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Abstract

Epistemic graphs are a recent generalization of epistemic
probabilistic argumentation. Relations between arguments
can be supporting, attacking, as well as neither supporting
nor attacking. These interdependencies are represented by
epistemic constraints, and the semantics of epistemic graphs
are given in terms of probability distributions satisfying these
constraints. We investigate the behaviour of epistemic graphs
in a dynamic setting where a given distribution can be up-
dated once new constraints are presented. Our focus is on
update methods that minimize the change in probabilistic be-
liefs. We show that all methods satisfy basic commonsense
postulates, identify fragments of the epistemic constraint lan-
guage that guarantee the existence of well-defined solutions,
and explain how the problems that arise in more expressive
fragments can be treated either automatically or by user sup-
port. We demonstrate the usefulness of our proposal by con-
sidering its application in computational persuasion.

1 Introduction

Abstract argumentation is a rich research area and many
of the recent developments have been focused on fine—
grained approaches towards argument acceptability (Thimm
2012; Hunter 2013; Hunter and Thimm 2014; Cayrol and
Lagasquie-Schiex 2005; Leite and Martins 2011; Rago et al.
2016; Bonzon et al. 2016; Amgoud and Ben-Naim 2017;
Brewka et al. 2018). Indeed, the empirical study carried
out in (Polberg and Hunter 2018) shows the need for such
methods when considering argumentation involving human
participants. Amongst the aforementioned works we can
find epistemic probabilistic argumentation (Thimm 2012;
Hunter 2013; Hunter and Thimm 2014), which allows us to
express the degree to which a given argument is believed or
disbelieved in terms of probabilities. However, it has been
primarily developed in the context of argumentation graphs
involving only the attack relation, and it does not meet the
need for bipolar settings highlighted by the empirical study.
Therefore, (Hunter, Polberg, and Thimm 2018) recently in-
troduced epistemic graphs as a generalization of epistemic
probabilistic argumentation.
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In epistemic graphs, an argument can be believed or dis-
believed to a given degree, and how other arguments influ-
ence a given argument is expressed by epistemic constraints.
Epistemic graphs are capable of handling positive, nega-
tive, as well as neither positive nor negative relations be-
tween arguments. They are context sensitive in the sense
that the same graph structure can have different constraints
associated with them. Assume an argument 4, its attacker B
and supporter C. For one instantiation of these arguments,
A may be believed as long as C is believed more than B,
whereas for another instantiation, A may be believed only
if B is disbelieved. We can model these different situations
using constraints. Epistemic graphs also allow modelling of
different perspectives. The same graph structure with the
same instantiations for the arguments can have different con-
straints, thus allowing for different agents to give their views
on the relations between arguments. The graphs also allow
for modelling of imperfect agents and of incomplete situ-
ations. For example, it is possible to model an agent who be-
lieves both an argument and its attacker, or who disbelieves
an unattacked argument. These features are important in
predicting how certain real-world agents reason, modelling
agents which might be unable or unwilling to provide their
counterarguments, and dealing with enthymeme arguments
that can be decoded differently by the agents.

Semantics of epistemic graphs are given in terms of
probability distributions satisfying the constraints associated
with a given graph. A natural question is how a given dis-
tribution should be updated when new constraints are pre-
sented. In this work, we identify a number of intuitive prop-
erties that a reasonable update method should satisfy and
present several distance minimizing update approaches sat-
isfying them. This includes methods that consider distances
between beliefs in sets of arguments as well as distances be-
tween the beliefs in arguments themselves. Guarantees for
the existence and uniqueness of solutions depend on the ex-
pressiveness of our constraints. We thus identify the frag-
ments of our epistemic language that have the desired prop-
erties and propose approaches for handling the parts that do
not. Finally, we demonstrate the usefulness of our proposal
by considering its application in computational persuasion.

The paper is organized as follows: Section 2 introduces
epistemic graphs. We present postulates for epistemic up-
date functions in Section 3 and propose several distance



minimizing methods that meet our requirements in Sections
4 and 5. Section 6 demonstrates how our approach can be
harnessed in user modelling in persuasion dialogues. We
discuss related work in Section 7 and conclude in Section 8.

2 Epistemic Graphs

An argument graph informs us what are the arguments and
relations between them. It can be seen as a directed graph
in which nodes represent arguments and arcs represent re-
lations. We associate each arc with a label representing its
nature. We use a positive label to denote a positive influence
(i.e. support), a negative label to denote a negative influence
(i.e. attack), and a star label to denote an influence that is
neither strictly positive nor negative (i.e. dependency).

Definition 2.1. Let G = (V, R), where V is a set of nodes
and R C 'V x V is a set of arcs, be a directed graph. A
labelled graph is a tuple X = (G, L) where L : R — 2%

is labelling function and () is a set of possible labels. X is
fully labelled iff for every a € R, L() # 0.

Here, we assume that Q = {+, —, %} and that the graph
is fully labelled. Nodes(G) = V denotes the nodes and
Arcs(G) = R denotes the arcs in G. The parents of a node
B € Nodes(G) are Parent(B) = {A | (4,B) € Arcs(G)}.

The epistemic language introduced in (Hunter, Polberg,
and Thimm 2018) consists of Boolean combinations of in-
equalities involving statements about probabilities of formu-
lae built out of arguments. In this work we assume a simple
refinement of this approach which we define next:

Definition 2.2. Let G be a directed graph. The epistemic
language based on G is defined as follows:

e a term is a Boolean combination of arguments'.
Terms(G) denotes all the terms that can be formed from
the arguments in G.

e qa linear operational formula is a formula Zle ciplay)
where all a; € Terms(G) and ¢; € Q are rational num-
bers. LOFormulae(G) is the set of all linear operational
Sformulae of G and we read p(«) as “probability of a”.

e ¢ linear epistemic atom is of the form a#x where # €
{=,#,>,<,>,<}, x € Qand a € LOFormulae(G).

e ¢ linear epistemic formula is a Boolean combination of
linear atoms. LFormulae(G) denotes the set of all possi-
ble linear epistemic formulae of G.

For oo € Terms(G), Args(«) denotes the set of all argu-
ments appearing in « and for a set of terms I C Terms(G),
Args(T") denotes the set of all arguments appearing in T
Given a formula ¢ € LFormulae(G), let FTerms(v)) de-
note the set of terms appearing in ¢ and let FArgs(y) =
Args(FTerms(1))) be the set of arguments appearing in 1.

Example 2.3. For A,B,C,D € Nodes(G), ¢ : p(A AB) —
p(C) —p(D) > 0 is an example of a linear epistemic formula.
The terms of that formula are FTerms(¢) = {AAB, C,D}, the
arguments appearing in them are FArgs(¢)) = {A,B,C,D}.

"We use V, A and — as connectives in the usual way, and can
derive secondary connectives, such as implication —, as usual.

Having defined the syntax of our language, let us now fo-
cus on its semantics. A belief distribution on arguments is a
function P : 2N°des(9) 5 0, 1] s.t. > _TCNodes(g) (I = 1.
With Dist(G) we denote the set of all belief distributions on
Nodes(G). Each T" C Nodes(G) corresponds to an interpre-
tation of arguments. We say that I' satisfies an argument A
and write I |= A iff A € T. The satisfaction relation is ex-
tended to complex terms as usual. For instance, I' = - iff
F'FaandT EaABiffT EaandT E §.

The probability of a term is defined as the sum of the prob-
abilities (beliefs) of its models:

P(a) = > P(I).

I'CNodes(G) S.t. T'Ea

We say that an agent believes a term o to some degree if
P(a) > 0.5, disbelieves « to some degree if P(a) < 0.5,
and neither believes nor disbelieves o when P(«) = 0.5.

Definition 2.4. Let ¢ be a linear atom Zle ¢i - p(oy)#b.
The satisfying distributions of ¢ are defined as Sat(p) =
(P € Dist(G) | XK, ¢; - P'(c;) #b}.

The set of satisfying distributions for a linear formula is
as follows where ¢ and 1) are linear formulae:

o Sat(¢ A1) = Sat(¢) N Sat(y);

e Sat(¢ V ¢) = Sat(¢) U Sat(v); and

e Sat(—¢) = Sat(T) \ Sat(¢).

For a set of linear formulae ® = {¢1,..., oy}, the set of
satisfying distributions is Sat(®) = Sat(¢1)N...NSat(¢py,).

Epistemic constraints are epistemic formulae that contain
at least one argument. Epistemic graphs are labelled graphs
equipped with a set of such constraints:

Definition 2.5. A linear epistemic constraint is a linear
epistemic formula ¢ € LFormulae(G) s.t. FArgs(y) # 0.
An epistemic graph is a tuple (G, L,C) where (G, L) is a
labelled graph, and C C LFormulae(G) is a set of epistemic
constraints associated with the graph.

Example 2.6. Consider a graph with nodes {A,B,C,D} and
the constraint v : p(AAB) —p(C) —p(D)>0 A p(D)>0. A
probability distribution Py with Py(A AB) = 0.7, P;(C) =
0.1 and P (D) = 0.1 is in Sat(y). However, a distribution
P, with Po(AAB) = 0 cannot satisfy 1) and so Ps ¢ Sat(1)).

The semantics of epistemic graphs are given in terms of
probability distributions. A range of semantics have been
proposed in (Hunter, Polberg, and Thimm 2018). In the
context of this work it suffices to focus on the simplest one,
demanding that the constraints of the graph are satisfied:

Definition 2.7. Let X = (G, L,C) be an epistemic graph.
An epistemic semantics associates X with a set R C
Dist(G). A distribution P € Dist(G) meets the satisfaction
semantics iff P € Sat(C).

We say that a framework is constraint consistent iff
Sat(C) # 0, i.e. the satisfaction semantics produces at least
one distribution for this graph.

Example 2.8. Consider the labelled graph in Figure 1 and
imagine a passenger named Terry. We model Terry’s opin-
ions on how the arguments interact in the following manner.



A = The train will ar-
rive at 2pm because it is
timetabled for a 2pm arrival.

D = The live
travel info app
lists the train
being on time.

C = The train
appears to be
travelling slower
than normal.

B = Normally
this train
service arrives
a little bit late.

Figure 1: Labelled graph for Example 2.8. Edges labelled —
denote attack and edges labelled + denote support.

Since A is attacked by B and C, we want that the belief in A is
bounded from above by the average belief in B and C. This
can be described with the formula p(A)+3p(B)+1p(C) < 1.
Since D supports A, we also want to impose a lower bound
on the beliefin A. This lower bound can be decreased by the
average belief in B and C. We capture this intuition with the
formula p(A) + 1p(B) + 1p(C) — p(D) > 0. Finally, Terry
is a regular on this line and believes that the train normally
arrives late. We model this by the formula p(B) > 0.65.
Probability distributions P s.t. P(A) = 0.45, P(B) = 0.65,
P(C) = 0.2 and P(D) = 0.5, and P’ s.t. P'(A) = 0.425,
P’(B) = 0.65, P'(C) = 0.5 and P’'(D) = 0.5, are examples
of satisfying distributions of this graph.

3 Postulates for Epistemic Update Functions
Whether we consider dialogical or monological argumen-
tation, learning new information calls for an update in our
beliefs. We are therefore interested in developing epistemic
update functions, which take our current epistemic state (i.e.
current belief distribution) and an epistemic formulae repre-
senting new information, and return a set of candidates for
the next epistemic state.

Definition 3.1 (Update Function). An update function for
an epistemic graph (G, L,C) is a function U : Dist(G) x
2LFormu|ae(g) - 2Dist(g)‘

In order to guarantee meaningful update functions, we
consider properties similar to (Hunter and Potyka 2017).

e Uniqueness: |U(P, )| < 1.

e Completeness: If Sat(C U W) # (), then |U(P, )| > 1.
o Epistemic Consistency: U (P, ) C Sat(C).

e Success: U(P, ) C Sat(¥).

o Tautology: If Sat(V) = Sat(T) then U(P, ¥}) = {P}.
e Contradiction: If Sat(C U ¥) = () then U(P, ¥) = 0.

o Representation Invariance: If U, U5 are equivalent,
i.e., Sat(¥y) = Sat(¥s), then U(P, V) = U(P, U5).

o Idempotence: If U(P,¥) = {P*} then U(P*,T) =
{P*}.
Uniqueness guarantees that there is at most one candi-

date for the next epistemic state, and Completeness states

that there is at least one if the update is consistent. If both
properties are satisfied, the next epistemic state is uniquely

defined whenever the update is consistent. Epistemic Con-
sistency demands that the constraints in our graph are main-
tained and Success demands that the next state satisfies the
beliefs that we updated with. Tautology states that updating
with a tautological set of constraints should not change any-
thing and Contradiction that an inconsistent update should
yield the empty set. Representation invariance guarantees
that changing the syntactic representation of updates does
not change the outcome of the update. Finally, Idempotence
demands that a repeated update does not change beliefs.
Throughout the next sections, we introduce some update
functions and investigate under which conditions they sat-
isfy our desiderata. Subsequently, we consider how these
update functions can be harnessed in dialogical approaches.

4 Distance Minimizing Update Functions

We now focus on the update functions that minimize some
notion of distance to the prior epistemic state. Our distance
functions may not necessarily be metrics, but we assume that
they satisfy the properties explained below:

Definition 4.1 (Epistemic Distance Function). An epistemic

distance function is a function d : Dist(G) x Dist(G) — R

that satisfies

1. Positive Definiteness: d(P, P') > 0 and d(P, P') = 0 iff
P="P.

2. Continuity: d is continuous in the second argument.

3. Strict Convexity: d is strictly convex in the second argu-
ment.

Continuity and convexity are defined as usual (Rudin
1976). Intuitively, continuity guarantees that probability dis-
tributions that assign similar probabilities to subsets of argu-
ments have a low distance value. Strict convexity guarantees
that there often is a unique solution and no non-global local
minima when we minimize the distance. Popular examples
of epistemic distance functions are the Least Squares dis-
tance and the KL-divergence.

o Least Squares Distance:

dQ(Pa Pl) = ZXgNodes(g)(P(X) - P/(X))z
e KL-divergence:

dKL(Pv Pl) = ZXgNodes(g) P(X) ' IOg 11;/(())(())
The KL-divergence is an example of an epistemic distance
function that is not a metric (it does not satisfy symmetry and
the triangle-inequality). However, it still has some intuitive
geometric properties and is a popular measure to compare
probability distributions (Csiszar 1975). We focus on update
functions that minimize some epistemic distance function to
a prior belief state. In the definition of optimization prob-
lems, “min f(x)” denotes the minimum function value that
f takes over the feasible region and “arg min f(z)” denotes
the set of points where f takes this value.

Definition 4.2 (Distance-minimizing Update Function).
Given some epistemic distance function d, the distance-
minimizing update function w.z.z. d is defined by

— 3 /
Ua(P,¥) = arg P’eSrnatl(rClU\I/)d(P7 P

Sor all finite sets of formulae ¥ C LFormulae(G).



To begin with, we note that every distance-minimizing up-
date functions necessarily satisfies all our desiderata other
than uniqueness and completeness.

Proposition 4.3. Every distance-minimizing update func-
tions satisfies Epistemic Consistency, Success, Tautology,
Contradiction, Representation Invariance and Idempotence.

Uniqueness and and Completeness are more subtle and
depend on the numerical nature of our constraints. Through-
out the next sections, we will investigate which fragments of
the language of linear epistemic formulae guarantee unique-
ness and completeness. The following proposition translates
a useful standard result from the theory of numerical opti-
mization to our framework.

Lemma 4.4. If Sat(C U ¥) is non-empty, convex and com-
pact, then Ug(P, V) = {P*} is a singleton set and can be
computed by means of convex programming techniques.

For the formal definition of convex and compact sets, we
refer again to (Rudin 1976). Roughly speaking, convexity
means that the set is closed under weighted combinations of
probability distributions. A compact set is bounded and con-
tains all points on its boundary similar to a compact interval.

We will now look at some fragments of the language of
linear epistemic formulae that give us additional guarantees.

Updating with Non-strict Epistemic Atoms

To begin with, we restrict ourselves to atoms that contain
only non-strict inequalities and equality.

Definition 4.5 (Non-strict Epistemic Atom). A non-strict
epistemic atom is a linear atom ;| ¢; - p(c;) # b where
#e{<, =2}

If C and U consist only of non-strict epistemic atoms,
Sat(C U ) is always well-behaved in the following sense.

Proposition 4.6. If CUWV contains only non-strict epistemic
atoms, then Sat(C U W) is compact and convex.

Hence, for the fragment of non-strict epistemic axioms,
Proposition 4.3 guarantees that distance-minimizing update
functions satisfy our remaining desiderata.

Theorem 4.7. In the fragment of non-strict epistemic ax-
ioms, every distance-minimizing update function satisfies
Uniqueness and Completeness.

Let us note again that both the least-squares distance and
the KL-divergence satisfy the assumptions on d. For the
following examples, we used the least-squares distance and
computed solutions with IBM CPLEX?.

Example 4.8. Note that the constraints in Example 2.8 are
non-strict epistemic atoms. The first row in Table 1 shows
the beliefs in arguments for our initial epistemic state Pj.
Suppose that Terry can access the info app and learns that
the train is indeed on time. Furthermore, he also strongly
believes that the train is travelling at its usual speed. We can
model this by an update with ¥, = {p(D) = 1,p(C) = 0}.
The second row in Table 1 shows the beliefs in arguments

Zhttps://www.ibm.com/analytics/data-science/prescriptive-
analytics/cplex-optimizer

P P(a) P(B) P(C) P(D)

P 045 065 02 05
Py =Ug (P, W) 067 065 0 1
Py =Ug (P, Wy) 0175 065 1 0.5

Table 1: Returning to Example 4.8, beliefs in arguments be-
fore and after updating the epistemic state with new knowl-

edge U1 = {p(D) = 1,p(C) = 0} and ¥y = {p(C) = 1}.

after updating Py to Py = Uy, (P1, V1). Assume that a little
bit later, the train has to slow down because of bad weather
conditions. The third row in Table 1 shows the beliefs in
arguments after updating Py with U = {p(C) = 1} to P; =
Ua, (Py, ¥3). Note that the fact that the train slows down not
only decreases Terry’s belief in A, but also indirectly leads to
a decrease in D, which can be seen as Terry no longer being
sure that the app showing the train on time indeed means the
train will arrive on time.

Updating with Non-strict Epistemic Formulae

We now extend our fragment by allowing connecting epis-
temic atoms via logical conjunction and disjunction.

Definition 4.9 (Non-strict Epistemic Formulae). The set of
non-strict epistemic formulae is the closure of non-strict
epistemic atoms under the logical connectives N\ and V.

Including conjunctions of non-strict epistemic atoms in
our fragment does not cause any difficulties because adding
a conjunction ¢ A @9 to our set of constraints C is equiva-
lent to adding both 1 and ¢5. However, while conjunction
extends our language syntactically, we do not gain anything
semantically. Allowing disjunctions improves the expres-
siveness of our language greatly, but at a considerable cost.
In general, distance-minimizing updates might not be well-
defined anymore.

Example 4.10. Consider an epistemic graph over a single
argument A with the constraint p(A) < 0.3Vp(A) > 0.7 (the
constraint says that the probability of A should be bounded
away from 0.5 by at least 0.2). Let Py be the uniform distri-
bution from Dist(G). Then Uy, (Py, D) is not well-defined be-
cause both the distribution Py with Py (A) = 0.3 and P, with
P5(A) = 0.7 minimize the least-squares distance from Py
among the distributions in Sat({p(A) < 0.3V p(A) > 0.7}).

The general problem of disjunctions is that we may lose
convexity of Sat(C). This can cause the existence of mul-
tiple optimal solutions and can also cause the existence of
non-global local minima which complicates the computa-
tional problem in practice. However, we can deal with this
problem as we explain below.

Consider a set of formulae from the fragment of non-strict
epistemic formulae. Two formulae ¢, @2 in this set can be
equivalently replaced with 1 A 2. Hence, we can represent
the complete set by a single formula ¢. In particular, we can
assume that ¢ is in disjunctive normal form (DNF)?.

*Normal forms of epistemic formulae are analogous to propo-



Example 4.11. Consider an epistemic graph over argu-
ments A, B, C and suppose C contains the formulae p(A) >
0.6 Vp(B) > 0.6 and p(B) < 0.4V p(C) < 0.4. We can re-
place both expressions equivalently by (p(A) >0.6Vp(B) >
0.6) A (p(B) < 0.4V p(C) < 0.4), which in turn is equiv-
alent to the following expression in disjunctive normal form
(p(A) > 0.6 A p(B) < 0.4) V (p(A) > 0.6 A p(C) <
0.4) V (p(B) > 0.6 A p(C) < 0.4).

We can find all distance-minimizing probability distribu-
tions by solving an independent convex optimization prob-
lem for every conjunction in the DNF. In particular, the num-
ber of minimal solutions can be bounded by the number of
conjunctions in the DNF and is therefore always finite.

Proposition 4.12. Suppose that C UV is from the fragment

of non-strict epistemic formulae. Let \/f:1 I'; denote a DNF
representation of C U U. Let P} be the unique solution of
Uqa(P,T;) and let m* = min{d(P, P;) | 1 < i < k}. Then
Ua(P,®) = {P | d(P,P}) = m*} and |Uy(P, V)| < k.

Of course, the number of conjunctions in the disjunctive
normal form can be exponential in the size of C. However,
this is only the worst case and there are many interesting ar-
gumentation problems of moderate size. In summary, for the
fragment of non-strict epistemic formulae, we have a general
completeness, but not a general uniqueness guarantee.

Theorem 4.13. In the fragment of non-strict epistemic
formulae, every distance-minimizing update functions sat-
isfies Completeness. Uniqueness can be violated, but
|Ua(P,0)| < k*, where k* is the smallest number of con-
Jjunctions in all DNF representations of C U W.

Example 4.14. Consider again the initialization problem
from Example 4.10. T'1 corresponds to p(A) < 0.3, I'y to
p(A) > 0.7. We have P;(A) = 0.3 and P;(A) = 0.7 as
possible solutions.

If we have multiple solutions, we may define tie-breaking
rules to select a prefered distribution, let the user decide
which distribution to use or relax our uniqueness condition
and work with multiple candidates at the same time.

Updating with General Epistemic Formulae

Let us now consider the full language of epistemic formulae.
Negation and strict inequalities come at a price. Whereas
we may lose the convexity of Sat(C) due to disjunctions, we
may lose closedness due to negations. This is again a prob-
lem for the well-definedness of distance-minimizing updates
because an optimal solution might not exist anymore.

Example 4.15. Consider again an epistemic graph over a
single argument A with the constraint —(p(A) = 0.5) which
is equivalent to p(A) # 0.5. Let Py be the uniform dis-
tribution from Dist(G). Then there is no distribution in
Sat({p(A) # 0.5)}) that minimizes the least-squares dis-
tance to Py because the distributions P, with P.(A) = 0.5+¢
come arbitrarily close to Py as € — 0.

sitional normal forms where epistemic atoms are treated as propo-
sitional atoms.

Let us first focus on computing solutions if they exist. A
given set I" of epistemic formulae can be expressed as a sin-
gle formula representing a conjunction of all ¢ € I'. This
formula can then be transformed to negation normal form in
the usual manner, and each negative literal can be turned into
a positive one by observing that negation changes only the
(in-)equality relation. For instance, negating = yields # and
negating < yields >. We can thus assume that the formula
contains again only disjunction and conjunction. The differ-
ence is that we can now have strict inequalities with <, #
and >. Given that these relations may cost us the existence
of update solutions, an interesting question is what do we
lose when relaxing strict inequalities. We therefore propose
the following definition.

Definition 4.16 (Relaxed DNF). Consider a general epis-
temic formula ¢ in DNF where all negations have been elim-
inated. The relaxed DNF of ¢ is obtained by first deleting
all contradictory conjunctions in ¢ and then replacing all
appearances of < with <, > with > and replacing all atoms
containing # with the tautology p(T) = 1 afterwards.

Example 4.17. Consider the general epistemic formula
(p(&) = 1 — p(B) = 1) A (p(B) = 1 — p(C) = 0)
and the corresponding DNF T'y AN T's A T's A T'y where
I'y : p(A) #1 ApB)#1, Ty : p(A) #1 A p(C) =0,
I's : pB) =1ApB)#1 I'y : p(B) =1Ap(C) =0.
Note that I's is contradictory. The corresponding relaxed
DNF is TY ATH AT) where T} : p(T) =1 A p(B) # 1,
Iy :p(T)=1Ap(C)=0,T% : p(B)=1 A p(C)=0.

Notice that the relaxed disjunctive normal form is in the
fragment of non-strict epistemic formulae. As the following
proposition explains, the relaxed disjunctive normal form al-
lows us to reduce the update problem for general epistemic
formulae to the one for the fragment of non-strict epistemic
formulae. The solutions of the update under the relaxed for-
mula that satisfy the strict constraints are exactly the solu-
tions of the update under the strict formula. In particular, if
none of the solutions of the update under the relaxed for-
mula satisfy the strict constraints, the strict update is not
well-defined because the minimum does not exist.

Proposition 4.18. Let CUW contain arbitrary epistemic for-
mulae. Let \/f‘:1 T'; denote a DNF of C UV where negations

have been eliminated. Let \/f;l I} denote the correspond-
ing relaxed DNF. For i = 1,...,k/, let P} be the unique
solution of the optimization problem
min  d(P, P’)
Presat(T)

corresponding to the i-th conjunction I';; in the relaxed DNF.
Let m* = min{d(P,P) | 1 < ¢ < k'} be the minimum
distance obtained among all P. Then Uy(P, V) equals

(Pr|1<i<k,d(P,P’)=m"and P} € Sat(T;)}.

In general, we have neither completeness nor unique-
ness guarantees for the full language of epistemic formu-
lae. However, as Proposition 4.18 explains, the update prob-
lem for the full language can be reduced to the update prob-
lem for the fragment of non-strict epistemic formulae: given



a general epistemic formula, we compute the correspond-
ing disjunctive normal form, eliminate negation by chang-
ing (in-)equalities appropriately and then consider the corre-
sponding relaxed disjunctive normal form. Proposition 4.12
explains how to compute the solutions and guarantees that
there is only a finite number of them. We then restrict the
solutions to those that satisfy the strict constraints and ob-
tain the solutions (possibly none) for the original update as
Proposition 4.18 explains. The following two simple exam-
ples show cases in which a solution exists and does not exist.

Example 4.19. Consider an epistemic graph over two ar-
guments A/B. Let C = {p(A)=1 — p(B) =0} and let P,
be the uniform distribution from Dist(G). Consider the up-
date U = {p(A) =1}. We have Ty : p(A) #1 Ap(A)=1
and Ty : p(B) = 0 A p(A) = 1. Since T'y is contradictory,
the relaxed DNF is just T, = T'5. For the corresponding
optimal solution Py, we have Py(A) = 1 and Py(B) = 0
as desired. Notice that deleting I'1 is crucial because relax-
ing the contradictory formula T'y would yield the satisfiable
JormulaTy : p(T)=1Ap(A)=1.

Example 4.20. Consider again the update from Example
4.15. Ty corresponds to p(A) # 0.5 and T} is the tautology
p(T) = 1. We have Pf(A) = 0.5 and Py violates the strict
constraint, so we know that no solution exists.

Note that if there is no solution for the strict DNF, but
the relaxed DNF has a solution, then there must be a P/
with d(P, P¥) = m* and P ¢ Sat(I';). Hence, a strict
inequality in I'; causes a non-existence problem. In this
way, we can identify problematic strict inequalities and sug-
gest to the user to replace strict inequalities temporarily
with slightly relaxed inequalities. In our example above,
we may replace P;'(A) = 0.5 with the relaxed constraint
p(A) < 0.49V p(A) > 0.51. In this way, we can circumvent
the non-existence problem in practice.

5 Atomic Distance Minimization

While a distribution updated with the previously discussed
methods will meet the epistemic constraints, minimizing the
least squares distance does not necessarily change the prob-
ability of arguments in an intuitive manner. Consider the
following example:
Example 5.1. Let us come back to Example 4.8 and the
graph from Figure 1. We consider the following constraints
describing Terry’s current impressions of the trip {p(A) +
1 1 1 1
2p(B) + 3p(C) < 1, p(A) + 3p(B) + 5p(C) — p(D) = 0,
p(B) > 0.65} and obtain the probability distribution de-
scribed in the first row of Table 1. Suppose another trav-
eller tells Terry that the info app states that the train is in-
deed on time and that Terry trusts his statement. We de-
scribe this with W1 = {p(D) = 1}. By performing a least-
squares update, we obtain a distribution Py s.t. Py(A)=0.5,
P5(B) = 0.65, P5(C) =0.36 and P»(D) = 1. Although this
distribution satisfies our constraints and minimizes the over-
all change in probability mass, the increase in belief in C
might not be considered justified.

The reason for the behaviour observed in the example is
that we change a probability distribution over sets of argu-
ments, not over atomic arguments. Probability distributions

are defined in this way because probabilistic reasoning is not
truth functional. That is, the probability of complex formu-
lae cannot be computed from the probabilities of atomic for-
mulae without making further assumptions. Thus, it is not
sufficient to define probabilities only for atomic arguments.

However, since humans tend to think in terms of proba-
bilities of atomic arguments, a natural idea to make updates
more intuitive is to measure the difference in probability
mass assigned to arguments. Such distance measures have
been called atomic distances in (Hunter and Potyka 2017).
Unfortunately, they satisfy neither positive definiteness nor
strict convexity and, thus, are not epistemic distance func-
tions. The main problem is that many different distributions
can assign the same beliefs to arguments. However, we can
use such a measure as a preprocessing step. We first re-
strict the models in Sat(C U ) to those that leave the prob-
ability mass of arguments as close as possible to the prior
state. Among those distributions that are left, we then min-
imize the distance to the prior state with respect to an epis-
temic distance function. In order to do this, we consider a
weighted atomic distance measure.

Definition 5.2 (Weighted Atomic Distance). Let S C
Nodes(G) be a set of arguments and let w : S — R{ be a
weight function assigning a non-negative weight to each ar-
gument in S. The weighted atomic distance with respect to
wis defined as dy, (P, P') = ZAeS w(A)-|P(A)—P'(A)|.

The weight function allows us to control which atomic
beliefs should change first. For instance, when updating ar-
guments in a set S, the weight function could assign to each
argument the minimal distance in the graph from arguments
in S. As a result, the probabilities of arguments close to .S
will change first. We will discuss such approaches in more
detail in future work. Let us note that the weighted atomic
distance still has some useful properties.

Lemma 5.3. d}, is a continuous and convex pseudometric.

As we explained in the previous sections, we can break
down all update problems to ones that contain only a dis-
junction of conjunctions of non-strict atoms. We can then
solve independent optimization problems for each conjunc-
tion to address our original problem. The following lemma
explains that restricting Sat(CU V) to those distributions that
minimize a weighted atomic distance measure d¥, produces
a set that still maintains useful properties. In particular, we
can identify the restricted set through linear programming
techniques.

Lemma 54. If T is a conjunction of non-strict epistemic
atoms, then the solutions of

arg min_dy, (P, P)

P’eSat(T")
correspond to the solution of the linear program
min Z (6% +63) 1)
AeS

s.t. P’ e Sat(l)
w(A) - (P(A) — P'(A)) =0, -6, forallAe S
65,0, €Qf forall Ae S

and form a compact and convex set.



3 P(A) P(B) P(C) PD)

P 045 065 02 05
P, =Uy (P, ;) 0575 065 02 1
Py =UY (P, W) 0175 0.65 1 1

Table 2: Beliefs in arguments before and after updating the
epistemic state with new knowledge ¥; = {p(D) = 1} and
Uy = {p(C) = 1} in Example 5.7.

We can now minimize an epistemic distance function
exactly as before with the only difference that we restrict
ourselves to those satisfying distributions that minimize a
weighted atomic distance. Thus, what we consider is a two-
stage procedure. In the first stage, we minimize the atomic
distance to the prior distribution to restrict to those probabil-
ity distributions that do not change the beliefs in arguments
more than necessary. This stage usually produces an infinite
number of candidates with equal atomic distance. Then, in
the second stage, we pick from these candidates the one(s)
that minimize an epistemic distance to the prior distribution.

Definition 5.5 (Atomic Distance-minimizing Update Func-
tion). Given some epistemic distance function d and some
weight function w : S — Rsr over a subset of arguments
S C Nodes(G), the atomic distance-minimizing update
function U} (P, ¥) with respect to d is defined by the set of
minimal solutions of the optimization problem

min d(P, P")
s.t. P eSat(Cu )

> (65 +63)=m"

AesS
w(A)- (P(A) — P'(A)) =64 — 6, forallA€S
6;{,62 €Qf forall A€ S,

where m* is the minimum of all minima of (1) computed for
all conjunctions of a relaxed DNF of C U .

Since restricting the feasible region in the first stage main-
tains all useful properties of Sat(CUW), the following results
can be proved completely analogously as before.

Theorem 5.6. Every atomic distance-minimizing update
functions satisfies Epistemic Consistency, Success, Tautol-
ogy, Contradiction, Representation Invariance and Idem-
potence. In the fragment of non-strict epistemic formulae,
Completeness is satisfied as well and UY (P, ¥) is guar-
anteed to be finite. In the fragment of non-strict epistemic
atoms, Uniqueness is also satisfied.

Example 5.7. Let us come back to Example 5.1 and this time
carry out the updates using the atomic distance-minimizing
update approach s.t. for every argument X, w(X) = 1 (i.e.
all atomic distances are treated equally). By performing an
update with the formula V1 = {p(D) = 1}, we obtain the
probability function Ps visible in the second row of Table
2. The new probability assignments to arguments are now
more intuitive than in Example 5.1.

6 Updates in Persuasion Dialogues

In this section we show how the methods we have discussed
can be harnessed in dialogical argumentation with epistemic
graphs. We focus on asymmetric dialogues, but note that our
approach can be adapted to further methods as well.

An argument dialogue can be seen as a sequence of
moves D = [my,...,mg]. Possible moves include posit-
ing arguments, making claims, conceding a claim, provid-
ing premises for an argument and more. We can differ-
entiate between symmetric and asymmetric dialogues. In
the latter, certain moves may only be available to some of
the dialogue participants, or the moves made by one par-
ticipant can be restricted by another. In contrast, the for-
mer allow all participants equal freedom (Prakken 2006;
Hunter 2015). A dialogue protocol states the rules of the
dialogue, such as what moves can follow other moves, and
can include requirements such as a persuasion goal being the
first posited argument and more.

Asymmetric dialogues can be harnessed by automated
persuasion systems so that they do not need to be equipped
with natural language processing capabilities. The system
(persuader) can posit arguments (denoted A!), request rea-
sons for disagreeing with an argument (denoted A7), re-
quest reasons for agreeing with an argument (denoted A7),
and end the dialogue (denoted L g). The system only ter-
minates the dialogue when there are no arguments left to
consider. The user (persuadee) reacts to a posit with a state-
ment of belief (denoted A : x, where = € [0, 1]) and to rea-
sons for agreeing and disagreeing with statements of beliefs
to the attackers/supporters of a given argument that are sup-
plied by the system (denoted [A; : x1,...,4A, : x,]|, where
x; € [0, 1] and arguments A; are made available by the sys-
tem and depend on the request). Finally, the user is allowed
to terminate the dialogue at any point in time (denoted L /).
We assume that the dialogue participants take turns when
performing moves, i.e. if m; is a move belonging to the sys-
tem, then m,,; is associated with the user.

Example 6.1. Consider the graph in Figure 2 and imag-
ine the following exchange. The system (S) puts forward
A, to which the user named Morgan (M) disagrees and as-
signs a belief of 0.125. S asks for the reasons for this and
presents B, C and D as possible options. M agrees with B and
D (beliefs 0.875) and strongly disagrees with C (belief 0). In
response to that, S first posits E, to which M agrees with be-
lief 0.75, and then posits F, to which M somewhat disagrees
(belief 0.375). S follows up on that with G, to which M once
more disagrees with belief 0.125. This dialogue can be en-
coded as a sequence [Al; A : 0.125;A~7;[B: 0.875,C: 0,D:
0.875],ELE : 0.875;F; F : 0.375;Gl; G : 0.125; Lg].

In epistemic approaches to persuasion, the model of the
user is typically understood as a belief distribution over the
graph that the dialogue is based on. It is meant to reflect
the opinions that the user has about the arguments. As the
dialogue progresses, the beliefs of the user can change, and
therefore so should the belief distribution (see Figure 3).

Given the asymmetric setup of our dialogue, it is suf-
ficient for us to consider only the updates caused by the
moves belonging to the user. In our setup, every user move



E = You can join a healthy
eating course to help

you manage your weight
A = Giving up B = My appetlte will
smoking will be increase and so I will
good for your health ut on too much weight

D= My ALy C My anx1ety will

will increase and
50/T willl have prob- increase and so I will
lose too much weight

lems with working

G = You can use online
counseling services for
managing anxiety associated
with smoking cessation.

F = You can join
a yoga class to
help you manage
your anxiety

Figure 2: Example of argument graph for persuading some-
one to give up smoking. Edges labelled — represent attack.

mi;  ma m; My
A\l A\l \l A\l
Py-» Py -» Py s = R -~ P,

Figure 3: Schematic representation of a dialogue D =
[m1,...,m,] and user models P;. Each user model P; is
obtained from P;_; and move m; using an update method.

can be mapped to a non-strict epistemic formula. For ex-
ample, the belief statement A : x for z € [0, 1] becomes
p(A) = x, and a series of statements [Ay : z1,...,4A, : Ty),
where z; € [0, 1], is associated with the formula p(A;) =
21 A ... Ap(A,) = . Let us consider how the exchange
from Example 6.1 can be used to update the user model:

Example 6.2. Let us continue Example 6.1 and assume that
the dialogue was preceded by a profiling stage, where the
constraints describing Morgan’s opinions on the interac-
tions of arguments are obtained from the constraints crowd-
sourced from other participant’s with similar profiles. As-
sume we also deduced that Morgan is probably more afraid
of weight gain than weight loss or anxiety affecting his work,
independently of his willingness to discuss these topics. We
model our assumptions with an epistemic graph that con-
tains the following set of constraints:

1 :p(8) =1 - Zp(B) — 5p(C) — 5p(D)
Y2 :p(B) < 1—p(C) Ap(B) <1—p(E)
Y3 :p(C) <1 —p(F) Ap(C) < 1—p(G)
® ¢4 :p(D) < 1—p(F) Ap(D) <1-p(G)
Our initial belief distribution is the uniform distribution Py
that satisfies all constraints. Recall that the dialogue was
encoded as sequence [Al;A : 0.125;A77;[B : 0.875,C :
0,D : 0.875],ELE : 0.875;F;F : 0.375;Gl;G : 0.125; Lg].
We thus create the following formulae corresponding to

P A B C D E F G
P 05 05 05 05 05 05
UrP e | 025 1 0 0750 0 025 025
Udz(Pg, {e2}) | 03 0875 0 0875 0 0125 0125
P4 = U;z (Ps,{0s}) | 0675 025 0 0875 075 0.125 0.125
UP (P, {pa}) | 0725 025 0 0625 075 0375 0.125
U;Q (Ps,{ws}) | 0725 025 0 0625 075 0375 0.125

Table 3: Updates to the belief distribution describing Mor-
gan’s belief throughout the dialogue from Example 6.2.

Morgan’s moves: {1 : p(A) = 0.125, ¢y : p(B) =
0.875 A p(C) = 0 A p(D) = 0.875, w3 : p(E) = 0.875,
g : p(F) = 0.375, @5 : p(G) = 0.125}. In order to com-
pute updates, we use the atomic distance-minimizing update
Junction U with uniform weights (all weights are 1) and
least-squares distance minimization. The results of updating
Morgan’s user model throughout the dialogue are visible in
Table 3. We observe that positing argument E resolves Mor-
gan’s concerns about B. However, while the system manages
to cast some doubt concerning D, it does not address the is-
sue completely. Nevertheless, given the fact that Morgan’s
more pressing problem was satisfactorily discussed, the di-
alogue ends with A being believed.

Updating the belief distribution is an important, but not
the only component that needs to be considered in automated
persuasion systems. Another crucial aspect is the update of
the constraints describing the user’s reasoning patterns. Al-
though initial constraints can be obtained through, for ex-
ample, crowdsourcing opinions from participant’s that have
profiled similarly according to given criteria, they may need
to be updated during the discussion. This may be a result
of the user changing his or her opinions concerning the re-
lations between arguments as well as the system assigning
inappropriate initial constraints. If, for instance, in the ana-
lyzed examples, it has turned out that Morgan would prefer
to discuss B and C rather than B and D, the formula generated
for this move would lead to an inconsistency with the con-
straint 1)5. This could possibly be addressed by not includ-
ing the constraint on the B and C dependency. Nevertheless,
learning and updating user constraints is a deeper problem
that requires a separate analysis and is left for future work.

7 Related Work

Epistemic graphs are a generalization of epistemic proba-
bilistic argumentation to a setting with more advanced rela-
tions between arguments. In (Hunter, Polberg, and Thimm
2018) it was shown how the epistemic postulates (Thimm
2012; Hunter 2013; Hunter and Thimm 2014; Polberg and
Hunter 2018) and abstract dialectical frameworks (Brewka
et al. 2013; Linsbichler et al. 2018), which themselves gen-
eralize a wide range of existing argumentation formalisms
(Polberg 2016), can be expressed within epistemic graphs.
The ability to represent constraints that are not limited to
arguments that are directly connected in the graph also al-
lows epistemic graphs to handle constrained argumentation
frameworks (Coste-Marquis, Devred, and Marquis 2006).
Given the fine—grained nature of the epistemic approach,
it is natural to compare our proposal to the graded and



ranking—based semantics proposed for a number of argu-
mentation frameworks (Cayrol and Lagasquie-Schiex 2005;
Leite and Martins 2011; Rago et al. 2016; Bonzon et al.
2016; Amgoud and Ben-Naim 2017; Brewka et al. 2018).
Although in most of these approaches what the semantics
produce can be seen as “assigning numbers from [0, 1]” to
arguments (either as a side or end product), probabilities in
the epistemic approach are interpreted as belief, while in the
remaining works they are typically left abstract. Thus, many
of the postulates set out in the aforementioned methods are,
by design, counter-intuitive in the epistemic approach, even
though they can be perfectly applicable in other scenarios.
Furthermore, with the exception of (Brewka et al. 2018), the
patterns set out by the graded and ranking—based semantics
have to be global, while in our case we can choose to de-
fine the way parents of an argument affect it differently for
every argument. A more in—depth analysis can be found in
(Hunter, Polberg, and Thimm 2018).

The epistemic approach is not the only form of proba-
bilistic argumentation. One can also name the constellation
approach (Li, Oren, and Norman 2011; Hunter 2013), in
which we consider a probability distribution over subgraphs
of a given graph. The probability of each subgraph is in-
terpreted as its chances of being the “real graph”, which is
quite distinct from the belief interpretation of the epistemic
approach. Hence, despite the fact that both formalisms focus
on probabilities, there are significant differences between
how they model and use them. Further analysis can be found
in (Hunter 2013; Polberg, Hunter, and Thimm 2017).

Applying the standard epistemic approach to modelling
persuadee’s beliefs in arguments has produced methods for
updating beliefs during a dialogue (Hunter 2015; Hunter and
Potyka 2017). However, these methods are not equipped
to handle epistemic graphs, and, in particular, do not con-
sider positive relations between arguments. Our current
work can be seen as a successor to the previous approaches
to a more general setting inspired by the empirical stud-
ies we have carried out in (Polberg and Hunter 2018;
Hunter and Polberg 2017).

Our update postulates have some resemblance to postu-
lates considered for belief change (Gérdenfors 1988; Dar-
wiche and Pearl 1997; Kern-Isberner 2001). For lack of
space, we must omit a detailed discussion here. Updating
probabilistic belief states has been considered in many re-
lated areas (Chan and Darwiche 2005; Beierle and Kern-
Isberner 2009; Rens and Meyer 2015). However, constraints
in these areas are usually restricted to linear constraints over
the probability of formulae. Since we allow connecting such
constraints with logical connectives, our setting is more gen-
eral and special care needs to be taken in order to handle
disjunctions and negation.

8 Conclusions and Future Work

In this paper we addressed the problem of updating belief
distributions of epistemic graphs with new constraints. We
presented a number of intuitive properties that a reasonable
update method should satisfy together with several distance
minimizing update approaches satisfying them. Finally, we

demonstrated the usefulness of our proposal by considering
its application in persuasion with asymmetric dialogues.

Computationally, all of the involved optimization prob-
lems are convex and can be solved in polynomial time w.r.t.
the number of probabilities in question. However, with
belief distributions, the number of probabilities that need
to be considered grows exponentially with the number of
arguments. Still, a simple proof-of-concept implementa-
tion with IBM CPLEX, which minimizes least-squares dis-
tance naively, shows that problems with up to 15 argu-
ments can be solved in a few seconds. The runtime then
increases rapidly as the number of arguments goes up. Prob-
lems with up to 20 arguments can still be solved in un-
der one minute, but in order to scale-up much further, we
need to apply more sophisticated ideas. In the future, we
can consider exploiting conditional independencies as ex-
plained in the theory of Markov random fields (Koller and
Friedman 2009; Potyka, Beierle, and Kern-Isberner 2015;
Wilhelm et al. 2017) or apply ideas such as column gener-
ation (Hansen and Perron 2008; Finger and De Bona 2011;
Cozman and di Ianni 2013) in order to scale up.

There are many interesting questions that we would like to
investigate in future work. In particular, we intend to analyze
different weight functions for atomic distance-minimizing
update functions. For example, we can use the weights de-
rived from the distance in the graph between a given argu-
ment and the arguments contained in the constraint used to
perform the update, where the distance can be computed
respecting or ignoring the directions of edges in order to
achieve different behaviour. For instance, we could model
a water-like ripple effect, in which a bigger change in a
closer argument may be preferred to a smaller change in an
argument further away. Another important topic are meth-
ods for dealing with non-uniqueness and non-existence of
update solutions. We will investigate different approaches
how to select the best distribution from a finite set of can-
didates. Furthermore, we will elaborate on how to identify
those strict inequalities that cause non-existence problems
and how to transform them in the most innocuous way.

In the future we plan to incorporate priorities in our
framework in order to resolve conflicting information. For
instance, we could assign higher priority to user updates than
to constraints in the epistemic graph. Another application is
to assign higher priority to particular constraints in the epis-
temic graph or in the update individually. This allows, in
particular, expressing specialized beliefs like general beliefs
about traveling by plane (low priority) and more specialized
beliefs about traveling with particular airlines (higher prior-
ity). Roughly speaking, we can handle these priorities by
solving a sequence of optimization problems that first sat-
isfy high priority constraints and later minimize the violation
of low priority constraints (Potyka 2015). These methods,
combined with constraint learning and constraint updating
investigations, would lead to further developments in han-
dling user models in automated persuasion systems.
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9 Proof Appendix

Proposition 4.3. Every distance-minimizing update func-
tions satisfies Epistemic Consistency, Success, Tautology,
Contradiction, Representation Invariance and Idempotence.

Proof. Epistemic Consistency and Success follow immedi-
ately from the fact that we minimize only among proba-
bility distributions in Sat(C U ). Tautology and Idem-
potence follow from the positive definiteness of epistemic
distance functions (in both cases, the prior distribution sat-
isfies the constraints and is the only distribution with dis-
tance 0). Contradiction follows from the fact that the fea-
sible region will be empty when the update is inconsis-
tent. Representation Invariance follows from the fact that
Sat(C U ¥y) = Sat(C U Uy) implies that the corresponding
optimization problems are equivalent. O

Lemma 4.4. If Sat(C U ¥) is non-empty, convex and com-
pact, then Uy(P,¥) = {P*} is a singleton set and can be
computed by means of convex programming techniques.

Proof. Minimizing a strictly convex and continuous func-
tion over a convex and compact set is a convex optimiza-
tion problem and has a unique solution (Nocedal and Wright
2006). O

Proposition 4.6. If CUWV contains only non-strict epistemic
atoms, then Sat(C U W) is compact and convex.

Proof. The claim follows from observing that all non-strict
epistemic axioms are linear constraints over Dist(G). This
implies that Sat(C U ¥) is closed and convex. Since Dist(G)
is bounded, Sat(C U ¥) is bounded as well and therefore
compact. O

Theorem 4.7. In the fragment of non-strict epistemic ax-
ioms, every distance-minimizing update function satisfies
Uniqueness and Completeness.

Proof. The claim follows from Proposition 4.6 and Lemma
4.3 O

Proposition 4.12. Suppose that C U VU is from the fragment

of non-strict epistemic formulae. Let \/f:1 T'; denote a DNF
representation of C U U. Let P} be the unique solution of
Ua(P,T;) and let m* = min{d(P, P;) | 1 <1i < k}. Then
Ug(P, W) ={P | d(P,Pf) = m*} and |Uy(P,¥)| < k.

Proof. First note that Sat({\/f:1 i} = Ule Sat({T';}).
Since each I'; is a conjunction of non-strict epistemic atoms,
Proposition 4.6 and the fact that compact and convex sets are
closed under intersection implies that Sat({I';}) is compact
and convex. Since the union of compact sets is compact,
Sat(C U ) is compact as well. Therefore, continuity of
d implies that if the optimization problem corresponding to
Uq4(P, ¥) has a solution, then it must have a minimal solu-
tion.

However, there may be multiple solutions and it remains
to show that we can find all optimal solutions by solving &

convex optimization problems. To see this, first note that for
each conjunction I';, the optimization problem

d(P, P

arg min
P’eSat(T;)

is convex and is either infeasible or yields a unique solu-
tion P by strict convexity of d. Since Sat({\/f:1 r;}) =

Ule Sat({T';}), the optimal solutions of the optimization
problem corresponding to Uy (P, ¥) must be the best solu-
tions among the P;. Hence, we can find all optimal solu-
tions by solving the k convex optimization problems corre-
sponding to the conjunctions I'; and pick those P;* that have
minimal distance from P.

In particular, since the optimization problem for every
conjunction I'; has at most one solution, there can be at most
k solutions overall. O

Theorem 4.13. In the fragment of non-strict epistemic
formulae, every distance-minimizing update functions sat-
isfies Completeness. Uniqueness can be violated, but
|Ua(P, V)| < k*, where k* is the smallest number of con-
Jjunctions in all DNF representations of C U .

Proof. The claim follows from Proposition 4.12 and Lemma
4.3 O

Proposition 4.18. Let CUV contain arbitrary epistemic for-
mulae. Let \/f:1 T'; denote a DNF of C UV where negations

have been eliminated. Let \/f;l T’} denote the correspond-
ing relaxed DNF. For i = 1,...,k/, let P} be the unique
solution of the optimization problem
min_ d(P, P')
P’eSat(T)

corresponding to the i-th conjunction T} in the relaxed DNF.
Let m* = min{d(P, P}) | 1 < ¢ < k'} be the minimum
distance obtained among all P. Then Uq(P, V) equals

(Pr|1<i<k, d(P,P’)=m"and P} € Sat(T;)}.

Proof. Intuitively, the claim follows from observing that
when moving from the original to the relaxed form, we do
nothing but taking the topological closure of the feasible re-
gion. Hence, the solutions under original and relaxed form
can only differ when the distance-minimizing solution P’
of the relaxed form is on the boundary. However, in this
case, the minimum for the original constraints cannot exist
because the feasible region contains distributions that come
arbitrarily close to the boundary, and by convexity, there dis-
tance comes arbitrary close (but will never reach) the dis-
tance of P’.

More formally, consider an optimal solution P* €
Uq(P, V). The feasible region of the original problem is a
subset of the feasible region of the relaxed problem. Hence,
we have either P* € {Pf,..., P} as desired or we have
pP* ¢ {Py,..., P} and there must be an i € {1,...,k'}
such that d(P, P) = m* < d(P,P*). In the latter case,
convexity of the feasible region implies that every convex
combination Py = A - P*+ (1 —\)- P50 < X <1,
is in the feasible region of the relaxed problem. In par-
ticular, there must be some A* < 1 such that Py~ is in



the feasible region of the original problem since otherwise
P* would be a boundary point which then would actually
be contained in the feasible region of the relaxed prob-
lem. By strict convexity of d, we then have d(P, P\») <
A*d(P, P*)+(1—X*)-d(P, P) < d(P, P*) contradicting
optimality of P*. Hence, whenever U,(P, ¥) contains solu-
tions, they correspond to the solutions from { P}, ..., P}
that satisfy the strict constraints.

Conversely if there is a minimal solution P} with

d(P,P’) = m* that satisfies the strict constraints, Pr e
Uq(P, U) because the feasible region of the original prob-
lem is a subset of the feasible region of the relaxed problem

and therefore cannot contain better solutions. O
Lemma 5.3. d}, is a continuous and convex pseudometric.

Proof. Non-negativity and Symmetry follow immediately
from the definition. The triangle inequality follows from ob-
serving that w(A) - |P1(A) — Pa(A)| < w(A) - |P1(A) —
P(A)| + w(A) - |[P(A) — P2(A)| for all A € Nodes(G).
Putting this into the definition, we get d¥, (P, P;) <
dy. (P, P) 4+ dy¥. (P, P,).

Continuity follows from the fact that d%, is composed of
continuous functions of the arguments. Convexity for the
first argument follows from observing that

w (AP + (1 — AP, P)

*Z ) [APL(A) + (1 -

A) Py (A) — P(A)

Aes
<AY w(A) - |[Pi(A) - P(A)]

Aes
+(1=2) Y w(A)-|Py(A) — P(A)]

AeS

=A-dy,(P1, P)+ (1= X) - di (P, P).

The argumentation is analogous for the second argument.
O

Lemma 54. If T is a conjunction of non-strict epistemic
atoms, then the solutions of

ae Pénsia?(r) aR(P )

correspond to the solution of the linear program
min Y (6% +05) 1)
AeS
s.t. P e Sat(D)

w(A)- (P(A) — P'(A)) =64 — 6, foralA€ S
(SZ,(SZ € Q(J{ forall Ae S
and form a compact and convex set.

Proof. We first check that (1) is a linear program. P’ €
Sat(T") can be described by linear constraints because all
weak epistemic atoms are linear constraints over Dist(G).
A conjunction of such atoms is satisfied if all atoms are sat-
isfied, so it corresponds to a set of linear constraints. The

remaining constraints in (1) are linear as well, so (1) is in-
deed a linear program.

Consider a minimal solution of (1). Such a solution con-
sists of a probability distribution P’ and corresponding val-
ues 1,67, that measure the change in argument A. For all
A € S, we must have 5X = 0 ord, = 0. For the sake of
contradiction, assume 67,6 > Oand 6} — 6, = 64 > 0.
Then replacing 6§ with §4 and 6, with 0 yields a solution
with lower objective function value, which contradicts min-
imality of the solution. All other cases yield a contradiction
analogously. Therefore, if w(A)- (P(A)—P’'(A)) > 0, then
w(A)-(P(A)—P'(A)) = 6 and otherwise w(A)- (P(A)—
P'(A)) = —0,. Thatis, w(A)-|P(A)— P'(A)| = 6§ +6,
and 3,5 (64 +64) = d¥,(P,P'). Hence, a minimal
solution of (1) does indeed minimize the weighted atomic
distance.

For every P’ € Sat(I') that minimizes the distance
d¥,(P,P'), we can let 6} = max{w(A4) - (P(4) —
P’(A)),0} andlet 5, = — min{w(A)-(P(A)—P'(A4)),0}
for all A € S, which gives us a feasible solution of (1). If
this solution was not minimal for (1), we could derive sim-
ilar to before some P* € Sat(C U ¥) with dy, (P, P*) <

W, (P, P"), which contradicts minimality of P’.

The set of minimal solutions of a linear optimization prob-
lem forms a closed and convex set. Since Sat(C U ¥) is
bounded, the set of minimal solutions is also bounded and
therefore compact. O



