
This is a n  Op e n  Acces s  doc u m e n t  dow nloa d e d  fro m  ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry: h t t p s://o rc a .c a r diff.ac.uk/id/e p rin t/12 4 8 3 5/

This  is t h e  a u t ho r’s ve r sion  of a  wo rk  t h a t  w as  s u b mi t t e d  to  / a c c e p t e d  for

p u blica tion.

Cit a tion  for  final p u blish e d  ve r sion:

Lu, Tians hi, Leon e nko, Nikolai ORCID: h t t p s://o rcid.o rg/000 0-0 0 0 3-1 9 3 2-4 0 9 1

a n d  M a,  Ch us h e n g  2 0 2 0.  S e ri es  r e p r e s e n t a tions  of iso t ropic  r a n do m  fields  on

b alls. S t a tis tics  a n d  P ro b a bili ty Let t e r s  1 5 6  , 1 0 8 5 8 3.

1 0.10 1 6/j.spl.20 1 9.10 8 5 8 3  file  

P u blish e r s  p a g e:  h t t p://dx.doi.or g/10.10 1 6/j.spl.201 9.10 8 5 8 3

< h t t p://dx.doi.o rg/10.10 1 6/j.spl.20 1 9.10 8 5 8 3 >

Ple a s e  no t e:  

Ch a n g e s  m a d e  a s  a  r e s ul t  of p u blishing  p roc e s s e s  s uc h  a s  copy-e di ting,

for m a t ting  a n d  p a g e  n u m b e r s  m ay no t  b e  r eflec t e d  in t his  ve r sion.  For  t h e

d efini tive  ve r sion  of t his  p u blica tion,  ple a s e  r ef e r  to  t h e  p u blish e d  sou rc e.  You

a r e  a dvise d  to  cons ul t  t h e  p u blish e r’s ve r sion  if you  wish  to  ci t e  t his  p a p er.

This ve r sion  is b ein g  m a d e  av ailable  in  a cco r d a n c e  wit h  p u blish e r  policie s.

S e e  

h t t p://o rc a .cf.ac.uk/policies.h t ml for  u s a g e  policies.  Copyrigh t  a n d  m o r al  r i gh t s

for  p u blica tions  m a d e  available  in ORCA a r e  r e t ain e d  by t h e  copyrig h t

hold e r s .



Series representations of isotropic vector random fields on balls

Tianshi Lu1, Nikolai Leonenko2, Chunsheng Ma3

ABSTRACT
This paper deals with a class of second-order vector random fields in the unit ball of R

d, whose
direct/cross covariances are invariant or isotropic with respect to a distance defined on the ball, and
gives a series representation of such an isotropic vector random field. A necessary format of covariance
matrix functions is also derived for isotropic and mean square continuous vector random fields on the ball.

MSC: 60G60, 62M30

Keywords
Covariance matrix function, cross covariance, direct covariance, distance on the unit ball, elliptically

contoured random field

1. Introduction

Consider an m-variate random field {Z(x),x ∈ B
d}, where B

d is the unit disk or ball of radius 1 and
center 0 in R

d (d ≥ 2), i.e., Bd = {‖x‖ ≤ 1,x ∈ R
d}, ‖x‖ is the Euclidean norm of x ∈ R

d. When
{Z(x),x ∈ B

d} has finite second-order moments, its mean function and covariance matrix function are
given respectively by EZ(x) and

cov(Z(x1),Z(x2)) = E{(Z(x1)− EZ(x1))(Z(x2)− EZ(x2))
′}, x1,x2 ∈ B

d.

The objective of this paper is to investigate a class of second-order vector random fields that are isotropic
on B

d. The isotropy here is referred to all orthogonal transforms on B
d under a distance that differs from

the usual Euclidean distance studied in Yadrenko (1983).
The distance between two points x1 and x2 on B

d is defined by

ρ(x1,x2) = arccos
(

x′

1x2 +
√

1− ‖x1‖2
√

1− ‖x2‖2
)

, x1,x2 ∈ B
d, (1)

where x′

1x2 and ‖x1 − x2‖ are the inner product and Euclidean distance in R
d, respectively; see Bos et

al. (2004), Petrushev and Xu (2008), and Dai and Xu (2013). Clearly, 0 ≤ ρ(x1,x2) ≤ π. This distance
is deduced from the geodesic distance on the hemisphere S

d
+ = {‖x‖ = 1, xd+1 ≥ 0,x ∈ R

d+1} of Rd+1
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by the bijection

x ∈ B
d 7→

(

x,
√

1− ‖x‖2
)

∈ S
d
+,

and hence it is a true distance on B
d, where S

d = {‖x‖ = 1,x ∈ R
d+1} is a unit sphere in R

d+1. It takes
into account the difference between the points inside the ball and those near the boundary, in contrast
to the Euclidean distance.

In cosmology, the spherical norm (1) and the Euclidean norm correspond to spaces with different
curvature. In reduced-circumference polar coordinates, as discussed by Wald (1984), the metric is defined
by

ds2 =
dr2

1− kr2
+ r2dΩ2, (2)

where k is the constant curvature of the space. For k = 1, the metric is the spherical norm 1, while for
k = 0 it is reduced to the Euclidean norm. Balls in the two norms are compared in Figure 1.

Figure 1: Comparison of spaces with constant positive curvature and zero curvature. The solid ellipses represent balls
of radius 1/5 in the spherical norm (positive curvature), while the dashed circles represent the corresponding balls in the
Euclidean norm (zero curvature).

Just like the Euclidean distance, the distance ρ(x1,x2) remains the same under every orthogonal
transform A in R

d, i.e.,
ρ(Ax1,Ax2) = ρ(x1,x2), x1,x2 ∈ B

d,

whereA is a d×d orthogonal matrix with real entries, noticing thatAxk ∈ B
d whenever xk ∈ B

d, k = 1, 2.
We call that an m-variate random field {Z(x) = (Z1(x), . . . , Zm(x))′,x ∈ B

d} is isotropic, if it has
second-order moments, its mean function EZ(x),x ∈ B

d, does not depend on x, and its covariance matrix
function

cov(Z(x1),Z(x2)) = E{[Z(x1)− EZ(x1)][Z(x2)− EZ(x2)]
′}, x1,x2 ∈ B

d,

depends only on the distance ρ(x1,x2). The term isotropic random field is quite apt here, since

cov(Z(Ax1),Z(Ax2)) = cov(Z(x1),Z(x2)), x1,x2 ∈ B
d,

holds for every d×d orthogonal matrixA. In such a case, we writeC(ρ(x1,x2)) = cov(Z(x1),Z(x2)),x1,x2 ∈
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B
d, for simplicity. It is an m×m matrix function, and inequality

n
∑

i=1

n
∑

j=1

a′iC(ρ(xi,xj))aj ≥ 0 (3)

holds for every n ∈ N, any xi ∈ B
d, and ai ∈ R

m (i = 1, 2, . . . , n), where N stands for the set of positive
integers. On the other hand, given an m ×m matrix function with these properties, there exists an m-
variate Gaussian or elliptically contoured random field {Z(x),x ∈ B

d} with C(ρ(x1,x2)) as its covariance
matrix function.

None of a theoretical or computational result can be found in the open literature about a vector random
field on B

d that is isotropic with respect to the distance (1), which may have potential applications in
many areas, such as medical imaging, atmospheric sciences, geophysics, and solar physics. Investigations
of scalar and vector random fields on S

d isotropic with respective to the usual Euclidean distance may
be found in Bingham (1973), Marinucci and Peccati (2011), Cohen and Lifshits (2012), Leonenko and
Sakhno (2012), Malyarenko (2013), D’Ovidio (2014), Cheng and Xiao (2016), Ma (2016), Lu and Ma
(2019), Ma and Malyarenko (2019), among others. A series representation is provided in Section 1 for
an m-variate isotropic random field on B

d, and a necessary format is given in Section 2 of the covariance
matrix function of an isotropic and mean square continuous vector random field. The proofs of theorems
are in Section 3.

2. A series representation

This section presents a series representation for an m-variate isotropic random field {Z(x),x ∈ B
d},

in terms of ultraspherical or Gegenbauers polynomials (Szego (1975)).

For λ > 0, the ultraspherical or Gegenbauer’s polynomials, P
(λ)
n (x), n ∈ N0, are the coefficients of un

in the power series expansion of the function (1− 2ux+ u2)−λ, i.e.,

(1− 2ux+ u2)−λ =

∞
∑

n=0

unP (λ)
n (x), x ∈ R, |u| < 1, (4)

where N0 stands for the set of nonnegative integers. Alternatively the ultraspherical polynomials can be
defined through the recurrence formula











P
(λ)
0 (x) ≡ 1,

P
(λ)
1 (x) = 2λx,

P
(λ)
n (x) =

2(λ+n−1)xP
(λ)
n−1(x)−(2λ+n−2)P

(λ)
n−2(x)

n
, x ∈ R, n ≥ 2.

They satisfy the differential equation

(1− x2)
d2y

dx2
− (2λ+ 1)x

dy

dx
+ n(2λ+ n)y = 0,

and are orthonormal with respective to the weight function (1− x2)λ−
1
2 , in the sense that

∫ 1

−1

P
(λ)
i (x)P

(λ)
j (x)(1− x2)λ−

1
2 dx =

{

π21−2λΓ(i+2λ)
i!(λ+i)(Γ(λ))2 , i = j,

0, i 6= j.
(5)
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In the particular case λ = 1
2 , P

( 1
2 )

n (x) (n ∈ N0) are the Legendre polynomials. Some special cases and
particular values are

P (1)
n (cosϑ) =

sin(n+ 1)ϑ

sinϑ
,

P (λ)
n (1) =

(

2λ+ n− 1

n

)

.

For a positive-definite matrix B, its positive-definite square root B
1
2 is a matrix of the same order

of B such that B = B
1
2

(

B
1
2

)

′

. For a sequence of m × m matrices {Bn, n ∈ N0}, the series
∞
∑

n=0
Bn is

said to be convergent, if each of its entries is convergent. As an example, noticing that P
( d−1

2 )
n (1) =

Γ(n+d−1)
Γ(n+1)Γ(d−1) ∼ nd−2

Γ(d−1) , n → ∞, the convergence of
∞
∑

n=0
BnP

( d−1
2 )

n (1) is equivalent to that of
∞
∑

n=0
nd−2Bn,

for d ≥ 2. In what follows denote a positive sequence {αn, n ∈ N0} by

αn =

(

2n+ d− 1

d− 1

)
1
2

, n ∈ N0, (6)

and denote by Im an m×m identity matrix. A series representation is provided in the following theorem
for an m-variate isotropic random field on B

d (d ≥ 2).

Theorem 1. Suppose that {Vn,∈ N0} is a sequence of independent m-variate random vectors with
EVn = 0 and cov(Vn,Vn) = α2

nIm, U is a (d+1)-variate random vector uniformly distributed on S
d and

is independent of {Vn, n ∈ N0}, and that {Bn, n ∈ N0} is a sequence of m×m positive definite matrices.

If the series
∞
∑

n=0
BnP

( d−1
2 )

n (1) converges, then

Z(x) =

∞
∑

n=0

B
1
2
nVnP

( d−1
2 )

n





d
∑

j=1

xjUj +
√

1− ‖x‖2Ud+1



 , x ∈ B
d, (7)

is an m-variate isotropic random field on B
d, its mean function is identical to 0, and its covariance

matrix function is

cov(Z(x1),Z(x2)) =

∞
∑

n=0

BnP
( d−1

2 )
n (cos ρ(x1,x2)) , x1,x2 ∈ B

d. (8)

The terms of (7) are uncorrelated; more precisely,

cov

(

B
1
2
i ViP

( d−1
2 )

i (cos ρ(x,U), B
1
2
j VjP

( d−1
2 )

j (cos ρ(x,U)

)

= 0, x1,x2 ∈ B
d, i 6= j.

Corollary 1. For each n ∈ N0 and a positive definite matrix B, BP
( d−1

2 )
n (cos ρ(x1,x2)) is an isotropic

covariance matrix function on B
d.

One may employ (7) to simulate an isotropic vector random field on B
d. A similar series representation

for an isotropic vector random field on S
d is given in Ma (2016). A helpful benefit of (8) is that it can be

4



used to identify some isotropic covariance matrix structures on B
d, based on those on S

d.

Corollary 2. Suppose that C(x) is an m×m continuous matrix function on [−1, 1], and that (C(x))′ =
C(x), x ∈ [−1, 1]. If it makes C(x′

1x2) an isotropic covariance matrix function on S
d, then it also makes

C(cos ρ(x1,x2)) an isotropic covariance matrix function on B
d.

Indeed, if C(x′

1x2) an isotropic covariance matrix function on S
d, then C(x) is of the form

C(x) =

∞
∑

n=0

BnP
( d−1

2 )
n (x), x ∈ [−1, 1],

where {Bn, n ∈ N0} is a sequence of m × m positive definite matrices, and the series
∞
∑

n=0
BnP

( d−1
2 )

n (1)

converges; see, for instance, Hannan (1970) and Ma (2012) . In virtue of (7), we get an m-variate isotropic
random field on B

d, whose covariance matrix function is C(cos ρ(x1,x2)).

Example 1. For distinct positive constants b1, . . . , bm, the m×m matrix functions

Cij(cos ρ(x1,x2)) =
(

b2i + b2j − 2bibj cos ρ(x1,x2)
)−

1
2 sin

(

(

b2i + b2j − 2bibj cos ρ(x1,x2)
)

1
2

)

,

x1,x2 ∈ B
2, i, j = 1, . . . ,m,

form a covariance matrix function on B
2, due to Corollary 1 and Example 4 of Ma (2012). In this case,

in terms of of the Bessel function Jn+ 1
2
(x),

Bn = π(n+ 2)

(

Jn+ 1
2
(bi)√
bi

Jn+ 1
2
(bj)

√

bj

)

m×m

, n ∈ N0,

and
∞
∑

n=0
BnP

( 1
2 )

n (1) converges, noticing that (see, e.g., (9) on page 366 of Watson (1944))

(

b21 + b22 − 2b1b2 cos θ)
1
2

)

−
1
2

sin
(

b21 + b22 − 2b1b2 cos θ)
1
2

)

= π

∞
∑

n=0

(

n+
1

2

)

Jn+ 1
2
(b1)√
b1

Jn+ 1
2
(b2)√
b2

P
( 1

2 )
n (cos θ).

Example 2. Given constants bij ∈ (−1, 1), i, j = 1, . . . ,m, if an m × m matrix B with entries bij is
positive definite, then, by Corollary 1, the m×m matrix functions

Cij(cos ρ(x1,x2)) =
(

1− 2bij cos ρ(x1,x2) + b2ij
)−

d−1
2 ,

x1,x2 ∈ B
d, i, j = 1, . . . ,m,

form a covariance matrix function on B
d, since it follows from (4) that

Bn = (bnij)m×m, n ∈ N,

and that
∞
∑

n=1
BnP

( d−1
2 )

n (1) converges.

5



Similarly, one may obtain another covariance matrix function on B
d, whose entries are

Cij(cos ρ(x1,x2)) = (1− b2ij)
(

1− 2bij cos ρ(x1,x2) + b2ij
)−

d

2 ,

x1,x2 ∈ B
d, i, j = 1, . . . ,m.

3. A necessary form of covariance matrix functions

It would be of great interest to derive a general form of the covariance matrix function for an m-variate
isotropic and mean square continuous random field {Z(x),x ∈ B

d}. By mean square continuous, we mean
that, for k = 1, . . . ,m,

E|Zk(x1)− Zk(x2)|2 → 0, as ρ(x1,x2) → 0, x1,x2 ∈ B
d.

It implies the continuity of each entries of the associated covariance matrix function in terms of ρ(x1,x2).
It is not clear what a general form could be for the covariance matrix function of an m-variate isotropic

and mean square continuous random field on B
d. Nevertheless, a necessary format is given in the following

theorem.

Theorem 2. If {Z(x),x ∈ B
d} is an m-variate isotropic and mean square continuous random field on

B
d, then its covariance matrix function cov(Z(x1),Z(x2)) is of the form

C(x1,x2) =

∞
∑

n=0

BnP
( d−2

2 )
n (cos ρ(x1,x2)) , x1,x2 ∈ B

d, (9)

where {Bn, n ∈ N0} is a sequence of m × m positive definite matrices, and the series
∞
∑

n=0
BnP

( d−2
2 )

n (1)

converges.

It is interesting to compare (8) and (9), which differ from each other by an index of the ultraspherical
polynomials. Actually, the former is a special case of the latter. To see this, it suffices to verify that the
function in Corollary 1 is of the form (9), which is done by applying an identity of L. Gegenbauer (see,
for instance, (8) of Askey and Wainger (1966)),

P (λ2)
n (cosϑ) =

[n2 ]
∑

k=0

akP
(λ1)
n−2k(cosϑ), ϑ ∈ [0, π], n ∈ N0,

where 0 < λ1 < λ2,
[

n
2

]

denotes the integer part of n
2 , and

ak =
Γ(λ1)(n− 2k + λ1)Γ(k + λ2 − λ1)Γ(n− k + λ2)

Γ(λ2)Γ(λ2 − λ1)k!Γ(n− k + λ1 + 1)
, k = 0, 1, . . . ,

[n

2

]

.

As a conjecture, (9) might be also the covariance matrix function of an m-variate isotropic random field
on B

d, generally speaking.

6



4. Proofs

4.1. Proof of Theorem 1

Since

∣

∣

∣

∣

P
( d−1

2 )
n (cosϑ)

∣

∣

∣

∣

≤ P
( d−1

2 )
n (1), n ∈ N0, the convergent assumption of the series

∞
∑

n=0
BnP

( d−1
2 )

n (1)

ensures not only the mean square convergence of the series at the right hand of (7), but also the uniform
and absolute convergence of the series at the right hand side of (8). In fact, for xk ∈ B

d and nk ∈ N

(k = 1, 2), we have

E

[

n1+n2
∑

n=n1

B
1
2
nVnP

( d−1
2 )

n

(

d
∑

i=1

x1iUi +
√

1− ‖x1‖2Ud+1

)

×





n1+n2
∑

l=n1

B
1
2

l VlP
( d−1

2 )
l





d
∑

j=1

x2jUj +
√

1− ‖x2‖2Ud+1









′

=

n1+n2
∑

n=n1

n1+n2
∑

l=n1

B
1
2
nE (VnV

′

l)
(

B
1
2

l

)′

×E



P
( d−1

2 )
n

(

d
∑

i=1

x1iUi +
√

1− ‖x1‖2Ud+1

)

P
( d−1

2 )
l





d
∑

j=1

x2jUj +
√

1− ‖x2‖2Ud+1









=

n1+n2
∑

i=n

BnP
( d−1

2 )
n (cos ρ(x1,x2))

→ 0, n1 → ∞, n2 → ∞,

where the first equality follows from the independent assumption between U and {Vn, n ∈ N0}, and the
second from Lemma 3 of Ma (2016). Thus, the series at the right hand side of (7) converges in mean
square.

Notice that
(

x1, . . . , xd,
√

1− ‖x‖2
)

′

∈ S
d, whenever x ∈ B

d. Under the independent assumption

between U and {Vn, n ∈ N0}, we obtain the mean and covariance matrix functions of {Z(x),x ∈ B
d}

from Lemma 3 of Ma (2016), with

EZ(x) =

∞
∑

n=0

B
1
2
nEVnEP

( d−1
2 )

n





d
∑

j=1

xjUj +
√

1− ‖x‖2Ud+1



 = 0, x ∈ B
d,

and

cov(Z(x1),Z(x2))

= cov

(

∞
∑

n=0

B
1
2
nVnP

( d−1
2 )

n

(

d
∑

i=1

x1iUi +
√

1− ‖x1‖2Ud+1

)

,

∞
∑

l=0

B
1
2

l VlP
( d−1

2 )
l





d
∑

j=1

x2jUj +
√

1− ‖x2‖2Ud+1









7



=

∞
∑

n=0

∞
∑

l=0

B
1
2
nE(VnV

′

l)
(

B
1
2

l

)′

×E







P
( d−1

2 )
n

(

d
∑

i=1

x1iUi +
√

1− ‖x1‖2Ud+1

)

P
( d−1

2 )
l





d
∑

j=1

x2jUj +
√

1− ‖x2‖2Ud+1











=

∞
∑

n=0

Bn cov

(

αnP
( d−1

2 )
n

(

d
∑

i=1

x1iUi +
√

1− ‖x1‖2Ud+1

)

,

αnP
( d−1

2 )
n





d
∑

j=1

x2jUj +
√

1− ‖x2‖2Ud+1









=

∞
∑

n=0

BnP
( d−1

2 )
n (cos ρ(x1,x2)), xj = (xj1, . . . , xjd)

′ ∈ B
d, j = 1, 2.

4.2. Proof of Theorem 2

If {Z(x),x ∈ B
d} is an m-variate isotropic and mean square continuous random field, then its covari-

ance matrix function cov(Z(x1),Z(x2)) is continuous with respect to ρ(x1,x2) on B
d, and is continuous

with respective to cos(ρ(x1,x2)) as well. According to the results in Section 9.1 of Szego (1975), each
entry of C(x1,x2) can be expressed as

Cij(x1,x2) =

∞
∑

n=0

b(i,j)n P
( d−2

2 )
n (cos(ρ(x1,x2))), x1,x2 ∈ B

d, i, j = 1, . . . ,m.

In other words, C(x1,x2) has to take the form (9). In particular, C(x,x) =
∞
∑

n=0
BnP

( d−2
2 )

n (1) converges.

To verify that Bn is positive definite for each n ∈ N0, notice that the restriction of {Z(x),x ∈ B
d} on

the surface of Bd, {Z(x),x ∈ S
d−1}, is an m-variate isotropic random function on the unit sphere S

d−1,
with covariance matrix function

C(x1,x2) =

∞
∑

n=0

BnP
( d−2

2 )
n (cos(ρ(x1,x2)))

=

∞
∑

n=0

BnP
( d−2

2 )
n (cos(ϑ(x1,x2))), x1,x2 ∈ S

d−1,

where ϑ(x1,x2) = arccos(x′

1x2) is the great circle distance on the sphere S
d−1. By Theorem 1 of Ma

(2012), Bn must be a positive definite matrix, for each n ∈ N0.
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