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SUMMARY

Variable, glutamine-encoding, CAA interruptions indi-
cate that a property of the uninterrupted HTT CAG
repeat sequence, distinct from the length of hunting-
tin’s polyglutamine segment, dictates the rate at
whichHuntington’s disease (HD) develops. The timing
of onset shows no significant association with HTT
cis-eQTLs but is influenced, sometimes in a sex-spe-
cific manner, by polymorphic variation at multiple
DNA maintenance genes, suggesting that the special
onset-determining property of the uninterrupted CAG
repeat is a propensity for length instability that leads
to its somatic expansion. Additional naturally occur-
ring genetic modifier loci, defined by GWAS, may in-
fluence HD pathogenesis through other mechanisms.
These findings have profound implications for the
pathogenesis of HD and other repeat diseases and
question the fundamental premise that polyglutamine
length determines the rate of pathogenesis in the
‘‘polyglutamine disorders.’’
INTRODUCTION

Huntington’s disease (HD) is the most frequent of the polyglut-

amine diseases: dominantly inherited neurological disorders in

which an expanded CAG trinucleotide repeat lengthens a

segment of encoded glutamines in a particular protein (Lieberman

et al., 2018). In all such diseases, age at onset is inversely corre-

lated with mutant CAG repeat length (Gusella and MacDonald,

2000), but each presents distinct neuropathology and clinical

manifestations. These distinctive features are usually assumed

to result from a length-dependent effect of polyglutamine on the

expression, activity, and/or functional interactions of the encoded

protein or of its polyglutamine-containing fragments, which show

a propensity for aggregation. In HD, the expanded CAG tract is in

exon 1 of HTT, which encodes huntingtin, a large (>340 kDa),

largely a-helical HEAT (huntingtin, elongation factor 3, protein

phosphatase 2A, and lipid kinase TOR) repeat protein (Guo

et al., 2018). The mutation results in progressive neuronal loss

most prominently in the striatum and other basal ganglia struc-

tures but also throughout the cerebral cortex. Subtle alterations

in brain can be detected a decade or more before clinical onset

(Paulsen et al., 2008). Clinically, HD is diagnosed by its motor

effects, but the disease also affects cognition and behavior and
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leads to death �15 years after motor onset (Keum et al., 2016).

Although expression of long polyglutamine tracts in huntingtin or

huntingtin fragments can cause a variety of subtle to extreme

phenotypic consequences in cultured cells or model organisms

(ranging from yeast to large mammals), the relevance of these

phenotypes to the human disease remains uncertain and they

have not led to disease-modifying treatments. Current hopes for

an effective intervention lie in suppressing expression of mutant

huntingtin (Wild and Tabrizi, 2017), but additional therapeutic

approaches are needed to prevent or delay onset or progression

of this devastating disorder.

While expandedHTTCAG repeat size explains�60%of the in-

dividual variation in HD age at onset, the remaining variation

shows heritability (Djoussé et al., 2003). This prompted a human

genetics strategy to identify disease-modifying factors that act

prior to clinical diagnosis to either delay or hasten onset, with

the expectation that, since they are validated in humans, these

disease-modifying genes could reveal biochemical processes

to target in drug development (Genetic Modifiers of Huntington’s

Disease (GeM-HD) Consortium, 2015). We previously carried out

a genome-wide association study (GWAS) of 4,082 HD individ-

uals using the difference between age at onset predicted by

CAG length and actual age at onset of motor symptoms. This

GWAS found three significant modifier signals at two loci, with

pathway analysis suggesting DNA maintenance and mitochon-

drial regulation as potential modifying processes. We have now

extended this GWAS strategy to over 9,000 HD individuals. The

increased power has detected both infrequent modifier alleles

of strong effect and commonmodifiers with moremodest impact

at new loci and separately has highlighted rare subjects for whom

the standard HTT PCR fragment-based genotyping assay mis-

estimated CAG repeat length due to variations in glutamine-

encoding CAA interruptions. These individuals distinguish the

effect of CAG repeat length and polyglutamine length and reveal

that the rate-determining driver (‘‘rate driver’’) dictating the timing

of motor onset is not the length of polyglutamine in huntingtin, but

the length of the uninterruptedCAG repeat inHTT. Although these

findings indicate that the timing of onset is determined by a

property of the expanded CAG repeat rather than the length of

polyglutamine that it encodes, they do not reveal what drives

the resultant toxicity (‘‘toxicity driver’’) and do not exclude an

effect of polyglutamine from that later role. Overall, the GWAS

results reveal several additional loci and modifier effects that

cement a role for DNA maintenance mechanisms in modifying

the timing of disease onset and disclose new modifier loci that

may act through other mechanisms. The DNAmaintenancemod-

ifier genes most likely influence somatic expansion of the HTT
ugust 8, 2019 ª 2019 The Authors. Published by Elsevier Inc. 887
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Figure 1. Age at Onset GWAS Signals

GWAS results using the residual age at onset

phenotype or a dichotomized phenotype, with each

circle representing a test SNP and significances

shown as –log10(p value) (top) and log10(p value)

(bottom), respectively.

See also Figures S1, S2, and S3 and Tables S2 and

S3–S5.
CAG repeat suggesting this process as a potential therapeutic

target to delay or prevent HD onset.

RESULTS

Genome-wide Association Analysis
Our previous ‘‘GWA123’’ to identify genetic factors that influence

age at onset used DNA from HD individuals with 40–55 CAG re-

peats genotyped in three stages and analyzed using a robust

statistical phenotype model relating CAG repeat length to log-

transformed age at onset of diagnostic motor signs (Genetic

Modifiers of Huntington’s Disease (GeM-HD) Consortium,

2015). This yielded a residual age at onset value for each subject

that was transformed back into natural scale as a phenotype for

continuous, quantitative association analysis. Here, additional

European-ancestry HD individuals from Registry (Orth et al.,

2010) and the Enroll-HD platform (Landwehrmeyer et al., 2016)

were genotyped in separate waves (Figure S1A). The distribution

of residuals for the combined GWA12345 dataset was similar to

a theoretical normal distribution (Figure S1B). We re-imputed

each GWA dataset using the Haplotype Reference Consortium

(HRC; McCarthy et al., 2016) and then analyzed the 9,064 unique

individuals (4,417 males; 4,647 females) in the combined

GWA12345 dataset using two parallel approaches: continuous

analysis of association to residual age at onset and dichotomous

analysis of extremes of residual age at onset (Figure 1). The

former strategy is more effective for detecting rare modifier

alleles, whereas the latter is less influenced by slight imprecision

in establishing age at onset since it compares allele frequencies

between groups with onset substantially later or earlier than

expected. Results from the combined GWA45 dataset alone

and from all GWA datasets subjected to meta-analysis are

shown in Figures S1C and S1D along with Q-Q plots for the

GWA12345 continuous and dichotomous analyses in Figures

S1E and S1F.
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An Unexpected Signal near HTT
The most frequent 7 HTT SNP haplo-

types, accounting for >83% of HD chro-

mosomes (chr), are not associated with

differences in age at onset (Lee et al.,

2012a). Neither is age at onset influenced

by the normal chr HTT haplotype or CAG

repeat size (Lee et al., 2012b). Conse-

quently, the striking emergence of an

apparent GWAS signal on chr 4 near

HTT was unexpected. Conditional anal-

ysis based upon the top SNP resolved

this apparent hit into two independent
signals, tagged by rare alleles, that seemed to be associated

with earlier (rs764154313, minor allele frequency [MAF] =

0.2%, p = 2.1E-19) and later (rs183415333, MAF = 0.6%, p =

1.4E-14) than expected onset, respectively. We examined

whether genetic effects on HTTmRNA production were respon-

sible since anHTT promotor SNP, rs13102260, was recently pro-

posed to alter HD onset through an effect on HTT expression on

both normal and disease chrs (Be�canovi�c et al., 2015). In normal

brain data from the GTEx Consortium, HTT mRNA shows wide

variation in expression (Figure S2A) but significant cis-eQTL

SNPs show no correspondence with the GWAS signals

(Figures S2B–S2E). Notably, rs13102260 is not significant (black

triangle, Figures 2A and S2B–S2E). Also, HD individuals with two

expanded CAG alleles express twice the level of mutant hunting-

tin but have age at onset residuals (based upon the longer

expanded repeat) similar to HD heterozygotes (Figure S2F).

Taken together, these findings suggest that variation in HTT

mRNA expression within the normal physiological range does

not significantly influence HD age at onset.

HD Age at Onset Is Determined by CAG Repeat Length,
Not Polyglutamine Length
We next considered the possibility of a change to the HTT CAG

repeat sequence. The vast majority (> 95%) of European

ancestry HD chrs carry a canonical CAG repeat region with an

uninterrupted CAG repeat followed by CAACAG (Figure 2B; Ta-

ble S1). Since CAA and CAG both encode glutamine, the

polyglutamine size produced is consistently greater by 2 resi-

dues than the uninterrupted CAG repeat, so it has not been

possible to distinguish whether it is the polyglutamine or CAG

repeat size that determines the timing of HD onset. For

GWA12345, uninterrupted CAG repeat length was estimated

by a widely used PCR fragment-sizing assay, relative to

sequenced canonical DNA standards. We reasoned that rare

non-canonical sequence variations could result in inaccurate



Figure 2. Correcting Mis-estimated CAG Repeat Length Removes Significant Signals at HTT

(A) Chr 4 signals (–log10(p value); continuous phenotype) plotted versus genomic coordinate (GRCh37/hg19). The dotted red line indicates genome-wide sig-

nificance. Red and green symbols are SNPs tagging haplotypes with minor alleles of rs764154313 and rs183415333, respectively. In this and subsequent plots,

downward and upward triangles are SNPs with minor alleles associated with hastened and delayed onset, respectively. Genes are below in red (plus strand) and

blue (minus strand).

(B) HTT repeat and adjacent sequence, CAG repeat length estimated by genotyping, true CAG repeat length, and polyglutamine length for chrs with CAA-loss

(left), canonical (center), and CAACAG-duplication haplotypes, using 42 uninterrupted CAGs as an example.

(C) MiSeq analysis of individuals with rs764154313 and rs183415333 minor alleles identified individuals with CAA-loss (red) and CAACAG-duplication (green)

alleles (all others shown in gray), permitting comparison of their age at onset with uninterrupted CAG repeat length (left) or total polyglutamine length (right). The

black trend line represents our standard onset-CAG phenotyping model for comparison with trend lines in red and green for those with the CAA-loss and

CAACAG-duplication alleles, respectively.

(D) A boxplot (plotted as quartiles: whiskers1.5*IQR(interquartile range)) of residual age at onset for individuals with a rare CAA-loss HD haplotype (red; N = 21), the

8 most frequent canonical (single CAACAG) HD haplotypes (gray; N = 3357 hap.01, 2016 hap.02, 942 hap.03, 272 hap.04, 266 hap.05, 312 hap.06, 257 hap.07,

302 hap.08) or a rare CAACAG-duplication HD haplotype (green; N = 69), ordered by increasing polyglutamine length (given the same CAG repeat length).

See also Figure S2 and Table S1.
estimation of the uninterrupted CAG repeat. The resulting

artificial effect on residual age at onset might then produce the

unexpected chr 4 signals.

Indeed, sequencing of the HTT CAG repeat region in individ-

uals with the rs764154313 minor allele revealed a polymorphism

involving loss of the CAA interruption (Figure 2B; Gellera et al.,

1996) such that the genotyping assay underestimated the length

of the uninterrupted CAG repeat by 2 CAGs. Conversely, individ-

uals with the rs183415333 minor allele showed a polymorphism

comprising a second CAA interruption (Pêcheux et al., 1995),

two codons upstream of the first (formally equivalent to CAACAG

duplication following the uninterrupted CAG repeat). The overes-

timation of the uninterrupted CAG repeat length for these

CAACAG-duplication chrs is 1 or 2 residues rather than always
2, due to mis-priming of the genotyping PCR primer on this

sequence variation. When the true uninterrupted CAG length

rather than the mis-estimated length was used, the GWAS

signal was greatly reduced to the border of significance for

rs764154313 (p = 5.0E-8) and below genome-wide significance

for rs183415333 (p = 2.2E-5; Figure 2A), indicating that the

original highly significant chr 4 GWAS signals were artifacts of

mis-estimated expected age at onset due to mis-estimation of

the true uninterrupted CAG repeat length.

Importantly, the CAA-loss and CAACAG-duplication alleles

allowed the role of uninterrupted CAG repeat length to be distin-

guished from polyglutamine length in determining age at onset.

The CAA-loss chrs encode the same number of glutamines as

consecutive CAGs while the CAACAG-duplication chrs specify
Cell 178, 887–900, August 8, 2019 889



4 more glutamines than consecutive CAGs (Figure 2B). As

demonstrated in Figure 2C, regardless of haplotype or encoded

polyglutamine, age at onset tracks best with uninterrupted CAG

repeat length, with longer CAG alleles associated with earlier

onset. Therefore, it is the length of the CAG repeat expansion

mutation itself that is the rate driver for onset. If the timing of

onset was determined by polyglutamine length-dependent

toxicity, then, for identical uninterrupted CAG sizes, CAACAG-

duplication alleles that encode 4 more glutamines than CAA-

loss alleles should drive earlier onset. However, it is clear in

comparison to CAA-loss alleles that neither the greater polyglut-

amine length encoded by CAACAG-duplication alleles (+4Q)

nor CAACAG-canonical alleles (+2Q) results in earlier-than-

expected onset (Figure 2D). Rather, a comparison of CAA-loss

and CAACAG-duplication chrs carrying identical uninterrupted

CAG repeats (choosing any individual CAG in Figure 2C) shows

that age at onset is consistently later for individuals with a CAA-

CAG-duplication allele, even though these alleles specify 4 more

glutamines than a CAA-loss allele.

These findings indicate that the rate driver for the timing of HD

onset lies in some property of the uninterrupted CAG repeat

separate from its glutamine coding property. A similar conclu-

sion was reported by others while this paper was in review

(Wright et al., 2019). However, it is important to state that this

does not preclude a role for polyglutamine in HD, since it remains

a candidate for the toxicity driver that acts after the CAG repeat

length has determined the timing of onset. The far weaker

signals for rs764154313 and rs183415333 after correcting the

CAG repeat length, if meaningful, suggest the potential for subtle

functional differences attributable to non-CAG sequences on

these haplotypes. The differences do not lie in polyglutamine

toxicity since, as noted above, the longer polyglutamine on

CAG-expanded rs183415333-tagged chrs is associated with

later rather than earlier onset. The effects are not due to normal

chrs with these tag SNPs, since removing only individuals with

the tag SNPs on the disease chr eliminates the remaining signal.

From the previous eQTL analyses, HTT mRNA levels are not

likely to be responsible, although altered regulation under spe-

cial circumstances or altered translation are formally possible.

Similarly, it is conceivable that, after CAG length correction,

these SNPs weakly capture a modifier influence acting through

another gene distal to HTT. However, Occam’s razor suggests

a more likely hypothesis for a potential effect of haplotype

separate from the CAG repeat itself. The critical importance of

a DNA sequence property as the rate driver for HD onset

suggests that the DNA sequence context in which the CAG

repeat is embedded may also have an influence. On CAA-loss

chrs, the CAG repeat is followed by CCG12CCT2CAGCTTCCT1
and on CAACAG-duplication chrs, it is followed by CAA1CAG1

CAA1CAG1CCG1CCA1CCG7CCT3CAGCTTCCT1. Sequencing of

samples not tagged by rs764154313 or rs183415333 confirmed

correct PCR-assay genotyping of the uninterrupted CAG

sequence on canonical chrs and showed that the vast majority

carry CAA1CAG1CCG1CCA1CCG7CCT2CAGCTTCCT1 after the

CAG repeat (Table S1). An influence of the downstream se-

quences on the rate-determining property of the uninterrupted

CAG repeat might then explain the remaining weaker GWAS sig-

nals. Similarly, other sequence variations on even less frequent
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HD chrs might also influence age at onset but not be detected

with the current GWAS sample size. Indeed, the sequences of

a selection of other HD and normal chrs revealed a wide variety

of rarer non-canonical sequence variations (Table S1). DNA

sequencing of a much larger HD sample will be needed to

address possible effects of background haplotype and CAG

repeat sequence context, if any, on disease onset and manifes-

tations but could inform therapeutic targeting of this HTT region.

DNA Maintenance Genes Modify HD Age at Onset
Correction of the mis-estimated CAG repeats did not have a ma-

jor effect on the GWAS results other than to dramatically reduce

the chr 4 signals (Figure S2G), so we proceeded to examine

the multiple loci implicated by genome-wide significance

in GWA12345 as modifiers of HD age at onset (Table 1). In

GWA123, we had observed modifier loci on chr 8 and chr 15,

with the latter exhibiting two independent opposing effects

(Genetic Modifiers of Huntington’s Disease (GeM-HD) Con-

sortium, 2015), and in follow-up studies a chr 3 locus achieved

genome-wide significance (Lee et al., 2017). These loci emerged

again in GWA12345, along with several new loci genome-wide

significant in either continuous or dichotomous analysis or

both. Like the chr3 (MLH1) and chr15 (FAN1) loci, new loci on

chr 2 (PMS1), 5 (MSH3/DHFR), 7 (PMS2), and 19 (LIG1) all

contain genes associated with DNA repair, but, like the chr

8 locus (RRM2B/UBR5), additional modifier sites on chr 5

(TCERG1) and chr 11 (CCDC82) may not be directly connected

to such processes. Two additional loci, on chr 11 (SYT9) and

chr 16 (GSG1L), displayed significant signal only from a single

very low-frequency SNP allele, suggesting a statistical artifact

due to extreme phenotypic outliers. A larger sample size and/

or functional analysis will be needed to firmly establish these

loci as bona fide modifiers.

Although there was no significant difference in age at onset

between the sexes (Figure S3A), male- and female-specific asso-

ciation analyses revealed differences in relative effect size and

significance for some modifiers (Figures S3B–S3E; Table 1).

Thiswasmost evident for theMSH3/DHFR locus, where the com-

mon modifiers had a far greater effect in females. The sex-spe-

cific analysis also revealed 3 new loci (chr 1, 12, and 18) that

may contain male-specific modifiers or, since they are tagged

by very rare alleles, may be due to statistical outlier effects.

We also performed a transcriptome-wide association study

(TWAS) to broadly test association of gene expression and resid-

ual age at onset (Gusev et al., 2016). Four genes at 3 loci were

significant after Bonferroni correction: FAN1 (p = 1.9E-22),

MSH3 (1.9E-8), PMS1 (6.1E-7), and ASNSD1 (5.3E-6) with later

onset associated with increased FAN1, PMS1, and ASNSD1

expression and decreased MSH3 expression. Comparison of

the heritability estimation from summary statistics (HESS)

regional heritability estimates (Shi et al., 2016) before and after

conditioning on expression predicted that 40%, 57%, and

87% of the contribution of FAN1, PMS1, and MSH3, respec-

tively, to the genetic age at onset liability could be explained

by cis expression effects.

Finally, we performed gene-wide association analysis

(Table S2), finding that all significant genes came from regions

in Table 1. Pathway enrichment compared to GWA123 again



Table 1. Genome-wide Significant Loci with Additional Modifier Haplotypes Identified by Conditional Analysis

Chr Modifiera Top SNP BP (hg19)

Minor

Allele

MAF

(%)

Continuous Analysis

Dichotomous

Analysis

Candidate

Modifier

Genes

Overall

p Value

Males

p Value

Females

p Value

Overall

Effect

Size

(years)

Effect

Size

(years)

Effect

Size

(years) p Value

1 1AM1b rs567500111 164283625 A 0.3 �4.4 6.9E-06 �8.0 2.0E-08 �1.3 3.5E-01 6.5E-02

2 2AM1 rs3791767 190639915 C 20.7 �0.8 6.3E-08 �0.9 6.3E-06 �0.7 9.5E-04 4.9E-11 PMS1

3 3AM1 rs1799977 37053568 G 31.0 0.8 5.1E-10 0.6 1.3E-03 0.9 3.3E-08 7.3E-10 MLH1

5AM1 rs701383 79913275 A 25.7 �0.8 5.5E-10 �0.4 2.1E-02 �1.2 4.6E-11 1.0E-10

5 5AM2 rs113361582 80086504 G 0.3 6.1 1.3E-09 6.1 3.4E-05 6.4 3.1E-06 6.6E-05 MSH3, DHFR

5AM3 rs1650742 79990883 G 33.1 0.6 1.6E-06 0.3 7.3E-02 0.9 2.2E-07 1.0E-06

5 5BM1 rs79727797 145886836 A 2.4 2.3 3.8E-10 2.7 2.5E-07 2.0 1.1E-04 5.8E-09 TCERG1

7 7AM1 rs74302792 6079993 A 15.9 0.8 7.4E-08 0.9 4.1E-05 0.8 2.8E-04 1.3E-08 PMS2

8 8AM1 rs79136984 103213640 T 8.2 �1.2 3.6E-09 �1.4 1.9E-06 �1.0 2.3E-04 4.7E-09 RRM2B, UBR5

11 11AM1 rs7936234 96106737 A 19.6 0.6 1.7E-05 0.7 5.5E-04 0.6 5.5E-03 1.3E-08 CCDC82

11 11BM1b rs79714630 7303052 G 0.1 �9.6 1.1E-08 �10.6 7.0E-06 �8.6 3.1E-04 3.8E-02 SYT9

12 12AM1b rs140253376 108992727 A 0.2 �6.1 8.3E-06 �10.1 3.0E-08 �1.2 5.8E-01 6.9E-03

15AM1 rs150393409 31202961 A 1.4 �5.2 1.8E-28 �5.1 6.3E-14 �5.4 2.1E-16 1.6E-17

15 15AM2 rs35811129 31241346 A 27.5 1.3 9.4E-26 1.1 1.3E-09 1.6 1.8E-19 8.2E-25 FAN1

15AM3 rs151322829 31197995 T 0.7 �3.8 1.4E-08 �4.1 1.0E-05 �3.5 2.3E-04 4.3E-07

15AM4 rs34017474 31230611 C 38.2 0.8 8.5E-11 0.5 3.0E-03 1.0 1.1E-10 2.6E-11

16 16AM1b rs187055476 27873637 G 0.3 �6.1 5.5E-09 �7.2 7.1E-07 �5.1 8.1E-04 2.2E-04 GSG1L

18 18AM1b rs530017366 56126806 T 0.2 �5.1 1.2E-04 �12.0 8.2E-09 �0.1 9.5E-01 4.3E-01

19AM1 rs274883 48622545 G 16.7 0.9 5.3E-09 0.8 7.3E-05 0.9 1.8E-05 1.1E-07

19 19AM2 rs3730945 48645976 G 37.1 �0.6 5.8E-07 �0.5 6.8E-03 �0.7 1.2E-05 2.4E-06 LIG1

19AM3 rs145821638 48620943 A 0.1 7.7 1.5E-06 3.8 1.3E-01 10.2 1.1E-06 7.5E-03

Ref, reference; Alt, Alternate, MAF, minor allele frequency. See also Figure S3 and Tables S2 and S3–S5.
aFor clarity of presentation, to avoid confusion with haplotypes defined by different means, and in anticipation of discovering additional modifier loci on

some of these chrs, we have adopted a naming system for the haplotypes marking the modifier effects that indicates the chr number, the order of

discovery of the locus on that chr (i.e., A, B, etc.) and a sequential number for each modifier at that locus (i.e., M1, M2, M3, etc.).
bLocus supported by a single rare SNP allele in continuous analysis.
pointed in GWA12345 (and GWA45) to mismatch repair but did

not support mitochondrial regulation (Table S3). In 77 DNA repair

gene sets (Pearl et al., 2015), the strongest enrichments were

related to mismatch repair (Tables S4 and S5). In a broader

test of 14,210 pathwayswith 10 ormore genemembers, 77 path-

ways were significant after Bonferroni correction in GWA12345

(Table S6). The top 13 pathways were related to DNA mainte-

nance processes, but some top GWAS genes, such as FAN1,

RRM2B, and UBR5, appeared only in the largest, most general

pathway (GO 6281: DNA repair). These analyses provide robust

evidence for genes involved in DNA maintenance processes in

influencing the timing of HD onset. Taken together with the

rate-determining property of the uninterrupted CAG repeat, the

delineation of multiple DNA maintenance genes as modifiers

suggests that these modifiers influence HD age at onset through

a DNA-level effect on somatic expansion of theHTTCAG repeat.

Multiple Mismatch Repair Genes Modify HD
A chr 5 modifier locus centers on MSH3, which encodes a DNA

mismatch repair protein, and DHFR, which produces dihydrofo-
late reductase, a critical enzyme in determining nucleotide pools.

The top SNP tags a frequent onset-hastening modifier effect

(haplotype 5AM1) and conditional analyses has revealed 2

additional onset-delaying haplotypes (5AM2and 5AM3; Figure 3;

Table 1). An MSH3 coding variant has been reported to tag

a modifier of a multi-factor progression measure of HD deterio-

ration in the TRACK-HD study (Moss et al., 2017). That variant

maps within tandem repeats and is not imputed using HRC

data, but a re-examination of our data using the 1000 Genomes

as a reference set (Auton et al., 2015) revealed that our

5AM3 haplotype corresponds to the progression modifier in

TRACK-HD.

In GTEx Consortium data, the top 5AM1 SNP alleles corre-

spond strongly to cis-eQTLs for increased MSH3 (but not

DHFR) expression in blood cells (Figures S3A and S3B). In

mice, several mismatch repair genes, including Msh3, influence

the somatic instability of CAG repeats (Dragileva et al., 2009;

Schmidt and Pearson, 2016; Tomé et al., 2013) and in humans,

naturally occurring MSH3 polymorphisms are associated with

instability of the non-coding myotonic dystrophy type 1 CTG
Cell 178, 887–900, August 8, 2019 891



Figure 3. Three HD Onset Modification Signals at DHFR/MSH3

(A) SNP significance (–log10(p value) in continuous analysis conditioned on the top 5AM1 (red) SNP compared to GWA12345 significance reveals independent

modifier haplotypes with p < 1E-5: 5AM2 (green) and 5AM3 (purple).

(B) SNP significance compared to MAF.

(C) SNP significance relative to genes in the region.

See also Figures S4 and S5.
repeat in blood DNA (Morales et al., 2016). The increasedMSH3

expression from onset-hastening 5AM1 would be predicted to

be associated with higher somatic CAG expansion levels based

on its suppression in Msh3 knockout mouse models. We tested

this hypothesis in blood using ABI GeneMapper fragment sizing

profiles of expanded alleles from our CAG genotyping assay

(Figure S4C). For any individual, the bulk of the PCR product cor-

responds to the presumptive inherited expanded CAG size and

constitutes a floor with respect towhich expansion can be exam-

ined. Those individuals with mosaicism for the highest somatic

CAG expansions compared with this inherited size are evident

from the increased fraction of larger PCR products detected.

Among the 7,013 individuals with suitable traces, there was an

inherent increase in expansion with CAG repeat size (Figure S4D)

so we identified the 25% (N = 1,753) with the highest proportion

of somatic expansions at each repeat length from 40–55 CAGs

and examined their genotype at rs701383. This 5AM1 tag SNP

deviated significantly from Hardy-Weinberg expectation (chi-

square 15.80, 2 d.f., p < 0.0004) due to an excess of the minor

A allele (observed 915 GG, 684 AG, 154 AA versus expected

968 GG, 669 AG, 116 AA) indicating that increased MSH3

expression can be associated with increased somatic expan-

sion. In the brain, the top 5AM1 SNPs correspond less well
892 Cell 178, 887–900, August 8, 2019
with MSH3 cis-eQTL signals, suggesting that additional factors

regulating the locus beyond the steady state may be important

for determining CAG expansion (Figure S5). These additional in-

fluences may explain the sex difference in the effect of this

modifier, since the cis-eQTLs do not appear to be sex specific

(Figure S5, legend).

In contrast, the rare delayed-onset 5AM2 SNP alleles do not

overlap with cis-eQTLs for either MSH3 or DHFR (Figure S5)

and do not differ in effect size between the sexes, suggesting

that 5AM2may harbor a variant that alters mRNA and/or protein.

5AM3-tagging alleles correspond more robustly with cis-eQTLs

for decreased DHFR expression in cortex, caudate, putamen,

and blood than with MSH3 cis-eQTLs (Figures S5D and S5E),

suggesting potential roles for both MSH3 and DHFR in HD

modification.

Three other mismatch repair genes with single modifier effects

were also implicated. At MLH1, the peak SNP specifies a

missense change, I219V, which is considered benign (SIFT:

tolerated), but this does not exclude a subtle effect on the activity

or interactions of MLH1 in the context of CAG repeat expansion.

There was no strong evidence in the TWAS or GTEx Consortium

data for an association with alteredMLH1 expression.PMS1 and

PMS2 (postmeiotic segregation increased 1 and 2, respectively)



Figure 4. Four HD Onset Modification Signals at FAN1

(A) SNP significance (–log10(p value) in continuous analysis conditioned on the top 15AM1 (red) SNP compared to GWA12345 significance reveals independent

modifier haplotypes: 15AM2 (green), 15AM3 (purple), and 15AM4 (gold). Because SNPs tagging 15AM4 have alleles of close to equal frequency, the direction of

the arrow varies depending on whether the minor or major allele is on the 15AM4 haplotype.

(B) SNP significance compared to MAF.

(C) SNP significance relative to genes in the region.

See also Figure S6.
both encode proteins that form heterodimers with MLH1 in

mismatch repair (Pearl et al., 2015). The TWAS suggested a

significant effect of PMS1 expression but no comparably signif-

icant expression evidence for PMS2. While we have not identi-

fied either functional variant, the most parsimonious explanation

is that modification acts through these DNA repair genes rather

than other genes in these regions.

FAN1 Displays Onset-Hastening and -Delaying
Haplotypes
GWA12345 replicated theopposingeffects of an infrequentonset-

hastening modifier (15AM1) and a frequent onset-delaying

modifier (15AM2) fromGWA123 revealed two novel modifier hap-

lotypes, 15AM3 and 15AM4 (Figure 4; Table 1), and pointed

directly to FAN1 as the source of HDmodification. FAN1 encodes

a nuclease with involvement in interstrand DNA crosslink (ICL)

repair (Smogorzewska et al., 2010) that is also recruited to stalled

replication forks, physically interactswithMLH1, and is needed for

homologous recombination but not double-strandbreak resection

(Cannavo et al., 2007; Lachaud et al., 2016; MacKay et al., 2010).

15AM1 and 15AM3 are both tagged by SNP alleles that specify

missense variants, R507H and R377W, respectively, both pre-
dicted to be deleterious by SIFT. The former has been associated

with karyomegalic interstitial nephritis, a recessively inherited dis-

ease caused by loss of FAN1 function (Bastarache et al., 2018).

Tag SNPs for 15AM2 and 15AM4 correspond with cis-eQTLs for

increased expression in cortex (Figure S6A). No other gene in the

region shows a missense variant or correspondence between

any cortex, caudate, or putamen cis-eQTLs andmodifier associa-

tionsignals.Thus, ourdatapoint toFAN1as thesourceof themod-

ifier effects, with reduced function hastening onset and increased

expression delaying onset. Notably, lowering FAN1 expression in

mammalian cells and patient-derived induced pluripotent stem

cells (iPSCs) induced HTT CAG expansions (Goold et al., 2018),

and preliminary findings have indicated a similar effect of FAN1

deficiency in an HD knockin mouse model (J.L. and M.E.M., un-

published results). InactivationofFan1 inducedsomaticexpansion

of a CGG repeat in a mouse Fragile X syndromemodel (Zhao and

Usdin, 2018), indicating that the impact of FAN1 variation can

extend to other non-CAG, non-coding repeat diseases.

LIG1 Displays 3 Modifier Haplotypes
LIG1, on chr 19, encodes an ATP-dependent DNA ligase that

seals DNA nicks during replication, recombination, and a variety
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Figure 5. Three Onset Modification Signals at LIG1

(A) SNP significance (–log10(p value) in continuous analysis conditioned on the top 19AM1 (red) SNP compared to GWA12345 significance reveals independent

modifier haplotypes: 19AM2 (green) and 19AM3 (purple).

(B) SNP significance compared to MAF.

(C) SNP significance relative to genes in the region.

See also Figure S6.
of DNA damage responses (Howes and Tomkinson, 2012). This

locus revealed 2 common modifier haplotypes with opposing

effects on HD onset (Figure 5; Table 1) and a third rare modifier

haplotype (19AM3) that is strongly onset delaying. 19AM3 is

tagged by a LIG1 missense change, K845N, predicted to be

deleterious by SIFT, suggesting that reduced activity and/or

altered interactions of LIG1 protein may suppress CAG repeat

expansion. Conversely, the onset-hastening 19AM2 is associ-

ated with increased expression of LIG1 in cortex and BA9 (Fig-

ure S6B), consistent with increased CAG repeat instability due

to exogenous overexpression of LIG1 in human cells (López

Castel et al., 2009). The mechanism by which 19AM1 acts is

not clear.

Other Modifiers Are Not Directly Involved in DNA
Maintenance
The other modifier loci could theoretically act indirectly on DNA

maintenance processes or represent independent modification

mechanisms. RRM2B, encoding the small subunit of a p53-

inducible ribonucleotide reductase, and UBR5, specifying an

E3 ubiquitin-protein ligase, are candidates on chr 8. On chr 11

(Figure 6), there is correspondence between SNP alleles associ-

ated with delayed onset and cis-eQTL alleles for increased
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expression of CCDC82 in cortex, caudate, and putamen but no

such relationship for other genes in the region (Figure S7), sug-

gesting that increased CCDC82 acts to delay onset. Relatively

little is known concerning this coiled-coil domain protein, beyond

it being reported as a substrate for ATM-dependent phosphory-

lation in response to H2O2 treatment (Kozlov et al., 2016).

Perhaps most intriguing is a second chr 5 locus, where a single

SNP, rs79727797, supported by both continuous and dichoto-

mous analysis, is in an intron of TCERG1, which encodes a

nuclear regulator of transcriptional elongation and pre-mRNA

splicing. TCERG1 was proposed as a potential HD modifier

based on studies of its polymorphic (Gln-Ala)n-encoding repeat,

prompted by the protein’s interaction with huntingtin (Holbert

et al., 2001). The genome-wide significant GWA signal suggests

that more detailed study of this locus is warranted.

DISCUSSION

Our observations support a model in which the rate at which HD

manifestations emerge, leading to clinical diagnosis, is deter-

mined not by length-dependent polyglutamine toxicity, but by

length-dependent somatic expansion of the CAG repeat in critical

target cells. Mouse HD knockin models display length-dependent



Figure 6. An Onset Modification Signal at CCDC82

(A) SNP significance in dichotomous analysis conditioned on the top 11AM1 (red) SNP compared to GWA12345 significance reveals the presence (with sub-

sequent analyses) of a related haplotype (pink triangles).

(B) SNP significance compared to MAF, revealing a slight difference for tag SNPs of the closely related haplotypes.

(C) SNP significance relative to genes in the region.

(D) SNP significance in dichotomous analysis is compared to cis-eQTL signals for CCDC82 in GTEx consortium data for prefrontal cortex BA9, cortex, caudate,

and putamen. In this case, the direction of the triangle indicates association of theminor allele with increased (upward) or decreased (downward) expression. Both

related haplotypes (red and pink) show correlation with cis-eQTL SNPs associated with increased expression of CCDC82 in all 4 brain regions.

See also Figure S7.
somatic expansion of the CAG repeat throughout the brain, but

most prominently in the striatum (Lee et al., 2010; Wheeler et al.,

1999), and this process is modified by DNA maintenance genes

(Dragileva et al., 2009; Pinto et al., 2013; Wheeler et al., 2003). In

humans, somatic CAG repeat expansion has been observed in

HD and more broadly in other polyglutamine disorders (López

Castel et al., 2010), arguing that somatic expansionmaybecentral

to all polyglutamine diseases, and potentially to other diseases

with repeat expansion outside coding sequence (Nelson et al.,

2013). Somatic CAG expansion has been demonstrated in HD

post-mortem brains (Kennedy et al., 2003; Swami et al., 2009)

with the earliest onset individuals at any inherited CAG repeat

length showing the largest somatic expansions, consistent with

length-dependent CAG expansion being the rate driver for onset.

Like CAA interruptions in HTT, CAT interruptions of the ATXN1

CAG repeat in four spinocerebellar ataxia 1 subjects supported

better tracking of age at onset with the uninterrupted CAG repeat
size, but, because CAT specifies histidine, this was interpreted as

an effect of polyglutamine length (Menon et al., 2013). Analysis in

follow-up to GWA123 provided evidence of DNA maintenance

processes also modifying timing of onset in a collection of spino-

cerebellar ataxias, supporting a shared property of expanded

CAG repeats as the critical driver of age at onset in multiple poly-

glutamine diseases (Bettencourt et al., 2016).

A theoretical mathematical framework has been proposed

previously to explain the emergence of disease symptoms

broadly in trinucleotide repeat diseases based upon somatic

expansion of the underlying repeats (Kaplan et al., 2007). This

computational approach argued against continuous toxicity of

the mutant allele and relied instead on somatic expansion to a

critical threshold repeat length as causing the dysfunction of

vulnerable cells. In addition to being consistent with our GWAS

findings, thismathematical model also explains the lack of earlier

onset in individuals with two mutant and no normal HTT alleles
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(Figure S2F) and of similar cases in other polyglutamine diseases

(Gusella and MacDonald, 2000; Lee et al., 2012b). The model

postulates a rapidly increasing probability of further somatic

expansion as the CAG repeat length increases. The larger of

the two expanded CAG alleles (or the first to expand if equal)

would predominate as its more rapid further expansion would

out-pace the remaining allele in reaching the critical threshold

length to trigger toxicity. However, this model does not speak

to the nature of the toxicity driver, i.e., to what causes the

actual damage to vulnerable neurons once the size threshold is

reached. An above-threshold expanded CAG repeat might

trigger polyglutamine toxicity, but there is no definitive demon-

stration that this is the primary cause of cellular damage in

human HD, so one must also consider other mechanisms that

have been proposed at the level of the HTT mRNA (Martı́,

2016), splicing (Sathasivam et al., 2013), translation (Gao et al.,

2017), or even via an effect at the DNA level on chromatin do-

mains (Bruneau and Nora, 2018). Indeed, the discovery that

spinocerebellar ataxia 12 is caused by a similar transcribed

CAG repeat expansion at PPP2R2B that does not produce poly-

glutamine (Cohen and Margolis, 2016), argues that other mech-

anisms must also be considered as potential toxicity drivers in

the various CAG repeat diseases. Each disease may also involve

different threshold somatic CAG expansion lengths in different

target cell types to produce disease onset. Ultimately, the dis-

ease presentation in any of the trinucleotide repeat disorders

may depend on a combination of (1) the rate at which CAG re-

peats expand in the critical target cell type(s), (2) the degree to

which modifiers act to influence expansion rate, (3) the threshold

somatic expansion size for cellular damage to occur, (4) the

mechanism, polyglutamine toxicity or other, by which that

somatically expanded repeat causes the cellular damage, and

(5) the degree to which the damage mechanism is influenced

by modifiers. Indeed, these factors may vary even within a single

disease, since the 15AM1 and 15AM2 modifiers showed differ-

ential influences on phenotypes in premanifest HD individuals,

suggesting differential modification in target cell types critical

to each phenotype (Long et al., 2018). In addition, duration of

manifest HD from onset to death is independent of CAG repeat

length, suggesting either that, once cellular damage has reached

a critical level, HD progression is more dependent on other phys-

iological and/or clinical factors or that different cell types are

involved in the progression of HD after onset (Keum et al.,

2016). These considerations emphasize the complexity of

defining pathogenic mechanisms and their phenotypic corre-

lates in this late-onset disorder, since different cell types display

different rates of CAG expansion (Lee et al., 2010) and, conceiv-

ably, differences in threshold lengths for initiation of cellular

damage, susceptibility to modifiers, and/or toxicity drivers.

The HTT CAA-loss and CAACAG-duplication alleles mark a

very small proportion of HD chrs, but implementation of a DNA

sequence-based CAG repeat assay will be important for avoid-

ing molecular diagnostic misinterpretations at the borders of

high normal (27–35 CAGs), reduced penetrance (36–39 CAGs),

and full penetrance (>39 CAGs) size ranges. As additional varia-

tions of the CAG emerge, testing should proceed cautiously

since larger sample sizes and phenotypic detail will be needed

to predict outcomes for the <5% of individuals with non-canon-
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ical sequences. From the research perspective, rare HTT alleles

may be particularly informative for guiding therapeutic strate-

gies. For example, discovery of an allele with a CAA (or other

codon) interruption centrally located within a long HTT CAG

repeat that fails to cause HD because neither flanking CAG

repeat exceeds 35 CAGs would support a therapeutic strategy

aimed at introducing such interruptions into HTT.

The notion that the rate driver for disease onset in HD and other

repeat disorders can bemodified byDNAmaintenance processes

also provides a prime target for developing broadly applicable

therapies to prevent or delay disease onset by intervening prior

to action of the toxicity driver(s) in each disorder. DNA mainte-

nance genes have been investigatedmainly in cancer cells, where

inactivatingmutations may cause cancer initiation or progression.

Interestingly, inactivation ofmismatch repair genes, which causes

dinucleotide repeat instability in colon cancer, suppresses trinu-

cleotide repeat instability in mouse models, suggesting distinct

mechanisms (Boland and Goel, 2010; Usdin et al., 2015). While

the association with cancer dictates a need for caution in manip-

ulating these pathways to prevent neurodegenerative diseases,

human genetic evidence demonstrates that DNA maintenance

gene activities can vary over a relatively wide range without major

deleterious effects. Each modifier gene must influence HD by vir-

tue of naturally occurring variation in either activity, expression

level, or regulation, yet none has emerged as a risk factor in a can-

cer predispositionGWAS (GWASCatalog: https://www.ebi.ac.uk/

gwas/). For modifiers whose reduced activity is associated with

delayed onset or increased expression with hastened onset, a

goal of treatment would be to reduce the activity or level of the

target protein sufficiently to achieve an even greater effect than

occurs due to naturally occurringmodifiers. For example, our find-

ings with modifier 5AM1 suggest that reducingMSH3 expression

levels or activity would inhibit somatic expansion of the HTT CAG

repeat. Population data show that FAN1, MSH3, PMS1, PMS2,

and LIG1 (pLI < 0.02) are all tolerant to loss-of-function variants

(Karczewski et al., 2017), which are not rapidly removed by selec-

tive pressure (Kosmicki et al., 2017). Thus, the activities of each of

these proteins can vary over at least a 2-fold range (wild type

versus loss-of-function heterozygote) in normal individuals

without producing strong negative selection. By contrast, HTT

(pLI = 1.00) is among the most loss-of-function intolerant genes,

showing far fewer naturally occurring inactivating mutations than

would be expected, presumably due to their elimination by an

as yet undetermined selective pressure.

Our results also point to other potential modifier genes (e.g.,

RRM2B/UBR5, CCDC82) that could conceivably influence the

toxicity mechanism by which a somatically expanded repeat that

exceeds its critical threshold precipitates cellular damage. Identi-

fication of the mode of action of such genes could provide an

entrée intoaspects ofdiseaseprogressionwhose rate isnot driven

by the lengthof theCAGrepeat.AfterHDclinicalonset, thedisease

progresses with deterioration in motor, cognitive, and, in many

cases, psychiatric domains, in parallel with neurodegeneration

and loss of body mass. That duration of the manifest disease

phase is independent of the inherited HTT CAG length (Keum

et al., 2016) suggests that some disease changes after onset

involve processes or cell types different from those that drive the

rate of onset. The power of the GWAS approach to detect genetic

https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/


modifiers that act before the onset of HD has been amply demon-

strated. While the sample size can be further increased to dig

deeper into this onset modifier pool and to support the inclusion

of modifier SNPs in optimizing clinical trial power and/or design,

the strategy can now also be applied broadly to define modifiers

that influence disease progression. To this end, we are pursuing

a variety of approaches to define disease stages and correspond-

ing phenotypes for GWA analysis, particularly time-interval

phenotypes, like disease duration, that are less dependent on or

independent of CAG repeat length. We expect that this human

genetics strategy will identify modifiers that help to delineate the

toxicity driver(s) and ultimately will successfully illuminate each

phase of HD, from premanifest to eventual death. This approach

has the potential to highlight specific targets for therapeutic inter-

vention at different disease stages, allowing a stratified approach

to treatment over the protracted, complex disease course.
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https://datadryad.org/resource/doi:10.5061/dryad.5d4s2r8
https://www.broadinstitute.org/birdsuite/birdsuite
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Genome-wide Efficient Mixed Model Association (GEMMA) http://www.xzlab.org/software.html (Zhou and Stephens,

2012)

METAL https://genome.sph.umich.edu/wiki/METAL_

Documentation (Willer et al., 2010)

GenABEL R package (version 1.8-0) https://cran.r-project.org/src/contrib/Archive/GenABEL/

GenABEL_1.8-0.tar.gz (Aulchenko et al., 2007)

FUSION (Gusev et al., 2016)

MAGMA (de Leeuw et al., 2015)

ALIGATOR (Holmans et al., 2009)

GeneMapper v3.7 and v5.0 Applied Biosystems

TREDPARSEv0.7.8: HLI Short Tandem Repeat (STR) caller https://github.com/humanlongevity/tredparse (Tang

et al., 2017)

SciPy: Open Source Scientific Tools for Python http://www.scipy.org

Samtools(v1.7) http://www.htslib.org/ (Li et al., 2009)

Knime Analytics Platform (v3.6.2) https://www.knime.com/knime-software/knime-analytics-

platform

R (v3.3.1, v 3.3.3 and v3.5.0) https://www.r-project.org/

SIFT (Sorting Intolerant from Tolerant) Implemented through the Variant Effect Predictor, https://

useast.ensembl.org/Tools/VEP (Vaser et al., 2016)

Other

ABI 3730XL DNA Analyzer Applied Biosystems N/A

MiSeq Illumina N/A

Tape Station 2200 Agilent N/A

LightCycler480 Roche N/A
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, James F.

Gusella, Ph.D. (gusella@helix.mgh.harvard.edu). Data involving human subjects will be shared with qualified investigators given their

institutional assurance that subject confidentiality will be ensured and that there will be no attempt to discover the identity of any

human subject.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient consents and the overall study were reviewed and approved by the Partners HealthCare Institutional Review Board. We

analyzed genetic data from 9,064 HD subjects including 4,271 available from a previous GWA study (Genetic Modifiers of Hunting-

ton’s Disease (GeM-HD) Consortium, 2015) and 4,793 genotyped and QC-passed in the current study. Phenotypic data for the newly

analyzed subjects were made available by the ENROLL-HD platform (https://www.enroll-hd.org/) and the EHDN Registry study

(http://www.ehdn.org/), who both approved our procurement of the DNA of these subjects from their repositories at BioRep Inc. (Mi-

lan, Italy). Enroll-HD is a global clinical research platform designed to facilitate clinical research in Huntington’s disease. Core data-

sets are collected annually from all research participants as part of this multi-center longitudinal observational study. Data are moni-

tored for quality and accuracy using a risk-based monitoring approach. Registry is multi-center, multi-national observational study

that has been described (Orth et al., 2010). All sites are required to obtain andmaintain local ethical approval. For this study, HD age at

onset was defined as the age at which significant motor signs are noted by a rater expert in the Unified Huntington’s Disease Rating

Scale (UHDRS). In the small minority of cases where no expert rater estimate was available, we used the estimate provided by family

members of the HD subject.

METHOD DETAILS

Genome-wide SNP genotyping
DNA samples for GWA4 (Registry subjects) and GWA5 (Enroll_HD subjects) were genotyped by InfiniumOmniExpressExome-8v1-3_A

(https://www.illumina.com/products/by-type/microarray-kits/infinium-omni-express-exome.html) and Multi-EthnicGlobal-8_A1
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arrays (https://www.illumina.com/products/by-type/microarray-kits/infinium-multi-ethnic-global.html), respectively. Genotyping and

genotype calling based on the Birdsuite algorithm (https://www.broadinstitute.org/birdsuite/birdsuite) were performed at the Broad

Institute. We performed quality control (QC) analysis for each GWA independently in order to generate a dataset for genotype impu-

tation. Briefly, we identified HD subjects with European ancestry (based on comparison of study subjects to HapMap samples) and

subsequently excluded SNPs that showed genotyping call rate < 95% or minor allele frequency < 1%.

Genotype imputation and quality control
EachQC passed dataset, including those obtained for the prior GWA1, GWA2 and GWA3 (Genetic Modifiers of Huntington’s Disease

(GeM-HD) Consortium, 2015), was further subjected to additional QC analyses as part of the imputation process by the Michigan

Imputation Server (https://imputationserver.sph.umich.edu/index.html#!) (Das et al., 2016). Briefly, SNPs tagged due to strand

mismatch were excluded, as were any samples with a low genotyping call rate (< 50% of SNPs) for any 20 Mb chunk of the genome.

Subsequently, haplotype phasing was performed by EAGLE (v2.3.2) and genotypes were imputed separately for GWA1-5 using

MINIMAC via the Michigan Imputation Server, using the Haplotype Reference Consortium data (Version r1.1 2016) (http://www.

haplotype-reference-consortium.org) (McCarthy et al., 2016) as the reference panel. Post-imputation, we further excluded SNPs

with 1) imputation R square value < 0.5 in any of the GWA datasets, 2) call rate < 100%, 3) Hardy-Weinberg equilibrium p value <

1E-6 except the chromosome 4:1-5,000,000 region, or 4) minor allele frequency < 0.1%. These quality control filters generated a total

of 10,986,607 imputed SNPs for 9,064 HD subjects with age at onset data for genetic association analysis.

HTT CAG repeat genotyping assay
HTT uninterrupted CAG repeat size was estimated using a modified PCR amplification assay (Warner et al., 1993), adapted for the

ABI3730XL DNA sequencer in a 96 well plate format. Each plate includes reactions for genomic DNA HTT CAG size standards, pre-

viously sequenced and known to have different uninterrupted CAG repeat lengths in the normal and expanded CAG repeat ranges.

Reactions are in a total volume of 10 ul containing 1.25 mM MgCl2 (Applied Biosystems), 1X Buffer II (Applied Biosystems), 0.05 U

Amplitaq Gold (Applied Biosystems), 0.25 mM dNTPs (GE Healthcare), 1.2 ul of DMSO (Sigma), 0.125 uM each primer with 80 ng

of genomic DNA. The PCR primers (forward primer labeled with 6FAM, reverse primer is tailed) are: Forward primer (HD-1)

50 ATGAAGGCCTTCGAGTCCCTCAAGTCCTTC 30 and Reverse primer (HD-3) 50 GGCGGTGGCGGCTGTTGCTGCTGCTGCTGC 30.
The PCR amplification cycles are: denaturation at 94�C for 4 minutes, thirty-five cycles of denaturation at 94�C for 30 s, annealing

at 65�C for 30 s, and extension at 72�C for 45 s, with a final extension at 72�C for 10 minutes and hold at 15�C. The PCR amplification

products are loaded onto an ABI 3730XL DNA Analyzer (36 cm array, POP-7 Polymer, standard fragment analysis conditions) along

with an internal size standardwhere 0.8 ul PCRproduct is loaded in 9.4 ul Hi-Di Formamide (Applied Biosystems), with 0.1 ul GeneScan

500 LIZ (Applied Biosystems). The resulting .fsa files are analyzed with GeneMapper v5.0 (Applied Biosystems) software and the CAG

repeat allele sizes are estimated relative to the fragment sizes of theHTTCAG repeat genomicDNAstandards. By convention, theCAG

repeat alleles assigned to each sample are the highest peak-signal (main peak) in the normal and the expanded CAG repeat range.

Somatic HTT CAG repeat expansion analysis
We classified subject blood cell DNA samples with respect to somatic CAG repeat expansion using the HTT CAG genotyping assay

output of the GeneMapper v5.0 software (Applied Biosystems). This is not a single molecule assay but rather a bulk measure that has

a floor at the inherited CAG repeat size. For a given individual, the majority of PCR products are nested around the peak signal rep-

resenting the main CAG repeat size, reflecting PCR stutter inherent in the assay that masks small biological variation in CAG repeat

size. However, individual samples may display PCR products at lengths detectably greater than nested bulk PCR products. These

rarer products represent somatically expanded CAG repeats present in the individual. Consequently, the utility of this assay is to

identify those individuals with the highest proportion of such somatic expansions, but it is not a sensitive discriminator for themajority

of samples. From the GeneMapper ‘sample plot view’, a peak data table was exported for all peaks (in .txt format) containing the

following information: sample name, called CAG allele, peak size in bp, peak height, area under the peak and data point/scan number

of the highest point of the peak. Using the assigned main expanded CAG allele and peak size in bp data, a linear regression was

performed, on a per plate basis, to assign a CAG length to all expanded peaks. Linear regression was fit using the linregress function

from the SciPy Python library Stats module (https://www.scipy.org/) according to the model: cagi = b0 + b1 sizei; where cag and size

are the assigned main expanded CAG allele and its measured fragment size, respectively. The size data for each sample was then

transformed to a CAG repeat length by using the intercept and slope from the linear regression. For peaks whose sizes transform to

the same CAG length, the larger peak height was taken. The data were filtered using an upper size threshold of 500 bp and minimum

peak height threshold of 50 RFU (relative fluorescent units). To calculate the proportion of expansion products for each sample, the

expanded peaks were then transformed to a proportion relative to the height of the main CAG-allele assigned peak for that sample.

The proportion of expansion products was then expressed as the sum of the peak-proportions, yielding the ‘‘peak proportional sum

value’’ for that sample.

HTT MiSeq DNA Sequencing
DNA sequencing of HTT exon 1 CAG repeat and adjacent region in genomic DNA samples was accomplished using the Illumina

MiSeq AdaptedMetagenomics 16S Targeted Resequencing Protocol Library Preparation guide (Part # 15044223 Rev. B) using locus
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specific primers. The Step 1 oligonucleotide primer pair (PCR 1) comprising the forward and reverseHTTCAG target sequences and

Illumina Adaptor sequence (in italicized text) was:

ms_hd_f TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATGAAGGCCTTCGAGTCCC

ms_hd_r GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGCTGAGGAAGCTGAGGA

The Step 1 PCR reaction conditions in a total reaction volume of 20 ul, comprise 1X Buffer LongRange (QIAGEN), 1X Q-Solution

(QIAGEN), 500 uM dNTP (QIAGEN), 0.25 uM each forward and reverse primer, 2 units of LongRange Enzyme (QIAGEN), and 20 ng

of genomic DNA. PCR amplification cycles were: initial denaturation at 93�C for 3 minutes, thirty-three cycles of denaturation at 93�C
for 30 s, annealing at 60�C for 30 s, and extension at 68�C for 90 s, and hold at 15�C until bead clean up. The Step 2 PCR reaction

conditions, in a total reaction volume of 50 ul, comprise 1X Buffer LongRange (QIAGEN), 1X Q-Solution (QIAGEN), 500 uM dNTP

(QIAGEN), 0.8 uM each forward and reverse primer, 2 units of LongRange Enzyme (QIAGEN), and 5 ul of Step 1 PCR product,

with the following cycle parameters: initial denaturation at 93�C for 3 minutes, eight cycles of denaturation at 93�C for 30 s, annealing

at 60�C for 30 s, and extension at 68�C for 90 s, hold at 15�Cuntil bead clean up. The Step 2 PCR amplification products were cleaned

up using a 1X bead to PCR product ratio. The libraries were pooled in sets of 24, 96, or 192 and run on the MiSeq at concentrations

8 - 15 pM with 10% PhiX spike-in of the same concentration for a 2x300 bp read. The MiSeq output in FASTQ format was utilized for

analysis to determine the size of uninterrupted CAG repeat and adjacent DNA sequence.

HTT uninterrupted CAG repeat length and adjacent triplet repeat DNA sequence
The length of the uninterrupted CAG repeat and the adjacent sequence were determined from #1) MiSeq, as well as from #2) whole

genome sequence data. For #1) the 300 bp paired-end read MiSeq data (FASTQ format) were analyzed as follows. Each sequence

read pair was processed using Python (v3.5.1). For the forward strand profiling began at the first instance of a CAGCAGCAG 9-mer

(50end of the uninterrupted CAG repeat tract) and continued across each successive trinucleotide repeat until a CAGCTTCCT 9-mer

(30 end of the polymorphic triplet repeat tract) was encountered or until the end of the read was reached. The read that is antisense to

the forward strand was reverse-complemented and was profiled in the samemanner. If the uninterrupted CAG repeat tract and adja-

cent triplet repeat structurematched on bothmates of a read pair, then they were aggregated and counted. Unmatched forward- and

reverse-strand reads were discarded. The uninterrupted CAG repeat allele was assigned (Python v3.5.1), using the distribution of

uninterrupted CAG repeat sizes of the profiled structures, to construct a CAG repeat genotype for each sample by identifying the

two most frequent CAG peaks. The highest frequency profiled structures that contained each uninterrupted CAG repeat allele

were then used to create a complete genotype (both alleles) for the sample that encompassed both the pure CAG tract and the adja-

cent triplet repeat sequence. For #2), as part of a separate study of genetic defects in neurodevelopmental disorders, we have been

investigating HTT as a candidate neurodevelopmental gene (Rodan et al., 2016) in the Simons Simplex Collection whole-genome

sequence data (https://www.sfari.org/resource/simons-simplex-collection/). The CRAM files were converted to BAM file format

using samtools 1.7. (Li et al., 2009). The TREDPARSEv0.7.8 software package (Tang et al., 2017) was utilized in fullsearch mode

in Python v2.7.x, to assign the length of the uninterrupted CAG tract on both alleles. To determine the adjacent sequence, the reads

mapping to HTT exon 1 were subset from the alignment (samtools 1.7). Each individual read was searched for a 9-mer of

CAGCTTCCT, relative to the forward strand. The DNA sequence of the read was then read in reverse (30 to 50) until 3 consecutive

CAG repeats (CAGCAGCAG) were found (Python 3.5.1). All discovered sequences were then aggregated and counted and only

those with 3 consecutive CAG repeats at the 50 end and the 9-mer at the 30 end were taken as complete. Complete sequences

that represent 14% or less of the aggregated reads were filtered out of further analysis. Samples with a single complete sequence

were assigned as homozygotes and samples with two different complete sequences were assigned as heterozygotes. Based upon

direct examination of the sequence reads, the length of the uninterrupted CAG repeat was that assigned by TREDPARSE for canon-

ical chromosomes and differed by 2 for the non-canonical chromosomes based upon the use by TREDPARSE of the canonical allele

in the human genome reference sequence.

QUANTIFICATION AND STATISTICAL ANALYSIS

Genome-wide association study (GWAS) analysis using the continuous phenotype in meta-analysis and combined
analysis
For each study subject, age at onset of diagnostic motor signs and CAG repeat size based on the genotyping assay were used to

calculate residual age at onset, representing years of deviation from the expectation. For example, a HD subject with a residual

age at onset of +5 indicates an individual who developed motor symptoms 5 years later than expected (compared to the majority

of HD subjects) considering their CAG repeat length. We primarily analyzed HD subjects carrying 40-55 CAG repeats to minimize

the levels of inaccuracy in calculating the residual age at onset. In addition, dichotomized phenotype analysis was also performed

to detect statistical artifacts (see next section). To determine whether our previous association analysis using GWA123 data were

replicated, we performed combined analysis of the GWA4 and GWA5 datasets. The residual age at onset of motor symptoms as

the continuous dependent variable was modeled as a function of minor allele count of the test SNP, sex, and the first 4 principal

component values from the genetic ancestry analysis in a linear mixed effect model with relationship matrix using GEMMA (version,

0.94 beta) (http://www.xzlab.org/software.html) (Zhou and Stephens, 2012). Subsequently, we performed meta-analysis to summa-

rize individual GWA analysis results. Each HD GWA study (i.e., GWA1, 2, 3, 4, and 5) was independently analyzed in a linear mixed
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effect model to test the association of SNPs with sex and genetic ancestry covariates. Then, the 5 resultant sets were combined by

meta-analysis using METAL (2011-03-25 release) (https://genome.sph.umich.edu/wiki/METAL_Documentation) (Willer et al., 2010).

Finally, for the combined GWA12345 dataset, residual age at onset as the continuous dependent variable wasmodeled as a function

of minor allele of the test SNP, sex, source of GWA, and first 4 principal component values from the genetic ancestry analysis in a

linear mixed effect models with relationship matrix. Results of this combined continuous phenotype analysis served as the basis

for the estimation of effect sizes and significances of SNPs.

Genome-wide association study (GWAS) analysis using the dichotomous phenotype
To confirm the lack of statistical artifacts in our standard combined continuous analysis and to reveal significant SNPs that are asso-

ciated with our phenotype in a non-continuous manner, we additionally performed GWA analysis using a dichotomized phenotype.

Subjects were sorted based on residual age at onset; those with the top 30% (2,719 subjects) and bottom 30% (2,719 subjects) were

chosen and assigned to phenotype groups (‘late’ and ‘early’ onset, respectively). Based on the previous analysis of GWA123, a 30%

cut-off provided the best ability to detect both the common and rare modifier effects at the chr 15 locus and so was used for this

GWA12345 analysis. The dichotomous phenotype data were modeled as a function of minor allele count of test SNP, sex, source

of GWA study, and first 4 principal components from the genetic ancestry analysis in a fixed effect model.

Conditional analysis
For selected candidate regions with significant association signals in the GWA12345 combined analysis using either continuous or

dichotomous phenotype, we performed conditional analysis to characterize the number of independent modifier haplotypes. Having

established a robust modifier effect at a locus, we then sought additional modifier haplotypes among the SNPswith suggestive signal

in the overall analysis (p < 1E-5). Briefly, the same statistical model for single SNP analysis with an additional covariate of the minor

allele count of the top SNP in the region was constructed in a fixed effect linear model to test independence of SNPs in the region. If

significant association signals remained in the first conditional analysis, the top SNP in the conditional analysis was used for the next

conditional analysis to confirm independence. Subsequently, SNPs tagging each independent modifier haplotype were identified

based on continuous phenotype analysis results, dichotomous phenotype analysis results, conditional analysis, and eQTL data.

Association analysis using residual age at onset based on uninterrupted CAG repeat size
For samples tagged by the minor allele for rs764154313 or rs183415333 who were discovered to have a CAA-loss allele or a

CAACAG-duplication allele on the chromosome with the expanded CAG repeat, we re-calculated residual age at onset based

upon the true CAG repeat length. The true length for each of these HD subjects was then used as independent variable for our

CAG-onset phenotyping model (Lee et al., 2012b). Then, re-calculated residual age at onset of motor symptoms was modeled as

a function of the minor allele count of SNP, sex, source of GWA and genetic ancestry covariates in a mixed effect model. Dichoto-

mous phenotype analysis (fixed effect model) was performed similarly. Overall association signals using residual age at onset based

on genotyping CAG and those based on uninterrupted CAG repeat size were highly similar, except for the chromosome 4 region.

Modifier haplotypes and tagging SNPs at MSH3/DHFR

Comparison of continuous phenotype analysis and conditional analysis results revealed 3 modifier haplotypes at the locus atMSH3/

DHFR on chromosome 5. The first haplotype, 5AM1, was defined by the top genome-wide significant SNP, rs701383, and further

5AM1 tag SNPs were those associated with hastened onset at p < 1E-5 in the continuous analysis and p > 1E-5 in analysis

conditioned on rs701383 (red downward triangles in Figure 3). Haplotype 5AM2 was defined by rs113361582, which remained

genome-wide significant in the analysis conditioned on rs701383. Further 5AM2 tag SNPs were those associated with delayed onset

at p < 1E-3 in both the continuous analysis and analysis conditioned on rs701383 with minor allele frequency < 5% (green upward

triangles in Figure 3). Haplotype 5AM3 was defined by rs1650742 which, at higher allele frequency than 5AM2 tag SNPs, was asso-

ciated with an onset delaying signal (p < 2E-6) that was not reduced by conditioning on rs113361582. Further 5AM3 tag SNPs were

those with minor allele frequency between 20 and 35% associated with delayed onset at p < 1E-3 in the continuous analysis, with

p > 1E-3 in the conditional analysis using rs701383 (purple upward triangles in Figure 3).

Modifier haplotypes and tagging SNPs on chromosome 15
From association signals on chromosome 15, we identified 4 modifier haplotypes. Haplotype 15AM1 was marked by the top overall

SNP, rs150393409, and additional 15AM1 tag SNPs were those with p < 5E-8 in the combined continuous phenotype analysis,

p > 5E-8 in the conditional analysis using rs150393409, and p < 5E-8 in the conditional analysis using rs35811129, with minor allele

frequency < 5% associated with hastened onset (red downward triangles in Figure 4). Haplotype 15AM2 was marked by rs35811129

and additional 15AM2 tag SNPs were those with p < 5E-8 in the combined continuous analysis, p < 5E-8 in the conditional analysis

using rs150393409, p > 5E-8 in the conditional analysis using rs35811129, withminor allele frequency > 20%associatedwith delayed

onset (green upward triangles in Figure 4). Haplotype 15AM3 was marked by rs151322829 which remained genome-wide significant

in the above conditional analyses. Additional 15AM3 tag SNPs were those with p < 1E-5 in the combined continuous analysis and

in conditional analyses with either rs150393409 or rs35811129, with minor allele frequency < 3% associated with hastened onset

(purple downward triangles in Figure 4). Finally, haplotype 15AM4 was revealed by rs34017474, whose significance increased in
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the conditional analysis using rs150393409, and additional 15AM4 tag SNPs were those with p < 1E-5 in the continuous analysis,

p < 5E-8 in the conditional analysis using rs150393409, and minor allele frequency > 30% (gold triangles in Figure 4).

Modifier haplotypes and tagging SNPs on chromosome 19
We identified 3modifier haplotypes at the chromosome 19 locus. Haplotype 19AM1wasmarked by the top genome-wide significant

SNP, rs274883, and additional 19AM1 tag SNPs were those with p < 1E-4 in the combined continuous analysis, p > 1E-2 in the con-

ditional analysis using rs274883 and associated with delayed onset (red upward triangles in Figure 5). Haplotype 19AM2wasmarked

by rs3730945 whose suggestive signal was not reduced by conditional analysis using rs274883. Additional 19AM2 tag SNPs were

those with p < 1E-5 in the combined continuous analysis, p > 1E-5 in the conditional analysis using rs3730945, and minor allele

frequency > 30%, associated with hastened onset (green downward triangles in Figure 5). Haplotype 19AM3 was revealed by

rs145821638, whose suggestive signal was not reduced by conditional analysis using rs274883, and additional 19AM3 tag SNPs

were those with p < 1E-2 in the combined continuous analysis, p > 1E-2 in the conditional analysis using rs145821638, and minor

allele frequency < 2% associated with delayed onset (purple upward triangles in Figure 5).

Transcriptome-wide association study analysis
The association of gene expression and residual age at onset TWAS was performed using the FUSION package (Gusev et al., 2016),

imputing the CommonMind Consortium prefrontal cortex expression to the GWA12345 summary association statistics, for the 5419

genes for which there was a significant genetic component of expression. For genes with a significant TWAS association (genome-

wide significance p < 9.2E-6), the association between SNPs in the region and residual age at onset was calculated conditional on

expression using FUSION. The proportion of the genetic liability to age at onset attributable to expression was quantified by using

HESS to calculate regional heritability using the GWAS summary statistics before and after conditioning on expression (Shi et al.,

2016). The ratio of the regional heritability after conditioning on expression to that before conditioning was regarded as an estimate

of the proportion of genetic liability that is not attributable to expression (thus, 1 minus the ratio gives the proportion of liability that is

attributable to expression).

Pathway analysis
Gene-wide association analyses were carried out in MAGMA (de Leeuw et al., 2015) on summary statistics from GWA12345, using

genotypes from GWA345 as a reference panel to estimate LD. For primary analysis, a window of 35kb upstream and 10kb down-

stream of gene positions (GRCh37/hg19) was used with the ‘‘multi’’ analysis option, combining the mean SNP p value with the

top SNP p value (corrected for number of SNPs, LD). Pathway enrichment analyses were performed in MAGMA, correcting for LD

between genes, SNPs, initially using ‘‘self contained analysis’’ measuring overall association among genes in a pathway, and then

using a more conservative ‘‘competitive’’ analysis, to compare association in genes within a pathway to those outside the pathway.

ALIGATOR (Holmans et al., 2009) was used to test whether pathways contain a larger number of ‘‘significant’’ genes (here defined as

the minimum SNP p value in that gene, chosen such that 5% of genes in the genome are considered significant), than expected by

chance, given the number of SNPs they contain. Initial analysis considered the 14 pathways found to be significantly enriched for

GWAS signal in GWA123 (Genetic Modifiers of Huntington’s Disease (GeM-HD) Consortium, 2015) augmented by 77 DNA repair

pathways taken from Pearl et al. (Pearl et al., 2015). To test for potential novel areas of disease-relevant biology, an exploratory anal-

ysis was performed on 14,210 pathways containing between 10 and 500 genes from the Gene Ontology (GO) (Gene Ontology Con-

sortium, 2015), Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al., 2016), Mouse Genome Informatics (MGI) (Eppig

et al., 2015), Pathway Interaction Database (PID) (Schaefer et al., 2009), Protein ANalysis THrough Evolutionary Relationships

(PANTHER) (Mi et al., 2013), BioCarta (Nishimura, 2001) and Reactome (Fabregat et al., 2016).

Analysis of GTEx eQTL data
For selected candidate genes, we comparedmodification association signals obtained from either continuous phenotype analysis or

dichotomous phenotype analysis to eQTL signals of human tissues obtained from GTEx consortium. Publicly available single tissue

eQTL data (version 7) (https://gtexportal.org/home/) were downloaded. GTEx eQTL analysis calculated the effect size for a SNP rela-

tive to the alternative allele. In order to make comparable datasets, the sign of effect size of an eQTL SNP whose alternative allele is

major allele in the HD dataset was flipped. Then, significance values (-log10(p value)) in HD modification GWA analysis were

compared to those in GTEx eQTL analysis. SNPs from these comparisons were indicated based on the directions of eQTL; a

SNP whose minor allele is associated with increased or decreased expression levels of test gene is indicated with an upward or

downward triangle respectively.

Hardy Weinberg equilibrium test
The 7,013 GWA samples with peak proportional sum values in the CAG somatic expansion assay were rank sorted in descending

order by peak proportional sum value and samples were divided into quartiles using Python v3.5.1., yielding 1753 samples in the

quartile with the highest proportion of expanded PCR products. Chi square test for deviation of SNP rs701383 minor allele count

from Hardy Weinberg equilibrium in this top quartile was performed according to the standard method using the formula: (Obs-

Exp)2/Exp, where Obs = observed, Exp = expected. The expected minor allele count for each class was calculated from the minor
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allele frequency of the SNP in the entire 7,013 sample dataset. The minor allele frequency was 25.7% matching the minor allele

frequency reported for Europeans.

Analysis Codes
1. Quality controls parameters of imputed SNPs were obtained based on the following options in the PLINK program.

plink–bfile GENOTYPE_DATA–freq

plink–bfile GENOTYPE_DATA–missing

plink–bfile GENOTYPE_DATA–hardy–nonfounders–hwe 0

Then, imputed SNPs were subjected to quality controls as described in the method section.

2. Construction of kinship matrix was based on the following code using genotype file in the PLINK format in the GEMMA program.

gemma -bfile GENOTYPE_DATA -gk 1

3. Association analysis using a linear mixed effect model was based on following code. GENOTYPE_DATA file set in the PLINK file

format included the test phenotype in continuous phenotype.

gemma -bfile GENOTYPE_DATA -k KINSHIP_MATRIX -c COVARIATE -lmm 1 -maf 0

4. Meta-analysis was based on the following options in the METAL program.

MARKER SNP

ALLELE EFFECT_ALLELE OTHER_ALLELE

EFFECT SLOPE

PVALUE PVAL

WEIGHT N

PROCESS GWA1_RESULT

PROCESS GWA2_RESULT

PROCESS GWA3_RESULT

PROCESS GWA4_RESULT

PROCESS GWA5_RESULT

ANALYZE HETEROGENEITY

QUIT

5. GWA analysis of dichotomous phenotype was based on fixed effect model using following options. GENOTYPE_DATA file set in

the PLINK file format included the test phenotype in dichotomous phenotype.

plink–bfile GENOTYPE_DATA–logistic–covar COVARIATE

6. QQ plots of GWA analysis were based on the R package ‘GenABEL’.

7. Conditional analyses of selected regions were based on the following options.

plink–bfile REGION_GENOTYPE_DATA–linear–covar COVARIATE–condition CONDITIONING_SNP

DATA AND CODE AVAILABILITY

Original data will be made available on request. Data involving human subjects will be shared with qualified investigators given their

institutional assurance that subject confidentiality will be ensured and that there will be no attempt to discover the identity of any

human subject. For GWAS data, please direct inquiries to info@chdifoundation.org with the words ‘‘GWAS12345 data’’ in the subject

line. The accession number for the GWAS summary statistics reported in this paper is DRYAD: https://datadryad.org/resource/

doi:10.5061/dryad.5d4s2r8. Requests for further information or for other resources and reagents should be directed to James F. Gu-

sella, Ph.D. (gusella@helix.mgh.harvard.edu).
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Supplemental Figures

Figure S1. Residual Age at Onset Phenotype for GWA Analysis to Identify Genetic Modifiers of HD, Related to Figure 1

(A) Age at onset data for individuals with HD (y axis) were compared to CAG repeat size based on genotyping. A red line represents our standard CAG-onset

phenotype model. Residual age at onset was calculated for each subject by subtracting expected age at onset based on our CAG-onset model from observed

age at motor onset.

(B) Residual age at onset was our primary phenotype for genetic analysis. Distribution of residual age at onset of individuals with HD (histogram) was compared to

a theoretical normal distribution based on the mean and standard deviation of actual data to confirm data normality.

(C) For an independent comparison with our previous GWA results (GWA123), we performed mixed effect model GWA analysis of additional HD individuals

(GWA45). The Manhattan plot summarizes association signals using residual age at onset for 4,793 HD individuals. Y- and x axis represent -log10(p value) and

chromosome number.

(D) In addition, we performed and subsequently compared 1) meta-analysis to summarize 5 independent GWA analysis results and 2) mixed effect model

combined analysis to avoid statistical artifacts. The Manhattan plot of the meta-analysis shown here and that of combined analysis using the continuous

phenotype in Figure 1 were very similar, confirming the lack of batch effect in our GWA analysis results. In order to provide meaningful effect sizes of associated

loci, we primarily used the results of the combined analysis.

(E) A quantile-quantile (QQ) plot based on the GWA analysis results using continuous phenotype (mixed effect model, combined analysis) and the inflation factor

confirmed the lack of statistical inflation in our results.

(F) A QQ plot based on the GWA analysis results using dichotomous phenotype (fixed effect model, combined analysis) and the inflation factor confirmed the lack

of statistical inflation in our results.



Figure S2. Chr 4 GWAS Signals Do Not Correspond to HTT cis-eQTL Signals and Are Dramatically Reduced by Correcting Mis-estimated

CAG Repeat Length, Related to Figures 1 and 2

(A) Expression levels of GTEx subjects in various tissues are plotted. The background histogram represents the distribution ofHTTmRNA levels across all tissues.

TPM (x axis) represents Transcripts Per Million (Li et al., 2010).

(B-E) GWAS signals for chromosome 4 (x axis) were compared to GTEx eQTL analysis results for prefrontal cortex BA9 (C), cortex (D), caudate (E), and putamen

(F). Upward and downward triangles represent SNPswhoseminor alleles were associated with increased and decreasedHTTmRNA levels, respectively, in GTEx

data. SNPs on the haplotype marked by rs764154313 are infrequent and therefore were filtered out from publicly available GTEx eQTL results. Some SNPs from

the haplotype tagged by rs183415333 are in the GTEx eQTL dataset and are compared to HD modifier GWAS data (green triangles) but do not correspond with

eQTLs in any of the brain tissues. In BA9, GWAS signals in the 1E-4 range contributed by more frequent SNPs correspond with eQTL signals for decreased HTT

expression, but these weak GWAS signals are removed by conditioning for rs183415333. Notably, the rs183415333-tagged haplotype represents a small subset

(�10%) of the chromosomes that bear the more frequent rs13102260 promotor SNP (black triangle here and in Figure 2)A, which was proposed to be involved in

regulation of HTT expression levels and subsequent modification of HD (Be�canovi�c et al., 2015) but which failed to yield a strong association signal in either

GWA123 or GWA12345.

(F) Residual age at onset of heterozygous HD individuals (red line; primary y axis) is qualitatively compared to a histogram distribution of residual age at onset of

HD individuals with 2 expanded alleles (30 individuals; secondary y axis).

(G) Correcting the mis-estimated CAG repeat length of individuals with rs764154313 or rs183415333 minor alleles dramatically reduced apparent chr 4 signals

without a major change in all other GWAS signals. The GWAS data from Figure 1 were re-analyzed using the true uninterrupted CAG repeat from MiSeq

sequencing of rs764154313 or rs183415333 minor allele subjects. Of 29 individuals with the rs764154313 minor allele, 28 had DNA available for sequencing: 21

had a CAA-loss allele on the disease chr 4, 2 had CAA-loss allele on the normal chr 4 and 5 had a canonical sequence on both chr 4. Of 102 individuals with the

rs183415333minor allele, 98 had DNA available: 67 had a CAACAG-duplication allele on the disease chr 4, 22 had a CAACAG-duplication allele on the normal chr

4, 2 had a CAACAG-duplication on both the normal and the expanded chr 4 and 7 had a canonical sequence on both chr 4. The 5 individuals for whom no DNA

sequence was available, along with one canonical allele individual whose sample showed evidence of mix-up, were excluded from this analysis of 9058

individuals. In this dataset, the length of the CAG repeat accounted for 57% of the variance in age at onset. Inclusion of all SNPswith p < 1E-5 and p < 1E-3 raised

the explanatory power to 66% and 90%, respectively. However, to what degree this polygenic modification score is predictive remains to be tested in an in-

dependent HD sample. Of note, based on the ancestry of some HD individuals in our current dataset with these CAACAG-duplication alleles, this HTT haplotype

tagged by the rs183415333 minor allele is likely to correspond to that reported based upon PCR fragment-based genotyping to be associated with later than

expected onset in a Danish HD family (Nørremølle et al., 2009).



Figure S3. Sex-Specific Association Analysis of Residual Age at Onset, Related to Figure 1 and Table 1

(A) The distribution of age at onset residuals in GWA12345 subjects is presented as a standard boxplot by sex, showing no significant difference between males

and females.

(B) The Manhattan plot summarizes association signals using residual age at onset for 4,417 male HD individuals. Y- and x axis represent -log10(p value) and

chromosome number.

(C). The Manhattan plot summarizes association signals using residual age at onset for 4,647 female HD individuals.

(D) A QQ plot based on the male-specific GWA analysis is shown, confirming lack of statistical inflation.

(E) A QQ plot based on the female-specific GWA analysis is shown, confirming lack of statistical inflation.



Figure S4. Onset-Hastening Modifier 5AM1 Is Associated with Somatic CAG Repeat Expansion, Related to Figure 3

(A and B): HDmodifier GWAS signals in theMSH3/DHFR region of chr 5 region (x axis, -log10(p value)) were compared to GTEx eQTL signals forMSH3 andDHFR

in whole blood (A) and (B), respectively). Upward and downward triangles represent SNPs whose minor alleles were associated with increased and decreased

expression levels of the test gene, respectively. Red, green, and purple triangles represent SNPs tagging modifier haplotypes 5AM1, 5AM2, and 5AM3,

respectively, as in Figure 3.

(C) Method for calculating the peak proportional sum of HTT CAG expansion values from ABI GeneMapper fragment sizing profiles of expanded alleles from our

CAG genotyping assay. The bulk of the PCR product for any individual corresponds to the presumptive inherited expanded CAG size and constitutes a floor with

respect to which expansion can be examined. PCR products to the left of the main peak are believed to be due largely to PCR artifacts. The peaks to the right of

the main peak result from somatic CAG expansions. These are summed and then divided by the size of the main peak to calculate the peak proportional sum of

expanded alleles in that individual. Themethod detects thosemosaic individuals with the highest proportion of somatically expanded alleles but is not effective for

resolving individuals with reduced somatic expansion. Consequently, it is only applicable to modifier SNPs minor alleles that 1) correspond to blood eQTLs or

structural changes, 2) are sufficiently frequent to generate an adequate sample size and 3) are associated with increased somatic expansion (expected to

correspond to hastened onset). Of the modifiers in Table 1, only 5AM1 met these criteria.

(D) The boxplot shows the peak proportional sum HTT CAG repeat expansion values determined for 7,013 GWA12345 subjects, plotted as quartiles (whis-

kers1.5*IQR) for each CAG repeat size. The proportion of expanded alleles per individual increases with inherited CAG repeat length. The top quartile at each

repeat length, representing individuals with the highest proportion of somatic expansions, is distinguished by awider range of values than the other three quartiles

across the CAG repeat lengths. The values for the 1,753 individuals in the highest expansion quartile are plotted as blue circles. Among these individuals, 5AM1-

tag SNP rs701383 deviates from Hardy-Weinberg expectation (chi-square 15.80, 2 d.f., p < 0.0004) due to an excess of the A minor allele, associated with

hastened onset and increased MSH3 expression.



Figure S5. Correspondence between Onset Modifier Signals and GTEx eQTL Signals for MSH3 and DHFR, Related to Figure 3

(A B) HD modifier GWAS signals in theMSH3/DHFR region of chr 5 region (x axis, -log10(p value)) were compared to GTEx eQTL signals forMSH3 and DHFR (A)

and (B), respectively) in BA9, cerebral cortex, caudate and putamen whole blood. Upward and downward triangles represent SNPs whose minor alleles were

associated with increased and decreased expression levels of the test gene, respectively. Red, green, and purple triangles represent SNPs tagging modifier

haplotypes 5AM1, 5AM2, and 5AM3, respectively, as in Figure 3. There was no sex difference in the expression of MSH3 in any of the tissues (blood p = 0.555;

BA9 p = 0.586; cortex p = 0.993; putamen p = 0.542; or caudate p = 0.054). Interaction between sex and the top 5AM1 SNP in influencing expression was not

nominally significant in any tissue (blood p = 0.799; BA9 p = 0.867; cortex p = 0.498; putamen p = 0.985) except caudate (p = 0.025) but the latter significance was

eliminated by multiple testing correction. Larger samples sizes will be required for a definitive conclusion.



Figure S6. Correspondence between Onset Modifier Signals and GTEx eQTL Signals for FAN1 and LIG1, Related to Figures 4 and 5

(A) Chromosome 15 onset modifier signals depicted (as in Figure 4) in red (15AM1), green (15AM2), purple (15AM3), and gold (15AM4) (x axis) were compared to

GTEx eQTL signals (y axis) for brain regions and whole blood. Upward and downward triangles represent SNPs whose minor alleles were associated with

increased and decreased expression levels of FAN1, respectively. Because SNPs tagging 15AM4 have alleles of close to equal frequency, the direction of the

arrow varies depending on whether the minor or major allele is on the 15AM4 haplotype.

(B) Chromosome 19 onset modifier signals depicted in red (19AM1) and green (19AM2) (x axis) were compared to GTEx eQTL signals (y axis) for LIG1 expression

in brain regions and whole blood. The tag SNP for 19AM3 is too infrequent to appear in GTEx eQTL results. Upward and downward triangles represent SNPs

whose minor alleles were associated with increased and decreased expression levels of LIG1, respectively.



Figure S7. Association Signals in Continuous Phenotype Analysis for Chromosome 11 Region and Correspondence to GTEx eQTL Signals,

Related to Figure 6

(A) Association analysis for SNPs in the chromosome 11 region using the continuous phenotype. (B). These continuous phenotype analysis results were

compared to GTEx eQTL signals for CCDC82 in brain regions.

(C and D) GTEx eQTL signals forMAML2 (C) and JRKL (D) in selected brain regions (y axis) were compared to chromosome 11 onsetmodifier signals based on the

dichotomous phenotype (from Figure 6). Red and pink triangles represent SNPs marking the 11AM1 and a closely related haplotype.
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