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Abstract
Manufacturing equipment embraces an increasing measure of tacit intelligence, in both capacity and value. However, this
intelligence is yet to be exploited effectively. This is due to both the costs and limitations of developed approaches and a
deficient understanding of data value and data origin. This work investigates the principal limitations of typical machine
tool data and encourages consideration of such inherent limitations in order to improve potential monitoring strategies. This
work presents a novel approach to the acquisition and processing of machine tool cutting data. The approach considers
the condition of the monitored system and the deterioration of cutting tool performance. The management of the cutting
process by the machine tool controller forms the basis of the approach, and hence, makes use of the tacit intelligence that is
deployed in such a task. By using available machine tool controller signals, the impact on day-to-day machining operations
is minimised while avoiding the need to retrofit equipment or sensors. The potential of the approach in the contexts of the
emerging internet of things and intelligent process management and monitoring is considered. The efficacy of the approach
is evaluated by correlating the actively derived measure of process variation with an offline measurement of product form.
The potential is then underlined through a series of experiments for which the derived variation is assessed as a direct
measure of the cutting tool health. The proposed system is identified as both a viable alternative and synergistic addition to
current approaches that mainly consider the form and features of the manufactured component.

Keywords Diagnostics · Manufacturing · Process monitoring · Cutting tool health · Cutting tool management · Tacit
intelligence

1 Introduction

For organisations to remain both competitive and cost
effective, they must produce high quality parts, quickly,
with few defects or failures, and with fewer people involved.
This presents a challenge, as often making advances in
one of these areas is detrimental to progress in another.
Moreover, widespread change within an organisation is very
often resisted. In many situations, an optimised process
requires a balance between the capabilities of the system in
use and the expectations for the finished product, from those
involved.
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The act of finding the perfect balance benefits greatly
when all involved understand the boundaries between
acceptable or otherwise. However, this difference between
good and bad can be distorted by both the controlled and
the stochastic elements within a process; this makes the
compromise between design and manufacture difficult.

To find the best balance between quality and productivity,
organisations should be able to measure their progress
against either to identify the resulting impact on collective
process performance. Whilst quality can be difficult to
quantify during manufacture, classifying and/or improving
the performance or the capability of a system is possible to
achieve. Current approaches include those enshrined in fit
manufacturing (including six sigma) and overall equipment
effectiveness (OEE) [1–3]. Application of established
numerical indices for capability can use both the process
index (CP ) and/or the capability index (Cpk), as well as
variations of the same [4]. Related approaches include the
use of control charts or the consideration of underpinning
statistics. It is noted that all the approaches risk being
presented simply because authors believe it lends credibility

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-019-03963-0&domain=pdf
mailto: HillJL2@cardiff.ac.uk


Int J Adv Manuf Technol

to their approach, rather than being used in practice
as tools to influence process decision-making. Practical
implementation is further hindered by uncertainty over costs
versus benefits.

Expanding on manufacturing capability, in the context
of the operation of machine tools, some attempts have
been made to characterise machine tools as a singular,
all-inclusive entity [5, 6]. Other researchers are seeking
to exploit machine tool intelligence to construct a digital
representation of the entity creating so-called digital
twins [7–9]. These approaches are promising and seek to
capitalise on the increasing intelligence and connectivity
of machine tools. Currently, however, most of them fall
short of realising the complexity of the system, and
hence, generate ambiguous information. Further to the
data ambiguity, difficulties arise when considering specific
components, the interaction between components, or the
normal (baseline) versus abnormal states for an unknown
process. Fundamentally, an argument can be made that
accessible data is not necessarily suitable data. To resolve
some of these issues, one must consider if the information
gleaned from a machine tool is implying:

• A deterioration of, or change in, the entire system
• The deterioration of a system subset—e.g. axis drives

or spindle
• Causal changes in the process—i.e. new cutters,

materials, changed feeds/speeds

• Different process plans and/or machining methods
employed by different operators

This complexity required further investigation into the
possible influences behind process variation. An initial
attempt to do so is summarised in Fig. 1. Figure 1 illustrates
some of the underlying reasons for a changing or variable
process. It is presented to add weight to the argument that
the exact cause of an observed process change is hard
to determine, or confirm, with confidence. It also offers
justification as to why systems aiming to monitor and/or
diagnose complex systems, such as machine tools, require
the given assumptions and a degree of process competence
or experience. This implies that the process is both complex
and stochastic, indicating that a perfect solution is perhaps
process specific. This in turn would generate the demand for
approaches that provide the best fit for a given system.

Notwithstanding the above observations and challenges,
it is the case that modern manufacturing equipment and
processes are outwardly capable of meeting tolerances
and/or providing a specified surface finish. In part, this
is because of the reduction in human error and process
planning variability with the introduction of computer
numerical control (CNC). This should mean that the
resulting process capability is in some way locally
optimised. This will in part be the result of functions
such as spindle load management or volumetric error
compensation that are embedded within the CNC controller.

Fig. 1 Hypothesised origins of
process variation with emphasis
on contributions from cutting
tools. *Often referred to as
metallurgical affinity; higher
affinity between tool and
material is likely to result in
additional process complications
[26, 27]
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However, given the complex nature of the causes of
variation highlighted in Fig. 1, there will always be room
for improvement. From a competitive position, if a process
can be improved it should be, especially in pursuit of a
better market position. In that regard, one key optimisation
organisations tend to aim for, yet struggle with, is the
condition of the cutting tools used.

The assessment of the condition of cutting tools
predominantly relies on the original condition and quality
‘as new’ versus the combination of both time-dependent
wear and stochastic wear. Time-dependent wear represents
the predictable deterioration from continued use. Stochastic
wear can be considered as an unpredictable variation within
the process, increasing the risk of sudden or abrupt failure
and otherwise confusing the prediction of remaining life.
The original condition and quality of a cutting tool are
normally established through a direct assessment of the
cutting tool parameters (preferably in situ within the CNC
machine environment) prior to use. Industry has presented
numerous methods to achieve such an assessment, including
both contact and non-contact tool setters and probes, and
the introduction of machined and measured predefined
geometry within so called “slave features” pre- and in-
process [10].

The two forms of cutting tool wear are challenging
to ascertain, and yet are critical to process safety. The
failure of a cutting tool can result in a damaged product
(scrap) and a damaged machine, leading to unexpected
downtime and additional economic loss [11, 12]. To
reduce the risks associated with unexpected failure,
manufacturers tend towards combinations of both proactive
and reactive approaches to the management of cutting tools.
Replacements are often based on a set schedule, with
a healthy safety margin of 20% of total life (proactive)
[13–15]. On the other hand, unexpected failure, or poor
performance, leads to process adjustments or system
replacements (reactive). These conservative methods ‘paper
over the cracks’ and ultimately increase process waste and
cost [16].

There is an evident need to consider the implementation
of effective tool condition monitoring (TCM) and, by
extension, to consider whether predictive approaches can
appropriately identify process concerns without issue. This
paper and the work presented herein attempts to address
some of the issues presented thus far in relation to
end milling cutting tools. Firstly, two popular approaches
towards TCM are presented and discussed. Secondly,
novel methods are presented seeking to optimise both the
assessment and use of cutting tools. Predominantly, the
methods consider the employ of typical machine tools
within manufacturing organisations. This work aims to
promote better-engineered solutions for the management

of cutting tools which may shift focus away from the
traditional proactive and reactive approaches.

2 Tool conditionmonitoring

Accepting the premise that process variation can be
attributed to the progressive deterioration of the cutting
tool, an extraordinary amount of research has been
undertaken aiming to quantify said deterioration during the
manufacturing process. This is often approached in two
ways: as direct attention to the tool or indirect consideration
of the tool through auxiliary signals and/or outputs. Direct
and indirect can thus be seen to be referring to the nature
of the data acquisition. This division and the methods
supported have been further expanded in the literature
[17, 18]. This review is focussed on indirect assessments
of tool wear, considering the variability in the form of
a manufactured part and analysis of ‘smart’ machine
data.

Assessment of tool condition from the form of the
manufactured part is practiced. Some studies take a direct
approach by assessing the geometry of the cutting tool itself
in-progress [19]. Others evaluate the variation in geometric
form (of the manufactured part) and attribute this variation
to the deterioration of the cutting tool [20–23]. The methods
are predominantly post-process oriented and better suited
for diagnostics than active process control. The methods
are viable from an academic perspective and enable the
better understanding of tool wear phenomena, but they
have a limited bearing on the continuous management of
machining operations.

It may be considered that these studies evaluating
geometric form fail to consider arguments made by fellow
academics and industrial organisations. Both Astakhov [24]
and Shaw [25] recognise that the association between
geometry and cutting tool condition is tricky to quantify and
the individual features difficult to apportion to responsible
process variations. Their deduction corroborates with the
argument that complex systems may generate ambiguous
information. In addition, industrial organisations add
further complexity with innovations that hide or mitigate
tool condition, including for instance re-dimensioning
cutting tools in-process, known as in-cycle-gauging (ICG).
From an economic and competitive stance, removing the
geometric variation is both sensible and beneficial. In
the best instances, dimension-related post-processing can
be eliminated or at least significantly reduced [10]. In
theory, the data arising from the re-dimensioning of cutting
tools can provide the information required to analyse the
geometrical variation; however, the information is rarely
retained for more than the correction of tool offsets.
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In lieu of geometrical variation, some studies evaluate
the variation in surface integrity (of the manufactured
part) and attribute this variation to the deterioration of the
cutting tool. This method is more popular within industrial
organisations, being complimentary to the re-dimensioning
of cutting tools. The approach has proven to be popular for
turning operations [28–30]. However, it has been reported
to be highly susceptible to changes in machining parameters
and tool geometry when applied to the milling process
[22, 31, 32]. Effective implementation of such an analysis
may be impractical when the additional measurement
apparatus is considered. This indicates that analysis of the
surface integrity is equivalent to geometry analysis for the
assessment of cutting tool condition, with perhaps added
potential with respect to systems implementing ICG. Being
inherently post-process, the analysis of surface integrity
falls in with others that either detect poor condition too
late, resulting in scrapped parts, or detract from the process
efficiency when measured in-process. This indicates an
inadequacy in the current form classification approaches for
monitoring time-dependent tool condition.

An alternative approach for the development of intelli-
gent process monitoring (IPM) is to consider monitoring
machine tool architecture [33]. This approach is popular
with proposals designed for most of the machine tool com-
ponents. Regarding the machine tool spindle, approaches
are primarily focused on analysing the forces and/or vibra-
tions occurring during the manufacturing process. However,
approaches also consider the power consumption of the
spindle motor [34–37]. The cutting tool condition is then
often considered using any one of a threshold, time series, or
a neural network style approach [17]. Deciding on the best
approach requires consideration of two issues, data suitabil-
ity and data quantity. A sensible approach will acquire all
available data during an event as inevitably, post-process,
the data is no longer available. However, all available data
is not necessarily all sensible data. Therefore, a practical
approach must assess all available data, and acquire only
that which is necessary. Given this consideration, developed
approaches tend to limit their consideration to select vari-
ables, reducing the complexity of the data. However, most
conclude that additional data would be necessary for effec-
tive implementation of the approaches. This indicates that
a single variable is relatively ineffective at identifying devi-
ations from nominal yet can be effective when considered
alongside others.

Within the many emerging themes of Internet-enabled
connectivity, many organisations are tending towards the
acquisition of all information that is available [38–41].
These approaches attempt to work with the mass of
information, offering ‘intelligent’ interpretations of the data.
However, at present, these approaches often require that
the data is transferred off-site for processing, with results

forwarded to the respective machine operators. In a data
sensitive world, this is both challenging and potentially
risky for organisations to adopt. Additionally, as the data
footprint of these ‘smart’ machines increase, the rate at
which the data can be sent, processed and returned is
affected negatively. This infers that optimising the data
use requires on-site processing. Machine tool manufacturers
often attempt to process the data at source, offering ‘smart’
functions intended to protect the machine and part from
damage [42]. However, currently, these approaches are
often automatically applied to the real-time control of the
machining operation to mitigate any detected changes, and
thus extend the effectiveness of the machining process. They
do not aim to provide evidence or supply data of any change
affected but rather support the continued operation in a
practical context and wholly rely on the machine operator
to implement them effectively. Such methods are in effect
relying on tacit knowledge related to the management of the
cutting process that is built into modern advanced ‘smart’
CNC systems.

Despite these supporting methodologies, tools will still
fail. This indicates a need to devise alternative, on-site,
methods for monitoring the condition of cutting tools. In
response, this work considers the possibility for diagnosing
cutting tool condition using the information acquired from
a ‘smart’ machine tool. It is the tacit knowledge, relating to
the management and control of specific cutting processes,
that makes such smart operations possible. These will
include the response of the machine controller to changes
in cutter condition, which will not normally be obvious to
the user. The acquisition of data is limited to the spindle
motor load, aiming to prove the efficacy of the system
prior to introducing additional variables. The primary aim
is to create a practical basis for exploiting the intelligence
inherent in modern machine tools. Consideration will be
given to the further development of this approach in
overcoming some of the inherent limitations of acquiring
‘big data’ from relatively unknown sources. The intention is
to consider the practical strategies for observing cutting tool
wear during an intelligent process, based on said process
intelligence.

3 Tool monitoring system development

This work considered the application of existing machine
tool architecture for the development of cutting tool
monitoring strategies. It uses machine tool information
that is typically, either not available to the operator,
or not utilised further than superficial infographics. To
achieve this, a Mazak Vertical Centre Smart 430A VMC
was studied alongside a Mazatrol matrix nexus 2 CNC
controller (NC). This represents a small-scale version of the
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typical shop-floor machine tool employed within numerous
manufacturing organisations. In-built functions include
active vibration control, volumetric error compensation and
active feed rate control. The comparatively small table area
of 0.241 m2 and actual machine volume (AMV) of 0.123 m3

of the VMC used does not reduce the relevance of the
control functions accessed and utilised. It is also noted that
the VMC was calibrated prior to commencing empirical
studies.

The effective machine volume (EMV) is considerably
less than the AMV due to the internal machine volume
accommodating build fixtures, an in-process TS27R ‘online
tool setter’ (OTS) and the operator-adjusted table offset
(100 mm). The OTS was included for an on-machine
(online) estimate of the initial dimensions of the cutting tool.
Measuring the tool online is more reliable than measuring
offline as the tool is seated within the machine, hence
behaving as in situ and accounting for the actual workable
volume of the cutting tool. A drawing of the Mazak outline
is identified in Fig. 2, indicating the major units. Table 1
indicates the major units of the Mazak, as identified in
Fig. 2, and highlights the objects of interest.

Communication with the machine controller was
achieved by a direct port into the electrical control cabi-
net (ECC). This was installed by the original equipment
manufacturer (OEM) to support this research and provides
access to the machine tool information at the point between
the machine and the NC operating panel, but post primary
processing. Where primary processing is defined as the
conversion from raw numerical data (RNData) into infor-
mation the OEM considered to be more meaningful. Access
is not provided to the RNData over concerns with the
potential impact on the ordinary operation of the machine.
The machine tool information (post primary processing) is

Fig. 2 Mazak outline, adapted from user manual [43]

Table 1 Mazak major units, adapted from user manual [43]

No. Name No. Name

1 Spindle 3 Auxiliary operating panel

2 NC operating panel 4 Electrical control cabinet

herein referred to as ‘MTData’ and was acquired in semi-
real- time. The process outline is presented in Fig. 3.

The MTData refers to the closed loop information
available within the controller enabling the VMC to
maintain the process settings required by the user.
The information returned includes common machining
parameters, typically the machine feed rate, spindle
rotational speed, machine temperatures, etc. All parameters
are derived from internal pre-installed sensors, identified by
the OEM as beneficial in the typical control, usage and/or
maintenance of the machine. As no additional machine
volume needs to be sacrificed for retrofit sensors, this
is considered beneficial to the operation and subsequent
assessment of the machine tool. The decision to forego
additional sensors has also been highlighted as a preferred
approach by others [33].

The MTData was transferred from the controller to the
user by establishing an Ethernet link between the machine
tool ECC and a PC, using a crossover cable. The data
was transferred in packets from the controller to the local
memory of a Hilscher CifX50E-RE interface board (HIB),
each packet being processed in the order received (inline)
and subsequently overwritten. Complete data transfer is
achieved in 0.1 s, despite being possible in 0.0284 s, due to
a requested packet interval (RPI) of 10 Hz. This was set at
such to avoid possible detriment to the controller’s normal
functions. It is noted that the architecture has no control over
the application; hence, future proponents of this technology
could reasonably expect integration within the controller.

Data was acquired from the local memory of the HIB by
implementing a modular program (written in C), designed
to communicate with the board. The program monitored
the VMC for activity and initiated data acquisition when
appropriate. The process information considered for this
study was the spindle motor load (SML). The respective
information is presented in Table 2.

3.1 Signal development

As only one register is allocated to the acquisition of SML,
the data acquired is limited to the range 0–256, and is hence
provided as integer percentages (quantised information). As
percentages are more usefully considered in context, the raw
data was reverse engineered into energy consumption using
the manufacturer supplied motor specification. A simple
power law relationship was applied to identify the rated
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Fig. 3 High-level outline of the communication process

power (Pmax) and rated torque (Tmax) for any individual
rotational speed (ω) (1 and 2).

Pmax = A · ωB (1)

Tmax = C · ωD (2)

The power law relationships were derived from the spindle
speed-power-torque (SPT) characteristic presented in Fig. 4.
Coefficients A, B, C and D are identified in Table 3 for
the different speed ranges. Obtaining the maximum power
allows the process energy consumption (E) to be calculated
(3).

E = 10 · Pmax

FS

·
∫ b

a

SML dt, (3)

where the calculated energy is in Joules, the sampling
frequency (FS) is the rate of data acquisition, and the
limits are the start (a) and end (b) of each machined part
respectively. This is simplified further when the quantised
nature of the signal is accounted for, allowing the integral to
be approximated by the sum of the samples per part (4).

E = 10 · Pmax

FS

·
b∑
a

SML dt, (4)

Table 2 Spindle motor load IO parameters

Parameter Value

Register(s) R18360–R18367

Size 8-bit byte

Range 1–255

Unit %

Associated registers R18268–R18291

When applied to the raw SML information, this results in
the transition illustrated by Fig. 5. The final stage follows
outlier detection/removal using a Hampel filter. Figure 5 is
intended to provide an overview of the approach and, for
clarity, axes are intentionally omitted, and scales do vary.

The significant signal fluctuations, visible in Fig. 5 b, are
primarily a result of the machining process incorporating
multiple stages. However, it is also acknowledged that some
of the variation directly results from the methods used
for data acquisition and processing (and losses with that
respect). The observed ‘staircase effect’ (Fig. 5 c) results
from the quantised nature of the MTData propagating
through the processing stages.

Noise is minimal due to the quantised nature of the
signal; nevertheless, the implementation of the Hampel
filter ensures the signal noise is negligible.

Fig. 4 Spindle motor speed-power-torque characteristic, derived from
user manual [43]
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Table 3 Spindle speed-power-torque characteristic ranges and coefficients

Speed range (rpm) Power range (kW) Torque range (N m) A B C D

100 ≤ ω < 1100 1.0 ≤ P < 11.0 T = 95.5 1.000 × 10−2 1.000 × 100 9.550 × 101 0.000 × 100

1100 ≤ ω < 2347 P = 11.0 95.5 ≥ T > 44.7 1.100 × 101 0.000 × 100 1.063 × 105 − 1.002 × 100

2347 ≤ ω < 3950 11.0 ≤ P < 18.5 T = 44.7 4.736 × 10−3 9.987 × 10−1 4.470 × 101 0.000 × 100

3950 ≤ ω < 8000 P = 18.5 44.7 ≥ T > 22.0 1.850 × 101 0.000 × 100 1.833 × 105 − 1.005 × 100

8000 ≤ ω < 12000 18.5 ≥ P > 12.6 22.0 ≥ T > 10.0 8.438 × ×104 − 9.375 × 10−1 8.556 × 108 − 1.945 × 100

3.2 Health diagnostics and remaining life

In 1906, Taylor introduced his tool wear equations, and the
matching curves, to show the relationship between cutting
speed and tool life [44]. These relationships also sought to
split the condition of a cutting tool into three stages:

1. Rapid initial wear
2. Gradual wear
3. Rapid wear and failure

One could consider that these three stages accurately
describe the step changes in the deterioration of the
cutting process and, therefore, that Taylor’s wear curves
are characteristic of the true tool deterioration. These well-
known and generally accepted stages could thus be adopted
to establish a benchmark for the process and to establish a
basis for subsequent prognostics. The objective is to identify
the key stages of cutting tool deterioration. To achieve this
objective, independent of the material process conditions
requires a deviation from Taylor’s equation for cutting tool
wear. As such, a process benchmark can be developed based
on the relatively straightforward third-order polynomial
(cubic) (5).

f (x) = Ax3 + Bx2 + Cx + D (5)

A cubic function simplifies the mathematics involved and
can be derived relatively easily using linear regression.
Using Excel, the required regression formula is shown
through two VBA (visual basic for applications) functions
(Figs. 6 and 7). Using VBA enables a simple formula for
the calculations; allowing for shorter array formulae, and

reduced excel file sizes by 90%—in this case from 7 MB to
786 KB.

The coefficients A, B, C and D are calculated from the
filtered energy consumption data. Using the original data,
whilst workable, results in the cubic tending to zero, making
additional processing inevitable. A further deviation from
Taylor’s tool life theories was to consider four step changes
in cutting tool condition. This decision was based upon
the complexity of modelling such a stochastic and variable
process and allows greater flexibility over the shape of the
model. Hence, four stages for tool condition are considered.
This was achieved by splitting the second stage in two.
An example of the derived cubic is presented in Fig. 8,
identifying the four condition stages.

The four stages are defined as follows:

1. Extreme negative gradient (ENG) - Healthy
2. Negative gradient (NG) - Used
3. Positive gradient (PG) - Failing
4. Extreme positive gradient (EPG) - Failed

Following the derivation of a cubic function, a novel
algorithm was established to model the process. The
established algorithm relies primarily on the acquired
process-generated data and followed four stages:

1. The curve is translated towards zero by subtracting the
magnitude of the stationary point (SP) from all values.
Subtracting the |SP| prevents the x-axis intersect from
excessive variation during active monitoring—both the
mean and median averages vary considerably when
monitoring in-process. Additionally, whilst the mean
and median averages end up weighted toward the latter

Fig. 5 SML transition from a percentage load to b energy consumed (kJ) to c filtered energy consumption (kJ)
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Fig. 6 Extract from COEFFPOLY()—VBA function to derive
polynomial coefficients

stages of the process due to the relatively heavy skew
towards a ‘positive gradient data’ (PG), the |SP| remains
centrally located. The resulting polynomial (f (x, k))
can be represented by Eq. 6, where k is derived when
the second derivative is equal to zero (7).

f (x, k) = A(x3 − k3) + B(x2 − k2) + C(x − k) (6)

k = B/3A (7)

2. The curve is split in two parts, either side of zero, with
values normalised between zero and ± one, following
the rule: − 1 ≤ NG < 0 ≤ PG ≤ 1. This can be
represented as the curve f (x, k)α (8).

f (x, k)α =
{

f (x,k)
min f (x,k)

f (x, k) < 0
f (x,k)

max f (x,k)
f (x, k) ≥ 0

(8)

3. The magnitude change in the slope of the first
differential (g(x)) is calculated, per part, from the
general equation (f (x)) to give the probable fit (P.Fit)
(9), where the adjustment factor (γ ) is calculated
iteratively and shifts g(x) according to the observed tool
life for the specific process (10).

g(x) = 3A(x2
n − x2

n−1) − 2B(xn − xn−1)

(x2
n−1 + xn−1 + C) + γ

(9)

γ = ae(b(RTL/100)) + ce(d(RTL/100)) (10)

The remaining tool life (RTL) is found from the
intersection between g(x) and f (x, k). The coefficients
a, b, c and d are not the same as A, B, C and D.

4. The polynomial (f (x, k)) is subtracted from the P.Fit
(g(x)), following the logic presented in Eq. 11. The
result (E.Fit) demonstrates the changing tool condition
when plotted alongside P.Fit.

E.Fit = |g(x) · (g(x) > 0)| − |f (x, k) · (f (x, k) > 0)|
(11)

Fig. 7 Extract from POLY3()—VBA function to derive cubic model
from provided data

The changing condition of the cutting tool is separated
into the previously defined stages:

ENG - Until E.Fit deviates from zero
NG - Until E.Fit equates to f (x, k)α
PG - Until E.Fit equals zero
EPG - Until the process ends

It should be noted that despite the data-driven nature of
the algorithm, the approach can only be guaranteed when
implementing the specific conditions herein. Further work
is necessary to identify the system response to different
conditions.

4 Application

A series of regular cylindrical artefacts and single axis
slots were manufactured into a section of bright mild steel
(125 × 25 × 220 mm) (Fig. 9). Each cylindrical artefact
was machined in four stages, each stage being a separate
cylinder at increasing depths. The four stages are henceforth
considered equivalent to an individual manufactured part.

Fig. 8 Sample third-order polynomial indicating key stages
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Fig. 9 Build layout and artefact dimensions

Single axis slots were machined in two passes, again each
pass was equated to an individual part. This resulted in 48
equivalent parts per section of steel. The process continued
until either four series’ (192 parts) were completed or the
cutting tool broke. The cutting tool used was a 10 mm, four-
flute square-end-mill made from high speed steel (HSS).

The manufacture of each part was divided into five stages
as outlined in Fig. 10. The machine feed rates for each
stage are presented in Table 4 as dimensionless values, each
calculated relative to the helical cut.

Slotting is defined as using the full width of the cutting
tool, whilst partial cutting utilised a fraction of the cutting
tool width. For partial cutting the fraction of full cutting tool

Fig. 10 Stages in part manufacture: a 2D path stages and b 3D pocket
milling operation

Table 4 Stage information for part manufacture

Stage Operation Machine axes Feed

A Helical cut − Z 1.0

B Slotting cut − Y 1.0

C Circular partial cut X and Y 2.0

D Submerged cut − Y 1.0

E Circular partial cut X and Y 2.5

width (CutW ) is approximated by the effective cutting tool
diameter (∅CT) over the proportional feed (FR) (12).

CutW = k · ∅CT

FR
(12)

where k is included to account for subsequent deviation due
to operator adjustments.

The process was completed using fully flooded cutting
conditions. The selected tool was a HSS, with no coating
for the tool material. It is acknowledged that the popularity
of HSS has reduced for production operations; however, the
material choice was made to encourage a deterioration of the
process within a shorter timescale than may be experienced
with the use of carbide or coated tools in practice. To obtain
a reliable indication of the process change, the manufacture
of 192 parts was repeated four times with four cutting tools.
The process settings for said repetitions are outlined in
Table 5.

5 Verification and comparative diagnostics

It has been accepted that identifying variations in post-
process geometry is of limited use in managing tool
life. However, said variations could be utilised to verify
the efficacy of MTData-based cutting tool monitoring
strategies. Subsequently, in this work, it was decided not to
access and deploy the in-process tool measurement system

Table 5 Process settings for HSS cutting tools and process repeats

Parameter Tool 1 Tool 2 Tool 3 Tool 4

Start condition New Used New New

Cutting speed (m/min) 52.0 52.0 52.0 36.0

Spindle speed (rpm) 1646.0 1646.0 1646.0 1153.0

Plunge feed 111.8 111.8 111.8 78.4

(mm/min)

Loop 1 feed 223.6 223.6 223.6 156.8

(mm/min)

Loop 2 feed 279.5 279.5 279.5 196.0

(mm/min)

Total parts 128.0 127.0 125.0 128.0

Breakage TRUE FALSE TRUE FALSE
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to re-set tool offset. This meant not attempting to control
geometrical variation and allow for the natural variation to
propagate through to post-process. The tool condition is
then attainable as a proportion of the observable change in
product condition and can be used to verify the efficacy of
the proposed approach. To achieve a meaningful result for
the tool condition, the change in product form was adapted
to emphasise the systematic process deterioration (13) [45].

|�CSAP | =
∣∣∣π

4
· (d2

N − d2
P )

∣∣∣ + �CSAP−1 (13)

The product variation is calculated for two dimensions as
the actual depth of cut per part cannot be derived post-
process. Without an appropriate measure of the cutting
depth, the volumetric measure of variation is unobtainable.

Figure 11 illustrates the variation in cross-section area
(CSA) per part for each of the four cutting tools, presenting
the fourth part from each artefact. Since the fourth part
represented the last stage (i.e. the deepest cut) in each of the
cylindrical artefacts, the dimensions relating to the fourth
part were taken to represent the tool wear measured at the
end of the machining cycles applied for the artefact. The
first three parts of each artefact were also measured but
were not included here for clarity. They may be considered
separately since they potentially represent the significant
variation introduced by influences other than the cutting
tool condition. Similar observations have been made by
Wilkinson et al. [31] and Ahmed et al. [18, 23]. The final
two parts per artefact (5 and 6 representing the single-axis
slots) were not measured.

The recommended limit identified on Fig. 11 represents
ISO 8688-2: 1989 [46]. The standard recommends that HSS
tools be withdrawn when the average flank wear exceeds

0.3 mm, or when any local maximum is 0.5 mm (e.g. a
chipped tooth). The equivalent threshold in terms of the
CSA per part was found to be 37.42 mm2, calculated
by considering a 0.6 mm reduction in diameter. The
recommended limit was surpassed by tools 1 and 3 after 142
parts. Tools 2 and 4 operated for 178 parts. All tools were
utilised far beyond their recommended threshold; however,
tools 1 and 3 failed, whereas tools 2 and 4 remained intact.

Having identified a visual indication of the tool condition
from the product geometry, attention is drawn to the
information derived from the machine tool itself. Figure 12
shows the process energy consumption (PEC), as derived
from the spindle motor load (SML). The plots are separated
into two figures to improve clarity. All four processes
are visibly similar, with the greatest variation witnessed
between tools 3 and 4 (Fig. 12b). This observation is
sensible as tool 4 cut at 36 m/min. All preceding tools
cut at 52 m/min demonstrating the established behaviour
and potential for longer life when using cutting tools at
lower speeds. The similarity between the processes provides
further benefit for showing whether processes conform,
or for highlighting issues with individual parts. For batch
production, this could allow machine operators to focus
their attention on parts flagged as abnormal. However,
this would require the operator to have knowledge of the
process and how the output is thus affected, or alternatively,
necessitate additional information to identify where and
how the process trends deviate from the norm.

The quantised nature of the MTData is observable for
all cutting tools with significant ‘steps’ in the chart data.
It is acknowledged that these steps limit the precision of
the system; however, this potentially benefits the system
by reducing signal noise. The proposed improvement in

Fig. 11 Part deviation from
nominal considered as a change
in cross-section area (CSA)
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Fig. 12 Process energy consumption of four cutting tools—single-
stage filter: a tools 1 and 2 and b tools 3 and 4

the resolution of the MTData will significantly reduce
the observed ‘staircase effect’. Figure 12 also illustrates
the system sensitivity to process/data interruptions. All
interruptions result in a significant drop in measured PEC.
These are marked by areas 1 to 3 in Fig. 12 to correspond to
as follows:

1. Operator influence—process stop for cutting fluid
replacement

2. Network failure—interruption to the communication
between controller and PC (data loss)

3. System shutdown—process stop/shutdown for an
extended time period

In two of the observed interruptions (items 1 and
3), the process is stopped, adding unplanned machine
downtime. The resulting energy signature is repeatable,
suggesting occurrences could be monitored. However, as the
information is derived from the spindle load, abrupt changes
in the spindle speed will result in a similar energy signature.
Identifying the exact nature of these signatures in a practical
application would therefore require the consideration of
additional information. The remaining of the three observed
interruptions (item 2) represents a fault arising in the

Fig. 13 Comparison between calculated energy thresholds and
geometric variation per cutting tool (a–d)
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Table 6 Classification of geometric and process signal results into different stages of cutting tool wear

STAGE Tool 1 Tool 2 Tool 3 Tool 4

CSA PEC CSA PEC CSA PEC CSA PEC

ENG 0–55 0–0 0–52 0–53 0–59 0–21 0–80 0–43

NG 56–72 1–43 53–70 54–81 60–71 22–68 81–93 44–84

PG 73–134 44–135 71–142 82–158 72–137 69–147 94–151 85–156

EPG 135–153 136–178 143–160 159–175 138–152 148–177 152–164 157–181

ISO8688-2 [46] 142 178 142 178

transfer of MTData, resulting in a gap in the tool history.
The fault could, in theory, be confused with a process or
condition change, and hence, may be difficult to identify
in practice. However, the system recovered in reasonable
time and the error code, incident time and incident duration
were recorded. If this information remains available, the
fault is classifiable. It is important to state that the system
accommodated all process interruptions and continued to
operate normally when they were resolved.

The (recommended) limit identified in Fig. 12 again
represents ISO 8688-2: 1989 [46], in accordance with the
CSA threshold. In the absence of a direct calculation,
the PEC threshold is derived from the CSA variation
by averaging the PEC for each tool at the instant the
CSA threshold is exceeded. This gives an equivalent PEC
threshold of 19.29 kJ for the four tools. The relevance of
this PEC threshold is limited in practice, being derived from
post-process analysis, and as such is only included as a
guide. It is noted that the recommended limit was surpassed
by all tools in similar style to the variation in CSA per
part. Following consideration of data originating within the
machine tool, a direct comparison of the two methods is
appropriate (Fig. 13).

Figure 13 shows a direct comparison between the CSA
variation and the PEC variation for each of the observed
cutting tools. The data for each set is standardised using
Eq. 14, enabling a direct comparison between different sets
and ensuring axes are consistent.

xstd = (x − x̄)

σ
(14)

In addition, the PEC variation is presented as an area plot
to illustrate the potential range per part, rather than absolute
values, to incorporate measurement uncertainty in the
analysis. The PEC measurement uncertainty, accumulated
due to the discrete nature of the MTData, shows that the
progression in product CSA is within the equivalent PEC
range. However, it is noted that the uncertainty margin
is relatively large (1.26 units compared with a maximum
measurement range of 5.20 units), meaning the probability
that CSA measurements fall within the given PEC range is
high, irrespective of correlation. The PEC potential range
could be reduced with the acquisition of more precise, or
additional sources, of MTData.

Notwithstanding, superficially the two trends are similar,
both trending towards higher magnitudes, credited to a
breakdown in the condition of the cutting tool. However,
consideration of the time-dependent detail within the signals
presents clear differences between the two trends. One could
argue in favour of the PEC variation as the level of detail
is distinctly better than for the CSA variation; however,
consideration should be made for the inherent limitations of
the detail:

• Data quality is not yet assured to prevent false details
carrying through

• Staircase effect from quantised MTData
• False positives from process changes/adjustments may

not be completely filtered

It will also be the case that tool condition (including
bluntness) may not be entirely evidenced in the CSA. It is
the case that the changes to the dimension of the component

Table 7 Approximate delay (in number of parts) between geometric and process signal estimations (start/end)

STAGE Tool 1 Tool 2 Tool 3 Tool 4 Mean delay

ENG 0/ − 55 0/ + 1 0/ − 38 0/ − 37 0/ − 33

NG −55/ − 29 +1/ + 11 −38/ − 3 −37/ − 9 −33/ − 8

PG −29/ + 1 +11/ + 16 −3/ + 10 −9/ + 5 −8/ + 8

EPG +1/ + 25 +16/ + 15 +10/ + 25 +5/ + 17 +8/ + 21

Mean delay −21/ − 15 +7/ + 11 −8/ − 2 −11/ − 6
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will reflect changes in important tool features, but it is
possible that some variations may not be identified. For
example, should one tooth (flute) become blunted, it will not
be apparent from the changes in component geometry, since
the effect will be mitigated by the action of the remaining
teeth. It will however be reflected in changes to the PEC,
especially with the acquisition of MTData with increased
resolution.

To provide a more literal comparison, the similarity was
considered in terms of the stages of cutting tool wear
and presented as a delay (In manufactured parts) between
the CSA and the PEC approaches. CSA is assessed as
the nominal variation. The individual stages are identified
in Table 6, and the deviation between PEC and CSA is
presented in Table 7.

As before, ISO8688-2: 1989 [46] indicates the recom-
mended usage limit derived from the CSA. The delay
(Table 7) is taken from the CSA relative to the equivalent
PEC (negative values indicate the respective limit is flagged
by the PEC earlier than the CSA). Table 7 suggests that util-
ising PEC for the estimation of wear returns a negative delay
for tools 1, 3 and 4 (mean delay). This equates to shorter
estimations of tool life for the PEC compared to the CSA of
at least three artefacts. On the other hand, for tool 2, the PEC
estimations of tool life were longer than predicted by the
CSA by more than one artefact. Indeed, the PEC response
for tool 2 indicates that the tool has substantially more life
remaining than suggested by the CSA estimations. It should
be underlined that the mean delay is substantially skewed
by the estimations for the ENG and NG. In practice, the PG
and EPG would dictate the continued use of a cutting tool.
In this case, for all tools, the PEC indicated that the tools
have substantially more life remaining than suggested by the
CSA estimations.

Supposing the CSA estimations are accurate, one could
infer that monitoring the process using the PEC variation
will result in at least one sub-par artefact with tool 2, whilst
tools 1, 3 and 4 are stopped early. However, supposing
the CSA estimations are not accurate, when using PEC for
the estimation of wear one could suggest that tool 2 is
better utilised (and potential remaining life is not wasted),
whilst tools 1, 3 and 4 are stopped before deteriorating
substantially. Either of the two propositions could be
considered as correct, this underlines a significant limitation
in proving a method through comparison with another in
that the efficacy of the new method relies entirely on the
efficacy of the old method.

Nevertheless, the performance using PEC is seen as
justifying its use as a viable alternative to using the CSA.
Moreover, the variations in PEC and CSA should not
correspond perfectly. In neither case is the uncertainty in
the measurement nor the uncertainty in the fault diagnosis

accounted for. The information presented indicates that
using the PEC is a viable alternative to using CSA, provided
the process change is attributed to the deterioration of the
cutting tool and that the process change is similar in nature
to that seen within this work. It should also be noted
that the acquisition and processing of the data required
to estimate PEC does not require any unjustified time or
effort. In a practical application, for example in a batch
manufacturing context, many more manufacturing cycles
could be captured and used to further refine the approach. It
is important to stress that changes in the PEC arise from the
decisions made by the controller in response to embedded
tacit intelligence. Changes in CSA can only be attributed in
part to these responses. It is fundamentally better to monitor
the system for evidence of process change than to wait for
the consequence.

The results indicate that although the PEC performed as
hoped for, the use of the PEC on its own requires further
work. This gives evidence to the argument that additional
signals are required to ensure that system diagnostics are
robust to system and process changes, especially should
prognostics-oriented approaches be pursued. In addition,
extra signals would further ensure that conclusions have
enough basis.

6 Conclusions

This paper explored the potential of enhancing the tool
management capability of manufacturing equipment, the
aim being to improve the safe utilisation of cutting tools
within an active process. An initial investigation identified
the predominant uncertainty in data acquired from what
is inherently a challenging environment. This highlighted
the confusion that is often apparent over data value
and origin, despite their influence on current monitoring
approaches. This also confirmed the limitations some
current approaches endure regarding the diagnosis of tool
condition, particularly considering industrial innovations
that improve process conformance and consistency by
suppressing the physical evidence of tool wear.

This paper presented a novel approach for the acquisition
and processing of machine tool cutting data by using
available machine tool controller signals. The presented
approach minimised the impact on machining operations
and avoided retrofit equipment or sensors by exploiting the
changes in machining resulting from the tacit intelligence
that is deployed by the controller during such operations.
It is argued that a sensible approach should not endeavour
to acquire all available data but should assess the data on
merit and retain that with the most value. The approach
presented in this paper acquired only the spindle motor
load information. The results indicated that the derived
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approach is both a viable alternative and synergistic addition
to current approaches that mainly consider the form and
features of the manufactured component.

It was noted that users of this approach, or similar
approaches built upon these principles, may in future wish
to see integration of all technologies within the controller
and/or machine tool entity.

It is acknowledged that one signal is insufficient
to reliably diagnose tool condition. Additionally, it is
warranted that the presented approach should be compared
with further measures of process condition. Future work
will consider additional process variables to further support
the observations made and will compare the presented
approach to the variation in product surface finish.
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