 .0055 .0055 .0064 .0056 

DW	
20%	 .0045 .0047 .0047 .0055 .0053 .0052 .0052 .0052 .0055 .0049 

μ	
Sim	 .0090 .0094 .0094 .0102 .0099 .0098 .0099 .0099 .0108 .0102 

DW	
20%	 .0089 .0092 .0092 .0098 .0096 .0096 .0095 .0096 .0100 .0096 

 

Table 6-8. A one-way repeated measured analysis of variance (ANOVA) result for SE values 
in simulations before and after applying DW with 20% coefficients to keep. 

Test	
(SE)	 Statistics	 Noise	levels	

0.05	 0.1	 0.15	 0.2	 0.25	 0.3	 0.35	 0.4	 0.45	 0.5	

RM-	
ANOVA	
(n=6)	

p-value	 .408 .092 .117 .699 .961 .445 .285 .519 .325 .694 

Wilks’	
lambda	

.860 .537 .583 .968 .999 .879 .777 .912 .808 .966 

η2	 .140 .463 .417 .032 .001 .121 .223 .088 .192 .034 

SD	
Sim	 .0398 .0560 .0489 .0452 .0389 .0658 .0535 .0814 .0737 .0603 

DW	
20%	 .1257 .0567 .0423 .0463 .0320 .0749 .0388 .0779 .0787 .0552 

μ	
Sim	 .3002 .2866 .2938 .2730 .2857 .3108 .2978 .2850 .2802 .2853 

DW	
20%	 .2573 .2907 .2990 .2745 .2855 .3056 .2791 .2919 .2937 .2873 

 

Table 6-9. A one-way repeated measured analysis of variance (ANOVA) result for SSE 
values in simulations before and after applying DW with 20% coefficients to keep. 

Test	
(SSE)	 Statistics	 Noise	levels	

0.05	 0.1	 0.15	 0.2	 0.25	 0.3	 0.35	 0.4	 0.45	 0.5	

RM-	
ANOVA	
(n=6)	

p-value	 .448 .116 .602 .654 .830 .612 .306 .458 .357 .773 

Wilks’	
lambda	

.881 .582 .942 .957 .990 .945 .793 .885 .830 .982 

η2	 .119 .418 .058 .043 .010 .055 .207 .115 .170 .018 

SD	
Sim	 .0022 .0028 .0025 .0023 .0019 .0039 .0030 .0043 .0035 .0031 

DW	
20%	 .0041 .0028 .0023 .0023 .0016 .0045 .0020 .0044 .0044 .0029 

μ	
Sim	 .0083 .0077 .0080 .0069 .0075 .0091 .0083 .0079 .0076 .0077 

DW	
20%	 .0072 .0079 .0077 .0070 .0075 .0089 .0072 .0082 .0083 .0077 
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6.3.4 BLW analysis 

In contrast to previous methods, BLW results showed significant differences in all Ki 

values in RM-ANOVA. The p-value was ≤ 0.05 for all noise levels, Wilks’ lambda < 

0.450, and η2	< 0.673. SD and µ were reduced, with average percentages of -8% and -

6.38%, respectively. This reduction was evident at all 10 stages. Table 6-10 summarises 

the result of Ki analysis after applying the BLW method. SE and SSE both showed 

insignificant effects for all analyses and p-values > 0.05 except at noise levels 10% and 

45%, where it was < 0.05. Generally, the majority of results did not significantly change 

in SE and SSE values. In SE, the SD and µ both increased 9% on average, while in 

SSE, they grew 22% and 19%, respectively. Tables 6-11 and 6-12 illustrate the 

summary of the RM-ANOVA and descriptive statistics. The coefficient to keep with 

BLW methods is 20%, and 3D volume is considered in implementation. 

Table 6-10. A one-way repeated measured analysis of variance (ANOVA) result for Ki values 
in simulations before and after applying BLW with 20% coefficients to keep. 

Test	
(Ki)	 Statistics	 Noise	levels	

0.05	 0.1	 0.15	 0.2	 0.25	 0.3	 0.35	 0.4	 0.45	 0.5	

RM-	
ANOVA	
(n=6)	

p-value	 .047 .042 .042 .047 .024 .044 .031 .054 .051 .051 

Wilks’	
lambda	 .422 .405 .405 .420 .327 .411 .362 .444 .432 .435 

η2	 .578 .595 .595 .580 .673 .589 .638 .556 .568 .565 

SD	
Sim	 .0047 .0050 .0048 .0058 .0054 .0053 .0055 .0055 .0064 .0056 

BLW	
20%	 .0046 .0047 .0046 .0056 .0053 .0049 .0048 .0047 .0053 .0051 

μ	
Sim	 .0092 .0094 .0094 .0102 .0099 .0098 .0099 .0099 .0108 .0102 

BLW	
20%	 .0089 .0091 .0090 .0098 .0096 .0091 .0089 .0089 .0096 .0095 
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Table 6-11. A one-way repeated measured analysis of variance (ANOVA) result for SE 
values in simulations before and after applying BLW with 20% coefficients to keep. 

Test	
(SE)	 Statistics	 Noise	levels	

0.05	 0.1	 0.15	 0.2	 0.25	 0.3	 0.35	 0.4	 0.45	 0.5	

RM-	
ANOVA	
(n=6)	

p-value	 .213 .007 .137 .223 .208 .154 .535 .208 .025 .169 

Wilks’	
lambda	

.711 .203 .614 .721 .705 .639 .919 .705 .331 .659 

η2	 .289 .797 .386 .279 .295 .361 .081 .295 .669 .341 

SD	
Sim	 .0421 .0560 .0489 .0452 .0389 .0658 .0535 .0814 .0737 .0603 

BLW	
20%	 .0610 .0579 .0508 .0702 .0576 .0597 .0393 .0531 .0690 .0679 

μ	
Sim	 .2960 .2866 .2938 .2730 .2857 .3108 .2978 .2850 .2802 .2853 

BLW	
20%	 .3349 .2961 .3244 .3092 .3216 .3529 .3065 .3053 .3118 .2969 

 

Table 6-12. A one-way repeated measured analysis of variance (ANOVA) result for SSE 
values in simulations before and after applying BLW with 20% coefficients to keep. 

Test	
(SSE)	 Statistics	 Noise	levels	

0.05	 0.1	 0.15	 0.2	 0.25	 0.3	 0.35	 0.4	 0.45	 0.5	

RM-	
ANOVA	
(n=6)	

p-value	 .280 .014 .135 .248 .225 .166 .650 .239 .034 .159 

Wilks’	
lambda	 .773 .267 .612 .745 .723 .656 .956 .737 .376 .647 

η2	 .227 .733 .388 .255 .277 .344 .044 .263 .624 .353 

SD	
Sim	 .0022 .0028 .0025 .0023 .0019 .0039 .0030 .0043 .0035 .0031 

BLW	
20%	 .0039 .0030 .0027 .0042 .0035 .0038 .0022 .0030 .0039 .0035 

μ	
Sim	 .0083 .0077 .0080 .0069 .0075 .0091 .0083 .0079 .0076 .0077 

BLW	
20%	 .0105 .0082 .0098 .0091 .0097 .0116 .0087 .0087 .0092 .0084 

 

Table 6-13 summarises the change and reduction in percentage for Ki, SE, and SSE 

values for all methods used with simulated data before and after denoising processes. 

The first section represents the mean Ki values; the BLW method has the highest 

reduction value with -6.38%, and the lowest is from the GADF method at -0.70%. The 

highest reduction in SE was -3.27%, obtained by CADF (3), and there was an increase 

of 9.7% in GADF (5). In SSE, the highest reduction was found in CADF (3) with -

7.34%, and there was an increase in GADF (5) with 23%. 
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Table 6-13. A comparison between reductions in Ki, SE, and SSE values for all methods used 
with simulated data before and after denoising processes. 

Mean	Ki	values	(×10-2)	

Denoising	
method	

Type	
(iterations,	
coefficients)	

Simulated	noisy	
data	

After	denoising	
process	 Change	 Fold	change	

%	

GADF	
5	

0.8471	±0.4988	
0.832	±0.4945	 -0.0151	 -1.78%	

10	 0.8412	±0.5068	 -0.0059	 -0.70%	

CADF	

1	

0.985	±0.538	

0.972	±0.515	 -0.013	 -1.32%	

2	 0.974	±0.507	 -0.011	 -1.12%	

3	 0.975	±0.497	 -0.01	 -1.02%	

DW	 20%	 0.985	±0.539 0.950	±0.507	 -0.035	 -3.55%	

BLW	 20%	 0.987	±0.54	 0.924	±0.496	 -0.063	 -6.38%	

Mean	SE	values	(%)	

Denoising	
method	

Type	
(iterations,	
coefficients)	

Simulated	noisy	
data	

After	denoising	
process	 Change	 Fold	change	

GADF	
5	

31%	±7%	
34%	±11%	 3%	 9.7%	

10	 31%	±7%	 0%	 0%	

CADF	

1	

28.99%	±5.6% 

28.54%	±5.2%	 -0.45%	 -1.55%	

2	 28.27%	±4.9% -0.71%	 -2.46%	

3	 28.04%	±4.7% -0.95%	 -3.27%	

DW	 20%	 28.98%	±5.6% 28.65%	±6.3%	 -0.338%	 -1.17%	

BLW	 20%	 28.94%	±5.7%	 31.60%	±5.9%	 2.65%	 9.17%	

Mean	(μ	±SD)	SSE	values	(×10-2)	

Denoising	
method	

Type	
(iterations,	
coefficients)	

Simulated	noisy	
data	

After	denoising	
process	 Change	 Fold	change	

GADF	
5	

0.972	±0.500	
1.197	±0.958	 0.225	 23%	

10	 0.932	±0.463	 -0.04	 -4%	

CADF	

1	

0.790	±0.295 

0.762	±0.267 -0.028	 -3.54%	

2	 0.802	±0.253 0.012	 1.52%	

3	 0.732	±0.232 -0.058	 -7.34%	

DW	 20%	 0.790	±0.295	 0.776	±0.313	 -0.014	 -1.77%	

BLW	 20%	 0.790	±0.295	 0.939	±0.337	 0.149	 19%	
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6.4 Discussion 

6.4.1 GADF analysis 

The intention was to define to what extent GADF is capable of removing noise while 

preserving the tracer quantity in each voxel. Synthetic PET brain images were generated 

with dPETSTEP with a simulated 18F-FDOPA tracer in a PD patient, and variable noise 

levels were applied to answer the question. Does GADF have the ability to remove the 

noise from the simulated dynamic images with no influence on the authentic tracer 

quantity in voxels?  

The non-significant p-value for all comparison results indicates that the difference 

between the mean of data groups might not be observable and/or significant in the 

population, which is represented by the sample. As seen in appendix B, Figure B-1, in 

most simulations, Ki values increased with noise levels, and applying GADF with 10 

iterations showed lower Ki values than the others. This could suggest a call for a new 

study with an increased number of iterations for GADF and a sample size (n) 

appropriate for verification. For all induced noise levels, the visual appearance after 

applying GADF was well preserved, and impulse noise in images was mostly removed. 

Unlike the quantification analysis, GADF is promising regarding visual assessment, 

qualitatively more than quantitatively. Figure 6-2 shows images before and after 

applying the filter, and it is clear that the anatomical regions were preserved at the cost 

of increasing the blur in the images. With low levels of noise (between 5% and 20%), 

GADF can preserve the sharpness of images and remove noise; high-noise images are 

clearly very blurry in relation to the amount of noise. 
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Figure 6-2. The first row shows images with noise levels of 10%, 20%, and 40% Gaussian with 
mean=0; and the second row shows the same images after applying GADF with 10 iterations. 

6.4.2 CADF analysis 

This type of filter did not show an obvious noise reduction in noisy PET data. Though 

four points in Ki values were considered significant effects and mostly found at high 

level of noise. This could suggest that CADF effectively acts with very noisy images 

than lower one. The majority of the data group did not show notable levels of affected 

or removed noise. The small reduction in SD and µ could be used as evidence that this 

method does not affect the quantitative analysis negatively. Thus, this technique is 

useful for enhancing the anatomical appearance with no effect on the image’s pixel 

quantity. The p-value and Wilks’ lambda levels in Ki analysis suggest accepting the null 

hypothesis that there would be no change between noisy simulation data groups and 

CADF 1, 2, and 3 groups. Regarding SE values, in a comparison study of 8 out of 10 

noise level data groups, the p-value showed non-significant changes in all CADF 

iteration stages. Similarly, SSE analysis results showed non-significant changes; both 

indicate goodness of fit. SD and µ were reduced in proportion to the number of 
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iterations except for CADF2 where there is a slight increasing in values, this can be an 

effect of applying low iteration numbers. However, this could be subjective to this study 

and not objective for the population group. This means that the CADF technique also 

has no effect on the linear regression calculation in the population parameters. Figure 6-

3 illustrates different noisy images before and after applying the CADF technique. A 

quick look after applying the GADF and CADF methods shows that CADF provided 

more noise removal with less blurring, suggesting that the curvature has more 

advantages than gradient anisotropic. 

   

   
 

Figure 6-3. The first row shows images with noise levels 10%, 20%, and 40% Gaussian with 
mean=0; the second row shows the same images after applying CADF with 3 iterations. 

6.4.3 DW analysis 

The p-value in all results indicated acceptance of the null hypothesis; it cannot be 

rejected where there is no significant effect or change in Ki levels before and after 

applying the DW technique. There was no observable trend in p-values at any noise 

level, and similarity can be found at low and high levels. The reduction in SD and µ in 

Ki values might suggest that DW analysis tends to reduce the impact of noise as the fold 
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change is lower after applying DW method. Ki values increased in proportion to the 

noise, and the DW method’s reduction was in proportion to the noise stages. This may 

indicate the ability of this technique to detect and remove noise. In contrast, SD of SE 

and SSE analysis shows an increasing percentage, indicating a reduction in the 

goodness of fit. However, this is still a negligible level and cannot be considered a 

serious issue, as there is no significant effect in the quantification analysis. Observing 

the images before and after the technique is applied, there is no obvious noise removal 

effect. Three images in Figure 6-4 (first row) show noise levels of 10%, 20%, and 40% 

Gaussian with mean=0 before applying the DW code; the second row shows the same 

images after applying DW with 20% coefficients. Compared to all previous methods, 

this technique had the least effect on dynamic images qualitatively and quantitatively.  

   

   

Figure 6-4. The first row shows images with noise levels of 10%, 20%, and 40% Gaussian with 
mean=0; the second row shows the same images after applying the DW technique. 

6.4.4 BLW analysis 

The significant change made by the BLW technique is obvious in SD and µ, as all 

values of Ki were reduced at various percentages. The p-value and Wilks’ lambda were 
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higher in their values at high levels of noise (40% and above), possibly indicating that 

BLW works better with lower levels of noise. With a reduction between 6% and 8%, 

BLW could be a promising method to reduce noise in PET data. The increasing SE and 

SSE values indicate a degrading regression analysis, but this has no significant effect; 

this issue can be resolved by using another regression model after removing the noise 

with BLW. In terms of visual appearance, no effects such as blurring or artefact 

removal were observed as a result of BLW. This suggests that the impact can be seen 

during quantification analysis only.  

6.5 Conclusion 

The quantification of PET data allows for the provision of more useful information, but 

one of the most confounding factors is the noise within the images. Four methods have 

been applied based on anisotropic diffusion and wavelets to reduce noise and produce 

better image analysis accuracy. Gradient and curvature anisotropic diffusion as well as 

DWs showed no significant change in Ki values, although they had obvious impacts on 

the appearance of images. The percentage reductions in the previous methods for the 

mean Ki values were 1.5%, 1.13%, and 4%. The BLW method showed a significant 

change in Ki values with 6-8% reduction and non-significant increases in SE and SSE. 

The study suggests that the BLW method could potentially reduce noise in PET data, 

but the regression of the goodness of fit parameters can change negatively. The BLW 

method shows the most effective results in reducing the impact of noise on simulated 

data compared to other methods, making it the best option for noisy images.
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 Noise Reduction in Simulated PET Data in 7
Patlak Analysis 

7.1 Introduction 

In order to generate a Patlak plot, it is necessary to calculate both the x and y terms. 

Whilst the x term can be accurately calculated with limited noise, the parameters used to 

calculate the y term are prone to noise. As a result, the Patlak plot is influenced by noise 

in the y axis. In quantification of peaks, for example, the noise can shift the location of 

the signal peak, which can cause a systemic overestimation for the signal. Another 

example is analysis based on differentiation, as the noise is amplified with this type of 

calculation (van den Bogert 1996). These changes in data amplitude can also 

significantly affect the calculation of the gradient from the Patlak plot. Reducing noise 

by using either a smoothing or filtering processes is a useful move to improve the SNR. 

Smoothing and filtering processes are similar, except that filtering is usually restricted 

to linear methods. Recent developments in software have enabled the enhancement of 

signals through the introduction of smoothing algorithms that decrease the noise.  

A smoother signal is usually the result of two modifications, with data points affected 

by noise more than adjacent points subject to reduction. To the contrary, points with 

lower values than their closest points are increased, which could reduce sensitivity to 

signal changes. In other words, the high-frequency noise will be cut off and removed 

from the true data, meaning that the true signal will not be distorted much by the 

smoothing process. The smoothing operation works as a low-pass filter that allows the 

low-frequency component and cuts off the high-frequency one. The measurement of the 

signal and overall noise frequencies allows the smoothing procedure to improve SNR 

dependent on the frequency distribution of the noise (O'Haver 2016).  
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Smoothing algorithms usually depend on a technique called shift and multiply whereby 

a group of adjacent points in the original data are multiplied by a set of numbers 

(coefficients) which determine the smoothing shape. Then, the products are added up 

and divided by the number of coefficients to create one smoothed point of data. The set 

of coefficients that define the smoothing shape move down one point in the original 

data group and repeat the procedure to generate other smoothed points (O'Haver 2016). 

By applying this sort of function and assuming reasonable smoothing, more information 

can be extracted from the original data, plus the result of the analysis will be more 

robust (Simonoff 2012). Other methods for smoothing data are available, including the 

Savitzky-Golay, Polynomial curve fitting, and Median filtering methods. The selection 

of smoothing method is usually based on the nature of data and noise present. Data 

dimensions, type of noise included, and data point size spread on the x-axis play roles in 

selecting the smoothing technique. Different smoothing techniques offer a trade-off 

between reducing the noise and keeping the signal free of distortion. 

In this chapter, several data-smoothing algorithms and filters are discussed and applied 

to our simulated PET data set with the aim of removing and/or reducing included noise 

and consequently improving the accuracy of the final result with lower fitting standard 

errors. Please be aware this experimental work is different from the curve-fitting 

concepts performed in Chapter 5, as it can be distinguished that smoothing has little 

consideration of the close matching of data values, while curve fitting pays more 

attention to achieving as close a match as possible and controlling the extent of 

smoothing.  
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7.2 Theory 

7.2.1 Moving average filtering 

Moving average filtering (MAF) aims to replace each point in data with the averaged 

value of the neighbouring points, similar to low-pass filtering. This can be expressed in 

the following difference equation: 

(a0 + a1x + ...+ ak x
k ) 	

Eq. 7-1 

With assuming that ys (i) is the smoothed value for the ith data point, N is the number of 

neighbouring data points on either side of ys  (i), and 2N+1 is the span or filter width. 

This sort of filtering works by following some rules regarding data, as all data points 

must be at the centre and thus the end points usually are not smoothed. The noisy data 

[y1, y2, …, yN] is transformed to a new array of smoothed data. Let ys (i) be the 

smoothed point, which is the average of an odd number of consecutive 2N+1 (n=1, 2, 3, 

...) points of the raw data	 y(i + N )+ y(i + N −1)+ ...+ y(i − N ) . In other words, the level 

of smoothing is proportional to the amount of filter width (span). This can be clarified 

by the example below from (Einicke 2012).  

Suppose that the moving averaged filter has a span of 5. Based on Equation 7-1, the 

four elements of ys will be the following: 

ys (1) = y(1)
ys (2) = (y(1)+ y(2)+ y(3)) / 3
ys (3) = (y(1)+ y(2)+ y(3)+ y(4)+ y(5)) / 5
ys (4) = (y(1)+ y(2)+ y(3)+ y(4)+ y(5)+ y(6)) / 5

 

Smoothed points ys (1), ys (2)...ys (end )  represent the order of the smoothed data, not 

necessarily the original points. Smoothed values and their spans are illustrated in the 

plots in Figure 7-1. 
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Figure 7-1. In plot (a), the first data point is not smoothed, as a span cannot be constructed. In plot (b), the 
second data point is smoothed using a span of three. Plots (c) and (d) show that a span of five is used to 
calculate the smoothed value. 

In the previous example, the filter width is 5. The first five raw data points are averaged, 

and their average value is plotted as a smoothed data point (black cross). Then the 

process is moved one point to the right, the next five points are averaged, the average is 

plotted, and so on. This procedure is called 5-point unweight smoothing. Smoothing the 

data multiple times or increasing the filter width may further enhance the SNR in the 

data set. 

7.2.2 Savitzky-Golay filtering 

The Savitzky-Golay filtering (SGF) technique obtains the filtering coefficients with 

unweighted linear least squares, and a certain degree of polynomial defines the data 

fitting. A higher-degree polynomial allows a high level of smoothing whilst avoiding 

data distortion. With a regression around each point, a new smoothed value is generated 

for each data point. In data that include normally distributed noise, SGF is a good 

option to reduce the noise and its impact on the final result (O'Haver 2016). Savitzky 
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and Golay (Savitzky and Golay 1964) showed that the process can be performed by 

fitting adjacent sub-set data points with low polynomial degrees by linear least squares. 

A single set of convolution coefficients is generated after spacing the data points 

equally and is applied to all data sub-sets. Then, estimates are obtained of the smoothed 

signal (or derivatives) at the central point of each data sub-set. Savitzky and Golay’s 

work has been extended to be applicable to both 2- and 3-dimentional data. Figure 7-2 

shows an example of applying SGF to noisy TAC obtained from the dPETSTEP 

simulation. 

Mathematical expressions for SGF are obtained and summarised from (Einicke 2012; 

Gander and Hrebicek 2011; Simonoff 2012). Let the measured data be denoted by fi , 

i=1, …, n, and the smoothed data by  gi , i=1, …, n. After fitting the polynomial through 

the data points, its value at xi  gives the smoothed value  gi .  nL  denotes the number of 

the points to the left of xi , while nR  refers to the number of points to the right of xi . 

pi (xi ) is the polynomial of degree M that has the least-squares fit through the nL + nR +1

points.  

gi = pi (xi )  Eq. 7-2 

pi (xi ) of degree M that fits the data fi  can be expressed as 

pi (x) = bk
x − xi
Δx

⎛

⎝
⎜

⎞

⎠
⎟

k

k=0

M

∑  Eq. 7-3 

assuming that xi  abscissas are uniformly spaced with xi+1 − xi = Δx . Fitting pi (xi )  in the 

least squares through the measured data requires determining coefficient bk  by 

( pi (xi )− fi )
2 =min

j=i−nL

i+nR

∑ . 
Eq. 7-4 

The matrix can be defined as 
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A :=

(−nL )
M ! −nL 1

! ! !
0 " 0 1
! ! !
nMR ! nR 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

∈ R (nL++1)×(M+1)  
Eq. 7-5 

Then, the two vectors: 

b :=

bM
!
b1
b0

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

∈ R (M+1)  
Eq. 7-6 

f :=

fi − nL
!
fi
!

fi + nR

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

∈ RnL+nR+1 	
 

By the previous definition, it can restate Equation 7-4 in matrix terms as 

Ab - f
2
=min  

Eq. 7-7 

One can solve for b by means of the QR decomposition of A. The solution of b can be 

expressed as  

AT Ab = ATf  Eq. 7-8 

Then 

gi = e
T
M+1(A

T A)−1ATf T  Eq. 7-9 

eTM+1  denotes the (M +1)st unit vector. By defining vector c , gi  can be represented as a 

linear combination of fi  

c := A(AT A)−1eM+1  Eq. 7-10 
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Where c contains the filter coefficients , does not depend on xi or , and 

needs to evaluated once. Finally, gi smoothed data can be calculated by 

gi = c
Tf = c j

j=i−nL

i+nR

∑ −i f j  Eq. 7-11 

 

 

Figure 7-2. SGF smoothing being applied, passing through the data from left to right. The 
red line represents the local polynomial being used to fit a sub-set of the data. The smoothed 
values are shown as circles and noisy TAC data is the blue line. 
 

c
−nL
,...,cnR Δx
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7.2.3 Curve fitting 

Curve fitting involves forming a function or a curve that provides the best fit of a data 

series. It is part of regression analysis and can be used to smooth the data for better plot 

appearance. Curve fitting can be divided into three main categories: least squares, 

nonlinear, and smoothing curve fits. In least-squares fitting, the square of the error 

between original and predicted values is minimised by the equation (Press et al. 2007). 

Nonlinear curve fitting is based on an iterative algorithm introduced by Levenberg-

Marquardt (Gavin 2011; Moré 1978) which starts by estimating unknown parameters 

and then calculates the sum of the squared error (chi square) between original and fitted 

data. This procedure is repeated until the best fit is derived. Smoothing curve fits do not 

generate an equation and are mainly used to enhance the appearance of the curve by 

smoothing the data.  

7.2.3.1 Polynomial curve fitting  

Polynomial curve fitting (PCF) works to fit a curve through the data, and its complexity 

is dependent on the curvature of the data. More complex curvature requires higher 

polynomial orders (degrees) to be fitted with no data restrictions associated with this 

method. The equation of the fitted curve can be calculated and displayed once the best 

fit is determined. The coefficients that best fit the curve to the data are determined by 

selecting the minimum errors between original observations and the predicted values.  

The form of the polynomial starts from a straight line (1st degree) to a kth degree, and 

can be expressed as (Weisstein 2006): 

y = a0 + a1x + ...+ ak x
k +ε 	

Eq. 7-12 

The previous equation represents the general polynomial regression model including the 

coefficients (a0 + a1x + ...+ ak x
k ) 	and the error ε .	 The error value	ε 	indicates that the 

polynomial provides an estimated value rather than one implicit to the data set. The 
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number of data points in the curve determines the maximum order of the polynomial 

used. In a set of N data points, the maximum order of the polynomial is k=N−1 

(Kreyszig 2010). The residual can be calculated by 

R2 = [yi + (a0 + a1x + ...+ ak x
k )]2

i=1

n

∑ 	
Eq. 7-13 

The partial derivatives are 

∂(R2 )
∂a0

= 2 [y − (a0 + a1x + ...+ ak x
k )]= 0

i=1

n

∑ 	

∂(R2 )
∂a1

= −2 [y − (a0 + a1x + ...+ ak x
k )]x = 0

i=1

n

∑ 	

∂(R2 )
∂ak

= −2 [y − (a0 + a1x + ...+ ak x
k )]xk = 0

i=1

n

∑ 	

Eq. 7-14 

This leads to the following equations 

a0n+ a1 xi + ...+ ak xki
i=1

n

∑ =
i=1

n

∑ yi
i=1

n

∑ 	

a0 xi + a1 x2i
i=1

n

∑ + ...+ ak xi
k+1

i=1

n

∑
i=1

n

∑ = xi
i=1

n

∑ yi 	

a0 xi + a1 xi
k+1

i=1

n

∑ + ...+ ak xi
2k

i=1

n

∑
i=1

n

∑ = xki
i=1

n

∑ yi 	

Eq. 7-15 

In matrix form, these can be expressed as 

n xii=1

n
∑ ! xkii=1

n
∑

xii=1

n
∑ x2ii=1

n
∑ ! xk+1ii=1

n
∑

! ! " !

xkii=1

n
∑ xk+1ii=1

n
∑ ! x2kii=1

n
∑

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

a0
a1
!
ak

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

yii=1

n
∑

xi yii=1

n
∑
!

xi
k yii=1

n
∑

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

a0 ,...,ak 	 Eq. 7-16 

The least squares can be obtained by 
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1 x1 ! xk1
1 x2 ! x2

k

! ! " !
1 xn ! x2

k

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

a0
a1
!
ak

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

y1
y2
!
yn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

	
Eq. 7-17 

Multiplying both sides by the transpose of the first matrix gives 

1 1 ! 1
x1 x2 ! xn
! ! " !
xk1 xk2 ! xn

k

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1 x1 ! xk1
1 x2 ! x2

k

! ! " !
1 xn ! x2

k

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

a0
a1
!
ak

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

1 1 ! 1
x1 x2 ! xn
! ! " !
xk1 xk2 ! xn

k

⎡

⎣

⎢
⎢
⎢
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⎦

⎥
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⎥
⎥
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y2
!
yn

⎡
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⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

	
 

then 

n xii=1

n
∑ ! xkii=1

n
∑

xii=1

n
∑ x2ii=1

n
∑ ! xk+1ii=1

n
∑

! ! " !

xkii=1

n
∑ xk+1ii=1

n
∑ ! x2kii=1

n
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⎥
⎥
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=

yii=1
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∑
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∑
!
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k yii=1
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⎡

⎣
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⎢

⎤

⎦

⎥
⎥
⎥
⎥
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⎥
⎥

	
Eq. 7-18 

For a given n points (xi , yi ) , the polynomial coefficient a0 ,...,ak can be fitted, which 

gives 

y1
y2
!
yn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

1 x1 x21 ! xk1
1 x2 x22 ! xk2
! ! ! " !
1 xn x2n ! xkn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

a0
a1
!
ak

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

	
Eq. 7-19 

The equation for a polynomial fit in matrix notation is given as 

y = Xa 	
Eq. 7-20 

And the solution can be obtained by multiplying the transpose  

XTy = XTXa .	 Eq. 7-21 

The solution vector is then given as 

XT
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a = (XTX)-1XTy 	 Eq. 7-22 

A polynomial curve-fitting example to the 3rd degree for a noisy TAC is illustrated in 

Figure 7-3. 

 

Figure 7-3. PCF applied to noisy TAC as represented by a red line. The green line represents 
polynomial curve fitting of the 3rd degree.  

7.2.4 Median filtering  

1-D median filtering (MF) is an effective method that can distinguish out-of-range 

isolated noise from the signals to some extent by replacing a data point using the 

median instead of the average. MF is widely used in signal processing for smoothing 

and suppressing impulse noise and is considered a non-linear filter (Moshnyaga and 

Hashimoto 2009). The main idea of MF is to run across the signal entry by entry and 

substitute each entry with the median of near entries. The pattern of neighbours, which 

is called the window, moves over the entire signal. The window for a 1-D signal is just 

the few preceding and following entries, whilst in 2-D or higher signals, complex 

window patterns are generated. The median is simple to define when the window has an 

odd number of entries, where it is just the middle value after sorting the entries 

numerically. In an even number of entries, more than one possible median is available 

(Pitas and Venetsanopoulos 2013). 
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The median of n observations xi ,  i = 1, ... n is denoted by med (xi ) 	and is 

given by: 

med(xi ) =
x(v+1)

1
2
(x(v ) + x(v+1) )

⎧

⎨
⎪

⎩
⎪

n = 2v +1
n = 2v

	 Eq. 7-23 

When	 xi  denotes the ith order, the previous formula is the main definition when n is 

odd. A 1-D median filter of size n = 2v +1 	is the filter window length and is identified 

by the expression: 

yi =med(xi−v ,..,xi ,..,xi+v ) 		 i ∈ Z 	 Eq. 7-24 

xi  is the input series from which the points are selected, while yi  is the output and both 

are i ∈ Z .	Equation 7-23 is called a moving, or running, median. The filter window 

values are sorted for each input signal data point and the middle value is chosen to 

replace the original signal value. In cases where impulsive noise is more than v +1 , the 

filter has no effect on the noise, whereas if the noise width is less than v +1 , it will be 

removed completely. The window length controls how the filter affects the signal; the 

bigger the window length, the smoother the signal will be (Mitra and Kaiser 1993; 

Moshnyaga and Hashimoto 2009). 
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7.3 Results 

7.3.1 MAF results 

Different window sizes (span value) were applied to find the best result of this type of 

filtering. Window size of 7 points showed the best fitted data and figure 7-4 illustrates 

the differences in noisy data before and after applying MAF. A one-way repeated 

measured analysis of variance (ANOVA) was conducted to evaluate the null hypothesis 

that there is no change in the noisy simulations’ Ki, SE or SSE values when calculated 

with MAF in all simulations (N = 6) during the 10 noise levels. The results are 

summarized in tables 7-1, 7-2 and 7-3. In the Ki values table 7-1, the ANOVA test 

results indicate that there is no significant effect for MAF filters in noisy data for low 

levels between 5% and 10% or for high levels between 35% and 50%, p > 0.05, 

averaged Wilks’ lambda = 0.569. In the middle noise levels between 15% and 30%, 

there is a significant change, p < 0.05, averaged Wilks’ lambda = 0.383. Thus, in a 

medium level of noise, there is significant evidence to reject the null hypothesis for 

MAF. The average reductions in standard deviation (SD) and the mean (µ) are 12% and 

8% respectively, and averaged partial eta squared (η2) = 0.506. In SE values table 7-2, 

the results indicate that there is a significant effect of MAF filtering in curve-fitting 

parameters for noisy data,  p < 0.05 in all points, averaged Wilks’ lambda = 0.569, and 

averaged partial η2 = 0.685. The average reductions in SD and µ are 2% and 32%, 

respectively. The results in SSE values table 7-3 indicate as well that there is a 

significant effect of MAF filtering in curve-fitting parameters, p < 0.05, averaged 

Wilks’ lambda = 0.320, and averaged partial η2 = 0.680. The average reductions in SD 

and µ are 35% and 52%, respectively.  
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Table 7-1. ANOVA results for Ki values in simulations before and after applying MAF. 

Test	 Statistics	 Noise	levels	
0.05	 0.1	 0.15	 0.2	 0.25	 0.3	 0.35	 0.4	 0.45	 0.5	

RM-	
ANOVA	
(n=6)	

p-value	 .334	 .117	 .034	 .041	 .026	 .046	 .116	 .063	 .069	 .068	

Wilks’	
lambda	 .814	 .583	 .373	 .401	 .340	 .418	 .581	 .469	 .484	 .481	

η2	 .186	 .417	 .627	 .599	 .660	 .582	 .419	 .531	 .516	 .519	

SD	
Sim	 .00462 .00495	 .00482	 .00585	 .00540	 .00527	 .00550	 .00550	 .00636	 .00556	

MAF	 .00469 .00464	 .00462	 .00485	 .00489	 .00489	 .00446	 .00492	 .00514	 .00451	

μ	
Sim	 .00904 .00945	 .00938	 .01024	 .00988	 .00982	 .00994	 .00994	 .01084	 .01025	

MAF	 .00894 .00893	 .00896	 .00908	 .00909	 .00908	 .00884	 .00917	 .00947	 .00897	
 

Table 7-2. ANOVA results for SE values in simulations before and after applying MAF. 

Test	 Statistics	 Noise	levels	
0.05	 0.1	 0.15	 0.2	 0.25	 0.3	 0.35	 0.4	 0.45	 0.5	

RM-	
ANOVA	
(n=6)	

p-value	 .004	 .038	 .019	 .022	 .018	 .027	 .042	 .023	 .010	 .035	

Wilks’	lambda	 .171	 .388	 .302	 .320	 .292	 .345	 .405	 .321	 .232	 .378	

η2	 .829	 .612	 .698	 .680	 .708	 .655	 .595	 .679	 .768	 .622	

SD	
Sim	 .03969 .05604	 .04894	 .04522	 .03886	 .06578	 .05353	 .08142	 .07375	 .06027	

MAF	 .05393 .05409	 .05551	 .06096	 .05805	 .06076	 .05457	 .06141	 .06413	 .05141	

μ	
Sim	 .30082	 .28655	 .29380	 .27297	 .28570	 .31077	 .29777	 .28500	 .28023	 .28527	

MAF	 .20017 .20083	 .19943	 .19828	 .19788	 .19787	 .20058	 .19633	 .18872	 .19938	
 

Table 7-3. ANOVA result for SSE values in simulations before and after applying MAF. 

Test	 Statistics	 Noise	levels	
0.05	 0.1	 0.15	 0.2	 0.25	 0.3	 0.35	 0.4	 0.45	 0.5	

RM-	
ANOVA	
(n=6)	

p-value	 .003	 .031	 .016	 .017	 .012	 .036	 .043	 .048	 .016	 .033	

Wilks’	
lambda	 .153	 .360	 .279	 .287	 .249	 .382	 .409	 .424	 .283	 .371	

η2	 .847	 .640	 .721	 .713	 .751	 .618	 .591	 .576	 .717	 .629	

SD	
Sim	 .00224 .00280	 .00246	 .00229	 .00191	 .00394	 .00300	 .00427	 .00346	 .00310	

MAF	 .00183 .00187	 .00188	 .00203	 .00194	 .00203	 .00186	 .00199	 .00200	 .00179	

μ	
Sim	 .00831	 .00770	 .00803	 .00693	 .00753	 .00911	 .00828	 .00789	 .00755	 .00767	

MAF	 .00386 .00389	 .00385	 .00386	 .00382	 .00384	 .00388	 .00379	 .00355	 .00381	
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Figure 7-4. In the first plot (left), there is a slight reduction in noise at the beginning and at the end of 
the noise levels, but significant noise in the intervening levels. The centre plot illustrates the reduction in 
SE values, and the third plot shows the SSE values. Both have a significant reduction of noisy Ki values 
after applying MAF.  

7.3.2 SGF results 

In all simulations (N = 6) and for all 10 noise levels, RM-ANOVA was conducted. The 

results are summarized in tables 7-4, 7-5, and 7-6. In Ki values table 7-4, the test results 

indicate that there is a significant effect of SGF filtering in most of the noisy data points 

except for levels 10%, 45%, and 50%, where p > 0.05. The averaged p-value for other 

levels is = 0.028, Wilks’ lambda = 0.332. The average reductions in SD and µ are 10% 

and 8% respectively, and η2 in total = 0.668. In SE values table 7-5, results indicate that 

there is a significant effect of SGF filter on curve-fitting parameters for noisy data, p 

≤0.05 in all points, averaged p = 0.0181, averaged Wilks’ lambda = 0.250, and η2 = 

0.750. The average fold change in SD and µ are +21% and -31%, respectively. The 
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result of SSE values table 7-6 also indicate a significant effect of SGF filter on curve-

fitting parameters, p ≤ 0.05, averaged p= 0.0175, averaged Wilks’ lambda = 0.244, and 

η2 = 0.757. The average reductions in SD and µ were 15% and 49%, respectively. 

Figure 7-5 illustrates the differences in noisy data before and after applying the SGF 

method. 

Table 7-4. ANOVA results for Ki values in simulations before and after applying SGF. 

Test	 Statistics	
Noise	levels	
0.05	 0.1	 0.15	 0.2	 0.25	 0.3	 0.35	 0.4	 0.45	 0.5	

RM-	
ANOVA	
(n=6)	

p-value	 .006	 .214	 .023	 .046	 .022	 .042	 .013	 .045	 .055	 .077	

Wilks’	
lambda	 .187	 .712	 .323	 .419	 .315	 .405	 .259	 .414	 .447	 .503	

η2	 .813	 .288	 .677	 .581	 .685	 .595	 .741	 .586	 .553	 .497	

SD	
Sim	 .00462 .00495	 .00482	 .00585	 .00540	 .00527	 .00473	 .00550	 .00636	 .00556	

SGF	 .00463 .00461	 .00464	 .00489	 .00494	 .00498	 .00454	 .00493	 .00516	 .00455	

μ	
Sim	 .00904 .00945	 .00938	 .01024	 .00988	 .00982	 .00943	 .00994	 .01084	 .01025	

SGF	 .00890 .00891	 .00895	 .00910	 .00912	 .00917	 .00886	 .00915	 .00937	 .00897	
 

Table 7-5. ANOVA results for SE values in simulations before and after applying SGF. 

Test	 Statistics	 Noise	levels	
0.05	 0.1	 0.15	 0.2	 0.25	 0.3	 0.35	 0.4	 0.45	 0.5	

RM-	
ANOVA	
(n=6)	

p-value	 .001	 .026	 .016	 .006	 .010	 .020	 .050	 .001	 .001	 .050	

Wilks’	
lambda	 .077	 .339	 .284	 .189	 .231	 .306	 .445	 .095	 .093	 .445	

η2	 .923	 .661	 .716	 .811	 .769	 .694	 .555	 .905	 .907	 .555	

SD	
Sim	 .03969 .05604	 .04894	 .04522	 .03886	 .06578	 .05353	 .08142	 .07375	 .06027	

SGF	 .06352 .06190	 .06906	 .06654	 .06580	 .06665	 .06797	 .07337	 .08189	 .06418	

μ	
Sim	 .30082	 .28655	 .29380	 .27297	 .28570	 .31077	 .29777	 .28500	 .28023	 .28527	

SGF	 .19670 .20052	 .20878	 .18952	 .18952	 .18917	 .20790	 .20525	 .20755	 .20772	
 

Table 7-6. ANOVA results for SSE values in simulations before and after applying SGF. 

Test	 Statistics	
Noise	levels	
0.05	 0.1	 0.15	 0.2	 0.25	 0.3	 0.35	 0.4	 0.45	 0.5	

RM-	
ANOVA	
(n=6)	

p-value	 .000	 .019	 .010	 .002	 .006	 .030	 .050	 .010	 .001	 .047	

Wilks’	
lambda	 .030	 .298	 .235	 .127	 .190	 .355	 .454	 .235	 .090	 .421	

η2	 .970	 .702	 .765	 .873	 .810	 .645	 .546	 .765	 .910	 .579	

SD	
Sim	 .00224 .00280	 .00246	 .00229	 .00191	 .00394	 .00300	 .00427	 .00346	 .00310	

SGF	 .00242 .00235	 .00258	 .00243	 .00241	 .00242	 .00252	 .00263	 .00299	 .00242	

μ	
Sim	 .00831	 .00770	 .00803	 .00693	 .00753	 .00911	 .00828	 .00789	 .00755	 .00767	

SGF	 .00382 .00395	 .00432	 .00360	 .00359	 .00359	 .00428	 .00424	 .00442	 .00423	
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Figure 7-5. In the first plot (left), a slight reduction in Ki value at the beginning is shown, while it is 
more substantial in the other levels. The second plot in the middle illustrates the reduction in SE values, 
and the third plot shows the SSE values; both have a significant reduction of noisy Ki values and are 
more stabilised after applying SGF.  

 

7.3.3 PCF results 

Different polynomial degrees from 1st to 9th, have been applied on one simulated data to 

determine the most effective one to the noise. Table 7-7 shows that the 1st polynomial 
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order has the greatest difference between these values. Increasing the order of the 

polynomial reduces that difference; at the 9th degree, it is 11% to the original Ki and 9% 

lower than noisy data. This suggests to use the 9th PCF degree on all simulated data to 

reduce the noise effect. Figure 7-6 illustrates the differences in noisy data before and 

after applying the PCF method. The fold change percentage shows the difference of 

0.0140 min-1 between the ground truth Ki value without noise and the new value after 

applying the polynomial. The minus sign means the value is below the original point.  

RM-ANOVA is conducted for the data before and after applying PCF and results are 

summarized in tables 7-8, 7-9 and 7-10. In Ki values table 7-8, the test results indicate 

that there is no significant effect of PCF on most of the noisy data points where p > 

0.05. Four levels from the simulated data show significant effects where p < 0.05. The 

averaged p-value in general for all levels is = 0.094, Wilks’ lambda = 0.465. The 

average reduction in SD and µ for both is 6%, and total average partial η2 = 0.535. In 

SE values table 7-9, the results indicate that there is a significant effect of PCF in curve-

fitting parameters for noisy data, p ≤	0.01 in all points, averaged p = 0.0003, averaged 

Wilks’ lambda = 0.0551 and average partial η2 = 0.945. The average reductions in SD 

and µ are 28% and 59%, respectively. As shown in SSE values table 7-10, results 

indicate as well that there is a significant effect of PCF in fitting parameters where p ≤ 

0.01, averaged p = 0.002, averaged Wilks’ lambda = 0.108, and average partial η2 = 

0.8922. The average reductions in SD and µ are 68% and 82%, respectively. 
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Table 7-7. Ki value results in simulation 1 before and after applying different degrees of PCF 
starts from 1st to 9th order. 

Poly.	
Degree	

Averaged	
Ki	

Fold	
Change	%	 SE%	 Poly.	

Degree	
Averaged	

Ki	
Fold	

Change	%	 SE%	

Noisy	
Sim	1	 0.0168 20% 28% 5	 0.0132 -5% 11% 

1	 0.0027 -81% 5% 6	 0.0136 -3% 16% 

2	 0.0126 -10% 1% 7	 0.0135 -4% 16% 

3	 0.0129 -8% 6% 8	 0.0137 -2% 15% 

4	 0.0125 -11% 15% 9	 0.0155 11% 13% 
 

	

	

Figure 7-6. Curves for Ki values in simulation 1 before and after applying different degrees 
of PCF starts from 1st to 9th order. In the middle of the graph, the black line represents the Ki 
value (0.0140 min-1) without noise for comparison to other curves.	

	

Table 7-8. ANOVA results for Ki values in simulations before and after applying PCF. 

Test	 Statistics	
Noise	levels	

0.05	 0.1	 0.15	 0.2	 0.25	 0.3	 0.35	 0.4	 0.45	 0.5	

RM-	
ANOVA	
(n=6)	

p-value	 .315	 .031	 .003	 .176	 .128	 .095	 .037	 .083	 .003	 .065	

Wilks’	
lambda	 .800	 .360	 .145	 .668	 .600	 .542	 .386	 .518	 .153	 .474	

η2	 .200	 .640	 .855	 .332	 .400	 .458	 .614	 .482	 .847	 .526	

SD	
Sim	 .00462 .00495	 .00482	 .00585	 .00540	 .00527	 .00473	 .00550	 .00636	 .00556	

PCF	 .00457 .00453	 .00472	 .00518	 .00484	 .00448	 .00438	 .00527	 .00609	 .00562	

μ	
Sim	 .00904 .00945	 .00938	 .01024	 .00988	 .00982	 .00943	 .00994	 .01084	 .01025	

PCF	 .00882 .00885	 .00903	 .00954	 .00917	 .00896	 .00900	 .00934	 .01015	 .00978	
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Table 7-9. ANOVA results for SE values in simulations before and after applying PCF. 

Test	 Statistics	 Noise	levels	
0.05	 0.1	 0.15	 0.2	 0.25	 0.3	 0.35	 0.4	 0.45	 0.5	

RM-	
ANOVA	
(n=6)	

p-value	 .000	 .000	 .000	 .000	 .000	 .000	 .000	 .001	 .002	 .000	

Wilks’	lambda	 .029	 .026	 .020	 .032	 .067	 .057	 .055	 .078	 .131	 .056	

η2	 .971	 .974	 .980	 .968	 .933	 .943	 .945	 .922	 .869	 .944	

SD	
Sim	 .03969 .05604	 .04894	 .04522	 .03886	 .06578	 .05353	 .08142	 .07375	 .06027	

PCF	 .02657 .03278	 .03667	 .02838	 .03753	 .04440	 .02870	 .08116	 .04511	 .04342	

μ	
Sim	 .30082	 .28655	 .29380	 .27297	 .28570	 .31077	 .29777	 .28500	 .28023	 .28527	

PCF	 .12295 .11330	 .11453	 .11450	 .12050	 .10128	 .11333	 .12275	 .12377	 .13648	
 

Table 7-10. ANOVA results for SSE values in simulations before and after applying PCF. 

Test	 Statistics	 Noise	levels	
0.05	 0.1	 0.15	 0.2	 0.25	 0.3	 0.35	 0.4	 0.45	 0.5	

RM-	
ANOVA	
(n=6)	

p-value	 .000	 .001	 .000	 .001	 .000	 .003	 .002	 .002	 .005	 .002	

Wilks’	lambda	 .067	 .090	 .064	 .083	 .072	 .153	 .118	 .131	 .182	 .118	

η2	 .933	 .910	 .936	 .917	 .928	 .847	 .882	 .869	 .818	 .882	

SD	
Sim	 .00224 .00280	 .00246	 .00229	 .00191	 .00394	 .00300	 .00427	 .00346	 .00310	

PCF	 .00053 .00067	 .00075	 .00063	 .00080	 .00076	 .00058	 .00235	 .00122	 .00111	

μ	
Sim	 .00831	 .00770	 .00803	 .00693	 .00753	 .00911	 .00828	 .00789	 .00755	 .00767	

PCF	 .00143 .00125	 .00129	 .00125	 .00143	 .00108	 .00123	 .00187	 .00155	 .00184	
 

7.3.4 MF results 

Figure 7-7 illustrates the differences in noisy data within diverse MFs up to the 4th 

order. The fold change percentage shows the difference between the ground truth Ki 

value without noise of 0.0140 min-1 and the new value after applying the MF. The 

minus sign means the averaged value is below the original point (0.0140 min-1). Note in 

table 7-11 that 1st-order MF has the same value as the noisy data, confirming no effect 

of MF. In the second order, averaged Ki is lower 6% than original point. Increasing the 

order reduces the effect of noise on data, and at the 4th order, it is 8% closer to the 

original Ki. Observing the plot in fig 7-7 shows that MF order 4 has four data points 

lower than the original Ki value compared to MF order 3, which has only one below the 

original value. This led us to select the 3rd-order MF for use on simulated data due to its 

stability and robustness in final result analysis, plus a reasonable goodness of fit with 

SE values. 
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Table 7-11. Result for Ki values in simulation 1 before and after applying different degrees of MF starts 
from 1st to 4th order. 

MF	Degree	 Averaged	Ki	 Fold	Change	%	 SE%	
Noisy	Sim	1	
(before)	 0.0168 20% 28% 

1	 0.0168 20% 28% 
2	 0.0132 -6% 32% 
3	 0.0156 12% 21% 
4	 0.0151 8% 19% 

 

 

Figure 7-7. Curves for Ki values in simulation 1 before and after applying different orders of MF up to 4th 
order. In the middle of the graph, the black line represents the original Ki value (0.0140 min-1) without 
noise for comparison to other curves.	

RM-ANOVA was conducted for the data before and after applying MF, and the results 

are summarized in tables 7-12, 7-13, and 7-14. In Ki values table 7-12, the test results 

indicate that there is no significant effect of MF in most the noisy data points, p > 0.05. 

The averaged p-value in general for all levels is 0.486, Wilks’ lambda = 0.866. The 

average reductions in SD and µ are 7% and 3%, respectively, total averaged partial η2 = 

0.134. In SE values table 7-13, the results indicate that there is no significant effect in 

all points as well of MF in curve fitting parameters, p > 0.05, averaged p = 0.161, 

averaged Wilks’ lambda = 0.638, and averaged partial η2 = 0.362. The average 

reduction in SD and µ are 13% and 17%, respectively. SSE values in table 7-14 shows 

as well no significant effect where p > 0.05, averaged p= 0.161 and averaged Wilks’ 

lambda = 0.637 and averaged partial η2 = 0.363. The average reductions in SD and µ 

are 24% and 30%, respectively. 

Table 7-12. ANOVA results for Ki values in simulations before and after applying MF. 
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Test	 Statistics	 Noise	levels	
0.05	 0.1	 0.15	 0.2	 0.25	 0.3	 0.35	 0.4	 0.45	 0.5	

RM-	
ANOVA	
(n=6)	

p-value	 .725	 .596	 .533	 .348	 .302	 .364	 .460	 .439	 .953	 .138	

Wilks’	
lambda	 .973	 .940	 .918	 .823	 .790	 .834	 .887	 .876	 .999	 .617	

η2	 .027	 .060	 .082	 .177	 .210	 .166	 .113	 .124	 .001	 .383	

SD	
Sim	 .00462 .00495	 .00482	 .00585	 .00540	 .00527	 .00473	 .00550	 .00636	 .00556	

MF	 .00449 .00491	 .00454	 .00567	 .00506	 .00496	 .00430	 .00500	 .00620	 .00437	

μ	
Sim	 .00904 .00945	 .00938	 .01024	 .00988	 .00982	 .00943	 .00994	 .01084	 .01025	

MF	 .00894 .00928	 .00917	 .00996	 .00954	 .00955	 .00901	 .00966	 .01082	 .00913	
 

Table 7-13. ANOVA result for SE values in simulations before and after applying MF. 

Test	 Statistics	 Noise	levels	
0.05	 0.1	 0.15	 0.2	 0.25	 0.3	 0.35	 0.4	 0.45	 0.5	

RM-	
ANOVA	
(n=6)	

p-value	 .151	 .221	 .104	 .179	 .172	 .079	 .183	 .171	 .084	 .269	

Wilks’	lambda	 .635	 .719	 .559	 .672	 .663	 .509	 .677	 .662	 .519	 .764	

η2	 .365	 .281	 .441	 .328	 .337	 .491	 .323	 .338	 .481	 .236	

SD	
Sim	 .03969 .05604	 .04894	 .04522	 .03886	 .06578	 .05353	 .08142	 .07375	 .06027	

MF	 .04579 .04925	 .03370	 .04017	 .04415	 .05781	 .04608	 .08410	 .05485	 .03715	

μ	
Sim	 .30082	 .28655	 .29380	 .27297	 .28570	 .31077	 .29777	 .28500	 .28023	 .28527	

MF	 .24758 .24060	 .23482	 .22713	 .23880	 .25048	 .25467	 .24428	 .22780	 .24533	
 

Table 7-14. ANOVA result for SSE values in simulations before and after applying MF. 

Test	 Statistics	 Noise	levels	
0.05	 0.1	 0.15	 0.2	 0.25	 0.3	 0.35	 0.4	 0.45	 0.5	

RM-	
ANOVA	
(n=6)	

p-value	 .165	 .229	 .094	 .188	 .167	 .070	 .164	 .183	 .094	 .257	

Wilks’	
lambda	 .654	 .727	 .540	 .683	 .657	 .487	 .653	 .677	 .540	 .753	

η2	 .346	 .273	 .460	 .317	 .343	 .513	 .347	 .323	 .460	 .247	

SD	
Sim	 .00224 .00280	 .00246	 .00229	 .00191	 .00394	 .00300	 .00427	 .00346	 .00310	

MF	 .00204 .00229	 .00146	 .00176	 .00195	 .00285	 .00212	 .00407	 .00199	 .00173	

μ	
Sim	 .00831	 .00770	 .00803	 .00693	 .00753	 .00911	 .00828	 .00789	 .00755	 .00767	

MF	 .00573 .00545	 .00510	 .00481	 .00533	 .00596	 .00606	 .00596	 .00495	 .00558	
 

Table 7-15 summarises the changes and reductions in percentage for Ki, SE, and SSE 

values for all methods used with simulated data before and after the denoising process. 

The first section represents the mean Ki values, the second illustrates mean SE values, 

and the third shows the mean SSE values. The MAF method has the greatest reduction 

value (fold change %) of averaged Ki, with -8.35%, while the MF method has the 

lowest reduction value, with -3.27%. The greatest reduction in SE was -59.18% 

obtained by PCF, and the least was -4.87% using MF. In SSE, the greatest reduction of -

82% was found in PCF, and the least was -30.47% using the MF method. 
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Table 7-15. A comparison of reductions in Ki, SE, and SSE values for all methods used with 
simulated data before and after the denoising process. 

Mean	Ki	values	(×10-2)	

Denoising	
Method	

Type	
(Iterations,	
coefficients)	

Simulated	noisy	
data	

After	denoising	
process	 Change	 Fold	change	

%	

MAF	 Double	Span	 0.9878	±0.5383	 0.9053	±0.4761	 -0.0825	 -8.35%	

SGF	 -	 0.9827	±0.5306	 0.905	±0.4787	 -0.0777	 -7.91%	

PCF	 9th	Order	 0.9827	±0.5306	 0.9264	±0.4968	 -0.056	 -5.73%	

MF	 3rd	Order	 0.9827	±0.5306	 0.9506	±0.495	 -0.0321	 -3.27%	

Mean	SE	values	(%)	

Denoising	
Method	

Type	
(Iterations,	
coefficients)	

Simulated	noisy	
data	

After	denoising	
process	 Change	 Fold	change	

MAF	 Double	Span	 28.99%	±5.64%	 19.79%	±5.75%	 -9.19%	 -31.72%	

SGF	 -	 28.99%	±5.64%	 20.03%	±6.81%	 -8.96%	 -30.92%	

PCF	 9th	Order	 28.99%	±5.64%	 11.83%	±4.05%	 -17.15%	 -59.18%	

MF	 3rd	Order	 28.99%	±5.64%	 24.11%	±4.93%	 -17%	 -4.87%	

Mean	(μ	±SD)	SSE	values	(×10-2)	

Denoising	
Method	

Type	
(Iterations,	
coefficients)	

Simulated	noisy	
data	

After	denoising	
process	 Change	 Fold	change	

MAF	 Double	Span	 0.79	±0.2947	 0.3815	±0.1922	 -0.4085	 -51.71%	

SGF	 -	 0.79	±0.2947	 0.4004	±0.2517	 -0.3896	 -49.32%	

PCF	 9th	Order	 0.79	±0.2947	 0.1422	±0.094	 -0.6478	 -82%	

MF	 3rd	Order	 0.79	±0.2947	 0.5493	±0.2226	 -0.2407	 -30.47%	
 

7.4 Discussion 

7.4.1 MAF analysis 

The aim of applying MAF is to remove the noise and its effects on regression fitting 

parameters. This is already achieved on all Ki values non-significantly in low and high 

noise and significantly during medium noise levels. SE and SSE values both have 

significant changes and reduction in their values, indicating better goodness of fit in 

applied regression analysis. The result shows the suitability of the MAF method to 

reduce the effect of Gaussian noise by having a probability density function equal to the 

normal distribution. The filtering width (span) that was given to TACs data are different 
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due to the variety of the impact of cerebellum activity concentration, which is higher 

compared to the striatum as can be seen in the Patlak equation. Thus, the span value 

given to reference tissue TAC was usually double the value of ROI’s TAC. Table 7-16 

and Figure 7-8 show the results of applying the same and doubled span values on TACs 

required for Patlak analysis compared to original and noisy data. It can be seen that the 

huge reduction in Ki values with same-span MAF makes the result much further away 

from the original value line. In contrast, a double span for reference TAC shows a 

reduction of noise impact and brings Ki values closer to the non noisy origins. There is 

an increase in the SD of SE by 21%, and this indicates that the data points are spread 

out over a wider range of values. This is considered a consequence of preserving the 

high peaks contained within noisy data. 

Table 7-16. Difference in Ki values of the first simulation in noisy, same span value, and double span 
value for reference tissue TAC. 

Ki-values	
(0.0140)	

Noise	levels	

0.05	 0.1	 0.15	 0.2	 0.25	 0.3	 0.35	 0.4	 0.45	 0.5	 SE	 SSE	 change	

Noisy 
Sim1 0.015 0.015 0.016 0.018 0.018 0.018 0.018 0.018 0.019 0.015 0.017 0.017 22% 

Same 
Span value 0.003 0.002 0.002 0.003 0.003 0.003 0.002 0.004 0.005 0.013 0.004 0.004 -71% 

Different 
Span value 
(double) 

0.015 0.015 0.015 0.016 0.016 0.016 0.014 0.016 0.017 0.014 0.015 0.015 9% 
 

 

Figure 7-8. Comparison between original Ki values and noisy, same, and double spans. This shows 
that double-span MAF brings much better results compared to other values. 
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7.4.2 SGF Analysis 

By comparison to MAF, SGF tends to keep the high peaks of the signal, which  makes 

this method less successful in removing the impact of the noise within the data. In 

contrast, the MAF method filters the high peaks in the signal and removes them. This 

leads to us avoiding the use of the SGF method with data containing high peaks; 

however, the method can be used in studying and measuring the impact of Gaussian 

noise on the data curve by using other functions. Additionally, the SGF method can be 

used in case retaining the original data is a priority for sensitive quantitative analysis. 

Visual presentation could help to decide upon a suitable option for smoothing data. In 

Ki analysis, it can be seen that in most data points (70%), the noise impact is 

significantly reduced without biasing the original data values. The average fold change 

from original values after applying noise is 15%, and this is reduced to 6% after 

applying the SGF method. The average reductions in µ for SE and SSE are 31% and 

49%, respectively, indicating an improvement in least squares analysis performed on the 

Patlak equation and reduction in the SD of error in regression, which in the end provide 

more robust results in PET analysis. Figure 7-5 shows the data represented by curves 

after using SGF. More stability is seen with SE and SSE fitting parameters.  

7.4.3 PCF analysis 

PCF aims to remove the noise impact on TACs by providing the best fit for curves 

before applying Patlak analysis. The degree used for all data sets is 9, and it is applied 

on both references and ROI data. This is already achieved on all Ki values non-

significantly in most of the data (six levels). Four levels show significant change in Ki 

values. This suggests more investigation is needed about the polynomial degrees 

selected. SE and SSE values both show significant changes and reduction, indicating a 

better fit in Patlak regression analysis. The result shows the suitability of the PCF 
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method for reducing the effect of Gaussian noise on radioactivity data. With the above 

reduction achieved, using polynomial fitting will yield more advantages in enhancing 

the regression analysis for Patlak than improving the final Ki result. Table 7-7 and 

Figure 7-6 show that a higher polynomial order offers best fit to the curve and more 

accurate results. A first-degree polynomial generates a result with the greatest 

difference, which makes this degree the worst option to fit TACs for Patlak analysis. 

7.4.4 MF analysis 

The effect of MF in removing the noise impact is non-significant on TACs and 

regression-fitting parameters. This can be noticed from results at all Ki values and noise 

levels. There are reductions in Ki, SE, and SSE values, however, indicating a slight 

improvement in removing the noise impact. This also indicates goodness of fit when 

regression analysis is applied. The result shows the suitability of a 3rd-order MF method 

to reduce somewhat the effects of Gaussian noise and provide better-fitting parameters. 

The filtering was applied to data (TACs) for both ROI and reference tissue equally. The 

TACs were extended by endpoints at the beginning and end, then at the starting point 

filter window will be complete. The filter window values are sorted, and the middle 

value is chosen to replace the original signal value. Table 7-11 shows that the window 

length affects the filter’s impact on noisy TACs. The bigger the window length, the 

smoother the signal will be and vice versa. In smaller window lengths, the filtered 

signal becomes close to the input noisy curves. MF aims to recover the original signal 

merged with Gaussian noise, and is particularly good at preserving trends in curves, as 

can be seen in Figure 7-7. The limited parametric requirement of only the window size 

makes MF flexible and easy to adapt for a specific signal issue. In addition, the unique 

structure of this type of filter enables extending and expanding the TAC processing to 

include threshold decomposition, weighted median filtering, and recursive median 

filtering.  
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7.5 Conclusion 

PET data in experiments cannot always be presented smoothly, as random changes 

between points can appear in TACs and significantly affect Patlak analysis. Reducing 

the noise is a useful move to improve SNR and can be performed by either smoothing 

or filtering processes. By applying one of these methods, more valuable information can 

be extracted from the original data and the results of analysis will be more accurate. 

The methods applied in this study include moving average filtering (MAF), Savitzky-

Golay filtering (SGF), polynomial curve fitting (PCF), and median filtering (MF), with 

the aim of removing or reducing noise. The methods used show various reductions in 

noise impact on simulated data and all provided better fit for regression analysis. SGF 

yielded significant improvements in most data analysis in this study, suggesting that this 

method was the best option among all methods tested. Using SGF with TACs extracted 

from ROIs and reference tissues could provide more accurate Patlak analysis. Further 

analysis of the SGF technique used on clinical PET data obtained from patient images 

will be performed in the next chapter. 
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 Improving the Quantitative 18F-FDOPA 8
Images in Human Dynamic PET Data for 
Parkinson’s Disease Patients 

8.1 Introduction 

Positron emission tomography (PET) scanner are used to help evaluate organ and tissue 

functions by injecting small amounts of radioactive materials. The computer displays 

and creates PET images where each measurement is reconstructed as a series of tiny 

voxels where each voxel intensity represents the uptake of tracer. Most of the modern 

scanners are now fused with a computed tomography CT or magnetic resonance 

imaging MRI scanner to correct for attenuation and provide additional anatomical 

information missing on the PET scan. PET is advantageous for movement disorders as 

investigational models of Parkinson’s disease (PD), Alzheimer’s disease, Stroke and 

Epilepsy. It facilitates the investigation and imaging of brain metabolic activity. By 

mapping the functional aspects in different regions of brain involved in the above 

disorders, it is possible to identify and quantify deasease in real time. Radiotracers could 

be used to diagnose, assess prognosis, and assist in therapy development for motor 

neuron diseases (neurodegenerative disorders) (Lu and Yuan 2015). Potential neural 

protective agents are under investigation currently in many trials and results from these 

trials could improve the way of diagnosis process and interventions.  

PD is considered as the second most common disorder as a result of neuron 

degeneration in the mid-brain after Alzheimer’s disease (de Lau and Breteler 2006). In 

Parkinson’s disease, 6-18Fluoro-L-DOPA (18F-DOPA), where [18F]F2 is produced from 

[18O]2, can be used in studying the dopamine synthesis in the brain based on measuring 

the physiological processes involved. 18F-DOPA, usually abbreviated to FDOPA, has 

been used to monitor PD progression by evaluating the striatal uptake in mid brain, 
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where the fall of the striatal uptake over time indicates the degeneration of 

dopaminergic neurons. FDOPA PET can also be important for determining the 

outcomes of treatment of the underlying pathophysiology and to consider whether the 

therapy has provided a significant effect. FDOPA traps in the synaptic vesicles of 

neurons and for this reason specific radiolabeling of dopaminergic neurons could be 

visualized usually between 90- 95 min after injecting the tracer (Lu and Yuan 2015; 

Vanitha 2011; Whone et al. 2004). Quantitative PET imaging can provide numerical 

assessment of the physiological, metabolic and functional status in a region of interest 

(ROI). Fully quantitative approach requires long scan (dynamic images), analysis and 

input function (blood sample or reference image tissue). This step is the last stage and 

comes after completion of scanning patient and image processing. Dynamic scans are 

usually the preferred option for quantitative analysis and high image quality is usually 

not required. Absolute quantification has the potential to improve diagnostic accuracy in 

different clinical PET studies (Ohira et al. 2014; Salomaki et al. 2017). It is assumed 

that physiological processes and molecular interactions are in a constant state (steady 

state) during the PET measurement (Bentourkia 2011; Carson 2005; Erlandsson 2011). 

Graphical analysis (GA) is a common method of quantitative PET imaging where the 

tracer time activity curves (TACs) of ROI and arterial plasma or reference tissue region 

are combined into one curve that introduces linearity. The data could be plotted in a 

graph and by applying statistical regression analysis; a regression line (RL) can be fitted 

within the data points while minimizing errors as much as it can. GA methods are 

independent of any particular model structure and have been developed for reversibly 

and irreversibly binding tracers. FDOPA in brain imaging is considered to be an 

irreversible binding tracer where it trapped within the cell for the duration of the scan. 

Thus, Patlak graphical plot is the preferred option to quantify dynamic FDOPA images 

for Parkinson’s disease. The slope in the linear phase of the Patlak plot represents the 
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net uptake rate (Ki) of the tracer or volume of distribution Vt. The Patlak equation 

principle is based on the existence of at least one irreversible reaction or transport step, 

where the tracer traps and cannot escape with assuming all the reversible compartments 

must be in equilibrium with plasma (Logan 2000, 2003; Patlak and Blasberg 1985; 

Patlak et al. 1983). This chapter includes in details the entire image analysis that is 

performed to quantify the FDOPA PET dynamic images from the GDNF clinical trial. 

In addition, other steps have been discussed to improve the sensitivity and accuracy of 

the image analysis results and provide further techniques, which could enhance the 

Patlak PET quantification process in general, which is the main aim of this thesis. 

Equations, models, materials and methods used in the study are all explained and 

justified in this chapter. First, FDOPA images for PD patients were analysed with the 

current standard method of quantitative image analysis steps and then the methods 

identified with the dPETSTEP simulation in order to ascertain if there was a difference 

in the result produced with each method. Feasible generalised least squares (FGLS), 

Savitzky-Golay filter (SGF) noise reduction method in 2D, and Battle-Lemarie wavelet 

(BLW) in 3D data that are discussed earlier in previous chapters are applied to the 

clinical data obtained from quantifying FDOPA dynamic images. 

8.2 Results 

Statistical analysis of the data was performed using IBM® SPSS ® Statistics, version 23 

for the primary stage subjects only. The hypothesis was performed at an alpha level of 

0.05 with a 2-sided alternative and no adjustments made for multiplicity. Analysis of 

covariance (ANCOVA) model was used to determine whether there was a difference in 

the means of the dependant variable and independent variable categories, which is the 

treatment group (40 Weeks), while controlling the effects of other continuous variables 

which are known as covariates and represented by baseline group. ANCOVA model is a 
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mixed method between ANOVA and regression where the variance in the dependant 

variable is decomposed into variance explained by the covariates, categorical 

independent variables and residual variance (Green and Salkind 2016; Kirk 2007). 

The mean (±SD) of patients’ age in the primary stage (35 subjects) is 56.4±7.9 with a 

mean (±SD) of disease duration equal to 10.9±5.3 since the first symptom observed. 

There is a similarity between treatment groups in terms of baseline PD and all other 

demographic characteristics, except for gender. According to the study report (Whone et 

al. 2019), after surgery implementation of the CED system, MRI shows that the CED’s 

catheters were accurately placed. The drug infusion was scheduled into 350 

administered sessions and the compliance was high in 347 visits (99.1%). There were a 

few sessions, that were interrupted or terminated early; 9 (5.4%) of 167 GDNF 

infusions and 10 (5.6%) of 180 placebo infusions. Early termination due to 

misalignment of the connector to the skull-mounted port for four infusions in each 

group was accounted. Other interruptions were reported due to two occluded infusion 

channels as a result of an automatic safety pump shut down due to transient high 

catheter pressure with no adverse effect on subjects. Doubling the volume dose for all 

study infusions for those two subjects solved this issue in line with the study protocol. 

8.2.1 Regional and Sub-Regional Outcomes and Analysis 

In this study no patient dropped out or was excluded after randomization process. The 

main outcome assessed was the uptake rate Ki (expressed as 10-2 min-1); Table 8-1 

illustrates FDOPA mean Ki outcomes for GDNF and placebo groups. In this study 

striatum has been divided in each subject’s image into different 14 parts including: 

whole striatum left (L) and right (R), caudate head (L and R), caudate body (L and R), 

putamen (L and R). Then, the putamen was then divided further into three parts; 

anterior, central and posterior for L and R sides. For placebo group, it was reported  that 
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there was a gradient of neurodegenerative changes (reduction) in 10 of 14 parts of the 

striatum between baseline and week 40 groups. Four parts show slight increased mean 

Ki values, which are: right caudate head 0.8% (from 0.908±0.160 to 0.915±0.130), left 

anterior putamen 1.7% (0.724±0.214 to 0.736±0.157), right central putamen 5.1% 

(0.432±0.131 to 0.453±0.101) and left posterior putamen 0.7% (0.304±0.113 to 

0.307±0.073). The remaining 10 parts show a decrease in Ki mean value and the highest 

reduction found in right posterior putamen decreased by -6.2% (from 0.321±0.094 to 

0.302±0.061) while the lowest change found in left caudate head by -0.2% (from 

0.931±0.170 to 0.929±0.144). In placebo-baseline group the highest was found in left 

caudate head with 0.931±0.170 and the lowest was in left posterior putamen with 

0.304±0.113. For placebo-week40 group, the highest was found in left caudate head 

with 0.929±0.144 and the lowest was in right posterior putamen with 0.302±0.61. 

Figure 8-1, illustrates a comparison between the whole striatum (R and L) in baseline 

vs. week 40 in placebo group which is very low change. 

In GDNF group (Table 8-1 and 8-2), all striatum parts show an increase in mean Ki in 

week 40 vs. baseline group with 23.4% (average), p-value=0.0002 vs. placebo. An 

ANCOVA model was applied with the result obtained with the baseline variable as a 

covariate and treatment group as a fixed factor. The highest change found in the right 

posterior putamen increased by 50.7% (from 0.367±0.146 to 0.553±0.147, p<0.0001 vs. 

placebo) while the lowest change found in the left caudate head by 2.6% (from 

0.939±0.229 to 0.9262±0.220, p=0.496 vs. placebo). The highest mean Ki at baseline 

was found in the right caudate head with 1.0±0.174, and the lowest value was found in 

right posterior putamen with 0.367±0.146. At week 40 group, the highest was found in 

right caudate head with mean Ki 1.051±0.215 (p=0.143 vs. placebo) and the lowest was 

in left posterior putamen with 0.522±0.162 (p<0.0001 vs. placebo). Figure 8-2, 

illustrates a comparison between the whole striatum (R and L) in baseline vs. week 40 
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in the GDNF group. It can be seen the different between the two groups, each data point 

represent a subject (17 patients) and reorganised ascending. Boxes of plot in Figure 8-3 

represent GDNF and placebo groups with assign the Ki change as a y-axis shows the 

differences in mean and outliers. 

  

Figure 8-1. Chart (A) shows a comparison between the whole striatum (R and L) in baseline (BL) vs. after treatment (AT) in 
placebo group. Chart (B), shows the same group after organise the Ki values ascending and show the trend lines. 

  

Figure 8-2. Chart (A) shows a comparison between the whole striatum (R and L) in baseline (BL) vs. after treatment (AT) in 
GDNF group. Chart (B), shows the same group after showing the trend lines of the Ki values ascending. 

A	 B	

B	A	
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Figure 8-3. Boxes of plot represent GDNF and placebo groups with assign the Ki change as a y-axis shows the differences in 
mean and outliers. 

	
Table 8-1. Mean Ki values ±	SD are obtained from patients’ FDOPA images baseline and after treatment (40 
weeks) scans of left and right side of brain by Patlak analysis included both GDNF and placebo groups.	

	

FDOPA	Uptake	
Regions	

GDNF	
(N=17)	

Placebo	
(N=18)	

Baseline	
(Ki)×10-2	min-1	

	Week	40	
(Ki)×10-2	min-1	

Change,	
(Fold	Change%)	

Baseline	
(Ki)×10-2	min-1	

Week	40	
(Ki)×10-2	min-1	

Change,	
(Fold	Change%)	

Striatum		

Both	 0.768		±0.164	 0.902		±0.200	 0.134±0.130,	(+17.4%)	 0.732		±0.139	 0.725		±0.106	 -0.008±0.074,	(-1.1%)	

L	 0.759		±0.176	 0.894		±0.210	 0.136±0.127,	(+17.9%)	 0.749		±0.173	 0.745		±0.141	 -0.004		±0.072,	(-0.5%)	

R	 0.778		±0.170	 0.910		±0.208	 0.132±0.139,	(+17%)	 0.715		±0.122	 0.704		±0.091	 -0.012		±0.085,	(-1.7%)	

Caudate	
Head	

Both	 0.970		±0.182	 1.01	±2.06	 0.037±0.152,	(+3.8%)	 0.920		±0.155	 0.922		±0.125	 0.003		±0.097,	(+0.3%)	

L	 0.939		±0.229	 0.962		±0.220	 0.024±0.153,	(+2.6%)	 0.931		±0.170	 0.929		±0.144	 -0.002	±0.104,	(-0.2%)	

R	 1.0		±0.174	 1.051		±0.215	 0.050±0.170,	(+5%)	 0.908		±0.160	 0.915		±0.130	 0.007±0.113,	(+0.8%)	

Caudate	
Body	

Both	 0.724		±0.204	 0.828		±0.212	 0.104±0.174,	(+14.4%)	 0.753		±0.125	 0.734		±0.108	 -0.019	±0.115,	(-2.5%)	

L	 0.690		±0.218	 0.779		±0.229	 0.088±0.166,	(+12.8%)	 0.763		±0.162	 0.734		±0.144	 -0.028	±0.116,	(-3.7%)	

R	 0.757		±0.220	 0.877		±0.228	 0.120±0.201,	(+15.9%)	 0.744		±0.119	 0.734		±0.114	 -0.010	±0.140,	(-1.3%)	

Putamen		

Both	 0.614		±0.183	 0.817		±0.230	 0.203±0.136,	(+33.1%)	 0.592		±0.146	 0.584		±0.114	 -0.008	±0.079,	(-1.4%)	

L	 0.615		±0.189	 0.821		±0.251	 0.206±0.141,	(+33.5%)	 0.616		±0.193	 0.609		±0.150	 -0.007	±0.087,	(-1.1%)	

R	 0.613		±0.199	 0.813		±0.231	 0.201±0.157,	(+32.8%)	 0.568		±0.120	 0.559		±0.109	 -0.009	±0.093,	(-1.6%)	

Putamen	P1	
(Anterior)	

Both	 0.752		±0.192	 0.904		±0.206	 0.152±0.144,	(+20.2%)	 0.722		±0.165	 0.717		±0.127	 -0.004	±0.096,	(-0.6%)	

L	 0.748		±0.240	 0.903		±0.244	 0.155±0.156,	(+20.7%)	 0.724		±0.214	 0.736		±0.157	 0.012±0.126,	(+1.7%)	

R	 0.755		±0.185	 0.905		±0.217	 0.150±0.156,	(+19.9%)	 0.719		±0.138	 0.698		±0.142	 -0.021	±0.095,	(-3%)	

Putamen	P2	
(Central)	

Both	 0.544		±0.266	 0.712		±0.157	 0.168±0.202,	(+30.9%)	 0.460		±0.123	 0.466		±0.100	 0.006		±0.097,	(+1.3%)	

L	 0.527		±0.259	 0.704		±0.201	 0.178±0.167,	(+33.8%)	 0.490		±0.151	 0.480		±0.123	 -0.010	±0.118,	(-2%)	

R	 0.561		±0.290	 0.719		±0.154	 0.158±0.267,	(+28.2%)	 0.432		±0.131	 0.453		±0.101	 0.022±0.103,	(+5.1%)	

Putamen	P3	
(Posterior)	

Both	 0.373		±0.216	 0.538		±0.148	 0.164±0.187,	(+44%)	 0.313		±0.089	 0.304		±0.048	 -0.009	±0.078,	(-2.9%)	

L	 0.379		±0.299	 0.522		±0.162	 0.143±0.250,	(+37.7%)	 0.304		±0.113	 0.307		±0.073	 0.002±0.084,	(+0.7%)	

R	 0.367		±0.146	 0.553		±0.147	 0.186±0.150,	(+50.7%)	 0.321		±0.094	 0.302		±0.061	 -0.020	±0.104,	(-6.2%)	
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The right side of table 8-2 shows the mean SE% and SSE% as well for the regression 

analysis of Patlak equation. For SE%, in baseline group, the highest value was found in 

left posterior putamen with 18.50% ±10.85 and the lowest was in whole right striatum 

with 4.303% ±1.593. In week 40 group, the highest value was found in left posterior 

putamen as well with 14.10% ±6.117 and the lowest was in whole left striatum with 

4.061% ±1.324. Table 8-3 shows the result of RM-ANOVA model, where it is applied 

for SE and SSE means in baseline vs. week 40 group with significant effect change 

between them, SE p-value <0.0001 and SSE p-value=0.0003. The average SE in 

baseline is 9.2% ±4.35 and in week 40 is 7.21% ±2.85 for all striatum parts and the total 

SE for all groups is 8.20% ±3.77. For SSE, in baseline group, the highest value was 

found in left posterior putamen with 0.415 ±0.713 and the lowest was in whole right 

striatum with 0.019 ±0.018. In week 40 group, the highest value was found in left 

posterior putamen as well with 0.214 ±0.190 and the lowest was in whole left striatum 

with 0.017 ±0.008. The average SSE in baseline is 0.125 ±0.118 and in week 40 is 

0.062 ±0.055 for all striatum parts and the total SSE for all is 0.094±0.097.  
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Table 8-2. ANCOVA model result , SE and SSE means are obtained from patients’ FDOPA images baseline 
and after treatment scans by Patlak analysis including both GDNF and placebo groups.	
	

FDOPA	Uptake	
Regions	

Least	squares	mean	
difference	vs.	placebo	(95%	

CI);	p	

SE%	mean	
(N=35)	

SSE%	mean	
(N=35)	

LSM	vs.	placebo	 p-value	
Baseline	

%	
Week	40	

%	
Baseline	

%	
Week	40	

%	

Striatum	

Both	 -.001	(-.002,	-.001)	 0.0002	 4.528		±1.630	 4.116		±1.056	 0.022		±0.018	 0.017		±0.008	
L	 -.001	(-.002,	-.001)	 0.0002	 4.752		±2.048	 4.061		±1.324	 0.024		±0.024	 0.017		±0.011	
R	 -.002	(-.002,	-.001)	 0.0003	 4.303		±1.593	 4.170		±1.183	 0.019		±0.018	 0.017		±0.009	

Caudate	
Head	

Both	 .000	(-.001,	.001)	 0.246	 5.639		±1.940	 5.421		±1.477	 0.034		±0.028	 0.030		±0.016	
L	 .000	(-.001,	.001)	 0.496	 5.926		±2.482	 5.314		±2.159	 0.037		±0.036	 0.030		±0.026	
R	 -.001	(-.002,	.000)	 0.143	 5.352		±2.034	 5.528		±1.449	 0.030		±0.029	 0.030		±0.014	

Caudate	
Body	

Both	 -.001	(-.002,	.000)	 0.0189	 7.616		±2.719	 6.795		±2.211	 0.062		±0.046	 0.048		±0.031	
L	 -.001	(-.002,	-.00002)	 0.0452	 7.459		±2.931	 6.872		±2.686	 0.058		±0.043	 0.049		±0.041	
R	 -.001	(-.002,	.000)	 0.0138	 7.774		±3.478	 6.718		±2.737	 0.066		±0.068	 0.048		±0.038	

Putamen	

Both	 -.002	(-.003,	-.001)	 <0.0001	 7.011		±3.578	 5.623		±1.523	 0.058		±0.084	 0.031		±0.017	
L	 -.002	(-.003,	-.001)	 <0.0001	 7.350		±4.672	 5.669		±1.972	 0.068		±0.122	 0.033		±0.022	
R	 -.002	(-.003,	-.001)	 <0.0001	 6.671		±2.957	 5.577		±1.442	 0.048		±0.051	 0.030		±0.015	

Putamen	P1	
(Anterior)	

Both	 -.002	(-.003,	-.001)	 0.0001	 8.992		±7.142	 6.452		±1.771	 0.120		±0.318	 0.042		±0.023	
L	 -.002	(-.003,	-.001)	 0.0008	 9.115		±7.486	 6.610		±2.256	 0.125		±0.338	 0.044		±0.030	
R	 -.002	(-.003,	-.001)	 0.0001	 8.869		±7.054	 6.294		±2.025	 0.115		±0.299	 0.040		±0.025	

Putamen	P2	
(Central)	

Both	 -.002	(-.003,	-.002)	 <0.0001	 13.18		±8.249	 9.002		±2.870	 0.237		±0.397	 0.082		±0.049	
L	 -.002	(-.003,	-.001)	 <0.0001	 13.68		±9.035	 8.820		±3.079	 0.242		±0.390	 0.079		±0.051	
R	 -.003	(-.003,	-.002)	 <0.0001	 12.68		±8.644	 9.184		±3.080	 0.212		±0.452	 0.085		±0.055	

Putamen	P3	
(Posterior)	

Both	 -.002	(-.003,	-.002)	 <0.0001	 17.41		±8.598	 13.04		±4.662	 0.355		±0.499	 0.182		±0.138	
L	 -.002	(-.003,	-.001)	 <0.0001	 18.50		±10.85	 14.10		±6.117	 0.415		±0.713	 0.214		±0.190	
R	 -.002	(-.003,	-.002)	 <0.0001	 16.33		±7.686	 11.98		±4.761	 0.295		±0.329	 0.151		±0.130	

	
Table 8-3. RM-ANOVA model is applied for SE and SSE means in baseline vs. week 40 group and 
presented in the table below with significant change. 	

Test	 Statistics	 SE		 SSE	
Baseline	 Week	40	 Baseline	 Week	40	

RM-ANOVA	
(n=35)	

p-value	 <0.0001	 0.0003	

Wilks’	
Lambda	 0.402	 0.519	

η2	 0.598	 0.481	

μ		 9.2%		 7.21%		 0.125		 0.062		

SD	 ±4.35	 ±2.85	 ±0.118	 ±0.055	

μ		
(Total)	 8.20%		 0.094	

SD	
(Total)	 ±3.77	 ±0.097	
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8.2.2 Regional and Sub-Regional Analysis with optimised methods 

The optimised methods suggested in previous chapters were applied to the FDOPA 

images with the aim of improving the accuracy of the measurements and 

removing/reducing noise present in the images. With repeating the same statistical 

analysis in previous section, Table 8-4 and 8-5 shows result with new methods 

application. For the placebo group, it can be noticed that there were a gradient of 

neurodegenerative changes (reduction) in 12 of 14 parts of the striatum between 

baseline and week 40 groups. Two parts only shows slight increased mean Ki values, 

which are: left caudate head 0.22% (from 0.926±0.165 to 0.928±0.145) and left anterior 

putamen 2.4% (0.721±0.215 to 0.738±0.160). The remaining 12 parts show a decrease 

in Ki mean value and the highest reduction found in right posterior putamen decreased 

by -6.5% (from 0.323±0.090 to 0.302±0.059) while the lowest change found in right 

caudate head by -0.1% (from 0.919±0.145 to 0.918±0.130). In placebo-baseline group 

the highest Ki value was found in left caudate head with 0.926±0.165 and the lowest 

was in left posterior putamen with 0.312±0.118. For placebo-week40 group, the highest 

was found in left caudate head with 0.928±0.145 and the lowest was in right posterior 

putamen with 0.302±0.59. Figure 8-4, illustrates a comparison between the whole 

striatum (R and L) in baseline vs. week 40 in placebo group. In GDNF group (Table 8-4 

and 8-5), all striatum parts show an increase in mean Ki in week 40 vs. baseline group 

with 16.9% (average), p-value=0.00014 vs. placebo. ANCOVA model again was 

applied with the same settings used before. The highest change found in left posterior 

putamen increase by 62.7% (from 0.338±0.158 to 0.550±0.163, p<0.0001 vs. placebo) 

while the lowest change found in left caudate head by 2.2% (from 0.942±0.232 to 

0.964±0.225, p=0.557 vs. placebo). The highest mean Ki at baseline was found in the 

right caudate head with 1.003±0.176, and the lowest value was found in left posterior 

putamen with 0.338±0.158. At week 40 group, the highest was found in right caudate 
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head with mean Ki 1.046±0.221 (p=0.179 vs. placebo) and the lowest was in left 

posterior putamen with 0.550±0.163 (p<0.0001 vs. placebo). Figure 8-5, illustrates a 

comparison between the whole striatum (R and L) in baseline vs. week 40 in GDNF 

plus the trendlines. Boxes of plot in Figure 8-6 represent GDNF and placebo groups 

with assign the Ki change as a y-axis. 

  

Figure 8-4. Chart 1 (left) shows a comparison between the whole striatum (R and L) in baseline vs. week 40 in placebo group after 
applying optimised methods. Chart 2 (right), shows the same group after organise the Ki values ascending and show the trend lines. 

  

Figure 8-5. Chart 1 (left) shows a comparison between the whole striatum (R and L) in baseline vs. week 40 in GDNF group. Chart 
2 (right), shows the same group after showing the trend lines of the Ki values ascending. 
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Figure 8-6. Boxes of plot represent GDNF and placebo groups after optimisation with assigning the striatum Ki change as a y-axis, 
the differences in mean and outliers are shown. 

Table 8-5 shows the mean SE% and SSE% and for SE%, in baseline group, the highest 

value was found in left anterior putamen with 7.61% ±8.91 and the lowest was in right 

putamen with 4.51% ±2.76. In week 40 group, the highest value was found in left 

anterior putamen as well with 6.52% ±4.01 and the lowest was in left putamen with 

4.15% ±2.06. Table 8-6 shows the result of RM-ANOVA for SE and SSE means in 

baseline vs. week 40 group, SE p-value <0.003 and SSE p-value=0.001. The average SE 

in baseline is 5.7% ±1 and in week 40 is 4.7% ±1.4 for all striatum parts and the total 

SE for all groups is 5.2% ±1.3. For SSE, in baseline group, the highest value was found 

in left anterior putamen with 0.0012 ±0.0046 and the lowest was in whole left striatum 

with 0.0002 ±0.0002. In week 40 group, the highest value was found as well in left 

anterior putamen with 0.0005 ±0.0007 and the lowest was in multiple areas with 0.0002. 

The average SSE in baseline is 0.0005 ±0.0003 and in week 40 is 0.0003 ±0.0009 for all 

striatum parts and the total SSE for all is 0.0004±0.0002. 	
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Table 8-4. Mean Ki values ±	SD are obtained, after applying optimised methods suggested, from patients’ 
FDOPA images baseline and after treatment (40 weeks) scans of left and right side of brain by Patlak analysis 
included both GDNF and placebo groups.	
	

FDOPA	
Uptake	
Regions	

	
GDNF	
(N=17)	

Placebo	
(N=18)	

	
Baseline	

(Ki)×10-2	min-1	
	Week	40	

(Ki)×10-2	min-1	
Change,	

(Fold	Change%)	
Baseline	

(Ki)×10-2	min-1	
Week	40	

(Ki)×10-2	min-1	
Change,	

(Fold	Change%)	

Striatum		

Both	 0.769	±0.266	 0.899	±0.203	 0.130	±0.1,	(+16.9%)	 0.743	±0.130	 0.727	±0.103	 -0.016	±0.060,	(-2.15%)	

L	 0.758	±0.180	 0.898	±0.214	 0.140	±0.140,	(+18.5%)	 0.758	±0.167	 0.749	±0.138	 -0.010	±0.071,	(-1.3%)	

R	 0.780	±0.170	 0.900	±0.213	 0.120	±0.145,	(+15.4%)	 0.727	±0.109	 0.705	±0.092	 -0.022	±0.060,	(-3%)	

Caudate	
Head	

Both	 0.973	±0.185	 1.005	±0.211	 0.032	±0.152,	(+3.3%)	 0.923	±0.145	 0.923	±0.124	 0.000	±0.083,	(0%)	

L	 0.942	±0.232	 0.964	±0.225	 0.021	±0.150,	(+2.2%)	 0.926	±0.165	 0.928	±0.145	 0.002	±0.101,	(+0.22%)	

R	 1.003	±0.176	 1.046	±0.221	 0.043	±0.171,	(+4.3%)	 0.919	±0.145	 0.918	±0.130	 -0.001	±0.089,	(-0.1%)	

Caudate	
Body	

Both	 0.722	±0.209	 0.826	±0.214	 0.104	±0.179,	(+14.4%)	 0.767	±0.109	 0.738	±0.110	 -0.029	±0.103,	(-3.8%)	

L	 0.693	±0.222	 0.780	±0.227	 0.087	±0.163,	(+12.6%)	 0.771	±0.159	 0.739	±0.143	 -0.032	±0.115,	(-4.1%)	

R	 0.752	±0.224	 0.872	±0.236	 0.121	±0.217,(+16.1%)	 0.763	±0.090	 0.737	±0.116	 -0.025	±0.118,	(-3.3%)	

Putamen		

Both	 0.615	±0.186	 0.817	±0.230	 0.202	±0.136,	(+32.8%)	 0.602±0.134	 0.586	±0.115	 -0.016	±0.055,	(-2.7%)	

L	 0.617	±0.197	 0.823	±0.251	 0.206	±0.136,	(+33.4%)	 0.625	±0.181	 0.612	±0.150	 -0.013	±0.070,	(-2.1%)	

R	 0.613	±0.199	 0.812	±0.231	 0.198	±0.162,	(+32.3%)	 0.578	±0.116	 0.560	±0.112	 -0.018	±0.078,	(-3.1%)	

Putamen	P1	
(Anterior)	

Both	 0.760	±0.201	 0.933	±0.229	 0.173	±0.152,	(+22.8%)	 0.720	±0.167	 0.717	±0.125	 -0.003	±0.101,	(-0.4%)	

L	 0.750	±0.254	 0.930	±0.270	 0.180	±0.155,	(+24%)	 0.721	±0.215	 0.738	±0.160	 0.018	±0.136,	(+2.4%)	

R	 0.769	±0.182	
	

0.935	±0.227	
	

0.166	±0.172,	(+21.6%)	 0.719	±0.138	
	

0.695	±0.149	
	

-0.024	±0.110,	(-3.3%)	

Putamen	P2	
(Central)	

Both	 0.521	±0.190	 0.736	±0.165	 0.215	±0.146,	(+41.3%)	 0.474	±0.099	 0.460	±0.109	 -0.014	±0.053,	(-3%)	

L	 0.521	±0.238	 0.729	±0.214	 0.208	±0.151,	(+39.9%)	 0.493	±0.147	 0.485	±0.120	 -0.008	±0.111,	(-1.6%)	

R	 0.520	±0.163	 0.743	±0.155	 0.223	±0.166,	(+42.9%)	 0.455	±0.103	 0.434	±0.134	 -0.021	±0.106,	(-4.6%)	

Putamen	P3	
(Posterior)	

Both	 0.350	±0.135	 0.558	±0.143	 0.208	±0.126,	(+59.4%)	 0.318	±0.092	 0.305	±0.048	 -0.012	±0.081,	(-3.8%)	

L	 0.338	±0.158	 0.550	±0.163	 0.212	±0.158,	(+62.7%)	 0.312	±0.118	 0.309	±0.071	 -0.004	±0.091,	(-1.3%)	

R	 0.361	±0.126	 0.566	±0.142	 0.205	±0.132,	(+56.8%)	 0.323	±0.090	 0.302	±0.059	 -0.021	±0.102,	(-6.5%)	
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Table 8-5. ANCOVA model result , SE and SSE means are obtained from patients’ FDOPA images 
baseline and after treatment scans by Patlak analysis including both GDNF and placebo groups.	
	

FDOPA	
Uptake	
Regions	

	
Least	squares	mean	

difference	vs.	placebo	(95%	
CI);	p	

SE%	mean	
(N=35)	

SSE%	mean	
(N=35)	

	 LSM	vs.	placebo	 p-value	 Baseline	
%	

Week	40	
%	

Baseline	
%	

Week	40	
%	

Striatum	

Both	 -.002	(-.002,	-.001)	 .00014	 4.7	±2.0	 2.5	±0.9	 0.0003	±0.0002	 0.0003	±0.0002	
L	 -.001	(-.002,	-.001)	 .00014	 4.8	±2.0	 4.6	±2.3	 0.0002	±0.0002	 0.0002	±0.0002	
R	 -.001	(-.002,	-.001)	 .00038	 4.7	±2.9	 5.2	±2.5	 0.0003	±0.0003	 0.0003	±0.0003	

Caudate	
Head	

Both	 .000	(-.001,	.000)	 .285	 5.95	±1.83	 1.77	±0.62	 0.0004	±0.0003	 0.0004	±0.0003	
L	 .000	(-.001,	.001)	 .557	 6.24	±3.01	 5.96	±2.76	 0.0004	±0.0004	 0.0004	±0.0003	
R	 -.001	(-.002,	.000)	 .179	 5.65	±2.62	 6.22	±3.06	 0.0004	±0.0003	 0.0004	±0.0004	

Caudate	
Body	

Both	 -.001	(-.002,	.000)	 .016	 6.53	±3.01	 1.52	±0.60	 0.005	±0.0005	 0.0003	±0.0003	
L	 -.001	(-.002,	-.00005)	 .040	 5.69	±2.84	 4.97	±2.31	 0.0004	±0.0004	 0.0003	±0.0003	
R	 -.001	(-.003,	.000)	 .013	 7.37	±4.63	 5.43	±3.15	 0.0007	±0.0009	 0.0004	±0.0005	

Putamen	

Both	 -.002	(-.003,	-.001)	 <	.0001	 4.58	±2.16	 4.26	±1.59	 0.0003	±0.0003	 0.0002	±0.0002	
L	 -.002	(-.003,	-.001)	 <	.0001	 4.65	±2.58	 4.15	±2.06	 0.0003	±0.0003	 0.0002	±0.0002	
R	 -.002	(-.003,	-.001)	 <	.0001	 4.51	±2.76	 4.37	±2.21	 0.0003	±0.0003	 0.0002	±0.0002	

Putamen	P1	
(Anterior)	

Both	 -.002	(-.003,	-.001)	 <	.0001	 7.21	±7.35	 6.16	±2.65	 0.0010	±0.0035	 0.0005	±0.0004	
L	 -.002	(-.003,	-.001)	 	.0008	 7.61	±8.91	 6.52	±4.01	 0.0012	±0.0046	 0.0005	±0.0007	
R	 -.002	(-.003,	-.001)	 	.0003	 6.81	±6.45	 5.81	±3.29	 0.0008	±0.0024	 0.0004	±0.0005	

Putamen	P2	
(Central)	

Both	 -.002	(-.003,	-.001)	 <	.0001	 5.85	±5.51	 4.92	±1.86	 0.0006	±0.0019	 0.0003	±0.0002	
L	 -.002	(-.003,	-.001)	 <	.0001	 6.04	±6.02	 4.94	±2.14	 0.0007	±0.0022	 0.0003	±0.0002	
R	 -.002	(-.003,	-.002)	 <	.0001	 5.66	±5.41	 4.89	±2.37	 0.0006	±0.0016	 0.0003	±0.0003	

Putamen	P3	
(Posterior)	

Both	 -.002	(-.003,	-.002)	 <	.0001	 5.28	±3.04	 4.92	±2.39	 0.0004	±0.0006	 0.0003	±0.0003	
L	 -.002	(-.003,	-.002)	 <	.0001	 5.74	±3.98	 5.16	±3.16	 0.0004	±0.0009	 0.0003	±0.0004	
R	 -.002	(-.003,	-.002)	 <	.0001	 4.83	±3.23	 4.69	±2.62	 0.0003	±0.0005	 0.0003	±0.0003	

	
Table 8-6. RM-ANOVA model is applied for SE and SSE means in baseline vs. week 40 group after 
applying optimised methods for PET data and presented in the table below with no significant change. 	

Test	 Statistics	
SE	 SSE	

Baseline	 Week	
40	 Baseline	 Week	

40	

RM-ANOVA	
(n=35)	

p-value	 .003	 .001	
Wilks’	
Lambda	 .629	 .593	

η2	 .371	 .407	
μ	 5.7%	 4.7%	 0.0005	 0.0003	
SD	 ±1.0%	 ±1.4%	 0.0003	 0.0009	
μ	

(Total)	 5.2%	 0.0004	
SD	

(Total)	 ±1.3%	 ±0.0002	
	

Table 8-7 shows the RM-ANOVA result made to compare between ordinary vs. new 

optimisation methods, a comparison performed between each group; baseline and week 

40 to evaluate the change in SE and SSE. In baseline group, after applying new methods 

the mean and standard error in SE and SSE are reduced, 38% reduction in SE mean and 

it is decreased from 9.2% to 5.7%, the SD is less with 77% changing from ±4.35% to 

±1.0%, p=.002. In week 40 group, SE is reduced with 35% from 7.2% to 4.7% and SD 

is reduced as well from ±2.85% to ±1.4%, p=.001. For SSE values, in both baseline and 
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week 40 the mean and SD are reduced almost 100%, p-value in baseline =.0001 while 

in week 40 is < .0001. 

Table 8-7. RM-ANOVA model is applied for SE and SSE means in baseline vs. week 40 group after 
applying optimised methods for PET data and presented in the table below with no significant change. 	

Test	 Statistics	 SE	 SE	 SSE	 SSE	
Baseline	 Baseline	 Week	40	 Week	40	 Baseline	 Baseline	 Week	40	 Week	40	

RM-ANOVA	
(n=35)	

p-value	 .002	 .001	 .0001	 <	.0001	

Wilks’	
Lambda	 .604	 .562	 .461	 .432	

η2	 .396	 .438	 .539	 .568	

μ	 9.2%		 5.7%	 7.21%		 4.7%	 0.125		 0.0005	 0.062		 0.0003	

SD	 ±4.35%	 ±1.0%	 ±2.85	 ±1.4%	 ±0.118	 ±0.0003	 ±0.055	 0.0009	
	

8.3 Discussion 

GDNF treatment is amongst the most promising therapies in reversing 

neurodegenerative disease, Allen et al. (2013) demonstrated neuroprotective and 

neurorestorative potentials in PD of animal models. Another challenge, which is 

translating the findings into the clinic, is to find a way of delivering the GDNF 

intraputamenal infusions across the BBB to targeted volumes within brain and possibly 

over the lifetime of the patients. This challenge has been met in the clinical trial 

conducted in collaboration with PETIC by (Whone et al. 2019) with the development of 

CED system used during the study period. The randomised patients are all diagnosed 

with moderate stage PD, they received 40 weeks of same dose level of GDNF 

intraputamenal infusions (120 µg GDNF in 600 µL aCSF) to each putamen and 

administered every 4 weeks. Patlak model analysis performed on the PET images 

revealed a significant increase in 18F-DOPA uptake in the GDNF group in all striatum 

parts excluding the caudate head and a non significant result in the placebo group for all 

parts. A significant increase in putamenal and caudate body FDOPA uptake are shown 

in the analysis with no or little differences in absolute improvement between the 

anterior, central and posterior putamen suggests that these ROIs have most treatment 

benefits with considering that the spatial resolution around 4mm. The low significant 
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change percentage in caudate body and non-significant change in caudate head clearly 

shows the effect of the infusion catheter position as non-infused ROI. The increase in 

Ki rate obtained from 18F-FDOPA PET images could indicate all or one of the 

following; terminal sprouting, reawakening of hibernating terminals and up-regulation 

of aromatic amino acid decarboxylase (Moore et al. 2003).  

The PET analysis clinical findings are correlated with earlier outcomes found by 

previous PD GDNF clinical trials conducted by (Grondin et al. 2018; Lang et al. 2006). 

These two studies lead to apply further clinical test and motor evaluation for the 

subjects to be able to accept or reject the hypothesis that underlying growth factor. 

Other factors should be considered in case that this hypothesis is still valid, these 

include; the effectiveness of GDNF in early stage PD, the GDNF dose sufficiency and 

the treatment duration. These factors could help to reveal limitations in the present 

study and should be overcome for next trials design. 

In the placebo group, a slight decrease in Ki values has been noticed in 10 of 14 

striatum parts and this was expected due to degeneration in neurons. In contrast, unusual 

a slight increase in the remaining parts of striatum raises a question about the reason for 

that. There are clinical, physical and technical effects that could cause this during the 

analysis. Clinical aspects include the trauma assumed to be large with the current CED 

system used for GDNF infusion as it includes two catheters per putamen (Whone et al. 

2019). Another reason that can be considered is the residual effect of symptomatic 

medication in these regions. Physical factors like the limitation of the spatial resolution 

of PET scanner could be a reason for inaccurate quantitative analysis. The spatial 

resolution FWHM of the system used in this trial is between 4-5 mm and this limitation 

can downgrade measurements in small anatomical parts.  Technical reasons are similar 

to those discussed in details previously in chapter 5, 6 and 7 such as statistical noise 

caused by outlier data and noise in images voxels. Due to the low increase in Ki 



	 	 	

	 166	

percentages that are noticed within the placebo group, technical reasons are more 

considerable than others and this is solved partially after applying the three-optimisation 

methods suggested earlier. 

The mean SE and SSE is decreased in week 40 compared to the baseline data and this as 

a cause of the improved FDOPA signal where Ki rate enhanced as a response to the 

GDNF treatment. This can be noticed as well after applying optimisation methods on 

data. A comparison made between old and new methods shows a significant change in 

SE and SSE values where baseline vs. baseline and Week 40 vs. week 40 is performed. 

With assuming that the after treatment scans generally has higher signals due to the 

therapy enhancement of ROIs, the reduction is higher within the two groups of baseline 

suggesting that optimisation methods works further with low signal to noise ratio data 

(SNR) rather than higher one in data. The disappearing of increasing Ki in placebo 

confirms that the reason is more likely to be technical rather than clinical. 

The reduction in SE and SSE is a result to apply FGLS model where the PET data with 

low variance is given more weight than the other parts to generate a more accurate fitted 

line. The estimator’s accuracy in this model can be improved by an iterative process 

where residuals are used to update the errors covariance estimator, and consequently 

final estimation is updated (Freedman 2008; Gujarati 2009). In addition, BLW wavelet 

function used with the analysis were originally designed to produce useful 

characterisations of images made up of signals. BLW aims to provide details about 

unknown parts of the signal using several convolutional techniques and then, the 

original signal is recovered with minimal information loss depending on compression 

and decompression algorithms (Chui 2016; Graps 1995). The SGF technique used in the 

analysis targets the PET data before applying the FGLS method where the filtering 

coefficient is obtained first by using un-weighted linear least squares fitting with a 

certain degree of polynomial and then, the polynomial degree determines the level of 
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smoothing whilst keeping minimum attenuation of data structures. SGF in this analysis 

was applied directly to TACs required for Patlak analysis, which is considered a good 

option to reduce the TACs noise and has a positive impact on the final Ki result. The 

result suggests extending SGF to be applied to 3-dimentional PET data. Limitations 

found in this analysis are that the effect of each method alone was not clear as all 

techniques were applied at the same time for PET data. Another limitation involves the 

increasing Ki value found in one ROI in the placebo group, this suggests considering 

clinical and biological effect again. Further analysis with applying each method 

separated from others could reveal the real effect of noise reduction plus clarifying the 

most affected technique. This will lead to probably other opportunity to improve and 

enhance the Patlak analysis for PD. 

8.4 Conclusion 

 
Patlak analysis in 18F-FDOPA PET images were conducted for the first randomised trial 

in Parkinson’s disease employing a CED system to administer a trophic factor to the 

putamen. This study aims to improve Patlak calculation that used to obtain the net 

influx rate parameter Ki that is the main outcome in diagnosis and monitoring the PD. 

PET data are obtained from a clinical trial that was recruiting patients from across the 

UK and delivering study treatment in PETIC department, University Hospital of Wales. 

First, ordinary analysis method was used and shows there is an evidence that GDNF can 

achieve a biological effect across the entire putamen and caudate body. Second, new 

optimisation methods to improve Patlak analysis were applied and result reveals a 

significant reduction in SE and SSE and this decrease indicates a drop in noise in 

images, TACs and statistical data. In addition, ROIs in placebo show increasing Ki 

values in first analysis with old methods are corrected after using new techniques and 

reduced to be only on ROI. Future optimisation process will need to address which 
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method has the most effect on data and then iterative process for this method could 

provide better accuracy and/or noise reduction. Extra application of these methods on 

other PET images that require Patlak quantification model could confirm the conclusion 

made by this study. 
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 Conclusion and Future Work 9

9.1 Summary and Conclusions 

PET plays a major role in functional brain imaging and mapping of in vivo functions 

with a purpose of study and evaluation. PET data can be quantified to provide 

physiological and pathological information, which is valuable for the diagnosis and 

evaluation of diseases. Quantitative analysis of FDOPA PET images allows the direct 

measurement of the dopamine system (DA) mechanisms in the living human brain, 

where the radiotracer crosses the blood-brain barrier and can be metabolized, bound to 

neuroreceptors, or stored in the vesicles in neurons. The distribution of radiotracer 

activity in the ROI tissue can be reconstructed as dynamic images and analysed 

quantitatively to extract physiological parameters. The primary objective of this 

research project was to optimise the quantitative analysis of the Patlak model used for 

this purpose. The model is based on linear regression and is usually applied to 

irreversible tracers such as 18F-FDOPA. For this purpose, firstly the dynamic images 

were generated from dPETSTEP simulator in order to provide a ground truth which 

could be used to then assess the accuracy of the methods investigated. The features and 

settings of the PET scanner, scan protocol, and reconstruction algorithms were all 

utilised in the simulator to obtain dynamic images. Secondly, successful techniques 

were validated in sequential clinical 18F-FDOPA images, which were obtained from the 

PET/CT scanner in PETIC department. The optimization process was applied to images 

obtained from the GDNF clinical trial in subjects with Parkinson’s disease and the input 

function for the analysis was extracted from the images its self.  

Patlak equation with irreversible tracers was used to measure mainly the Ki rate 

constant, which is used to diagnose and evaluate Parkinson’s disease. The first 

experiment shows that selecting and applying different statistical models for linear 
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regression can reduce errors and sensitivity to noise. There was a significant difference 

between the statistical models used, suggesting that using a different linear regression 

model reveals a different Ki value. Analysing the PET data using different statistical 

regression approaches could improve the final result and offer more accurate and 

reproducible diagnosis.  

The second experiment dealt with one of the most confounding factors which is the 

noise existing within the dynamic images. Four different image processing noise 

reduction methods have been applied to deal with noise in order to improve the 

accuracy of image analysis. Gradient and curvature anisotropic diffusion in addition to 

Daubechies’ wavelets all show no significant change on Ki values although they have 

obvious impact on visual appearance of images. The percentage reductions in the 

previous methods for the mean value in Ki values are 1.5%, 1.13% and 4% respectively. 

Battle-Lemarie wavelets (BLW) is the only method, that demonstrated a significant 

change and reduction in noisy Ki data. BLW reduced significantly the impact of noise 

on data in comparison to other methods used. The only concern with this technique was 

the goodness of fitting parameters where there was an increase in both SE and SSE 

values.  

The third experiment addressed the problem of noise in TACs data which, significantly 

affects the Patlak equation result. This step aimed to improve the signal to noise ratio 

using a smoothing and filtering process. All methods used showed a reduction in noise 

impact on simulated data and provided better fitting for regression analysis. SGF 

illustrated a significant change in most data analysis in the third study conducted, using 

SGF, on TACs extracted from ROIs and reference tissues provided more accurate Ki 

values for ROIs.  

The final technical chapter in this thesis is an application of our suggested techniques on 

FDOPA clinical images data. 18F-FDOPA PET images were obtained from a clinical 
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trial involving patients from across the UK scanned in the PETIC department at Cardiff 

University. First, ordinary analysis method was used, which showed there is evidence 

that GDNF can achieve biological effect across the entire putamen and caudate body. In 

second part, the optimisation methods suggested by this thesis were used to improve the 

results of Patlak analysis. The result revealed a significant reduction in SE and SSE, 

which suggested a better fitting to PET data due to a drop of noise in the images, TACs 

and statistical data. In addition, ROIs in placebo, which showed increasing Ki values 

when using standard analysis were corrected after using new methods and reduced to 

only one ROI.  

9.2 Summary of significant findings 

The significant findings of the thesis work can be summarised and broken down as 

follows: 

• The statistical models including OLS, TLS, RFR and FGLS were applied to 

simulated PET data. The simulated data represented both normal and abnormal 

Ki values. The minimum averaged SE and SSE plus the highest averaged 

reduction of noisy Ki values were found with FGLS model with 0.4%, 0.1 × 10-4 

and 58.42% respectively.  

• Noise was applied to the simulated dynamic images and several noise reduction 

methods were used including anisotropic diffusion (Gradient and curvature) and 

wavelets (Daubechies and Battle-Lemarie). BLW showed  significant change in 

all noise levels with averaged reduction -6.38% for the 3D images. 

• Simulated noise was added to TACs data extracted from simulated images and 

smoothing and filtering methods including MAF, SGF, PCF and MF aiming to 

improve the signal to noise ratio were applied. SGF demonstrated significant 

change for most of the ten noise levels (7 of 10) with averaged reduction -7.91% 
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for Ki values, -30.92% and -49.32% in SE and SSE respectively. Other 

techniques showed high reduction but with no significance for all or most noise 

levels.   

• Ordinary analysis method was used and showed there was evidence that GDNF 

can achieve a biological effect across the entire putamen and caudate body. 

Optimisation methods were applied with results revealing significant reduction 

where in baseline group, the mean and standard deviation of SE were both 

reduced, -38% decline in the mean from 9.2% to 5.7%, the SD less with -77% 

changing from ±4.35% to ±1.0%, p=.002. In week 40 group, SE is reduced with 

-35% from 7.2% to 4.7% and SD is reduced as well from ±2.85% to ±1.4%, 

p=.001. For SSE values, in both baseline and week 40 the mean and SD are 

reduced almost 100%, p-value in baseline =.0001 while in week 40 is < .0001.  

9.3 Future Work and directions 

Further validation on clinical data is required to evaluate the methodology and analyse 

the impact on PET data. Repeating the methods separately, applying the RM-ANOVA 

test will reveal which technique has the most significant effect. 

Extended work for the optimising methodology discussed in the thesis through other 

clinical PET data set is necessary for a full validation. Other tracers can be used for 

further validation that are based quantitatively on Patlak equation such as 18F-FDG 

(Fluoro-deoxy-glucose) which is the analog of glucose or 18F-FTHA (fluoro-thia-

heptadecanoic), the analog of fatty acids, when they trapped metabolically in the ROI. 

Improvements in the quantitative accuracy for brain data has been described imaging 

and this optimising methodology could be extended with other organ images if the 

tracer used shows irreversibility. Applying and extending the methodology contained in 
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this thesis with other reconstruction algorithms such as filtered back projection (FBP) 

could reveal more information.  

The implementation of methods is relies on regional and sub-regional volumes, for each 

ROI the average TAC is calculated of each voxel in the drawn contour. Extending these 

methods to parametric mapping analysis in neuroimaging would be beneficial as each 

pixel value (Pixel-wise analysis) is involved in Patlak analysis and reducing the noise 

exist will be more challenging. This could be performed initially by using dPETSTEP 

simulator to generate parametric images and simulate the FDOPA tracer features with 

different reconstruction algorithms. At the initial stage, few number of frames will be 

suitable as the pixel amount for each slice will be huge, lower frames can be helpful to 

handle the data in analysis. Normal and abnormal Ki mapping template could be 

advantageous in pixel-wise analysis as descriptive statistics will be more important than 

other fitting parameters. 

Sensitivity to data outliers and non-liner data relationship have disadvantages in PET 

quantitative analysis. Machine learning and or deep learning can optimise linear 

regression analysis that is the basis of Patlak equation. Designing and coding a tool to 

work as a library contains many blocks already optimised for better linear regression 

prediction after training a model to provide regression coefficients. The iteration of 

methods used in this thesis can be a part of the training process that allow for better 

understanding of noise, errors and other fitting parameters. Including weighting data 

analysis in this model could reveal more advantageous information regarding data 

classification.
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Appendices 

Appendix A 

Table A-1. OLS regression method used for kinetic Patlak analysis on all simulation data and Ki 
 values illustrated within 10 noise levels. 
OLS 30 

min 

without 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50 µ 
SIM 1 (Ki) 0.0122

3 

0.0124

5 

0.0122

4 

0.0090

0 

0.0130

6 

0.0127

3 

0.0140

1 

0.0126

5 

0.0139

4 

0.0131

8 

0.0119

4 

0.0124

9 
SE 0.0597

0 

0.1253

0 

0.1252

0 

0.1525

0 

0.1301

0 

0.0888

0 

0.0830

0 

0.1007

0 

0.1119

0 

0.1344

0 

0.1554

0 

0.1151
8 
 

SSE 0.0003

2 

0.0014

3 

0.0014

3 

0.0021

1 

0.0015

4 

0.0007

2 

0.0006

3 

0.0009

2 

0.0011

4 

0.0016

4 

0.0022

0 

0.0012

8 
SIM 2 (Ki) 0.0123

7 

0.0133

0 

0.0166

5 

0.0167

1 

0.0208

4 

0.0210

9 

0.0212

3 

0.0255

9 

0.0267

8 

0.0247

2 

0.0254

5 

0.0204

3 
SE 0.0608

0 

0.1844

0 

0.1678

0 

0.1534

0 

0.1056

0 

0.1828

0 

0.1703

0 

0.1401

0 

0.1397

0 

0.1447

0 

0.1384

0 

0.1443

6 
SSE 0.0003

4 

0.0030

9 

0.0025

6 

0.0021

4 

0.0010

1 

0.0030

4 

0.0026

4 

0.0017

8 

0.0017

7 

0.0019

0 

0.0017

4 

0.0020

0 SIM 3 (Ki) 0.0126

5 

0.0103

0 

0.0111

7 

0.0100

5 

0.0099

5 

0.0141

5 

0.0169

9 

0.0155

5 

0.0173

9 

0.0163

7 

0.0180

6 

0.0138

8 
SE 0.0630

0 

0.1876

0 

0.3458

0 

0.4422

0 

0.3961

0 

0.4405

0 

0.2921

0 

0.3406

0 

0.3318

0 

0.2804

0 

0.1975

0 

0.3016

0 
SSE 0.0003

6 

0.0032

0 

0.0108

7 

0.0177

8 

0.0142

6 

0.0176

4 

0.0077

6 

0.0105

5 

0.0100

1 

0.0071

5 

0.0035

5 

0.0093

8 
SIM 4 (Ki) 0.0128

1 

0.0130

1 

0.0136

0 

0.0168

7 

0.0161

1 

0.0132

4 

0.0130

0 

0.0163

5 

0.0197

2 

0.0180

2 

0.0396

5 

0.0174

9 
SE 0.0663

0 

0.1586

0 

0.2340

0 

0.2543

0 

0.3550

0 

0.4697

0 

0.5132

0 

0.4488

0 

0.3911

0 

0.4752

0 

0.2377

0 

0.3276

3 
SSE 0.0004

0 

0.0022

9 

0.0049

8 

0.0058

8 

0.0114

6 

0.0200

6 

0.0239

4 

0.0183

1 

0.0139

1 

0.0205

3 

0.0051

4 

0.0115

4 
SIM 5 (Ki) 0.0130

6 

0.0133

9 

0.0155

0 

0.0188

6 

0.0167

2 

0.0171

8 

0.0200

6 

0.0172

3 

0.0153

0 

0.0148

1 

0.0288

1 

0.0173

6 SE 0.0665

0 

0.1705

0 

0.2970

0 

0.2628

0 

0.2628

0 

0.2520

0 

0.2515

0 

0.3847

0 

0.5453

0 

0.7094

0 

0.3558

0 

0.3234

8 
SSE 0.0004

0 

0.0026

4 

0.0080

2 

0.0062

8 

0.0062

8 

0.0057

7 

0.0057

5 

0.0134

5 

0.0270

3 

0.0457

5 

0.0115

1 

0.0120

8 
SIM 6 (Ki) 0.0132

0 

0.0164

5 

0.0183

2 

0.0212

1 

0.0220

8 

0.0219

1 

0.0242

3 

0.0223

6 

0.0240

8 

0.0230

2 

0.0254

8 

0.0211

2 SE 0.0677

0 

0.0771

0 

0.1127

0 

0.1249

0 

0.0770

0 

0.0904

0 

0.1197

0 

0.1138

0 

0.0951

0 

0.0858

0 

0.0568

0 

0.0928

2 
SSE 0.0004

2 

0.0005

4 

0.0011

5 

0.0014

2 

0.0005

4 

0.0007

4 

0.0013

0 

0.0011

8 

0.0008

2 

0.0006

7 

0.0002

9 

0.0008

2 
SIM 7 (Ki) 0.0134

7 

0.0141

1 

0.0154

2 

0.0148

5 

0.0212

0 

0.0266

9 

0.0256

6 

0.0263

9 

0.0253

8 

0.0250

8 

0.0243

9 

0.0211

5 
SE 0.0700

0 

0.1416

0 

0.1714

0 

0.2697

0 

0.2411

0 

0.1813

0 

0.1490

0 

0.1553

0 

0.1495

0 

0.1221

0 

0.1131

0 

0.1603

7 SSE 0.0004

5 

0.0018

2 

0.0026

7 

0.0066

1 

0.0052

8 

0.0029

9 

0.0020

2 

0.0021

9 

0.0020

3 

0.0013

6 

0.0011

6 

0.0026

0 
SIM 8 (Ki) 0.0136

1 

0.0094

4 

0.0118

0 

0.0133

0 

0.0143

0 

0.0110

5 

0.0150

4 

0.0164

1 

0.0092

6 

0.0112

4 

0.0154

6 

0.0128

1 
SE 0.0711

0 

0.2621

0 

0.1887

0 

0.1817

0 

0.2044

0 

0.3312

0 

0.5241

0 

0.4335

0 

1.0107

0 

0.8254

0 

0.5715

0 

0.4185

8 SSE 0.0004

6 

0.0062

5 

0.0032

4 

0.0030

0 

0.0038

0 

0.0099

7 

0.0249

7 

0.0170

8 

0.0928

6 

0.0619

4 

0.0296

9 

0.0230

2 
SIM 9 (Ki) 0.0138

8 

0.0197

6 

0.0161

2 

0.0149

1 

0.0197

4 

0.0229

7 

0.0265

1 

0.0295

6 

0.0320

6 

0.0352

1 

0.0334

7 

0.0240

2 
SE 0.0734

0 

0.1261

0 

0.1823

0 

0.2914

0 

0.2433

0 

0.2885

0 

0.2268

0 

0.2273

0 

0.2811

0 

0.2499

0 

0.2312

0 

0.2201

2 
SSE 0.0004

9 

0.0014

5 

0.0030

2 

0.0077

2 

0.0053

8 

0.0075

7 

0.0046

8 

0.0047

0 

0.0071

8 

0.0056

8 

0.0048

6 

0.0047

9 
SIM 10 

(Ki) 

0.0140

4 

0.0145

4 

0.0169

7 

0.0145

3 

0.0112

7 

0.0106

9 

0.0154

2 

0.0178

5 

0.0198

1 

0.0193

2 

0.0190

9 

0.0157

8 
SE 0.0738

0 

0.2620

0 

0.1460

0 

0.3023

0 

0.3417

0 

0.4534

0 

0.2873

0 

0.2080

0 

0.2180

0 

0.2355

0 

0.2329

0 

0.2509

9 
SSE 0.0005

0 

0.0062

4 

0.0019

4 

0.0083

1 

0.0106

1 

0.0186

9 

0.0075

0 

0.0039

3 

0.0043

2 

0.0050

4 

0.0049

3 

0.0065

5 
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Table A-2. FGLS regression method used for kinetic Patlak analysis on all simulation data and Ki values 
illustrated within 10 noise levels. 
 

FGLS 30 

min 

without  0.05  0.1  0.15  0.2 0.25  0.3 0.35  0.4  0.45  0.50  µ 
SIM 1 0.0133

4 

0.0157

2 

0.0149

9 

0.0142

6 

0.0179

9 

0.0216

1 

0.0214

4 

0.0235

1 

0.0215

5 

0.0207

7 

0.0224

8 

0.01888 
SE 0.0012

804 

0.0024

223 

0.0014

735 

0.0017

332 

0.0031

768 

0.0021

799 

0.0015

078 

0.0023

676 

0.0022

635 

0.0025

626 

0.0032

382 

0.00220 

SSE 0.0000

001 

0.0000

005 

0.0000

002 

0.0000

003 

0.0000

009 

0.0000

004 

0.0000

002 

0.0000

005 

0.0000

005 

0.0000

006 

0.0000

010 

0.00000 

SIM 2 0.0135

2 

0.0134

7 

0.0164

4 

0.0200

9 

0.0214

2 

0.0222

6 

0.0211

6 

0.0257

6 

0.0268

8 

0.0235

8 

0.0268

3 

0.02104 

SE 0.0013

316 

0.0025

624 

0.0026

656 

0.0036

305 

0.0022

520 

0.0043

276 

0.0035

837 

0.0036

868 

0.0037

949 

0.0023

480 

0.0042

270 

0.00313 

SSE 0.0000

002 

0.0000

006 

0.0000

006 

0.0000

012 

0.0000

005 

0.0000

017 

0.0000

012 

0.0000

012 

0.0000

013 

0.0000

005 

0.0000

016 

0.00000 

SIM 3 0.0137

2 

0.0103

6 

0.0182

3 

0.0166

8 

0.0125

8 

0.0177

9 

0.0200

6 

0.0174

2 

0.0236

6 

0.0227

8 

0.0228

5 

0.01783 

SE 0.0013

172 

0.0020

026 

0.0048

601 

0.0061

657 

0.0057

519 

0.0067

319 

0.0053

737 

0.0056

766 

0.0058

596 

0.0043

620 

0.0034

336 

0.00468 

SSE 0.0000

002 

0.0000

004 

0.0000

021 

0.0000

035 

0.0000

030 

0.0000

041 

0.0000

026 

0.0000

029 

0.0000

031 

0.0000

017 

0.0000

011 

0.00000 

SIM 4 0.0140

1 

0.0126

2 

0.0133

6 

0.0190

9 

0.0160

7 

0.0189

2 

0.0223

1 

0.0265

1 

0.0299

5 

0.0306

4 

0.0473

8 

0.02281 

SE 0.0014

738 

0.0018

624 

0.0031

160 

0.0045

350 

0.0056

023 

0.0065

615 

0.0061

669 

0.0055

661 

0.0047

794 

0.0053

138 

0.0044

342 

0.00449 

SSE 0.0000

002 

0.0000

003 

0.0000

009 

0.0000

019 

0.0000

029 

0.0000

039 

0.0000

035 

0.0000

028 

0.0000

021 

0.0000

026 

0.0000

018 

0.00000 

SIM 5 0.0141

5 

0.0174

4 

0.0207

8 

0.0243

1 

0.0211

1 

0.0201

4 

0.0227

9 

0.0214

7 

0.0181

8 

0.0181

5 

0.0387

1 

0.02157 

SE 0.0014

318 

0.0038

233 

0.0054

263 

0.0056

409 

0.0050

742 

0.0048

187 

0.0056

549 

0.0068

855 

0.0084

721 

0.0105

768 

0.0075

265 

0.00594 

SSE 0.0000

002 

0.0000

013 

0.0000

027 

0.0000

029 

0.0000

023 

0.0000

021 

0.0000

029 

0.0000

043 

0.0000

065 

0.0000

102 

0.0000

051 

0.00000 

SIM 6 0.0143

6 

0.0164

3 

0.0194

8 

0.0255

5 

0.0231

2 

0.0283

0 

0.0304

7 

0.0261

7 

0.0263

6 

0.0239

3 

0.0257

1 

0.02363 

SE 0.0015

476 

0.0012

377 

0.0027

173 

0.0042

682 

0.0033

236 

0.0021

944 

0.0025

523 

0.0023

828 

0.0021

055 

0.0019

001 

0.0012

774 

0.00232 

SSE 0.0000

002 

0.0000

001 

0.0000

007 

0.0000

017 

0.0000

010 

0.0000

004 

0.0000

006 

0.0000

005 

0.0000

004 

0.0000

003 

0.0000

001 

0.00000 

SIM 7 0.0145

8 

0.0134

2 

0.0172

1 

0.0146

8 

0.0176

2 

0.0298

1 

0.0310

0 

0.0276

5 

0.0273

1 

0.0270

1 

0.0250

6 

0.02230 

SE 0.0015

81 

0.0030

39 

0.0044

36 

0.0038

48 

0.0072

29 

0.0052

56 

0.0044

92 

0.0042

68 

0.0040

00 

0.0034

37 

0.0028

84 

0.00404 

SSE 0.0000

00 

0.0000

01 

0.0000

02 

0.0000

01 

0.0000

05 

0.0000

03 

0.0000

02 

0.0000

02 

0.0000

01 

0.0000

01 

0.0000

01 

0.00000 

SIM 8 0.0147

1 

0.0101

2 

0.0109

3 

0.0130

1 

0.0134

3 

0.0099

3 

0.0159

6 

0.0215

4 

0.0185

7 

0.0282

7 

0.0347

8 

0.01739 

SE 0.0016

20 

0.0029

11 

0.0014

90 

0.0020

97 

0.0037

05 

0.0030

35 

0.0079

97 

0.0074

12 

0.0099

29 

0.0100

89 

0.0072

41 

0.00523 

SSE 0.0000

00 

0.0000

01 

0.0000

00 

0.0000

00 

0.0000

01 

0.0000

01 

0.0000

06 

0.0000

05 

0.0000

09 

0.0000

09 

0.0000

05 

0.00000 

SIM 9 0.0149

8 

0.0249

1 

0.0216

2 

0.0210

9 

0.0221

4 

0.0292

2 

0.0330

6 

0.0323

8 

0.0354

8 

0.0389

1 

0.0350

2 

0.02807 

SE 0.0017

20 

0.0035

27 

0.0036

77 

0.0040

87 

0.0072

48 

0.0054

96 

0.0048

52 

0.0049

09 

0.0074

99 

0.0081

34 

0.0070

19 

0.00529 

SSE 0.0000

00 

0.0000

01 

0.0000

01 

0.0000

02 

0.0000

05 

0.0000

03 

0.0000

02 

0.0000

02 

0.0000

05 

0.0000

06 

0.0000

04 

0.00000 

SIM 10 0.0151

4 

0.0236

6 

0.0191

4 

0.0169

0 

0.0109

9 

0.0118

7 

0.0193

3 

0.0227

5 

0.0255

6 

0.0232

0 

0.0225

5 

0.01919 

SE 0.0017

438 

0.0058

723 

0.0033

735 

0.0050

864 

0.0036

735 

0.0057

952 

0.0058

457 

0.0050

162 

0.0050

167 

0.0050

544 

0.0047

200 

0.00465 

SSE 0.0000

003 

0.0000

031 

0.0000

010 

0.0000

024 

0.0000

012 

0.0000

031 

0.0000

031 

0.0000

023 

0.0000

023 

0.0000

023 

0.0000

020 

0.00000 
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Table A-3. TLS regression method used for kinetic Patlak analysis on all simulation data and Ki values 
illustrated within 10 noise levels. 

TLS 30 withou

t 

0.05 

noise 

0.1 

noise 

0.15 

noise 

0.2 

noise 

0.25 

noise 

0.3 

noise 

0.35 

noise 

0.4 

noise 

0.45 

noise 

0.50 

noise 

µ 

SIM 1 0.0122

4 

0.0145

4 

0.0154

1 

0.0145

5 

0.0177

7 

0.0214

2 

0.0213

0 

0.0235

1 

0.0213

2 

0.0204

8 

0.0222

0 

0.0186

1 
SE 0.0533

7 

0.3732

9 

0.4832

6 

0.9099

3 

1.6583

8 

1.4762

8 

1.5051

3 

2.8658

4 

3.1926

5 

4.2392

7 

9.9722

3 

2.4299

7 SSE 0.0002

6 

0.0126

7 

0.0212

3 

0.0752

7 

0.2500

2 

0.1981

3 

0.2059

5 

0.7466

4 

0.9266

4 

1.6337

7 

9.0404

9 

1.1919

2 SIM 2 0.0123

8 

0.0133

0 

0.0166

6 

0.0167

2 

0.0221

0 

0.0211

2 

0.0212

6 

0.0256

4 

0.0268

2 

0.0247

4 

0.0254

8 

0.0205

7 SE 0.0566

2 

0.5529

4 

0.8217

5 

0.8025

7 

0.8999

0 

1.6055

7 

1.6299

7 

1.9724

1 

2.0938

2 

2.1751

3 

2.5731

5 

1.3803

5 SSE 0.0002

9 

0.0278

0 

0.0613

9 

0.0585

6 

0.0736

2 

0.2343

5 

0.2415

3 

0.3536

7 

0.3985

5 

0.4301

1 

0.6019

2 

0.2256

2 SIM 3 0.0126

5 

0.0103

1 

0.0111

7 

0.0100

6 

0.0095

5 

0.0141

6 

0.0170

0 

0.0155

6 

0.0174

0 

0.0163

8 

0.0180

7 

0.0138

5 SE 0.0636

4 

0.3869

9 

1.1911

2 

1.5720

2 

1.5284

2 

3.4063

8 

2.9366

8 

3.6313

1 

3.7929

2 

3.2140

2 

3.6088

9 

2.3029

4 SSE 0.0003

7 

0.0136

1 

0.1289

8 

0.2246

6 

0.2123

7 

1.0548

6 

0.7840

1 

1.1987

7 

1.3078

4 

0.9390

8 

1.1840

1 

0.6407

8 SIM 4 0.0128

1 

0.0130

1 

0.0136

0 

0.0168

7 

0.0150

5 

0.0132

4 

0.0130

1 

0.0163

6 

0.0197

3 

0.0180

4 

0.0396

6 

0.0174

0 SE 0.0721

2 

0.4521

6 

0.9595

4 

2.0126

1 

3.2752

5 

3.2483

3 

3.6237

9 

5.6109

6 

7.0787

5 

8.4101

4 

18.793

41 

4.8670

1 SSE 0.0004

7 

0.0185

9 

0.0837

0 

0.3682

4 

0.9752

1 

0.9592

4 

1.1938

0 

2.8620

8 

4.5553

4 

6.4300

4 

32.108

39 

4.5050

1 SIM 5 0.0130

6 

0.0133

9 

0.0155

0 

0.0188

6 

0.0176

5 

0.0171

8 

0.0200

5 

0.0172

4 

0.0153

3 

0.0148

8 

0.0288

9 

0.0174

6 SE 0.0754

9 

0.5033

8 

1.9408

8 

2.4042

8 

1.8871

9 

2.2367

2 

3.0225

0 

3.8755

2 

4.1352

3 

5.0077

1 

5.6027

8 

2.7901

5 SSE 0.0005

2 

0.0230

4 

0.3424

5 

0.5255

0 

0.3237

7 

0.4548

1 

0.8305

0 

1.3654

3 

1.5545

6 

2.2797

4 

2.8537

4 

0.9594

6 SIM 6 0.0132

0 

0.0164

6 

0.0183

3 

0.0212

2 

0.0235

4 

0.0218

9 

0.0242

0 

0.0223

3 

0.0240

3 

0.0229

8 

0.0254

3 

0.0212

4 SE 0.0797

9 

0.1930

3 

0.5640

8 

0.9390

2 

2.2727

9 

0.8051

0 

1.7893

2 

1.6320

6 

2.5528

0 

2.9025

7 

4.3337

0 

1.6422

1 SSE 0.0005

8 

0.0033

9 

0.0289

3 

0.0801

6 

0.4696

0 

0.0589

3 

0.2910

6 

0.2421

5 

0.5924

3 

0.7659

0 

1.7073

6 

0.3855

0 SIM 7 0.0134

8 

0.0141

1 

0.0171

7 

0.0148

6 

0.0178

4 

0.0267

1 

0.0281

7 

0.0264

1 

0.0254

1 

0.0251

2 

0.0244

3 

0.0212

5 SE 0.0889

2 

0.4054

8 

0.8919

6 

1.3437

1 

5.6375

3 

3.3017

1 

3.5639

5 

2.7116

9 

2.5437

6 

1.7339

2 

1.3106

2 

2.1393

9 SSE 0.0007

2 

0.0149

5 

0.0723

3 

0.1641

4 

2.8892

5 

0.9910

3 

1.1547

0 

0.6684

8 

0.5882

5 

0.2733

2 

0.1561

6 

0.6339

4 SIM 8 0.0136

1 

0.0094

4 

0.0118

1 

0.0133

1 

0.0136

8 

0.0110

6 

0.0150

4 

0.0164

1 

0.0092

4 

0.0112

1 

0.0154

6 

0.0127

5 SE 0.0937

5 

0.5204

8 

0.5605

7 

0.7227

7 

2.1944

3 

1.7689

2 

6.7448

5 

6.2127

1 

6.4787

6 

6.5004

7 

7.3773

0 

3.5613

6 SSE 0.0008

0 

0.0246

3 

0.0285

7 

0.0474

9 

0.4377

7 

0.2844

6 

4.1357

3 

3.5088

9 

3.8158

5 

3.8414

6 

4.9476

9 

1.9157

6 SIM 9 0.0138

9 

0.0197

7 

0.0161

3 

0.0149

1 

0.0193

3 

0.0229

8 

0.0281

6 

0.0295

9 

0.0321

1 

0.0352

7 

0.0335

3 

0.0241

5 SE 0.1039

4 

0.7435

2 

0.9564

7 

1.8026

1 

4.3159

4 

5.7089

5 

5.7900

1 

8.8416

6 

10.827

07 

11.856

23 

13.489

10 

5.8577

7 SSE 0.0009

8 

0.0502

6 

0.0831

7 

0.2954

0 

1.6934

0 

2.9629

2 

3.0476

6 

7.1068

1 

10.656

85 

12.779

11 

16.541

43 

5.0198

2 SIM 10 0.0140

5 

0.0145

4 

0.0169

7 

0.0145

4 

0.0109

4 

0.0106

9 

0.0154

2 

0.0178

4 

0.0198

0 

0.0193

2 

0.0190

8 

0.0157

4 SE 0.1074

4 

1.2592

8 

0.6031

4 

1.4204

5 

1.0679

8 

1.7000

6 

2.1014

8 

2.1027

1 

2.7083

3 

2.9531

8 

2.6997

2 

1.7021

6 SSE 0.0010

5 

0.1441

6 

0.0330

7 

0.1834

3 

0.1036

9 

0.2627

4 

0.4014

7 

0.4019

4 

0.6668

2 

0.7928

4 

0.6625

9 

0.3321

6 
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Table A-4. RFR regression method used for kinetic Patlak analysis on all simulation data and Ki  
values illustrated within 10 noise levels. 

RFR 30 without 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50 µ 

SIM 1 0.0120

2 

0.0145

5 

0.0157

0 

0.0146

1 

0.0181

4 

0.0213

4 

0.0209

2 

0.0224

0 

0.0214

9 

0.0209

9 

0.0226

4 

0.0186

2 
SE 0.0702

6 

0.1873

5 

 

0.1998

8 

 

0.2405

8 

 

0.3324

1 

 

0.2352

8 

 

0.2290

8 

 

0.3448

6 

 

0.3323

0 

 

0.3836

5 

 

0.5217

5 

 

0.2797

6 SSE 0.0004

5 

0.0031

9 

 

0.0036

3 

 

0.0052

6 

 

0.0100

5 

 

0.0050

3 

 

0.0047

7 

 

0.0108

1 

 

0.0100

4 

 

0.0133

8 

 

0.0247

5 

 

0.0083

1 SIM 2 0.0121

6 

0.0139

3 

0.0169

6 

0.0169

1 

0.0234

7 

0.0203

3 

0.0208

3 

0.0245

2 

0.0261

7 

0.0244

8 

0.0250

6 

0.0204

4 SE 0.0728

9 

0.2434

3 

0.2893

4 

0.2648

7 

0.2607

7 

0.3830

7 

0.3833

3 

0.3606

8 

0.3915

4 

0.3760

1 

0.4015

9 

0.3115

9 SSE 0.0004

8 

0.0053

9 

0.0076

1 

0.0063

8 

0.0061

8 

0.0133

4 

0.0133

6 

0.0118

3 

0.0139

4 

0.0128

5 

0.0146

6 

0.0096

4 SIM 3 0.0124

5 

0.0109

3 

0.0112

7 

0.0087

2 

0.0097

2 

0.0144

9 

0.0164

2 

0.0148

3 

0.0174

5 

0.0161

0 

0.0179

6 

0.0136

7 SE 0.0782

6 

0.1763

6 

0.3619

2 

0.4226

7 

0.4236

1 

0.5989

4 

0.5115

5 

0.5484

7 

0.6262

5 

0.5256

3 

0.4055

4 

0.4253

8 SSE 0.0005

6 

0.0028

3 

0.0119

1 

0.0162

4 

0.0163

1 

0.0326

1 

0.0237

9 

0.0273

5 

0.0356

5 

0.0251

2 

0.0149

5 

0.0188

5 SIM 4 0.0125

3 

0.0133

5 

0.0137

2 

0.0171

4 

0.0158

1 

0.0136

9 

0.0130

2 

0.0159

7 

0.0190

4 

0.0166

7 

0.0181

9 

0.0153

8 SE 0.0829

0 

0.1964

1 

0.3136

8 

0.4221

0 

0.5306

4 

0.5663

9 

0.6096

6 

0.7137

8 

0.7858

4 

0.8687

6 

0.6690

0 

0.5235

6 SSE 0.0006

2 

0.0035

1 

0.0089

4 

0.0162

0 

0.0256

0 

0.0291

6 

0.0337

9 

0.0463

2 

0.0561

4 

0.0686

1 

0.0406

9 

0.0299

6 SIM 5 0.0129

0 

0.0136

4 

0.0142

1 

0.0179

2 

0.0177

5 

0.0173

3 

0.0202

5 

0.0175

9 

0.0158

6 

0.0132

3 

0.0252

0 

0.0169

0 SE 0.0861

9 

0.2290

2 

0.4000

9 

0.4415

4 

0.4243

5 

0.4483

9 

0.5242

1 

0.6446

2 

0.7921

1 

0.8864

5 

0.8405

6 

0.5197

8 SSE 0.0006

8 

0.0047

7 

0.0145

5 

0.0177

2 

0.0163

7 

0.0182

8 

0.0249

8 

0.0377

8 

0.0570

4 

0.0714

4 

0.0642

3 

0.0298

0 SIM 6 0.0130

5 

0.0164

6 

0.0182

5 

0.0214

7 

0.0195

2 

0.0180

3 

0.0164

9 

0.0148

7 

0.0239

1 

0.0227

4 

0.0161

2 

0.0182

6 SE 0.0886

0 

0.1208

4 

0.2149

0 

0.2988

6 

0.3103

6 

0.1413

3 

0.1942

8 

0.2106

3 

0.2753

4 

0.2907

0 

0.2278

6 

0.2157

9 SSE 0.0007

1 

0.0013

3 

0.0042

0 

0.0081

2 

0.0087

6 

0.0018

2 

0.0034

3 

0.0040

3 

0.0068

9 

0.0076

8 

0.0047

2 

0.0047

0 SIM 7 0.0133

5 

0.0140

1 

0.0172

3 

0.0154

0 

0.0117

7 

0.0178

1 

0.0201

0 

0.0255

3 

0.0246

6 

0.0252

1 

0.0245

2 

0.0190

5 SE 0.0934

7 

0.2111

9 

0.2968

6 

0.3376

4 

0.4959

1 

0.3210

4 

0.3351

9 

0.4008

4 

0.3826

1 

0.3133

2 

0.2859

1 

0.3158

2 SSE 0.0007

9 

0.0040

5 

0.0080

1 

0.0103

6 

0.0223

6 

0.0093

7 

0.0102

1 

0.0146

1 

0.0133

1 

0.0089

2 

0.0074

3 

0.0099

5 SIM 8 0.0134

9 

0.0100

5 

0.0123

5 

0.0133

9 

0.0136

7 

0.0112

1 

0.0145

8 

0.0159

8 

0.0094

0 

0.0110

6 

0.0156

5 

0.0128

0 SE 0.0960

9 

0.2184

3 

0.2062

4 

0.2527

1 

0.4333

3 

0.3874

6 

0.7754

0 

0.7419

3 

0.9162

1 

0.9072

3 

0.9216

2 

0.5324

2 SSE 0.0008

4 

0.0043

4 

0.0038

7 

0.0058

1 

0.0170

7 

0.0136

5 

0.0546

6 

0.0500

4 

0.0763

1 

0.0748

2 

0.0772

2 

0.0344

2 SIM 9 0.0137

8 

0.0198

0 

0.0153

6 

0.0150

3 

0.0195

4 

0.0229

5 

0.0283

9 

0.0321

1 

0.0500

0 

0.0528

8 

0.0490

4 

0.0289

9 SE 0.1015

1 

0.2490

0 

0.3091

7 

0.4175

1 

0.6712

1 

0.6195

4 

0.6355

2 

0.7318

4 

0.7786

4 

0.7340

0 

0.6185

2 

0.5333

1 SSE 0.0009

4 

0.0056

4 

0.0086

9 

0.0158

5 

0.0409

6 

0.0348

9 

0.0367

2 

0.0486

9 

0.0551

2 

0.0489

8 

0.0347

8 

0.0301

1 SIM 10 0.0139

5 

0.0146

1 

0.0169

5 

0.0142

2 

0.0103

6 

0.0102

9 

0.0155

1 

0.0179

0 

0.0198

5 

0.0193

9 

0.0191

1 

0.0156

5 SE 0.1031

1 

0.2913

0 

0.2367

5 

0.3978

3 

0.3425

1 

0.4232

3 

0.4054

6 

0.3524

8 

0.4067

2 

0.4349

3 

0.4185

6 

0.3466

3 SSE 0.0009

7 

0.0077

1 

0.0051

0 

0.0143

9 

0.0106

6 

0.0162

8 

0.0149

5 

0.0112

9 

0.0150

4 

0.0172

0 

0.0159

3 

0.0117

7 
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 Figure A-1. A comparison between all statistical methods performed with the same data for all simulations to 
evaluate how each method behaves with various noise levels. 
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Appendix B 

Table B- 1. GADF filtering method used for simulated 3D 18F-FDOPA images of the brain with different Ki 
values illustrated with ten noise levels. 

	 without	 0.05	 0.1	 0.15	 0.2	 0.25	 0.3	 0.35	 0.4	 0.45	 0.50	

dPETST

EP	

Ki	Values	

SIM	1	 0.013969	 0.015181	 0.015047	 0.015985	 0.018431	 0.017677	 0.017494	 0.015546	 0.013737	 0.013966	 0.015378	
SE	 0.333	 0.2848	 0.3242	 0.3235	 0.2737	 0.2944	 0.3132	 0.3816	 0.4136	 0.4136	 0.322	
SSE	 0.010080

818	
0.0073737

31	
0.0095550

58	
0.0095138

41	
0.0068101

54	
0.0078792

15	
0.0089176

58	
0.0132380

51	
0.0155513

6	
0.0155513

6	
0.0094258

18	GADF-5	 0.013969	 0.01467	 0.014159	 0.017414	 0.014065	 0.015953	 0.017564	 0.015143	 0.013925	 0.014171	 0.014934	
SE	 0.333	 0.3426	 0.3143	 0.4076	 0.8964	 0.5362	 0.5621	 0.3558	 0.3631	 0.3647	 0.2981	
SSE	 0.010080

818	
0.0106704

33	
0.0089804

08	
0.0151034

33	
0.0730484

51	
0.0261373

13	
0.0287233

1	
0.0115085

13	
0.0119856

01	
0.0120914

63	
0.0080785

1	GADF1

0	

0.013969	 0.013871	 0.014456	 0.015384	 0.017197	 0.016558	 0.016635	 0.01535	 0.014625	 0.014618	 0.015479	
SE	 0.333	 0.303	 0.2977	 0.2919	 0.2565	 0.2606	 0.2849	 0.3264	 0.3249	 0.3297	 0.2689	
SSE	 0.010080

818	
0.0083462

73	
0.0080568

45	
0.0077459

65	
0.0059811

14	
0.0061738

51	
0.0073789

1	
0.0096851

78	
0.0095963

65	
0.0098820

08	
0.0065733

83	SIM	2	 0.012157
901	

0.0120392
78	

0.0147138
56	

0.0123390
77	

0.0144602
9	

0.0105078
71	

0.0125777
02	

0.0129710
49	

0.0163446
42	

0.0063205
7	

0.0167243
56	SE	 0.2863	 0.2918	 0.1978	 0.3211	 0.2379	 0.3632	 0.4209	 0.2811	 0.349	 0.8899	 0.2059	

SSE	 0.007451
608	

0.0077406
58	

0.0035568
04	

0.0093732
01	

0.0051451
28	

0.0119922
04	

0.0161051
65	

0.0071833
83	

0.0110728
18	

0.0719929
1	

0.0038540
74	GADF-

5	

0.012157
901	

0.011948	 0.01476	 0.012644	 0.014845	 0.012038	 0.013616	 0.013554	 0.017058	 0.006846	 0.017374	

SE	 0.2863	 0.2825	 0.1953	 0.3066	 0.23	 0.3143	 0.3649	 0.2707	 0.3241	 0.8479	 0.1863	

SSE	 0.007451
608	

0.0072551
14	

0.0034674
63	

0.0085457
78	

0.0048090
91	

0.0089804
08	

0.0121047
28	

0.0066616
81	

0.0095491
65	

0.0653576
74	

0.0031552
45	GADF1

0	

0.012157
901	

0.01186	 0.014475	 0.012745	 0.01513	 0.012669	 0.014092	 0.014721	 0.017845	 0.008086	 0.018256	

SE	 0.2863	 0.2799	 0.1988	 0.3019	 0.2208	 0.2925	 0.3406	 0.243	 0.3067	 0.7088	 0.1784	

SSE	 0.007451
608	

0.0071221
83	

0.0035928
58	

0.0082857
83	

0.0044320
58	

0.0077778
41	

0.0105462
15	

0.0053680
91	

0.0085513
54	

0.0456724
95	

0.0028933
24	SIM	3	 0.010018	 0.009995	 0.01059	 0.011413	 0.00969	 0.010542	 0.010577	 0.010704	 0.011364	 0.012654	 0.011939	

SE	 0.2678	 0.2736	 0.2702	 0.2155	 0.3333	 0.3002	 0.3136	 0.3317	 0.2728	 0.2728	 0.3021	
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0.0067654
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0.0044561
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0.0065051
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0.0074308

01	
0.0095550
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0.010018	 0.009972	 0.010442	 0.011401	 0.00932	 0.010464	 0.010553	 0.005887	 0.011391	 0.012624	 0.011271	
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SE	 0.2823	 0.2598	 0.2544	 0.2499	 0.2582	 0.2572	 0.2537	 0.2534	 0.2497	 0.2368	 0.236	
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SSE	 0.007244
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83	
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58	SIM	5	 0.004957	 0.005323	 0.005551	 0.005619	 0.005494	 0.005583	 0.005698	 0.005764	 0.005544	 0.005594	 0.005512	

SE	 0.3876	 0.3443	 0.324	 0.3178	 0.3134	 0.3112	 0.3095	 0.3082	 0.3339	 0.3366	 0.3582	

SSE	 0.013657
615	

0.0107765
9	

0.0095432
73	

0.0091815
31	

0.0089290
51	

0.0088041
31	

0.0087082
05	

0.0086352
04	

0.0101353
83	

0.0102999
6	

0.0116642
95	GADF-

5	

0.004957	 0.005227	 0.005426	 0.00542	 0.005341	 0.005415	 0.005473	 0.005516	 0.005403	 0.005492	 0.005294	

SE	 0.3876	 0.3564	 0.3364	 0.3348	 0.3277	 0.3246	 0.3247	 0.3221	 0.3432	 0.3413	 0.3714	

SSE	 0.013657
615	

0.0115473
6	

0.0102877
24	

0.0101900
95	

0.0097624
81	

0.0095786
51	

0.0095845
54	

0.0094316
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0.0105896
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SSE	 0.013489

004	
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Figure B- 1. GADF 5 and 10 iterations used for 3D images and Ki values illustrated within ten noise levels. 
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Appendix C 

Table C- 1. MAF method used with different Ki values illustrated by applying ten noise levels. 
	 without	 0.05	 0.1	 0.15	 0.2	 0.25	 0.3	 0.35	 0.4	 0.45	 0.50	

dPETSTEP	 Ki	Values	
SIM1	 0.01396

9	
0.01518

1	
0.01504

7	
0.01598

5	
0.01843

1	
0.01767

7	
0.01749

4	
0.01812

7	
0.01812

7	
0.01926

5	
0.01537

8	SE	 0.333	 0.2848	 0.3242	 0.3235	 0.2737	 0.2944	 0.3132	 0.3816	 0.1728	 0.1577	 0.322	

SSE	 0.01008
0818	

0.00737
3731	

0.00955
5058	

0.00951
3841	

0.00681
0154	

0.00787
9215	

0.00891
7658	

0.01323
8051	

0.00271
4531	

0.00226
0845	

0.00942
5818	MAF	

	

0.01503
3	

0.01475
7	

0.01491
5	

0.01557
8	

0.01572
5	

0.01579
1	

0.01420
7	

0.01591
2	

0.01657
6	

0.01404
4	SE	 0.1159	 0.1197	 0.1169	 0.1045	 0.1058	 0.1029	 0.1166	 0.097	 0.0896	 0.132	

SSE	 0.00122
1165	

0.00130
2554	

0.00124
2328	

0.00099
275	

0.00101
7604	

0.00096
2583	

0.00123
596	

0.00085
5364	

0.00072
9833	

0.00158
4	SIM2	 0.01215

7901	
0.01242

6	
0.01471
3856	

0.01233
9077	

0.01446
029	

0.0134	 0.01257
7702	

0.01287
5	

0.01287
5	

0.01634
4642	

0.01672
4356	SE	 0.2863	 0.2957	 0.1978	 0.3206	 0.2379	 0.3116	 0.4209	 0.2811	 0.4002	 0.349	 0.2059	

SSE	 0.00745
1608	

0.00774
0658	

0.00355
6804	

0.00934
4033	

0.00514
5128	

0.00882
6778	

0.01610
5165	

0.00718
3383	

0.01456
0004	

0.01107
2818	

0.00385
4074	MAF	

	

0.01260
7	

0.01287
5	

0.01228
6	

0.01269
4	

0.01283
7	

0.01268	 0.01254
4	

0.01268
8	

0.01268
8	

0.01290
5	SE	 0.1943	 0.1889	 0.1974	 0.199	 0.1885	 0.1906	 0.1962	 0.1946	 0.1918	 0.191	

SSE	 0.00343
2045	

0.00324
3928	

0.00354
2433	

0.00360
0091	

0.00323
0205	

0.00330
2578	

0.00349
9495	

0.00344
2651	

0.00334
4295	

0.00331
6455	SIM	3	 0.01001

8	
0.01049

5	
0.01053

6	
0.01141

3	
0.01215

7	
0.01151

5	
0.01198

9	
0.01198

9	
0.01198

9	
0.01265

4	
0.01256

6	SE	 0.2678	 0.2663	 0.2712	 0.2155	 0.2177	 0.2207	 0.2348	 0.2343	 0.2348	 0.2728	 0.2588	
SSE	 0.00651

9713	
0.00644
6881	

0.00668
6313	

0.00422
1841	

0.00430
8481	

0.00442
8045	

0.00501
1913	

0.00499
059	

0.00501
1913	

0.00676
544	

0.00608
8858	MAF	

	

0.01057
2	

0.01048
5589	

0.01100
1514	

0.01079
4102	

0.01048
5768	

0.01059
7916	

0.01068
61	

0.01079
5711	

0.01155
755	

0.01112
6121	SE	 0.1593	 0.1589	 0.1493	 0.1466	 0.1581	 0.1531	 0.1567	 0.1526	 0.1334	 0.1451	

SSE	 0.00230
6954	

0.00229
5383	

0.00202
6408	

0.00195
3778	

0.00227
2328	

0.00213
0874	

0.00223
2263	

0.00211
6978	

0.00161
7778	

0.00191
4001	SIM	4	 0.00754

1	
0.00812

9	
0.00813

1	
0.00813

6	
0.00808

1	
0.00819

1	
0.00828

5	
0.00821

8	
0.00821

8	
0.00836	 0.00850

3	SE	 0.2823	 0.2598	 0.2544	 0.2499	 0.2582	 0.2572	 0.2537	 0.2534	 0.2497	 0.2368	 0.236	
SSE	 0.00724

4845	
0.00613
6004	

0.00588
3578	

0.00567
7274	

0.00606
0658	

0.00601
3804	

0.00585
1245	

0.00583
7415	

0.00566
819	

0.00509
7658	

0.00506
3273	MAF	

	

0.00764	 0.00761
6	

0.00771
5	

0.00752	 0.00762	 0.00754
1	

0.00770
5	

0.00773
1	

0.00811
3	

0.00786
2	SE	 0.247	 0.2519	 0.248	 0.2555	 0.2503	 0.2574	 0.2505	 0.2519	 0.2346	 0.2457	

SSE	 0.00554
6273	

0.00576
851	

0.00559
1273	

0.00593
4568	

0.00569
5463	

0.00602
316	

0.00570
4568	

0.00576
851	

0.00500
3378	

0.00548
8045	SIM	5	 0.00495

7	
0.00532

3	
0.00555

1	
0.00561

9	
0.00549

4	
0.00558

3	
0.00569

8	
0.00554

4	
0.00554

4	
0.00559

4	
0.00551

2	SE	 0.3876	 0.3443	 0.324	 0.3177	 0.3134	 0.3112	 0.3095	 0.3082	 0.3339	 0.3366	 0.3582	

SSE	 0.01365
7615	

0.01077
659	

0.00954
3273	

0.00917
5754	

0.00892
9051	

0.00880
4131	

0.00870
8205	

0.00863
5204	

0.01013
5383	

0.01029
996	

0.01166
4295	MAF	

	

0.00525
3	

0.00533
8	

0.00534	 0.00532
8	

0.00531
8	

0.00533
2	

0.00533
9	

0.00534
7	

0.00532
1	

0.00532
9	SE	 0.241	 0.2402	 0.2401	 0.24	 0.2406	 0.2389	 0.2395	 0.2391	 0.24	 0.2392	

SSE	 0.00528
0091	

0.00524
5095	

0.00524
0728	

0.00523
6364	

0.00526
2578	

0.00518
8474	

0.00521
4568	

0.00519
7165	

0.00523
6364	

0.00520
1513	SIM	6	 0.00246

5	
0.00266

7	
0.0027	 0.00276

7	
0.00280

3	
0.00292

1	
0.00286

6	
0.00291

6	
0.00291

6	
0.00283

1	
0.00280

7	SE	 0.3852	 0.354	 0.3477	 0.3356	 0.3369	 0.3191	 0.3325	 0.328	 0.3186	 0.3285	 0.3307	

SSE	 0.01348
9004	

0.01139
2364	

0.01099
0481	

0.01023
8851	

0.01031
8328	

0.00925
6801	

0.01005
0568	

0.00978
0364	

0.00922
7815	

0.00981
0205	

0.00994
2045	MAF	

	
	
	

0.00250
9	

0.00251
8	

0.00252
6	

0.00253
6	

0.00253
7	

0.00252
9	

0.00253
4	

0.00255	 0.00253
8	

0.00253
9	SE	 0.2435	 0.2454	 0.2449	 0.2441	 0.244	 0.2443	 0.244	 0.2428	 0.2429	 0.2433	

SSE	 0.00539
0205	

0.00547
4651	

0.00545
2365	

0.00541
6801	

0.00541
2364	

0.00542
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0.00541
2364	

0.00535
9258	

0.00536
3674	

0.00538
1354	 
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Figure C- 1. MAF method used for TACs and Ki values shown at ten different noise levels. 
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Table C- 2. SGF method used with different Ki values illustrated with applying ten noise levels. 
	 without	 0.05	 0.1	 0.15	 0.2	 0.25	 0.3	 0.35	 0.4	 0.45	 0.50	

dPETSTEP	 Ki	Values	
SIM1		 0.01396

9	
0.01518
1	

0.01504
7	

0.01598
5	

0.01843
1	

0.01767
7	

0.01749
4	

0.01554
6	

0.01812
7	

0.01926
5	

0.01537
8	SE	 0.333	 0.2848	 0.3242	 0.3235	 0.2737	 0.2944	 0.3132	 0.3816	 0.1728	 0.1577	 0.322	

SSE	 0.01008
0818	

0.00737
3731	

0.00955
5058	

0.00951
3841	

0.00681
0154	

0.00787
9215	

0.00891
7658	

0.01323
8051	

0.00271
4531	

0.00226
0845	

0.00942
5818	SGF	

		

0.01510
9	

0.01498
2	

0.01517
7	

0.01594
7	

0.01615	 0.01625
6	

0.01475
6	

0.01614
2	

0.01670
9	

0.01430
4	SE	 0.123	 0.1264	 0.1223	 0.1076	 0.1089	 0.1051	 0.1196	 0.1019	 0.0951	 0.1363	

SSE	 0.00137
5364	

0.00145
2451	

0.00135
9754	

0.00105
2524	

0.00107
811	

0.00100
4183	

0.00130
0378	

0.00094
3965	

0.00082
2183	

0.00168
8881	SIM2	 0.01215

7901	
0.01242
6	

0.01471
3856	

0.01233
9077	

0.01446
029	

0.0134	 0.01257
7702	

0.01297
1049	

0.01287
5	

0.01634
4642	

0.01672
4356	SE	 0.2863	 0.2957	 0.1978	 0.3206	 0.2379	 0.3116	 0.4209	 0.2811	 0.4002	 0.349	 0.2059	

SSE	 0.00745
1608	

0.00774
0658	

0.00355
6804	

0.00934
4033	

0.00514
5128	

0.00882
6778	

0.01610
5165	

0.00718
3383	

0.01456
0004	

0.01107
2818	

0.00385
4074	SGF	

		

0.01218
7	

0.01230
2	

0.01210
7	

0.01250
2	

0.01250
2	

0.01243
4	

0.01236	 0.01228
2	

0.01254
3	

0.01278
2	SE	 0.1788	 0.2027	 0.2695	 0.1678	 0.1678	 0.1647	 0.2636	 0.2685	 0.2928	 0.2539	

SSE	 0.00290
6313	

0.00373
5208	

0.00660
275	

0.00255
9713	

0.00255
9713	

0.00246
6008	

0.00631
6815	

0.00655
3841	

0.00779
3804	

0.00586
0474	SIM	3	 0.01001

8	
0.01049
5	

0.01053
6	

0.01141
3	

0.01215
7	

0.01151
5	

0.01198
9	

0.01129
1	

0.01198
9	

0.01265
4	

0.01256
6	SE	 0.2678	 0.2663	 0.2712	 0.2155	 0.2177	 0.2207	 0.2348	 0.2343	 0.2348	 0.2728	 0.2588	

SSE	 0.00651
9713	

0.00644
6881	

0.00668
6313	

0.00422
1841	

0.00430
8481	

0.00442
8045	

0.00501
1913	

0.00499
059	

0.00501
1913	

0.00676
544	

0.00608
8858	SGF	

		

0.01039
5	

0.01042
2	

0.01059
2	

0.01039
3	

0.01027
9	

0.01047
7	

0.01021
9	

0.01061
3	

0.01114
9	

0.01088
2	SE	 0.1644	 0.1633	 0.1557	 0.1568	 0.1579	 0.1616	 0.159	 0.1588	 0.1493	 0.1495	

SSE	 0.00245
7033	

0.00242
4263	

0.00220
3863	

0.00223
5113	

0.00226
6583	

0.00237
4051	

0.00229
8273	

0.00229
2495	

0.00202
6408	

0.00203
1841	SIM	4	 0.00754

1	
0.00812
9	

0.00813
1	

0.00813
6	

0.00808
1	

0.00819
1	

0.00828
5	

0.00816
1	

0.00821
8	

0.00836	 0.00850
3	SE	 0.2823	 0.2598	 0.2544	 0.2499	 0.2582	 0.2572	 0.2537	 0.2534	 0.2497	 0.2368	 0.236	

SSE	 0.00724
4845	

0.00613
6004	

0.00588
3578	

0.00567
7274	

0.00606
0658	

0.00601
3804	

0.00585
1245	

0.00583
7415	

0.00566
819	

0.00509
7658	

0.00506
3273	SGF	

		

0.00806
5	

0.00809
2	

0.00809
8	

0.00809
3	

0.00813
8	

0.00815
5	

0.00813
6	

0.00814
8	

0.00813
6	

0.00814
3	SE	 0.1638	 0.1625	 0.163	 0.1634	 0.1626	 0.1633	 0.1639	 0.163	 0.164	 0.1641	

SSE	 0.00243
9131	

0.00240
0568	

0.00241
5364	

0.00242
7233	

0.00240
3524	

0.00242
4263	

0.00244
211	

0.00241
5364	

0.00244
5091	

0.00244
8074	SIM	5	 0.00495

7	
0.00532
3	

0.00555
1	

0.00561
9	

0.00549
4	

0.00558
3	

0.00569
8	

0.00576
4	

0.00554
4	

0.00559
4	

0.00551
2	SE	 0.3876	 0.3443	 0.324	 0.3177	 0.3134	 0.3112	 0.3095	 0.3082	 0.3339	 0.3366	 0.3582	

SSE	 0.01365
7615	

0.01077
659	

0.00954
3273	

0.00917
5754	

0.00892
9051	

0.00880
4131	

0.00870
8205	

0.00863
5204	

0.01013
5383	

0.01029
996	

0.01166
4295	SGF	

		

0.00511
5	

0.00513	 0.00515
1	

0.00511
3	

0.00511
1	

0.00515
1	

0.00516
5	

0.00516
4	

0.00512
2	

0.00514
2	SE	 0.2761	 0.2741	 0.2714	 0.2727	 0.2724	 0.2698	 0.27	 0.2699	 0.2736	 0.2718	

SSE	 0.00693
011	

0.00683
0074	

0.00669
6178	

0.00676
0481	

0.00674
5615	

0.00661
7458	

0.00662
7273	

0.00662
2365	

0.00680
5178	

0.00671
5931	SIM	6	 0.00246

5	
0.00266
7	

0.0027	 0.00276
7	

0.00280
3	

0.00292
1	

0.00286
6	

0.00283	 0.00291
6	

0.00283
1	

0.00280
7	SE	 0.3852	 0.354	 0.3477	 0.3356	 0.3369	 0.3191	 0.3325	 0.328	 0.3186	 0.3285	 0.3307	

SSE	 0.01348
9004	

0.01139
2364	

0.01099
0481	

0.01023
8851	

0.01031
8328	

0.00925
6801	

0.01005
0568	

0.00978
0364	

0.00922
7815	

0.00981
0205	

0.00994
2045	SGF	

		
		
		

0.00251
9	

0.00252	 0.00254
6	

0.00256
3	

0.00256
7	

0.00253
5	

0.00253
1	

0.00255	 0.00254
2	

0.00253
8	SE	 0.2741	 0.2741	 0.2708	 0.2688	 0.2675	 0.2705	 0.2713	 0.2694	 0.2705	 0.2707	

SSE	 0.00683
0074	

0.00683
0074	

0.00666
6604	

0.00656
8495	

0.00650
5114	

0.00665
1841	

0.00669
1245	
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1841	

0.00666
1681	 
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Figure C- 2. SGF method used for TACs and Ki values illustrated within ten noise levels. 
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Table C- 3. PCF method used with different Ki values illustrated with applying ten noise levels. 
	 without	 0.05	 0.1	 0.15	 0.2	 0.25	 0.3	 0.35	 0.4	 0.45	 0.50	

dPETSTEP	 Ki	Values	
SIM1		 0.01396

9	
0.01518
1	

0.01504
7	

0.01598
5	

0.01843
1	

0.01767
7	

0.01749
4	

0.01554
6	

0.01812
7	

0.01926
5	

0.01537
8	SE	 0.333	 0.2848	 0.3242	 0.3235	 0.2737	 0.2944	 0.3132	 0.3816	 0.1728	 0.1577	 0.322	

SSE	 0.01008
0818	

0.00737
3731	

0.00955
5058	

0.00951
3841	

0.00681
0154	

0.00787
9215	

0.00891
7658	

0.01323
8051	

0.00271
4531	

0.00226
0845	

0.00942
5818	PCF	

		

0.01462
5	

0.01374
1	

0.01540
4	

0.01555	 0.01505
8	

0.01509
1	

0.01456
5	

0.01752
1	

0.01844
8	

0.01546
8	SE	 0.1404	 0.1397	 0.1018	 0.0979	 0.1313	 0.1329	 0.1328	 0.1015	 0.1035	 0.1721	

SSE	 0.00179
2015	

0.00177
419	

0.00094
2113	

0.00087
131	

0.00156
7245	

0.00160
5674	

0.00160
3258	

0.00093
6568	

0.00097
3841	

0.00269
2583	SIM2	 0.01215

7901	
0.01242
6	

0.01471
3856	

0.01233
9077	

0.01446
029	

0.0134	 0.01257
7702	

0.01297
1049	

0.01287
5	

0.01634
4642	

0.01672
4356	SE	 0.2863	 0.2957	 0.1978	 0.3206	 0.2379	 0.3116	 0.4209	 0.2811	 0.4002	 0.349	 0.2059	

SSE	 0.00745
1608	

0.00774
0658	

0.00355
6804	

0.00934
4033	

0.00514
5128	

0.00882
6778	

0.01610
5165	

0.00718
3383	

0.01456
0004	

0.01107
2818	

0.00385
4074	PCF	

		

0.01296
1	

0.01359
6	

0.01213
3	

0.01402
3	

0.01334
5	

0.01229
5	

0.01247	 0.01242
2	

0.01521
7	

0.01648	
SE	 0.143	 0.0798	 0.1481	 0.1082	 0.0691	 0.1113	 0.141	 0.2671	 0.101	 0.1126	
SSE	 0.00185

9	
0.00057
8913	

0.00199
3965	

0.00106
4295	

0.00043
4074	

0.00112
6154	

0.00180
7364	

0.00648
5674	

0.00092
7364	

0.00115
2615	SIM	3	 0.01001

8	
0.01049
5	

0.01053
6	

0.01141
3	

0.01215
7	

0.01151
5	

0.01198
9	

0.01129
1	

0.01198
9	

0.01265
4	

0.01256
6	SE	 0.2678	 0.2663	 0.2712	 0.2155	 0.2177	 0.2207	 0.2348	 0.2343	 0.2348	 0.2728	 0.2588	

SSE	 0.00651
9713	

0.00644
6881	

0.00668
6313	

0.00422
1841	

0.00430
8481	

0.00442
8045	

0.00501
1913	

0.00499
059	

0.00501
1913	

0.00676
544	

0.00608
8858	PCF	

		

0.00963	 0.01015
8	

0.01090
4	

0.01212
6	

0.01102
5	

0.01005
8	

0.01060
9	

0.01005
8	

0.01168
7	

0.01121
7	SE	 0.1127	 0.0962	 0.0729	 0.1019	 0.1273	 0.0286	 0.0983	 0.0286	 0.1274	 0.1377	

SSE	 0.00115
4663	

0.00084
1313	

0.00048
3128	

0.00094
3965	

0.00147
3208	

0.00007
436	

0.00087
8445	

0.00007
436	

0.00147
5524	

0.00172
3754	SIM	4	 0.00754

1	
0.00812
9	

0.00813
1	

0.00813
6	

0.00808
1	

0.00819
1	

0.00828
5	

0.00816
1	

0.00821
8	

0.00836	 0.00850
3	SE	 0.2823	 0.2598	 0.2544	 0.2499	 0.2582	 0.2572	 0.2537	 0.2534	 0.2497	 0.2368	 0.236	

SSE	 0.00724
4845	

0.00613
6004	

0.00588
3578	

0.00567
7274	

0.00606
0658	

0.00601
3804	

0.00585
1245	

0.00583
7415	

0.00566
819	

0.00509
7658	

0.00506
3273	PCF	

		

0.00787
4	

0.0078	 0.00785
5	

0.00782
3	

0.00789
8	

0.00792
1	

0.00780
3	

0.00783
2	

0.00783
8	

0.00793
1	SE	 0.0744	 0.0772	 0.0743	 0.0824	 0.0829	 0.08	 0.0776	 0.0751	 0.0783	 0.0776	

SSE	 0.00050
3215	

0.00054
1804	

0.00050
1863	

0.00061
7251	

0.00062
4765	

0.00058
1818	

0.00054
7433	

0.00051
2728	

0.00055
7354	

0.00054
7433	SIM	5	 0.00495

7	
0.00532
3	

0.00555
1	

0.00561
9	

0.00549
4	

0.00558
3	

0.00569
8	

0.00576
4	

0.00554
4	

0.00559
4	

0.00551
2	SE	 0.3876	 0.3443	 0.324	 0.3177	 0.3134	 0.3112	 0.3095	 0.3082	 0.3339	 0.3366	 0.3582	

SSE	 0.01365
7615	

0.01077
659	

0.00954
3273	

0.00917
5754	

0.00892
9051	

0.00880
4131	

0.00870
8205	

0.00863
5204	

0.01013
5383	

0.01029
996	

0.01166
4295	PCF	

		

0.00531
9	

0.00539
2	

0.00540
6	

0.00529
1	

0.00522
6	

0.00553
8	

0.00571
1	

0.00561
4	

0.00518
1	

0.00509
6	SE	 0.1418	 0.1518	 0.1555	 0.1592	 0.1679	 0.1562	 0.1422	 0.145	 0.2084	 0.1986	

SSE	 0.00182
7931	

0.00209
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8205	
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4058	
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8233	

0.00358
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7	
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6	
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6	
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1	

0.00280
7	SE	 0.3852	 0.354	 0.3477	 0.3356	 0.3369	 0.3191	 0.3325	 0.328	 0.3186	 0.3285	 0.3307	

SSE	 0.01348
9004	

0.01139
2364	

0.01099
0481	

0.01023
8851	

0.01031
8328	

0.00925
6801	

0.01005
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0.00978
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0.00922
7815	

0.00981
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2045	PCF	

		
		
		

0.0025	 0.00243	 0.00246	 0.00244
5	

0.00249
5	
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1	
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4	
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9	
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Figure C- 3. PCF method used for TACs and Ki values illustrated within ten noise levels. 
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Table C- 4. MF method used with different Ki values illustrated with applying ten noise levels. 
	 without	 0.05	 0.1	 0.15	 0.2	 0.25	 0.3	 0.35	 0.4	 0.45	 0.50	

dPETSTEP	 Ki	Values	
SIM1		 0.01396

9	
0.01518
1	

0.01504
7	

0.01598
5	

0.01843
1	

0.01767
7	

0.01749
4	

0.01554
6	

0.01812
7	

0.01926
5	

0.01537
8	SE	 0.333	 0.2848	 0.3242	 0.3235	 0.2737	 0.2944	 0.3132	 0.3816	 0.1728	 0.1577	 0.322	

SSE	 0.01008
0818	

0.00737
3731	

0.00955
5058	

0.00951
3841	

0.00681
0154	

0.00787
9215	

0.00891
7658	

0.01323
8051	

0.00271
4531	

0.00226
0845	

0.00942
5818	MF	

		

0.01462
5	

0.01374
1	

0.01540
4	

0.01555	 0.01505
8	

0.01509
1	

0.01456
5	

0.01752
1	

0.01844
8	

0.01546
8	SE	 0.1404	 0.1397	 0.1018	 0.0979	 0.1313	 0.1329	 0.1328	 0.1015	 0.1035	 0.1721	
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0.01634
4642	
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4356	SE	 0.2863	 0.2957	 0.1978	 0.3206	 0.2379	 0.3116	 0.4209	 0.2811	 0.4002	 0.349	 0.2059	
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0658	
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0.00934
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0.01402
3	
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0.00043
4074	
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9	
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4	

0.01256
6	SE	 0.2678	 0.2663	 0.2712	 0.2155	 0.2177	 0.2207	 0.2348	 0.2343	 0.2348	 0.2728	 0.2588	

SSE	 0.00651
9713	

0.00644
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0.00668
6313	

0.00422
1841	

0.00430
8481	

0.00442
8045	

0.00501
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0.00499
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0.00501
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0.01168
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Figure C- 4. MF method used for TACs and Ki values illustrated within ten noise levels. 
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Appendix D 

 

 Figure D- 1. CONSORT flow diagram used initially in selecting the subjects and designing the clinical trial 
outline (Whone et al. 2019).  

 



	 	 	

	 190	

 

 Figure D- 2. GDNF clinical trial outline followed in PETIC department in the University Hospital of Wales. 
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Figure D- 3. Graphs show a comparison between all striatum parts of both (R and L anatomical sides) in 
baseline vs. week 40 in both GDNF (left side) and placebo group (right side).  
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 Figure D- 4. Graphs show a comparison between putamen parts of both (R and L anatomical sides) in 
baseline vs. week 40 in both GDNF (left side) and placebo group (right side) after dividing the 
putamen’s contour into three parts: Anterior, central and posterior. 
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Figure D- 5. A comparison made after applying new methods between all striatum parts of both (R and L 
anatomical sides) in baseline vs. week 40 in both GDNF (left side) and placebo group (right side). 
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 Figure D- 6. A comparison between putamen parts of both (R and L anatomical sides) after applying 
new methods in baseline vs. week 40 in both GDNF (left side) and placebo group (right side) after 
dividing the putamen’s contour into three parts: Anterior, central and posterior. 
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Appendix E: Published Work 

Posters 

§ 7th of Septemper 2016 - British Nuclear Medicine Society BNMS Autumn Meeting, 
Bath, UK, “Improving the Receptor Binding Estimate from Patlak Plot in PET 
Imaging”, Y. Alzamil, C. Marshall, Y. Hicks, X. Yang 

§ 7th of October 2016 - Institute of Physics and Engineering in Medicine, Quantitative 
Nuclear Medicine Conference, York, UK, ““Improving the Receptor Binding Estimate 
from Patlak Plot in PET Imaging”, Y. Alzamil, C. Marshall, Y. Hicks, X. Yang 

§ 27th of June 2017 - Sensors, Signals and Imaging Symposium, Cardiff, UK, “Impact of 
Noise on Quantitative 18F-FDOPA PET Images”, Y. Alzamil, C. Marshall, Y. Hicks, X. 
Yang 

Oral presentations 

§ 11th of November 2015- Health, Technology and the Digital World HTDW seminar, 
Cardiff University, Cardiff, UK, “Positron Emission Tomography Image 
Quantification” 

§ 17th of June 2016- Health, Technology and the Digital World HTDW seminar, Cardiff 
University, Cardiff, UK, “Impact of Noise on Quantitative 18F-FDOPA Images” 

§ 19th-21st of January 2018 – 5th International Conference on BIOIMAGING 2018, 
Madeira, Portugal, “Optimising Graphical Techniques Applied to Irreversible Tracers” 

§ 19th-21st of January 2018 – 5th International Conference on BIOIMAGING 2018, 
Madeira, Portugal, “Optimising Graphical Techniques Applied to Irreversible Tracers” 

§ 5th of October 2018- Wales Research and diagnostic Imaging Center PETIC, University 
Hospital of Wales UHW, Cardiff, UK, “Quantitative Analysis in Functional PET Brain 
Imaging” 

Conference Paper 

§ Y. Alzamil, Y. Hicks, X. Yang, C. Marshall “Optimising Graphical Techniques 
Applied to Irreversible Tracers” submitted to 5th International Conference on 
BIOIMAGING 2018, Madeira, Portugal, DOI:10.5220/0006513700170026 
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Glossary 

PET: Positron Emission Tomography  
FGLS: Feasible Generalised Least Squares  
BLW: Battle-Lemarie wavelet  
3D: Three-dimensional 
2D: Two-dimensional 
SGF: Savitzky-Golay Filtering  
SE: Standard Error  
SSE: Sum-Squared error  
CT: Computed Tomography  
GDNF: Glial cell line-Derived Neurotrophic Factor  
CED: Convection-Enhanced Delivery  
PD: Parkinson’s Disease  
TACs: Time Activity Curves  
ROIs: Region of Interests 
MRI: Magnetic Resonance Imaging  
DA: Dopamine-system (DA) 
18F: Fluorine-18 radioisotope 
FDOPA: Fluorodopa 
TKM: Tracer Kinetic Modelling  
QC: Quality Control  
PMTs: Photomultiplier Tubes 
LOR: Line of Response  
SiPMs: Silicon Photomultipliers  
A-SiPM: Analogue Silicon Photomultipliers 
D-SiPM: Digital Silicon Photomultipliers 
FOV: Field of View  
AC: Attenuation Correction  
SNR: Signal-to-Noise Ratio  
FBP: Filtered Back Projection  
MLEM: Maximum Likelihood Expectation Maximization  
OSEM: Ordered Subset Expectation Maximization  
EXPLORER: EXtreme Performance Long REsearch scanneR 
FDG: Fluoro-Deoxy-Glucose 
NETs: Neuroendocrine Tumours  
AADC: Amino Acid Decarboxylase 
FDA: Fluoro-Dopamine  
COMT: Catechol-O-Methyl Transferase  
VTA: Ventral Tegmental Area  
VOIs: Volumes of Interest s 
CM: Compartmental Modelling  
SUV: Standardized Uptake Value  
GA: Graphical Analysis  
T/N: Tissue to Normal reference tissue ratio 
FUR: Fractional Uptake Rate  
NEMA: National Electrical Manufacturers Association  
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FOV: Field of View  
MTGA: Multigraphical Analysis  
QA: Quality Assurance  
IDIF: Image-Derived Input Function  
PVE: Partial Volume Effect  
PVC: Partial Volume Correction  
PSF: Point Spread Function  
GTM: Geometric Transfer Matrix  
WM: White Matter  
GM: Grey Matter  
ADHD: Attention Deficit Hyperactivity Disorder  
DAT: Dopaminergic Transporter  
3OMFD 3-O-Methyl-6-Fluoro-L-DOPA  
SPM: Statistical Parametric Mapping software  
SOR: Striatal-to-Occipital Ratio  
MNI: Montreal Neurological Institute  
DPP: Diagnostic Predictive Performance  
TOF: Time of Flight  
MC: Monte Carlo  
DICOM: Digital Imaging and Communications in Medicine  
OLS: Ordinary Least Squares  
TLS: Total Least Squares  
RFR: Robust Fitting Regression  
PETIC: Wales Research and Diagnostic PET Imaging Centre  
aCSF: Artificial Cerebral Spinal Fluid  
ARSAC: Administration of Radioactive Substances Advisory 

Committee  
FWHM: Full Width Half Maximum 
CERR: Computational Environment for Radiological Research 
FNRs: Higher False Negative Rates  
FPRs: Higher False Positive Rates  
GLLS: Generalized	Linear	Least	Squares	 
WLS:	 Weighted Least Squares 	
RMSE:	 Root Mean Squared Error 	
MSE:	 Mean Squared Error	
ANOVA:	 Analysis of Variance 	
GADF:	 Gradient Anisotropic Diffusion Filter 	
CADF:	 Curvature Anisotropic Diffusion Filter	
DW:	 Daubechies’ Wavelet 	
BLW:	 Battle-Lemarie Wavelet 	
MAF:	 Moving Average Filtering 	
SGF: Savitzky-Golay Filtering  
PCF:	 Polynomial Curve Fitting 	
MF:	 Median Filtering 	
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Software and analysis tools website 

GitHub 

https://github.com/explore 

dPETSTEP 

https://github.com/CRossSchmidtlein/dPETSTEP 

MATLAB 

https://ch.mathworks.com/products/matlab.html 

PMOD 

https://www.pmod.com/web/ 

TeleHERMES 

http://www.medicalexpo.com/prod/hermes-medical-solutions-
inc/product-100595-677508.html 
	


