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Abstract. Probabilistic epistemic argumentation allows for reasoning about ar-
gumentation problems in a way that is well founded by probability theory. Epis-
temic states are represented by probability functions over possible worlds and can
be adjusted to new beliefs using update operators. While the use of probability
functions puts this approach on a solid foundational basis, it also causes compu-
tational challenges as the amount of data to process depends exponentially on the
number of arguments. This leads to bottlenecks in applications such as modelling
opponent’s beliefs for persuasion dialogues. We show how update operators over
probability functions can be related to update operators over much more compact
representations that allow polynomial-time updates. We discuss the cognitive and
probabilistic-logical plausibility of this approach and demonstrate its applicabil-
ity in computational persuasion.

1 Introduction

Probabilistic epistemic argumentation [40, 13, 20, 18] is an extension of Dung’s classi-
cal argumentation framework [7]. While the original framework allows only for talking
about attacks and accepting or rejecting arguments, probabilistic epistemic argumen-
tation also allows more general relationships between arguments like support [4, 29,
5] and allows expressing more fine-grained beliefs by means of probabilities. Recent
experiments give empirical evidence that these extensions are, in particular, beneficial
when it comes to modelling human decision making [28]. One large application area
of probabilistic epistemic argumentation is computational persuasion [15, 16]. Compu-
tational persuasion aims at convincing the user of a persuasion goal such as giving up
bad habits or living a healthier lifestyle. In order to derive persuasion strategies au-
tonomously, we require a user model that represents the user’s beliefs and simulates
belief changes when new arguments are presented to the user. The user’s epistemic
state can be represented by a probability function and different update operators have
been studied that can be used to adapt the current beliefs [15, 19, 17].

Probability theory provides a strong foundational basis for probabilistic epistemic
argumentation, but also comes with computational limitations. Without further assump-
tions, probability functions grow exponentially with the number of arguments. How-
ever, sometimes we are only interested in atomic beliefs in arguments, so that the full
power of probability functions may not be required. For instance, we can consider the



A = Universities should continue charging students the 9k fee.

B = Student fees should be abolished because they are unfair.

C = Charging tuition fees to students reduces the tax burden on the rest of
the UK population, many of whom have not and will not go to university.

D = University education is
an investment in the economy

of the whole country, and
therefore everyone should con-
tribute to university education.

E = Everyone in soci-
ety benefits from those

who are educated in
universities, and so ev-

eryone should contribute.

F = The currently
charged fees exceed the
teaching expenses of the

universities, hence the fees
could be reduced anyway.

G = Many graduates choose
courses in arts and humanities,

and therefore do not benefit
the economy of the country.

H = The extra income from student fees is of-
ten used to fund outreach activities and sum-

mer schools, particularly for students from low
socio-economic backgrounds and minorities.

I = Arts and human-
ities graduates can

work in the creative
industries which
are a substantial
export earner for
the UK economy.

J = Graduates that choose
courses in arts and hu-
manities often become

successful company em-
ployees or business owners,

and therefore benefit the
economy of the country.

K = Universities organize outreach
activities in order to encourage

people to go to universities, which
in its essence is marketing and
advertising to get more students

to enroll, and the existing students
should not be paying for that.

L = Most arts and humanities students
do not take courses needed for working

in the creative industries, so the taxpayer
should not be required to cover their fees.

M = Most art and humanities graduates are
not employed in the ares they studied for,

hence covering their fees is not worthwhile.

−

−

− − −

− −

− − −

− −

Fig. 1. Study fee dialogue.

graph depicted in Figure 1 induced by a dialogue between an automated dialogue sys-
tem and a human participant that occurred in the empirical study considered in [11].
There are various constraints that could be attached to such a graph, as we will discuss
further in Section 5. For instance, we could use postulates from the classical epistemic
approach [40, 13] such as coherence, which bounds the belief in an argument based on
the belief of its attacker. Formally, in our scenario, for every argument-attacker pair X
and Y this would create a constraint of the form π(X)+π(Y ) ≤ 1, where π(α) should
be read as the probability of α.

We observe that the aforementioned formulas operate on probabilities of single ar-
guments rather than on complex logical expressions. Consequently, the detailed infor-
mation contained in a full probability function can be seen as excessive. In such a sit-
uation, probability functions can sometimes be replaced by probability labellings that



assign probabilities to arguments directly without changing the semantics [33]. In our
case, this would decrease the number of probabilities that need to be processed from
8,192 (i.e. 213) to 13, which has obvious computational benefits.

In this paper, we are interested in the relationship between epistemic states repre-
sented by probability functions and those represented by probability labellings. For-
mally, probability labellings can be related to equivalence classes of probability func-
tions that assign the same atomic beliefs to arguments [33]. In order to establish an
interesting relationship, update operators must respect this equivalence relation. We de-
fine such an operator in Section 3 and show in Section 4 that it satisfies our desiderata.
In particular, updates can be computed in polynomial time In this approach, epistemic
states correspond to sets of probability functions that satisfy the same atomic beliefs
and updates are performed by satisfying the new beliefs while minimizing the required
changes. We will argue that this approach is not only computationally attractive, but
can also result in cognitively more plausible updates. We illustrate our method with an
application in computational persuasion in Section 5. All proofs for the results in this
article can be found in the corresponding technical report [35].

2 Basics

We consider bipolar argumentation frameworks (BAFs) (A,R,S) consisting of a set
of arguments A, an attack relation R ⊆ A × A and a support relation S ⊆ A × A.
Ω = {w | w ⊆ A} denotes the set of possible worlds. Intuitively, each w ∈ Ω contains
the arguments that are accepted in a particular state of the world. We represent beliefs
by probability functions P : Ω → [0, 1] such that

∑
w∈Ω P (w) = 1. PA denotes

the set of all probability functions over A. The probability of an argument A ∈ A
under P is defined by adding the probabilities of all worlds in which A is accepted, that
is, P (A) =

∑
w∈Ω,A∈w P (w). P (A) can be understood as a degree of belief, where

P (A) = 1 means complete acceptance and P (A) = 0 means complete rejection4.
The epistemic probabilistic argumentation approach developed in [40, 13, 20, 18]

defines semantics of attack and support relations by means of constraints over proba-
bility functions. Some constraints can be automatically derived from the relations be-
tween arguments. For example, the coherence constraint demands that if A attacks
B, we must have P (B) ≤ 1 − P (A), that is, the belief in an attacked argument B
is bounded from above by the belief in an attacker A. However, it is also possible to
design individual constraints manually. For example, if B is attacked by three related
arguments A1, A2, A3, we may want to bound the belief in B by the average belief in
these attackers via P (B) ≤ 1− 1

3

∑3
i=1 P (Ai). To allow this flexibility, a general con-

straint language has been introduced in [18, 17]. We will focus on the fragment of linear
atomic constraints here because it is sufficiently expressive for most of the constraints
considered in [40, 13, 20] and sometimes allows polynomial-time computations [33].

Formally, a linear atomic constraint over a set of arguments A is an expression of
the form

∑n
i=1 ci · π(Ai) ≤ c0, where Ai ∈ A and ci ∈ Q. π is just a syntactic symbol

4 Note that P (A) denotes the probability of argument A (the sum of probabilities of all possible
worlds that accept A), while P ({A}) denotes the probability of the possible world {A}.



that can be read as “the probability of”. We let CA denote the set of all linear atomic
constraints over A. A probability function P satisfies such a linear atomic constraint
iff

∑n
i=1 ci · P (Ai) ≤ c0. P satisfies a set of linear atomic constraints C, denoted as

P |= C, iff it satisfies all l ∈ C. In this case, we call C satisfiable. We let SatΠ(C) =
{P ∈ PA | P |= C} denote the set of all probability functions that satisfy C. We call
sets of constraints C1, C2 equivalent and write C1 ≡ C2 iff they are satisfied by the
same probability functions, that is, SatΠ(C1) = SatΠ(C2)

Note that constraints with ≥ and = can be expressed as well in our language. For
≥, just note that

∑n
i=1 ci · π(Ai) ≤ c0 is equivalent to

∑n
i=1−ci · π(Ai) ≥ −c0. For

=, note that
∑n
i=1 ci · π(Ai) ≤ c0 and

∑n
i=1 ci · π(Ai) ≥ c0 together are equivalent

to
∑n
i=1 ci · π(Ai) = c0. In particular, we can express probability assignments of the

form π(A) = p or probability bounds of the form l ≤ π(A) ≤ u.
Now assume that we are given an epistemic state represented as a probability func-

tion P ∈ PA. Given some new evidence represented as a set of linear atomic constraints
(and possibly some existing constraints that we want to preserve), we want to update P .
To this end, different update operators have been studied in [15, 19, 17]. Here, we are
interested in update operators of the following type.

Definition 1 (Epistemic Update Operator). An epistemic update operator is a func-
tion U : PA × CA → PA ∪ {⊥} that satisfies the following properties:

– Success: If C ⊆ CA is satisfiable, then U(P,C) ∈ SatΠ(C).
– Failure: If C ⊆ CA is not satisfiable, then U(P,C) = ⊥.
– Representation Invariance: If C1 ≡ C2, then U(P,C1) = U(P,C2).
– Idempotence: If C ⊆ CA is satisfiable, then U(U(P,C), C) = U(P,C).

Success and failure guarantee a well-defined update. That is, if the constraints are satis-
fiable, the update operator will return a new epistemic state that satisfies the constraints.
If the constraints are not satisfiable, ⊥ will be returned to indicate an inconsistency.
Representation invariance guarantees that the result is independent of the syntactic rep-
resentation of the evidence. Finally idempotence guarantees that applying the same
update twice does not change the outcome.

3 The Two-stage Least-squares Update Operator

Several update operators in [19, 17] are based on the idea of satisfying new evidence
by changing the current epistemic state in a minimal way. The distance between two
probability functions is determined by looking at the probabilities that they assign
to possible worlds. For example, one can use the least-squares distance d2(P, P ′) =∑
w∈Ω(P (w)−P ′(w))2 or the KL-divergence dKL(P, P ′) =

∑
w∈Ω P (w)·log

P (w)
P ′(w) .

While this makes perfect sense from a probability-theoretical point of view, the result-
ing belief changes may be intuitively implausible.

Example 1. Consider a BAF ({A,B}, ∅, ∅) with two unrelated arguments A,B. Sup-
pose our current epistemic state is P1 as defined in Table 1. Then we have P1(A) = 0.6
and P1(B) = 0.7. Now suppose that we want to update the belief in A to 1. A distance-
minimizing update w.r.t. d2 (i.e. update returning a probability distribution satisfying



w P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

∅ 0.1 0 0 0.4 0.45 0.26 0 0.3 0.15 0.35
{A} 0.2 0.4 0.33 0.05 0 0.19 0.3 0 0.15 0
{B} 0.3 0 0 0.15 0.1 0.29 0 0.1 0.35 0.15
{A,B} 0.4 0.6 0.67 0.4 0.45 0.26 0.7 0.6 0.35 0.5

Table 1. Some probability functions over possible worlds used in Example 1.

π(A) = 1 that is minimally different from P1 w.r.t. d2) yields the new epistemic
state P2 from Table 1. Now we have P2(A) = 1 as desired. However, we also have
P2(B) = 0.6 < 0.7 = P1(B). Similarly, updating with respect to dKL yields P3 from
Table 1 with P3(B) = 2

3 < 0.7 = P1(B). This behaviour is rather counterintuitive
in this context, since A and B are completely unrelated. Therefore, we should have
P1(B) = P2(B) = P3(B).

In order to bring our model closer to humans’ intuition, a two-stage minimization pro-
cess has been proposed in [17]. In stage 1, we identify all probability distributions
that minimize an atomic distance measure. Instead of comparing probability functions
elementwise on possible worlds, atomic distance measures compare probability func-
tions only based on the probabilities that they assign to arguments [19]. We consider a
quadratic variant here that will allow us to compute some updates in polynomial time.

Definition 2 (Atomic Least-squares Distance (ALS)). The ALS distance measure is
defined as d2At(P, P

′) =
∑
A∈A(P (A)− P ′(A))2 for all P, P ′ ∈ PA.

To begin with, we use the ALS distance to define a naive update operator which does
not satisfy our desiderate from Definition 1 yet.

Definition 3 (Naive Least-squares Update Operator). The naive LS update operator
uAt : PA × CA → 2PA is defined by uAt(P,C) = argminP ′∈SatΠ(C) d

2
At(P, P

′).

uAt yields those probability functions that satisfy C and minimize the ALS distance to
P . However, there is not necessarily a unique solution.

Example 2. Consider P1 from Table 1. Suppose we recognize a conflict between A and
B and want to update with the constraint l1 : π(A) + π(B) ≤ 1. We have P1(A) = 0.6
and P1(B) = 0.7. The cheapest way to satisfy the constraint with respect to the ALS
distance is to decrease both probabilities by 0.15. That is, a solution P ′ must satisfy
P ′(A) = P ′({A})+P ′({A,B}) = 0.45 andP ′(B) = P ′({B})+P ′({A,B}) = 0.55.
P4 and P5 from Table 1 show two minimal solutions from the set uAt(P1, {l1}).
The second stage of the minimization process from [17] deals with the uniqueness prob-
lem. Among those probability functions that minimize the atomic distance, we pick the
unique one that minimizes a sufficiently strong second distance measure. Here, we will
consider again the least-squares distance for stage 2.

Definition 4 (Two-stage Least-squares Update Operator (2LS)). The 2LS update
operator U2

At : PA × CA → PA ∪ {⊥} is defined by

U2
At(P,C) =

{
argminP ′∈uAt(P,C)

∑
w∈Ω(P (w)− P ′(w))2, if uAt(P,C) 6= ∅

⊥ otherwise.



Before looking at an example, we note that U2
At is an epistemic update operator as

defined in Definition 1.

Proposition 1. The 2LS update operator is an epistemic update operator.

Example 3. Consider again P1 and the constraint l1 from Example 2. P6, shown in
Table 1, is the unique solution that minimizes the least-squares distance to P1 among
those distributions that minimize the ALS distance to P1. That is, U2

At(P1, {l1}) = P6.

Example 4. As another example, we consider again the scenario from Example 1 where
a one-stage update changed the belief inB in an implausible way. We get U2

At(P1, {π(A) =
1}) = P7 shown in Table 1. In particular, we have P7(B) = 0.7 = P1(B) as desired.

Intuitively, stage 1 determines which atomic beliefs in arguments have to be changed in
order to satisfy the new constraints. This avoids the counterintuitive behaviour of ele-
mentwise minimization over the possible worlds, but does not yield a unique solution.
Therefore, stage 2 performs an elementwise minimization over the possible worlds to
pick a best solution among the ones that minimize the change in atomic beliefs.

4 Updates over Probability Labellings

The two-stage minimization process solves our semantical problems, but we are still
left with a considerable computational problem. This is because we consider probabil-
ity functions over possible worlds whose number grows exponentially with the number
of arguments in our framework. However, as illustrated in our previous examples, hu-
man reasoning may be guided by atomic beliefs in arguments rather than by beliefs in
possible worlds. Therefore, a natural question is, what changes semantically when con-
sidering belief functions over arguments rather than over possible worlds? As shown
in [33], probability functions over possible worlds can sometimes just be replaced with
probability labellings L : A → [0, 1] that assign beliefs to atomic arguments directly
without changing the semantics. We let LA denote the set of all probability labellings.

Formally, probability functions can be related to probability labellings via an equiv-
alence relation [33]. Two probability functions P1, P2 are called atomically equivalent,
denoted as P1 ≡ P2, iff P1(A) = P2(A) for all A ∈ A. As usual, [P ] = {P ′ ∈ PA |
P ′ ≡ P} denotes the equivalence class of P and PA/≡ = {[P ] | P ∈ PA} denotes
the set of all equivalence classes. As shown in [32], there is a one-to-one relationship
between PA/≡ and LA.

Lemma 1 ([32]). The function r : PA/ ≡ → LA defined by r([P ]) = LP , where
LP (A) = P (A) for all A ∈ A is a bijection.

Intuitively, r determines a compact representation of the equivalence class [P ], namely
the probability labelling LP = r([P ]). Since r is a bijection, every probability labelling
can also be related to a set of probabity functions r−1(LP ) = [P ] = {P ′ ∈ PA |
P ′ ≡ P}. Intuitively, r−1(L) is just the set of probability functions that satify the
atomic beliefs encoded in L. We say that a probability labelling L satisfies a linear
atomic constraint

∑n
i=1 ci ·π(Ai) ≤ c0 iff

∑n
i=1 ci ·L(Ai) ≤ c0. The set of probability



labellings that satisfy a set of such constraints C is denoted by SatΛ(C). The following
observations from [32] are helpful to simplify computational problems by replacing
probability functions with probability labellings.

Lemma 2 ([32]). The following statements are equivalent: (1) P satisfies a linear atomic
constraint l; (2) All P ′ ∈ [P ] satisfy l; (3) LP = r([P ]) satisfies l.

For example, in order to decide whether a set of linear atomic constraintsC is satisfiable
by a probability function (of exponential size), we can just check whether it can be
satisfied by a probability labelling (of linear size) [32]. If such a labelling L exists, all
probability functions in r−1(L) satisfy C. Conversely, if some probability function P
satisfies C, then L = r([P ]) satisfies C as well.

In order to perform updates more efficiently, we could represent epistemic states
by probability labellings. However, we should ask, what is the relationship between
updates over probability functions and updates over probability labellings? We first
note that update operators UW that simply minimize the distance over possible worlds
are not necessarily compatible with atomic equivalence. That is, given a set of linear
atomic constraints C and two probability functions P1 and P2 such that P1 ≡ P2, we
do not necessarily have UW (P1, C) ≡ UW (P2, C).

Example 5. Consider P1 and P8 in Table 1. We have P1(A) = 0.6 = P8(A) and
P1(B) = 0.7 = P2(B), that is, P1 ≡ P8. Suppose, we update with C = {π(A) = 0.5}
and update by just minimizing the least-squares distance to P1. Then UW (P1, C) = P9

and UW (P8, C) = P10, where P9, P10 are again shown in Table 1. We have P9(B) =
0.7 6= 0.65 = P10(B), that is, P9 6≡ P10.

Update operators based on atomic distance measures give us compatibility guarantees
that we explain in the following proposition.

Proposition 2. Let P1, P2 ∈ PA and let C ⊂ CA be a finite set of linear atomic
constraints. If P1 ≡ P2, then

1. d2At(P1, P ) = d2At(P2, P ) for all P ∈ PA,
2. uAt(P1, C) = uAt(P2, C),
3. P ′1 ≡ P ′2 for all P ′1, P

′
2 ∈ uAt(P1, C),

4. U2
At(P1, C) ≡ U2

At(P2, C).

Item 1 says that the ALS distance is invariant under atomically equivalent probability
functions. This implies that the updates that minimize the ALS distance are invariant as
well (item 2). As we demonstrated in Example 2, such updates do not necessarily yield
a unique solution. However, when using the ALS distance, we can guarantee that all
solutions are atomically equivalent (item 3). This implies that the 2LS update operator
is invariant under atomically equivalent probability functions in the sense that it yields
equivalent results when the prior probability functions are equivalent (item 4).

Hence, when updating with respect to linear atomic constraints, there is a well de-
fined relationship between probability functions and probability labellings. If we start
with an epistemic state represented by a probability labelling L, L can be understood
as a compact representation of the set of probability functions r−1(L) that satisfy the



Fig. 2. The 2LS update operator U2
At respects atomic equivalence.

atomic beliefs encoded in L. The 2LS update operator is compatible with this repre-
sentation. That is, no matter which probability functions from r−1(L) we choose, an
update with linear atomic constraints will always lead to the same equivalence class and
therefore to a well defined next probability labelling L∗. We illustrate this in Figure 2.

If we are only interested in atomic beliefs, it would be convenient if we could move
directly from L to L∗ in Figure 2 without generating (exponentially large) probability
functions in the process. We can do this indeed in polynomial time for the 2LS update
operator. In order to show this, we first define an update operator on labellings.

Definition 5 (Least-squares Labelling Update Operator (2LS)). The LS labelling
update operator LU2

λ : LA × CA → LA ∪ {⊥} is defined by

LU2
λ(L,C) =

{
argminL′∈SatΛ(C)

∑
A∈A(L(A)− L′(A))2, if SatΛ(C) 6= ∅

⊥ otherwise.

As we explain in the following theorem, LU2
λ provides us with a direct path from L to

L∗ and can be computed in polynomial time.

Theorem 1. Let C ⊂ CA be a finite and satisfiable set of linear atomic constraints and
let L ∈ LA. Then LU2

λ(L,C) = L∗ is well-defined and can be computed in polynomial
time. Furthermore, L∗ = r([U2

At(P,C)]) for all P ∈ r−1(L).

Hence, when we are only interested in atomic beliefs, we can use probability la-
bellings to represent epistemic states and use the least-squares labelling update oper-
ator for updates. Semantically, this is equivalent to regarding epistemic states as sets
of probability functions that satisfy the same atomic beliefs and updating with respect
to the 2LS update operator. The benefit of the labelling representation is that we can
perform updates in polynomial time.

5 Application Example

In this section we come back to the graph in Figure 1 and analyze a scenario that, while
being hypothetical, uses the data from an empirical study in [11]. In this study, the user’s
belief in argument A changed from 0 to 0.19 during the dialogue.5.

5 We note that the study data contained examples of dialogues that resulted in a bigger belief
change, however, we have chosen this one due to its interesting structure.



L A B C D E F G H I J K L M

L0 0 1 0 1 1 1 0 0 1 1 1 0 0
L1 = LU2

λ(L,C ∪ Φ) 0.19 0.81 0.19 0.505 0.975 0.95 0.495 0.05 0.92 0.09 0.95 0.08 0.91
Table 2. Probability labelings before and after the dialogue from Section 5.

The graph in Figure 1 is generated from an existing dialogue that involved an auto-
mated dialogue system and a human user. Arguments at even depth (starting from A)
are system arguments (A, C, G, H , L and M ), while the ones at odd depth are user
arguments. The agents take turns in uttering their arguments (starting with A), and ar-
guments at the same depth are uttered at the same point by a given party. We observe
that not all user arguments are met with a system response (see arguments E and K).
Despite this fact, the presented arguments have led to a positive change in belief in
A, contrary to what would be the intuition from the classical Dungean approaches. It
is possible that if all of the user’s counterarguments were addressed, then the belief
increase would be even more prominent.

We can try to provide an explanation for the belief change observed in [11] by mod-
eling the reasoning process in our framework. Let us assume that the constraints repre-
senting the user’s reasoning demand that the belief in an argument is dual to the belief in
the average of its attackers. That is, we assume P (X) = 1− 1

|Att(X)|
∑
Y ∈Att(X) P (Y ),

where Att(X) = {Y ∈ A | (Y,X) ∈ R}). This assumption leads to the following set
of constraints:

C = {π(A) + π(B) = 1, π(B) + π(C) = 1, π(D) + π(G) = 1, π(F ) + π(H) = 1,

π(C) + 0.33π(D) + 0.34π(E) + 0.33π(F ) = 1, π(C) + 0.5π(I) + 0.5π(J) = 1,

π(H) + π(K) = 1, π(I) + π(L) = 1, π(J) + π(M) = 1}

Let us further assume that the user initially completely accepts his or her own argu-
ments and completely rejects the system’s arguments. This belief state is represented by
the labeling L0 shown in Table 2. We now consider a possible persuasion system which,
once a given dialogue branch is exhausted, asks the user about his or her beliefs in the
unattacked arguments. In our case, the user states that he or she believes L, M , E and
K with the degrees 0.08, 0.91, 0.975 and 0.95 respectively. This produces constraints
Φ = {π(L) = 0.08, π(M) = 0.91, π(E) = 0.975, π(K) = 0.95}. We can use this
information along with C to update L0 without asking the user his or her beliefs in all
possible arguments. The resulting labeling L1 = LU2

λ(L,C ∪ Φ) is shown in Table 2.
We observe that the belief in A in and L0 and L1 match the expected beliefs 0 and

0.19 based on the data in [11].

6 Related Work

There is a large variety of other probabilistic argumentation approaches [8, 25, 37, 14,
6, 27, 41, 24, 38, 42, 39], which basically differ in the level of detail (e.g., structured or
abstract argumentation), in the way how uncertainty is introduced (e.g. possible worlds



correspond to argument interpretations or the graph structure) and in the nature of un-
certainty (e.g., uncertainty about the acceptance state or uncertainty about the nature of
a relation between arguments).

One limitation when restricting to probability labellings is that we cannot compute
the probabilities of complex formulas over arguments anymore without adding further
assumptions. However, as we demonstrated, we can sometimes do without complex for-
mulas. In this context, probability labellings can be seen as an alternative to weighted
argumentation frameworks that also assign a strength value between 0 and 1 to argu-
ments [3, 36, 2, 26, 31]. What makes probability labellings an interesting alternative is
their well-defined relationship to probability functions and probability theory.

The problem of adapting an epistemic state with respect to new knowledge has been
studied extensively in the belief revision literature that evolved from the AGM theory
developed in [1]. An up-to-date discussion of the main ideas can be found in [12]. Our
postulates are inspired by AGM postulates. For example, Success and Representation
Invariance can be seen as the counterparts of the Closure and Extensionality postulates
in AGM theory. The closest relative to our setting is probably the probabilistic belief
change framework from [21]. For a discussion of relationships between classical and
probabilistic belief changes, see [21] and [22].

Other equivalence relations have been studied in order to improve the computa-
tional performance of probabilistic reasoning algorithms [10, 23, 9, 30]. However, usu-
ally, these equivalence relations are introduced over possible worlds, not over probabil-
ity functions. They can be applied to more expressive reasoning formalisms (they are
not restricted to atomic beliefs), but identifying compact representatives for the corre-
sponding equivalence classes remains intractable in general [34].

7 Conclusions

We demonstrated that, in the fragment of linear atomic constraints, it is possible to re-
late updates over probability labellings to equivalent updates over classes of probability
functions. This is interesting from a cognitive, a probabilistic-logical and a computa-
tional perspective. Atomic beliefs are often easier to understand for humans. If we can
relate these beliefs to probability functions, we get a strong foundational basis. Finally,
they can be stored much more compactly and give us polynomial runtime guarantees.
Our results can probably be generalized to other two-stage update operators. However,
the building blocks for the two stages have to be chosen carefully in order to guaran-
tee that the update operator respects atomic equivalence. For example, it may not be
possible to relate the two-stage update process considered in [17], Section 5, to an up-
date operator over probability labellings in a meaningful way. However, we may be
able to construct similar relationships by replacing the least-squares distance with KL-
divergence or more general classes of distance measures. An implementation of our
update operator is available in the Java library ProBabble6.

6 https://sourceforge.net/projects/probabble/
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