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Abstract 

Numerous cytokines have been implicated in the pathogenesis of inflammatory diseases, 

and their dysregulation is a main feature of rheumatoid arthritis (RA). Cytokines stimulate 

signal transduction through several intracellular pathways, including Janus kinase 

(JAK)/signal transducers and activators of transcription (STAT) pathways, leading to changes 

in cell activation, proliferation and survival. Consequently, agents that selectively target 

elements of the JAK/STAT pathways have received significant attention in recent years as 

potential new treatments for the disease. Baricitinib, an oral selective inhibitor of JAK1 and 

JAK2, offers an effective treatment for RA in a wide range of patients. The in vitro selectivity 

of different JAK inhibitors is an important consideration given that key cytokines, growth 

factors and hormone receptors involved in the pathogenesis of RA signal through specific 

JAKs. However, it is complex and far from understood how the in vitro effects of JAK 

inhibitors extrapolate into in vivo and clinical effects in individual patients. This narrative 

review article focuses on the clinical efficacy and safety of baricitinib, but also provides an 

overview of its mechanism of action in relation to JAK1/JAK2 signalling and discusses the 

possible clinical implications in patients with RA.  

  

Indexing terms: Rheumatoid arthritis, cytokines, JAK inhibitors, baricitinib, mechanism of 

action 
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Introduction 

Janus kinases (JAKs) play an essential role in the intracellular signalling pathways of various 

cytokines, colony-stimulating factors and hormones involved in the pathogenesis of immune-

related diseases, including rheumatoid arthritis (RA) (1,2,3). Thus, agents that selectively 

inhibit JAKs have received significant attention in recent years as potential new treatments 

for the disease.  

 

This narrative review focuses on the clinical efficacy and safety of the selective JAK1 and 

JAK2 inhibitor baricitinib (4,5) and provides an overview of its mechanism of action and the 

possible clinical implications in patients with RA. The review was written by experts in the 

field and reflects their experience and perspective. It was developed with the aid of 

references identified through non-systematic searches of the internet, including PubMed and 

Google Scholar, using the search terms ‘rheumatoid arthritis’ and ‘baricitinib’ for the time 

period January 2005 to July 2018.  

 

The role of cytokines in inflammation and their potential as 

extracellular therapeutic targets in RA 

In RA, a dysregulated systemic immune response causes the infiltration of immune cells into 

the joint synovium (6), resulting in the overproduction of pro-inflammatory cytokines (Table 1) 

(7). These attract further inflammatory and immune cells, stimulating the release of additional 

cytokines, chemokines and matrix metalloproteinases, which cause joint destruction (12). 

The inhibition of pro-inflammatory cytokines or their receptors therefore provides a 

therapeutic opportunity for patients with RA (7), as already demonstrated by the development 

of inhibitors of tumour necrosis factor (TNF)- and interleukin (IL)-6. More recently, RA 

research has focused on intracellular pathways rather than on the extracellular milieu as 

potential targets for immune modulation (13). 
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JAK/STAT intracellular signalling pathways in RA 

Attempts to develop therapies that target major intracellular signal transduction pathways for 

inflammatory cytokines in RA, such as the p38 mitogen-activated protein kinase (MAPK) and 

spleen tyrosine kinase (SYK) pathways, have either proved unsuccessful because of safety 

concerns or moderate efficacy, or have yet to be proven effective (1,14–16). By contrast, 

agents that target JAK/signal transducers and activators of transcription (STAT) signalling 

pathways have shown much greater promise as RA therapies. The JAK family of cytoplasmic 

protein tyrosine kinases comprises JAK1, JAK2, JAK3 and tyrosine kinase 2 (Tyk2). JAKs 

bind to type l and type ll cytokine receptors and transmit extracellular cytokine signals to 

STATs (2,17). The STATs become activated and translocate to the nucleus, where they 

modulate the transcription of effector genes important for cell proliferation, differentiation, 

survival and death (2,18). JAKs work in pairs (hetero- or homodimers), and different 

cytokines use different JAK pairs for signalling (Fig. 1). Figure 2 illustrates the seven key 

steps to cytokine signalling via JAK/STAT pathways.  

JAK1 and JAK2 are expressed ubiquitously (3,18,21) and mediate the signalling of several 

key cytokines in RA, including IL-6, IL-23, granulocyte colony-stimulating factor (G-CSF), 

granulocyte-macrophage colony-stimulating factor (GM-CSF), interferons (IFNs) and 

erythropoietin (1). By contrast, JAK3 is confined to haematopoietic cells, such as myeloid 

and lymphoid cells, and is primarily involved in T-cell and natural killer (NK) cell signalling, 

maturation and immune function (3,21,22). Despite its ubiquitous distribution, functional 

deficits related to JAK2 signalling in knockout mice have a severe impact on haematopoietic, 

erythroid and thrombopoietic cells (23,24), whereas deletions of JAK3 in mice and humans 

principally cause lymphopoietic defects that manifest as severe combined immunodeficiency 

(3,18,21,22). 

 

Introduction to baricitinib  
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Pharmacodynamics 

Baricitinib is an oral selective inhibitor of JAK1 and JAK2, with half maximum inhibitory 

concentration (IC50) values of 5.9 ± 0.9 nM for JAK1, 5.7 ± 1.7 nM for JAK2, ≈560 nM for 

JAK3 and 53 nM for Tyk2 (4,25). Baricitinib is a competitive adenosine triphosphate (ATP) 

kinase inhibitor, and blocks the signalling of certain cytokines by preventing the transfer of 

phosphate from ATP to JAKs and hence JAK activation (4,26). 

In vitro assays using human peripheral blood mononuclear cells showed that baricitinib 

inhibited the signalling of several JAK1/JAK2-dependent cytokines, including IL-6 signalling 

in cluster of differentiation (CD)-4+ T cells and monocytes (5,27,28), and IFN (JAK1/JAK2, 

JAK1/Tyk2) signalling in CD4+ T cells, NK cells and monocytes (27,28). Baricitinib also 

inhibited the signalling of a number of JAK2-dependent cytokines and hormones, including 

IL-23 (JAK2/Tyk2) signalling in CD4+ T cells, G-CSF (JAK2/Tyk2) and GM-CSF (JAK2/JAK2) 

signalling in monocytes (5,28), and erythropoietin signalling in CD34+ T cells (JAK2/JAK2). 

However, it was less active against JAK3-dependent cytokines, such as IL-21 (JAK1/JAK3) 

and IL-15 (JAK1/JAK3) (5).  

Pharmacokinetics 

Baricitinib is rapidly absorbed after oral administration, attaining peak plasma concentrations 

within 1.5 hours of dosing (29). It has a terminal half-life of approximately 14 hours, which 

supports once-daily dosing (30,31). Food does not affect the extent of absorption (29). 

Baricitinib is excreted in the urine largely unchanged (64.1%) (29) without significant hepatic 

metabolism (32). However, dose adjustment is required when creatinine clearance is 

between 30 and 60 mL/minute, and it is not recommended for use if creatinine clearance is 

<30 mL/minute (32). In the USA, baricitinib is not recommended in patients with an estimated 

glomerular filtration rate of <60 mL/minute/1.73m2 (33). 

Potential drug interactions 
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Baricitinib acts as a substrate for numerous renal transporter proteins, such as organic anion 

transporter (OAT)-3 and P-glycoprotein (P-gp). Theoretically, strong OAT3 inhibitors, such as 

probenecid, and the less potent OAT3 inhibitors ibuprofen, diclofenac and leflunomide, could 

affect the plasma exposure of baricitinib. However, physiologically based pharmacokinetic 

modelling predicted no increase in baricitinib exposure with diclofenac and only a small 

increase in exposure with ibuprofen (34). Conversely, coadministration with probenecid 

doubled baricitinib exposure (34,35); thus, a maximum dose of baricitinib 2 mg once daily is 

recommended when coadministered with probenecid. Dedicated interaction studies between 

leflunomide and baricitinib have not been conducted, thus caution should be used when 

these drugs are given concomitantly (32). The pharmacokinetics of baricitinib were 

unaffected by coadministration with methotrexate (MTX) and vice versa (35). 

Baricitinib in RA: from development to clinical practice 

Pre-clinical studies 

Effect of baricitinib on joints at the cellular level 

Cytokine signalling via JAKs plays an important role in osteoclast formation, a process 

regulated by osteoblasts through the cytokines IL-6, IL-11, leukaemia inhibitory factor (LIF) 

and receptor activator of nuclear factor κ-light-chain-enhancer of activated B cells ligand 

(RANKL) (36). In vitro studies using murine osteoclasts and osteoblasts showed that 

baricitinib has a minimal direct effect on osteoclasts but inhibits their formation by 

suppressing 1,25-dihydroxyvitamin D3 and prostaglandin E2-induced secretion of IL-6, IL-11 

and LIF and expression of RANKL from osteoblasts via the gp130/JAK signalling pathway, 

which is dependent on JAK1 and JAK2 (36). 

Fibroblast-like synoviocytes have been implicated in the pathogenesis of RA, and 

biochemical studies have shown that baricitinib inhibits IFN-induced activation of focal 

adhesion kinase (FAK-Y925), an enzyme involved in the migration of these cells (37). The 

inhibitory action of baricitinib on osteoblast RANKL expression and fibroblast-like synoviocyte 
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migration may, in part, explain its efficacy in preventing inflammation and joint damage 

(36,37). 

Effect of baricitinib on joints in vivo 

In a rat model of adjuvant-induced arthritis, treatment with baricitinib 10 mg/kg for 14 days 

significantly reduced disease severity, as early as day 2, as well as joint inflammation, ankle 

width and bone resorption in a dose-dependent manner compared with vehicle-treated 

animals. Microcomputed tomography imaging showed that baricitinib treatment prevented 

the joint destruction seen in vehicle-treated animals in the ankles and tarsals. Results were 

similar in a mouse model of collagen-induced arthritis (4). 

Clinical studies: efficacy and safety 

The efficacy and safety of baricitinib in RA have been extensively evaluated in a clinical 

study programme including 19 clinical pharmacology studies, three phase II studies (38–40), 

four phase III studies (RA-BEGIN (41), RA-BEAM (42), RA-BUILD (43), RA-BEACON (44) 

and one ongoing long-term extension study (RA-BEYOND; NCT01885078).  

Efficacy 

Results from the phase III study RA-BEGIN (41) showed that baricitinib 4 mg once daily was 

superior to MTX in patients with early active RA who were biologic disease-modifying anti-

rheumatic drug (bDMARD)-naïve and had no or limited exposure to conventional synthetic 

DMARDs (csDMARDs). In RA-BEAM (42), baricitinib 4 mg with background MTX also 

proved superior to adalimumab 40 mg biweekly in patients with an inadequate response to 

MTX for specific predefined efficacy outcomes (Table 2). In addition, baricitinib 4 mg in 

combination with MTX significantly reduced radiographic joint damage progression compared 

with placebo in patients with an inadequate response to MTX (42) and compared with MTX in 

bDMARD-naïve patients with limited or no exposure to csDMARDs (41). Both baricitinib 2 mg 

and 4 mg produced statistically significant improvements in efficacy outcomes compared with 

placebo in patients with an inadequate response, intolerance or a contraindication to 
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csDMARDs or TNF inhibitors (43,44). Higher doses of baricitinib (7, 8 and 10 mg) did not 

provide additional clinical benefit (38,39).  

In RA-BEYOND, response rates at 96 weeks were similar to or greater than those observed 

at weeks 12 and 24 in the original phase III studies, demonstrating a durable response (45). 

In RA-BEYOND, patients receiving baricitinib 4 mg once daily for ≥15 months who had 

achieved sustained low disease activity or remission (Clinical Disease Activity Index [CDAI] 

score ≤10 in RA-BEYOND, ≤2.8 in RA-BEGIN) for ≥3 months without prior rescue were 

blindly re-randomised to continue with baricitinib 4 mg once daily (n=281) or to step down to 

baricitinib 2 mg once daily (n=278). At 48 weeks after randomisation to taper, double-blind 

dose reduction to 2 mg once daily was associated with modest but statistically significant 

increases in disease activity across a number of measures compared with patients who 

continued with baricitinib 4 mg. However, most patients (in both the continued 4-mg and 

step-down 2-mg groups) retained a state of low disease activity or remission, or re-captured 

disease control with return to baricitinib 4 mg (46). 

Safety  

The safety of baricitinib was evaluated during up to 5.5 years of treatment in an integrated 

safety analysis (data cut-off 1 September 2016) of 3,492 patients with RA with 6,637 patient 

years of exposure (PYE). The analysis was based on nine studies, including four phase III 

studies, three phase II studies, one phase Ib study and RA-BEYOND. Among the 3,492 

patients who received a dose of baricitinib (All-Bari-RA analysis set), the incidence rate (IR) 

of serious adverse events (including death) was 9.0/100 PYE, and the mortality IR was 

0.33/100 PYE (47,48). The IR for serious infections was similar between placebo and 

baricitinib 4 mg (Table 3). The most common serious infections were pneumonia (IR 0.5/100 

PYE), herpes zoster (IR 0.4/100 PYE), urinary tract infections (IR 0.3/100 PYE) and cellulitis 

(IR 0.1/100 PYE) (48). Herpes zoster infection was significantly more frequent with baricitinib 

4 mg than with placebo in the first 24 weeks. Ten cases of tuberculosis were reported, all of 

which occurred in tuberculosis endemic areas (50).  
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The IRs of major adverse cardiovascular events (MACE) were similar between placebo and 

baricitinib 4 mg and there was no evidence of exacerbation of congestive heart failure (51). 

In the placebo–baricitinib 4-mg analysis set, there were five cases of deep vein thrombosis 

(DVT) and/or pulmonary embolism (PE), all in the baricitinib 4-mg group (IR of 1.2/100 PYE, 

N=997) compared with no cases in the placebo group (N=1,070) through week 24 (51). After 

the 1 September 2016 data cut-off, an additional DVT event was identified in the baricitinib 4 

mg group during the placebo-controlled period, giving six cases of DVT and/or PE in this 

group (IR 1.4/100 patient-years) (49,51). All patients who experienced DVT and/or PE during 

the placebo-controlled period had multiple risk factors for these events, such as prior DVT, 

family history of PE, hypertension, chronic obstructive pulmonary disease, pulmonary 

fibrosis, peripheral oedema and varicose veins. The IR of DVT and/or PE in the extended 

dataset was comparable between the 2- and 4-mg doses of baricitinib (IR 0.5 and 0.6/100 

PYE, respectively). At data cut-off, a total of 31 patients (IR 0.5/100 PYE) had reported DVT 

and/or PE in the All-Bari-RA analysis set (51), which was comparable to the published rates 

in patients with RA (0.3–0.7/100 PYE in patients with RA in general, 0.4–0.8/100 PYE in 

DMARD-treated patients with RA (52)). Baricitinib should therefore be used with caution in 

patients with risk factors for DVT and/or PE, such as older age, obesity, a medical history of 

DVT and/or PE, or surgery and immobilisation (32,51).  

In the integrated safety analysis, the IR of malignancy (excluding non-melanoma skin cancer) 

was similar between placebo and baricitinib 4 mg and did not increase with prolonged 

exposure (48). Three cases of gastrointestinal perforation were reported in the All-Bari-RA 

analysis set. These comprised a perforated appendix, a perforated diverticulum and a 

proximal intestinal perforation after knee surgery. All three patients were on background MTX 

and taking non-steroidal anti-inflammatory drugs; two were also taking prednisone (48). 

 

Cellular effects and other laboratory changes with baricitinib  

Neutrophils 
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In RA, the abnormal migration of neutrophils into the joint synovium leads to further 

inflammation and joint damage (53). In vitro and ex vivo studies of the effect of baricitinib on 

neutrophils from patients with RA showed that it significantly prevented neutrophil 

chemotaxis towards IL-8 (known to activate JAK2/STAT3 in hepatocellular carcinoma cell 

lines (54)) but had no effect on other aspects of neutrophil function, such as secretion of 

degradation enzymes (specifically reactive oxygen species) or apoptosis (55). This would 

appear paradoxical, in that the neutrophil count would be expected to increase rather than 

decrease (see below) with baricitinib treatment. However, no phosphorylation of STAT1 or 

STAT3 was observed in neutrophils in response to IL-8 in the in vitro or ex vivo studies (55). 

Thus, uncertainty remains as to the mechanism of this phenomenon. 

 

An analysis by Kremer et al. (56) of pooled data from six phase II and III studies, including 

RA-BEYOND, in patients with RA treated with baricitinib for up to 52 weeks showed that 

mean absolute neutrophil count decreased within the first month of treatment but stabilised 

thereafter and returned to baseline counts after treatment discontinuation. The occurrence of 

neutropenia (<1000 cells/mm3) was uncommon (<1% of patients) and was not associated 

with a higher risk of overall or serious infections. Only two patients (0.1%) discontinued 

treatment due to neutropenia (56). There was no evidence that changes in absolute 

neutrophil count were a consequence of myelosuppression (29). 

Platelets 

Since JAK2 is essential for thrombopoietin signalling (18), platelet counts during up to 52 

weeks of baricitinib treatment were evaluated in the pooled analysis by Kremer at al. (56). In 

contrast to the decrease in platelet levels that might be expected mechanistically, mean 

platelet counts increased in the first 2 weeks of baricitinib treatment then returned towards 

baseline and stabilised over time. Two patients (0.1%) discontinued baricitinib treatment 

permanently due to thrombocytosis. There was no evident association between increased 

platelet counts and the occurrence of DVT/PE (56).  
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Erythrocytes 

Since erythropoietin stimulates erythrocyte production via the JAK2 signalling pathway 

(57,58), the effect of baricitinib treatment on erythropoietin, haemoglobin and related 

parameters was assessed in a 52-week pooled analysis of six phase II and III studies. Initial 

decreases in haemoglobin concentrations were accompanied by a decrease in reticulocyte 

counts but increases in erythropoietin concentrations and iron utilisation measures, 

suggesting that the homeostasis of haemoglobin and related parameters is maintained 

during baricitinib treatment. Haemoglobin levels decreased transiently before returning to 

levels slightly higher than baseline at week 52. Permanent discontinuations due to anaemia 

or decreased haemoglobin levels occurred infrequently (0.2% of patients). Haemoglobin 

levels <8 g/dL were reported in <1% of patients (59).  

Lymphocytes 

All four members of the JAK family play a role in the signalling of cytokines involved in 

lymphocyte functioning (26). In phase III baricitinib studies (RA-BUILD, RA-BEACON, RA-

BEAM), levels of T and B cells increased by week 4, but the levels of T cells subsequently 

decreased in weeks 12–24, whereas levels of B cells remained increased. Changes in T-cell 

subset counts showed no consistent pattern and were within the normal reference range in 

the majority of patients (60,61). The Kremer et al. (56) pooled analysis showed that the mean 

absolute lymphocyte count increased in the first month of treatment but returned to baseline 

with longer treatment. For most patients, changes in lymphocyte count were within the 

normal reference range. Lymphopenia was associated with a slightly higher overall infection 

rate (overall infection rate at week 24: 29.1% with placebo, 43.7% with baricitinib 4 mg for 

those with common terminology criteria for adverse events [CTCAE] grade 2 lymphopenia; 

23.1% and 50.0%, respectively, for those with CTCAE grade 3 lymphopenia), but there was 

no increase in the rate of serious infections. Two patients (0.1%) discontinued treatment 

because of lymphopenia, and one (0.1%) discontinued because of lymphocytosis.  

Natural killer cells 
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The heterodimer JAK1/JAK3 is required for the functioning of lymphocytes, including NK 

cells. These cells are critical for antiviral defence, and their depletion may lead to an 

increased risk of viral infection (26). Lymphocyte NK cell subsets are not routinely measured 

in clinical practice. However, in the phase III baricitinib studies, changes in NK cell subsets 

over time were measured at baseline and at weeks 4, 12 and 24 (61). The mean NK cell 

count increased in the first 4 weeks after starting baricitinib treatment but had decreased 

compared with baseline (but was still within the normal range) by weeks 12 and 24. In RA-

BEACON, the incidence of a treatment-emergent abnormality in NK cell count at any time 

during treatment up to the time of rescue was similar for baricitinib 4 mg and placebo (16% 

for both (61)), but in RA-BUILD and RA-BEAM, the incidence was greater for baricitinib than 

for placebo (22% vs. 10%, respectively [RA-BUILD (61)] and 22% vs. 8%, respectively [RA-

BEAM (60)]). The rates of serious infections and herpes zoster infection in the small subset 

of patients with a low NK cell count at any time were similar to those observed in patients 

receiving placebo (60). 

Other laboratory parameters 

Lipids 

Treatment with baricitinib was associated with a dose-dependent significant increase in lipid 

parameters, including low-density lipoprotein cholesterol (LDL-C; mean increase of 9.5 

mg/dL [4-mg dose]), high-density lipoprotein cholesterol (HDL-C; mean increase of 7.3 

mg/dL [4 mg]) and triglycerides (mean increase of 8.5 mg/dL [4 mg]). These changes 

plateaued at week 12 (62) and stabilised thereafter (47). There was no meaningful change in 

the LDL-C/HDL-C ratio (62). The change in lipid parameters was largely confined to an 

increase in the number of large LDL particles, whereas the number of small and very small 

LDL particles (considered to be the most atherogenic) significantly decreased (62). Initiation 

of statins post baseline led to a decrease in the levels of total cholesterol, LDL-C and 

triglycerides to pre-statin values, but HDL-C levels remained elevated (63).  

Creatine phosphokinase 
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In the baricitinib studies, elevated creatine phosphokinase (CPK) levels were observed at 

week 4 and remained stable at a higher level than baseline thereafter and throughout RA-

BEYOND. However, abnormally high CPK values at baseline were common. A significant 

increase (≥5 × the upper limit of normal [ULN]) in CPK levels occurred in 0.8% of patients 

treated with the drug for up to 16 weeks, compared with 0.3% of patients receiving placebo. 

The likelihood of increased CPK levels to ≥5 × ULN was dose dependent (0.8% [2 mg] and 

1.5% [4 mg] of patients at 16 weeks vs. 0.6% of placebo patients). Most cases of elevated 

CPK levels were transient and did not require treatment discontinuation. There were no 

confirmed cases of rhabdomyolysis (32).  

Serum creatinine 

An increase in mean serum creatinine level was observed with baricitinib after 2 weeks of 

treatment. This was a mean of 3.8 µmol/L greater than that occurring with placebo and 

remained stable during up to 104 weeks of treatment. The increase in serum creatinine with 

baricitinib may be due to an inhibitory effect of the drug on creatinine secretion by the renal 

tubules. Thus, estimates for glomerular filtration rate based on serum creatinine may be 

slightly reduced during baricitinib treatment without loss of renal function or the occurrence of 

renal adverse events (32). 

Alanine transaminase and aspartate transaminase 

Increases in alanine transaminase (ALT) and aspartate transaminase (AST) to ≥3 × ULN 

occurred in 1.4% and 0.8%, respectively, of patients treated with baricitinib for up to 16 

weeks. Corresponding figures for placebo were 1.0% and 0.8%, respectively. Increased 

levels to ≥5 and ≥10 × ULN occurred in <1% of patients. Most cases of elevated hepatic 

transaminases were transient and asymptomatic. In treatment-naïve patients, a combination 

of baricitinib and MTX for up to 52 weeks increased the frequency of ALT and AST 

elevations to ≥3 × ULN to a greater extent (7.5% and 3.8% of patients, respectively) than 

baricitinib monotherapy (1.9% and 1.3% of patients, respectively) or MTX monotherapy 
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(2.9% and 0.5% of patients, respectively). In RA-BEYOND, the pattern and incidence of 

elevated transaminase levels remained stable (32). 

 

Discussion  

The JAK1/JAK2 inhibitor baricitinib offers an effective treatment for RA, providing statistically 

significant improvements in a number of clinical endpoints compared with current standard-

of-care drugs (41,42). It has been approved in more than 40 countries, including European 

countries (2 and 4 mg once daily), Japan (2 and 4 mg once daily) and, recently, the USA (2 

mg once daily), as monotherapy or in combination with MTX in adults with moderate to 

severe RA who do not respond adequately (or are intolerant) to one (or more) csDMARDs or 

bDMARDs (25,32,33). Reflecting this, baricitinib 4 mg is recommended for the treatment of 

RA in patients with an inadequate response to MTX according to guidelines from the 

European League Against Rheumatism (64). A dose of 2 mg once daily is recommended for 

patients ≥75 years of age (32). 

 

Mechanistically, the effects of approved doses of baricitinib on different cell types and 

hormones/growth factors might not extrapolate into specific clinical effects. For example, the 

low-grade decrease in haemoglobin levels observed in some patients during treatment with 

baricitinib was accompanied by an increase in erythropoietin levels, suggesting that 

haemoglobin homeostasis was maintained (59). This was supported by very few reports of 

anaemia during long-term baricitinib treatment (4/3,822 patients (25)). In addition, no 

association between increased platelet counts and the occurrence of thromboembolic 

events, such as DVT or PE, was observed with baricitinib (56). However, further studies on 

platelet function are required. The IR of MACE was also low, comparable across treatment 

arms and analysis sets, and did not increase with prolonged exposure (48). 

 

In relation to the potential cellular effects of baricitinib, neutropenia was uncommon (<1% of 

patients) and was not associated with a higher risk of overall or serious infections (56). Any 
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changes in absolute lymphocyte count were generally within the normal range (60,61). 

Although the presence of lymphopenia was associated with a slightly higher overall infection 

rate, there was no increase in the rate of serious infections (56). Similarly, despite the 

reduction in NK cell numbers observed in some patients, there was no evident association 

between low NK cell count and the incidence of infections (61). However, the effect of 

baricitinib on the function of all of these cell types has yet to be investigated.  

 

Finally, the IRs for death, serious infections and malignancy with baricitinib in the clinical trial 

programme (0.3, 2.9 and 0.8/100 patient years, respectively, in all patients treated with 

baricitinib, N=3,492 (48)) are similar to those observed with biologic drugs (65–72). 

 

As the number of patients using baricitinib in the long term increases and more data are 

collected through large registries, the risk/benefit profile of the drug should become clearer. 

Indeed, an integrated safety analysis with data cut-off of 1 April 2017 has recently been 

disclosed that reports data from 7,860 PYE and >2 years of treatment for >50% of patients 

(49). Nevertheless, the risk of many potential side effects can be mitigated by appropriate 

screening (32). Such pre-treatment screening should include testing for tuberculosis (TB) 

and other infections, appropriate prophylaxis (anti-TB treatment should be considered in 

patients with previously untreated latent TB) and vaccination (see international treatment 

guidelines on vaccination in RA (73,74)). Laboratory parameters, including lipids, absolute 

neutrophil count, absolute lymphocyte count, haemoglobin and hepatic transaminases, 

should also be monitored (Table 4 (32)). In the event of side effects or abnormal laboratory 

results, treatment should be interrupted and restarted once the issue has been resolved (32). 

Interrupted treatment is associated with only a modest increase in symptoms and does not 

affect overall response rates (75). 

 

In view of the impact of baricitinib on a wide variety of cytokines (such as IFNs, IL-6, IL-12, 

IL-23 and GM-CSF), hormones (such as erythropoietin and thrombopoietin) and growth 
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factors that are involved in other inflammatory conditions besides RA, research into further 

indications for the drug is underway (2,76,77). Additional research is needed to better 

understand how the mechanism of action of baricitinib extrapolates into clinical effects. Data 

from patients exposed to the drug over a prolonged period are also required to inform long-

term safety on topics currently included in the warnings/precautions section of the approved 

labels across the global arena, such as the risk of infections, haematological abnormalities, 

viral reactivation, malignancy, venous thromboembolism and abnormal laboratory measures. 

 

Limitations of a narrative review such as this one include the possibility of subjective 

selection bias and reliance on authors’ intuition and clinical experience. In addition, data 

extraction for this review was not protocol based. In this review, we did not compare 

baricitinib with the JAK1/JAK 3 inhibitor tofacitinib, due to their differing mechanisms of action 

and the absence of head-to-head trials. Numerous reviews on tofacitinib are available in the 

literature (e.g. 78,79). 

 

Conclusions 

The pathogenesis of RA involves dysregulated cytokine production and cytokine-mediated 

intracellular signal transduction. A number of pro-inflammatory cytokines, growth factors and 

hormones use JAK/STAT signalling pathways, and inhibition of these pathways provides a 

therapeutic option in RA. However, it is complex and far from understood how the in vitro 

effects of JAK inhibitors extrapolate into in vivo and clinical effects in individual patients. 

Once-daily dosing with baricitinib, an oral selective inhibitor of JAK1 and JAK2, has proved 

an effective treatment for adults with moderately to severely active RA, and further 

indications for the drug are being explored. Currently, patients most likely to benefit from 

treatment with baricitinib are adults with moderate to severe active RA who have responded 

inadequately to, or are intolerant to, one or more csDMARDs or bMDARDs, and have no 

contraindications to the drug. 
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Table 1 Cytokines involved in the pathogenesis of rheumatoid arthritis¥ (7–11). 

Net pro-inflammatory Net anti-inflammatory 

• IL-1, IL-6, IL-7, IL-8, IL-12, IL-15,  

 IL-17, IL-18, IL-21, IL-22, IL-23 

• TNFα 

• IFNα, - and - 

• Lymphotoxin 

• MMIF  

• Resistin 

• GM-CSF, G-CSF, M-CSF 

• Fibroblast growth factor-2 

• VEGF 

• CXCLELR+ 

• CCL2, CCL3, CCL21, CCL25 

• CXCL8 and 13 

• Chemerin 9 

• IL-10, IL-25, IL-27, IL-35 

• IL-1 Ra, IL-1 RII, soluble IL-1  

 RI, soluble IL-1 R II 

• Soluble gp130 

• IL-13 Rα 

• IL-18 binding protein, IL-22  

 binding protein 

• TNF-RI, TNF-RII 

• TGFβ 

• CXCLELR- 

• Duffy antigen receptor for  

 chemokines 

• Osteoprotegerin 

• 7ND 

• Chemerin 15 

¥Adiponectin has both anti- and pro-inflammatory effects (7,11).  

7ND: N-terminal natural deletion variant of monocytes chemotactic protein-1/CCL2; CCL: C-C motif 

chemokine ligand; CXCL: chemokine (C-X-C motif) ligand; CXCLELR+/-: CXCL with/without glutamic 

acid-leucine-arginine motif; G-CSF: granulocyte colony-stimulating factor; GM-CSF: granulocyte-

macrophage colony-stimulating factor; gp130: glycoprotein 130; IFN: interferon; IL: interleukin; IL-1 

Ra: interleukin-1 receptor antagonist; IL-1 RI: IL-1 receptor I; IL-1 RII: IL-1 receptor II; IL-13 Rα: IL-13 

receptor α; M-CSF: macrophage colony-stimulating factor; MMIF: macrophage migration inhibitory 

factor; TGFβ: transforming growth factor β; TNF-RI: TNF-receptor I; TNF-RII: TNF-receptor II; TNFα: 

tumour necrosis factor α; VEGF: vascular endothelial growth factor. 
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Table 2. Efficacy of baricitinib in the treatment of moderate-to-severe rheumatoid arthritis in 

four phase III clinical trials (32). 

Study 

Population 

 

 

Study 

duration 

RA-BEGIN 

DMARD-naïve patients¥ 

 

 

52 weeks 

 

(NCT01711359 (41)) 

RA-BEAM 

Patients with inadequate 

response to MTX‖ 

 

52 weeks 

 

(NCT01710358 (42)) 

RA-BUILD  

Patients with inadequate 

response to 

csDMARDs¶ 

24 weeks 

 

(NCT01721057 (43)) 

RA-BEACON 

Patients with 

inadequate response 

to bDMARDs$ 

24 weeks 

 

(NCT01721044 (44)) 

Treatment 

group 

MTX BARI  

4 mg 

BARI  

4 mg + 

MTX 

PBO BARI  

4 mg 

ADA  

40 mg 

Q2W 

PBO BARI 2 

mg 

BARI  

4 mg 

PBO BARI 

2 mg 

BARI 

4 mg 

N 210 159 215 488 487 330 228 229 227 176 174 177 

RESPONSE RATES§ 

ACR20 

Week 12 59% 79%*** 77%*** 40% 70%***† 61%*** 39% 66%*** 62%*** 27% 49%*** 55%*

** 

Week 24 62% 77%** 78%*** 37% 74%***† 66%*** 42% 61%*** 65%*** 27% 45%*** 46%*

** 

Week 52 56% 73%*** 73%***  71%†† 62%       

ACR50 

Week 12 33% 55%*** 60%*** 17% 45%***†† 35%*** 13% 33%*** 34%*** 8% 20%** 28%*

** 

Week 24 43% 60%** 63%*** 19% 51%*** 45%*** 21% 41%*** 44%*** 13% 23%* 29%*

** 

Week 52 38% 57%*** 62%***  56%† 47%       

ACR70 

Week 12 16% 31%*** 34%*** 5% 19%***† 13%*** 3% 18%*** 18%*** 2% 13%*** 11%*

* 
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Week 24 21% 42%*** 40%*** 8% 30%***† 22%*** 8% 25%*** 24%*** 3% 13%*** 17%*

** 

Week 52 25% 42%*** 46%***  37% 31%       

LDA RATES 

DAS28-hsCRP ≤3.2 

Week 12 30% 47%*** 56%*** 14% 44%***†† 35%*** 17% 36%*** 39%*** 9% 24%*** 32%*

** 

Week 24 38% 57%*** 60%*** 19% 52%*** 48%*** 24% 46%*** 52%*** 11% 20%* 33%*

** 

Week 52 38% 57%*** 63%***  56%† 48%       

DAS28-ESR ≤3.2 

Week 12 15% 21% 34%*** 7% 24%*** 21%*** 7% 21%*** 22%*** 4% 13%** 12%*

* 

Week 24 23% 36%** 39%*** 10% 32%*** 34%*** 10% 29%*** 32%*** 7% 11% 17%*

* 

Week 52 27% 36% 45%***  39% 36%       

REMISSION RATES 

SDAI ≤3.3 

Week 12 6% 14%* 20%*** 2% 8%*** 7%*** 1% 9%*** 9%*** 2% 2% 5% 

Week 24 10% 22%** 23%*** 3% 16%*** 14%*** 4% 17%*** 15%*** 2% 5% 9%** 

Week 52 13% 25** 30%***  23% 18%       

CDAI ≤2.8 

Week 12 7% 14%* 19%*** 2% 8%*** 7%** 2% 10%*** 9%*** 2% 3% 6% 

Week 24 11% 21%** 22%** 4% 16%*** 12%*** 4% 15%*** 15%*** 3% 5% 9%* 

Week 52 16% 25%* 28%**  22% 18%       

CHANGES IN PHYSICAL FUNCTION 

HAQ-DI Minimum Clinically Important Difference (decrease in HAQ-DI score of ≥0.30) 

Week 12 60% 81%*** 77%*** 46% 68%*** 64%*** 44% 60%*** 56%** 35% 48%* 54%*

** 
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Week 24 66% 77%* 74% 37% 67%***† 60%*** 37% 58%*** 55%*** 24% 41%*** 44%*

** 

Week 52 53% 65%* 67%**  61% 55%       

¥Patients had received limited or no prior treatment with MTX and were treatment naïve to bDMARDs and other 

csDMARDs. 

‖Patients remained on background MTX throughout the study. All patients were bDMARD naïve. 

¶Patients showed an inadequate response or were intolerant to at least one previous csDMARD but had not 

received a bDMARD and continued with stable doses of any current csDMARD throughout the study. 

$Patients showed an inadequate response to at least one TNF inhibitor or other bDMARD and continued to 

receive csDMARDs throughout the study. 

§Proportions of responders at each time point based on those initially randomised to treatment (N). Patients who 

discontinued or received rescue therapy were considered as non-responders thereafter. 

*p≤0.05, **p<0.01, ***p<0.001 vs. PBO (MTX for RA-BEGIN). †p≤0.05, ††p<0.01 vs. ADA. 

ACR20, ACR50, ACR70: ≥20%, ≥50% and ≥70% improvement in symptoms according to American College of 

Rheumatology criteria; ADA: adalimumab; BARI: baricitinib; bDMARD: biologic DMARD; CDAI: Clinical Disease 

Activity Index; csDMARD: conventional synthetic DMARD; DAS28-ESR: Disease Activity Score for 28-joint count 

with erythrocyte sedimentation rate; DAS28-hsCRP: Disease Activity Score for 28-joint count with high-sensitivity 

C-reactive protein; DMARD: disease-modifying antirheumatic drug; HAQ-DI: Health Assessment Questionnaire-

Disability Index; LDA: low disease activity; MTX: methotrexate; PBO: placebo; Q2W: once every 2 weeks; SDAI: 

Simplified Disease Activity Index; TNF: tumour necrosis factor. 
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Table 3. Incidence (per 100 patient-years) of safety measures of special interest in an 

integrated safety analysis involving up to 5.5 years of exposure to baricitinib (48). 

Safety measure Data analysis set 

Placebo-4 mg¥ 

(6 studies to Week 24) 

2 mg-4 mg-extended‖ 

(4 studies + LTE) 

All-bari-RA¶ 

Placebo Bari 4 mg Bari 2 mg Bari 4 mg 

Exposure 

No. of patients 1,070 997 479 479 3,492 

Patient years of 

exposure 

394 409 555 604 6,637 

Median, days 166 169 257 342 760 

(2.1 years) 

Longest exposure, 

days 

235 211 1,276 1,991 2,019 

(5.5 years) 

Permanent 

discontinuation due 

to AE, n (EAIR) 

35 (8.9) 47 (11.5) 37 (6.6) 55 (8.9) 393 (5.8) 

Mortality, n (IR), 

[95% CI] 

2 (0.5) 

[0.1, 1.8] 

3 (0.7) 

[0.1, 2.1] 

1 (0.2) 

[0.0, 1.0] 

3 (0.5) 

[0.1, 1.4] 

22 (0.3) 

[0.2, 0.5] 

Infections, n (IR), [95% CI] 

Serious infection 17 (4.2) 

[2.5, 6.8] 

16 (3.8) 

[2.2, 6.2] 

18 (3.3) 

[1.9, 5.2] 

29 (4.8) 

[3.2, 6.9] 

194 (2.9) 

[2.5, 3.4] 

Herpes zoster 4 (1.0) 

[0.3, 2.5] 

18 (4.3)* 

[2.6, 6.8] 

15 (2.7) 

[1.5, 4.5] 

23 (3.8) 

[2.4, 5.7] 

212 (3.2) 

[2.8, 3.7] 
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TB 0 1 (0.2) 

[0.01, 1.3] 

0 6 (0.6) 

[0.2, 1.2] 

10 (0.2) 

[0.1, 0.3] 

Malignancy, n (IR), [95% CI] 

Malignancy 

excluding NMSC 

     

 As treated 

analysis set$ 

2 (0.5) 

[0.1, 1.8] 

2 (0.5) 

[0.1, 1.7] 

3 (0.5) 

[0.1, 1.6] 

8 (1.3) 

[0.6, 2.6] 

52 (0.8) 

[0.6, 1.0] 

 As randomised 

analysis set§ 

No data No data 7 (0.7) 

[0.3, 1.4] 

9 (0.9) 

[0.4, 1.6] 

No data 

Lymphoma 0 0 0 1 (0.1) 

[0.002, 0.5] 

6 (0.1) 

[0.03, 0.2] 

NMSC 1 (0.2) 

[0.0, 1.4] 

3 (0.7) 

[0.1, 2.1] 

2 (0.4) 

[0.04, 1.3] 

6 (1.0) 

[0.4, 2.2] 

24 (0.4) 

[0.2, 0.5] 

CV outcomes, n (IR), [95% CI]  

MACE£ 2 (0.6) 

[0.1, 2.0] 

3 (0.8) 

[0.2, 2.2] 

1 (0.2) 

[0.0, 1.1] 

2 (0.4) 

[0.05, 1.4] 

31 (0.5) 

[0.4, 0.7] 

DVT/PE£,#,† 0 5 (1.2) 

[0.4, 2.8] 

3 (0.5) 

[0.1, 1.6] 

4 (0.6) 

[0.2, 1.7] 

31 (0.5) 

[0.3, 0.7] 

GI perforation, 

n (IR), [95% CI] 

0 0 0 1 (0.2) 

[0.0, 0.9] 

3 (0.1) 

[0.01, 0.1] 

*p<0.05 for bari 4 mg vs. placebo.  

¥Placebo vs. baricitinib 4 mg through 24 weeks of treatment, with data up to rescue/treatment switch 

or the end of the placebo-controlled period (‘as treated’ analysis). The six studies comprised three 

phase II studies (38–40) and three phase III studies: RA-BEAM (42), RA-BUILD (43) and RA-

BEACON (44). 

‖Data from patients receiving baricitinib 2 or 4 mg, including data from placebo- and non-placebo-

controlled periods and the LTE study with data cut-off on 1 September 2016. All analyses based on 
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‘as-treated’ method (data censored at rescue or dose change) unless otherwise specified. This 

maximises the information for a randomised dose comparison. The studies comprised two phase II 

studies (39,40), two phase III studies (RA-BUILD (43) and RA-BEACON (44)), and the LTE study RA-

BEYOND (NCT01885078). 

¶All patients who received at least one dose of baricitinib, with data cut-off on 1 September 2016. Data 

were not censored at dose change or rescue. 

$In the ‘as treated’ analysis, data were censored at rescue or at any dose change. This maximises the 

information for a randomised dose comparison. 

§In the ‘as randomised’ analysis, evaluation was conducted without censoring for rescue or dose 

change because of the long latency period of malignancy (excluding NMSC). 

£Potential CV adverse events from the phase III and LTE trials identified by investigators or according 

to a predefined list of event terms were adjudicated by an independent, external Clinical Endpoint 

Committee, which remained blinded to treatment assignments.  

#MedDRA preferred terms of ‘deep vein thrombosis’/’pulmonary embolism’ were analysed without 

adjudication. 

†After the 1 September 2016 data cut-off, an additional DVT event was identified in the baricitinib 4 mg 

group during the placebo-controlled period, giving six cases of DVT and/or PE in this group (IR 

1.4/100 patient-years, 95% CI: 0.5, 3.1) and an overall DVT and/or PE incidence rate in the All-bari-

RA analysis set of 0.5/100 patient-years (95% CI: 0.4, 0.7) (49). 

AE: adverse event; bari: baricitinib; CI: confidence interval; CV: cardiovascular; DVT: deep vein 

thrombosis; EAIR: exposure-adjusted incidence rates events/100 patient-years (patient exposure not 

censored at event); GI: gastrointestinal; IR: incidence rate/100 patient-years (patient exposure 

censored at event); LTE: long-term extension study; MACE: major adverse cardiovascular events; 

MedDRA: Medical Dictionary for Regulatory Activities; n: number of patients in the specified category; 

NMSC: non-melanoma skin cancer; PE: pulmonary embolism; TB: tuberculosis. 
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Table 4. Guidance for monitoring of laboratory parameters during treatment with baricitinib 

(32). 

Laboratory parameter Action Monitoring guidance 

Lipid parameters Patients should be managed 

according to international clinical 

guidelines for hyperlipidaemia 

12 weeks after initiation of 

treatment and thereafter 

according to international clinical 

guidelines for hyperlipidaemia 

Absolute neutrophil count 

(ANC) 

Treatment should be interrupted 

if ANC is <1 × 109 cells/L and 

may be restarted once the ANC 

is above this value 

Before treatment initiation and 

thereafter according to routine 

patient management 

Absolute lymphocyte count 

(ALC) 

Treatment should be interrupted 

if ALC is <0.5 × 109 cells/L and 

may be restarted once the ALC 

is above this value 

Haemoglobin (Hb) Treatment should be interrupted 

if Hb is <8 g/dL and may be 

restarted once the Hb level is 

above this value 

Hepatic transaminases Treatment should be temporarily 

interrupted if drug-induced liver 

injury is suspected 
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Fig. 1 The dependence of different cytokines on different JAKs (2,19,20) (adapted 

from O’Shea et al. (2)). 

EPO, erythropoietin; GH, growth hormone; GM-CSF, granulocyte-

macrophage colony-stimulating factor; IFN, interferon; IL, interleukin; JAK, 

Janus kinase; P, phosphorylation; STAT, signal transducers and activators 

of transcription protein; TPO, thrombopoietin; Tyk2, tyrosine kinase 2. 
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Fig. 2 Seven steps of the JAK/STAT cytokine signalling pathway (adapted from 

O’Shea et al. (2)). 

 JAK, Janus kinase; P, phosphate group; SH2, Src homology 2 protein 

domain; STAT, signal transducers and activators of transcription.  

 

 


