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Evaluating the application of Pareto navigation guided automated radiotherapy treatment planning to prostate cancer 1 
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Abstract 5 

Background and purpose: Current automated planning methods do not allow for the intuitive exploration of clinical trade-offs 6 

during calibration. Recently a novel automated planning solution, which is calibrated using Pareto navigation principles, has been 7 

developed to address this issue. The purpose of this work was to clinically validate the solution for prostate cancer patients with 8 

and without elective nodal irradiation.  9 

Materials and methods: For 40 randomly selected patients (20 prostate and seminal vesicles (PSV) and 20 prostate and pelvic 10 

nodes (PPN)) automatically generated plans (VMATAuto) were compared against plans created by expert dosimetrists under clinical 11 

conditions (VMATClinical) and no time pressures (VMATIdeal).  Plans were compared through quantitative comparison of dosimetric 12 

parameters and blind review by an oncologist. 13 

Results: Upon blind review 39/40 and 33/40 VMATAuto plans were considered preferable or equal to VMATClinical and VMATIdeal 14 

respectively, with all deemed clinically acceptable. Dosimetrically, VMATAuto, VMATClinical and VMATIdeal were similar, with observed 15 

differences generally of low clinical significance. Compared to VMATClinical, VMATAuto reduced hands-on planning time by 94% and 16 

79% for PSV and PPN respectively. Total planning time was significantly reduced from 22.2 mins to 14.0 mins for PSV, with no 17 

significant reduction observed for PPN. 18 

Conclusions: A novel automated planning solution has been evaluated, whose Pareto navigation based calibration enabled clinical 19 

decision-making on trade-off balancing to be intuitively incorporated into automated protocols. It was successfully applied to two 20 

sites of differing complexity and robustly generated high quality plans in an efficient manner.  21 

Introduction 22 

Intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) treatment plan generation is a complex 23 

process, traditionally performed manually by medical physicists or specialist dosimetrists. Manual methods can be time consuming 24 

and dependent on the treatment planner’s experience [1]. A solution to this problem is automated planning, where high quality 25 

plans are generated autonomously with minimal operator interaction [2–9].  26 

A key challenge in automated planning is incorporating treatment planners’ or oncologists’ clinical experience and decision-making 27 

within the autonomous process. A number of different methods have been employed: knowledge based planning (KBP) utilises 28 

databases of previous clinical plans to correlate the relationship between patient geometry and the resultant dose distribution, 29 

which then informs the optimisation of new patients [3,10–13]; sequential ε-constraint planning (εc) optimises plans based on a 30 

list of clinically prioritised goals [2,7,8,14–16]; and protocol based automatic iterative optimisation (PB-AIO) adapts optimisation 31 

parameters during the planning process, tailoring the optimisation to the individual patient [4,17–19]. Whilst these techniques 32 

have been successfully applied to automated planning, a method for intuitive exploration of different ‘trade-off’ options during 33 

their calibration has not yet been demonstrated.   34 

Recently we developed a fully automated treatment planning solution, which is uniquely calibrated using Pareto navigation 35 

principles. This novel calibration process allows differing trade-off options to be intuitively explored, ensuring clinical experience 36 

and decision-making can be effectively incorporated into the autonomous plan generation process. Utilisation of Pareto navigation 37 

techniques on a per patient basis has been shown to improve congruence between the oncologist’s clinical preference and the 38 

final clinical plan [20], improve efficiency [20–22], and enable novice operators to generate high quality plans [21]. It is anticipated 39 

that utilising such an approach to inform and calibrate an automated solution would have similar benefits and provide significant 40 

advantages over current methods, which are reliant on trial and error, or calibration against historical datasets.  41 

In a previous publication we presented in detail the algorithms behind our automated approach, demonstrated the calibration 42 

process for the tumour site of prostate and seminal vesicles (PSV), and presented results from a limited proof of principle pilot 43 

study on 10 patients [23]. The objective of this study was to additionally calibrate the solution for the complex site of prostate and 44 

pelvic nodes (PPN), and for both PSV and PPN perform a comprehensive clinical evaluation comparing this new automated 45 

technique with plans generated manually by expert dosimetrists. It is hypothesised that this novel approach to calibration will 46 

result in high quality plans that are closely aligned with oncologist clinical preferences.   47 

Methods and Materials  48 

Patient Selection and Planning Protocol 49 



Calibration for the tumour site of PPN was performed on a dataset of 20 previously treated patients at Velindre Cancer Centre; 10 50 

randomly selected from patients treated between July and December 2015 and 10 selected from a previous research database of 51 

patients treated between June and September 2014. The subsequent evaluative study was performed on an independent 52 

validation dataset of 40 subjects (20 PSV and 20 PPN) which were randomly selected from patients treated at Velindre Cancer 53 

Centre between January and June 2016.  54 

Patients were planned on computed tomography scans with 3mm slice thickness. Prostate, seminal vesicles (SV), rectum, bladder, 55 

bowel, pelvic nodes (PPN only) and an optional pelvic node boost volume covering gross nodal disease (PPN only) were delineated 56 

prior to planning. The following planning target volumes (PTV) were subsequently generated: prostate, pelvic nodes and pelvic 57 

node boost expanded by 5 mm (6 mm craniocaudally) to form PTV60, PTV44 (PPN only)  and PTV50 (PPN only)  respectively; and 58 

prostate + SV expanded isotropically by 10 mm to form PTV48. For automated plan generation an additional volume, 59 

BowelBagRegion, was manually delineated for PPN, with details provided in the supplementary file S1.    60 

Treatments were prescribed for 20 fractions using a simultaneous integrated boost (SIB) technique, with the PTV’s suffix denoting 61 

its prescribed dose in Gy. The local clinical planning goals, adapted from the UK clinical trial PIVOTAL [24], are detailed in the 62 

supplementary file S2.  All plans in this study were generated within RayStation (v4.99, Raysearch Laboratories, Stockholm) using 63 

identical computer clients, treatment units (Elekta Agility, Elekta Ltd, Crawley) and VMAT arc configurations (6MV single 360° arc 64 

for PSV; 6MV dual 360° arc for PPN). 65 

Automated System Overview 66 

Automated planning was performed using EdgeVcc: an ‘in-house’ automated treatment planning solution, implemented within 67 

RayStation using its scripting functionality. This section provides an brief overview of the system, with full technical details 68 

provided by Wheeler et al [23]. 69 

Prior to automated plan generation a site-specific ‘AutoPlan protocol’ must be created and calibrated. The AutoPlan protocol 70 

specifies the treatment modality, beam arrangement and planning goals for a given tumour site. Planning goals are split into three 71 

priority levels: primary normal tissue goals (P1), target goals (P2) and trade-off goals (P3). The planning goals used in this study for 72 

PPN are presented in the supplementary file S3.  73 

Planning goals do not require any user defined optimisation weighting factors, instead weights are automatically assigned during 74 

plan generation through one of two processes. For P1 and P2 goals, where the handling of competing clinical trade-offs is explicitly 75 

defined (i.e. target coverage is compromised to maintain normal tissue goals), weights are derived from a set of hard-coded 76 

nominal weights, which are common to all tumour sites. When derived, weighting factors are scaled according to the volume of 77 

their corresponding region of interest to account for the observation that to obtain the same effect, small volumes require lower 78 

weighting factors than large volumes.  For P3 goals, interaction between conflicting trade-offs is complex, site specific and requires 79 

careful balancing of competing clinical demands. P3 nominal weights are therefore derived through an intuitive Pareto navigation 80 

based calibration process, where the operator sequentially explores differently weighted options of each P3 goal using an 81 

interactive slider GUI, with DVHs and dose distributions updated in real-time to inform the decision-making. The calibration is 82 

initially performed on a single patient, with the resultant solution tested against the remaining patients in the calibration cohort 83 

to ensure robustness against the whole population. Where there are large inter-patient anatomical variations, repeat navigations 84 

over population outliers may be required to improve the robustness of the solution. In this situation the operator decides if the 85 

final weighting is based a particular patient, or averaged over multiple patients. Once calibrated, a single high quality treatment 86 

plan can be automatically generated for delineated patients within that tumour site.  87 

Treatment plans are generated using RayStation’s native optimiser with optimisation objectives derived from the defined planning 88 

goals. Plan optimisation is based on a PB-AIO framework where the target values and weights of P3 related objectives are 89 

dynamically adjusted during the optimisation, such that the plan is tailored to the individual patient. Implementation of ‘dynamic 90 

objectives’ ensures P3 goals are always acted on by the optimiser and thus minimised, and additionally is hypothesised to enable 91 

a common set of calibration weights to be applicable across all patients for a given site. 92 

Automated Plan Generation 93 

Using the calibration patient dataset an AutoPlan protocol for PPN was created and calibrated. The final PPN protocol and 94 

previously calibrated PSV protocol [23] were used to generate a single automated plan (VMATAuto) for each patient in the 95 

corresponding independent validation datasets. Plans were reviewed for clinical acceptability, with manual dose scaling 96 

performed if required. All work was performed by a single clinical scientist (PW). 97 

Study Design and Statistical Analysis 98 

To benchmark VMATAuto, experienced IMRT/VMAT dosimetrists (CJ for PSV; OW for PPN) generated two manual treatment plans 99 

(VMATClinical & VMATIdeal) for each patient in the validation dataset. VMATClinical was generated under simulated clinical conditions 100 

following standard protocols, which utilise an efficient template-based class-solution methodology. As per clinical practice the 101 

dosimetrist ceased optimising once a clinically acceptable plan was generated. Then, in the absence of time pressure, the 102 



dosimetrist used their knowledge and expertise to improve VMATClinical as far as they deemed possible to produce an ‘ideal’ 103 

treatment plan, VMATIdeal. 104 

Prior to manual plan generation and the calibration of both AutoPlan protocols, all operators were briefed on trade-off 105 

prioritisation via discussions with a consultant oncologist assigned to each clinical site (JS for PSV; NP for PPN). For all three 106 

techniques operator hands-on and total planning times were recorded. 107 

VMATAuto was compared to both VMATClinical and VMATIdeal in terms of plan quality and planning efficiency. Plan quality was 108 

quantitatively assessed using local clinical planning goals; and D98%, D2% and Paddick’s Conformity Index (CI) [25] for each target 109 

volume. Two-sided Wilcoxon matched-paired signed-rank tests assessed the statistical significance of any differences in plan 110 

quality and timing metrics. In addition, a blinded qualitative assessment was performed by the assigned oncologist to: score overall 111 

plan quality using a five point scale (1-unacceptable, 2-poor, 3-satisfactory, 4-good, 5-excellent); establish the clinical acceptability 112 

of each plan; and rank the trio of plans in order of preference, with clinically equivalent plans given equal rank.  113 

Results 114 

Calibration for the complex site of PPN was challenging and iterative due to the high number of competing trade-offs and large 115 

inter-patient variability in OAR volumes. Over 40 individual navigations across six patients were performed. During PPN calibration 116 

the hard coded P1 nominal weight for primary conformality goals was considered suboptimal and manually increased to match 117 

the weight for P1 primary OAR goals. The post calibration nominal weights are presented in the supplementary file S4. 118 

39/40 VMATAuto plans were generated with no user intervention; for one PPN patient the plan MU was scaled by 0.3% to ensure 119 

PTV44 D99% was within the local clinical planning goal. A summary of the quantitative plan comparison is presented in Table 1 120 

and Fig. 1, with example dose distributions presented in Fig. 2. For both PPN and PSV, VMATIdeal led to small reductions in all OAR 121 

metrics when compared to VMATClinical and across all three techniques observed differences were generally considered of low 122 

clinical significance. For PSV VMATAuto, the noteworthy statistically significant (p<0.05) differences with VMATIdeal and VMATClinical 123 

were: reductions in rectum mean dose and V24.3Gy, increases in the majority of bladder metrics, improved (increased) CI 124 

compared to VMATClinical, and decreased CI compared to VMATIdeal. For PPN VMATAuto the noteworthy differences (p<0.05) were: 125 

reduction in bowel V36.5Gy; increased mean bladder dose; increased PTV48 CI; and when compared to VMATClinical only, decreased 126 

rectum V24.3Gy. For PSV, automation led to a moderate increase in plan MU of 7% and 9% compared to VMATIdeal and VMATClinical 127 

respectively, which may be indicative of increased modulation. 128 

All 120 plans were considered acceptable upon blind review by the oncologist, with plan quality scores either good (4) or excellent 129 

(5). Analysis of the plan ranking determined that 39/40 and 33/40 of VMATAuto plans were considered preferable or equal to 130 

VMATClinical and VMATIdeal respectively. When compared to VMATClinical, hands-on planning time was significantly reduced by 94% 131 

and 79% for PSV and PPN respectively. Total planning time was significantly reduced from 22.2mins to 14.0mins for PSV, with no 132 

significant reduction observed for PPN.  133 

Discussion 134 

In this study a novel automated treatment planning solution, which is directly calibrated using Pareto navigation principles, has 135 

been robustly validated for prostate cancer. The resultant automated protocols were rigorously evaluated against plans generated 136 

by expert dosimetrists, with favourable results towards automation. Furthermore the solution’s robustness to treatment site 137 

complexity was validated through application to PPN; a treatment site with up to four PTV prescription levels and wide inter-138 

patient OAR volume variation. 139 

In our previous work we demonstrated that for the simple site of PSV, Pareto navigation enabled both the intuitive exploration of 140 

competing trade-offs and the creation of a high quality solution in a time efficient manner; benefits which are congruent with 141 

Pareto navigation applied on a per patient basis [20–22]. In this study the generalisability and versatility of the calibration 142 

methodology was demonstrated through successful application to PPN, a site of significant complexity. As with PSV, the intuitive 143 

exploration of trade-offs was considered a key benefit in ensuring alignment between the final automated solution and the 144 

oncologist’s clinical aims. However, due to wide variations in inter-patient anatomy the calibration was more iterative and 145 

challenging, with additional navigations required over population outliers. This is in contrast to PSV where navigation over a single 146 

patient was sufficient for successful protocol calibration [23].  147 

During the calibration process several potential improvements in the implemented methodology were identified. Firstly, the hard-148 

coded objective weights for P1 and P2, which were based on previous clinical experience, may need further refining, as evidenced 149 

by the requirement to increase the nominal weight for P1 primary conformality goals for PPN. Secondly, challenges during the PPN 150 

calibration indicated that the optimum calibration weights for a given patient were still correlated with anatomical geometry, 151 

even when objective positions and weights were dynamically adjusted. Further work will include assessing and correcting for this 152 

correlation using machine learning. 153 

The evaluative study demonstrated that when compared to manual planning under clinical conditions, VMATAuto was the superior 154 

technique both in terms of quality and efficiency. In addition, results indicate VMATAuto is non-inferior to manual planning by 155 

expert dosimetrists under no time pressure. In general, dosimetric differences between VMATIdeal and VMATAuto were small, which 156 



was considered supportive evidence that implementation of ‘dynamic objectives’ within the automated planning process were 157 

yielding plans which were, or were near to, Pareto optimal.  158 

Interestingly clinical preference towards automation was stronger for the more complex site of PPN. It is hypothesised that for 159 

PPN the high degrees of freedom within the optimisation problem made the manual trial and error exploration of trade-offs 160 

difficult. In contrast, implementation of Pareto navigation techniques allowed intuitive exploration of these trade-offs and whilst 161 

calibration was challenging, this approach resulted in plans more closely aligned to the clinician’s preference. Improved 162 

congruence with the clinician’s clinical preference is a key benefit of Pareto navigation, which has been demonstrated on a per-163 

patient level [20] and this work supports the hypothesis that similar benefits can be realised by applying this technique at a patient 164 

cohort level.  165 

A potential limitation of this study is its tightly controlled study design, in that for each treatment site all manual planning was 166 

performed by a single treatment planner, and guidance on trade-off balancing and the subsequent blind review was performed 167 

by a single oncologist. The study was designed such that inter-observer bias was minimised, however as a consequence results 168 

may not be directly translatable to clinical practice where inter-observer variability in manual plan quality and oncologist trade-169 

off preferences may be significant.   170 

Compared to existing methods of calibrating automated solutions, Pareto navigation presents a clear alternative. For both εc and 171 

PB-AIO, automated solution calibrations are reliant on trial and error. It is envisaged that the methods presented in this study 172 

would enhance many of the existing εc and PB-AIO solutions and bring the advantages of intuitive trade-off exploration into the 173 

wider field of automated planning. When compared to KBP, the employed calibration methodology benefits from having no 174 

requirement for a database of reference treatment plans. Automated solutions are therefore not influenced by the quality or 175 

quantity of historical plans and new techniques can be developed without the time consuming manual creation of a training 176 

dataset. In addition, it is envisaged that due to flexibility in the calibration process this approach is ideal for successful 177 

implementation in radiotherapy centres with differing clinical protocols. 178 

When comparing to previously published studies, for the tumour site of PSV a thorough summary has recently been presented by 179 

Heijmen et al [26]; with 12 studies identified as demonstrating small differences between automated and manual plans 180 

[2,10,18,27–35], and only their more recent multi-centre study showing the overall dosimetric superiority of automation through 181 

reduced rectum doses [26]. For PPN, to the authors’ knowledge two studies have been published. The first being a methodological 182 

paper presenting results from a single patient [36], which will not be discussed further, and the second a 30 patient evaluative 183 

study comparing automated planning using εc with manual planning under no time pressures [8]. The study demonstrated a clear 184 

preference towards automated planning, with notable improvements in a wide range of dosimetric parameters. Direct comparison 185 

between these examples in the literature and results from the study presented in this manuscript is not possible or appropriate 186 

due to the wide range of confounding factors including: patient selection criteria, planner and institutional expertise, and clinical 187 

protocol complexity. However, what can be ascertained is that results from this study, which demonstrate that automated 188 

planning is non-inferior to expert manual planning, are consistent with existing literature and supportive of Pareto navigation 189 

guided automated planning. Furthermore, in a recent review on automated planning by Hussein et al [37] only two out of the 81 190 

identified evaluative studies were for complex pelvis treatments (SIB technique with nodal irradiation) [8,38]. Our work builds on 191 

this limited evidence base, providing further data in support of automation for even the most complex tumour sites. 192 

Conclusions 193 

EdgeVcc is a versatile new automated planning solution whose unique Pareto navigation based calibration methodology enabled 194 

clinical decision-making on trade-off balancing to be intuitively incorporated within automated protocols. It has been successfully 195 

applied to two sites of differing complexity and robustly generates high quality plans in an efficient manner.  196 
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Table 1 

Dosimetric comparison of VMATAuto, VMATClinical and VMATIdeal for the treatment sites PSV and PPN (mean ± standard deviation) 

    SVP PPN 

  Metric VMATAuto VMATClinical VMATIdeal VMATAuto VMATClinical VMATIdeal 

PTV60 D98% (Gy) 57.9 ± 0.1 57.8 ± 0.2 57.7 ± 0.1 57.8 ± 0.1 58.0 ± 0.1 57.9 ± 0.1 

  D2% (Gy) 61.6 ± 0.1 61.7 ± 0.2 61.7 ± 0.2 61.7 ± 0.1 61.9 ± 0.2 61.9 ± 0.2 

  CI 0.86 ± 0.01 0.84 ± 0.03 0.88 ± 0.02 0.82 ± 0.02 0.81 ± 0.03 0.81 ± 0.03 

PTV50 D98% (Gy)                   48.2 ± 0.2 48.0 ± 0.3 47.9 ± 0.2 

  D2% (Gy)                   52.3 ± 1.7 52.0 ± 1.0 52.1 ± 0.9 

  CI                   0.41 ± 0.05 0.41 ± 0.07 0.42 ± 0.07 

PTV48  D98% (Gy) 46.8 ± 0.5 46.8 ± 0.4 46.5 ± 0.3 46.6 ± 0.6 46.7 ± 0.4 46.6 ± 0.4 

  D2% (Gy) 58.9 ± 0.2 59.0 ± 0.3 58.6 ± 0.3 59.5 ± 0.3 59.6 ± 0.3 59.6 ± 0.3 

  CI 0.85 ± 0.01 0.82 ± 0.01 0.87 ± 0.01 0.65 ± 0.05 0.59 ± 0.07 0.60 ± 0.07 

PTV44 D98% (Gy)                   42.3 ± 0.1 42.4 ± 0.1 42.4 ± 0.1 

  D2% (Gy)                   47.4 ± 1.6 47.8 ± 1.7 47.7 ± 1.8 

  CI                   0.82 ± 0.02 0.81 ± 0.02 0.81 ± 0.02 

Rectum V24.3Gy (%) 36.7 ± 10.1 40.8 ± 11.1 38.0 ± 9.3 53.3 ± 9.3 59.3 ± 7.3 56.2 ± 8.1 

  V40.5Gy (%) 20.4 ± 7.2 20.4 ± 7.4 20.0 ± 7.2 24.0 ± 6.1 23.8 ± 6.4 23.1 ± 6.5 

  V52.7Gy (%) 8.5 ± 3.7 8.1 ± 3.6 8.0 ± 3.5 10.5 ± 3.0 10.0 ± 2.9 9.6 ± 2.9 

  V60.8Gy (%) 0.0 ± 0.1 0.0 ± 0.1 0.0 ± 0.1 0.1 ± 0.1 0.0 ± 0.1 0.0 ± 0.1 

  DMean (Gy) 22.7 ± 3.9 25.1 ± 3.5 23.4 ± 3.5 29.5 ± 2.7 30.4 ± 2.6 29.7 ± 2.6 

Bladder V40.5Gy (%) 19.2 ± 10.7 18.3 ± 9.6 17.4 ± 9.5 24.7 ± 10.4 23.7 ± 8.5 23.7 ± 8.5 

  V52.7Gy (%) 8.8 ± 5.9 8.3 ± 5.2 7.9 ± 5.2 7.4 ± 4.8 7.6 ± 4.8 7.5 ± 4.7 

  V56.8Gy (%) 6.1 ± 4.2 5.7 ± 3.8 5.6 ± 3.9 4.9 ± 3.1 5.3 ± 3.5 5.3 ± 3.5 

  DMean (Gy) 23.0 ± 9.1 22.2 ± 8.6 21.6 ± 8.6 33.0 ± 3.9 31.3 ± 3.5 31.1 ± 3.5 

Bowel V36.5Gy (cc) 0.9 ± 2.0 0.9 ± 1.9 0.7 ± 1.6 48.6 ± 35.9 53.9 ± 38.7 51.2 ± 38.0 

  V44.6Gy (cc) 0.3 ± 0.7 0.3 ± 0.8 0.3 ± 0.8 3.6 ± 6.5 3.5 ± 6.0 3.3 ± 5.6 

  V52.7Gy (cc) 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

  DMean (Gy) 8.6 ± 4.7 8.4 ± 4.7 7.7 ± 4.2 18.7 ± 2.6 19.6 ± 2.6 19.3 ± 2.4 

Patient Outline D1.8cm3 (Gy) 61.6 ± 0.1 61.7 ± 0.2 61.7 ± 0.2 61.7 ± 0.1 61.9 ± 0.3 61.9 ± 0.3 

Plan MU MU 616 ± 43 563 ± 58 575 ± 57 714 ± 60 695 ± 69 711 ± 68 

Planning Time Hands on time (mins) 1.3 ± 0.3 22.2 ± 5.3 85.4 ± 39.9 4.4 ± 0.5 20.6 ± 6.3 65.4 ± 21.1 

  Total time (mins) 14.0 ± 1.4 22.2 ± 5.3 85.4 ± 39.9 36.4 ± 3.1 41.8 ± 11.4 200.0 ± 53.1 

Plan Quality Score 5.0 ± 0.2 4.6 ± 0.5 4.9 ± 0.3 5.0 ± 0.2 4.8 ± 0.4 4.8 ± 0.4 

Plan Ranking vs  Plans Superior (%)   5% 15%   0% 20% 

VMATAuto Plans Equivalent (%)   35% 55%   35% 15% 

  Plans Inferior (%)   60% 30%   65% 65% 

Statistical significance: VMATClinical and VMATIdeal dosimetric and timing data are presented in bold where statistically significant differences 

(p<0.05) with VMATAuto are observed.  

CI: Paddick’s Conformity Index for the specified PTV.                                 
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Figure Legends 301 

 302 

Fig. 1. Comparison of rectum, bladder and bowel dosimetric plan parameters between automatically generated plans (VMATAuto) 303 

and plans generated by expert dosimetrists under no time pressure (VMATIdeal).  304 

Fig. 2.  DVH and dose distributions for patient 1 in the PPN and PSV validation cohort.  (A) PPN VMATAuto dose distribution. (B) PPN 305 

VMATIdeal dose distribution. (C) PSV VMATAuto dose distribution. (D) PSV VMATIdeal dose distribution. (E) PPN DVH for VMATAuto 306 

(solid line) and VMATIdeal (dotted line). (F) PSV DVH for VMATAuto (solid line) and VMATIdeal (dotted line). Note: BowelBagRegion 307 

ROI omitted from dose distribution images to improve clarity. 308 
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