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Abstract

In this paper we combine adaptively weighted large margin classifiers with

Support Vector Machine (SVM)-based dimension reduction methods to create

dimension reduction methods robust to the presence of extreme outliers. We

discuss estimation and asymptotic properties of the algorithm. The good perfor-

mance of the new algorithm is demonstrated through simulations and real data

analysis.

Key Words: Dimension reduction; adaptive weights; Support Vector Machines;

Outliers

1 Introduction

Nowadays, high dimensional problems are becoming the norm due to the increase of

computing power and storage capabilities. At the same time classic statistical tech-

niques, which were developed based on low dimensional problems, lack the ability to

generalize and perform robustly in high dimensional problems. One way to overcome

this difficulty is to perform dimension reduction to our data before applying any of

the traditional techniques to it.

Sufficient Dimension Reduction (SDR) is a class of techniques for supervised fea-

ture extraction in a high dimensional regression (or classification) setting. In SDR we

assume that we have a univariate (without loss of generality) response variable Y and

a p dimensional predictor vector X. Our objective is to estimate a set of d features

(where d ≤ p) without losing information on the conditional distribution of Y |X. In

other words, we are trying to estimate a p× d matrix β which satisfies

Y X|βTX. (1)
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Since the extracted features are linear functions of the original predictors this is called

linear SDR. The space spanned by the columns of β is called the Dimension Reduction

Subspace (DRS). The intersection of all possible DRSs if it is itself a DRS it is called

the Central Dimension Reduction Subspace (CDRS) or simply the Central Subspace

(CS) and it is denoted with SY |X . CS is the space that has the smaller dimension

(d) among all DRSs. Although the CS doesn’t always exist the assumptions required

for existence are mild so for the rest of the paper we assume existence of the CS

(see Cook - 1998a). Classic methods in the SDR literature have been proposed in Li

(1991), Cook and Weisberg (1991), Li (1992), Cook (1998b), Li, Zha, Chiaromonte

(2005) and Li and Wang (2007) among others.

More recently, Li, Artemiou and Li (2011) have proposed Principal Support Vec-

tor Machine (PSVM) which uses previous ideas in the SDR framework as well as

Support Vector Machine (SVM) to achieve dimension reduction. The most impor-

tant advantage of this algorithms is that it provides a common framework for linear

and nonlinear SDR. Artemiou and Shu (2014) applied a cost based reweight technique

which improved the performance of the algorithm as it was taking into account the

imbalanced nature between the slices. Moreover, Shin et al (2014, 2017) have used

weights to estimate a probability enhanced CDRS when the response is binary.

In this work, we are interested to develop a method that is robust to the presence

of extreme outliers. Towards this, we introduce adaptive weights in the objective

function of PSVM. To achieve this, we use the idea by Wu and Liu (2013) where

adaptive weights are used to improve the classification performance of SVM (the most

well-known large margin classifier). Wu and Liu (2013) proposed a two-run method.

In the first run, they solve the optimization problem to obtain a first estimate of the

optimal separating hyperplane. Then they suggested using a second run to find the

final estimate of the optimal separating hyperplane. In the second run though they

suggested to use the misclassification distance of the misclassified points as an inverse

weight in the optimization problem. In the SDR framework, we propose to take a

similar approach with Wu and Liu (2013) to improve the estimation performance of

PSVM for dimension reduction. The new algorithm is called Adaptively Weighted

Principal Support Vector Machine (AWPSVM). Further to this, we also apply the

adaptive weights to Principal L2 SVM (PL2SVM) which was proposed by Artemiou

and Dong (2016) and it was demonstrated that it generally has better performance

than PSVM. Finally, although the theoretical framework of our methodology is similar

to the one by Shin et al (2017) who used weighted SVM to achieve dimension reduction

on binary responses, we emphasize that there are important differences. First of all,
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we have a different objective as we are targeting extreme outliers while they target

dimension reduction when the response is binary. Furthermore, our methodology

slices the response, which is not the case for Shin et al (2017).

The rest of the paper is organized as follows. In section 2 we discuss PSVM

and other similar existing methodology and we introduce AWPSVM in section 3.

In section 4 we discuss some asymptotic properties. In section 5 we present some

simulation results and real data analysis follows in section 6. A small discussion

closes the paper.

2 Previous work

In this section we discuss briefly different methods that were introduced in the SVM-

based dimension reduction literature and which are related to the method we are

proposing in this work. For the rest of the section suppose (Xi, Yi) i = 1, . . . , n

independent observations. Let Σ = var(X) and assume that the support of Y can be

split in two disjoint sets A1 and A2 so that we define Ỹ = I(Y ∈ A2)− I(Y ∈ A1).

2.1 Principal Support Vector Machine (PSVM)

PSVM (Li, Artemiou and Li -2011) minimizes the following objective function:

L(ψ, t) = ψTΣψ + λE{1− Ỹ [ψT(X − EX)− t]}+, (2)

where λ is the misclassification penalty (or cost as it is known in the machine learn-

ing literature) and a+ = max{0, a} . Also (ψ, t) ∈ R
p × R define the equation of the

separating hyperplane. The objective is to find a pair of (ψ∗, t∗) ∈ R
p×R which min-

imizes the objective function (2). At the sample level the authors (roughly) suggested

the use of different cutoff points qk, k = 1, . . . , h to construct multiple hyperplanes

described by (ψ̂
∗

i , t̂
∗
i ), i = 1, . . . , h. Then an eigenvalue decomposition of the ma-

trix M̂ =
∑h

i=1
ψ̂

∗

i (ψ̂
∗

i )
T will give us the eigenvectors corresponding to the largest d

eigenvalues, where d is the estimated dimension of the CS.

2.2 Principal Lq Support Vector Machine

PSVM algorithm in Li, Artemiou and Li (2011) gave a unique solution of the optimal

hyperplane in terms of the normal vector ψ. This, though, was not true for the offset

t. Therefore, Artemiou and Dong (2016) proposed the use of Lq Principal Support

Vector Machine (LqSVM) in sufficient dimension reduction. The objective function
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in this case is:

L2(ψ, t) = ψ
TΣψ + E{(1− Ỹ [ψT(X − EX)− t])+}2, (3)

where we have a strictly convex function that can ensure the uniqueness of the optimal

hyperplane in both ψ and t. Although t is not used in the estimation of the CS, as

one can see in both Li, Artemiou and Li (2011) and Artemiou and Dong (2016) it is

important on the development of the asymptotic theory as different quantities (i.e.

Hessian matrix and therefore asymptotic variance) depend on it’s value.

2.3 Principal Weighted Support Vector Machine

Shin et al (2017) presented the following idea to achieve sufficient dimension reduction

in cases with binary response:

LW (ψ, t) = ψTΣψ + λE{π(Y )(1− Y [ψT(X − EX)− t])}+, (4)

where π(Y ) = 1 − π and π ∈ (0, 1). They incorporated weights using the idea of

weighted SVM (see Lin et al (2002)) to estimate the CS. Here we emphasize that their

method mainly tackles cases where there is binary response. Classic SDR methods

cannot estimate more than one direction whenever the response is binary. On the

other hand, the use of π-path trajectories in the weighted SVM algorithm helps avoid

this issue in Shin et al (2017).

2.4 Cost Reweighted Principal Support Vector Machine

Artemiou and Shu (2014) presented another form of weighted algorithm. Their ob-

jective was to accommodate for cases where there was imbalance in the number of

observations between the two disjoint sets A1 and A2 of the support of Y . The

objective function in this case is:

LCR(ψ, t) = ψ
TΣψ + E{λỸ (1− Ỹ [ψT(X − EX)− t])}+, (5)

where the only difference from the PSVM method is the dependence of the misclassi-

fication penalty λ on the value of Ỹ to show that the two classes have different costs.

Again the objective of this algorithm was to use cost based reweighting to target bias

introduced due to imbalance and not to address the presence of extreme outliers as

we do in this case.

4



3 Adaptively weighted algorithms for SDR

In this section we propose adaptively weighted versions of PSVM from Li, Artemiou

and Li (2011) and Principal L2SVM from Artemiou and Dong (2016). To achieve

this we use the adaptively weighted SVM idea in Wu and Liu (2013).

3.1 Adaptively Weighted Principal SVM

Adaptively Weighted Principal Support Vector Machine introduce weights into the

objective function. This weights are carefully chosen so that extreme outliers, and

more specifically points that are incorrectly classified and further away from the

separating hyperplane, get a smaller weight and their importance is downplayed.

The objective function takes the form

LAW (ψ, t) = ψTΣψ + λE{w(1− Ỹ [ψT(X − EX)− t])+}, (6)

where for this work we assume that w > 0 (we will discuss the choice of the weights

in the estimation section). Also notice how there is a similarity of this with both the

weighted algorithms discussed in the previous section.

In the next theorem we show that indeed one can use the ψ∗ ∈ R
p to estimate the

CDRS. The proof is similar to the respective theorems in Li, Artemiou, Li (2011),

Artemiou and Shu (2014) and Shin et al (2017).

Theorem 1 Suppose E(X|βTX) is a linear function of βTX, where β is as defined

in (1). If (ψ∗, t∗) minimizes the objective function (6) among all (ψ, t) ∈ R
p × R,

then ψ∗ ∈ SY |X .

Proof. From the population version in (6) let’s assume without loss of generality

that E(X) = 0 so it becomes

LAW (ψ, t) = ψTΣψ + λE{w(1− Ỹ [ψTX − t])+}. (7)

Since w > 0 then E{w(1 − Ỹ [ψTX − t])+} = E{w(1 − Ỹ [ψTX − t])}+. Thus, the

population version in (7) is equivalent to:

LAW (ψ, t) = ψTΣψ + λE{w(1− Ỹ [ψTX − t])}+. (8)

Now note that:

E{w(1− Ỹ [ψTX − t])}+ = E{E{w(1− Ỹ [ψTX − t])}+|Y,βTX]}.
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Since the function a 7→ a+ is convex, by Jensen’s inequality we have

E{[w(1− Ỹ (ψTX − t))]+|Y,βTX} ≥{E[w(1− Ỹ (ψTX − t))|Y,βTX]}+

=w[1− Ỹ (E(ψTX|βTX)− t)]+,

where the equality follows from Y X|βTX. Now we can use the following

E{w[1− Ỹ (ψTX − t)]}+ ≥ E{w(1− Ỹ [E(ψTX|βTX)− t])}+. (9)

Also, note that

var(ψTX) = var[E(ψTX|βTX)] + E[var(ψTX|βTX)] ≥ var[E(ψTX|βTX)]. (10)

Combining (9) and (10), we see that

L(ψ, t) ≥ var[E(ψTX|βTX)] + λE{w(1− Ỹ [E(ψTX|βTX)− t])}+. (11)

Note that E(ψTX|βTX) = ψTP T

β(Σ)X where (P β(Σ) is the projection matrix

β(βTΣβ)−1βTΣ) which implies that the right hand side of (11) is simply L(P β(Σ)ψ, t).

That is, for every ψ ∈ R
p,

L(ψ, t) ≥ L(P β(Σ)ψ, t). (12)

If ψ does not belong to SY |X , then var(ψTX|ηTX) > 0, and the inequality in (10)

become strict. Hence the inequality in (12) is strict. Therefore, such ψ cannot be the

minimizer of L(ψ, t). ✷

3.2 Adaptively Weighted Principal L2SVM

When one introduces weights in the Principal L2SVM algorithm then the objective

function takes the following form:

ΛAWL2(ψ, t) = ψ
TΣψ + λE{w[(1− Ỹ [ψT(X − EX)− t])+]2}. (13)

It is then easy to prove the following theorem.

Theorem 2 Suppose E(X|βTX) is a linear function of βTX, where β is as defined

in (1). If (ψ∗, t∗) minimizes the objective function (13) among all (ψ, t) ∈ R
p × R,

then ψ∗ ∈ SY |X .

The proof is omitted as it is similar to the one for the Adaptively Weighted PSVM

in the previous section as well as Theorem 1 in Artemiou and Dong (2016).
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4 Estimation

In this section we discuss how we construct the estimation algorithm for the adaptively

weighted algorithms proposed in the previous section.

4.1 Adaptively Weighted Principal SVM

To propose the estimation algorithm for the adaptively weighted PSVM, we first write

the sample version of the objective function (6), that is:

L̂AW (ψ, t) = ψTΣnψ +
λ

n

n
∑

i=1

wi{1− Ỹi[ψ
T(Xi − X̄)− t]}+. (14)

Then one needs to standardize the predictors using Zi = Σ
−1/2
n (Xi − X̄) and ζ =

Σ
1/2
n ψ and the objective function becomes:

L̂AW (ζ, t) =ζTζ +
λ

n

n
∑

i=1

wi{1− Ỹi[ζ
TZi − t]}+. (15)

This looks similar to the adaptively weighted large margin classifier objective function

proposed by Wu and Liu (2013) in the classification framework. We first solve (15)

based on the quadratic programming problem suggested by the following Theorem

and then use the minimizer ζ∗ to estimate ψ∗ = Σ
−1/2
n ζ∗ which is the minimizer

of (14). Also, note that ⊙ is used to denote the elementwise multiplication of two

vectors of the same size, i.e. for vectors a = (a1, . . . ak) and b = (b1, . . . , bk), then

a⊙ b = (a1b1, . . . , akbk).

Theorem 3 If ζ∗ minimizes the objective function in (15) over R
p, then ζ∗ =

1

2
ZT(α⊙ ỹ) where α is found by solving the quadratic programming problem:

maximize αT1− 1

4
(α⊙ ỹ)TZZT(α⊙ ỹ)

subject to 0 < α <
λ

n
w, (α⊙ ỹ)T1 = 0.

(16)

where 0 = (0, . . . , 0), 1 = (1, . . . , 1)T ∈ R
n and w = (w1, . . . , wn)

T.

Proof. Using similar developments as in Vapnik (1998) one can show that mini-

mizing (15) is equivalent to

minimizing ζTζ +
λ

n
wTξ over (ζ, t, ξ)

subject to ξ ≥ 0, ξ ≥ 1− ỹ ⊙ (ζTZ − t1)

(17)
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where ξ = (ξ1, . . . , ξn). The Lagrangian function of this problem is

L(c, t, ξ,α,β) = ζTζ +
λ

n
wTξ −αT[ỹ ⊙ (ζTZ − t1)− 1+ ξ]− βTξ. (18)

If (ζ∗, ξ∗, t∗) is a solution to problem (17) then using Karush-Kuhn-Tucker Theorem,

one can show that minimizing over (ζ, t, ξ) is similar as maximizing over (α,β). So,

differentiating with respect to ζ, t, and ξ to obtain the system of equations:



















∂L/∂ζ = 2ζ −ZT(α⊙ ỹ) = 0

∂L/∂t = αTỹ = 0

∂L/∂ξ = λ
nw −α− β = 0

(19)

Substitute the last two equations above into (18) to obtain

ζTζ −αT(ỹ ⊙ (ζTZ)− 1). (20)

Now substitute the first equation in (19) (ζ = 1

2
ZT(α⊙ ỹ)) in the above:

1Tα− 1

4
(α⊙ ỹ)TZZT(α⊙ ỹ). (21)

Thus to minimize (18) we need to maximize (21) over the constraints







αTỹ = 0

λ
nw −α− β = 0

(22)

which are equivalent to the constraints in (25). ✷

The above result can be then used to construct the following algorithm:

1. Compute the sample mean X̄ and sample variance matrix Σ̂ = n−1
∑n

i=1
(Xi−

X̄)(Xi−X̄)T and use them to standardize the data and set weights wi = 1, i =

1, . . . , n

2. Let qr, r = 1, . . . , H − 1, be H − 1 dividing points. In the simulation section we

choose them to be, the (100 × r/H)th sample percentile of {Y1, . . . , Yn}. For

each r, let Ỹ r
i = I(Yi > qr) − I(Yi ≤ qr) and use Theorem 3 to find (ζ̂r, t̂r)

be the minimizer of (15) where Ỹi is replaced with with Ỹ r
i and weights wi are

replaced with wr
i = 1 for i = 1, . . . , n. This process yields H − 1 normal vectors

ζ̂1, . . . , ζ̂H−1.

3. Use the normal vectors to calculate ψ̂r = Σ̂
−1/2

ζ̂r, r = 1, . . . , H − 1.
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4. For each dividing point qr calculate

wr
i =

1

1 + |ψT

r(Xi − EXi)− tr|
.

5. Using the weights wr
i in the previous step repeat steps 2 and 3 to find ψ̂

w

r , r =

1, . . . , H − 1 (new estimate of the coefficients based on the weights).

6. Construct matrix V̂ n =
∑H−1

r=1
ψ̂

w

r ψ̂
w
r

T

.

7. Let v̂1, . . . , v̂d be the eigenvectors of the matrix V̂ n corresponding to its d

largest eigenvalues. We use subspace spanned by v̂ = (v̂1, . . . , v̂d) to estimate

the CDRS, SY |X .

The above algorithm is based on the “left vs right” (LVR) idea proposed by Li,

Artemiou and Li (2011). It can be easily transformed to the “one vs another” (OVA)

idea proposed in the same paper.

4.2 Estimation for Adaptively Weighted Principal L2SVM

A similar argument as the one used in the previous section gives us the estimation

algorithm for adaptively weighted PL2SVM. One needs to show that the following

Theorem holds. We omit the details due to the similarity of the arguments. First we

need to write the sample version of the objective function in (13) as:

L̂AWL2(ψ, t) = ψ
TΣnψ +

λ

2n

n
∑

i=1

wi({1− Ỹi[ψ
T(Xi − X̄)− t]}+)2. (23)

Then if we standardize the predictors using Zi = Σ
−1/2
n (Xi−X̄) and ζ = Σ

1/2
n ψ the

objective function becomes:

L̂AWL2(ζ, t) =ζ
Tζ +

λ

2n

n
∑

i=1

wi({1− Ỹi[ζ
TZi − t]}+)2. (24)

We first solve (24) based on the quadratic programming problem suggested by the

following Theorem and then use the minimizer ζ∗ to estimate ψ∗ = Σ
−1/2
n ζ∗ which

is the minimizer of (23).

Theorem 4 If ζ∗ minimizes the objective function in (24) over R
p, then ζ∗ =

1

2
ZT(α⊙ ỹ) where α is found by solving the quadratic programming problem:

maximize αT1− 1

4
(α⊙ ỹ)T

(

ZZT +
2n

λ
D−1

w

)

(α⊙ ỹ)

subject to 0 < α, (α⊙ ỹ)T1 = 0

(25)

where Dw is the diagonal matrix that has vector w = (w1, . . . , wn)
T.
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The proof of Theorem 4 is similar to the one in the previous section and therefore

it is omitted. The same can be said in the estimation algorithm where the only

difference is in Step 2 where one can modify it to the following:

Let qr, r = 1, . . . , H−1, be H−1 dividing points. In the simulation section

we choose them to be, the (100×r/H)th sample percentile of {Y1, . . . , Yn}.
For each r, let Ỹ r

i = I(Yi > qr) − I(Yi ≤ qr) and use Theorem 4 to find

(ζ̂r, t̂r) be the minimizer of (24) where Ỹi is replaced with with Ỹ r
i and

weights wi are replaced with wr
i = 1 for i = 1, . . . , n. This process yields

H − 1 normal vectors ζ̂1, . . . , ζ̂H−1.

4.3 Asymptotic theory

Following similar developments to Li, Artemiou and Li (2011) and Artemiou and Dong

(2016), one can derive the asymptotic result of the adaptively weighted algorithms.

We list here only the main results for the adaptively weighted Principal L2SVM

algorithm which we list without proofs as these are similar to the ones that appear

to Artemiou and Dong (2016). It is important to remind here that the weights are

assumed non-random.

First of all we assume E(X) = 0 without loss of generality and we use the notation

θ = (ψT, t)T,Z = (XT, Ỹ )T,X† = (XT,−1)T and Σ† = diag(Σ, 0), where diag(A,B)

denotes a block diagonal matrix with A and B on the block diagonals. Also note that

λ† = λ2−1w where w is the weight. Λ(ψ, t) in (13) can be rewritten as E{m(θ,Z)},
where

m(θ,Z) = θTΣ†θ + λ†{(1− θTXỸ )+}2. (26)

Comparing this with the respective expression for the asymptotics of PL2SVM in

Artemiou and Dong (2016) the only difference is that λ† includes the weight as well.

This explains why the asymptotic results for the adaptively weighted method is similar

to the asymptotic results of PL2SVM.

Note that we denote with En{m(θ,Z)} the corresponding sample version of the

objective function and we define θ0 and θ̂ to be the minimizers of E{m(θ,Z)} and

En{m(θ,Z)} respectively. The next theorem gives the the gradient function of the

L2 objective function E{m(θ,Z)}. To prove it one will need the prove of Lemma 1

of Artemiou and Dong (2016).

Proposition 1 Suppose for each ỹ ∈ {−1, 1}, the distribution of X|Ỹ = ỹ is domi-

nated by the Lebesgue measure. In addition, suppose E(‖X‖2) < ∞ and E(‖X‖) <
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∞. Let Dθ be the (p+1)-dimensional column vector of differential operators (∂/∂θ1, . . . , ∂/∂θp+1)
T.

Then

Dθ[E{m(θ,Z)}] =(2ψTΣ, 0)T

−2λ†E
{

X†Ỹ
[

(1− θTX†Ỹ )I(1− θTX†Ỹ > 0)
]}

. (27)

The next proposition finds the Hessian matrix of θ. To prove it one will need to

use Lemmas 2 and 3 in Artemiou and Dong (2016).

Proposition 2 Suppose X has a convex and open support, and for each ỹ ∈ {−1, 1},
the distribution of X|Ỹ = ỹ is dominated by the Lebesgue measure. Let f·|· denote

the conditional probability density function. Suppose, moreover:

1. for any linearly independent ψ, δ ∈ R
p, ỹ = −1, 1, and v, ǫ ∈ R, the function

u 7→ ỹ(1− ỹ(u− t)− ǫv)E{X†|ψTX = u, δTX = v, Ỹ = ỹ}∗
∗ f

ψTX|δTX, Ỹ
(u|v, ỹ)

is continuous;

2. for any i = 1, . . . , p, and ỹ = −1, 1, there is a nonnegative function ci(v, ỹ) with

E{ci(V, Ỹ )|Ỹ } < ∞ such that

ỹ(1− ỹ(u− t)− ǫv)E{Xi|ψTX = u, δTX = v, Ỹ = ỹ}f
ψTX|δTX, Ỹ

(u|v, ỹ)
≤ci(v, ỹ);

3. for any ỹ = −1, 1, there is a nonnegative function c0(v, ỹ) with E{c0(V, Ỹ )|Ỹ } <

∞ such that f
ψTX|δTX, Ỹ

(u|v, ỹ) ≤ c0(v, ỹ).

Then the function θ 7→ Dθ[E{m(θ,Z)}] is differentiable in all directions with deriva-

tive matrix

H = 2diag(Σ, 0) + 2λ†H† (28)

where H† =
∑

ỹ=−1,1 P (Ỹ = ỹ)E{X†(X†)TI(1− θTX†ỹ > 0)|Ỹ = ỹ}

The next result finds the influence function of θ̂.

Theorem 5 Suppose the conditions in Propositions 1 and 2 are satisfied. Then

θ̂ = θ0−H−1Dθ0
[E{m(θ0,Z)}] + oP (n

−1/2),

where H is given in Proposition 2 and Dθ0
[E{m(θ,Z)}] in Proposition 1.
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Now let’s define some notation that will help us define the asymptotic normality

of the candidate matrix V̂ . First, for a fixed dividing point qr, we have Ỹ r, r =

1, . . . , H − 1 to be the discretized responses. Then we can define Zr = (XT, Ỹ r),

m(θ,Zr) = θTΣ†θ−λ†{(1−θTX†Ỹ r)+}2 and let θ0r = (ψT

0rt0r)
T be the minimizer of

E{m(θ,Zr)} over θ. The population version of V̂ in the estimation algorithm is thus

V =
∑H−1

r=1
ψ0rψ

T

0r. LetKp,p be the unique matrix satisfyingKp,pvec(A) = vec(AT)

for any A ∈ R
p×p, Fr be the first r rows ofH

−1
r withHr the Hessian of E{m(θ,Zr)}

and denote sr(θ,Z
r) = FrDθ0

[E{m(θ0,Z)}]. Using this notation one can define the

asymptotic distribution as follows:

Theorem 6 Suppose the conditions in Propositions 1 and 2 are satisfied. Then
√
nvec(V̂ −V ) converges to multivariate normal with mean 0 and variance Λ1Λ2Λ1,

were Λ1 = Ip2 +Kp,p and

Λ2 =

H−1
∑

r=1

H−1
∑

i=1

[ψ0rψ
T

0i ⊗ E{sr(θ0r,Zr)sTi (θ0i,Z
i)}].

Let Û = (û1, . . . , ûd) be the population version of U = (u1, . . . ,ud), where u’s are

the d leading eigenvectors of V . Let D be a diagonal matrix with diagonal elements

being the d leading eigenvalues of V . The following corollary gives the asymptotic

distribution of Û and it can be proved using Corollary 1 in Bura and Pfeiffer (2008).

Corollary 1 Suppose the conditions in Propositions 1 and 2 are satisfied, and V has

rank d. Then

√
n vec(Û −U)

D−→ N
(

0, (D−1UT ⊗ Ip)Λ1Λ2Λ1(D
−1UT ⊗ Ip)

)

.

5 Simulation

In this section we run some simulations to show the improved performance of the

proposed methodology. We run simulations for the following models:

Model I: Y = X1 +X2 + σε,

Model II: Y = X1/[0.5 + (X2 + 1)2] + σε,

Model III: Y = X1(X1 +X2 + 1) + σε,

where X ∼ N(0, Ip×p), p = 10, 20, 30, ε ∼ N(0, 1). There are 100 simulations with

sample size n = 100. We have the number of slices H = 20 (we run for H = 50 as

12



well but the results were similar and therefore we omit them). Finally, σ = 0.2 and

the misclassification penalty λ = 1.

To compare the performance of the algorithm we use a metric proposed by Li,

Zha, Chiaromonte (2005). Let S1 and S2 be two subspaces of Rp and P S1
, P S2

the

orthogonal projections on them respectively. Then the distance is measured by the

matrix norm

dist(S1,S2) = ‖P S1
− P S2

‖. (29)

Using the true and estimated space as the two subspaces in the formula then the above

measures the distance between them. The smaller the distance the best performance

of the algorithm. In our simulations we are using the Frobenius norm.

In Table 1 we can see the results of the 4 algorithms (PSVM, PL2SVM and

their adaptively weighted versions) for H = 20 and different values of p when there

are no outliers (c = 0, where c denotes the number of extreme outliers) and when

there are two (c = 2) extreme outliers in the dataset. We also included SIR in

our comparisons to compare with the performance of traditional methodology in the

presence of extreme outliers. Those extreme outliers are created by taking the two

points with the smallest response Y . We force them then to have the largest Y in the

dataset by changing the sign of Y . This ensures that these two points are constantly

outliers in every left vs right (LVR) comparison we apply in the dataset. As we can see

there is almost always better performance of the adaptively weighted version of the

two algorithms even when there are no outliers (with the exception of the PL2SVM

algorithm in model 2 but even in that case the performance is close). We see that

the difference between the algorithms diminishes as p gets larger. To help the reader

in visualizing the performance of the algorithm, in each scenario we put in bold the

algorithm that has the best performance.

6 Real data analysis

We use the airfoil self-noise dataset in the UC Irvine Machine Learning repository

(Dua and Karra Taniskidou - 2017). This is a NASA dataset, obtained from a series

of aerodynamic and acoustic tests of two and three-dimensional airfoil blade sections

conducted in an anechoic wind tunnel and it consists of 1503 observations with 5

predictors (Frequency, Angle of attack, Chord length, Free-stream velocity, Suction

side displacement thickness) and one response variable (scaled sound pressure levels).

We run PSVM and PL2SVM and the adaptively weighted versions of them, with

5 and 20 slices. The results are similar and therefore we present the ones with 5

13



Table 1: Mean and standard deviation (in parentheses) of the Frobenius norm for

PSVM (Li, Artemiou and Li - 2011), PL2SVM (Artemiou and Dong - 2016) and

the adaptively weighted versions of the two algorithms (denoted as AWPSVM and

AWPL2SVM for H = 20. The value of c denotes the number of extreme outliers in

the 100 points

Methods

Models p c SIR PSVM AWPSVM PL2SVM AWPL2SVM

I

10
0 0.10 (0.027) 0.22 (0.054) 0.19 (0.049) 0.15 (0.043) 0.15 (0.043)

2 0.37 (0.090) 0.32 (0.091) 0.26 (0.079) 0.31 (0.087) 0.28 (0.081)

20
0 0.16 (0.041) 0.34 (0.061) 0.30 (0.057) 0.25 (0.051) 0.25 (0.051)

2 0.55 (0.116) 0.47 (0.089) 0.41 (0.084) 0.47 (0.088) 0.44 (0.087)

30
0 0.21 (0.044) 0.43 (0.067) 0.39 (0.064) 0.32 (0.059) 0.32 (0.059)

2 0.71 (0.125) 0.62 (0.102) 0.55 (0.102) 0.61 (0.102) 0.58 (0.102)

II

10
0 0.93 (0.251) 0.92 (0.218) 0.87 (0.208) 0.72 (0.165) 0.75 (0.170)

2 1.00 (0.241) 1.04 (0.187) 0.98 (0.190) 0.78 (0.159) 0.82 (0.168)

20
0 1.24 (0.199) 1.19 (0.136) 1.15 (0.135) 1.02 (0.137) 1.04 (0.134)

2 1.37 (0.185) 1.29 (0.143) 1.26 (0.144) 1.11 (0.134) 1.13 (0.135)

30
0 1.44 (0.115) 1.34 (0.116) 1.31 (0.118) 1.21 (0.131) 1.23 (0.129)

2 1.60 (0.116) 1.41 (0.1110 1.41 (0.114) 1.30 (0.124) 1.32 (0.121)

III

10
0 1.30 (0.276) 1.17 (0.258) 1.10 (0.263) 1.05 (0.259) 1.02 (0.249)

2 1.44 (0.256) 1.37 (0.224) 1.33 (0.234) 1.24 (0.269) 1.23 (0.262)

20
0 1.57 (0.174) 1.45 (0.177) 1.40 (0.185) 1.41 (0.179) 1.39 (0.186)

2 1.70 (0.178) 1.58 (0.148) 1.54 (0.146) 1.54 (0.163) 1.53 (0.161)

30
0 1.73 (0.136) 1.63 (0.130) 1.59 (0.136) 1.58 (0.135) 1.58 (0.137)

2 1.81 (0.098) 1.69 (0.122) 1.66 (0.128) 1.66 (0.140) 1.65 (0.140)

Table 2: Mean and standard deviation (in parentheses) of the distance of the direction

found when imposing extreme outliers to the airfoil data from the “oracle” direction

Methods

PSVM AWPSVM PL2SVM AWPL2SVM

0.026 (0.0151) 0.016 (0.0101) 0.045 (0.0190) 0.040 (0.174)
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Figure 1: The picture on the left shows the first direction of the PSVM algorithm with

the response and the one on the right the first direction of the adaptively weighted

PSVM algorithm.
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Figure 2: The picture on the left shows the first direction of the PL2SVM algorithm

with the response and the one on the right the first direction of the adaptively weighted

PL2SVM algorithm.
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slices. All algorithms identify similar directions as is shown in Figure 1 and Figure

2. (If one looks carefully the two Figures they may be able to see that the weighted

version have slightly smaller variability). The similarity of the results makes sense

as it seems that there are no extreme outliers in the dataset. To demonstrate the

effectiveness of the reweighted version we added 3 extreme outliers to our datasets.

To create this scenario we randomly chose three out of the 10 smallest responses and

change the response so that it becomes the largest. Then we measure the distance

between the estimate we get when there are outliers from the true estimate we had

without the outliers (essentially assuming that without the outliers we have some

type of “oracle” answer). We used the Frobenius norm as with our simulations in

the previous section and the results after 50 iterations are summarized in the Table

2 where we can see that there is slightly smaller distance for the adaptively weighted

algorithms compared to the respective un-weighted algorithms.

7 Discussion

In this paper we present an adaptively weighted method to robustify SVM-based suffi-

cient dimension reduction algorithms at the present of outliers. We apply a reweight-

ing method based to the idea of Wu and Liu (2013) on the PSVM and PL2SVM

algorithms proposed in Li, Artemiou and Li (2011) and Artemiou and Dong (2016)

respectively. For the adaptively weighted PL2SVM we present some asymptotic re-

sults while the results for the adaptively weighted PSVM are similar to the ones

presented by Shin et al (2017) and therefore are omitted. We also omitted the dis-

cussion of an order determination tests as either of the algorithms presented in Li,

Artemiou and Li (2011) and Artemiou and Dong (2016) for order determination can

be applied here with similar results.

We didn’t discuss also the nonlinear feature extraction case of the adaptively

weighted algorithms. Although one can show the theoretical developments of Li,

Artemiou and Li (2011) and Artemiou and Dong (2016) to extend in the nonlinear

adaptively weighted algorithms, it is not clear in the SDR framework how to calculate

the weights. This has to do with the estimation procedure which calculates the

sufficient predictors instead of the nonlinear hyperplane between the two classes. We

believe that further investigation is needed in this case.

In the SDR literature there are some efforts to robustify inverse-moment-based

dimension reduction techniques (see for example Dong et al - 2015) but to the best

of our knowledge this is the first effort to robustify SVM-based sufficient dimension
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reduction techniques. There is scope for further investigation of these results as

well as further investigation of robust algorithms in the SVM-based framework. For

example, in this work we investigate what happens when we apply the weights once

after running the initial algorithm with no weights. One natural extension is to

apply an iterative process where the weights calculated at step i will be used to

robustify the algorithm at step i+1. Although computationally this seems like a trivial

extension, the theoretical developments will be non-trivial to develop. Furthermore,

the algorithms we propose in this work reweight only points that are outliers with

respect to other points in their class, that is, they are misclassified points. If an

outlier is correctly classified, since it does not affect the solution then there is no

reweighting. An algorithm to investigate how to robustify the original algorithms

against all outliers in the dataset will, also, be interesting to explore. Finally, there

is scope to investigate whether one can robustify inverse-moment-based dimension

reduction techniques (like SIR (Li 1991)) by adaptively reweighting them.

References

1. Artemiou, A. and Dong, Y. (2016). Sufficient dimension reduction via principal

Lq support vector machine. Electronic Journal of Statistics, 10, 783–805.

2. Artemiou, A. and Shu, M. (2014). A cost based reweighed scheme of princi-

pal support vector machine. In Topics in Nonparametric Statistics, Springer

Proceedings in Mathematics & Statistics, 74, 1–12.

3. Bura, E. and Pfeiffer, R. (2008). On the distribution of the left singular vectors

of a random matrix and its applications. Statistics and Probability Letters, 78,

2275–2280.

4. Cook, R. D. (1998a). Regression Graphics: Ideas for Studying Regressions

through Graphics. New York: Wiley.

5. Cook, R. D. (1998b). Principal Hessian directions revisited (with discussion).

Journal of the American Statistical Association, 93, 84–100.

6. Cook, R. D. and Weisberg, S. (1991). Discussion of “Sliced inverse regression

for dimension reduction”. Journal of the American Statistical Association. 86,

316–342.

7. Dong, Y., Yu, Z. and Zhu, L. (2015). Robust inverse regression for dimension

reduction. Journal of Multivariate Analysis, 134, 71–81.

17



8. Li, B., Artemiou, A. and Li, L. (2011). Principal support vector machine for

linear and nonlinear sufficient dimension reduction. The Annals of Statistics,

39, 3182–3210

9. Li, B. and Wang, S. (2007). On directional regression for dimension reduction.

Journal of the American Statistical Association, 102, 997–1008.

10. Li, B., Zha, H., and Chiaromonte, F. (2005). Contour regression: a general

approach to dimension reduction. The Annals of Statistics, 33, 1580–1616.

11. Li, K. C. (1991). Sliced inverse regression for dimension reduction (with discus-

sion). Journal of the American Statistical Association, 86, 316–342.

12. Li, K. C. (1992). On principal Hessian directions for data visualization and

dimension reduction: another application of Stein’s Lemma. Journal of the

American Statistical Association, 87, 1025–1039.

13. Lin, Y., Lee, Y. and Wahba, G. (2002). Support vector machines for classifica-

tion in nonstandard situations. Machine Learning, 46, 191-202.

14. Shin, S. J., Wu, Y., Zhang, H. H. and Liu, Y. (2014). Probability-enhanced

sufficient dimension reduction for binary classification. Biometrics, 70, 546–

555.

15. Shin, S. J., Wu, Y., Zhang, H. H. and Liu, Y. (2017). Principal weighted sup-

port vector machines for sufficient dimension reduction in binary classification.

Biometrika, 104, 67–81.

16. Wu, Y and Liu, Y. (2013). Adaptively weighted large margin classifiers. Journal

of Computational and Graphical Statistics, 22, 416–432

18


