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The hardening soil (HS) model is an advanced soil plasticity model which incorporates many features including

stiffness stress dependency, hardening from initial loading, and soil dilatancy. In this paper, the HS model is explored

in depth, and two improvements are proposed. The first is a new shear yield surface and hardening rule that have been

reformulated to remove singularities. The second is a robust implicit return mapping scheme. Options for improving

the global convergence of finite element analyses are also explored. Single elements tests replicate results from

experimental triaxial data and previous versions of the HS model very closely, and at excellent convergence rates. In

addition, a slope stability analysis is performed using the ϕ-c strength reduction method in 2D plane-strain. Results

from the slope analysis showed good agreement with analytical and graphical slope stability methods. A 3D slope

stability analysis was also conducted with modified boundary conditions, in order to demonstrate the 3D capabilities

of the model.

Notation

α Cap shape parameter

γ Shear strain

γp Plastic shear strain

∆ε Strain increment vector

δλ Variation in plasticity multiplier

∆λ Plasticity multiplier

∆E Change in Young modulus between iterations

ε Strain vector

εp Plastic strain vector

εv Volumetric strain

εpv Plastic volumetric strain

θ Lode angle

ρ Density

σ Stress vector

σLC Last converged stress

σref Reference stress

σtr Trial stress

ϕ Friction angle

ϕc Critical state friction angle

ϕm Mobilised friction angle

χ Cap shaping parameter

ψ Dilatancy angle

ψm Mobilised dilatancy angle

c Cohesion

De Elastic stiffness matrix

Dep Pseudo-consistent tangent matrix

Eref
ur Reference unload-reload modulus

Eref
i Reference initial modulus

m Stiffness stress dependency exponent

p Mean stress

pp Pre-consolidation pressure

qa Asymptotic shear stress

qf Failure shear stress

1. Introduction

The hardening soil (HS) model is a soil plasticity model which

is gaining increasing popularity in research and design and has

been implemented into commercial finite element codes such

as Plaxis (PLAXIS, 2016), ZSoil (Obrzud, 2010), and FLAC3D

(Jiang and Zhang, 2012). This a multiple surface plasticity

model which combines many advanced features such as stress-

dependent stiffness, non-linear dilatancy progression, and separate

mechanisms for controlling the shear and the volumetric behaviour

of the soil.

The parameters used in the model are easily obtainable from

standard soil laboratory tests. To date, several versions of the model

have been created; the model was first proposed by Schanz et al.

(1999). This version makes use of a hexagonal Mohr-Coulomb

type cone surface which hardens according to a rule based on the

hyperbolic soil model (Duncan and Chang, 1970) It also features an
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elliptical cap surface, similar to that used in the Modified Cam-Clay

model (Roscoe and Burland, 1968).

Modifications to this model were proposed by Benz (2007) and

Benz et al. (2008), which addressed the non-smooth failure

criterion used in the model, citing that the new failure criterion

better captures the experimental failure criterion observed in soils

(Matsuoka and Nakai, 1974). This improvement is explained by the

contribution of the intermediate principal stress to failure. Another

part of the work by Benz (2007) was the introduction of a small-

strain stiffness overlay to the HS model. Although this small-strain

stiffness phenomenon is typically observed in dynamic problems, it

was shown that it can improve the results of large boundary-value

static problems.

Marcher and Vermeer (2001) introduced softening in the HS model

by implementing a void ratio-dependent friction angle. Another

modification was made by Truty and Obrzud (2015), which studied

the predictions of undrained behaviour in the HS model.

This paper describes the development of a new version of the

HS model, hereinafter referred to as the HS-LC model (LUSAS-

Cardiff University). The innovations in the new version of the

model include a modified shear yield criterion, which in the HS-

LC model, is based on the smooth failure criterion by Matsuoka

and Nakai (Matsuoka and Nakai, 1974; Panteghini and Lagioia,

2013). The size of the shear cone is controlled by a new hardening

rule, which is based on the triaxial shear hyperbola by Duncan

and Chang (1970). A robust return mapping procedure is also

implemented, which reduces the residuals of stress, plastic strain,

and the hardening variables. This model is then verified against

previous versions of the HS model, against published experimental

data, and a slope stability analysis is performed.

2. Conventions

This paper follows the sign convention of general solid mechanics,

where tensile stresses and strains are taken as positive. The

principal stresses are ordered descending σ1 ≥ σ2 ≥ σ3. Vectors

and matrices are denoted in bold. The unique terms of the three-

dimensional stress tensor are represented in the vector:

(1) σ =
[

σx σy σz σxy σyz σxz

]T

and similarly for the strain tensor ε. Several stress invariants are

used throughout this paper to describe the HS and HS-LC models.

The mean stress is calculated from the normal stress components.

(2) p =
σx + σy + σz

3

The shear stress is defined as

(3)

q =
√

(σx − σy)2 + (σy − σz)2 + (σz − σx)2

2
+ 3

(

σ2
xy + σ2

yz + σ2
xz

)

The third deviatoric stress invariant is the determinant of the

deviatoric stress tensor

(4)

J3 = (σx − p)
[

(σy − p)(σz − p)− σ2
yz

]

−σxy [σxy(σz − p)− σyzσxz]

+σxz [σxyσyz − (σy − p)σxz]

The Lode angle is calculated from the shear stress and third

deviatoric stress invariant

(5) θ =
1

3
arcsin

(

−27J3
2q3

)

and is equal to π/6 in triaxial compression (σ1 = σ2 > σ3). The

volumetric strain is the sum of the normal strains

(6) εv = εx + εy + εz

The shear strain, as defined by Wood (1990) is given as

(7)

γ =
√

2

9
[(εx − εy)2 + (εy − εz)2 + (εz − εx)2] +

1

3

[

ε2xy + ε2yz + ε2xz
]

3. Background to the hardening soil model

The HS model is a non-linear soil plasticity model used for the

analysis of granular and cohesive soils, which utilises three main

yield surfaces:

A shear surface which hardens from initial loading

A cap surface to control volumetric strains

A Mohr-Coulomb failure envelope to impose a final limit on

shear stress

Benz (2007) suggested the replacement of the hexagonal Mohr-

Coulomb type yield surface with the smooth variation by Matsuoka

and Nakai (1974), which produces the same results as the Mohr-

Coulomb surface in triaxial conditions when the Lode angle θ =

±π/6. The main advantages of this smoothed surface are the
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consideration of the intermediate principal stress at soil failure,

and is more computationally convenient due to a reduction in the

number of edges and corners which define the yield surface.

The surfaces in each version were formulated to follow the triaxial

hyperbola (Eq. 8) proposed by Duncan and Chang (1970) (Figure

1).

Figure 1. Triaxial compression shearing hyperbola as used in

the formulation of HS model, redrawn from Benz (2007).

The equation of the hyperbola in Figure 1 is given by

(8) ε3 =
qa

2E50

q

q − qa

The shear stress q is limited to the failure shear stress qf (given by

the Mohr-Coulomb criterion)

(9) qf =
2 sinϕ

1− sinϕ
(−σ1 + c cotϕ)

where c is the effective cohesion, and ϕ is the friction angle at

failure. E50 is the secant stiffness at 50% mobilised shear stress

(see Figure 1). The asymptotic shear stress qa is given by

(10) qa =
qf
Rf

whereRf is the failure ratio, which describes the ratio of the failure

shear stress to the asymptotic shear stress. A set of stress-dependent

stiffness parameters are used throughout the model. These are

based on a reference stress σref and a stiffness stress dependency

exponent m.

(11) Eur = Eref
ur

(

−σ1 + c cotϕ

−σref + c cotϕ

)m

(12) E50 = Eref
50

(

−σ1 + c cotϕ

−σref + c cotϕ

)m

Eref
ur and Eref

50 are the reference moduli for unloading/reloading

and 50% failure shear stress respectively, these are the given values

at σref . It is worth noting that a constant stiffness can be achieved

by setting m = 0.

The dilatancy angleψm is also dependent on stress in the HS model;

this is used in the plastic potential function to define the gradients

of stress return to the shear yield surface. Schanz et al. (1999) used

Rowe’s stress dilatancy theory (Eq. 13) (Rowe, 1962), and Benz

(2007) suggested other alternatives (Søreide, 1990; Li and Dafalias,

2000; Wehnert, 2006).

(13) sinψm = max

(

0,
sinϕm − sinϕc

1− sinϕm sinϕc

)

The critical state friction angle ϕc is given by

(14) sinϕc =
sinϕ− sinψ

1− sinϕ sinψ

Additionally, the mobilised friction angleϕm when using the Mohr-

Coulomb model is

(15) sinϕm =
σ1 − σ3

2c cotϕ− σ1 − σ3

Benz (2007) used an alternative definition of the mobilised friction

angle to match the Matsuoka-Nakai criterion (Matsuoka and Nakai,

1974).

The shear surface in the HS model is formulated by first taking

a position on the hyperbola defined in Eq. 8, this is the first

two fractions of Eq. 16. A full unloading step to q = 0 is then

subtracted, this is the third fraction. The remainder of this unloading

is defined by the accumulated plastic shear strain γp, and is used as

a hardening parameter for this surface.

(16) fs =
qa

2E50

q

qa − q
− q

Eur

− γp = 0
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Note that the definition in Eq. 16 is different to those quoted by

Schanz et al. (1999) and Benz (2007) due to the different definition

of shear strain (Eq. 7). This hardening cone is active until the shear

stress q reaches the failure shear stress qf . It is important to note that

the shear yield surface (Eq. 16) continues to harden after the failure

shear stress is exceeded whenever the minor principal stress σ1

increases. Therefore, with the HS model, it is necessary to check for

yielding of the hardening shear surface, even if the failure criterion

has been exceeded previously.

In the two prior version of the HS model, the failure surface

is defined by either the Mohr-Coulomb criterion (Eq. 17) or the

Matsuoka-Nakai criterion (Eq. 18).

(17) fMC =
σ1 + σ3

2
sinϕ+

σ1 − σ3

2
+ c cosϕ = 0

(18) fMN =
I1I2
I3

−
(

9 + 8 tan2 ϕ
)

= 0

where I1, I2 and I3 are the first, second and third invariants of

the stress tensor. The first advantage of using the Matsuoka-Nakai

criterion is that the intermediate principal stress is considered;

secondly, the smooth yield is more convenient computationally, as

fewer corners / edges are present than in the Mohr-Coulomb yield

surface.

The plastic potential used with both of the shear yield surfaces is

the circular cone presented by Drucker et al. (1952).

(19) gs = q + (p− c cotϕ)
6 sinψm

3− sinψm

The internal angle of the cone is determined by the mobilised

dilatancy angle ψm. Alternate shear plastic potential functions

may also be implemented with the HS model, as use of different

potential functions has been shown to change the model behaviour;

in particular the treatment of the Lode angle after failure (Lagioia

and Panteghini, 2014).

The cap surface takes the form of an ellipse in p-q space

(20) fc = p2 +

(

q

χα

)2

− p2p = 0

The steepness of the cap is controlled using the parameter α, and χ

is a Lode angle-dependent variable (defined later in Eq. 35) which

varies the shape of the cap surface in the deviatoric plane such that

the locus of its intersection with the shear surface lies on the plane

Figure 2. Shear yield function value against shear stress.

Yielding is not detected when the trial shear stress qtr exceeds

qa.

perpendicular to the isotropic compression line σ1 = σ2 = σ3. The

pre-consolidation pressure pp is used as a hardening parameter

and controls the overall size of the cap. The cap surface uses an

associated flow rule.

4. Changes to the hardening soil model

There are a number of aspects of the existing HS formulations

that can give rise to numerical difficulties. The first issue relates

to the form of the shear yield surface (Eq. 16). In many return

mapping schemes it is necessary to calculate a ‘trial stress’, which

is obtained by using elastic stiffness for the given strain increment.

If the trial shear stress exceeds the asymptotic shear stress, i.e.

q > qa, then the yield function would become negative, and the

return mapping algorithms could not detect yielding on the shear

surface, as illustrated in Figure 2. Additionally, a trial stress of

q = qa creates a division by zero in the shear yield surface. This

issue has also been noted by Cocco and Ruiz (2018). To overcome

this difficulty, the shear surface has been reformulated so that

it remains positive for any shear stress higher than yield, thus

allowing implementation of the Hardening Soil model in stress

return mapping schemes such as closest point projection (CPP).

The use of a second surface to define failure has also been

removed in this reformulation, as the mating of a hardening yield

surface with a fixed failure surface was found to create numerical

difficulties. Instead, soil failure is incorporated into the hardening

function of the reformulated shear yield surface.

4 Prepared using PICEAuth.cls
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The next issue is the incremental form of the shear hardening

parameter γp as it was found to cause the global Newton-Raphson

scheme to converge at an increasingly slower rate throughout load

incrementation. It was discovered that this was due to drifting of the

solution; the hardening parameter represents the plastic shear strain,

and with continued shear strain steps, the hardening parameter

would tend to deviate from the plastic strains calculated in the return

mapping procedure. This issue is addressed by using the plastic

strains directly in the yield function.

Benz (2007) documents use of the CPP method for one and

two surface stress returns. However, in this formulation, only the

residual for the stresses are reduced during each iteration and the

return mapping procedure is based on incremental relationships. In

the algorithm presented in this paper, residuals for the plastic strain

and the hardening variables are also reduced, leading to algorithm

which converges faster. Additionally, the incremental cap hardening

residual is taken into account in the new algorithm. The use of a

relationship between total rather than incremental terms reduces the

tendency for the solution to drift from the governing equations and

reduces step size-dependency.

4.1. Shear surface

The following section details the steps taken to reformulate the

shear surface in the HS-LC model. In triaxial stress states, the

relationship between the axial plastic strain and shear stress is given

by Kondner’s hyperbola (Eq. 8).

(21) εp3 =
qa

2E50

q

q − qa
+

q

Eur

In triaxial stress states (θ = ±π/6), the minor and intermediate

principal strains are equal (ε1 = ε2), substituting this relationship

into the definition of the shear strain (Eq. 7) gives the triaxial plastic

shear strain.

(22) γp =
2

3
(ε1 − ε3)

As the hardening of the shear yield function is related solely to

plastic shear strain, a state of pure shear is considered; i.e.

(23) εpv = εp1 + εp1 + εp3 = 0

which leads to the relationship

(24) εp1 = −1

2
εp3

Substituting Eq. 24 into Eq. 22 gives the relation between plastic

triaxial shear strain and axial strain.

(25) γp = −εp3

Substituting Eq. 25 back into Eq. 21 gives the relation between the

plastic shear strain and hyperbola used in the HS-LC model.

(26) 0 =
qa

2E50

q

qa − q
− q

Eur

− γp

In order to obtain a normalised hardening function which has the

limits 0 and 1, the function is formulated to equal the ratio of the

shear stress and the asymptotic shear stress. Letting rq = q/qa and

ru = Eur/2E50 and through manipulation of Eq. 26 the following

hardening function is obtained:

(27)

rq =
1

2

√

(

ru − 1 +
γpEur

qa

)2

− 4γpEur

qa

− 1

2

(

ru − 1 +
γpEur

qa

)

To enforce the shear failure limit at a point below the asymptotic

shear stress qa, the parameter Rf is used as a maximum value, i.e.

rq ≤ Rf . The hardening function with the imposed upper limit is

plotted in Figure 3 for different values of qa. Intuitively, a higher

asymptotic shear stress requires a higher plastic shear strain to reach

the failure limit. To maintain stable convergence when q > qf for

standard Newton-Raphson solvers, a very small gradient can be

given to the post-failure curve in Figure 3. This gradient is generally

only necessary for load-controlled analyses.

The ‘loading’ and ‘failure’ surfaces are combined with the latter

being the limit of the former. The chosen shear yield function

employs Panteghini and Lagioia’s reformulated version of the

Matsuoka-Nakai failure surface (Panteghini and Lagioia, 2013).

The yield function is given by;

(28) fs = q +
Mrq
ρRf

(p− c cotϕ) = 0

in which ρ is the Lode angle-dependent parameter which alters the

shape of the yield surface in the π-plane (Eq. 32). M controls the

apex angle of the cone (Eq. 33); when rq = Rf , Eq. 28 is equivalent
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Figure 3. Shear surface hardening function with plastic shear

strain with Rf = 0.9.

to the Matsuoka-Nakai failure surface (Eq. 18). The definitions of

each required intermediate parameter are listed below

(29) η =
2 sinϕ

√

3 + sin2 ϕ

(30) ξ =
sinϕ

(

9− sin2 ϕ
)

(

3 + sin2 ϕ
)1.5

The Lode angle dependency is given by

(31) Θ(θ) = 2
√
3 cos

[

1

3
arccos (ξ sin(−3θ))

]

The parameter ρ normalises the Lode angle dependency to triaxial

compression. The last converged stress is used in this calculation.

(32) ρ =
Θ(θLC)

Θ(π/6)

The parameter M is given by

(33) M =
3
√
3η

Θ(π/6)

This surface uses a non-associated flow rule. The plastic potential is

that of Drucker et al. (1952), as described in Eq. 19. The mobilised

friction angle is also redefined to match the current failure criterion.

This is used in the calculated of the mobilised dilatancy angle

sinψm (Eq. 13).

(34) sinϕm =
3q

6χ (−p+ c cotϕ) + q

where χ is equivalent to the Lode dependency term described by

Schanz et al. (1999) and Benz (2007), and it relates to the terms in

this proposed model by the following relationship:

(35) χ =
M

ρ

(

3− sinϕ

6 sinϕ

)

The shaping parameter χ is used in the cap yield surface (Eq. 20).

4.2. Tension surface

A tension limit σt is imposed on the mean stress in this proposed

model as follows;

(36) ft = p− σt = 0

where σt is the tension cutoff and is entered as a material parameter.

The tension yield function uses an associated flow rule (gt ≡ ft)

and does not harden.

One of the previous versions of the hardening soil model Benz

(2007) made use of a Rankine type criterion to handle tensile

stresses. In this formulation, the mean stress criterion is used for

computational convenience to minimise the number of edges and

corners between the yield surfaces.

5. The closest point projection method

The closest point projection (CPP) method (a type of backward

Euler method) is an implicit return mapping scheme (Simo and

Hughes, 2006) whereby the returned stress path is based on the

gradients at the final converged stress state (Figure 4).

A trial stress σtr is calculated using the elastic stiffness matrix

De, the stress at the last converged state σLC and the total strain

increment ∆ε.

(37) σtr = σLC +De∆ε

6 Prepared using PICEAuth.cls
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Figure 4. The closest point projection method in 2-D stress

space (associated flow rule).

The aim of the CPP method is to satisfy the following conditions:

(38) f(σ,µ) ≤ 0

(39) R = 0

(40) ∆λ ≥ 0

(41) ∆λf(σ,µ) = 0

where f(σ,µ) = 0 is the yield function which forms a surface in

3-D stress space, σ is the converged stress state, µ represents one or

more state variables which define the position of the yield surface,

R is the residual of the plastic strains, and ∆λ is the variation in

the plasticity multiplier which governs the size of the plastic strain

steps.

As there are several yield surfaces present in the hardening soil

model, and the evolution rules take different forms, a separate

CPP algorithm is required for each yield surface and each

possible combination of yield surfaces. The formulation of the CPP

algorithms are documented in the following sections.

5.1. Single surface stress return

The role of the CPP algorithm for a single surface is to satisfy one

yield criterion.

(42) f(σ,σLC , ε
p) = 0

The plastic strain residual is given by

(43) R = −∆ε
p +∆λ

∂g

∂σ
= 0

Expanding Eq. 43 as a Taylor’s series gives

(44) R+ δR = R− δε
p + δλ

∂g

∂σ
+∆λ

∂2g

∂σ2
δσ = 0

Rearranging to obtain the plastic strain increment

(45) δε
p = R+ δλ

∂g

∂σ
+∆λ

∂2g

∂σ2
δσ

Expanding Eq. 42 as a Taylor’s series

(46) f +
∂f

∂σ

T

δσ +
∂f

∂εp

T

δε
p = 0

Substituting the plastic strain increment (Eq. 45) into Eq. 46

(47) f +
∂f

∂σ

T

δσ +
∂f

∂εp

T
(

R+ δλ
∂g

∂σ
+∆λ

∂2g

∂σ2
δσ

)

= 0

Grouping the δσ terms gives

(48) f + F
T
δσ +

∂s

∂εp

T
(

R+ δλ
∂g

∂σ

)

= 0

where

(49) F
T =

∂f

∂σ

T

+∆λ
∂f

∂εp

T ∂2g

∂σ2
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During the CPP iterations, the change in stress between iterations is

(50) δσ = −Deδε
p

Substituting the plastic strain increment (Eq. 45) into Eq. 50

(51) δσ = −De

(

R+ δλ
∂g

∂σ
+∆λ

∂2g

∂σ2
δσ

)

Rearranging Eq. 51 gives

(52) δσ = −Ae

(

R+ δλ
∂g

∂σ

)

where

(53) Ae =

(

I +∆λDe
∂2g

∂σ2

)−1

De

and I is the identity matrix. Finally, the variation in the plasticity

multiplier is calculated through substitution of Eq. 52 into Eq. 48

and rearranging for δλ.

(54) δλ =
f − F TAeR+ ∂f

∂εp

T
R

F TAe
∂g

∂σ
− ∂f

∂εp

T ∂g

∂σ

5.2. Two surface stress return

When both surfaces are active, the stress state must return to the line

which is the intersection of both surfaces. The formulation must

also take into account the inter-dependency between the hardening

rules of each surface.

The total plastic strain residual now incorporates hardening from

both surfaces

(55) R = −∆ε
p +∆λ1

∂g1
∂σ

+∆λ2
∂g2
∂σ

= 0

Expanding Eq. 55 as a Taylor’s series and simplifying leads to a

form of the plastic strain increment which involves both surfaces.

(56)

δε
p = R+ δλ1

∂g1
∂σ

+ δλ2
∂g2
∂σ

+

(

∆λ1
∂2g1
∂σ2

+∆λ2
∂2g2
∂σ2

)

δσ

The expansion of the yield surfaces remain identical to Eq. 46,

however the new definition of the plastic strain increment Eq.

56 must be substituted into Eq. 46. Grouping the δσ after this

substitution leads to

(57) f1 + F
T
1 δσ +

∂f1
∂εp

T
(

R+ δλ1
∂g1
∂σ

+ δλ2
∂g2
∂σ

)

= 0

where

(58) F
T
1 =

∂f1
∂σ

T

+
∂f1
∂εp

T
(

∆λ1
∂2g1
∂σ2

+∆λ2
∂2g2
∂σ2

)

and similarly for the second surface:

(59) F
T
2 =

∂f2
∂σ

T

+
∂f2
∂εp

T
(

∆λ1
∂2g1
∂σ2

+∆λ2
∂2g2
∂σ2

)

The two surface form of the plastic strain increment (Eq. 56) is now

substituted into the incremental stress relationship (Eq. 50).

(60)

δσ =

−De

[

R+ δλ1
∂g1
∂σ

+ δλ2
∂g2
∂σ

+

(

∆λ1
∂2g1
∂σ2

+∆λ2
∂2g2
∂σ2

)

δσ

]

The stress increment from Eq. 60 simplifies to

(61) δσ = −Ae

(

R+ δλ1
∂g1
∂σ

+ δλ2
∂g2
∂σ

)

where

(62) Ae =

(

I +∆λ1De
∂2g1
∂σ2

+∆λ2De
∂2g2
∂σ2

)−1

De
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Substituting Eq. 61 into Eq. 57 and its second surface counterpart,

then rearranging into matrix form gives an expression for the

plasticity multipliers to be solved.

(63) Ωf = Ω

[

δλ1

δλ2

]

where

(64) Ωf =

[

f1 − F T
1 AeR+ ∂f1

∂εp
R

f2 − F T
2 AeR+ ∂f2

∂εp
R

]

(65)

Ω =

[

F T
1 Ae

∂g1
∂σ

− ∂f1
∂εp

T ∂g1
∂σ

F T
1 Ae

∂g2
∂σ

− ∂f1
∂εp

T ∂g2
∂σ

F T
2 Ae

∂g1
∂σ

− ∂f2
∂εp

T ∂g1
∂σ

F T
2 Ae

∂g2
∂σ

− ∂f2
∂εp

T ∂g2
∂σ

]

Eq. 63 is then solved for the unknown plasticity multipliers δλ1 and

δλ2.

5.3. Additional CPP considerations

The CPP formulations in this section are described in terms of

a generic case where the hardening rule is related directly to the

plastic strain vector εp. Hence, the algorithms can be used directly

for the shear and tension surfaces. The tension surface does not

harden, therefore the hardening term ∂ft
∂εp

is equal to zero.

The cap surface uses an incremental form for the hardening rule,

therefore a hardening residual must be included in the formulation.

(66) Rh = −∆pp +∆λ
∂pp
∂εpv

∂εpv
∂εp

T ∂gc
∂σ

= 0

The Taylor’s series expansion of the yield function also includes

the hardening parameter pp directly. The plasticity multiplier for

the cap surface is calculated using this hardening residual.

(67) δλc =
fc − F T

c AeR+ ∂fc
∂pp

Rh

F T
c Ae

∂gc
∂σ

− ∂fc
∂pp

∂pp

∂ε
p
v

∂ε
p
v

∂εp

T
∂gc
∂σ

5.4. Return mapping procedure
5.5. Return mapping procedure

As the HS-LC model uses multiple hardening yield surfaces and

uses a non-associated flow rule, a simple zoning method is not

sufficient to detect which surfaces are active for a given trial

stress. Instead, a more complex approach is adopted which returns

the stress to each surface in turn, then checks other surfaces for

yielding. Figure 5 illustrates the order in which yield criteria are

checked and returned to (following from Benz (2007)). The primary

and most dominant surface in the HS and HS-LC models is the

shear surface, hence the trial stress state σtr and plastic strains εp

are checked against the shear surface fs = 0 (Eq. 28). If this yield

criterion is exceeded, then the single surface CPP algorithm is used

to return the stress state to the shear surface.

After the return to the shear surface, it may be possible that

one of the other yield criteria are exceeded. Following a shear

surface return, the cap yield function fc = 0 (Eq. 20) is checked

with the returned stress and state variables. If the cap criterion is

exceeded, two surface hardening is not automatically assumed, and

the stress is returned to the cap surface using the single surface CPP

algorithm from the trial stress σtr and starting state variables. If

the shear yield criterion is still exceeded after the cap return, then

the two surface CPP algorithm is used. Unless the soil analysed is

heavily over-consolidated, this combination of surfaces is the most

commonly used in primary loading.

A similar procedure is adopted for the tensile yield surface ft = 0

(Eq. 36). After the first shear surface return, the tensile criterion is

checked. If exceeded, then the single surface CPP algorithm is used

to return the stress and state variables to the tension yield surface.

If the shear criterion is still exceeded, then the two surface CPP

algorithm is used.

In the case that the shear surface is not initially yielding, the cap

surface yield criterion is checked and returned to if necessary. This

cap return may place the updated stress in a region which exceeds

the shear yield criterion. If the shear yield criterion is exceeded, then

the two surface CPP algorithm is used to return the stress and state

variables to the shear and cap surfaces. The tension surface does

not need to be checked here because the tension and cap surfaces

cannot both be active.

Finally, if no yielding was detected before this stage, then the

tensile yield criterion ft = 0 (Eq. 36) is checked and returned to

if this criterion is exceeded. The shear criterion does not need to be

checked again because shear yielding would have been detected at

the first stage.

5.6. Example CPP algorithm

Algorithm 1 describes the most complex of the CPP algorithms,

namely the return to the shear and cap surfaces. It is the most

complex because it includes reduction of the cap hardening residual

Rh due to the decoupling of the two surfaces.

To convert this algorithm to return to the shear and tension

surfaces, the subscript c is replaced with t. The tension surface
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Figure 5. Return mapping algorithm used in the HS-LC model: Each yield function and return mapping algorithm are referenced as

follows; fs - Eq. 28; fc - Eq. 20; ft - Eq. 36; CPP shear - Eqs. 42 to 54 with subscript s; CPP cap - Eqs. 42 to 54, subscript c, and

hardening residual (Eq. 66); CPP tension - Eqs. 42 to 54, subscript t; CPP shear & cap - Eqs. 55 to 63, subscripts s and c, and cap

hardening residual (Eq. 66); CPP shear & tension - Eqs. 55 to 63, subscripts s and t.
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uses an associated flow rule (gt ≡ ft). Additionally, the tension

surface is non-hardening, therefore ∂ft
∂εp

= 0 in each of the relevant

expressions.

The procedure for the single surface CPP algorithms is similar to

those of the double surface procedure. The stress increment, plastic

strain increment, and pseudo-consistent constitutive matrix contain

derivatives for one surface only. The calculation of the plasticity

multiplier δλ is performed using Eq. 54.

Algorithm 1 Closest Point Projection algorithm for HS-LC shear

and cap surfaces.

Initialisation

∆λs = 0; δλs = 0
∆λc = 0; δλc = 0
∆εp = 0; εp = εp,n−1

pp = pn−1

p
i = 1
Trial stress

σ = σ0 + De∆ε

Update yield functions

fs = fs(σ, εp)
fc = fc(σ, pp)
fs,tol = |fs| · ftol
fc,tol = |fc| · ftol
while (|fs| > fs,tol or |fc| > fc,tol or ‖R‖ > Rtol or |Rh| > Rtol) and i <

imax do

Calculate derivatives

∂fs
∂σ

;
∂gs
∂σ

;
∂2gs
∂σ2

;
∂fs
∂εp

∂fc
∂σ

;
∂gc
∂σ

;
∂2gc
∂σ2

;
∂fc
∂pp

;
∂pp

∂ε
p
v

;
∂ε

p
v

∂εp

Calculate pseudo-consistent constitutive matrix

Ae =

(

I + ∆λsDe
∂2gs
∂σ2

+ ∆λcDe
∂2gc
∂σ2

)

−1

De

Calculate residual plastic strain and hardening parameter residual

R = −∆εp + ∆λs
∂gs
∂σ

+ ∆λc
∂gc
∂σ

Rh = −∆pp + ∆λc
∂pp

∂ε
p
v

∂ε
p
v

∂εp

T
∂gc
∂σ

Stress increment

δσ = −Ae

(

R + δλs
∂gs
∂σ

+ δλc
∂gc
∂σ

)

Plasticity multipliers

Ω =







FT
s Ae

∂gs
∂σ

− ∂fs
∂εp

T ∂gs
∂σ

FT
s Ae

∂gc
∂σ

− ∂fs
∂εp

T ∂gc
∂σ

FT
c Ae

∂gs
∂σ

FT
c Ae

∂gc
∂σ

− ∂fc
∂pp

∂pp

∂ε
p
v

∂ε
p
v

∂εp

T
∂gc
∂σ







Ωf =





fs − FT
s AeR + ∂fs

∂εp
R

fc − FT
c AeR + ∂fc

∂pp
Rh





[

δλs

δλc

]

= Ω
−1

Ωf

∆λs = ∆λs + δλs

∆λc = ∆λc + δλc

Update plastic strains

δεp = R + δλs
∂gs
∂σ

+ δλc
∂gc
∂σ

+

(

∆λs
∂2gs
∂σ2

+ ∆λc
∂2gc
∂σ2

)

δσ

∆εp = ∆εp + δεp

εp = εp + δεp

Update stress

σ = σ + δσ

Re-calculate yield functions

fs = fs(σ, εp)
fc = fc(σ, pp)
i = i + 1

end while

Check convergence

if |fs| > fs,tol or |fc| > fc,tol or ‖R‖ > Rtol or |Rh| > Rtol then

output an error message and stop the program

end if

return σ, εp , pp , ∆λs , ∆λc

6. Consistent tangent matrix

The consistent tangent matrix (CTM) relates infinitesimal stresses

and strains. It is used to calculate the stress gradients on one or more

active yield surfaces and preserves the quadratic rate of convergence

in the global Newton-Raphson iterative scheme.

Much of the theory for defining the consistent tangent matrix has

been discussed already, however it is worth noting that in the

formulation of the CTM, the stress state is assumed to already be

on one or more yield surfaces and the residuals relating to the active

surface(s) are zero. The plastic multiplier(s) ∆λ from the previous

iteration are also required. The consistent tangent is defined as:

(68) Dep =
dσ

dε

If the stress state lies on a single yield surface, then the consistent

tangent is given as

(69) Dep = Ae −
Ae

∂g

∂σ
F TAe

F TAe
∂g

∂σ
− ∂f

∂εp

T ∂g

∂σ

When two surfaces are active, a more complex approach is used

which takes into account the gradients and hardening rules from

both surfaces.

(70)

Dep = Ae −
(

Ω−1)

1,1
Ae

∂g1
∂σ

F
T
1 Ae

−
(

Ω−1)

1,2
Ae

∂g1
∂σ

F
T
2 Ae

−
(

Ω−1)

2,1
Ae

∂g2
∂σ

F
T
1 Ae

−
(

Ω−1)

2,2
Ae

∂g2
∂σ

F
T
2 Ae

7. Additional computational considerations

During preliminary testing of the HS-LC model, it was found

that some step size dependency occurred when modelling certain

simulations. In the initial implementation of the HS-LC model, the

Young modulus used in the calculation of the elastic and tangent

stiffness matrices was based on the converged stress from the

previous increment. Use of the last converged modulus significantly

improves the stability of the model, as the non-linearity within a

given increment is reduced. For large step sizes, this causes the

results to drift from the true solution.

A simple method to reduce the step size dependency could be to

directly update Young’s modulus in every iteration; however, this

was found to increase the non-linearity in the model and analyses

would converge poorly. An alternative approach is proposed: this

involves updating the Young’s modulus for a controlled number
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of iterations at the start of each increment. Within each iteration,

Young’s modulus is frozen; this retains stability in the local iterative

procedure.

It is acknowledged that the stiffness calculated as a result of the

update of Young’s modulus may be approximate, as the solution

would not be converged. Therefore, some dependency on the last

converged solution can be used by introducing a weighting factor,

such that Young’s moduli are a function of the last converged stress

σLC and the stress from the previous iteration σLI ; i.e.

(71) Eur ((1− r)σLC + rσLI)

where r is the weighting factor which controls the dependency on

the last converged stress. A value of r = 0 forces the model to use

only the last converged stress σLC , and a value of r = 1 forces

the model to use only the stress from the last increment σLI . This

update is performed until the absolute relative change in Young’s

moduli ∆E between iterations reduces to below a given tolerance.

(72) ∆E =

∣

∣Eur − (Eur)LI

∣

∣

Eur

As each of Young’s moduli Eur and Ei are linearly proportional to

one-another, any one of them may be used to determine the change

in the moduli; in the proposed model, the unloaded modulus Eur is

selected.

Within a given increment, the tangent matrix can be considered

to be consistent, in that it describes the infinitesimal relationship

between stress and strain as defined in the rest of the model.

However, from a more global perspective, it is more correct to

describe this as a pseudo-consistent tangent, this is because some

of the variables are effectively frozen between iterations.

8. Results and discussions

The HS-LC model has been implemented in finite element analysis

software LUSAS for the purpose of solving boundary value

problems. Case studies with experimental data and predictions with

other models were chosen to compare with the HS-LC model. The

first problem is a one-dimensional oedometer test on a dry sand;

experimental data, and predictions from the original HS model

were extracted from the paper by Schanz et al. (1999). The second

problem is a triaxial compression test on the same sand, again,

experimental data and predictions from the original HS model are

also available Schanz et al. (1999). These two tests are chosen to

demonstrate the capabilities of the HS-LC model in reproducing

common soil laboratory tests. The parameters used in the HS-LC

model for each analysis are shown in Table 1. The calibration

parameters which these are adjusted to are: Eref
50 = 23, 890 kPa,

Eref
oed = 16, 500 kPa, K0 = 0.44.

Results from previous experiments and predictions with the HS

model Schanz et al. (1999) were extracted through interpretation of

graphs. Hence, it is expected that there may some minor differences

with these results. For the purposes of this study where two models

are being compared at a broad level, these differences should be

sufficiently insignificant.

Finally, a third set of analyses are performed on a hypothetical

embankment using both a plane-strain, and a 3D analysis. The

factor of safety of the slope is determined using ϕ-c reduction. This

result is compared against the factor of safety determined through

analytical and graphical methods.

Table 1. Material parameters used in the HS-LC model

simulations.

Loose Hostun sand Embankment soil

ρ (kg/m3) 1.4

ν 0.2 0.35

ϕ (◦) 34 30

ψ (◦) 1.5 0.0

c (kPa) 0.0 50.0

m 0.65 0.50

Rf 0.95 0.90

Eref
ur (kPa) 60,000 60,000

Eref
i (kPa) 68,913 25,000

Ks/Kc 1.75 2.00

α 0.959 1.000

σt (kPa) 0 283

8.1. Oedometer test

This test considers the stress-strain response of confined uniaxial

compression of loose Hostun sand (Table 1). The problem

was modelled using a 4 by 4 grid of quadratic, quadrilateral

axisymmetric elements. The oedometer sample modelled was of

height and radius 3.5 cm; the base of the soil was fully fixed and

the outside vertical boundary was fixed in the horizontal direction.

A prescribed displacement was applied to the top of the soil in

the vertical direction, 4 unloading-reloading cycles were used and

the analysis was performed using a total of 243 increments with a

loading and unloading rate of 0.2 mm per increment. The full load

curve for this test can be found in Figure 6.

Experimental and predicted results are presented by (Schanz

et al., 1999). Whilst a number of material parameters for the

loose Hostun sand were described, a some material parameters

were not available; including the oedometer modulus Eref
oed . For

this study, the oedometer modulus was determined from the
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published experimental results by calculating the gradient of the

oedometer curve at the reference stress σref = −100 kPa. The

remaining stiffness parameters Eref
50 and Eref

ur were determined

by measuring the secant stiffness and unload-reload stiffness from

the published triaxial data. The auxiliary parameters α and Ks/Kc

were calibrated to Eoed and to an assumed value of the lateral earth

pressure coefficient K0 = 1− sinϕ. A small dilatancy angle was

also used to reflect the volumetric strain increase observed in the

experimental triaxial data. The full list of material parameters can

be found in Table 1. The results of the oedometer simulation are

plotted in Figure 7.

Figure 6. Load factor progression for the oedometer test.

The prediction of the primary loading curve closely matches

the experimental data below 0.02 axial strain. The published

experimental reloading cycle is incomplete after this stage.

The unloading cycles initially under-predict the stiffness, however

the stiffness is predicted well in the third and fourth cycles. The

experimental data shows different paths between unloading and

reloading; this is something not captured in the HS and HS-LC

Figure 7. Oedometer test results and predictions for the HS

model (Schanz et al., 1999), and the HS-LC model.

Figure 8. Oedometer test step size study using stiffness update

procedure with r = 0.33; the stiffness was updated until

∆E ≤ 0.05.

models because elastic stiffness is assumed when below the yield

surface.

Another interesting feature of the HS and HS-LC predictions is the

change in gradient towards the end of each unloading stage. This

was found to be caused by the minor principal stress swapping

orientation. This stress component is used to calculate Young’s

modulus (Eq. 11). It may be possible to remove this phenomenon in

the HS and HS-LC models by using a stiffness dependency based

on the mean stress.

As might be expected for a simple test, relatively few iterations are

required to achieve convergence in each step, with each increment

requiring only 2 iterations to converge to the given tolerances. The

global tolerances used for this test, and all other tests in this study

are as follows: the residual force norm tolerance is 0.001%, and the

incremental displacement norm tolerance is 0.001%.

A second series of oedometer simulations were carried out to

investigate the impact of step size in the HS-LC model. These

analyses were stress-controlled and the soil is taken to a vertical

load of 100 kPa using different step sizes.

Figure 8 shows that the model is step size convergent when the

load is split into at least 10 steps. Minor differences in the response

relate to the stiffness update procedure but the differences are

considered negligible for the 10, 50, and 100 step tests. However,

this procedure comes at a cost of increasing the total number

of iterations per increment; this has been documented previously

(Bower, 2017). As the stiffness of the problem changes, the

global rate of convergence is lowered slightly. This effect is most
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Figure 9. Number of iterations until convergence for the 10 step

oedometer simulation.

Figure 10. Number of iterations until convergence for the 50

step oedometer simulation.

Figure 11. Number of iterations until convergence for the 100

step oedometer simulation.

prominent at the start of the test and can be seen in Figures 9 to 11,

where the first few increments converge in 4 or more iterations.

The remainder of each test converged in 4 increments or fewer,

with most converging in 2 iterations. For the 5 step test, each of

the increments took 4 iterations to converge.

Bower (2017) showed that use of the stiffness update procedure

was necessary to preserve accuracy in the load paths of problems

in which stress-dependent stiffness is an important factor. A

similar comparison was performed with oedometer tests both with

and without the stiffness update procedure. Without the update

procedure, the oedometer tests using 250 and 500 steps produced

similar load paths, however, the 50 and 100 step tests deviated from

these other tests to a much greater degree than that shown in Figure

8.

8.2. Triaxial compression test

A drained, normally-consolidated triaxial test was simulated using

the same material properties as the oedometer test (Table 1).

Experimental data and predictions from the original HS model were

also found for this test (Schanz et al., 1999). The experimental and

predicted shear response is plotted in Figure 12, and the volumetric

responses are plotted in Figure 13.

The problem was analysed using a single axisymmetric element, the

radius of the triaxial cell was taken to be 3 cm and the height was

taken to be 10 cm. The base of the cell was fixed in the vertical

direction and the axis of symmetry was fixed in the horizontal

direction. The soil was prescribed an initial isotropic compressive

stress of 300 kPa to simulate the effective confining stress. A

vertical displacement was applied to the top of the soil at a rate

of 0.03 cm per increment for 50 increments.

Figure 12. Triaxial test shear plots for simulation and 3

repeated experimental plots at 300 kPa confining stress.

The prediction of the shear stress response, as shown in Figure

12, follows a similar path to the original HS model, which slightly

under-predicts the initial stiffness and the HS-LC provides a closer

match. The shear stress failure limit for the HS-LC model can be

seen to come into effect after ε3 = −0.11, and the maximum shear

stress matches the original HS model and the experimental curves.

The predictions of the volumetric strain (Figure 13) vary between

the HS and HS-LC models. The HS-LC model predicts an

increased compaction at the start of the simulation compared to

the experimental results and the HS model. Including the small

dilatancy angle has caused the soil to dilate with increasing shear

stress. The post-failure gradient matches the experimental results

well. The modified Rowe dilatancy formula (Eq. 13) is used in this
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Figure 13. Triaxial test volumetric plots for simulation and 3

repeated experimental plots at 300 kPa confining stress.

simulation. The difference with the initial gradient between the two

models is likely due to the dilatancy rules used in each model.

From the convergence plot for the triaxial test simulation (Figure

14), the first 2 increments converged in 3 iterations, this decreased

to 2 iterations per increment until increment 20, where most

increments converged in 1 iteration. On initial investigation with

the original HS model, it was found that this test required an

increasing number of iterations to converge as the test progressed,

and a sharp increase in required iterations was observed as the shear

stress approached the Mohr-Coulomb failure limit. By making the

changes to the HS model proposed in this paper, this problem was

overcome.

Figure 14. Number of iterations until convergence for the triaxial

test.

8.3. Slope stability analysis with ϕ-c reduction

In this section, the factor of safety (FOS) of a slope due to its self

weight is determined using the ϕ-c reduction technique, which is

compared against an analytical and a graphical method.

The main principal of the ϕ-c strength reduction method is to

reduce the values of the friction angle ϕ and cohesion c such that

the failure criterion is reduced in overall size. The parameters are

reduced by the following relationships according to the FOS F .

(73) c∗ =
c

F

(74) ϕ∗ = tan

(

arctanϕ

F

)

where c∗ and ϕ∗ are the reduced set of failure parameters. In the

HS-LC model, when the ϕ-c code is activated, the hardening shear

surface is deactivated and replaced with the Matsuoka-Nakai failure

criterion in its final position. This is performed by setting rq = Rf

in Eq. 27. The stress dependent parametersEi,Eur , and sinψm are

also frozen. Except for the dilatancy angle ψm, which is set to the

minimum of the frozen value of ψm and ϕ∗. The cap yield surface

is also removed from the analysis during ϕ-c reduction, as it merely

describes the evolution of plastic variables rather than soil failure.

In LUSAS, the FOS F is adjusted using an automatic procedure

until the stiffness of any part of the soil reaches a sufficiently small

value (i.e. global failure).

In the following example, the height of the slope is 10 m and

steepness is 45◦. The mesh is extended 20 m beyond the end of the

slope, which is considered sufficient to minimise boundary effects.

The 2D mesh (Figure 15) comprises of 2,933 nodes and 2,816

linear, quadrilateral plane-strain elements.

The full HS-LC model was utilised in the initiation of stresses

due to self-weight up until the point where the strength reduction

procedure commenced, when the shear surface becomes locked to

match the position of the failure surface.

The embankment was initialised in 4 equal lifts of 2.5 m each. First,

the flat domain of the soil was initialised under gravity loading

(g = 9.807 m/s2). Each lift was then activated and gravity was

applied to each layer as it was activated using automatic load

incrementation. The Young modulus update described in Section

7 was not used here as it was determined to not have any influence

on the final calculated FOS.

An analytical analysis of the same slope was performed using the

ordinary method of slices (OMS). This analysis was performed

using the WISE Uranium project slope stability calculator World

Information Service on Energy (2014) whereby the FOS at a series

of centre points and radii were determined. The area around the

minimum FOS was then scanned in more detail to further minimise

the calculated FOS.
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Figure 15. Mesh, geometry, and boundary conditions of the plane-strain slope stability problem.

A graphical method for determining the FOS for a uniform, drained

slope was also used Steward et al. (2010). This is a non-iterative

graphical method which produces two versions of the FOS; the first

places emphasis on the cohesion c, and the second on the friction

angle ϕ. The results from the analytical method, graphical method,

and ϕ-c reduction method are shown in Table 2.

Table 2. Factor of safety for the slope calculated through

different methods.

OMS Graphical (c) Graphical (ϕ) ϕ-c reduction

3.284 3.403 3.174 3.054

The calculated values of the factor of safety from each of

the methods tested in this paper are broadly similar. From a

geotechnical perspective, these values are close enough to be

considered equivalent for design purposes. The FOS calculated

through the ϕ-c reduction method is slightly below those calculated

through the other tested methods, making it a more conservative

prediction.

From Figure 16, the failure mechanism of this slope is near circular,

with the slip circle originating at the toe of the slope. From the

ordinary method of slices, the slip circle with the lowest FOS was

determined to have a centre 15.0 m directly above the toe of the

slope with a radius of 15.0 m. The lower section of the HS-LC slip

surface matches this well, however, the top section in the HS-LC

analysis forms more of a wedge type failure. The OMS method was

limited to circular slip surfaces, therefore a closer match to the HS-

LC results may be attainable with different slip surface shapes.

The contour plots of the shear strain γ (Figure 17) show more

precisely the location of shear failure in the soil. The highest shear

strain can be found at a point about 5.0 m horizontal to a point just

above the toe of the slope.

A second analysis of the slope was performed with modified

boundary conditions. This particular case study is not included as

a validation or benchmark but as a demonstration of the HS-LC

model’s 3D capabilities.

The 3D mesh (Figure 18) was formed from of 12,208 nodes

and 10,560 linear, 8-noded hexahedral elements. The boundary

conditions were modified from plane-strain conditions such that

one side of the ‘slice’ of slope was considered as a rough boundary

(following from Griffiths and Marquez (2007)). The geometry of

the slope, and the initialisation of the soil slope in layers was the

same as that used in the 2D plane-strain analysis, with a slice

thickness of 30 m. The smooth boundary on one side was used to

enforce symmetry in the problem; thus the slope analysed was 60 m

wide, with rough boundaries on both ends.

The stresses were initialised in the soil with smooth boundaries

on both sides. After the stresses were initialised, the displacements

were reset and the boundary conditions modified such that one side

was fully fixed. The strength reduction analysis was then initiated.
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Figure 16. Resultant displacements for 2D plane-strain analysis at end of ϕ-c reduction, plotted at 20× exaggerated deformation.

Figure 17. Shear strain for 2D plane-strain analysis at end of ϕ-c reduction.

The inclusion of the rough boundary has modified the nature of the

failure in the slope. From the displacement plot (Figure 19), the

shape of the failure surface is ellipsoidal. With the shear strain plot

(Figure 20), the slip surface emerges at the toe of the slope near the

smooth boundary.

The FOS calculated from the rough-smooth 3D analysis was 4.107.

This is higher than the 2D plane-strain analysis which assumes

smooth-smooth boundaries. This indicates that the rough boundary

assumption increases the calculated FOS for slope analyses.

The automatic incrementation of the ϕ-c method in LUSAS means

that many trial safety factors are used. Only those which converged

are included in the output. The solution continues until the change

in factor of safety is sufficiently small. In these analyses, this

tolerance was set to 0.001.

For the gravity initialisation phase in the 2D slope, each increment

required between 3 and 6 iterations to converge to the given

tolerances (Figure 21). In the 3D analysis (Figure 22), the

initialisation increments required 2 or 3 iterations. In both analyses,
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Figure 18. Mesh and geometry of the 3D slope stability problem. The base of the mesh is fully restrained, and the vertical sides of

the mesh are restrained from deforming out of their respective planes; one of the vertical faces containing the slope is fixed in all

directions.

The 4 lifts were performed using an automated incrementation

procedure which increases and decreases depending on the number

of global iterations required in the previous increment. Generally,

each lift used between 8 and 10 incrementation steps for the 2D

analysis, and between 4 and 6 incrementation steps for the 3D

analysis. Between each lift, the calculated stresses were added to

the equilibrium conditions and set as ‘established’ loads before the

next lift was activated and gravity applied to it.

As the ϕ-c method initialised for both analyses, the global solution

generally took between 5 and 13 iterations to converge. This

increase in required iterations is to be expected as certain elements

in the soil are being made to fail, and the degree of non-linearity is

increased.

To demonstrate the rate of convergence of the HS-LC model, one

increment from each of the slope analyses were chosen and the

residual force norm (also known as the norm of the out of balance

forces) are plotted for each chosen iteration. For the 2D plane-

strain analysis, increment 44 was selected (Figure 23) and for the

3D analysis, increment 46 was selected (Figure 24). The finite

element solution algorithm works to double precision floating point

accuracy.

It may be seen from Figure 23 that, after the first few iterations,

convergence progresses quadratically, and reaches a value in the

order of 10−7 very quickly. The case is similar for increment 46 pf

the 3D analysis (Figure 24) where the rate of convergence is initially

in the order of 10−1 for a few iterations, and then accelerates

dramatically to a value in the order of 10−11 by iteration 11.

The rapid rates of convergence, and the acceleration towards

convergence shows that the implementation of the consistent

tangent matrix in the HS-LC model works as expected, and the

quadratic rate of convergence of the Newton-Raphson method has

been preserved.

Finally, a mesh convergence study was performed for the 2D plane-

strain slope (Figure 25). The original mesh consisted of 2,816 linear

quadratic elements. A coarser mesh of 704 elements was generated

by merging elements in groups of 4, and a finer mesh of 11,264

elements was generated by splitting each element into 4 equally

sized smaller elements.

The variable compared in the mesh convergence study was the

final FOS determined by the ϕ-c reduction method. The difference

between the standard mesh and the coarse mesh is much greater

than the difference between the standard mesh and the fine mesh.
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Figure 19. Resultant displacements for 3D rough-smooth boundary analysis at end of ϕ-c reduction, plotted at 40× exaggerated

deformation.

Figure 20. Shear strain for 3D rough-smooth boundary analysis at end of ϕ-c reduction.
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Figure 21. Number of iterations until convergence for 2D

embankment analysis; increments 1-56 are the initialisation of

gravity body forces in the slope, increment 57 is a displacement

reset step, and the ϕ-c reduction method begins at increment

58.

Figure 22. Number of iterations until convergence for 3D

rough-smooth boundary embankment analysis; increments 1-39

are the initialisation of gravity body forces in the slope,

increment 40 is a displacement reset step, the supports are

modified at increment 41, a second displacement reset step is

used at increment 42, and the ϕ-c reduction method begins at

increment 43.

Therefore, it can reasonably be assumed that the mesh-converged

solution for the FOS in this analysis is approximately 3.0.

The differences in the calculated FOS between mesh densities

are likely to arise from the intersection of the slope and the

base soil. This position is effectively a singularity, where a stress

concentration can develop. The limitations of linear elements (i.e.

shear locking) may also be contributing to some of the differences

between meshes.

9. Conclusions

The implementation of the HS-LC model, with its new yield surface

and hardening rule was able to reproduce results from the original

HS model. The simulations using the new model were also a very

good match for the laboratory based experimental results, following

experimental curves very closely.

Several limitations were found with the previous version of the

HS model, the first was the formulation of the shear yield surface,

Figure 23. Residual force norm plot for increment 61 of the 2D

plane-strain slope analysis.

Figure 24. Residual force norm plot for increment 46 of the 3D

rough-smooth slope analysis.

which produces an asymptote when the magnitude of the trial shear

stress is too high. This was addressed by reformulating the shear

yield function such that it remains positive for all shear stress above

yield.

The previous versions of the HS model used incremental

relationships and did not take the residuals of the state variables

into account during stress return mapping. The new formulation

presented here uses total relationships, and does include these

residuals, consequently, convergence rates for these simple

laboratory simulations were found to be very good.
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Figure 25. Mesh convergence plot of FOS for the 2D

plane-strain analysis.

Use of a stiffness update procedure significantly reduced the

amount of step size dependency in the HS-LC model, allowing

use of larger step sizes without causing the solution to drift.

However, this was found to come at a cost of marginally increasing

the required number of iterations per increment. Use of the

stiffness update procedure can be easily optimised to reduce the

computational cost of analyses.

Applications of the HS-LC to boundary value problems were also

tested with the analysis of a slope using ϕ-c reduction in 2D.

The convergence of this analysis was stable, and the calculated

factor of safety closely matched that calculated through analytical

and graphical methods. A second slope stability analysis was also

performed in 3D, with one of the boundaries considered as rough.

This analysis predicted this factor of safety to be higher than the

standard 2D plane-strain case.

Convergence rates for 2 particular iterations were also studied. The

iterations chosen were at global soil failure and initially showed

a slow and steady decrease in residual force norm, but the rate

of convergence accelerated quickly as the iterations progressed;

indicating that the quadratic rate of convergence of the Newton-

Raphson method was preserved with the implementation of the

consistent tangent matrix.
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soils’, Géotechnique 50(4), 449–460.

Marcher, T. and Vermeer, P. A. (2001), Macromodelling of

softening in non-cohesive soils, in P. A. Vermeer, W. Ehlers,

H. Herrmann and E. Ramm, eds, ‘Continuous and

discontinuous modelling of cohesive-frictional materials’, Vol.

568, Springer Science & Business Media.

Matsuoka, H. and Nakai, T. (1974), Stress-deformation and

strength characteristics of soil under three different principal

stresses, in ‘Proceedings of the Japan Society of Civil

Engineers’, Vol. 9, pp. 59–70.

Obrzud, R. F. (2010), On the use of the hardening soil small strain

model in geotechnical practice, in ‘Numerics in Geotechnics

and Structures’, pp. 15–32.

Panteghini, A. and Lagioia, R. (2013), ‘A fully convex

reformulation of the original Matsuoka–Nakai failure criterion

and its implicit numerically efficient integration algorithm’,

International Journal for Numerical and Analytical Methods in

Geomechanics 38(6), 593–614.

PLAXIS (2016), Material Models Manual.

Roscoe, K. H. and Burland, J. B. (1968), On the generalized

stress-strain behaviour of wet clay, in ‘Engineering plasticity’,

Cambridge University Press, Cambridge, pp. 535–609.

Rowe, P. W. (1962), ‘The stress-dilatancy relation for static

equilibrium of an assembly of particles in contact’,

Proceedings of the Royal Society of London A: Mathematical,

Physical and Engineering Sciences 269(1339), 500–527.

Prepared using PICEAuth.cls 21



Proceedings of the Institution of Civil Engineers A reformulated hardening soil model

T. A. Bower et al.

Schanz, T., Vermeer, P. A. and Bonnier, P. G. (1999), The

hardening soil model: formulation and verification, in ‘Beyond

2000 in Computational Geotechnics’, Balkema, Rotterdam,

The Netherlands, pp. 281–296.

Simo, J. C. and Hughes, T. J. R. (2006), Computational

inelasticity, in ‘Interdisciplinary Applied Mathematics’, Vol. 7,

Springer, New York, NY, USA.

Søreide, O. K. (1990), Mixed hardening models for frictional soils,

PhD thesis, Norwegian University of Science and Technology,

Trondheim, Norway.

Steward, T., Sivakugan, N., Shukla, S. and Das, B. (2010),

‘Taylor’s slope stability charts revisited’, International Journal

of Geomechanics 11(4), 348–352.

Truty, A. and Obrzud, R. (2015), ‘Improved formulation of the

hardening soil model in the context of modeling the undrained

behavior of cohesive soils’, Studia Geotechnica et Mechanica

37(2), 61–68.

Wehnert, M. (2006), Ein beitrag zur drainerten und undrainierten

analyse in der geotechnik, PhD thesis, Universität Stuttgart,

Institut für Geotechnik.

Wood, D. M. (1990), Soil behaviour and critical state soil

mechanics, Cambridge University Press, Cambridge.

World Information Service on Energy (2014), ‘Slope stability

calculator’,

http://www.wise-uranium.org/csst.html.

Accessed: 15/10/2018.

22 Prepared using PICEAuth.cls


	Introduction
	Conventions
	Background to the hardening soil model
	Changes to the hardening soil model
	Shear surface
	Tension surface

	The closest point projection method
	Single surface stress return
	Two surface stress return
	Additional CPP considerations
	Return mapping procedure
	Return mapping procedure
	Example CPP algorithm

	Consistent tangent matrix
	Additional computational considerations
	Results and discussions
	Oedometer test
	Triaxial compression test
	Slope stability analysis with -c reduction

	Conclusions

