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Impact of flow hydrodynamics and pipe material properties on biofilm
development within drinking water systems
Matthew W. Cowle a,b, Gordon Webster c, Akintunde O. Babatundea,d, Bettina N. Bockelmann-Evansa and
Andrew J. Weightman c

aHydro-environmental Research Centre, School of Engineering, Cardiff University, Cardiff, UK; bMott MacDonald, Cardiff, UK; cMicrobiomes,
Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff, UK; dInstitute of Public Health and
Environmental Engineering, School of Civil Engineering, University of Leeds, Leeds, UK

ABSTRACT
The aim of this study was to investigate the combined impact of flow hydrodynamics and pipe
material on biofilm development in drinking water distribution systems (DWDS). Biofilms were
formed on four commonly used pipe materials (namely polyvinyl chloride, polypropylene,
structured wall high-density polyethylene and solid wall high-density polyethylene) within a
series of purpose built flow cell reactors at two different flow regimes. Results indicate that
varying amounts of microbial material with different morphologies were present depending on
the pipe material and conditioning. The amount of microbial biomass was typically greater for
the biofilms conditioned at lower flows. Whereas, biofilm development was inhibited at higher
flows indicating shear forces imposed by flow conditions were above the critical levels for
biofilm attachment. Alphaproteobacteria was the predominant bacterial group within the biofilms
incubated at low flow and represented 48% of evaluated phylotypes; whilst at higher flows,
Betaproteobacteria (45%) and Gammaproteobacteria (33%) were the dominant groups. The
opportunistic pathogens, Sphingomonas and Pseudomonas were found to be particularly
abundant in biofilms incubated at lower flows, and only found within biofilms incubated at
higher flows on the rougher materials assessed. This suggests that these bacteria have limited
ability to propagate within biofilms under high shear conditions without sufficient protection
(roughness). These findings expand on knowledge relating to the impact of surface roughness
and flow hydrodynamics on biofilm development within DWDS.
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Nomenclature

h hours
kav mean roughness height (µm)
krms root-mean-square roughness height (µm)
ks Nikuradse-type equivalent sandgrain roughness (µm)
kt maximum peak-to-trough height (µm)

r distance from the mean roughness height
Re Reynolds number
skl skewness of the roughness distribution
T temperature (°C)
�U averaged freestream velocity (m/s)
τw wall shear stress (N/m2)
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1. Introduction

The prevailing environmental conditions within typical
drinking water distribution systems (DWDS) are extremely
adverse to bacterial life due to the inherent oligotrophic
conditions, and the occasional presence of residual disin-
fectants. Nonetheless, bacterial based biofouling has a
ubiquitous presence within these systems [1–3]. Bacterial
based biofouling refers to the natural, albeit sometimes
undesirable, process through which a complex microbio-
logical system (termed biofilm) forms upon a surface.
Biofilms typically consist of a diverse array of microbial
cells and colonies embedded within a highly hydrated,
protective polymer matrix of which extracellular carbo-
hydrates and proteins dominate. Any pipe conveying a
liquid is potentially susceptible to biofilm development
and biofouling to some degree as bacteria, fungi,
mosses and invertebrates seek to exploit the desirable
growth conditions that the pipe surface provides.

Biofilms have the ability to impair a system’s hydraulic
efficiency through an increase in boundary shear stresses
and surface roughness [4,5], and can have a detrimental
impact on water quality [1,2,6]. Such water quality issues
caused by biofilm development within DWDS may
include impaired taste, odour and colour; in addition to
causing potential health problems to consumers,
ranging from viral and bacterial gastro-enteric diseases,
to infections such as hepatitis A and giardiasis [1,2]. In
particular, biofilms can contribute and/or exaggerate
the accumulation of iron and manganese. This rep-
resents a major problem to the water industry as their
presence within the water column contributes signifi-
cantly to discolouration [2,6]. Biofilm development may
also contribute to undesirable corrosion and nitrification
issues, depending on the pipe material. Within DWDS,
the impact of biofouling on surface roughness is con-
sidered to be of secondary importance, especially con-
cerning the aforementioned water quality issues. This is
because poor water quality will generally result in more
customer complaints. Furthermore, water quality is
usually compromised by a very thin biofilm (<30 μm),
and therefore, it is the general practice of asset holders
to make use of disinfectants and flushing techniques to
minimise biofouling within DWDS. However, biofilms
are known to have a high resilience to these control
measures [1]. Moreover, even a relatively thin biofilm
(<160 μm) can potentially cause a considerable increase
in frictional resistance [5], particularly in long pipe runs.
Early observations [7,8] within water mains highlighted
the potential impact that biofouling can have on the
surface roughness of DWDS, despite the reported
biofilm thicknesses (1.0–9.4 mm) being unrepresentative
of biofilms typically found within modern, well

maintained DWDS (which seldom exceed 1 mm). Fur-
thermore, the resultant decreases in flow capacity
within DWDS because of biofouling will also increase
the planktonic (free-floating) bacteria concentrations;
through an increase in the pipelines hydraulic retention
time (HRT) [9]. Consequently, the water quality is
impaired and the likelihood of further fouling and/or
other fouling issues (e.g. public health problems) is
increased.

The development, behaviour and population charac-
teristics of a biofilm can be influenced by their intrinsic
biological properties, along with a number of environ-
mental factors including the velocity field of the fluid
in contact with the microbial layer [1]. Hydrodynamic
conditions will determine the rate of transport of cells,
oxygen and nutrients to the surface, as well as the mag-
nitude of the shear forces acting on a developing biofilm.
This is due to its influence on mass transfer, drag and
diffusion. In a related study by Lehtola et al. [10], the
effects of flow velocity on the formation of biofilms indi-
cated that the formation of biofilms increased with the
flow velocity and that the mass transfer of nutrients
played a major role in the growth of the biofilms.

The mass transfer, drag and diffusion potentials of a
system are predominantly controlled by the level of turbu-
lence in the flow, which is conventionally estimated by the
dimensionless parameter Reynolds number, Re. Biofilm
thickness can be limited by stable and high flow regimes
owing to higher shear stresses [11]. However, such con-
ditions typically induce biofilms that are more cohesive
and less prone to detachment than those cultivated at
low and stable flow regimes. Flow hydrodynamics may
also influence the amount and type of extracellular poly-
meric substances (EPS) found within a biofilm [12]. The
hydraulic conditions in DWDS vary daily and seasonally
from stagnation to high flow as demand varies and
these variances are reflected in the resultant biofilm.

This study addresses these issues with the main aim of
examining the effect of the combined interaction of the
physical and hydraulic conditions of DWDS on biofilm
development in a range of different pipe materials. This
will enable the understanding and identification of pipe
materials that are prone or resistant to biofilm develop-
ment. Moreover, such information will allow the manipu-
lation of hydrodynamic conditions to be used as a control
parameter to improve strategies for biofilm management.

2. Materials and methods

2.1 . Experimental facility

In this study, a flow cell arrangement was used (Figure 1)
to simulate the conditions of a pipeline. The design of
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which was based on concepts outlined by Teodósio et al.
[13] and Pereira et al. [14]. The ability of a flow cell styled
reactor to mimic the hydrodynamic conditions within a
pipeline have been well documented through numerical
and physical investigations [13]. The configuration and
key characteristics of the flow cell used in this study
are shown in Figure 1 and Table 1, respectively. The
flow cell system consisted of a 10 L maximum capacity
recirculating tank, one vertically positioned flow cell, a
clear PVC recirculation tube, an inline turbine flow
metre (RS 511-4772) and a 0.33 kW centrifugal water
pump (Clarke CEB102). Flow cells were positioned verti-
cally to minimise trapped air within the system.

Along the planar surface of the flow cell, there were
five equally spaced apertures to fit five removable circu-
lar adhesion coupons, each measuring 20 mm in diam-
eter. The first aperture was positioned 51.5 cm from
the flow cell inlet. The four remaining apertures were
positioned every 10 cm from the first. The purpose of
this separation was to minimise potential disruptions in
boundary shear caused by the respective downstream
coupons. The last aperture was located 0.15 m from
the flow cell outlet. A simulation of the flow cell

arrangement used in this study by numerical methods
using computational fluid dynamics (CFD) indicated
that 0.5 m was a sufficient length for fully developed
flow to be obtained within the system (for the full
range of operating conditions).

Adhesion coupons were fabricated from representa-
tive and commonly used pipe materials, including poly-
vinyl chloride (PVC), polypropylene (PP), structured wall
high-density polyethylene (Str-HDPE) and solid wall
high-density polyethylene (S-HDPE). The coupons were
held in place by a uniquely designed holding bracket
that allowed for independent adjustments to the pos-
ition of the coupons. This ensured that each coupon
was perfectly flush with the internal surface of the flow
cell during testing. Any protrusions would have had an
adverse effect on the boundary shear conditions and
influence the resultant biofilm development. The
design of the flow cell and holding brackets also
allowed for individual sampling of the discrete coupons
at any given time interval. Where possible, the discrete
coupons were cut from actual pipes and therefore, the
surface finishes inherent to the respective pipe material’s
fabrication process were accurately assessed, thereby
reducing any potential bias. The coupons were imaged
using an Environmental Scanning Electron Microscope
(ESEM) before incubation in the bulk water in order to
evaluate their respective surface finishes.

The flow rate within each of the discrete systems was
independently controlled using two ball valves. The
valves were located at the inlet and outlet sides of the
respective flow cells. The water temperature within the
flow cell systems was regulated using an external
cooling unit (DC-750 Refrigerated Cooler, D-D The
Aquarium Solution Ltd.), and it was measured using a
universal temperature probe (EI-1034 Temperature

Table 1. Key characteristics of the flow cells.
Parameter Value
Material Acrylic

ks 0.009 mm
Hydraulic Diameter 2.44 cm
Flow Area 6.28 cm2

Wetted Perimeter 10.28 cm
Hydraulic Radius 0.61 cm
Length 100.00 cm
Internal Volume 628.32 cm3

Volume/Area 100 cm
Biofilm Sampling Points 5
Biofilm Sampling Area 3.14 cm2

Figure 1. Flow cell configuration used in this study.
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Probe, LabJack Corporation). The external cooling unit
was capable of cooling volumes of between 200 and
600 L to within ± 1°C, over the temperature, T range of
4°C < T < 28°C. All data was recorded using a multifunc-
tion 24-bit data logger (U6-Pro; LabJack Corporation),
and this was coupled to a purpose built interface devel-
oped using the DAQ factory (AzeoTech) data acquisition
software. Appropriate sampling times were derived for
the respective measurements using a cumulative
average approach.

2.2. Operating conditions

Two separate (steady state) flow regimes were evaluated
within two individual flow cells, namely a high and low
flow assay. The two regimes were Re = 3.41 × 103 (low
flow assay) and Re = 5.35 × 103 (high flow assay). The
average freestream velocities, �U, within the two flow
cells during low and high flow assays were 0.16 and
0.24 m/s, respectively. The shear forces, τw acting on
the biofilms within the low flow and high flow assays
were 0.13 and 0.24 N/m2, respectively. These values
were based on the initial conditions (without biofouling),
and the principle that the primary shear force acting on
the biofilm was the shear force generated by the flow
[15]. Husband et al. [2] reported that the average
values of �U, Re and τw within DWDS in the UK are
0.06 m/s, 4.2 × 103 and 0.28 N/m2, respectively. Using
this information, Husband et al. [2] and later, Douterelo
et al. [1] cultivated biofilms within a 203 m long pilot
scale pipeline across the range of 0.2 N/m2< τw <
9.10 N/m2. In a similar investigation, Manuel et al. [16]
incubated drinking water biofilms within a flow cell
reactor at �U = 0.21 m/s and Re = 5.0 × 103. The shear
forces induced by the respective flow regimes employed
within the current study are therefore, comparable to
similar studies and representative of actual systems.

In order to provide representative water chemistry,
the flow cells were connected to the local (Cardiff, UK)
drinking water distribution system by a trickle feed
(and drain). The trickle was set to give an overall
system HRT of 12 h. The internal HRT within the high
and low assays were 79 and 109 s, respectively and as
a result, both systems were considered to be well
mixed. The pH of the water within the flow cells during
incubation was close to neutral (7.60 ± 0.25), whilst the
temperature ranged from 14.8–15.6°C during incubation.

The maximum recorded values of total organic carbon
and dissolved organic carbon were 4.10 and 3.30 mg/L,
respectively. The free chlorine concentration in the
system was close to the lower range within a typical
UK DWDS [1,2]. However, this was expected, as chlorine

decreases with time due to its reactive nature, and
would be naturally lower towards the end of the system.

The flow cell systems were disinfected using a con-
centrated chlorine solution (Cl = 2 mg/L) based on the
published protocol [1]. Essentially, the systems were
flushed with chlorine at the maximum flow rate
(2100 L/h) for 48 h. Thereafter, the bulk water within
the systems was allowed to stand for a further 24 h
before further flushing with fresh water. The water
within the facility was replaced until the levels of free
chlorine were within local drinking water limits. Prelimi-
nary testing identified that the average concentration
of free chlorine within the local DWDS was approxi-
mately 0.04 mg/L. The coupons were independently ster-
ilised prior to testing to remove residual bacteria and
impurities. This was achieved by immersing the
coupons in 80% (v/v) ethanol for 12 h, and left to dry
in a clean fume cupboard for a further 24 h.

2.3. Biofilm sampling and analysis

Samples of biofilm were collected from the flow cells
after 100 d. At the point of sampling, the flow within
each of the respective flow cells was stopped and the
bulk water sealed within them by closing the inlet and
outlet valves. The discrete flow cells were detached
from the recirculating system and placed planar side
up on a surface sterilised bench (washed with 80% (v/
v) ethanol). The adhesion coupons were then removed
and the biofilm sampled aseptically by removing 75%
(approximate area: 2.4 cm2) of the biofilm from each of
the coupons using a sterile cotton swab (Fisher Scientific
UK Ltd.). The cotton bud was cut from the swab and
aseptically transferred to a sterile 1.5 ml APEX® NoStickTM

microcentrifuge tube (Alpha Laboratories Ltd.). All
biofilm samples were stored at −80°C until required for
DNA extraction. The coupons and remaining biofilm
(approximate area: 0.8 cm2 or 25%) were then sputter-
coated with gold and examined under a Veeco FEI
(Philips) XL30 Environmental Scanning Microscope
(ESEM).

2.4. Environmental scanning electron microscopy
(ESEM)

The physical surface roughness of the coupons with and
without fouling was determined using ESEM and the
image analysis software, MountainsMap version 7
(Digital Surf). The image software estimated the surface
topography using a ‘single four image scan’ approach
as per the manufacturer’s specification. Eight randomly
selected 0.5 × 0.5 mm2 sampling areas were assessed
for each coupon.
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The surface roughness of a material can be defined by
a number of statistical parameters, including: mean
roughness height, kav; maximum peak-to-trough
height, kt ( = rmax – rmin where r is the distance from the
mean roughness height); root-mean-square roughness

height, krms( =
������������
1/

∑N
i=1 r

2
√

; where N is the sample

number); skewness of the roughness distribution,

skl( = 1/N
∑N

i=1 r
3
i (1/N)

∑N
i=1 r

2
i

[ ]3/2( )
and kurtosis of

the roughness distribution, ku( = 1/N
∑N

i=1 r
4
i

(

(1/N)
∑N

i=1 r
2
i

[ ]2
). The aforementioned parameters for

defining physical roughness have been related with
varying success to equivalent roughness scales, namely
ks [17]. It has been documented that an engineered
surface can be related to ks by using krms and skl [18] or
by using krms on its own [19]. However, the relationship
reported by Flack and Schultz [18] is for surfaces with
relatively high ks values (ks > 500 μm). For an engineered
material with a small ks value (ks < 10 μm), the following
relationships are typically applied [19,20]:

ks ≈ 5krms ; (1)

Or

ks ≈ 3krms (2)

However, which relationship is used is dependent on the
surface finish of the material in question. For instance,
Equation 1 [20] is to be used for machine finished sur-
faces with an approximate Gaussian roughness distri-
bution, whereas, Equation 2 [19] was suggested for
materials such as aluminium or steel which have been
honed and polished. Based on Equations 1 and 2, and
a ks value of 0.012 mm, the krms of the test pipe was esti-
mated to be between 2.4 and 4 μm.

2.5. DNA extraction and purification

Total community genomic DNA was extracted from each
of the biofilm samples directly from the cotton swabs
using a Nexttec DNA Isolation Kit for Bacteria (Nexttec
Biotechnologie GmbH). The procedure was per the man-
ufacturer’s instructions with the exceptions that after
adding Buffer, Lysozyme and RNase A; the sample was
mechanically shaken using a multi-wrist shaker (Lab
Line) at maximum speed for 5 min, and the final
extracted DNA was eluted in 200 µl of molecular grade
water (Severn Biotech Ltd.). The DNA extracts were
then stored at −80 °C until required for Polymerase
Chain Reaction (PCR) amplification. DNA extractions
were also carried out on unused sterile cotton swabs as
negative controls.

2.6. PCR conditions

To minimise potential contamination, PCR was carried
out under aseptic conditions using autoclaved and/or
UV-treated plasticware and equipment. Bacterial 16S
rRNA genes were amplified using primers 357FGC and
518R [21]. All PCR were performed within a DNA
Engine Dyad Thermal Cycler (MJ Research) using con-
ditions as described [21]. Sterile nuclease-free molecu-
lar-grade water and Acetobacterium species Ac1 [22]
DNA were used as negative and positive controls,
respectively in all sets of PCRs. Reaction mixtures were
held at 95°C for 5 min followed by 10 cycles of 94°C for
30 s, 55°C for 30 s and 72°C for 60 s; plus 20 cycles of
94°C for 30 s, 52°C for 30 s and 72°C for 60 s, with an
extension step of 5 min at 72°C.

2.7. DGGE analysis and sequencing excised DGGE
bands

To determine the bacterial diversity within the biofilm
samples, Denaturing Gradient Gel Electrophoresis
(DGGE) was carried out on the PCR products [23,24].
The PCR products were separated using a DCode
Universal Mutation Detection System (Bio-Rad Labora-
tories), and 1.0 mm thick (16.0 × 16.0 cm2 glass plate)
8.0% (w/v) polyacrylamide gels (40% w/v acrylamide
solution, acrylamide: N,N’-methylenebisacrylamide;
37.5:1; Severn Biotech Ltd.), with denaturant gradient
between 30% and 60% [21]. The polyacrylamide gels
were prepared with a 1 x Tris-Acetate EDTA (TAE)
buffer (pH 8) using a 50 ml volume Gradient Mixer
(Fisher Scientific UK Ltd.). Electrophoresis was per-
formed at 60 °C and 200 V for 5 h (with an initial
10 mins at 80 V). The polyacrylame gels were stained
with SYBRgold nucleic acid gel stain (Invitrogen) for
30 mins and viewed under UV using a Gene Genius
Bio Imaging System (Syngene). Distinguishable
DGGE bands were excised, washed and re-amplified
by PCR [25] for Sanger sequencing by Eurofins
Genomics.

2.8. Total DNA quantification and estimated cell
numbers

The total DNA concentration was measured within the
biofilm and bulk water samples volume using a fluor-
escent dye assay kit (Quant-iT PicoGreen dsDNA Assay
Kit; Invitrogen) and a multimode microplate reader
(Infinite200 Pro; Tecan Group Ltd.). Samples and stan-
dard curves were prepared on a 96 microplate (Opti-
Plate-96F, black; PerkinElmer Inc.) as per the
manufacturer’s specification and the microplate was
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read using the pre-defined PicoGreen programme
(Magellon 7.1). Samples were excited at 485 nm and
fluorescence intensity was measured at 535 nm. All stan-
dard curves used within the study had R2 of at least 0.99.
A strong linear relationship has been reported within the
literature between DNA concentration and total direct
cell counts [26]. The recommendations outlined [26]
were used within the current study to estimate the
total cell number within biofilm samples.

3. Results and discussion

3.1. Surface roughness

3.1.1. Pre-incubation
The results of the physical roughness evaluation for the
four different materials are presented in Table 2. The
surface roughness parameters represent the total
mean values from eight replicate profiles. Figure 2 pre-
sents typical micro-topography (area: 0.5 × 0.5 mm2) of
each of the coupons pre-incubation. It is evident from
Figure 2 that the surface micro-geometry of the four
materials differs when viewed under ESEM. For
example, the surface of the PVC and Str-HDPE
coupons appeared to be covered with numerous
scratches, grooves and deformation marks (Figure 2c
& 2d). Whereas, the surface of the PP coupon appeared
free from deformations and was extremely smooth
(Figure 2a).

The roughness parameters listed in Table 2 show
that the Str-HDPE coupon had the highest roughness
of the assessed coupons, with average kav of 3.70 μm.
The PP coupon was statistically the smoothest of the
five coupons, with an average kav of 0.59 μm.
Ranking the respective materials based on their phys-
ical roughness yields PP < S-HDPE < PVC < Str-HDPE.
Presumably, the increased roughness of the Str-HDPE
coupon would aid microbial attachment and biofilm
formation, whereas, the relatively smooth nature of
the PP coupon would limit biofilm development [27].
The relationship between the value of krms and the
actual value of ks for the S-HDPE pipe was found to
be approximately equal to the relationship proposed
[19] (Equation 2).

3.1.2. Post incubation
After 100 d incubation, ESEM imaging clearly identified
the major components of the biofilms formed on pipe
materials when exposed to drinking water. In particular,
biofilms consisted predominantly of sparse populations
of rod-shaped colonising bacteria embedded within
the EPS-like material (Figure 3). In addition, small
numbers of filamentous bacteria were also evident as
shown in Figure 3e. Similar to observations made by Per-
cival et al. [28] for biofilms incubated with drinking water
when viewed under Scanning Electron Microscopy
(SEM). Furthermore, the ‘fibrillar strand’ structures of
EPS observed [28] were also observed in this study, par-
ticularly on the PVC coupons as shown in Figure 3d.
However, the previous study [28] also observed small
numbers of fungi, yeast cells and diatoms; none of
which were evident in the images captured within the
current study.

Furthermore, the ESEM images also showed that
various amounts of microbial material with very
different biofilm morphologies were present depending
on the pipe material and flow hydrodynamic condition-
ing (see Figures 4 and 5). Typically, the amount of
microbial biomass on the coupons was greater within
the low flow assay than within the high flow assay
(Figure 4). Additionally, it can be seen that biofilms incu-
bated within the high flow assay were seemingly more
isolated than those within the low flow assay. It is
expected that if the overall shear conditions remain
below the critical level, biofilms conditioned at high
shear will show more rapid and extensive development
than those conditioned at low shear, due to mass trans-
fer and diffusion principles [16,28]. Furthermore, the high
mass transfer potential associated with high shear con-
ditioning will generally induce a less isolated and more
uniformly distributed biofilm [28]. Nevertheless, the
inherently low nutrient conditions within drinking
water will likely negate the influence of mass transfer
and diffusion on biofilm development, due to the
overall lack of biological material present [29]. The
increased mass transfer and diffusion associated with
high shear conditioning will also encourage the influx
of disinfectants (if used). However, it should be noted
that the observations made by Percival et al. [28] about
the fostered biofilm uniformity at high shear condition-
ing were for a drinking water system. Nevertheless, it is
evident from the current study that biofilm development
within a drinking water environment is inhibited at high
shear, which suggests that the overall shear forces
imposed by the flow were above the critical levels.

In terms of the discrete materials, the PVC and Str-
HDPE coupons showed the largest amounts of microbial
biomass, irrespective of the flow conditions. These

Table 2. Pre-incubation physical roughness paramters of PP, S-
HDPE, PVC and Str-HDPE coupons.
Material kav (μm) kt (μm) krms (μm) skl ks (μm) (Predicted)*

PP 0.59 24.10 0.85 2.24 2.55
S-HDPE 1.47 23.50 2.22 2.78 6.66
PVC 2.28 28.80 3.08 1.60 9.24
Str-HDPE 3.70 29.40 4.97 1.49 14.91

*ks ≈ 3krms [19].
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materials also showed the greatest initial roughness of
the four coupons (Table 2). The morphology of the
respective biofilms incubated on the PVC and Str-HDPE
coupons; however, differed considerably between the
two materials. The biofilms incubated on the PP and S-
HDPE coupons showed similar morphologies and were
comprised of similar amounts of microbial material.
Based on similar observations on biofilms incubated
with drinking water on different pipe materials, Yu
et al. [30] suggested that surface roughness can have a
considerable impact on biofilm formation, and that
materials which are initially rough, will foster greater
biofilm development.

The coupon images captured by ESEM after incu-
bation with drinking water were analysed using the
MountainsMap software. The results of the physical
roughness evaluation of the coupons post incubation
are presented in Figures 4 and 5. A change in rough-
ness was observed in all cases post incubation. The
change in physical roughness post incubation is a func-
tion of the biofilms structure, and in particular its thick-
ness. Typically, an increase in roughness is fostered by
an increase in thickness. However, this is not always
the case, and in some instances, biofilms have
smoothen an initially rough surface by filling its cavities
and grooves [17]. Such growth practices are common
in low-level fouling systems. On this basis, the surface

of a DWDS could potentially be smoothened by
biofilm development; and consequently, it could
improve the system’s hydraulic performance. The
smoothening of a surface typically involves reduction
in the maximum valley or pit height [17]. This was
however not the case for any of the assessed materials
incubated with drinking water in the current study. As
a result, an increase in physical roughness post incu-
bation was reported for all the materials. For instance,
krms for the PP coupon increased from 0.85–5.86 μm
following incubation. Similarly, the krms for the Str-
HDPE coupon increased from 4.97–7.39 μm following
incubation. Nonetheless, the observed increases in
roughness caused by the biofilm would have had neg-
ligible effect on a system’s hydraulic performance and
equivalent roughness. For instance, the Str-HDPE
coupon had the greatest amount of microbial growth.
Giving that the ks induced by a biofilm is 1.5 times
greater than its kt [17]; the ks imposed by the surface
with fouling would have been between 0.048–
0.050 mm depending the conditioning shear (i.e. kt =
32.3–33.6 μm).

3.2. Biofilm DNA concentration

Following incubation with drinking water for 100 d, the
microbial DNA concentrations extracted from the

Figure 2. Pre-incubation micro-topography maps viewed under ESEM of (a) PP, (b) S-HDPE, (c) PVC and (d) Str-HDPE coupons (size:
0.5 × 0.5 mm2 and magnification: × 200). krms = root-mean-square roughness height (mm).
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discrete coupons ranged from 5.28–45.60 ng/cm2

(Figure 6). The estimated cell concentrations on each of
the coupons ranged from 4.0 × 105–3.7 × 106 cells/cm2.
This concentration range is similar to that reported by
Niquette et al. [31], who found that the total cell concen-
tration on plastic-based materials (including PE and PVC)
when incubated with drinking water with low levels of
residual chlorine (< 0.05 mg/L) ranged from 7.0 × 104–
5.0 × 105 cells/cm2. In contrast, Manuel et al. [16] found
that the cell concentration on coupons fabricated from
HDPE and PVC when incubated with drinking water
under shear conditions in excess of those reported
within the current study were an order of magnitude
higher (i.e. τw = 0.80–1.91 N/m2) and ranged from 2.6 ×
107–8.7 × 107 cells/cm2.

The DNA and total estimated cell concentrations
were consistently lower within the high flow assay
compared to the low flow assay. The magnitude of
the difference between the high and low flow assay
DNA concentrations was seemingly dependant on the
pipe material. For example, the greatest difference in
DNA and therefore cell concentrations between flow
regimens occurred on the PP coupon, which was the
smoothest material assessed. In this particular case,
the percentage difference between the high and low
flow assay was 108%. The lowest difference in DNA
and cell concentrations was found to be 14%, and

this was determined for the material with the highest
initial roughness (Str-HDPE). These observations
further support the assertion that a smooth material
will typically induce higher near-wall velocities and
provide less protection and attachment areas, than a
rough material. Consequently, the smooth surface
characteristics of the PP coupon would have
magnified the impact of the increased shear conditions
inherent within the high flow assay and therefore, con-
tribute to the greater difference between the low and
high flow assay biofilms characteristics.

The S-HDPE and PVC coupons showed intermediate
levels of the respective parameters. The DNA concen-
trations on the S-HDPE coupons were 2.4–3.8 times
lower than the equivalent concentrations on the Str-
HDPE. The only difference between the respective
HDPE materials was surface roughness (Table 2). This
suggests that the initial surface roughness of a material
can have a significant influence on microbial adhesion
and subsequent colonisation. This is because the cav-
ities and grooves, which form a material’s surface
roughness, will typically influence the transport and
attachment of microbial cells by increasing the mass
transfer potential, providing shelter from the adverse
shear conditions and increasing the attachment area
[28,32]. Consequently, numerous studies have found
that materials initially high in roughness support

Figure 3. ESEM micrographs of different pipe material coupons post incubation. (a) PVC at × 5000 magnification, (b) PP at × 20,000
magnification, (c) S-HDPE at × 20,000 magnification, (d) PVC at × 650 magnification, (e) PP at × 20,000 magnification and (f) Str-
HDPE at × 20,000 magnification.
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significant amounts of biofilm development over the
short and long term [30].

3.3. Biofilm bacterial community structure

The dominant bacterial communities within the biofilms
incubated on the different pipe material coupons were
identified by 16S rRNA gene PCR-DGGE (Figure 7). It
should be noted that careful consideration of negative
controls during the DNA extraction and PCR-DGGE
revealed that sequences related to Bacillus species

were found as a contaminant within the cotton buds
used for sampling the biofilm and therefore, these
sequences were not included in the discussions herein.

Results indicate that the dominant bacterial phyla
within biofilms incubated with drinking water were
Alphaproteobacteria, Betaproteobacteria and Gamma-
proteobacteria. Members of the Proteobacteria have
been reported previously as the dominant constituents
within DWDS biofilms [12,30,33]. The bacterial phylum
Cyanobactera was also found to be present, although
only on the S-HDPE coupon at high flow conditions. At

Figure 4. ESEM micrographs of the PP, S-HDPE, PVC and Str-HDPE (a) before incubation and after incubation within the (b) low flow
assay (c) high flow assay ( × 200 magnification).
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the genus level, bacteria belonging to Pseudomonas,
Sphingomonas and Aquabacterium were found to be
abundant within most biofilms (Figure 7b). The results
further revealed that the characteristics of the biofilm
communities varied depending on the material and
hydrodynamic conditions used (Figure 7). For example,
Alphaproteobacteria was the predominant bacterial
group within the biofilms incubated in the low flow
assay, and represented 48% of the total number of phy-
lotypes. Gammaproteobacteria (33%) and to a lesser
extent Betaproteobacteria (19%) were also found
within the low flow assay. In the high flow assay, Betapro-
teobacteria (45%) and Gammaproteobacteria (33%) were
the dominant bacterial groups with Alphaproteobacteria
only representing 11% of the population.

Previously, members of the Betaproteobacteria have
been documented to have a greater ability than other
bacterial groups to attach to a surface and form
biofilms within DWDS [34]. Consequently,

Betaproteobacteria and typically Aquabacterium
species dominate biofilm processes in DWDS. This
could explain their abundance within the biofilms incu-
bated within the current study. The presence of Alpha-
proteobacteria within the respective biofilms could be
explained by their known resilience to the commonly
used disinfectant, chlorine. In particular, Alphaproteo-
bacteria have a stronger resistance to known disinfec-
tants than other bacterial groups found within DWDS
and as a result, they are typically found in abundance
in both planktonic and biofilm growth phases of such
systems, [1]. Sphingomonas and Pseudomonas species
were the predominant known pathogens found in the
biofilms, and in particular, were found to be abundant
within the biofilms incubated within the low flow
assay. The abundance of such species confirms the
potential of biofilms to act as a reservoir for human
opportunistic pathogens, which if mobilised into the
water column could result in health and disease issues

Figure 5. Pre and Post incubation physical roughness paramters for PP, S-HDPE, PVC and Str-HDPE coupons. (a) kav, mean roughness
height and (b) krms, root-mean-square roughness height.

Figure 6. Post incubation (a) DNA concentration and (b) total estimated cell numbers for the PP, S-HDPE, PVC and Str-HDPE coupons
(both high and low flow assay systems).
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for consumers, particularly for the young, elderly and the
infirm [1]. Sphingomonas are typically observed in abun-
dance within DWDS and are known to have a high ability
to form bacterial aggregates and biofilms in order to
protect against disinfectants, as well as survive under
low nutrient concentrations and metabolise a wide
variety of toxic compounds [1,30]. The dominance of
Pseudomonas within DWDS is generally explained by
its ability to produce high amounts of cohesive EPS
[12,35,36] and as a result they are typically the most
abundant bacterial species within DWDS irrespective of
the pipe’s ecology [1,28]. However, in contrast to such
previous findings [1,30], Pseudomonas were rarely
found within the biofilms incubated within the high
flow assay. Interestingly, in the high flow assay,
sequences belonging to Pseudomonas were only
evident within biofilms incubated on the Str-HDPE pipe
material (Figure 7b). This suggests that these species
have a limited ability to propagate within biofilms

under high shear conditions (τw > 0.24 N/m2) without
sufficient protection (i.e. roughness). This is supported
by the study of Simoes et al. [37] who demonstrate
that, although Pseudomonas species produce large
amounts of EPS, the EPS they produce has a poor mech-
anical stability under high shear stress. The fact that
these potential pathogens were only consistently
evident on the Str-HDPE coupon within the high flow
assay, suggests that a property inherent within HDPE fos-
tered their development. Douterelo et al. [1] found that
Pseudomonas species were abundant within biofilms
incubated at shear forces in excess of 0.24 N/m2.
However, the pilot scale pipeline in which the biofilms
were incubated was fabricated from HDPE.

In addition to the protection of biofilms offered by Str-
HDPE, there is also conflicting evidence within the litera-
ture on whether or not PE-based pipes release biode-
gradable organic compounds and phosphorus [12].
This could provide nutrients to support biofilm

Figure 7. Post incubation bacterial community composition of the PP, S-HDPE, PVC and Str-HDPE coupons (both high and low flow
assay systems) determined by 16S rRNA gene PCR-DGGE. (a) Phylum/class level (b) Genus level. Others represent all unidentified
DGGE bands.
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development within DWDS which members of the
genera Pseudomonas could particularly exploit given
their highly metabolically versatile nature [38]. It is also
possible that Pseudomonas species could be causing
the release of nutrients due to their high enzyme activity,
as highlighted by their use in the biodegradation of plas-
tics [38]. There is evidence to suggest PE-based materials
do release such compounds [30]; and there is equally
compelling evidence to suggest that they do not [16].
The low overall system HRT meant it was not possible
to determine if any leaching or biodegradation did
occur within the current investigation. Therefore, it is
suggested that further work is undertaken to investigate
the potential of HDPE to harbour greater concentrations
of pathogens and opportunistic microbes compared to
other plastic-based materials.

4. Conclusions

This study has expanded on the current knowledge relat-
ing to the impact of surface roughness and flow hydro-
dynamic conditions on biofilm development within
drinking water distribution systems. Surface roughness
and flow hydrodynamics are linked by basic boundary
layer principles and as a result, the impacts of these
factors on biofilm development are naturally related to
each other. In this study, the results of the DNA and esti-
mated cell counts indicate that the surface properties,
namely roughness of different plastic materials can have
a considerable impact on microbial attachment and sub-
sequent biofilm colonisation. This is in contrast to previous
investigations,which found that plastic-basedmaterials as
a whole support similar amounts of fixed biomass.

The impact of surface roughness on biofilm develop-
ment was seemingly greater than the impact of flow
hydrodynamics, at least for the range of shear stresses of
between 0.13–0.24 N/m2 and although, this range is rela-
tively small, it is representative of typical DWDS. Further-
more, the concentrations of bacteria were lower in the
high flow assay on the smoother coupons than in the
low flow assay on the rougher coupons. These obser-
vations support the argument that material properties
can have a considerable influence on biofilm develop-
ment within DWDS. However, the inherent relationship
between surface roughness and flow hydrodynamics
should not be ignored; typically, it was found that the
amount of microbial biomass on the coupons was
greater and less isolated within the low flow assay than
within the high flow assay. Moreover, it is also widely
acknowledged that any potentialmaterial and flowhydro-
dynamic impacts are less when high levels of disinfectants
are used. Therefore, conclusions drawn are limited to the
aforementioned shear conditions and areas of low

chlorine concentration (i.e. < 0.04 mg/L). Such areas are
typical at the end of long pipelines or branches.

It is worthy to note that the biofilms incubated for
100 d with drinking water within the current study were
extremely thin. If the observed development is represen-
tative of biofilmswithin actual plastic based systems, then
it is likely those system’s hydraulic performance will be
unaffected by biofilm development. However, as it can
take several years for a biofilm to reach a state ofmaturity,
it would be ideal for more extensive long-term incu-
bations to be performed using a larger facility capable
of measuring small changes in surface roughness.
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