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Abstract 
 

Background and purpose: The assemble-to-order supply chains (ATO) is commonly-

adopted in personal computer (PC) and semiconductor industries. However, the system 

dynamics of PC and semiconductor ATO systems, one of the main sources of disruption, is 

not well-explored. Thereby this thesis aims to 1) develop a nonlinear system dynamics model 

to represent the real-world PC and semiconductor ATO systems, 2) explore the underlying 

mechanisms of ATO system dynamics in the nonlinear environment and 3) assess the 

delivery lead times dynamics, along with bullwhip and inventory variance.  

Design/methods: Regarding the semiconductor industry, the Intel nonlinear ATO system 

dynamics model, is used as a base framework to study the underlying causes of system 

dynamics. The well-established Inventory and Order based Production Control System 

archetypes, or the IOBPCS family, are used as the benchmark models. Also, the IOBPCS 

family is used to develop the PC ATO system dynamics model. Control engineering theory, 

including linear (time and frequency response techniques) and nonlinear control (describing 

function, small perturbation theory) approaches, are exploited in the dynamic analysis. 

Furthermore, system dynamics simulation is undertaken for cross-checking results and 

experimentation.  

Findings: The ATO system can be modelled as a pull (order driven) and a push (forecasting 

driven) systems connected by the customer order decoupling point (CODP). A framework 

for dynamic performance assessment termed as the ‘performance triangle’, including 

customer order delivery lead times, CODP inventory and bullwhip (capacity variance), is 

developed. The dynamic analysis shows that, depending on the availability of CODP 
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inventory, the hybrid ATO system state can be switched to the pure push state, creating poor 

delivery lead times dynamics and stock-out issues.  

Limitations: This study is limited to the analysis of a closely-coupled two-echelon ATO 

systems in PC and semiconductor industries. Also, the optimization of control policies is not 

considered. 

Practical implications: Maintaining a truly ATO system state is important for both customer 

service level and low supply chain dynamics cost, although the trade-off control design 

between CODP inventory and capacity variance should be considered. Demand 

characteristics, including variance and mean, play an important role in triggering the 

nonlinearities present in the ATO system, leading to significant change in the average level 

of inventory and the overall transient performance.  

Originality / value: This study developed system dynamics models of the ATO system and 

explored its dynamic performance within the context of PC and semiconductor industries. 

The main nonlinearities present in the ATO system, including capacity, non-negative order 

and CODP inventory constraints, are investigated. Furthermore, a methodological 

contribution has been provided, including the simplification of the high-order nonlinear 

model and the linearization of nonlinearities present in the ATO system, enhancing the 

understanding of the system dynamics and actual transient responses. The ‘performance 

triangle’ analysis is also a significant contribution as past analytical studies have neglected 

customer order lead time variance as an inclusive metric.  
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Chapter 1. Introduction  

This chapter establishes the context of this thesis by outlining the main research 

motivations, which include theoretical justification and practical problems identified in two 

fields: assemble-to-order (ATO) system and system dynamics. More detail on both research 

areas and a full review of relevant research can be found in Chapter 2: Literature review. 

Based on the literature review and gaps identified, the research questions that emerged will 

be presented in Section 1.2. Section 1.3 reports the thesis roadmap, illustrating how chapters 

link with the research questions.  
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1.1. Research motivation 

An increasing number of successful businesses have moved from mass production to 

mass customisation, and their supply chain strategies have become more customer-driven or 

even customer-centric (Wortmann et al., 1997; Potter et al., 2015; MacCarthy et.al. 2016; 

Wu et al. 2017) instead of product driven. Strategic advantages of mass customisation and 

delayed differentiation, that is, providing customised products and services that fulfil each 

customer's idiosyncratic needs without considerable trade-offs in cost, delivery and quality, 

are well-recognized (Liu et al., 2006; Squire et al., 2006; Sandrin et al., 2014). Manufacturing 

companies that benefit from these advantages manage to deal with the challenge of balancing 

their demand and supply.  A useful way to consider the gradations of customisation possible, 

developed to facilitate control over the flow of goods, is offered by the customer order 

decoupling point (CODP) (Gosling et al., 2017). CODP refers to the point in the supply chain 

that provides a strategic buffer to absorb fluctuation customised orders and smoothing 

production rate (Naylor et al., 1999; de Kok and Fransoo, 2003). The upstream activities of 

CODP are characterised by speculative, aggregated and standardised production, while for 

the downstream of CODP, activities are typically predictable, attached to known orders, 

individualised and customised (Lampel and Mintzberg, 1996; Olhager, 2003; Rudberg and 

Wikner, 2004). 

Depending on the CODP, different types of supply chains can be defined. These range 

from speculative “make-to-stock” (MTS) supply chains to highly customised “engineer-to-

order” (ETO) structures (Hoekstra and Romme, 1992; Olhager, 2003; Gosling et al., 2007; 

Gosling et al., 2017). Among these supply chain strategies, the assemble-to-order (ATO) 

https://www.emeraldinsight.com/author/MacCarthy%2C+Bart+L
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system has been well-recognised and implemented in many industries, including electronic 

consumer (Gupta and Weerawat, 2006), semiconductor (Lin et al., 2017) and the automobile

industry (Choi et al., 2012), to name but a few.  ATO supply chains refers to the strategy that 

combines Make-to-Order (MTO) delivery downstream and Make-to-Stock (MTS) 

production upstream of the CODP in the final assembly plant (Wikner et al., 2017). Given 

the attractiveness of the ATO strategy for companies, including increasing product variety, 

achieving quick response time and low cost, and benefiting from potential risk-pooling 

(Benjaafar and Elhafsi, 2006; Elhafsi, 2009; Elhafsi et al., 2015; ElHafsi et al., 2018), 

academics and practitioners have become increasingly interested in analysing ATO systems. 

Despite the potential advantages, ATO supply chains suffer severely from system 

dynamics under the volatile conditions of the business environment, triggered by 

globalisation, the adoption of optimisation management practices (e.g. reducing inventory, 

decreasing the number of suppliers and outsourcing); and the increasing tendency of mass 

customisation for creating competitive advantage (Amaro et al., 1999). Dynamic 

characteristics, particularly the bullwhip effect (Lee et al., 1997), are considered the main 

sources of disruption in the business world (Christopher and Peck, 2004; Ivanov et al., 2016; 

Wang and Disney, 2016; Spiegler and Naim, 2017). The bullwhip effect refers to a 

phenomenon in which low variations in demand cause significant changes in upstream 

production for suppliers, with associated costs such as ramp down and ramp up machines, 

hiring and firing of staff and excessive inventory levels (Wang and Disney, 2016). As a result, 

ATO supply chains are considered within the context of system dynamics in this thesis. 
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1.1.1. General research scope: ATO system dynamics in Personal Computer and 

semiconductor industries 

The Personal Computer (PC) and associated semiconductor industries have widely 

accepted the ATO order fulfilment strategy, due to the development of PC components 

modularity technology. As a result, companies can benefit from a competitive balance 

between agility (customer responsiveness) and leanness (cost efficiency). e.g. Dell (Zhou et 

al., 2014), Hewlett-Packard (HP) (Su and Ferguson, 2005), Intel (Lin et al., 2017) and IBM 

(Chen et al., 2012).  

However, a serious issue that PC and semiconductor industries suffer is the poor 

control of supply chain dynamics (Karabuk and Wu, 2003; Gonçalves et al., 2005; Li and 

Disney, 2017; Vicente et al., 2017; Lin et al., 2017) due to great uncertainty driven by reduced 

product life cycles, unpredictable and customised demand, wide product variety due to 

overlapping product life cycles for different customers and long fabrication lead times and 

complex production processes (Geng and Jiang, 2009). In this thesis, control uncertainty 

(Mason-Jones and Towill, 1998; Towill and Gosling, 2014) is considered, which refers to the 

uncertainty resulting from the effort to cope with other uncertainties (e.g. supply, demand, 

process uncertainties). These control mechanisms are often employed in the ordering system 

structure including: forecasting; inventory and production; batching; information sharing 

policies; and so on. Control uncertainty is well recognised as the main source of supply chain 

dynamics (Burbidge, 1961; Sterman, 1989; Lee et al., 1997; Towill et al., 1997; Towill and 

Gosling, 2014; Naim et al., 2017). The corresponding dynamic issues, including the bullwhip 

effect, inventory variance and customer delivery time dynamics, may lead to a significant 

impact on operational costs and customer service levels (Ouyang and Daganzo, 2006; Wang 

and Disney, 2016).  

file:///C:/Users/JUNYI/Google%20Drive/Phd%20fouth%20year/PhD%20Thesis/IJPR%20paper.docx%23_ENREF_19
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For instance, in the PC sector, a serious issue customers may frequently experience 

is the long delivery delay in shopping for their customised PC products due to a shortage in 

the CODP inventory, i.e. insufficient required PC components for immediate final assembly 

and delivery; for example, as illustrated in Figure 1, customers need to wait for more than 

four weeks to receive PC products if they prefer to customise the Lenovo ThinkPad P51S by 

their official websites.  

 

Figure1. 1. The screenshot for the online customisation of Lenovo ThinkPad P51S. 

Source: https://www3.lenovo.com/gb/en/laptops/thinkpad/p-series/Thinkpad-

P51s/p/20HBCTO1WWENGB0/customize. 

Although the PC and semiconductor industries suffer severely from poor supply chain 

dynamics, few studies have explored the impact of ATO ordering structures on dynamic 

performance. Most present either linear-based analysis that is unable to represent the real-

world nonlinear system (e.g. Wikner et al., 2007; Hedenstierna and Ng, 2011), or simulation-

based analysis that lacks the analytical insights of ATO ordering system design and 
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improvement (Gonçalves et al. 2005; Wikner et al., 2017). Consequently, the overall aim of 

this thesis is to systematically assess the impact of the ATO ordering structure on dynamic 

performance by offering a non-linear control engineering procedure for the design, 

modelling and analysis of ATO ordering systems.  

In this thesis, the author focuses on the system dynamics of the ATO system at an 

aggregate/single product level. The single-product ATO systems are studied by Glasserman 

and Wang (1998), Gallien and Wein (2001), Song and Yao (2002), Benjaafar and ElHafsi 

(2006) and Xu and Li (2007), to name but a few. Although in practice, PC and semiconductor 

companies offer a variety of customized products by a number of commodity components, 

the study of the ATO system dynamics based on a single product and a single component 

setting provide the insight of an aggregate system dynamics. This assists the long-term 

strategic planning (e.g. capacity planning, labour expansion, inventory holding) and offers 

the benchmark of system dynamics performance for subsequent dis-aggregate dynamic 

modelling and analysis.  

The following sections of this chapter illustrate the detailed research gaps and 

corresponding research questions to be addressed by this thesis.  

1.1.2. Research gap one: theoretical foundations in analysing the ATO system 

dynamics  

When confronted with system dynamics, control theory techniques with feedback 

thinking and sufficient analytical tools can be utilised for analysing system dynamics 

(Dejonckheere et al., 2003; 2004). The application of classic control theory in a production 

system can be traced back to Simon (1952). By adopting classic control theory, Towill (1982) 

translated Coyle's (1977) system dynamics work to represent the Inventory and Order based 

Production Control System (IOBPCS) in a block diagram form. John et al. (1994) then 

file:///C:/Users/JUNYI/Google%20Drive/Phd%20fouth%20year/EJOR%20paper/EJOR%20submission/submission/EJOR%20manuscript%20submission%20proofreading.docx%23_ENREF_51
file:///C:/Users/JUNYI/Google%20Drive/Phd%20fouth%20year/EJOR%20paper/EJOR%20submission/submission/EJOR%20manuscript%20submission%20proofreading.docx%23_ENREF_10
file:///C:/Users/JUNYI/Google%20Drive/Phd%20fouth%20year/EJOR%20paper/EJOR%20submission/submission/EJOR%20manuscript%20submission%20proofreading.docx%23_ENREF_24
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extended the original model to the automatic pipeline, inventory and order-based production 

control system (APIOBPCS) by incorporating an automatic work-in-progress feedback loop. 

These two original models and their variants, i.e. the IOBPCS family, have been recognised 

as a base framework for analysing the dynamics of production planning and control, as well 

as supply chain systems (Lin et al., 2017).  

Although the IOBPCS family has been widely adopted over the last three decades in the 

academic and industrial communities, very limited research developed a system dynamics 

model of the ATO systems based on the IOBPCS architypes. This is due to most studies 

adopted the IOBPCS family model to study make-to-stock/forecasting-driven supply chain 

systems by focusing on bullwhip and inventory variance as two main dynamic performance 

indicators. Wikner et al., (2007) developed a simple order-driven system dynamics model 

based on the IOBPCS family without considering the forecasting-driven part and the the 

CODP inventory. Wikner et al., (2017) overcome the limitations by developing a hybrid 

system dynamics model including the make-to-order and make-to-stock parts. However, their 

study is limited to the theoretical modelling and exploratory analysis.  

So, the first research gap lies in the theoretical foundation of the ATO system dynamics. 

Based on Lin et al. (2017)’s systematic review of the IOBPCS family, the author aims to 

synthesize all IOBPCS based studies by reviewing how the IOBPCS archetypes have been 

adopted, exploited and adapted to study supply chain dynamics. This provides the state-of-

the-art theories and methodologies for modelling and analysing the ATO system dynamics.  

It should be noted that, while Axsater (1985), Edghill and Towill (1989) and Ortega and 

Lin (2004) provided an overview of control theory applications in studying supply chain 

dynamics, up-to-date reviews are needed. Furthermore, Sarimveis et al (2008) presented the 
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review of the IOBPCS family but their study is limited to the narrow review method, 

comparing Lin et al. (2017)’s IOBPCS review. 

1.1.3. Research gap two: the underlying causes of supply chain dynamics in ATO 

systems. 

After developing the system dynamics model of the real-world supply chain system, one 

challenge that researchers and practitioners face is to explore the underlying mechanisms of 

supply chain dynamics for high-order, nonlinear dynamic systems. The high-order system 

refers to a system represented by more than second-order differential/difference equations. 

A nonlinear system, on the other hand, is a system that does not obey the principle of 

superposition. This means that the output of a nonlinear system is not directly proportional 

to the input and the variables to be solved cannot be expressed as a linear combination of the 

independent parts (Atherton, 1975). High-order nonlinear supply chain systems lead to 

difficulty in understanding the root causes of supply chain dynamics due to the complexities 

of dealing with seemingly intractable mathematics. As Forrester himself noted in an 

interview: “The trouble with systems thinking, is it allows you to misjudge a system. You 

have this high-order, nonlinear, dynamic system in front of you as a diagram on the page. 

You presume you can understand its behaviour by looking at it, and there’s simply nobody 

who can do that” (Fisher, 2005).  

The analytical understanding of root causes of high-order nonlinear dynamic supply 

chain systems is rare in the literature, apart from Wikner et al. (1992), Jeong et al. (2000) and 

Spiegler et al. (2016b). Wikner et al. (1992) explored a simplification approach to 

understanding the causes of the bullwhip effect, while Jeong et al. (2000) applied a 

linearisation approach but with analysis totally reliant on simulation. In addition, Spiegler et 
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al (2016b) further investigated Forrester’s system dynamics model (Forrester, 1961) by using 

advanced nonlinear control theory and proposing some system structure simplification and 

linearisation methods to give analytical insights into managing system dynamics in supply 

chain systems. However, all studies focus on MTS-based systems without considering the 

order-driven system dynamics, such as ATO systems widely adopted in many industries. 

Furthermore, several studies implemented simulation to analyse complex, high-order, 

nonlinear supply chain models (Forrester, 1961; Wikner et al., 1991; Naim and Towill, 1994; 

Gonçalves et al., 2005; Shukla et al., 2009; Spiegler et al., 2016a). However, simulating 

complex systems without having first performed some preliminary analysis can be 

exhaustive and unrewarding (Atherton, 1975). Hence, non-linear there is a need to develop 

methods to identify the underlying mechanisms of supply chain dynamics when confronted 

with high order and nonlinear ATO systems structure, so that the corresponding mitigation 

strategies can be proposed.  

1.1.4. Research gap three: delivery lead-time dynamics and nonlinearities 

The IOBPCS family traditionally represents a typical production system in which its 

service level capabilities are determined by net stock variance and capacity availability, the 

latter of which is often referred to as ‘bullwhip’ (Sarimveis et al., 2008; Lin et al., 2017). 

However, limited effort has been made to model and analyse the time-oriented production 

systems. This is the case in the ATO system in which end customer delivery lead times 

directly relate to the customer service level, since most customers need to wait some time 

before receiving their customised products. 

The reason that lead time dynamic performance is ignored in the IOBPCS literature is 

because the underlying assumption in most analytical studies is that the system is linear (Lin 
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et al., 2017) and final customer delivery lead times can be disregarded and set as zero. This 

has significantly limited the applicability of published results and has made it difficult to 

measure end customer delivery lead times dynamic performance. The customer delivery lead 

times measure is especially important in the MTO element of ATO systems due to capacity 

constraints, where products cannot always be delivered within the planned lead times 

(Wikner et al., 2007). 

Nonlinearities can naturally occur through the existence of physical and/or controllable 

constraints in supply chain systems. For example, physical nonlinearities include fixed and 

variable capacity constraints in the manufacturing and shipping processes, and variable 

delays, while the controllable nonlinearities involve the safety stock settings and 

manufacturing strategy change depending on foreign exchange rate directions. Recent works 

have analytically studied some forms of nonlinearities in supply chain systems, such as 

capacity (Jeong et al., 2010; Spiegler et al., 2016a; Spiegler et al., 2016b), on-negative order 

constraints (Wang et al., 2012; Wang et al., 2014; Wang et al., 2015) and shipment constraints 

(Spiegler et al., 2017). The authors identified the impact of different nonlinearities on the 

system dynamics, such as the bullwhip effect, in responding to cyclical demand with different 

means and frequencies. Also, some system structure simplification and linearisation methods 

are proposed for giving further analytical insights in managing system dynamics in supply 

chain systems. However, most analysis is limited to the single echelon system and is 

restricted to analysis of the different nonlinearities individually. Furthermore, all studies 

solely explore the dynamic performance of an MTS-based production-inventory control 

system by utilizing bullwhip and inventory variance as performance indicators. As far as is 

known, no previous work has analytically explored the nonlinear ATO system by 

incorporating end customer delivery lead times dynamics.    
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1.2 Research questions 

In summary, the three distinctive but interrelated literature gaps are identified, as 

shown in Figure 1.2. The first lies within the supply chain modelling theory that IOBPCS 

family models need to be systematically reviewed to offer the foundation and benchmark for 

modelling, designing and analysing the ATO system dynamics performance. Second, 

methodologically, there is a need for developing linearisation and simplification method to 

gain deep insight into the dynamic property of system structure in facing a high order 

nonlinear ATO system dynamics model. Finally, the end customer delivery lead times 

dynamics and main nonlinearities present in the ATO system need to be analytically assessed.  

The theoretical and methodological 

exploration of the ATO system 

dynamics 

The linearisation and 

simplification of the high 

order nonlinear ATO model

The delivery LT dynamics 

and nonlinearities present in 

the ATO system

 

Figure1. 2. Research gaps identified in this thesis. 

In order to provide a focus for this thesis, the following three research objectives and 

corresponding research questions have been formulated and are sought to be answered by 

this thesis: 

Objective 1. Explore the theoretical foundation for studying the dynamics of ATO systems. 

RQ1a. How may the IOBPCS family be utilised to study ATO system dynamics? 
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RQ1b. What kind of criteria can be utilised to assess the performance of the ATO system 

dynamics? 

Objective 2. Dynamically design and assess the underlying causes of supply chain 

dynamics in ATO systems with the focus of physical nonlinearities and control policies, by 

utilising an existing semiconductor ATO system dynamics model. 

RQ2a. How to design the nonlinear, high-order ATO supply chain to gain insight into its 

dynamic properties as personified by the Intel system dynamics model? 

RQ2b. What are the underlying mechanisms of the dynamic behaviour in a semiconductor 

ATO supply chain and how can these dynamics be mitigated? 

Objective 3. Explore delivery lead times dynamics and physical nonlinearities present in 

the Personal Computer ATO system by symmetrically modelling and analysing an ATO 

system 

RQ3a. How to develop an ATO system dynamics model within the context of PC sector? 

RQ3b. How to measure delivery lead times dynamics and how to analytically assess delivery 

lead times dynamics? 

RQ3c. What are nonlinearities present in the PC ATO system and how do nonlinearities 

influence the dynamic performance of the ATO system? 

1.3. Thesis roadmap 

A brief overview of the structure of this thesis and how each chapter connects to each 

research question is provided in Figure 1.3. In summary, this thesis is organised in seven 

chapters and its contents can be summarised as: 
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Chapter 1: introduces the background of the fields of ATO system and system 

dynamics and presents the initial motivation for undertaking this research. Existing gaps in 

the literature are introduced and research questions are then formulated. 

Chapter 2: conducts the literature review which provides an overview of previous 

research undertaken into the core themes of this thesis: ATO system and system dynamics. 

Moreover, this chapter defines the scope of this research and provides theoretical foundation 

for the thesis. The RQ1a, RQ1b, motivated by the fact that no IOBPCS based family model 

has been adopted for modelling the ATO system, will be answered and other gaps in the 

literature are identified, leading to the construction of RQ2a, RQ2b, RQ3a, RQ3b, RQ3c and 

RQ3d. 

Chapter 3: outlines the methodology used to conduct this research, including the 

research ontological and epistemological positions, research design, methods and tools used. 

An objective, holistic and value-free view, and a deductive, logical reasoning and a 

conceptual research approach are chosen for undertaking this research. Control engineering 

and system dynamics simulation are the chosen techniques and the author reviews the linear 

and nonlinear control theory literature in order to identify suitable methods for the analysis 

of ATO system dynamics. Finally, the chapter introduces the two ATO models, including the 

existing Intel system dynamic model representing a typical ATO system in the semiconductor 

industry, as well as the general form of PC supply chains regarding their information and 

materials flow. Furthermore, the IOBPCS family of models is utilised as the benchmark 

models are introduced.  

Chapter 4: analytically explores the underlying mechanisms of supply chain 

dynamics within the context of the semiconductor industry. The author uses the supply chain 
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model of Intel, the leader in microprocessor manufacturing (Sampath et al., 2015), as reported 

empirically by Gonçalves et al. (2005), as a base framework to extract the simplified ATO 

supply chain by developing a linearisation and simplification method. Moreover, the 

simplified ATO model’s dynamic behaviour is analysed and benchmarked with a well-

established supply chain family of model archetype, the IOBPCS family.  

Chapter 5: develop a generic two-echelon system dynamics model, consisting of a 

PC original equipment manufacturer (OEM) and a part supplier as an illustration of the 

typical hybrid ATO system, and explores the impact of ordering structure on dynamic 

performance. A linearisation method is developed for analytically assessing the end customer 

delivery lead times dynamics, and all main nonlinearities present in the ATO system are 

investigated regarding their impact on the ATO system dynamics performance.  

Chapter 6:  discusses insights gained from the literature review and research methods 

(Chapters 2 and 3), design and analysis of the semiconductor ATO system (Chapter 4), and 

modelling and analysis of a PC ATO system (Chapter 5). It also synthesises all findings in 

previous chapters to develop a framework for assessing the complex, nonlinear ATO systems 

from a system dynamics perspective. 

Chapter 7: collates the findings from the analytical and simulation studies to provide 

summary answers to the research questions. In this chapter, the contributions of this research 

to the theory, methodology and practice is summarised. Finally, the limitations and potential 

lines for further investigation are discussed. 

file:///C:/Users/JUNYI/Google%20Drive/Phd%20fouth%20year/PhD%20Thesis/IJPR%20paper.docx%23_ENREF_48
file:///C:/Users/JUNYI/Google%20Drive/Phd%20fouth%20year/PhD%20Thesis/IJPR%20paper.docx%23_ENREF_20
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1.4. Summary 

This chapter has provided background information on the research theme, motivation 

and the research questions to be addressed in this thesis. The ATO system within the system 

dynamics context is focused. The structure of this thesis, including summative chapters and 

roadmap, is presented and explained. The next chapter will provide further context for the 

thesis through the literature review, as well as explain detailed literature gaps which this 

thesis seeks to address. 
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Chapter 2. Literature review  

This chapter provides an overview of previous research undertaken into the 

core themes of this thesis: the ATO supply chain and the dynamics of supply chain systems. 

Due to the nature of this study, emphasis is given to the review of quantitative works that 

attempt to model, design, and measure the system dynamics of an ATO system.  

The chapter consists of three major parts: 1) the CODP and ATO supply chains, 2) 

system dynamics and supply chain dynamics and 3) ATO supply chains within the context 

of system dynamics. To highlight the general location of the study, this chapter begins with 

a review of ATO systems within the broader supply chain management and CODP context. 

Then, Section 2.1.4 gives a detailed review of quantitative works for ATO systems, which 

summarise and establish the criteria of performance measurement in the general quantitative 

modelling context. Section 2.2 reviews the system dynamics and supply chain dynamics 

literature. Specifically, the history of system dynamics works within production planning and 

control is introduced in Section 2.2.1, followed by a detailed review of how the well-

established production planning and control framework, the IOBPCS family, could be 

utilised to study supply chain dynamics.  

The review provides theoretical foundations for modelling, designing and analysing 

the ATO system structure in this thesis. In particular, the most recent studies of nonlinearities 

by the IOBPCS family are reviewed in Section 2.2.3 to assist the choice of appropriate 

methods in analysing nonlinearities present in the ATO system. Finally, the review 

concentrates on system dynamics research in the context of ATO supply chains (Section 2.3) 

to highlight the previous studies and major gaps in addressing dynamic issues in the ATO 
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system. As this thesis focuses on PC supply chains, the relevant ATO system dynamics works 

related to the upstream semiconductor industry and downstream OEM companies’ supply 

chains are reviewed. Section 2.4 summarises the overall ATO system dynamics research gaps 

regarding theory and methodology.  
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2.1. ATO supply chains  

2.1.1. Supply chains and cost-related performance 

Ellram and Cooper’s (2014) definition of a supply chain is commonly recognised as 

follows: 

 A supply chain is defined as a set of three or more entities (organizations or 

individuals) directly involved in the upstream and downstream flows of products, services, 

finances, and/or information from a source to a customer, (and return) (Mentzer et al., 2001, 

p. 4.). 

The term “supply chain management”, however, is relatively new in the literature, 

appearing first in 1982 (Oliver and Weber, 1982) to describe connecting logistics with other 

functions. The main aim of supply chain management is then to achieve balance between 

customer service, low inventory investment and low unit cost by synchronising customer 

requirement with the flow of materials from suppliers (Stevens, 1989); in other words, 

matching demand with supply in the most efficient and effective way. 

The total cost is used to evaluate the financial performance of a supply chain. A 

general recognized strategy to reduce supply chain cost is to ensure the smooth flow of 

information and materials (Wikner et al., 1991). One of major challenge for supply chain 

management is the decision-making process, since the entire supply chain system cuts across 

different functional boundaries. For example, capacity investment impact on costs associated 

with inventory and order processing. Gunasekaran et al. (2001) developed a framework for 

measuring the supply chain performance at strategic, tactical and operational level. They 

presented a number of key performance metrics when dealing with suppliers, delivery, 
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customer-service, and inventory and logistics operations in a supply chain, which is 

summarised in Table 2.1. 

Type of supply chain 

cost 

Details 

Costs associated with 

the ordering process 

and supplier’s 

relationship 

1. For any company, the chain of business activities begins with the 

procurement of goods. The way the orders are generated and scheduled 

governs the performance of downstream activities and inventory levels.  

Supply chain response time can be reduced by decreasing the order cycle 

time (Gunasekaran et al., 2001). 

2. On the other hand, order placement also generates cost. A number of 

transactions are needed every time for order placement, and this leads to 

the ordering costs for the company. The ordering cost includes order 

prepayment, supplier communication, delivery arrangement, payment, 

transaction record maintenance (Slack et al., 2010). 

Costs associated with 

production 

1. The next sequence is to produce the final products (e.g. manufacturing, 

final assembly) once orders are places and the goods are received.  

There are a lot of factors influencing the production cost, including 

labour and raw material cost, the variety and volume of products and 

service, throughput time, capacity utilization and maintenance, the 

effectiveness of the scheduling process etc. (Gunasekaran et al., 2001). 

2. The production cost may also be increased driven by the high variation 

of production rate, such as ramps up and down machines (Towill, 1982). 
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Type of supply chain 

cost (continued) 

Details 

Costs associated with 

assets and return on 

investment 

Supply chain assets include accounts receivable, plant, property and 

equipment, and inventories (Stewart, 1995). As the result, the cost 

related to each asset and their relations to the turnover should be 

measured to determine the productivity of a company (Gunasekaran 

et al., 2001). According to Stewart (1995), this can be measured as 

the average number of days required to transform the cash invested 

in assets into the cash collected from a customer. 

Costs associated with 

delivery 

1. Delivery performance can be measured by some key performance 

metrics, including the delivery channel, transport scheduling, and 

warehouse location play an important role in delivery performance 

(Gunasekaran et al., 2001). 

2. The delivery performance also directly relates to customer 

satisfaction and the corresponding loyalty cost, especially in order-

driven supply chain systems, such as MTO and ATO systems where 

every customer needs to wait before receiving their customised 

products  

Table 2. 1. Description of different types of supply chain cost (Gunasekaran et al. 2001) 

2.1.2. Mass customisation and CODP 

It can be argued that customers (end consumers as well as industrial customers) put 

two major pressures on many companies (Rudberg and Wikner, 2004). First of all, many 

customers want products to fit their specific needs. Second, customers are not willing to pay 

high premiums for these customised products compared to competing standard products in 

the market. This new manufacturing environment has opened the doors for so-called mass 
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customisation. Although mass customisation has been given many definitions in recent years, 

Kaplan and Haenlein’s (2006) perspective is adopted here, in which mass customisation is a 

strategy that offer customized products at the mass-produced goods price through certain 

firm-customer interaction at the manufacturing/fabrication/assembly stage of the operations 

level. 

One of the key issues in manufacturing mass customised products is to determine the 

position of the CODP. The CODP is one application of decoupling thinking, in which the 

latter has a long historical background in business operations. To better utilise the personal 

limited resources, i.e. labour, the concept of the division of labour is introduced (Adam Smith, 

1776). By using the example of pins, he referred to it as the practice of decoupling the (pin-

making) process into different steps and assigning each step to a specific worker, thus 

significantly increasing the overall productivity of the factory. This approach has been further 

developed into a foundation for mass production in scientific management (Taylor, 1911) 

and Skinner’s (1974) notion of plant-within-a-plant (PWP).  

Going beyond individual resources, PWP advocates segmentation of a manufacturing 

facility both organisationally and physically into homogeneous units. Each PWP 

concentrates on particular manufacturing tasks with, for example, its own objectives, 

operating procedures, human management approach, and organisation structure.  Drawing 

on the PWP concept and including the role of customer contact in organisation design, Chase 

and Tansik (1983) define decoupling as separating activities of a service organisation, 

physically or organisationally, and placing them under separate supervision. This approach 

to decoupling, including front-office and back-office activities, does not only involve the 
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resource perspective of Smith, Taylor, and Skinner, but also adds the perspective of the 

customer and the creation of customer value in the processes.  

In manufacturing operations, the contact point with the customer is a key issue for 

decoupling, particularly in relation to process adaptation, i.e. customisation. The interest in 

processes for customisation dates back to at least the quality management movement, e.g. 

Deming (1982). This is when the actual transformation process was explicitly emphasised 

and consequently the resources mainly played a role as executors of the processes. In this 

context, the transformation process relates the resources to the needs of the customers, which 

is in line with the foundations of approaches such as lean thinking (Womack and Jones, 1996). 

From a process perspective, the driver that triggers the execution of a process is a key 

attribute. The process-based approach to early decoupling thinking highlighted the 

importance of placing inventory at key positions to decouple the flow related to the driver of 

the flow (see e.g. Hoekstra and Romme, 1992). This approach to decoupling thinking has 

been well established in the operations and supply chain literature, which has been reflected 

in manufacturing based concepts such as CODP, order penetration point (OPP), push-pull 

boundary, postponement and leagility (e.g. see Sharman, 1984; Giesberts and van der Tang, 

1992; Hoekstra and Romme, 1992; Naylor et al., 1999; Chopra and Meindl, 2004; Kellar et 

al., 2016).   

The CODP is an important consideration in structuring and configuring supply chains 

so that total value can be delivered to the end customers (Naylor et al., 1999). The exact 

position of the CODP is a balancing process between the market, inherent product properties 

and process related factors (Olhager, 2003). The key concept here is that the CODP is a point 

(Olhager and Östlund, 1990; Pagh and Cooper, 1998; Chopra and Meindl, 2004; Liu et al., 
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2015; Calle et al., 2016; Liu et al., 2016) where the organisation or the supply chain switches 

from producing to a forecast, i.e. forecasting driven (FD) and starts producing directly to a 

customer order, i.e. the service based customer driven (CD) (Wikner et al., 2017). 

 Specifically, two aspects of the CODP can be further highlighted based on the focus 

on the customer as the driver of the process (Wikner et al., 2017): 

1) CODP as the buffer point: upstream of the buffer point, the production process, 

can benefit to the advantage of the bottleneck. In this way, the upstream 

production does not have to deal with fluctuating demand and a variety of 

different products. The corresponding inventory level and capacity can be 

determined by the aggregate demand (e.g. Hoekstra and Romme, 1992; Pagh and 

Cooper, 1998; Wikner et al., 2017). These strategies can reduce risk by pooling 

the variance of demand and is analogous with the concept of inventories 

centralisation (Eppen, 1979). 

2) Differentiation or Customisation Point: here the CODP is described as the point 

where a good is produced for a specific customer order (Hoekstra and Romme, 

1992; Pagh and Copper, 1998; Vanteddua and Chinnamb, 2014; Wikner et al., 

2016). In this context, different production strategies can be classified based on 

different positions of CODP, e.g. assemble to order, make to stock, engineering 

to order, etc.).  

Furthermore, Mason-Jones and Towill (1999) introduced the difference between the 

actual CODP driver and information driver regarding the Information Decoupling Point 

(IDP). Such a concept was later defined to as Demand Information Decoupling Point (DIDP) 

by Wikner (2014), which distinguish IDP from information decoupling related to availability 
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of supply information, such as available capacity. The available capacity related information 

may directly assess to the load of resources at a supplier. Olhager et al. (2006) further 

investigate the relation between CODP and DIDP in relation to the Fisher model (Fisher, 

1997). They recommend the position of the DIDP in relation to CODP and the concept of 

mediate demand (the undistorted demand information) was introduced, as illustrated in 

Figure 2.1. Since the CD flow is based on actual customer orders, so it is necessary to position 

the DIDP upstream of the CODP, or at least at the CODP. If the DIDP is positioned upstream 

of the CODP the forecast used for the FD flow can be improved due to the more transparent 

and up-to-date point-of-sales data. 

 
Figure 2. 1. Framework for structural modelling using decoupling points (Wikner et al., 2017). 

2.1.3. An overview of the ATO supply chain system 

As discussed in Section 2.1.2, depending on customisation or CODP point as defined 

in Section 2.1.2, different types of supply chains can be categorised. These range from very 

repetitive “make-to-stock” (MTS) supply chains to a very customised “engineer-to-order” 

(ETO) structure (Hoekstra and Romme, 1992; Olhager, 2003; Gosling et al., 2007; Gosling, 

2017), as illustrated in Figure 2.2.  

Forecast Driven

Goods Based

Supply System

Cust. order Driven

Service Based

Supply System

Value Driven

Product Based

Consumpt. System

CODP
Delivery Lead Time

Supply Lead Time

Possible positions of the DIDP

Mediate DemandDIDP



 

Literature review  
 

26 
 

Design

Purchasing

Fabrication

Assembly

Distribution

Design

Purchasing

Fabrication

Assembly

Distribution

Design

Purchasing

Fabrication

Assembly

Distribution

Design

Purchasing

Fabrication

Assembly

Distribution

Design

Purchasing

Fabrication

Assembly

Distribution

Engineering-to-order Buy-to-order Make-to-order Assemble-to-order Make-to-stock

Design

Purchasing

Fabrication

Assembly

Distribution

Ship-to-stock

Combination of customization and standardization
Pure 

customization

Pure 

standardization

Customer order 

decoupling point

Customized 

activity

Standardized 

activity  

Figure 2. 2. The family of supply chain structure based on the position of CODP. Adapted from 

Gosling et al. (2017). 

One of the most popular strategies, particularly in the high-tech, automotive and white 

goods manufacturing (ElHafsi et al., 2018), is the assemble-to-order (ATO) strategy, in 

which the CODP is located in the final assembly plant. Wemmerlöv’s (1984, p. 348) 

definition of ATO manufacturing is adopted in this thesis: 

ATO manufacturing is a strategy for which standard parts, components, and 

subassemblies are acquired or manufactured according to forecasts, while schedules for 

remaining components, subassemblies, and final assembly are not executed until detailed 

product specifications have been derived from booked customer orders 

The ATO system, as illustrated in Figure 2.3, contains several components or 

subassemblies and multiple end products. The overall manufacturing process consists of two 

steps: component production (or procurement) and product assembly. Components are 

https://scholar.google.co.uk/citations?user=7Y1iy3IAAAAJ&hl=en&oi=sra


 

Literature review  
 

27 
 

assembled into end products only after orders are placed by customers (ElHafsi et al., 2018). 

Such strategy is particularly attractive for those firms involving the supply chains with long 

component production (or supply) lead times and relatively short assembly time. The 

customer response time, as the result of ATO implementation, can be reduced through 

holding inventory of components ahead of demand and delaying final assembly of products 

until order is placed.  

N

Suppliers Components
Final 

products

Backlog 

orders

1

2
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1
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Figure 2. 3. The ATO systems. 

It should be noted that a configure-to-order (CTO) (Song and Zipin, 2003) or build-

to-order (BTO) system (Gunasekaran and Ngai, 2005) is a special case of the ATO strategy. 

The components are partitioned into subsets and the customer selects components from those 

subsets. A computer, for example, is configured by selecting a processor from several options, 

a monitor from several options, and so on. The difference between a CTO system and an 

ATO system is important at the demand-elicitation level. CTO is oriented from a one-of-a 

kind paradigm but is based on a pre-determined variety in which a low volume of products 

of a pre-determined high variety is manufactured using a cluster of components, whereas this 
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is not the case in ATO, as the variety of product is not pre-determined (Gunasekaran and 

Ngai, 2005). At the operational level, however, the differences are minor. One well-known 

CTO system is Dell Computers. Dell lets the customer select among several processors, 

graphics monitors, disk drives, etc. – these are the components. Thus, Dell offers a huge 

combination of options (pre-determined variety of products) for end customers to customise 

their PC products. As a compromise, customers need to wait a certain amount of time before 

receiving their customised PC due to Dell only processing, finally assembling and delivering 

those customised products after receiving orders from customers. The performance 

assessment of the ATO system, based on supply chain cost metrics, demonstrated in Table 

2.2, can be categorised as the following four elements: cost related suppliers/raw materials; 

cost related asset/component inventory; cost related production (component production and 

final assembly); and cost related delivery. 
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Cost-related ATO 

performance criteria  

Details and references (e.g.) 

Suppliers/raw materials Supplier disruption, technology innovation (Rosling, 1989; Xu 

and Li, 2007; Shao and Dong, 2012) 

Assets  CODP component inventory performance e.g. fill rate 

(Dayanik et al., 2003; Gao et al., 2010; Bušic et al., 2012); 

Inventory cost and product pricing (Feng et al., 2008; Keblis 

and Feng, 2012); Backlog cost/ Component inventory 

shortage cost (Benjaafar and Elhafsi, 2006; Elhafsi, 2009; 

Elhafsi et al., 2015) 

Production Limited final assembly capacity (Fu et al., 2006b, Inman and 

Schmeling, 2003) and Exogenous and endogenous production 

lead time (Benjaafar and Elhafsi, 2006; Cheng et al., 2011; 

Elhafsi, 2009; Elhafsi et al., 2015) 

Time  Delivery lead time and order-based fill rate (Zhao, 2009; Lu et 

al., 2005; DeCroix et al., 2009); Delivery lead times related 

cost (Hsu et al., 2006; Hus et al., 2007; Fang et al., 2008). 

Table 2. 2. General ATO performance criteria based on Gunasekaran et al.’s (2001) cost 

framework. 

2.1.4. Stochastic studies of ATO supply chains 

Due to the quantitative nature of this study, the author starts to review how the ATO 

systems can be quantitatively studied. Particularly the performance measures of the ATO 

system are reviewed to develop the assessment framework for exploring the dynamic 

performance of the ATO system. There are extensive literature focusing on the stochastic 

modelling, optimization and analysis of the ATO system and a briefly summary of recent 

works is presented in Table 2.2, although the full review can be found in Song and Zipkin 

(2003) and Atan et al. (2017). 
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Overall, in line with Gao et al. (2010) and Atan et al. (2017), the study of the ATO 

system from can be broadly categorized into two classes: one deals with periodic review 

models while the other deals with continuous review models. For each type of model, the 

study can be further classified as the single-end and multiple-end products depending on 

specific industries and products. The general purpose is to derive the optimal ordering 

decision making for the semi-finished components (i.e. CODP inventory), and possibly, the 

optimal component allocation decision making for multiple-end products based on specific 

objective functions (e.g. minimize inventory holding cost and backlog orders) and system 

constraints (e.g. limited final assembly capacity). The author summarizes those major 

performance metrics criteria utilized in the stochastic modelling and analysis literature in this 

section. 

Specifically, the ATO system can be simplify described as a two-echelon production 

and assembly with one component inventory stock point system. For the supplier site, the 

possible impact of disruptions and technology innovation on the performance of ATO system 

usually are considered (Rosling 1989; Xu and Li 2007; Shao and Dong 2012). The production 

capacity availability, due to the constrained resources such as machines and raw materials, is 

also considered to influence the final optimal decision making. The researchers mainly 

consider the performance of CODP cost as the performance measure of ATO system, 

including inventory related cost such as the components inventory fill rate (Dayanik et al. 

2003; Gao et al. 2010; Karaarslan et al. 2013; Bušic et al. 2012) and key components 

availability (Iravani et al. 2003), time related cost, e.g. components delivery lead time 

between suppliers and final assembler, and pricing (Feng, Ou, and Pang 2008; Feng et al. 

2008 and Keblis and Feng 2012). The final delivery is another major metric for evaluating 
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the ATO system performance, particular in the continuous review models, including delivery 

lead time and backlog fill rate performance (Zhao 2009; Lu et al. 2005; DeCroix et al. 2009). 

To conclude, there are four major metrics utilized for evaluating the ATO system 

performance, including delivery lead time, component (CODP) inventory, production/final 

assembly capacity and pricing from the stochastic modelling and analysis perspective.  

To conclude, there are four major metrics utilized for evaluating the ATO system 

performance, including delivery lead time, component (CODP) inventory, production/final 

assembly capacity and pricing from the stochastic modelling and analysis perspective.  

2.2. System dynamics and supply chain dynamics 

2.2.1. A brief history of system dynamics and supply chain dynamics 

Although the term SCM was first proposed by Oliver and Webber (1982) to designate 

a new form of strategic logistics management, the antecedents of System Dynamics are much 

older and appear to have originated with physical distribution and transport and are based on 

the discipline of Industrial Dynamics (1961), or what is now termed System Dynamics, the 

school of thought that relates system structures to dynamic behaviour in organisations. A 

fundamental principle of system dynamics is that … feedback theory explains how decisions, 

delays, and predictions can produce either good control or dramatically unstable operation 

in nonlinear, complex systems (Forrester, 1958).  

Supply chain dynamics, however, refers to the design process of system dynamics in 

the supply chain context and expresses the need to integrate business processes and analyse 

supply chains from a holistic perspective. Researchers who advocate this view highlight the 

fact that improving a single echelon of the supply chain may not be able to improve the 

efficiency and effectiveness of the entire supply chain (Towill et al., 1992). An efficient 
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supply chain system can only be designed and operated if the dynamic performance of the 

constituent parts is properly understood. Then the appropriate optimal control mechanism 

can be derived to balance the risk of stock-out and the cost of production fluctuation (Towill, 

1982). Through the observation of real industry cases and the modelling and simulation of 

scenarios (Hennet, 2009), supply chain dynamics have been used within SCM research to 

provide insights into supply chain dynamical behaviour and the underlying causal 

relationships (Wolf, 2008). 

System dynamics issues in supply chains are considered to be the main sources of 

disruptions in the business world (Christopher and Peck, 2004) and has huge impact on the 

key performance metrics utilised  to assess supply chain financial performance (Naim et al., 

2017). As a result, it is claimed that to improve supply chain performance, dynamics caused 

by the system itself should be reduced (Torres and Maltz, 2010).  

Forrester’s (1958; 1961) seminal works pioneered system dynamics issues in supply 

chains, i.e. a production-inventory system. The well-known ‘Forrester Effect’ refers to two 

specific supply chain problems frequently occurring in dynamic systems: 

• Demand amplification. Thanks to Lee et al. (1997), this is also known today 

as the bullwhip effect. 

• Rogue seasonality  

Where the former refers to the high demand amplification ratio in relation to actual 

customer orders, i.e. in practice a ratio of 2:1 across each business interface is commonplace 

(Towill, 1997), while rogue seasonality is the phenomenon where significant ‘rogue’ 

alternating boom and bust type orders have been introduced by the system structure itself, 
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instead of blaming external market demand fluctuation, which is more likely to be caused by 

a system’s decision-making, itself driven by the system structure. After Forrester’s works, 

many studies have explored different types of supply chain dynamic issues, identified the 

major causes and proposed corresponding solutions.  Table 2.3 summarises these findings 

over the last 57 years.  

Phenomenon  Sources Methods for mitigation 

Demand amplification 

(Burbidge 1961) 

Batching/Ordering policy 
Time compression                                                      

Control system  

Multi-phased, multi-period 

ordering 
Synchronisation 

Demand amplification 

observed by Beer Game 

(Sterman, 1989) 

Human misperception (Wrong 

assumptions in decision-making 

e.g. forecasting) 

Improve communication 

between parties and 

education 

Bullwhip Effect (Lee et 

al. 1997) 

Demand signal process  Information transparency  

Order batching 

Lead time 

reduction/supply chain 

collaboration 

Fluctuating prices  
Discount on assorted 

truckload  

Shortage gaming 

Special purchase contract                                             

Allocate based on past 

sales 

‘Backlash’ effect (Shukla 

et al. 2009) 
Orders profile reflection 

Capacity management                             

Control system design 

Table 2. 3. Supply chain dynamics issues, their causes and mitigating solutions. 
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At the operational level, Burbidge (1961) indicated that another source of demand 

amplification is economic order quantity (EOQ) related to the decision-making process such 

as scheduling, ordering policy and batching policy. Furthermore, Lee et al (1997a) proposed 

that price fluctuation and shortage gaming are two additional reasons that lead to the bullwhip. 

Furthermore, the famous Beer Game simulation model developed by Sterman (1989) clearly 

demonstrates that demand and information distortion can be created because of human 

misperception. He suggests that better education and communication between parties are 

means to reduce such a problem.  

Later, Lee et al. (1997) termed the phenomenon of demand amplification experience 

by Procter and Gamble as the ‘Bullwhip effect’. They also claimed that the demand 

amplification can be created even under the rational behaviour. Four main causes of bullwhip 

effect were pointed out: demand signalling as per Forrester, order batching as per Burbidge, 

fluctuating prices and shortage gaming. The corresponding solutions include physical lead 

time reduction, replenishment policy control, smart pricing strategies, information 

transparency.  

More recently, studies have attempted to describe and understand the distortions 

that also occur in freight transport activities. Shukla et al. (2009) identified the so-called 

‘Backlash’ effect, which is a reflection of the ‘Bullwhip effect’ and can be seen as ‘reverse 

amplification’ firstly discussed by Holweg and Bicheno (2000) during their observation of 

an ‘amplified and distorted supply model’ in the steel industry.   

2.2.2. The IOBPCS family   

 Among a number of methods and tools that have been developed to design and 

control supply chain dynamics, Simon’s (1952) control theory with feedback thinking has 
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long been widely recognised. In 1994, through the adoption of a classic control engineering 

approach, John et al. (1994) developed the APIOBPCS archetype, which extended the 

original IOBPCS archetype (Towill, 1982) by incorporating an automatic work-in-progress 

(WIP) feedback loop. Hence, IOBPCS is a subset, or special case, of APIOBPCS, and the 

IOBPCS family refers to the two original models and all their variants. These two original 

models and their variants have been recognised as a framework for a production planning 

and control system, as they consist of general laws that represent many supply chain contexts, 

including the famous beer game decision-making heuristic (Sterman, 1989), the order-up-to 

(OUT) policy (Zhou et al., 2010) as well as various industrial applications (e.g. Coyle, 1977; 

Disney and Towill, 2005; Cannella et al., 2011).  

Based on Lin et al.’s (2017) systematic citations review of Towill (1982) and John et 

al. (1994) between 1982 and 2015, as well as an updated citations review to 2018, a summary 

of the review is presented in Figure 2.4. Specifically, the content of the reviewed papers was 

categorised into one of three types. The first type papers (116 citations) referred to passing 

citations that simply cite the two papers in order to increase the quality of the paper’s main 

argument; thus, these will not be reviewed in this present study. A total of 113 papers (24 for 

second type papers and 89 for third type papers) that focus on the application of the IOBPCS 

family will be reviewed in detail in this paper. The second type category refers to papers that 

focus on one specific decision policy in the IOBPCS family: demand policy, inventory policy, 

lead time and pipeline policy. Three large clusters of papers emerge:  Demand policy; Lead 

time/WIP; Inventory policy. The third type papers are those that used the complete 

APIOBPCS model to offer insights into dynamic behaviour or to represent specific supply 

chain scenarios (extension of the APIOBPCS model). These papers were then sub-
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categorised based on four main elements of a control engineering system: sensing, assessing, 

selecting and acting (Fowler, 1999; Robson, 2004), due to the analogy between mechanical 

control systems and a supply chain system (Simon, 1952).  

Regarding second type papers, a larger number of studies focus on lead time / WIP 

and their findings highlight that forecasting has a direct impact on bullwhip generation (e.g. 

Li et al., 2014; Dejonckheere et al., 2002, 2003b), while lead-time visibility is essential to 

designing a high-quality production/distribution control system (e.g. Mason-Jones et al.,1997; 

Towill et al., 1997; Riddalls and Bennett, 2002b; Wikner, 2003; Wilson, 2007; Disney and 

Towill, 2005; Aggelogiannaki and Sarimveis, 2008). Regarding the inventory control policy, 

the Proportional controller is most widely used and appears to reduce the bullwhip effect (e.g. 

White, 1999; Lin et al., 2003; Sourirajan et al., 2008; Chaudhari et al., 2011; Kumar et al., 

2013), but the more complex proportional-integral (PI) and proportional-integral-derivative 

(PID) controllers received little attention in the literature.  

Of papers focused on studies adopting the IOBPCS family as a whole system or 

extending it to study supply chain dynamics, during the sensing stage, various dynamic 

behaviours (the bullwhip effect, rogue seasonality, inventory resonance) were identified, e.g. 

Edghill et al. (1988); Ariffin (1992); Edghill and Towill (1990); Parsanejad et al. (2014); 

Hodgson and Warburton (2009); Shukla et al. (2012); Shukla and Naim (2015). Different 

criteria/sources of supply chain dynamics were then explored, including the stability property 

(Riddalls and Bennett, 2002a; Warburton et al., 2004; Venkateswaran and Son, 2007; Sipahi 

and Delice, 2010; Wang et al., 2012; Wei et al., 2013); batching (Potter and Disney, 2006; 

Hussain and Drake, 2011; Hussain et al., 2012) and price fluctuation effect (Naim, 2006; 

Naim et al., 2007; Campuzano Bolarin et al., 2011). 
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For the final action, the order-up-to (OUT) inventory replenishment (e.g. Disney et 

al., 2006a; Warburton, 2007; Csik et al., 2010; Cannella, 2014) rule was examined due to this 

policy’s popularity in the industry. Moreover, the authors of the reviewed papers agreed that 

information sharing and supply chain collaboration are effective for bullwhip mitigation (e.g. 

Yang and Fan, 2014; White and Censlive, 2015a; Yang et al., 2011; Hosoda and Disney, 

2012; Li et al., 2013), although many of the studies were theoretically-based and provided 

limited insights into the linear assumption for representation in a real system. 

In summary, most studies utilize the IOBPCS family as a reference framework to 

model the MTS-based system where main elements, including forecasting, inventory 

feedback, delay (production and transport) and WIP inventory, are modelled and analysed. 

Bullwhip and inventory variance are used as main performance indicators for assessing the 

dynamic performance of the system, although backlog / orderbook metrics are assessed by 

several studies by extending the IOBPCS family (Wikner et al., 2007; Wikner et al., 2017). 

In general, time-oriented dynamic performance criteria from a customer perspective (e.g. 

delivery lead time) are not well-explored. 
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 Second type 

papers 

(Four policies 

in the IOBPCS 

family)

Demand Policy (6 citations) Lead time/WIP Policy (12 citations) Inventory Policy (6citations)

The optimisation 

of decision 

parameters

Inventory 

control model
Batching 

Information 

management 

strategy
Cost effectSupply chain 

stability

 Third type 

papers

 (The adoption  

the IOBPCS 

family)

1. Damped trend  (1)                                                                

2. Fuzzy estimation (3)                                                                             

3. Exponential smoothing (1)                                                              

4. Moving average/Demand signal process (1)                                                                       

1. Transport dynamics  (6)                         

2. Lead time

representation (3)                  

 3. Lead time estimation (3)

Proportional, Integral, 

Derivative  controllers (6)

1. The dynamic 

behaviour of 

production and 

planning system (6)

2. Rogue seasonality 

(2)

3. Resonance 

inventory (1)

9 citations

1.Capacity constraint (4)                                                                                         

2. Remanufacturing dynamics  (7)                              

3. Order book  (2)                                              

4.Product shelf life (1)

1. VMI (Vendor-Managed Inventory) 

(11)                                                           

2. EPoS (Electronic Point of Sales (3)                                                                                

4. Supply chain synchronisation (3)                                                                                                   

7. Multiple strategies Comparison (2) 

8. Information sharing  (3)     

9. The drawback of information 

management strategies (2)

10. robustness of information strategies 

(1)                                        

25 citations

1. Fixed Order 

policy (2)                                                                                                                    

2. Periodic 

Review (OUT 

Policy) (10)

12 citations

Effect of batching 

size on dynamic 

performance in 

signal-echelon (1) 

and

multi-echelon supply 

chain (2)

3 citations

1. Price 

fluctuation 

triggered by 

surge demand  

(2)                                                  

2. NPV (Net 

Present Value) 

(2)

4 citations

1. Quantification of 

stability (2)

2. The stability 

conditions under 

different lead time 

variations (3)  

3. The stability under 

forbidden return (1)                                          

6 citations

1. Discrete time based approach(7)

2. Simulation (4)

3. State space (7)

4. The equivalency of discrete and 

continuous time approaches (2)

5. MCDM (Multiple-Criteria 
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Figure 2. 4. Synthesis of the IOBPCS family in studying supply chain dynamics (extended from Lin et al., 2017)
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2.2.3. The study of nonlinearities in the IOBPCS family 

In addition to the impact of feedback loops and delays as the main sources of demand 

amplification as claimed by Forrester (1958), he also draws attention to the importance of 

considering nonlinear models to represent industrial and social processes. ‘Nonlinearity can 

introduce unexpected behaviour in a system’ (Forrester 1968), causing instability and 

uncertainty.  In supply chain system structures, nonlinearities can naturally occur through the 

existence of physical and economic constraints; for example, fixed and variable capacity 

constraints in the manufacturing and shipping processes, variable delays and variable 

inventory constraints, to name but a few.  

Capacity and non-negative order constraints are the two most common nonlinearities 

present in real-world supply chain systems and a number of simulation studies have analysed 

their impact. Regarding capacity constraints, Cannella et al. (2008) explored the relationship 

between constrained capacity and supply chain performance. Hussaina et al. (2015) analysed 

the influence of capacity constraint and safety stock on the bullwhip effect in a two-tier 

supply chain by using Taguchi experiment. Ponte et al. (2017) investigated the impact of 

capacity limit on bullwhip and fill rate in an OUT-replenishment policy environment. The 

general conclusion derived in the above studies are that the capacitated supply chains may 

benefit from an improved dynamic performance as compared to unconstrained ones, due to 

capacity limit acting as a production smoothing filter. However, Cannella et al. (2018) found 

that the capacity may negatively influence the supply chain performance under a load-

dependent lead time environment, i.e. lead times modelled as a nonlinear function depending 

on the current work in progress (WIP) at the manufacturer and its capacity saturation limit 
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and responsiveness (as the ability of the system in delivering the same product within a 

shorter lead time). 

Several studies focus on the impact of demand smoothing and information sharing 

under non-negative order constraint supply chain systems (see Cannella et al., 2011; Cannella 

et al., 2014; Syntentos et al., 2011). They highlighted the benefit of demand smoothing and 

information sharing in reducing supply chain dynamics, but the non-negative order constraint 

is not studied in detail. Furthermore, Chatfield and Pritchard (2013) and Dominguez et al. 

(2015) conducted simulation studies regarding the impact of forbidden return policy on 

dynamic performance. The authors indicated that permitting returns significantly increases 

the bullwhip effect, and other factors, such as configuration of the supply chain network 

(serial vs. divergent) may play an important role in influencing the impact of non-negative 

order policy on supply chain dynamics (Dominguez et al., 2015). 

Although many researchers offered a deep understanding of the impact of 

nonlinearities on supply chain dynamics, only simulation methods have been recommended 

to analyse nonlinear supply chain models. However, simulating complex systems without 

having first conducted some preliminary mathematical analysis can be exhausting and 

unrewarding, due to the trial-and-error nature of this approach that may hinder the system 

improvement process (Sarimveis et al., 2008, Lin et al., 2017). It is only recently that an 

emerging number of studies have adopted non-linear control engineering approaches to 

analytically explore the nature of different nonlinearities in ordering system structure. Table 

2.4 gives a brief review of these works. 

Although studies summarised in Table 2.4 contribute to an understanding of the effect 

of nonlinearities on the dynamic behaviour of the production-inventory system, there are 
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several common limitations. Jeong et al. (2010) only use a simulation method to analyse the 

effect of different capacity constraints on the system dynamics behaviour, despite efforts to 

linearise a part of the model. Wang and Disney (2012), Wang et al. (2014) and Wang et al.’s 

(2015) studies are limited to analysis of the non-negative order constraint on the 

replenishment order. Although Spiegler et al. (2016a, 2016b) and Spiegler (2017) explore 

more complex nonlinearities, such as capacity and distribution shipment constraints, their 

analysis is limited to the single echelon supply chain system and to the analysis of different 

nonlinearities individually. Furthermore, all studies solely explore dynamic performance of 

MTS-based production control system by utilising bullwhip and inventory variance as main 

performance indicators. Despite the importance of time and order-based performance in the 

ATO system highlighted in Section 2.1.3, i.e. performance evaluation for the downstream 

part of the CODP such as backlog order and delivery lead times, no analytical work has 

explored the nonlinear ATO system from the system dynamics perspective by incorporating 

such performance metrics, although some papers have conducted simulation studies, e.g. 

Wikner et al. (2007) and Wikner et al. (2017). The following section provides a detailed 

review of system dynamics simulation works for the ATO/CODP-based systems.  
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Authors The type of 

system 

The assessment 

criteria 

Control engineering 

methods 

Key insights 

Jeong et al. 

(2010) 

MTS and 

Forrester Model 

Stability, bullwhip 

and inventory 

variance  

Matsubara time delay 

theorem; Small 

perturbation theory 

Explore the effect of different capacity levels on 

the factory’s production rate, unfilled orders. 

Wang and 

Disney (2012) 

and Wang et al. 

(2014) 

MTS (the order- 

up-to policy) 

Bullwhip and 

Inventory variance 

Eigenvalue methods Explore the stability boundaries of a piecewise 

linear inventory control system (non-negative 

order constraint) and identify a set of behaviours 

in the unstable region. 

Wang et al. 

(2015) 

MTS (the order-

up-to policy)   

Bullwhip Describing function Identify the effect of non-negative order 

nonlinearity on the bullwhip effect in 

responding sinusoid demand, and propose 

strategies (forecasting, low ordering frequency) 

to mitigate bullwhip effect. 

Wang and 

Gunasekaran 

(2017) 

MTS and 

remanufacturing 

Bullwhip and 

environmental 

dynamics 

Taylor series expansion 

with small perturbation 

theory 

Investigate the impact of production, 

environment, and demand variations on the 

dynamics and economic performance of 

sustainable supply chain systems. Their findings 

suggest that supply chain sustainability is 

essential to the continuous improvements of 

supply chain performance 
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Authors 

(Continued)  

The type of 

system 

The assessment 

criteria 

Control engineering 

methods 

Key insights 

Spiegler et al. 

(2016a) 

 

MTS (Empirical 

UK grocery 

model) 

Bullwhip and 

inventory variance 

 

Describing function 

 

Identify the influence of demand characteristics 

(frequency and amplitude) caused by shipment 

and truckload constraints on system dynamics 

behaviour, such as backlog, inventory and 

system’s resilience.  

Spiegler et al. 

(2016b) 

 

Forrester model 

(Forrester, 1961) 

Bullwhip, inventory 

and shipment 

variance 

 

Taylor series 

expansion with small 

perturbation theory; 

Matsubara low order 

modelling (Matsubara, 

1965) 

Propose a simplification technique to provide a 

better visualisation and understanding of the 

variable interactions in the Forrester’s model. 

Also, the linearisation approaches offer further 

insights due to the possible derivation of system’s 

transfer function and local stability boundaries. 

Spiegler et al. 

(2017) 

MTS 

(APIOBPCS) 

Bullwhip, inventory 

variance and stability 

(Limit Cycle) 

Describing function Investigate the effect of non-negative order and 

shipment constraints on the dynamic performance 

of the APIOBPCS model. The phenomenon called 

limit cycle triggered by nonnegativity nonlinearity 

is also explored.  

Table 2. 4. The review of non-simulation methods applied for analysing nonlinearities 
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2.3. ATO supply chains within the context of system dynamics   

2.3.1. System dynamics studies in the context of the CODP, MTO and ATO systems 

An important part of the ATO system is the position of CODP as well as the MTO 

phase, in which the latter is characterised by the order-driven, customized-centric operations 

environment. This is completely different from the MTS environment where tangible 

inventory plays the key role in influencing supply chain dynamics. Given that extensive MTS 

dynamic studies has been presented in literature (reviewed in Section 2.2), this section 

exclusively focuses on literature considering MTO, CODP and, the focus of this thesis,. the 

ATO system  

Wikner et al. (2007) developed an MTO system dynamics model and explore its 

dynamic performance by using the order book feedback control concept. They suggested that 

managers may be able to control the level of capacity and lead time flexibility by selecting 

appropriate forecast smoothing and order book control parameters. The limitation of this 

work, however, is the ignoring of nonlinearities presented in the MTO system, and also, 

although the model could potentially be extended and used for the dynamic analysis of 

decoupled systems, it lacks a mechanism for integration between the MTS and MTO 

elements  

Özbayrak, et al. (2007) developed four-echelon MTO based system dynamics model 

and analysed some key dynamic metrics such as inventory, WIP levels, backlogged orders 

and customer satisfaction. Although some insightful dynamic results were obtained and 

analysed, the pure simulation approach lacks the analytical power in giving guidance 

regarding the improvement and engineering of the supply chain system.  
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Anderson et al. (2005) assessed the dynamic performance of order-based service 

supply chains with different degrees of demand variability and information sharing. They 

developed a capacity management model for a serial chain by presenting related capacity, 

processing, backlog and service delays at each supply chain stage.  By using the system 

dynamics simulation approach, they characterise the bullwhip phenomenon exist in such 

supply chain systems. The impact of different levels of information sharing and management 

strategies on capacity and service delay variability are also studied  

By decoupling generic FD and CD models, Hedenstierna and Ng (2011) evaluated 

the dynamic consequences of shifting the position of the CODP and found that the ideal 

position depends on the frequency of demand. However, their model is simple and linear, 

lacking more realistic representations, such as capacity constraints and availability of 

material. Choi et al.’s (2012) developed a system dynamics simulation model from Lee and 

Tang’s (1997) model and their experiences gained through a case study in a Korean 

automobile manufacturer. In contrast to Hedenstierna and Ng (2011), their model represents 

complex variable relationships, but their simulation results are limited to Korean global 

automobile companies.  

Wikner et al. (2017) conceptually develop a hybrid MTS-MTO model that can 

represent a typical ATO system by decoupling the customer orders at the final assembly plant. 

By using system dynamics simulation, they highlight the significant impact of capacity 

constraint downstream of the CODP on backlog and CODP inventory dynamics, although 

the conceptual model does not explicitly consider the upstream capacity limit as well as the 

delivery LT measurement. Since this study focuses on the ATO system within the context of 
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the semiconductor and PC industries, the corresponding relevant background and literature 

related to the system dynamics are now introduced. 

In general, few studies have investigated the MTO, CODP and ATO system structure 

from the system dynamics perspective. The nature of most studies is conceptual without 

support of real-world context. Also, most studies adopted a pure system dynamics simulation 

approach and this leads to the difficulties in obtaining analytical insights regarding the control 

and design of appropriate policies in improving supply chain dynamics performance.  

2.3.1. ATO system dynamics in the PC industry 

Very limited effort has been found for modelling and analysing the system dynamics 

of the ATO system structure in the PC sector. Berry and Towill (1992) developed causal loop 

diagrams to explain the ‘gaming’ that yields bullwhip in the electronics supply chains, 

including semiconductor production, while Berry et al. (1994) undertook simulation 

modelling of a generic electronics industry supply chain to highlight the opportunities 

afforded by different supply chain reengineering strategies to mitigate bullwhip. However, 

their model did not explicitly represent the CODP and nonlinearities (e.g. shipment and 

inventory constraint, forbidden return) in the hybrid ATO system.  

2.3.2. ATO system dynamics in the semiconductor industry  

Overall, from a system dynamics perspective, very few studies focus on the ATO 

system in the semiconductor industry, apart from Gonçalves et al. (2005); Orcun, et al. (2006) 

and Orcun and Uzsoy (2011). Gonçalves et al. (2005) developed a system dynamics 

simulation model to explore how market sales and production decisions interact to create 

unwanted production and inventory variances in the Intel hybrid ATO supply chain. Using a 

system dynamics approach,  Orcun et al. (2006) developed a capacitated semiconductor 
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production model with load-dependent lead time, which overcomes the limitation of treating 

lead times as exogenous parameters independent of the decision variables that most linear 

dynamic models assume. The analysis suggested that nonlinear change at high capacity 

utilisation is consistent with insights from queuing models and industrial practices. 

Furthermore, Orçun and Uzsoy (2011) studied the dynamic behaviour of a simplified 

semiconductor supply chain system with two capacitated manufacturing echelons and one 

inventory echelon. They indicated that the dynamic properties of a supply chain system under 

optimisation-based planning models are qualitatively different from those operating under 

simple feedback policies system dynamics models.  

Although these system dynamics simulations contribute to the representation of a real 

system by incorporating nonlinear components and complex structures, it is a trial-and-error 

approach that may hinder the system improvement process (Towill, 1982; Sarimveis et al., 

2008). Despite the fact that semiconductor supply chains have suffered severely from the 

bullwhip effect (Chien et al., 2010; Terwiesch et al., 2005), limited research studies have 

explored the underlying system structures that cause the phenomenon. As a result, there is a 

need to consider analytical methods to understand the underlying mechanisms of bullwhip 

generation and propose corresponding mitigation approaches that are relevant for the 

semiconductor ATO supply chain. 

2.4. Synthesis  

This chapter explores literature regarding two key contexts, the ATO supply chain 

systems and the System Dynamics. The review starts by introducing mass customisation and 

CODP concept (Section 2.1.2) to identify the general academic location of the ATO system. 

Performance criteria for measuring the ATO system is then explored based on cost-related 
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supply chain performance, as highlighted in Tables 2.1 and 2.2 in Section 2.1.3. It can be 

concluded that quantitative works on the ATO system mainly utilise the pricing of component 

and final products, and cost associated-metrics including CODP inventory (e.g. components 

fill rate, key component availability), capacity availability (final assembly and component 

production) and time/order (e.g. end customer delivery time, component delivery time, 

backlog order fill rate) as main indicators for assessing the ATO system performance. 

Although most works focus on stochastic modelling, this is not the focus of the current thesis; 

the review offers a deep understanding of how the ATO system is measured in the broader 

context. 

When the supply chain system performance measurement is narrowed down to the 

context of system dynamics (Section 2.2), the history of system dynamics/supply chain 

dynamics is explored to understand the evolution of system dynamics research in production 

planning as well as the context of supply chain systems (Table 2.3). Note that, based on 57 

years’ system dynamics research works, Towill (1997) and Geary et al. (2006) summarised 

the Forrester and Burbidge (FORRIDGE) principles commonly recognised as the 

fundamental strategy for supply chain dynamics mitigation, which is supported by substantial 

experimental and mathematical evidence. Table 2.5 shows the details of FORRIDGE 

principles.  

Principles Details 

Control system 

principle 

Design and select a robust control system to achieve system 

objectives and avoid guesswork 

Time compression 

principle 

All supply chain activities should be kept at minimum 

reasonable time to achieve task goals 
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Information 

transparency 

principle 

Up-to-date information, including 'noise' and personal bias, 

should share across all chain echelons 

Echelon elimination 

principle 
Unnecessary echelons should be eliminated 

Synchronization 

principle 

All events should be synchronized to keep visibility of 

orders and deliveries at discrete points in time 

Table 2. 5. Five principles to reduce supply chain dynamics. Source: (Towill, 1997; Geary et al., 

2006) 

Drawing on the first Control System Principle and the classic control theory from the 

engineering field, the IOBPCS family, originally developed by Towill (1982) and John et al. 

(1994), is widely recognised for studying system dynamics within the context of supply 

chains. The systematic citation review of the two original papers is conducted to explore how 

the IOBPCS family is exploited and extended in studying supply chain dynamics. Based on 

Figure 2.4, it can be concluded that the IOBPCS family is mainly utilised for modelling and 

analysing the MTS based systems and that bullwhip (capacity utilisation) and inventory are 

the two main metrics, although few studies consider the utilisation of orderbook/backlog 

orders in the context of order-driven systems (e.g. Wikner et al. 2007; Wikner et al. 2017).  

The RQ1a is thereby answered. The author found the IOBPCS can be well 

represented for the MTS based systems consisting of forecasting, inventory feedback and 

production/transport delay elements, and the corresponding dynamic performance can be 

assessed by bullwhip, inventory variance and stability. Clearly, the IOBPCS family literature 

lacks the study of dynamic behaviour of the order-driven or hybrid systems in which time 

performance becomes crucial. Also, there is a need for investigating both linear and non-



 

Literature review  
 

50 
 

linear models based on the IOBPCS family to represent real-world supply chain system with 

resources/physical constraints, such as capacity, inventory and shipment constraints.  

Based on the broader ATO supply chain performance criteria (Table 2.2) and the 

system dynamics (IOBPCS family) literature (Figure 2.4 and Table 2.4), Figure 2.6 

synthesises performance evaluation for the ATO system. It can be concluded that delivery 

lead times and backlog order-based performance metrics need to be considered in assessing 

ATO system dynamics. Due to the fact that there is a direct link between order and time 

dimension (Zhao, 2009; Lu et al., 2005; DeCroix et al., 2009) in the ATO system, three 

important performance evaluation criteria for the ATO system from the system dynamics 

perspective emerge: Inventory variance, bullwhip, and lead-time variance, that is, the RQ 

1b is answered. Furthermore, the general research objectives are formulated as a result of 

this: there is a need to dynamically model, design and analyse the ATO system within the 

context of system dynamics.  

Supplier production

CODP inventory

Final assembly

Cutsomers

Capacity utilization 

variance (Bullwhip), 

inventory variance

1. Disruptions

2. Production capacity

3. Technology innovation

1. Components inventory availability/fill 

rate

2. Key components inventory availability 

3. Components pricing

4. limited final assembly capacity

5. Delivery lead time

1. Customer delivery lead 

times

2. Backlog order fill rate

Inventory variance Delivery lead times (or 

Backlog order/order 

book)

Order-driven final 

assembly
Forecast-driven 

production

Performance measurement 

criteria utilized in the context of 

general ATO system (mainly 

stochastic studies) 

Performance measurement 

criteria utilized in the context of 

system dynamics  

Figure 2. 5. Performance criteria utilised for assessing the ATO system based on literature review. 

Source: the author. 
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Focusing on the PC and semiconductor industries, Table 2.6 further illustrates the 

detailed scope and main contributions of this thesis. It was evident that very limited study 

addressed the underlying mechanisms of ATO system dynamics based on the semiconductor 

industries, despite these industries suffering severely from supply chain dynamics (Hofmann, 

2017; Li and Disney, 2017; Vicente et al., 2017), such as bullwhip. Furthermore, most studies, 

as shown in Table 2.6, utilise pure simulation approaches, although it is a trial-and-error 

approach that may hinder the system improvement process (Towill, 1982; Sarimveis et al., 

2008). As a result, there is a need to propose analytical methods to understand the underlying 

mechanisms of bullwhip generation and propose corresponding mitigation approaches that 

are relevant for the ATO supply chains. This formulates the RQ 2a and 2b, i.e. gain insights 

by utilising the existing real-world ATO system as an example to understand the underlying 

mechanism of supply chain dynamics and propose mitigation solutions. 

It is also clear that only two works have investigated the dynamic behaviour of PC 

supply chains, although the ATO supply chain strategies have been widely adopted in that 

industry. There is also a need for systematically modelling and analysing the PC ATO supply 

chains within the context of system dynamics. Furthermore, most modelling and analysis 

works do not consider analytical methods in assessing the ATO system structure, particularly 

the nonlinearities present in the system. Finally, the dynamic analysis of final customer 

delivery LT is largely ignored in the literature, although several works (e.g. Wikner et al., 

2007; Wikner et al., 2017) may consider the related backlog orders for measuring the end 

customer order fulfilment performance. Based on these research gaps, the RQ 3a, 3b, 3c and 

3d have emerged, which aim to develop system dynamics models of PC supply chains as an 

illustration of the typical hybrid ATO system and explore the dynamic performance of such 
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models by incorporating delivery LT variance, beside commonly recognized indicators 

(capacity and CODP inventory), as the third measure. The author terms this as ‘performance 

triangle’ (Klasse and Menor, 2007), i.e. the dynamic analysis of capacity variance at the 

supplier, the customer order decoupling point (CODP) inventory variance and the delivery 

LT variance (see Figure 2.6). Furthermore, nonlinearities present in the PC ATO system will 

be analytically explored utilising nonlinear control engineering approaches.  

 

Figure 2. 6. Performance triangle within the context of ATO supply chain dynamics. 

Non-linear assemble-to-order 

(ATO) supply chain system in 

personal computer and 

semiconductor industries

Capacity dimension 
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Delivery time 
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  Conceptual works Semiconductor sector General PC sector This 

thesis 

Author Wikner 

et al. 

(2007) 

Hedenstierna 

and Ng 

(2011) 

Choi et 

al. 

(2012) 

Wikner et 

al. (2017) 

Gonçalves 

et al. 

(2005) 

Orcun 

et al. 

(2006

) 

Orcun 

and 

Uzsoy 

(2011) 

Berry 

and 

Towill 

(1992) 

Berry 

et al. 

(1994) 

 

Scopus MTO MTS-MTO 

depending on 

CODP 

MTS-

MTO 

dependin

g on 

CODP 

MTS-

MTO 

depending 

on CODP 

ATO ATO ATO ATO ATO ATO 

CODP 

research 

scope  

Material 

CODP 

position 

 √ √ √       

DIDP 

position 

   √       

Sources of 

system 

dynamics 

Feedback and 

delay 
√ √ √ √ √ √ √ √ √ √ 

Forecasting  √ √ √ √ √ √ √ √ √ √ 

Pricing            

Gaming            

Order 

batching 

          

Performance 

metrics 

Delivery 

lead-time 

variance  

         √ 

Backlog 

/Order book 

variance 

   √ √      

Capacity 

variation 

(bullwhip) 

√ √ √ √ √ √ √ √ √ √ 

Inventory 

variance  
√ √ √ √ √ √ √ √ √ √ 

Cost            

Stability          √ 
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Continued Conceptual works Semiconductor sector General PC sector This 

thesis 

Nonlinearities Single-valued    √ √ √ √   √ 

Multi-valued    √ √     √ 

Continuous          √ 

Methods Simulation √ √ √ √ √ √ √ √ √ √ 

Analytical          √ 

Table 2. 6. Detailed scope of this thesis - SCM theory and methodology contributions. Source: the author. 
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2.5. Summary 

 This chapter has provided an overview of literature related to the ATO system and 

the system dynamics. The performance metrics for ATO system evaluation are explored 

in both general quantitative study and more specific system dynamics contexts. Regarding 

the system dynamics perspective, the IOBPCS family, widely recognised as the 

fundamental framework for modelling and analysing the system dynamics performance 

of the production-inventory, as well as supply chain systems, is systematically reviewed. 

A so-called ‘performance triangle’ is developed to measure the dynamic performance of 

the ATO system, i.e. the dynamic analysis of capacity variance at the supplier, the CODP 

inventory variance and the delivery LT variance.  The review of the IOBPCS family also 

highlights the need to analytically explore nonlinearities present in the supply chain 

systems, particularly in a time-oriented system such as the ATO system. When the 

literature is narrowed down to the system dynamics of the ATO system in the PC and 

semiconductor industries, very limited research has been found. Most works conceptually 

modelled the hybrid MTS-MTO system or the position of CODP to present implications 

of designing and analysing different combined systems. Also, simulation is the primary 

choice due to the complexity of the system dynamics model, i.e. the high-order nonlinear 

system dynamics model. Based on the literature review and general research gap 

highlighted in the Chapter 1, two further research objectives and corresponding RQs have 

emerged: 1) propose design methods including simplification and linearisation to 

overcome simulation limits that provide sparse analytical findings, and 2) develop a 

system dynamics model of the ATO within the context of the PC sector and analyse the 

dynamic performance of the nonlinear ATO system based on ‘performance triangle’. 

Chapter 3 will present the details regarding appropriate epistemological positions and the 

corresponding methodology choice. 
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Chapter 3. Methodology  

The previous chapters established the subject matter of this research and 

highlighted the relevant gaps that will be addressed through a consideration of the 

research questions. This chapter will explain how this research has been carried out, 

including the research ontological and epistemological positions, research design, 

methods and tools used.  

This chapter will first outline the ontological and epistemological underpinnings 

of supply chain management research and the philosophical stance considered in this 

thesis. Next, further details on the research methods and tools used will be provided. This 

includes a review of the control engineering and system dynamic simulation. Finally, the 

research design used to answer the research questions will be explained. 
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3.1. Research philosophy and paradigm 

A research paradigm refers to the involvement of an ontology, an epistemology 

and a methodology (Blanche et al., 2007). Ontological position represents the researchers’ 

perception regarding the social reality. The fundamental debate is whether social reality 

is constructed as a series of interactions between people or naturally occurs. Epistemology 

emphasises how knowledge of social reality is constructed (Saunders et al., 2009). The 

methodological position is influenced via ontology and epistemology, which is the way 

in which knowledge of reality is interpreted. Methodological position further affects the 

selection of methods, theories and theoretical frameworks as it is the basis and rationale 

behind their selection.  

  The balance between generalisation / optimisation and meaning to explore the 

social phenomenon is crucial when conducting social science research. Researchers who 

prefer to use the quantitative research represents their purpose of generalization or 

external validity. However, qualitative methods are mainly utilized for internal validity 

or meanings (Golicic et al., 2005). Since this research is located in the discipline of supply 

chain management, the philosophy traditions in this area will be reviewed to identify the 

research paradigm.  

3.1.1. Research philosophy and paradigms in supply chain management 

Supply chain management research is fundamentally fragmented and 

multidisciplinary (Larson and Halldorsson, 2004) due to its involvement of various 

subjects including Management Science, Technology Management, Operations Research, 

industrial engineering (Kotzab et al., 2006). supply chain management is dominated by a 

value-free, objective and deductive research. The rationale behind this philosophical 

tradition is researchers recognized the supply chain as a kind of organisational form and 

its ontological identifiers are independent of social entities (Emmanuel et al., 2012). For 
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example, researchers and practitioners design their supply chain based on desired criteria 

(e.g. cost). As a result of the ontological perspective of supply chain research, positivism 

epistemology dominates to this area through applying quantitative methods, e.g. 

mathematical modelling, statistical test (survey), experiment (Sachan and Datta, 2005; 

Burgess et al., 2006; Spens and Kovács, 2006; Aastrup and Halldórsson, 2008). 

However, a branch of research supports the qualitative, anti-positivism methods 

in conducting supply chain management research (Näslund, 2002). Frankel et al. (2005) 

suggested a ‘white space’ in understanding logistics from an inductive and subjective 

view occurred due to the dominance of positivism, which highlights the need to conduct 

qualitative research (Näslund, 2002). Under this assumption, supply chain is socially 

constructed with interpretation flexibility, and specific interests and power structures are 

supported by each interpretation (New, 2004). As a result, interpretivism/constructionism 

and corresponding qualitative methods, such as action studies and interview, are preferred 

by researchers.  

Standing on the middle place is the abductive approach (Kovács and Spens, 2005). 

The abduction combines the deductive and inductive approaches, rationalism and 

empiricism. The similarities and major difference between inductive, abductive and 

deductive research paths is highlighted in Figure 3.1. Specifically, the abductive process 

begins with a similar inductive approach but a link between theoretical framework and 

real-life observation is created. The remainder of the abductive process tracks deductive 

research. That is, applies/tests the hypothesis or proposition to make contributions to 

knowledge.   

Although few papers refer to the term ‘abductive approach’ in their method 

strategy in supply chain management research, Spens and Kovács (2005) indicated the 

analogous abductive approach or research process has been adopted by some logistics 
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authors. They also suggested that theory development by adopting abduction in a new 

research filed like logistics and supply chain management is important. As a result, mix-

based methodology (e.g. case study) (Harrison and Easton, 2002; Kovacs et al., 2008) are 

preferred by thosesupply chain researchers advocated realism/critical realism as the 

research epistemology to challenge traditional positivist (Harrison and Easton, 2002; 

Kovacs et al., 2008). 

Prior theoretical 

knowledge

Theoretical 

framework

Contribution to 

the new 

knowledge

Real-life 

observation

Applications or 

testing

Defining 

research 

questions

Inductive

Abductive

Deductive
 

Figure 3. 1. The research process of deduction, induction and abduction. Source: Kovács and 

Spens (2005). 

Based on the intermediate school of thought within logistics research, 

Gammelgaard (2004), who used a methodological framework from Arbnor and Bjerke 

(1997), categorised the existing supply chain management research as three groups: 

analytical, system and actors’ approaches, representing the corresponding deductive, 

abductive and inductive research process, as illustrated in Figure 3.2. 
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Figure 3. 2. Methodological framework for supply chain management research (Gammelgaard, 

2004). 

Specifically, researchers who adopt the analytical approach in studying supply 

chain management treat reality as objective that can be decomposed into smaller elements 

and then propose hypotheses to test them. On the other hand, advocates for the actors’ 

approach emphasise the fact that reality is not objective but the result of social 

constructions, i.e. a high level of contextual-based study, which qualitative and inductive 

research approaches usually adopt. Standing in the middle is the system approach where 

researchers hold a holistic view of the supply chain as a system and study such system 

via understanding of entities, links, goals, and feedback mechanism in order to improve 

the system. 

Based on research objectives and corresponding research questions, the author 

adopts the system approach in this thesis. This is because the nature of phenomenon, i.e. 

supply chain dynamics, is investigated through a holistic view of ATO supply chain as a 

system. Such bounded system includes questions of the causality between different 

system entities (stock, order and production rate, demand, capacity, policies etc.) and of 
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mechanisms (the impact of one entity on others and/or on the supply chain dynamic 

performance). The systems approach is also theory-driven but this theory is contextual 

rather than universal. Reality is still considered objective and can be susceptible to 

influence, and thus it is preferable that the researcher stands outside the research object. 

However, unlike the analytical and actor’s approaches in which deductive 

positivism and inductive interpretivism are corresponding schools of thought, the systems 

approach is implicit for any of the social science schools of thought. Thus, the selection 

of epistemological positions of this study is considered in the next section.  

3.1.2. Ontological position 

There are two ontological positions recognised in studying social science research: 

objectivism and subjectivism. The social actors who support objective ontology consider 

social entities to exist as reality independent of his/her perceptions and interpretations. 

Subjectivism, on the other hand, means that the social actors create a social phenomenon 

via their perception and corresponding actions. 

 The author strongly believes that the phenomena; that is, supply chain dynamics 

to be investigated in this thesis exist independently of his own perspective and 

interpretations, which means the objectivity assumption is made for this research. In other 

word, the author treats the dynamic supply chain system as a tangible object that obeys 

rules, policies and standard process to achieve targeted objectives. 

3.1.3. Epistemological position 

Since the objective ontology is adopted in this study, there are three corresponding 

epistemological positions that need to be further considered: Positivism, Empiricism, and 

Critical Realism (May, 2001). Table 3.1 summarises the main characteristics of three 

epistemological positions.  
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Epistemological 

positions 

Main characteristics 

Positivism ( Objectivity: ‘Fact’ exists and is collectable, and is independent of 

people’s perception of the social world (May, 2001); 

( Natural science perspective: produce causal relationship via predicting 

and explaining the behaviour (May, 2001) and scientific process is the 

only legitimate way to gather evidence (Hunter, 2002). 

• Deductive elements: theory is used for the purpose of developing 

testable hypotheses and explain laws (Bryman, 2012). 

• Law-like generalisation: knowledge is generated by gathering facts to 

create universal laws (Bryman, 2012). 

• Value-free principle: adopt an ‘unbiased way’ for data collection 

(Hunter, 2002). 

Empiricism • Shares the essence of positivism that there are ‘facts’ independent of 

people’s perception and interpretation, which researchers can generalise to 

explain human behaviour by collecting and analysing data from the social 

world (May, 2001) 

• Unlike positivism, empiricism is implicit in the process of 

theory guiding data collection (May, 2001); thus, it is characterised by the 

catchphrase ‘the facts speak for themselves’.  

Critical realism • Shares positivism’s perspective (i.e. natural science perspective) 

regarding objectivity, causality, prediction and explanation (Bryman, 

2012).  

• The matter of underlying mechanisms, including: 

1. The presence of underlying mechanisms. However, it is not apparent 

and observable, as underlying mechanisms are allowable on the grounds 

in which their effects are observable (May, 2001). 

2. The same outcome is the result of different roots. Single casual-effect 

relationship can not be explained by underlying mechanism; therefore, the 

cause must be regarded as ‘tendencies’ due to the different layers of 

reality. (Williams and May, 1996). 

3. The priority of researchers is to reveal the fundamental structures of 

social relations (May, 2001). 

• The generation of social scientific knowledge is theory-driven (Carter, 

2000). 

Table 3. 1. Main characteristics of three epidemiological positions under objective ontology. 
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Based on the literature, both positivism and critical realism can be epistemological 

positions in studying supply chain dynamics. For example, both artificial paradigm 

dominated by an axiomatic and positivist approach, and direction observation of reality 

driven by the case studies and field experiments can underlie supply chain dynamics 

research (Dunn et al. 1994). 

On the other hand, a system thinking approach related to critical realism is 

recognised in supply chain dynamics research (Gammelgaard, 2004), which holds the 

view that the various elements of the supply chain system are fundamentally 

interdependent. Specifically, the system thinking approach takes the perspective of theory 

as contextual rather than universal. Also, data collection and theory building seem to 

occur practically. However, reality is still regarded as objective and independent of actors’ 

thoughts or beliefs.  

 Since the main objective is to explore the contextual based ATO system structure 

(i.e. PC and semiconductor sectors) by simulation, analytical experiment and modelling, 

and the author does not aim to propose hypotheses or test to make a universal claim, the 

system approach is more appropriate for this study. The systems approach allow the 

exploration of complex systems characterised by feedback loop control and interactions 

between different level and variables (Wolf, 2008). Feedback in this context means that 

one element might affect another and vice versa, which should be considered and 

investigated by a holistic system modelling approach (Forrester, 1961; Towill, 1991). As 

a result, the study of supply chain dynamics from the system approach perspective may 

fit into the critical realism principle. As Mingers (2000) suggested, some of the major 

premises of critical realism may be able to characterise the systems dynamics, since it is 

grounded in a holistic view and abductive approach. This approach tends to have been 

used by researchers who modelled supply chains via real-world observations.  
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 However, positivism also fits into some areas of this study for two reasons. First, 

system dynamics research traditionally proposes and tests theories and then generates 

scientific laws, which is a fundamental principle of positivism. Second, for the deductive 

literature review process, an objective, holistic and value-free view will be taken. 

Knowledge (structured and narrow review) is created by collecting facts to generate 

universal laws (Bryman, 2012). 

As a result, the author strongly believes the systems approach contains elements 

of both positivism and the critical-realism school of thought. The theoretical questions 

(RQ1a and 1b) can be explored by a positivist principle with deductive research process 

where there is no underlying mechanism of ‘observable fact’ (existing literature), 

knowledge (e.g. research gaps) can thereby be generalised by reviewing the papers.  

However, to explore the remaining theoretical and methodological questions, critical 

realism appears to be more appropriate. This is because underlying mechanisms exist and 

need to be explored. For example, the underlying mechanisms of bullwhip are not easily 

observable and greatly depend on system structure (e.g. MTS, MTO and ATO), policies 

(e.g. different ordering policy, inventory control policy) and contexts (e.g. industry). Also, 

different causes may have the same outcome (e.g. bullwhip) and need to be understood 

analytically. For example, as demonstrated in Table 2.3, there are multiple sources of 

bullwhip effect in production-inventory and supply chain systems including delay, 

feedback, forecasting, batching, nonlinearities, human beings’ perception etc.  

Although critical realism is more appropriate in answering RQ2a, 2b and 

RQ3a,3b,3c, it appears both deductive and abductive research processes would be valid. 

This means the research into ATO system dynamics can be conducted by either collecting 

real-world ATO supply chain information and material flow (e.g. observations, interview, 

business mapping with practitioners), or using existent ATO system dynamics models 
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and/or developing system dynamics models based on existing materials. The former is 

more related to an empirical research process, while the latter study is conceptual in nature.  

In this thesis, the utilisation of existent models and materials is selected by 

following the conceptual research process, since the use of well-established models is 

more appropriate in answering the methodological questions, and the secondary data has 

several advantages, including less time, money and fewer personnel for data collection 

(Rabinovich and Cheon, 2011; Ellram and Tate, 2016), high reliability and credibility due 

to the peer-reviewed process of paper publication. Hence, an abductive logic reasoning 

and a conceptual research approach were chosen in this thesis.  

3.2. Research methods and tools 

In order to illustrate the methodological position in this dissertation, Wolf's (2008) 

methodology hierarchy is followed (Figure 3.3).  

Conceptual

Empirical

Exploratory

Structured

Quantitative

Triangulation

Qualitative

           Conceptual Literature Review

           Others

            Simulation

            Mathematical Modelling

            Experiment

              Survey

              Empirical Literature Review

              Action Research

              Case Study

              Focus Group

              Judgement task

              Interview

        Research Strategy                                                          Research Analysis

 

Figure 3. 3. Methodology hierarchy. Source: Wolf (2008) 

To be more specific, a research strategy can be conceptual or empirical, depending 

on whether field data is gathered for the generation of theory or not. As discussed in 
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Section 3.1, since the conceptual research process is followed, mathematical modelling 

(control engineering), simulation and experiments can be utilised during the research 

analysis stage to generate artificial data and to give deep insights into existing models 

regarding system dynamics behaviour. The literature review process, on the other hand, 

can be conducted via a more exploratory way to generate new findings and pose questions. 

3.2.1. Mathematical modelling: control engineering approach  

Control theory is a branch of engineering and mathematics for the purpose of 

studying dynamical systems. A system refers to a set of elements connected by 

information and physical links (Leigh, 2004). Control theory is well-recognized in 

studying production-inventory as well as supply chain systems, due to it enables the 

systematic evaluation of feedback based systems and identification of causal relationship 

(Towill, 1982; Towill, 1992; John et al., 1994; Sarimveis et al., 2008; Lin et al., 2017; 

Naim et al., 2017). 

3.2.1.1. Discrete and continuous time domain modelling choice   

In order to analyse any dynamic system, it is possible to consider that variables 

change with time discretely or continuously. A production-inventory control system may 

operate in either continuous time, where the inventory and ordering status is reviewed 

continuously, or discrete time, such as in a periodic review process.  

Several studies in both discrete and continuous time production control 

have been undertaken. Simon (1952) pioneered the continuous time domain approach in 

studying inventory control system. Also, the original studies of the IOBPCS family, 

Towill (1982) and John et al. (1994), adopted the continuous time domain approach.  

However, based on a systematic review of the IOBPCS family (Lin et al., 2017), the 

discrete approach has received more attention (Disney and Towill, 2003; Disney et al., 

2004; Lalwani et al., 2006; White and Censlive, 2015), which is consistent with the fact 
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that a real replenishment system is often monitored in a periodic way (Vassian, 1955). It 

should be noted that neither of these approaches is superior for application in different 

real scenarios (Disney et al., 2006b), e.g. examining the stability property through 

continuous time approaches while adopting a discrete time system for the stochastic 

response (Warburton and Disney, 2007). 

 A continuous time domain approach is adopted in this study for two reasons. First, 

vendor managed inventory (VMI) and continuous replenishment program (CRP) are 

commonly adopted in the PC industry (Kapuscinski et al., 2004; Huang and Li, 2010; 

Kumar and Craig, 2007; Katariya et al., 2014), i.e. the OEM PC parts replenishment for 

incoming customised orders is undertaken on a continuous time manner. Second, a 

continuous time approach has the advantage of handing nonlinearities present in the 

system in an easier way than a discrete time approach. Mathematically discrete control 

theory involves lengthy and tedious algebraic manipulation (Naim et al., 2004); also, 

when nonlinearities are included, the mathematics of discrete system become more 

complex and very limited sources of literature can be found and adopted (Spiegler, 2013). 

For these reasons, the author conducts the dynamic analysis of the ATO system in a 

continuous time manner. It should be noted that although the continuous time approach 

(e.g. Laplace transform, differential equations) are adopted in this thesis, the author uses 

difference equation to develop the dynamics model for simulation purpose in Chapter 4 

and 5. Difference equations can give a better visualization of the relationship between 

different variables, e.g. avoid the integral sign, which has been well-recognized in the 

literature (e.g. Wikner et al. 2007; Spiegler et al. 2012) 

3.2.1.2. Linear analysis techniques  

A system can be defined as linear if the system follows principle of superposition, 

which means that the system’s response given an input signal X+Y is the sum of the 
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behaviour in following signals of magnitude X and Y applied separately (Towill, 1970). 

Also, only linear systems can be modelled in state space representation and be represented 

by a single transfer function. Block Diagram manipulation, Laplace Transforms, Transfer 

Functions, Characteristics equations (CEs) analysis are the main techniques used in 

investigating dynamical systems in this study. Table 3.2 presents an overview of these 

approaches.  

From the observer perspective, the study of supply chain dynamics (bullwhip) can 

be categorised based on three different ‘Len’: the ‘Variance’, ‘Shock’ and ‘Filter’ lens 

(Towill et al., 2007). The ‘Variance’, or ‘Noise’ lens, is widely recognised by Operations 

Researchers (ORs), by which they assume time series demand is stochastic and unknown 

in nature but could be modelled by obeying different probability distribution and bullwhip 

is usually measured by variance ratio, standard deviation ratio, for example. The main 

purpose is to develop an objective function based on their desired criteria (e.g. cost 

function) and analytically maximise/minimise the objective functions.  

Tools 

/Methods 

Description and advantages References 

(e.g.) 

Block  

Diagram 

Block diagrams are used to outline a system in which 

the principal parts or functions are represented by 

blocks connected by lines that show the relationships of 

the blocks. 

Atherton 

(1975) 

The Block diagrams are useful to describe the overall 

concept of a complex system without concerning the 

details of implementation, which allow for both a 

visual and an analytical representation within a single 

entity. The adoption of block diagrams in studying 

supply chain dynamics has been well recognised in 

production planning and control literature. 

Disney and 

Towill (2002); 

Dejonckheere 

et al. (2004); 

Spiegler et al. 

(2016) 

 

 

https://en.wikipedia.org/wiki/System
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Tools 

/Methods 

(Continued) 

Description and advantages References 

(e.g.) 

Laplace  

Transformation 

The Laplace transform is an integral transform which 

converts a function of a real variable t (time domain) to 

a function of a complex variable s (frequency domain): 

𝐹(𝑠) = ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡

∞

0

 

Atherton 

(1975) 

The Laplace transform technique has great advantages 

of simplifying the algebraic manipulations required, 

analysing large systems and benchmarking good 

practice in studying supply chain dynamics. 

Disney and 

Towill (2002); 

Disney et al. 

(2006) 

Transfer  

Function 

The transfer function of a system is a mathematical 

representation describing the dynamic behaviour in a 

linear, time-invariant (LTI) system algebraically. It can 

be defined as the ratio of s/z transform of the output 

variables to the s/z-transform of the input variables, 

depending on the consideration of variables change 

with time continuously or discretely. 

Nise (2007) 

1. The transfer function approach can be used to model 

production/supply chain systems, since they can be 

seen as systems with complex interactions between 

different parts of the chain. 

2. Transfer functions completely represent the dynamic 

behaviour of production/supply chain systems under a 

particular replenishment rule, i.e. the input to the 

system represents a specific demand pattern and the 

output refers to corresponding production orders. 

Dejonckheere 

et al. (2003); 

Spiegler et al. 

(2012) 

Characteristic  

Equation (CE) 

CE is defined by equating the denominator of overall 

transfer function to zero. 

Lin et al. 

(2017) 

CE can be used to find poles (roots), which give an 

initial understanding of the underlying dynamic 

mechanism including system stability and unforced 

system dynamic property (i.e. natural frequency and 

damping ratio). 

Table 3. 2. A brief review of linear control engineering tools/methods utilised in this study. 

https://en.wikipedia.org/wiki/Integral_transform
https://en.wikipedia.org/wiki/Complex_analysis
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On the other hand, the control researchers who study supply chain dynamics based 

on ‘Shock’ and ‘Filter’ lens assume demand patterns are steeply or periodically changed. 

The cost-based function may not be a priority for researchers to develop, due to the 

fundamental logic behind these two perspectives that good cost control will follow ‘good’ 

dynamic behaviour control (Towill, 1994; Towill et al., 2003).  

This thesis mainly uses step increase demand (‘Shock’ lens) and sinusoidal 

demand (‘Filter’ lens) in analysing the ATO system dynamics performance, while the 

stochastic demand signal is implemented for sensitivity analysis to verify the analytical 

results derived from the step and sinusoidal inputs.  

Regarding the step increase demand, it is well documented (Towill, 1970) in 

general control theory for exploring the system’s capacity to respond to sudden but 

sustained change. Moreover, step change as the input is easily visualised and its response 

can be easily interpreted (John et al., 1994). Furthermore, the step increases provide rich 

information for the dynamic behaviour of the system (Coyle, 1977). From the supply 

chain point of view, the step demand can be regarded as the early stage of a new product 

or the opening of a new sales outlet (Zhou and Disney, 2006; Zhou et al., 2017), which 

fits the customer demand condition in the semiconductor and PC industries characterised 

by a short life cycle with a corresponding sudden change in demand during the release of 

new products (Lin et al., 2017). 

The sinusoidal demand can be used to measure the steady state amplification ratio 

(i.e. bullwhip effect), which is the ratio between the amplitude of orders and amplitude of 

demand. For the PC industry, demand pattern can be approximated to an annual cycle i.e. 

with a winter holiday demand peak (e.g. Black Friday, Christmas shopping and Chinese 

New Year) followed by off-season demand (Zhou et al., 2017). Furthermore, there are 

two reasons why stochastics demand is no longer necessary to be used for the main system 
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dynamics analysis. First, for sinusoidal inputs, the amplification ratio value is exactly the 

same as the ratio of the standard deviations of independent and identically distributed 

(i.i.d.) demand input over output (Jakšic and Rusjan, 2008; Udenio et al. 2017). Second, 

any real-life time series demand data, including stochastic data, can be decomposed to 

different constituent frequencies or periodicities by spectral analysis, which can be 

analysed by ‘the Filter’ lens using frequency domain analysis techniques; see Figure 3.4, 

while details can be found in Dejonckheere et al. (2003). 

 

Figure 3. 4. Transmission by the frequency response design 

 

3.2.1.2.1. Time domain analysis via the ‘Shock’ lens 

The dynamic performance of replenishment system models will be assessed via 

the step demand input, also termed ‘Shock’ lens (Towill et al., 2007), in the time domain. 

The priority for analyzing the dynamic system via ‘Shock’ lens is to ensure the stability 

of the system. Stability is a fundamental property of a supply chain system. From the 

linear system perspective, the system is stable if the trajectory will eventually return to an 

equilibrium point irrelevant to the initial condition, while an infinity trajectory is 

presented if the system is unstable (Wang et al., 2012). Thus, the system response to any 

change in an input (demand) will result in uncontrollably increasing oscillations in the 

supply chain (Disney and Towill, 2002). A system also has critical stability when it is 
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located at the edge of the stability boundary, and system oscillations are regular and 

infinite for such situations. Furthermore, as illustrated in Figure 3.5, several key indicators 

can be utilised for measuring the dynamic performance of the system in responding to a 

step demand input (Atherton, 1975; Nise, 2000). This includes: 

 

Figure 3. 5. Performance evaluation of time domain analysis via the ‘shock’ lens (i.e. a unit step 

demand increase). 

Rise time: is the time taken by a signal to change from a 5% increase in initial value to 

reach a 95% of targeted value (i.e. the final demand). This indicator is utilised to illustrate 

the supply chain system response speed in meeting the target step customer demand.  

Maximum overshoot (Peak level): is the output exceeding its final, steady-state value. In 

the supply chain dynamics context, this can be used for measuring the bullwhip level. 

Number of oscillations: the number of oscillations before the system reaches the steady 

state condition. It is a useful metric in measuring dynamic behaviour. The fewer the 

number of oscillations, the better the cost control of supply chain dynamics system, due 

to the lower frequency of ramping up and ramping down machines, hiring and firing staff, 

inventory variance cost, etc.  

https://en.wikipedia.org/wiki/Signal_(electrical_engineering)
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Settling time: can be defined as the time required for the response curve to reach and stay 

within a range of a certain percentage (usually 5% or 2%) of the final value. This indicator 

is used for measuring the recovery speed (usually the inventory recovery speed) in 

responding sudden change in demand.  

3.2.1.2.2. Frequency domain analysis via the ‘Filter’ lens 

If periodic demand behaviour is observed, the frequency domain analysis can be 

utilised.  Filter theory (Dejonckheere et al., 2002; Dejonckheere et al., 2003; Towill et al., 

2003; Towill et al., 2007) can be utilised to design such systems based on frequency 

domain analysis. As shown in Figure 3.4 above and 3.6 as an example, system designers 

should discuss and think carefully about their definition of ‘true message’ (low 

frequencies range) and ‘noise’ (high frequencies range) within their specific context. Low 

frequencies demand pattern should be traced since they are genuine changes and 

corresponding resources and workforce should be properly allocated, while high 

frequencies demand patterns (e.g. rogue variations in demand) should be identified and 

filtered out so that excess costs due to unnecessary ramping up and down production or 

ordering levels are avoided.  
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Figure 3. 6. Frequency response illustrated by Bode plot diagram. Adapted from Towill (1994) 

and Towill et al. (2003). 

 

Figure 3. 7. Examples for the effect of 𝜔𝑛 and 𝜁 in responding to a unit step input. 

Furthermore, as illustrated in Figure 3.7, natural frequency (𝜔𝑛) and Damping 

ratio (𝜁) can be utilized to assess the unforced dynamic property of the supply chain 

system when analysing system dynamics models via the ‘Filter lens’. 𝜔𝑛 determines how 

fast the system oscillates during the transient response and can be used to indicate the 

system’s speed to reach the steady state condition for responding to an external demand 

signal, e.g. the inventory recovery speed. 𝜁, on the other hand, describes how the system’s 

oscillatory behaviour (i.e. variability) decays with time, and can be perceived as initial 

insight into the system’s unforced dynamic performance; for example, the extent to which 
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the order rate and inventory will oscillate with time. Figure 3.8 illustrates the effect of 𝜔𝑛 

and 𝜁 in responding to a unit step input. 

3.2.1.3. Stability analysis techniques  

Stability is a fundamental property of a supply chain system. From the linear 

system perspective, the system is stable if the trajectory will eventually return to an 

equilibrium point irrelevant to the initial condition, while an infinity trajectory is 

presented if the system is unstable (Wang et al.. 2012).Thus, the system response to any 

change in an input (demand) will result in uncontrollably increasing oscillations in the 

supply chain (Disney and Towill, 2002). A system also has critical stability when it is 

located at the edge of the stability boundary, and system will oscillate at a regular interval.  

The generic form of the solution of linear dynamic system, S(t), i.e. the solution 

of linear ordinary differential equation with zero initial condition in time domain, can be 

written as follows: 

𝑆(𝑡) = 𝐴 ∙ 𝑒𝑅1𝑡 + 𝐵 ∙ 𝑒𝑅2𝑡 + 𝐶 ∙ 𝑒𝑅3𝑡 +⋯       (3.1) 

Where A, B, C…. is the amplitude of system response 𝑅1, 𝑅2… are system roots 

(the denominator of the transfer function). That is,  𝑅 = 𝜑 + 𝑗𝜔 , in which 𝑗𝜔  is the 

imaginary part contributing to the system’s oscillatory behaviour based on Euler's 

formula (i.e. 𝑒𝑗𝜔 = cos𝜔 + 𝑗 sin𝜔), while 𝜑 is the real part contributing to the exponential 

decay or increase of system response. Hence, the roots can be real, complex or purely 

imaginary and the real poles can also be positive, negative or repeated, influencing the 

transient response as well as the system’s stability condition. The system can be stable if, 

and only if, the real part of all roots is negative, otherwise the 𝑆(𝑡) approaches infinity 

with the increase in t. Also, the system will produce an over-damped response if, and only 

if, there is no imaginary part of the roots, i.e.  𝑗𝜔 = 0.  
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For assessing the system’s stability condition, the Routh-Hurwitz stability 

criterion can be utilised. Such method has the advantage of easily and quickly determining 

system stability without solving the root of the differential/difference equations (Disney 

and Towill, 2002).  Specifically, for a given system characterised by a high order 

polynomial:   

                          𝑎0𝑠
𝑛 + 𝑎1𝑠

𝑛−1 + 𝑎2𝑠
𝑛−2 + 𝑎𝑛−1s + ⋯+ 𝑎𝑛 = 0                 (3.1)    

Where  𝑎0, 𝑎1…  are coefficients of the high order polynomial. The system is only 

stable if none of the roots has positive real parts, which is subject to the necessary and 

sufficient condition that Hurwitz determinants of the polynomial must all be positive, 

where the determinants are given by Routh-Hurwitz array: 

𝑆𝑛

𝑆𝑛−1

𝑆𝑛−2

⋮
𝑆0

|
|

𝑎0 𝑎2 𝑎4 𝑎6  … 
𝑎1 𝑎3 𝑎5 𝑎7 …
𝑏1 𝑏2 𝑏3 … …
𝑐1 𝑐2 𝑐3 … …
… … … … …

|
|  (3.2) 

And  

𝑏1 = 𝑎2 −
𝑎0𝑎3
𝑎1

, 𝑏2 = 𝑎4 −
𝑎0𝑎5
𝑎1

 (3.3) 

𝑐1 = 𝑎3 −
𝑎1𝑏2
𝑏1

,    𝑐2 = 𝑎5 −
𝑎1𝑏3
𝑏1

…etc. 

The stability condition can be understood by inspecting the first column of the 

Equation (3.2), i.e. the system is guaranteed to be stable if there are no two sign changes 

in the first column.   

3.2.1.4. Nonlinear analysis techniques  

The principle of superposition is not valid in nonlinear system. This means that 

the output of a nonlinear system is not directly proportional to the input and the variables 

to be solved cannot be expressed as a linear combination of the independent parts 
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(Atherton, 1975). The nonlinearities in supply chains structure naturally exist due to the 

physical and economic constraints; for instance, fixed and variable capacity constraints 

in the production and shipment process, time-varying variables such as variable 

production delays and variable delivery time delays. Nonlinearities could also be 

intentionally introduced into the supply chains system to improve its performance. 

Nonlinearities presented in the supply chain systems can be categorised based on the rate 

of change in the output in relation to the input, i.e. the continuous or discontinuous 

nonlinearities (Towill, 1970; Vukic et al., 2003), as illustrated in Table 3.3. 

Type of nonlinearity  Main characteristics Example and references (e.g.) 

 

 

 

 

 

 

 

 

 

 

 

Discontinuous 

nonlinearity 

 

Single-

valued 

Sharp changes in output 

values or gradients in 

relation to input (e.g. 

piecewise linear 

function). Single-valued 

nonlinearities are 

characterised as 

memory-less 

nonlinearities, since the 

output of the system 

does not depend on the 

history of the input 

(Cook, 1986). 

Fixed capacity constraints, non-

negative order constraints (Spiegler 

et al., 2016) 

 

Multi-

valued 

In contrast to the single-

value nonlinearity, the 

output value of multi-

valued discontinuous 

nonlinearity does depend 

on the history of the 

input. As the example 

shows, the output 

shipment does depend 

on history of input 

Shipment constraints (Spiegler and 

Naim, 2017) 
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demand, i.e. the variable 

shipment constraints 

(dynamic response) is 

driven by the history of 

demand 

 

 

Continuous 

 nonlinearity 

 

A feature of the outputs 

in continuous 

nonlinearity functions is 

that they are smooth 

enough to possess 

convergent expansions 

at all points and 

therefore can be 

linearised. 

Delivery LT dynamics 

 

Table 3. 3. Brief introduction of different types of nonlinearities present in the supply chain 

system. 

One of well-recognized approaches for dealing with nonlinear system is to 

linearize those nonlinear components. The rationale behind this approach is that a variety 

of linear techniques then can be applied to give further insights after linearization (Kolk 

and Lerman, 1992). This is generally considered a suitable approach when the solution 

can be obtained in this way. While the linear theory/approaches are well established, there 

is no agreement for nonlinear approaches for generality and applicability (Rugh, 2002). 

Since nonlinearities present in the supply chain system can be categorised as either 

discontinuous or continuous characteristics (Spiegler et al., 2012), the corresponding 

linearisation methods adopted in nonlinear control theory are summarised in Table 3.4. 
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Method  Applications for the type 

of nonlinearities 

Assumptions/Possible drawback 

Small perturbation 

theory with Taylor 

series expansion 

Continuous 

Single-valued 

Assumption that the amplitude of the 

excitation signal is small. Local 

stability analysis only 

Describing function Continuous, Discontinuous 

Single-valued, Multi-

valued 

Less accurate when nonlinearities 

contain higher harmonics. Analysis of 

systems with periodic or Gaussian 

random input only. 

Small perturbation 

theory with 

Volterra/Wiener 

series expansion 

Continuous 

Multi-valued 

Assumption that the amplitude of the 

excitation signal is small. Difficulty in 

calculating the kernels and operators 

of the system, making it impractical 

for high order systems. 

Averaging and best-

fit line 

approximations 

Continuous, Discontinuous 

Single-valued, Multi-

valued 

Gross approximation of real responses. 

Only when better estimates are not 

possible. 

Table 3. 4. Linearisation methods for different types of nonlinearities in studying supply chain 

dynamics (Spiegler et al., 2012; Spiegler et al., 2016a; Spiegler et al., 2016b). 

3.2.2. Simulation: System Dynamics approach  

Simulation stands in the middle position between empirical research (observation, 

experiment, survey) and pure mathematical modelling (Wolf, 2008). One of major 

advantages of doing simulation research is it does not require specific mathematical 

background to obtain analytical solution or/and optimal solutions, as simulations proceed 

step-for-step using numerical approximation methods. A number of simulation 

techniques can be applied evaluate dynamical systems; e.g. system dynamics,d-event and 

agent-based simulations. In this thesis, the system dynamics simulation is utilized due to 

its great advantage of analysing dynamical systems characterised by feedback relations 

(Akkermans and Dellaert, 2005). Furthermore, system dynamics simulation can be 
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utilised for verifying analytical results under many unrealistic assumptions in linear 

models (Lin et al., 2017). 

Forrester (1961) developed system dynamics simulation in the 1960s. He mainly 

focused on the translation of dynamic behaviours between variables into a causal loop 

diagram/stock-flow diagram. Mathematically he converted these relations into 

differential equations, and then studied the output response in relation to specific external 

input disturbance to understand the cause and effect relations. There are four important 

elements to be considered when formulating system dynamics simulation models: levels, 

flow rates, decision functions and information channels (Forrester, 1961). A stock 

variable is measured at one specific time, and represents a quantity existing at that point 

in time which may have accumulated in the past, e.g. inventory. A flow variable is 

measured over an interval of time. Therefore, a flow would be measured per unit of time, 

e.g. the order rate per week. Decision functions are the differential or algebraic equations 

that state the policies used to control the rates between levels. Finally, information 

channels connect the information known about the levels with the decision functions. For 

instance, in a production-inventory system the levels of inventory and work in process 

can be used to determine the order rate. There are several techniques in modelling a 

dynamics system by utilising system dynamic language, including causal loop diagram 

and stock flow diagram, as described as follows: 

The corresponding stock-flow diagram approach, shown by Figure 3.8, is adopted. 

The stock-flow diagram is a technique that visualises the major elements and their 

relationship in a dynamic system, including stock, flow, delay, feedback and 

nonlinearities elements. In addition to the four main elements in a dynamic system, there 

are two types of feedback loops in the production-inventory system, reinforcing (R) and 

balancing (B) loops, in which the former generates behaviour that takes the variable 

https://en.wikipedia.org/wiki/Capital_accumulation
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further away from its initial position, while the balancing feedback loop keeps the variable 

close to its original position (Fowler, 1999; Letmathe and Zielinski, 2016). Any 

movement away from the balancing position is pushed back.  

 

+

B

Inventory

Production
_

+

R

Forecast

Production+

 

Figure 3. 8. The introduction of the stock-flow diagram and balancing and reinforcing casual 

loops 

3.3. Research design  

Figure 3.9 reports the research design for this thesis. As a deductive research 

methodology is adopted to answer RQ1a and RQ1b, this work started by reviewing the 

literature. Literature gaps related to supply chain theory (the ATO system dynamics and 

performance measurement) and methodology (nonlinear modelling and analysis of the 

ATO system) are identified, and the main research questions are established. Chapter 3 

considers the selection of methods and ATO frameworks in studying system dynamics.  
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Chapter 1 and 2  

Identify gaps and 

propose research 

questions

System dynamics

1.The study of IOBPCS family

focus on MTS-base system.

2.Linear-based IOBPCS models cannot 

assess the impact of nonlinearities 

present in the ATO system.

3.The lack of assessing delivery 

lead time dynamics

Gap and objectives: 

dynamic modelling and 

analysis of the ATO 

system dynamics in the PC 

and semiconductor 

industries

ATO supply chains

1. Well-explored from the 

stochastic analysis perspective

2. Lack of the study of system 

dynamics performance

Chapter 3

Methods/framework 

selection

1. The selection of control 

theory techniques

2. The selection of  ATO 

system dynamics models 

and framework 

Chapter 4

Dynamic design and 

analysis of semiconductor 

supply chains

1. Simplification and linearisation

2. Benchmark to the IOBPCS family

3.Dynamic analysis via  Shock  lens

4. Simulation verification

Chapter 5

Dynamic modelling and 

analysis of PC supply 

chains

1. Modelling the PC ATO system

2. Linearisation

3. Dynamic analysis via  Shock  Lens

4. Dynamic analysis via  Filter  Lens

5. Simulation verification

Chapter 6 and 7

Discussion and 

conclusion

1. The impact of 

feedback/feedforward

2. The impact of nonlinearities

3. The comparison between 

the IOBPCS family and the 

ATO system dynamics models

 

Figure 3. 9. Research design for this thesis. 

The main analysis, Chapters 4 and 5, will present the detailed design, modelling 

and analysis of two ATO systems: Intel supply chain and a generic PC supply chain. 

Specifically, since the PC sector mainly includes upstream semiconductor and 

downstream subassemblies and OEM companies, the author decomposes the PC supply 

chain as two major parts: semiconductor and the PC OEM supply chain systems. 

The secondary data from academic peer-reviewed papers will be used as the main 

source of this study. The use of secondary peer-reviewed publication data has several 

advantages in understanding the dynamics property of the ATO structure, including less 

time, money and fewer personnel for data collection (Rabinovich and Cheon, 2011; 

Ellram and Tate, 2016), high reliability and credibility due to the peer-reviewed process 

of paper publication. However, all secondary data and empirical data in general, whether 

voluntarily provided or mandated and standardised, is a snapshot at a point in time (Snow 



 

Methodology 
 

83 
 

and Thomas, 1994). The Intel model published in 2005, for example, is only a snapshot 

of Intel supply chains in 2005 or before (Gonçalves et al., 2005), rather than at the current 

time. Nevertheless, the relatively old supply chain dynamics model still offers valuable 

information regarding the modern ATO supply chain structure and provides a good base 

model for further designing and analysing the dynamic property of a typical ATO system. 

Specifically, in Chapter 4, a system dynamic model of Intel (Gonçalves et al., 

2005), the leader in microprocessor manufacturing (Sampath et al., 2015) in representing 

the semiconductor industry, is selected. Due to no IOBPCS-based ATO model having 

been created and analysed, it is a good starting point to design and analyse the existing 

systems dynamic model and use the IOBPCS family as the benchmark to understand real-

world dynamics ATO system structure.  The author first models the Intel supply chain in 

a block diagram form based on the Intel model descriptions. Although the original model 

provided insights into lean inventory and responsive utilisation policies, the simulation 

approach could not reveal the explicit relationship between the system’s outputs and the 

endogenous demand, thereby overlooking the real effects of some control parameters. 

After simplifying the block diagram and extracting the ATO scenario, we analyse the 

dynamic behaviour of the system by finding the system’s transfer functions. The 

simplified model enables the drawing of an analogy with known archetypes of the 

IOBPCS family and the proposal of policies to overcome trade-offs in the system output 

responses. ‘Shock’ lens dynamic analysis will be conducted to provide rich dynamic 

property of the simplified system.  

For Chapter 5, the author will develop the system dynamic model of a generic 

two-echelon PC supply chain based on multiple academic empirical publications 

(Kapuscinski et al., 2004; Kumar and Craig, 2007; Huang and Li, 2010; Katariya et al., 

2014). Stock-flow diagram and block diagram of the generic model will be developed to 
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illustrate the information and material flow and their connections. Both ‘Shock’ and 

‘Filter’ lens analysis will be implemented to explore the generic ATO system structure as 

well as design system control policies to yield ‘good’ dynamic performance in facing 

different periodic demand patterns. Main nonlinearities presented in the ATO system will 

be analytically studied based on nonlinear control approach to determine the impact of 

nonlinearities on the dynamic performance. This offers analytical understanding about 

how the ATO system structure may characterise the dynamic oscillations and the possible 

strategy to avoid poor dynamic behaviour. Furthermore, lead times dynamics is explored 

as part of ‘performance triangle’, i.e. the CODP inventory, bullwhip and lead times, so 

that the trade-offs can be understood in designing ATO system dynamics. 

The final two chapters discuss the insights gained from previous chapters to 

answer the research questions emerging in Chapters 1 and 2, which contribute to the 

theory (ATO dynamics modelling and analysis) and methodology (linear and nonlinear 

analysis via simplification and linearisation), hence closing the loop.  

3.3.1 Literature review search process 

The literatures review was initially based on an exploratory literature review 

process, which was initiated by conducting keyword searches in multiple databases, such 

as ABI/INFORM Global, EBSCOHost, Scopus, ScienceDirect and Emerald. Google 

Scholar was also found to be useful to locate conference papers and technical reports. For 

the first core topic review, i.e. the ATO supply chain systems, among the keywords 

searched, the author started with ‘customer order decoupling point’ and ‘supply chains’ 

in order to map out the research outlines of this field. In parallel, the keywords 

‘decoupling point’, ‘postponement’ and ‘mass customization’ were searched alone so as 

to identify the various fields using these concepts. Later, the search was narrowed by 

combining ‘supply chain’ with ‘assemble-to-order’, ‘system’ and ‘ATO’. After this last 



 

Methodology 
 

85 
 

search stage, the author collated all quantitative studies and qualitative studies that were 

relevant to developing the assemble-to-order supply chain performance assessment 

framework. 

Regarding the second topic of literature, i.e. the system dynamics and the IOBPCS 

family, a similar narrow review is conducted in which a chronological search approach is 

adopted to review the history of system dynamics and supply chain dynamics work. 

Moreover, to review how the IOBPCS family is utilised to study supply chain dynamics 

and particularly the MTO and ATO systems, the author extracted Lin et al.’s (2017) 

systematic review work on the IOBPCS family by reviewing citations to original IOBPCS 

family studies (Towill, 1982 and John et al., 1994). Furthermore, due to Lin et al. (2017) 

reviewing citations only up to 2015, the author updated all citations of two seminal works 

to June 2018. Note that the detailed data collection process and review approach can be 

found in Lin et al. (2017). 

3.3.2. The selection of ATO framework  

3.3.1.1 Semiconductor supply chains: the Intel ATO system 

Semiconductor industry is characterised as capital-intensive, short product life 

cycle, wide product variety due to overlapping product life cycles for different customers, 

long fabrication lead times and complex production processes (Geng and Jiang 2009). 

Although the complex material and equipment acquisition processes vary between 

different companies, a typical semiconductor manufacturing process consists of three 

main stages: wafer fabrication (‘front-end’ manufacturing), assembly and test, and 

product distribution (‘back-end’ operations), whose associated activities are usually 

involved in a globally-complex network to save labour costs and benefit from tax breaks 

(Rastogi et al., 2011). The ATO strategy is adopted in semiconductor production planning 

and control environment in which the CODP inventory is located in the final assembly 
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part. The downstream assembly and distribution systems are essentially the MTO mode 

in which end customers’ orders pull the available microprocessors from finished good 

inventory. The upstream wafer fabrication, however, is characterised by the MTS 

production style: long-term demand forecasting and the adjustment from downstream 

finished good as well as work-in-process inventory to determine the desired wafer 

production rate. Based on literature review chapter (Section 2.3), very limited work 

developed system dynamics model of the ATO system and analysed its dynamic 

performance. Also there is no existing IOBPCS-based framework for the ATO system. 

As the result, the author uses the existing system dynamics model of Intel, the leader in 

microprocessor manufacturing (Sampath et al. 2015), as reported empirically by 

Gonçalves et al. (2005), as a starting point to extract and analyse its ATO supply chain 

structure.  

3.3.2.2. The PC ATO supply chain  

Since the semiconductor ATO system is upstream of the entire PC supply chain 

system, the downstream of the PC ATO system should be considered. In general, PC 

supply chains have three main manufacturing echelons from upstream to downstream: 

component fabrication (i.e. semiconductor industry), sub-assembly and final assembly 

(Huang and Li, 2010).  
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CODPCODP

Vendor-managed PC 

components hub near 

OEMs  final assembly 

plants

Vendors  own finished 
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for customer orders
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Figure 3. 10. Rich picture descriptions of PC supply chains. Based on Kapuscinski et al. (2004) 

Huang and Li (2010) and Katariya et al. (2014). 

From the information flow perspective, as illustrated in Figure 3.10, the hybrid 

ATO production strategy is implemented in which the decoupling point is located in the 

OEMs’ final assembly plants. The downstream production of the decoupling point (final 

assembly) essentially operates as an MTO in which end customers’ orders pull the 

available CODP inventory based on their specific PC configurations. However, upstream 

production of the CODP, i.e. the PC components manufacturing, is characterised by MTS: 

long-term demand forecasting is shared by the OEM and the CODP inventory to 

determine production rates.  

 It should be noted that although the decoupling point is located in the OEM’s 

final assembly plant, there are two CODP inventory stock points due to the adoption of 

the vendor-managed inventory (VMI) strategy in most PC supply chains (Huang and Li, 

2010). Specifically, PC component suppliers are required to manage the finished PC 

components (CODP inventory) at both their manufacturing and OEMs sites, by renting 

or building inventory hubs near the OEMs’ final assembly factories (i.e. the VMI 
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inventory hub) to be pulled by customer orders at a high frequency. This is because of the 

long geographical distance between OEMs’ final assembly and PC component suppliers’ 

plants driven by the global supply chain strategy, i.e. longer delay between suppliers and 

OEMs compared with the short LT requirements pulled by end customer orders.  

As a result, the VMI hub inventory is directly pulled by end customer order and 

the inventory at the supplier site is also pulled by the required replenishment of the VMI 

hub, while the suppliers’ component manufacturing pushes the finished CODP inventory 

into its stock point. In return, the OEMs may share important information, e.g. long-term 

forecasting, real-time backlog and shipment, to help their suppliers make better CODP 

inventory replenishment decisions. In other words, the material CODP is incorporated 

into the final assembly site, while the information CODP (i.e. DIDIP) is moved to 

upstream supplier site to ensure information transparency. 

3.3.2.3. The IOBPCS family as the benchmark framework 

Towill (1982) developed the IOBPCS framework in a block diagram form to 

represent a feedback-based production/inventory system, extending the work conducted 

by Coyle (1977). The model focused on products at an aggregate level. Three system 

parameters were identified as the fundamental for ideal production/inventory control 

system design: lead time (Tp) for production, a proportional controller (Ti) to adjust the 

inventory discrepancy and a demand smoothing level  (Ta).  John et al. (1994) then 

incorporated an automated WIP closed loop (Tw) into the IOBPCS framework, which led 

to the APIOBPCS archetype, as shown in Figure 3.12.  

There are two inputs - desired inventory (DINV) and consumption rate (CONS) - 

which represent the external disturbance, while the order rate placed on the pipeline 

(ORATE) is a decision variable determined by two feedback proportional controllers 

(𝑇𝑖 𝑎𝑛𝑑 𝑇𝑤) as well as the averaged feedforward CONS  (𝑇𝑎). Thus, the APIOBPCS 
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model can be described as follows: set the order rate as equal to the sum of demand 

averaged over Ta time units (demand policy), plus the Ti adjustment of inventory 

discrepancy (inventory policy) and the WIP adjustment of Tw (WIP policy), with due 

consideration of Tp (Pipeline policy). The APIOBPCS model is essentially equal to the 

IOBPCS model if T𝑤 = ∞, i.e. in the case in which the WIP products are not included. 

Mathematical representations of four policies as well as systems’ transfer functions can 

be found in Appendix 2.  

+
-

+ -

+
+-

+ +
-+

Inventory policy

Additional WIP policy in 

APIOBPCS

Demand policyDemand policy

Lead time policy

 

Figure 3. 11. Block diagram representation of APIOBPCS (including IOBPCS) archetype. 

Source: original diagram developed by John et al. (1994) and adapted by Sarimveis et al. 

(2008). 

    Therefore, given that Tp the decision makers need to select appropriate values for 

𝑇𝑎, 𝑇𝑤 and 𝑇𝑖, to achieve two conflicting objectives: 1) rapid inventory recovery and 2) 

attenuation of the unknown demand fluctuation. The second objective is also called the 

reduction of the bullwhip effect. The APIOBPCS archetype has been modified regarding 

its four inherent policies in the last three decades, which creates a ‘family’ of models 

shown in Table 3.6.  
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Specifically, the target inventory is either fixed or a multiple of smoothed market 

demand determined by the demand policy. The method of exponential smoothing is 

commonly applied in the demand policy in the main IOBPCS family. A proportional 

controller is utilised to correct WIP and inventory discrepancies, apart from the 

IOBPCS/VIOBPCS archetype that does not consider the WIP products. Finally, the four 

main IOBPCS archetypes usually adopt a first order lag to model lead time, representing 

production delay or production unit smoothing level in responding to ORATE change. 

Model  
Target 

Inventory 

Demand 

policy 

WIP 

policy 

Inventory 

policy 
Lead time 

IOBPCS 

Inventory and 

Order based 

Production 

Control System 

Fixed 
Exponential 

smoothing 

1

∞
 

1

𝑇𝑖
 

First order 

lag 

VIOBPCS 

Various 

Inventory and 

Order based 

Production 

Control System 

Multiple of 

Average 

market 

demand 

Exponential 

smoothing 

1

∞
 

1

𝑇𝐼
 

First order 

lag 

APIOBPCS 

Automatic 

Pipeline, 

Inventory and 

Order based 

Production 

Control System 

Fixed 
Exponential 

smoothing 

1

𝑇𝑤
 

1

𝑇𝐼
 

First order 

lag 

APVIOBPCS 

Automatic 

Pipeline, 

Various 

Inventory and 

Order based 

Production 

Control System 

Multiple of 

Average 

market 

demand 

Exponential 

smoothing 

1

𝑇𝑤
 

1

𝑇𝐼
 

First order 

lag 

Table 3. 5. Main IOBPCS family members based on four policies and the target inventory. 

Thus, the decision makers need to select appropriate value of 𝑇𝑎, 𝑇𝑤 and 𝑇𝑖, to 

achieve two conflicting objectives: 1) The rapid inventory recovery and 2) Attenuation 

of unknown demand fluctuation. The second objective is also called the reduction of 

Bullwhip Effect (Lee et al., 1997). Standard control engineering approaches are used to 

quantify the performance of four policies that adhere to two objectives under linear, 
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continuous, infinite system capacity assumptions in APIOBPCS. In terms of objective 

one, inventory response is evaluated by introducing a step input demand with respect to 

performance metrics, such as rise time, setting time and maximum overshoot. The initial 

and final value theorems, as well as Laplace inverse transform, are also applied to provide 

a mathematical crosscheck. Regarding objective two, noise bandwidth (WN) measures 

the ability of the system decision parameters (Ti ,  Ta and  Tw) to remove unwanted high-

demand frequency. Using these measurement methods, John et al. (1994) developed a 

system that ensured a high level of customer service, while levelling the production rate 

by selecting Tw = 2Tp , Ta = 2Tp and Ti = Tp. The authors also concluded that 

incorporating an automatic WIP controller damps the oscillations of COMRATE and 

reduces maximum overshoot, while eliminating the inventory drift by assuming that 

 Tp = Tp′. These outcomes allowed for a high-quality control system, although a slight 

increase in setting time was identified.    

3.4. Summary 

This chapter has explained how the research was conducted, including the 

research ontological and epistemological positions, research design, methods and tools 

used in this thesis. The author holds an objective, value-free onotolgy for modelling and 

analysing the ATO system dynamics. Also, the author has chosen a deductive logic 

reasoning based on a systems and conceptual epistemological research (combined 

positivsim and critical realism). 

A detailed methods selection was reviewed and justified. Specifically, the 

combined control engineering, including linear and nonlinear analysis techniqes and 

system dynamic simulation, were chosen to offer robust and analytical insights into ATO 

system dynamics analysis. The continuous time based modelling and analysis techinques 

were selected based on the nature of techniques and the PC industry.  
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Finally, the research design used to answer the research questions has been 

explained. This included the literature review process, the selection of two ATO 

frameworks, comprising an existing system dynamics model of the Intel (Gonçalves et 

al., 2005) and PC system dynamics background information that will be developed based 

on empirical evidence (Kapuscinski et al., 2004; Huang and Li, 2010; and Katariya et al., 

2014). 
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Chapter 4. Dynamic design and analysis of a semiconductor ATO 

system 

This chapter conducts the dynamic design and analysis of the Intel supply chain 

representing a typical ATO system in the semiconductor industry. By re-designing the 

original high-order nonlinear system dynamic model of the Intel supply chain, as well as 

using the IOBPCS family as benchmark models, the main aim is to explore analytically 

the underlying mechanisms of supply chain dynamics within the context of the 

semiconductor industry. There are two further objectives: 1) to explore the design 

procedures for gaining insight into the dynamic properties of nonlinear hybrid ATO 

model as personified by the Intel supply chain and 2) to investigate the underlying 

mechanisms of the dynamic behaviour in a semiconductor hybrid ATO supply chain and 

explore the possible mitigation strategy. 

To achieve this, firstly, the Intel model description as well as the simplification 

method is given in Section 4.1. Then, by utilising a linear control engineering approach, 

including characteristics equation analysis and step input analysis, Sections 4.2 and 4.3 

explore the fundamental dynamic property of the simplified ATO model and use the 

IOBPCS family to benchmark the model and compare the dynamic performance between 

simplified semiconductor ATO and the IOBPCS models. System dynamics simulation is 

utilised to verify the analytical insights gained from the linear analysis and for sensitive 

analysis of physical lead times and quality parameters in Section 4.  
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4.1 Intel ATO model description and manipulation 

 

Figure 4.1. Basic structure of the production-inventory based semiconductor supply chain 

system. Based on Gonçalves et al. (2005). 

Figure 4.1 shows the information and material flow of Intel ATO system based on 

the stock flow diagram technique. Specifically, there are two main manufacturing stages 

for microprocessor chip production from a material flow perspective: fabrication and final 

assembly. The polished disk-shaped silicon substrates (wafers) as inputs are taken into a 

wafer fabrication facility, and through several complicated sequences to produce 

fabricated wafers (composed of integrated circuits, i.e. dies). A vertical cross-section of 

an integrated circuit reveals several layers formed during the fabrication process. Lower 

layers include the critical electrical components (e.g. transistors, capacitors), which are 

produced at the “front-end” of the fabrication process. Upper layers, produced at the 

‘back-end’ of the fabrication process, connect the electrical components to form circuits. 

In the second assembly phase, the fabricated wafers are cut into dies and stored in the 

ADI warehouse to wait for the assembly process. After passing assembly and test plants 

to ensure operability, the finished microprocessors are stored in the FGI for customer 
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orders. A three-stage supply chain, including fabrication, assembly and distribution, is 

thereby created to represent the manufacturing process.  

Regarding the information flow, the hybrid push-pull (ATO) information control 

strategy is implemented. The downstream assembly and distribution systems are 

essentially the MTO mode in which end customers’ orders pull the available 

microprocessors from FGI if there are sufficient FGI and AWIP. The upstream wafer 

fabrication, however, is characterised by the MTS production style: long-term demand 

forecasting and the adjustment from downstream AWIP and FWIP to determine the 

desired wafer production rate.  

The exogenous demand into the supply chain system begins when end customers’ 

demand information is transmitted into the information system and tracked until it is 

shipped or cancelled. The actual shipment, S, is determined by the minimum value 

between S* and SMAX. By design, the distribution system operates as the pull state in 

which the S* is given by the ratio of B and DD*. However, if insufficient FGI constrains 

S*, the distribution system will automatically push all feasible FGI, which is estimated by 

FGI stock and TOP, i.e. the system switches to the push state. Consequently, those 

backlogged orders directly pull product components from AWIP to increase the assembly 

order rate, under the condition that the assembly system still performs the pull-based 

production with enough AWIP. The delivery delay experienced by external customers is 

increased in such scenarios, since required orders cannot be fulfilled directly by FGI and 

it takes longer to assemble and distribute those backlogged orders. 

While shipments deplete FGI, the AN, defined by the AG and YU, replenishes it. 

AG is determined by the minimum of pull AG and push AG signal. By design, pull AG is 

given by the desired pull signal under the MTO operation in the assembly system, i.e. A*
N 

adjusted by YU. AN
* is determined by the summation of the recent shipment, FGI 
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adjustment and B adjustment. If all available AWIP still constrains the assembly activities, 

the assembly system can only complete what is feasible and thereby switch to the push 

production model, i.e. push AG, which is estimated by the ratio between current AWIP 

and TA.  

The upstream fabrication plant follows the push-based production strategy in 

which the produced wafers are pushed into the ADI, the place where AWIP are stored 

until orders for specific product from downstream assembly and distribution pull/push 

them depending on its availability. While AG depletes AWIP, DI replenishes it. DI, 

measured in die per month, depends on FG (wafers per month), adjusted by DPW and YD, 

i.e. the fraction of good die per wafer and YL to indicate the fraction of the good fabricated 

wafers. For simplicity, a first order delay is utilised for the modelling process. While FG 

depletes FWIP, WS* replenishes it. The fab managers determine WS* based on gross WS 

and FWIPADJ. The former is determined by D* required by assembly/test plants, which is 

based on a long-term demand forecast (ED) and an adjustment from AWIP, while 

FWIPADJ depends on discrepancies between FWIP* and FWIP adjusted by TFWIP.  

The capacity utilisation (CU) is set based on the ratio between WS* and available 

capacity (K) operating at the normal capacity utilization level (CUN= 90%). The 

remaining 10% spare capacity is utilised for engineering purpose and to deal with 

manufacturing instability. For a given D, K is determined by: 𝐾 =
𝐷·𝑀𝑆

𝐶𝑈𝑁·𝐷𝑃𝑊·𝑌𝐷·𝑌𝐿
, where 

MS (market share) is not considered in this study. When WS* is larger than normal 

capacity utilisation, Fab managers try to increase CUN and thus the spare capacity for 

engineering is reduced. On the other hand, when WS* falls below the normal CUN, 

capacity utilisation will vary enough to exactly match WS*. However, field study 

(Gonçalves et al., 2005) showed that the managers prefer to build inventory by keeping 

Fab running even when WS* falls below the normal capacity utilisation. As a result, WS* 
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can be fully met by adjusting capacity utilisation level and Fab managers prefer the 

“Lean-based” production to avoid machine shut down for the low capacity utilisation 

scenario. 

Based on the stock-flow diagram description of the Intel supply chain, the Intel 

supply chain model in a block diagram form, using continuous Laplace s domain, can be 

developed (Figure 4.2). In a recent publication, Naim et al. (2017) accomplished the same 

resulting block diagram but in discrete time. Note the full mathematical modelling details 

(difference equations) in relation to block diagram can be found in Appendix 1. 
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Figure 4. 2. Block diagram representation of the Intel supply chain. 

It should be noted that the dynamic influence of customers’ response, i.e. the 

customers’ response to supply availability measured by the fraction of order fulfilment, 

is not considered, as we focus only on the effect of exogenous demand and internal 
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dynamic production and inventory control in the Intel supply chain model. The impact of 

endogenous demand on the dynamic performance of the Intel supply chain, however, can 

be found in Gonçalves et al. (2005). 

Based on Figure 4.1, two ‘Min’ functions, depending on the availability of two 

stock points: FGI and AWIP inventory, govern three different states of the Intel supply 

chain system, which can be categorised as follows: 

The Intel supply chain can be categorised as three different operational states 

depending on availability of two stock points: FGI and AWIP inventory as follows: 

1. Fabrication Push + Assembly Pull + Distribution Pull state, if S*<SMAX and 

Pull AG < Push AG.  Such a system is highly desirable, since the customers’ orders can 

be fulfilled immediately by FGI (sufficient on-hand FGI and AWIP inventory). The only 

waiting time for customers is the delivery delay, which is assumed to be a first-order delay.  

2. Fabrication Push + Assembly Pull + Distribution Pull state, if S* > SMAX and 

Pull AG < Push AG.   Under such conditions, on hand FGI is insufficient for customers’ 

orders; Intel, therefore, can only ship what is feasible (SMAX) and transfer the 

backlog/inventory signal into the assembly process to raise the assembly rate. However, 

the assembly system still operates the MTO mode under the premise that there are 

sufficient AWIP. The lead time for backlogged orders is increased to the summation of 

the delivery delay and assembly delay. 

3. Fabrication Push + Assembly Push + Distribution Push state, if S* > SMAX and 

Pull AG > Push AG. Specifically, if the assembly is also constrained by the feasible AWIP 

level, the whole supply chain system will switch to a pure push state. The customer orders 

cannot be fulfilled for a short time, due to the long delay in fabrication production, and 

the lead time for backlogged orders is increased to the summation of the delivery delay, 

assembly delay and fabrication delay. 
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To analytically explore the underlying dynamic behaviour of the Intel supply chain 

systems, the block diagram is simplified through the following procedure by following 

Wikner et al. (1992): 

1. Transfer non-negative components into linear approximations.  

Eliminating three non-negative nonlinear constraints by assuming the 

relevant variables are never negative. Thus, non-negative constraints that restrict 

D*I, A*N, and WS are eliminated. 

2. Supply chain echelon elimination  

Assume there is no distribution delay and that what is assembled into the 

FGI can be directly fulfilled by external customer demand, that is, the distribution 

echelon is eliminated. Thus, the backlog orders can be represented by negative 

FGI under the linear assumption of Step 1, and the switch between S* and SMAX 

is eliminated. The whole model now becomes a two-stage supply chain system. 

3. Redundancies elimination 

a. Given the assumption that the shipment made is equal to the demand, 

that is, S=D, then B = DD∙D and B* = DD*∙D so that BADJ = 0 

b. ED=ES 

c. SMAX is redundant, given Step 2.  

4. Collecting terms 

Gross WS* is determined by the desired net wafer start rate adjusted by 

YL and in turn, the desired wafer production rate is determined by D* in assembly, 

adjusted by the DPW and the die yield YD, so we have the following relationship:  

Gross 𝑊𝑆∗ =
1

𝐷𝑃𝑊 ∙ 𝑌𝐷 ∙ 𝑌𝐿
𝐷∗ 
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To simplify the block diagram, the terms are collected as follows: 

a. 𝐾1 =
1

𝐷𝑃𝑊∙𝑌𝐷∙𝑌𝐿
 

b. 𝐾2 = 𝐾1 ∙ 𝑇𝐹 

c. 𝐾3 =
1

𝐾1
 

Since the linear model shown in Figure 4.2 is now considerably simpler than the 

original complex supply chain, it can no longer be referred to as the Intel supply chain; 

instead, the model is, from now on, termed a semiconductor supply chain. One benefit of 

investigating the linear system is that it enables the analytical tracing of supply chain 

dynamics. Given that, in reality, semiconductor manufacturing suffers high capacity 

unevenness (Karabuk and Wu, 2003) due to reactive capacity adjustment driven by 

dynamic behaviour, there is a need for managers to proactively control the supply chain 

dynamics, and, especially, the bullwhip effect, by understanding the root causes of such 

dynamic capacity requirement responses. This can be attained by assuming linearity and 

using well-established linear control techniques to explore the impact of major control 

policies on dynamic behaviour. However, given that the simplification process and the 

linear assumptions necessary for the analytical investigation may impact on the accuracy 

of responses and on certain variable interactions, we will cross-check the analytical results 

(to be presented in Section 4.2) with numerical simulations of the nonlinear model (to be 

presented in Section 4.4) in order to enhance dynamic insights into the hybrid ATO supply 

chain model. 



 

Dynamic design and analysis of a semiconductor ATO system 
 

101 
 

-+

1

1 + 𝑇𝐷𝐴𝑑𝑗 s
 

Min

1

𝑇𝐴
 

1

𝑌𝑈
 

𝑌𝑈  

𝑇𝐴  

+
-

+
-

 

1

𝑇𝐹
 +-

1

𝑇𝐹𝑊𝐼𝑃
 

𝐾1 

+
+

1

𝑇𝐴𝑊𝐼𝑃
 

+
+

+
-

𝐾2 

𝐾3 

WOI*

1

𝑌𝑈
 

1

𝑇𝐹𝐺𝐼
 

1

𝑆
 

1

𝑆
 

1

𝑌𝑈
 

1

𝑆
 

FGI*

FGIADj

ED
D

A*N
Pull AG

Push AG

AG
AN FGI

A*G

AWIP*

AWIP

FWIPFWIP*

FWIPADj

FG

DI

+ -

+

D*I

AWIPADJ

WS+

 

Figure 4. 3. Simplified block diagram for the hybrid ATO supply chain model. 

        As shown in Figure 4.3, the only nonlinearity left is the ‘Min’ function to govern 

the Push/Pull downstream assembly activity, which we have deliberately maintained at 

this stage as it governs the location of the decoupling point. The three interchangeable 

states, as described before based on Figure 4.1, now become two interchangeable states 

depending on the availability of AWIP. If there is sufficient AWIP, i.e. push AG > pull 

AG, for customer orders to pull chips from, then such a semiconductor system is 

fundamentally a hybrid ATO supply chain including a Push and a Pull parts, i.e. the 

forecasting-based wafer fabrication and order-driven assembly. Thus, AWIP is the CODP 

that separates the upstream wafer production and downstream assembly activities. By 

contrast, if the AWIP is insufficient to meet the pull signal, i.e. push AG < pull AG, all 

AWIP will be pushed into the assembly plant to meet customer orders as soon as possible, 

and the whole system will automatically switch to a pure Push-driven supply chain system.  

As the main objective of this paper is to understand the underlying dynamic properties of 

a hybrid ATO system, we focus exclusively on such a scenario. 
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4.2. Dynamic modelling and analysis of the semiconductor hybrid ATO supply 

chain 

4.2.1 Modelling the hybrid ATO state  

Consequently, the ‘Min’ function and push AG in Figure 4.2 are removed and the 

whole system is now a typical hybrid ATO supply chain. The structure is rearranged to 

yield Figure 4.4 so as to draw an analogy with the IOBPCS family. It can be seen that the 

hybrid ATO system consists of a VIOBPCS (Edghill and Towill, 1990) ordering rule in 

the downstream assembly stage and a structure similar to the APVIOBPCS 

(Dejonckheere et al., 2003) ordering rule in the upstream fabrication. 

The AWIP is the interface (CODP) connecting the fabrication and assembly 

production, i.e. the AWIP is the finished stock point for the push fabrication, while it 

supplies raw materials for the final assembly pulled by the customer ordering rate. For 

the downstream pull system, represented by the VIOBPCS, the only input is the customer 

demand signal. The block diagram also indicates that there is an instantaneous assembly 

process that has a zero-yield loss for what is required for assembly, due to the hybrid 

ATO condition that pull AG is always larger than push AG. 
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Figure 4. 4. Re-arranged block diagram for the hybrid ATO supply chain model. 

As such, the desired rate (ordering rate), AN
*, equals the net assembly complete 

rate (AN) as follows: 

                                              𝐴𝑁
∗ (𝑡) = 𝐹𝐺𝐼𝐴𝐷𝐽(𝑡) + 𝐸𝐷(𝑡)                                                             (4.1)                   

Where  

                                          𝐹𝐺𝐼𝐴𝐷𝐽(𝑡) =
1

𝑇𝐹𝐺𝐼
∙ (𝐸𝐷(𝑡) ∙ 𝑊𝑂𝐼∗ − 𝐹𝐺𝐼(𝑡))                           (4.2) 

and  

   𝐸𝐷(𝑡) = 𝐸𝐷(𝑡 − 1) + 𝑎 ∙ (𝐷(𝑡) − 𝐸𝐷(𝑡 − 1)),   𝑎 =
1

1 +
𝑇𝐷𝐴𝑑𝑗
△ 𝑇

 (Towill, 1977)        (4.3) 

The upstream fabrication push system is similar to the APVIOBPCS 

replenishment rule that includes inventory feedback correction (AWIP), work-in-process 

feedback correction (FWIP) and feedforward forecasting compensation (ED). There are 
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two inputs in such a system, including demand from the MTO system and the end 

customer, and feedforward forecasting, i.e. ED(t), is based on the end customer demand 

(D); in other words, DIDP is put on the upstream fabrication echelon. Therefore, the 

ordering rate for each replenishment cycle is given by:  

                           𝑊𝑆(𝑡) =
𝐾1
𝑌𝑈
∙ 𝐸𝐷(𝑡) + 𝐾1 ∙ 𝐴𝑊𝐼𝑃𝐴𝐷𝐽(𝑡) + 𝐹𝑊𝐼𝑃𝐴𝐷𝐽(𝑡)               (4.4) 

and AWIPADJ(t) is determined by the fraction of difference between the desired 

assembly pull level and actual AWIP level, which equals: 

                              𝐴𝑊𝐼𝑃𝐴𝐷𝐽(𝑡) =
1

𝑇𝐹𝑊𝐼𝑃
∙ (𝐴𝑁

∗ (𝑡) ∙
𝑇𝐴
𝑌𝑈
− 𝐴𝑊𝐼𝑃(𝑡))                      (4.5) 

FWIPADJ(t) is determined by a fraction  of the difference between the desired 

inflow FWIP and the actual FWIP as follows: 

      𝐹𝑊𝐼𝑃𝐴𝐷𝐽(𝑡) =  
1

𝑇𝐹𝑊𝐼𝑃
∙ (𝑇𝐹 ∙ 𝐾1 ∙ (𝐸𝐷(𝑡) ∙

1

𝑌𝑈
+ 𝐴𝑊𝐼𝑃𝐴𝐷𝐽(𝑡)) − 𝐹𝑊𝐼𝑃(𝑡))  (4.6) 

It should be noted that the safety stock levels, AWIP and FGI*, and desired 

FWIP* are based on constant gains, WOI*, TA and K2/YU, that need to be set. Hence, 

there is an opportunity to further explore the impact of setting such levels, which gives 

more insight into the overall dynamic behaviour of the hybrid ATO system. e.g. see 

Manary and Willems's (2008) method to address the issue of systematically biased 

forecast experienced by the Intel supply chain. However, it is beyond the scope of this 

thesis to investigate the impact of parameter variation on the dynamics of the hybrid ATO 

semiconductor supply chain. 

In summary, the final stylised hybrid ATO structure consists of two major 

ordering rules under the assumption that the CODP inventory is always available for end 
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customers’ orders. Downstream of the CODP is the VIOBPCS ordering rule with 

negligible lead time; while the upstream Push structure is similar to the APVIOBPCS, 

but there are some differences regarding the settings of the targeted WIP feedback loop, 

as well as the feedforward forecasting loop. Using a control engineering approach, the 

underlying dynamic behaviour of the semiconductor hybrid supply chain system is now 

explored. 

4.2.2 Transfer function analysis  

 As we focus on the dynamic behaviour of the inventory and order rate in 

responding to the external demand signal under the hybrid ATO supply chains (Figure 5), 

the corresponding transfer functions, downstream FGI, A*
N in relation to the demand (D), 

can be derived based on the following procedures:  

• Substitute Equation (4.2) into (4.1); 

• Substitute Laplace domain of ED in relation to D, i.e. 𝐸𝐷 = 𝐷 ∙
1

1+𝑇𝐷𝐴𝑑𝑗𝑠
 , into 

Equation (4.1); 

• Substitute Laplace domain of FGI in relation to A*
N, i.e. = (𝐴𝑁

∗ − 𝐷) ∙
1

𝑠
 , into 

Equation (4.2) and then Substitute Equation (4.2) into (4.1). 

We now have the transfer function of A*
N in relation to D: 

                                     
𝐴𝑁
∗

𝐷
=

1 + (𝑇𝐷𝐴𝑑𝑗 + 𝑇𝐹𝐺𝐼 +𝑊𝑂𝐼
∗)𝑠

1 + (𝑇𝐷𝐴𝑑𝑗+𝑇𝐹𝐺𝐼)𝑠 + 𝑇𝐷𝐴𝑑𝑗𝑇𝐹𝐺𝐼𝑠
2
                             (4.7) 

Substitute Equation (7) into 𝐹𝐺𝐼 = (𝐴𝑁
∗ − 𝐷) ∙

1

𝑠
, the transfer function of FGI can 

be derived thus: 

                                   
𝐹𝐺𝐼

𝐷
=

𝑊𝑂𝐼∗ − 𝑇𝐷𝐴𝑑𝑗𝑇𝐹𝐺𝐼𝑠

1 + (𝑇𝐷𝐴𝑑𝑗+𝑇𝐹𝐺𝐼)𝑠 + 𝑇𝐷𝐴𝑑𝑗𝑇𝐹𝐺𝐼𝑠
2
                                  (4.8) 
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Similarly, the upstream WS and AWIP in relation to D can be derived by the 

following steps: 

• Substitute Equations (4.5) and (4.6) into (4.4) in Laplace form to obtain: 

𝑊𝑆 =
𝐾1

𝑌𝑈
∙ 𝐸𝐷 + 𝐾1 ∙

1

𝑇𝐴𝑊𝐼𝑃
(𝐴𝑁

∗ ∙
𝑇𝐴

𝑌𝑈
− 𝐴𝑊𝐼𝑃) +

1

𝑇𝐹𝑊𝐼𝑃
∙ (𝑇𝐹 ∙ 𝐾1 ∙ (𝐸𝐷 ∙

1

𝑌𝑈
+

1

𝑇𝐴𝑊𝐼𝑃
∙ (𝐴𝑁

∗ ∙

𝑇𝐴

𝑌𝑈
− 𝐴𝑊𝐼𝑃)) − 𝐹𝑊𝐼𝑃)                                                                                                (4.9)  

Where 

                     𝐹𝑊𝐼𝑃 = (𝑊𝑆 − 𝐹𝐺) ∙
1

𝑠
= 𝑊𝑆 ∙

𝑇𝐹
1 + 𝑇𝐹𝑠

                        (4.10) 

              𝐴𝑊𝐼𝑃 =  (𝐹𝐺 − 𝐴𝑁
∗ ) ∙

1

𝑠
 =  (𝑊𝑆 ∙

1

1 + 𝑇𝐹𝑠
− 𝐴𝑁

∗ ) ∙
1

𝑠
        (4.11) 

                                        𝐸𝐷 = 𝐷 ∙
1

1 + 𝑇𝐷𝐴𝑑𝑗𝑠
                                        (4.12) 

• Substitute Equations (4.7), (4.10), (4.11) and (4.12) into (4.9) 

Now we can obtain the transfer function of WS in relation to D as follows: 

𝑊𝑆

𝐷
=
𝐾1
𝑌𝑈
∙

(𝑇𝐹 + 𝑇FWIP) +

(
𝑊𝑂𝐼∗𝑇𝐹 + 𝑇𝐷𝐴𝑑𝑗𝑇𝐹 + 𝑇A𝑇𝐹 + 𝑇AWIP𝑇𝐹 + 𝑇𝐹

2 + 𝑇𝐹𝑇FGI +𝑊𝑂𝐼
∗𝑇FWIP +

𝑇𝐷𝐴𝑑𝑗𝑇FWIP + 𝑇A𝑇FWIP + 𝑇AWIP𝑇FWIP + 𝑇𝐹𝑇FWIP + 𝑇FGI𝑇FWIP
) 𝑠 +

(

 

𝑇AWIP𝑇𝐹
2 + 𝑇A𝑇𝐹𝑇FGI + 𝑇AWIP𝑇𝐹𝑇FGI + 𝑇𝐹

2𝑇FGI +𝑊𝑂𝐼
∗𝑇A𝑇FWIP +

𝑇𝐷𝐴𝑑𝑗𝑇A𝑇FWIP +𝑊𝑂𝐼
∗𝑇𝐹𝑇FWIP + 𝑇𝐷𝐴𝑑𝑗𝑇𝐹𝑇FWIP +

𝑇A𝑇𝐹𝑇FWIP + 𝑇AWIP𝑇𝐹𝑇FWIP +
𝑇A𝑇FGI𝑇FWIP + 𝑇AWIP𝑇FGI𝑇FWIP + 𝑇𝐹𝑇FGI𝑇FWIP )

 𝑠2 +

(
𝑊𝑂𝐼∗𝑇A𝑇𝐹

2 + 𝑇𝐷𝐴𝑑𝑗𝑇A𝑇𝐹
2 + 𝑇A𝑇𝐹

2𝑇FGI + 𝑇AWIP𝑇𝐹
2𝑇FGI +𝑊𝑂𝐼

∗𝑇A𝑇𝐹𝑇FWIP +

𝑇𝐷𝐴𝑑𝑗𝑇A𝑇𝐹𝑇FWIP + 𝑇A𝑇𝐹𝑇FGI𝑇FWIP + 𝑇AWIP𝑇𝐹𝑇FGI𝑇FWIP
) 𝑠3

(𝑇𝐹 + 𝑇FWIP) + (
𝑇𝐷𝐴𝑑𝑗𝑇𝐹 + 𝑇AWIP𝑇𝐹 + 𝑇𝐹𝑇FGI +

𝑇𝐷𝐴𝑑𝑗𝑇FWIP + 𝑇AWIP𝑇FWIP + 𝑇FGI𝑇FWIP
) 𝑠 +

(
𝑇𝐷𝐴𝑑𝑗𝑇AWIP𝑇𝐹 + 𝑇𝐷𝐴𝑑𝑗𝑇𝐹𝑇FGI + 𝑇AWIP𝑇𝐹𝑇FGI + 𝑇𝐷𝐴𝑑𝑗𝑇AWIP𝑇FWIP +

𝑇AWIP𝑇𝐹𝑇FWIP + 𝑇𝐷𝐴𝑑𝑗𝑇FGI𝑇FWIP + 𝑇AWIP𝑇FGI𝑇FWIP
) 𝑠2 +

(
𝑇𝐷𝐴𝑑𝑗𝑇AWIP𝑇𝐹𝑇FGI + 𝑇𝐷𝐴𝑑𝑗𝑇AWIP𝑇𝐹𝑇FWIP +

𝑇𝐷𝐴𝑑𝑗𝑇AWIP𝑇FGI𝑇FWIP + 𝑇AWIP𝑇𝐹𝑇FGI𝑇FWIP
) 𝑠3 +

𝑇𝐷𝐴𝑑𝑗𝑇AWIP𝑇𝐹𝑇FGI𝑇FWIP𝑠
4

(4.13) 

Substituting Equations (7) and (13) into (11), we can obtain the transfer function 

of AWIP in relation to D: 



 

Dynamic design and analysis of a semiconductor ATO system 
 

107 
 

   
𝐴𝑊𝐼𝑃

𝐷
=
1

𝑌𝑈
∙

(𝑇A𝑇𝐹 + 𝑇A𝑇FWIP) +

(

𝑊𝑂𝐼∗𝑇A𝑇𝐹 + 𝑇𝐷𝐴𝑑𝑗𝑇A𝑇𝐹 −𝑊𝑂𝐼
∗𝑇AWIP𝑇𝐹 − 𝑇𝐷𝐴𝑑𝑗𝑇AWIP𝑇𝐹 + 𝑇A𝑇𝐹𝑇FGI +

𝑊𝑂𝐼∗𝑇A𝑇FWIP + 𝑇𝐷𝐴𝑑𝑗𝑇A𝑇FWIP −𝑊𝑂𝐼
∗𝑇AWIP𝑇FWIP −

𝑇𝐷𝐴𝑑𝑗𝑇AWIP𝑇FWIP − 𝑇AWIP𝑇𝐹𝑇FWIP + 𝑇A𝑇FGI𝑇FWIP

)

 +(−𝑊𝑂𝐼∗𝑇AWIP𝑇𝐹𝑇FWIP − 𝑇𝐷𝐴𝑑𝑗𝑇AWIP𝑇𝐹𝑇FWIP − 𝑇AWIP𝑇𝐹𝑇FGI𝑇FWIP)𝑠
2

𝑠

(𝑇𝐹 + 𝑇FWIP) + (
𝑇𝐷𝐴𝑑𝑗𝑇𝐹 + 𝑇AWIP𝑇𝐹 + 𝑇𝐹𝑇FGI + 𝑇𝐷𝐴𝑑𝑗𝑇FWIP +

𝑇AWIP𝑇FWIP + 𝑇FGI𝑇FWIP
) 𝑠 +

(
𝑇𝐷𝐴𝑑𝑗𝑇AWIP𝑇𝐹 + 𝑇𝐷𝐴𝑑𝑗𝑇𝐹𝑇FGI + 𝑇AWIP𝑇𝐹𝑇FGI + 𝑇𝐷𝐴𝑑𝑗𝑇AWIP𝑇FWIP +

𝑇AWIP𝑇𝐹𝑇FWIP + 𝑇𝐷𝐴𝑑𝑗𝑇FGI𝑇FWIP + 𝑇AWIP𝑇FGI𝑇FWIP
) 𝑠2 +

(
𝑇𝐷𝐴𝑑𝑗𝑇AWIP𝑇𝐹𝑇FGI + 𝑇𝐷𝐴𝑑𝑗𝑇AWIP𝑇𝐹𝑇FWIP +

𝑇𝐷𝐴𝑑𝑗𝑇AWIP𝑇FGI𝑇FWIP + 𝑇AWIP𝑇𝐹𝑇FGI𝑇FWIP
) 𝑠3 +

𝑇𝐷𝐴𝑑𝑗𝑇AWIP𝑇𝐹𝑇FGI𝑇FWIP𝑠
4

     (4.14) 

The transfer function represents the dynamic properties of the system. In 

particular, the characteristic equation, defined by equating the denominator of overall 

transfer function to zero, can be used to find poles (roots), which give an initial 

understanding of the underlying dynamic mechanism of the semiconductor hybrid ATO 

system including system stability and unforced system dynamic property (i.e. natural 

frequency and damping ratio).  

By rewriting the denominator of Equations (4.7), (4.8), (4.13) and (4.14) as 

Equation (4.15), it can be seen that the Pull system is characterised by a second-order 

system, while a fourth-order polynomial describes the Push system: 

                                                (1 + 𝑇𝐷𝐴𝑑𝑗𝑠)(1 + 𝑇FGI𝑠) = 0                (4.15)                       

(1 + 𝑇𝐷𝐴𝑑𝑗𝑠)(1 + 𝑇FGI𝑠)(𝑇𝐹 + 𝑇FWIP + (𝑇AWIP𝑇𝐹 + 𝑇AWIP𝑇FWIP)𝑠 + 𝑇AWIP𝑇𝐹𝑇FWIP𝑠
2) = 0    

 Also, there is a second-order polynomial, (1 + 𝑇𝐷𝐴𝑑𝑗𝑠)(1 + 𝑇FGI𝑠) , in the 

denominator of all transfer functions, which confirms that the dynamic property of the 

Pull system is not influenced by the Push system, while the dynamic performance of the 

MTS system can be partially manipulated by the Pull system under the hybrid ATO mode.  

Initial Value Theorem (IVT) and Final Value Theorem (FVT) now is analysed. 

The IVT is a useful tool to cross-check mathematically the correctness of a transfer 
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function and guide the appropriate initial condition required by a simulation. The FVT is 

useful to understand the steady state value of the dynamic response of a transfer function 

and can help verify the simulation. Equation 16 presents the initial and final values of 

FGI, AN
*
, WS and AWIP in responding to a unit step input for the semiconductor hybrid 

ATO system. 

   𝑙𝑖𝑚
𝑠→∞

𝑠
𝐴𝑁
𝐷
= 0                     𝑙𝑖𝑚

𝑠→0
𝑠
𝐴𝑁
𝐷
= 1      

          𝑙𝑖𝑚
𝑠→∞

𝑠
𝐹𝐺𝐼

𝐷
= 0                   𝑙𝑖𝑚

𝑠→0
𝑠
𝐹𝐺𝐼

𝐷
= 𝑊𝑂𝐼     

                                           𝑙𝑖𝑚
𝑠→∞

𝑠
𝑊𝑆

𝐷
= 0                 𝑙𝑖𝑚

𝑠→0
𝑠
𝑊𝑆

𝐷
=
𝐾1
𝑌𝑈
                               (4.16)   

        𝑙𝑖𝑚
𝑠→∞

𝑠
𝐴𝑊𝐼𝑃

𝐷
= 0           𝑙𝑖𝑚

𝑠→0
𝑠
𝐴𝑊𝐼𝑃

𝐷
=
𝑇𝐴
𝑌𝑈

  

         As expected, the initial values of FGI, AN
*
, AWIP, FWIP and WS are zero; similar 

to the results obtained by John et al. (1994). Regarding the final value, the ordering rate 

(A*
N) of the MTO system is unity and the steady state level of the FGI is WOI* as it is a 

function of the averaged demand. The final value of ordering rate (WS) for the upstream 

Push system is, as expected, a system constant value  𝐾1/𝑌𝑈 , and the final value of AWIP 

is determined by the coefficient 𝑇𝐴 (the targeted inventory level in the APVIOBPCS). 

Since the downstream Pull system is not influenced by the upstream Push system, due to 

the assumption of infinite AWIP availability to maintain the Pull assembly while the 

dynamic behaviour of Push is influenced by the upstream Pull system, we analyse the 

dynamic properties of the Pull and Push systems separately.  
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4.2.3 Characteristic equation analysis of the Pull system   

Since the transfer function of the Pull part is a second-order system, its associated 

dynamic properties are defined by 𝜔𝑛 and 𝜁, determined by the characteristic equation. 

Hence, 𝜔𝑛 and 𝜁 are obtained as follows:  

                   𝜔𝑛 = √
1

𝑇𝐷𝐴𝑑𝑗𝑇𝐹𝐺𝐼
          𝜁 = (𝑇𝐷𝐴𝑑𝑗+𝑇𝐹𝐺𝐼)√

1

2 𝑇𝐷𝐴𝑑𝑗𝑇𝐹𝐺𝐼
                    (4.17) 

Based on Equation 4.17, both  𝜔𝑛 and 𝜁 are determined by the control parameters 

TDAdj and TFGI. The natural frequency decreases as the values of TDAdj and TFGI increase, 

leading to a slower dynamic response and recovery to the steady state conditions for the 

Pull system. To illustrate the relationship between 𝜁 and TDAdj and TFGI, Equation 4.17 as 

4.18 is rewritten: 

                                         𝜁 = √
1

2
(
𝑇𝐷𝐴𝑑𝑗

𝑇𝐹𝐺𝐼
+
𝑇𝐹𝐺𝐼
𝑇𝐷𝐴𝑑𝑗

) + 1                                             (4.18) 

When TDAdj = TFGI, 𝜁 always assumes the same value (√2). When either TDAdj or 

TFGI increases, 𝜁 increases further, decreasing the number of oscillations in response to 

external demand but making the system slow. The important message here is that 𝜁 ≥ 1 

for all positive values of TDAdj and TFGI, which means that the system always produces 

over-damped behaviour and is guaranteed to be stable. This is important because the 

system is permitted to be stable and robust for any choice of positive decision-making 

parameters. Furthermore, objectives of the rapid inventory recovery (natural frequency) 

and low level of bullwhip (i.e. maximum overshoot), determined by the damping ratio, 

cannot be achieved simultaneously. This trade-off has also been confirmed 

mathematically by Towill (1982).   
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4.2.4. Unit step response of the Pull system 

The unit step input is utilised to assess the dynamic behaviour of the 

semiconductor hybrid ATO system. The step as an input source is well documented 

(Towill, 1970) in general control theory for exploring the system’s capacity to respond to 

sudden but sustained change. Moreover, step change as the input is easily visualised and 

its response can be easily interpreted (John et al. 1994), especially for those important 

dynamic performance indicators such as bullwhip and inventory variance. Furthermore, 

the step increases give rich information for the dynamic behaviour of the system (Coyle, 

1977). From the supply chain point of view, the step demand can be regarded as the early 

stage of a new product or the opening of a new sales outlet (Zhou and Disney, 2006), 

which fits the customer demand condition in the semiconductor industry characterised by 

a short life cycle with a corresponding sudden change in demand during the release of 

new products.   

         Due to the analogy between the VIOBPCS and the Pull part of the semiconductor 

hybrid supply chain system, the set of parameters utilised is as suggested by Edghill and 

Towill (1990) with 4 units of assembly lead time (TA=4). Based on the transfer functions 

of the Pull system, i.e. Equations (4.11) and (4.12), the value of required system 

parameters for simulation are thereby (weeks): 

TDAdj =8, TFGI=4 and WOI*=5 
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Figure 4. 5. The impact of TDAdj and TFGI for FGI and AN unit response. 

       Figure 4.5 demonstrates the impact of TDAdj and TFGI for the unit step response of 

the FGI and AN.  The solid line represents the recommended settings utilized in the 

VIOBPCS archetype. There is always an initial drop for the FGI response due to the 

transient response of a unit step increase in demand, and the absolute FGI drop value can 

thereby be utilised for setting initial stock levels to maintain supply to the Pull system. 

When TFGI increases, the FGI response experiences a larger initial drop with a longer 

setting time, while the A*
N has a shorter setting time at the expense of higher peak level. 

Similarly, a larger undershot and longer recovery time of the FGI response are observed 

when the value of TDAdj increases, while the A*
N experiences less bullwhip at the expense 

of a longer settling time.   

To summarise, the downstream Pull assembly system always produces over-

damped dynamic behaviour and such a system is guaranteed to be stable and robust, 

although there is an overshoot for AN transient response due to the effect of the numerator 

of transfer functions. Bullwhip results from TDAdj and TFGI, which confirms the fact that 

forecasting (Dejonckheere et al., 2002) and feedback loops (Lee et al., 1997) are the major 

sources of bullwhip generation, even when the lead time is negligible. In particular, TDAdj 

places a major emphasis on the bullwhip level, while TFGI has a major impact on the FGI 

variance. This result also provides evidence that bullwhip is mainly caused by the 
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feedforward compensation, instead of the feedback loop/production delay usually 

suggested. Although this phase advance/predictive component (Truxal and Weinberg, 

1955) in the hardware control engineering field has the advantage of ordering in advance 

to ensure stock availability, some solutions such as more sophisticated forecasting 

algorithms (Dejonckheere et al., 2002) must be implemented to reduce the bullwhip level.  

4.2.5. Characteristic equations analysis of the Push system 

Based on Equation (4.15), the Push system is characterised as a fourth-order 

polynomial that can be rewritten as the product of two second-order polynomials. As the 

second-order polynomial, i.e. (1 + 𝑇𝐷𝐴𝑑𝑗𝑠)(1 + 𝑇FGI𝑠),  was already analysed in the 

MTO system, we derive the natural frequency and damping ratio for the other second-

order polynomial as follows: 

                           𝜔𝑛 = √
1

𝑇AWIP𝑇FWIP
+

1

𝑇AWIP𝑇𝐹
           𝜁 =

1

2
√
𝑇AWIP
𝑇𝐹

+
𝑇AWIP
𝑇𝐹𝑊𝐼𝑃

        (4.19) 

For a fixed TF (physical fabrication lead time), 𝜔𝑛 and 𝜁 are determined by TAWIP 

and TFWIP. The system response will become slower (smaller value of  𝜔𝑛) as TAWIP and 

TFWIP increase. However, TAWIP and TFWIP have a reverse impact on 𝜁. The system will be 

more oscillatory as TFWIP increases or TAWIP decreases. It should be noted that TAWIP has 

a major influence on the damping ratio compared to TFWIP, which means the CODP 

inventory policy plays a major role in the system’s dynamic behaviour.  

To further understand the dynamic properties of the Push system, including 

transient response and stability, we derive the four poles based on Equation (4.15) as 

follows: 

      𝑅1 = −
1

𝑇𝐹𝐺𝐼
 , 𝑅2 = −

1

𝑇𝐷𝐴𝑑𝑗
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𝑅3 = 𝑅4 =
−𝑇AWIP𝑇𝐹−𝑇AWIP𝑇FWIP±√𝑇AWIP√𝑇𝐹+𝑇FWIP√𝑇AWIP𝑇𝐹+𝑇AWIP𝑇FWIP−4𝑇𝐹𝑇FWIP

2𝑇AWIP𝑇𝐹𝑇FWIP
 (4.20)  

There is no imaginary part for the roots of the first and second polynomials 

(𝑅1 and 𝑅2), and therefore oscillatory behaviour cannot be generated. For 𝑅3 and 𝑅4, the 

roots can be real, complex or purely imaginary and the real poles can also be positive, 

negative or repeated, influencing the transient response as well as the stability condition. 

We plot the different results of roots based on different fixed  𝑇𝐹 values ranging from 1 

unit to 4 units as shown in Figure 4.6. 

Specifically, the roots are positive for the region between the line of purely 

imaginary roots and TFWIP = 0; thus, the pair choice of TAWIP and TFWIP in this area will 

lead to an unstable system. Also, we consider the impact of negative FWIP feedback 

controller (TFWIP) on the results of the roots, although, conventionally, it is assumed to be 

a positive value range. The negative TFWIP has been investigated in the case of a uniformed 

and irrational replenishment rule design (Wang et al., 2012; 2014). Based on Figure 4.6, 

the roots will become purely imaginary if the real part of the roots is zero (i.e. TFWIP= -

TF). Furthermore, the purely imaginary roots are the critically stable point; as such, the 

system response will be sustainably oscillatory. 
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Figure 4. 6. Real, complex and imaginary region of R3 and R4 based on different TF. 

       Although the transient response of the fourth-order system is multifaceted, 

determined by the dominant pole(s) that is/are closest to the origin of the s plane, i.e. the 

combination of different control policies, the result in Figure 4.6 gives a qualitative 

understanding of the system’s dynamic properties, i.e. whether stable or unstable, for 

different parameter choices. For instance, we can specify the range of TFWIP and TAWIP to 

generate real poles, i.e. a ‘good’ system dynamic design without generating oscillations. 

As a result, semiconductor companies may benefit from associated cost reduction by 

improved supply chain dynamics performance.  In addition, the real poles region becomes 

smaller as fabrication lead time, TF, increases, which means that the system is more likely 

to generate oscillatory behaviour based on different choices of decision parameter settings. 

Managers thus need to be aware that their upstream Push systems are more likely to be 

oscillatory under their control policies if fabrication lead times become longer. Finally, it 

can be concluded that such a semiconductor hybrid ATO system is stable for all positive 

decision parameter choices (TFWIP, TAWIP, TFGI, TDAdj).  
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4.2.6 Unit step response of the Push system 

To understand the impact of four system policies (TFWIP, TAWIP, TFGI, TDAdj) in 

influencing the transient response of the hybrid ATO system, a step response analysis is 

conducted, through the initial settings suggested by John et al. (1994), i.e. 𝑇𝐴𝑊𝐼𝑃 =

𝑇𝐷𝐴𝑑𝑗 = 𝑇𝐹, 𝑇𝐹𝑊𝐼𝑃 = 2𝑇𝐹  for the dynamic performance of the Push system. The 

recommended settings of both VIOBPCS and APVIOBPCS will be utilised as the initial 

design to determine whether such parameter settings can still produce ‘good’ dynamic 

performance in the hybrid environment. The system’s constant parameters, including K1, 

K2, K3 and Yu , will be discarded, as they do not influence the system’s dynamic behaviour.   

Assume that the lead times ratio between assembly and fabrication is 1:2 (i.e. 4 

and 8 for assembly and fabrication) to represent the long-term upstream fabrication and 

relatively short time for the customised assembly. Thus, the initial setting is as follows 

(weeks): 

𝑇𝐹 = 8, 𝑇𝐴𝑊𝐼𝑃 = 8, 𝑇𝐹𝑊𝐼𝑃 = 16 
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Figure 4. 7. The effect of decision policies for the AWIP and WS in response to unit step 

increases. 

 Figure 4.7 shows the impact of TFWIP, TAWIP, TFGI and TDAdj on the dynamic 

behaviour of the WS and AWIP in the Push system. The solid line represents the 

recommended settings used in the VIOBPCS and APIOBPCS archetypes. Compared to 

the downstream Pull system, the bullwhip and inventory variance are more significant in 

the upstream Push system, due to the dynamic behaviour being amplified from the end 
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customer to the far position of the entire supply chain (e.g. manufacturer). The AWIP 

always experiences an initial drop in response to unit step input, as the AWIP must meet 

the downstream customer Pull signal during the transient period to maintain the hybrid 

ATO state. The AWIP recovers to the desired level with a gradual increase in the 

fabrication production complete rate to match the unit step demand increase. The absolute 

decline level is helpful to indicate the safety inventory required to maintain the hybrid 

mode during the transient period.  

Based on Figure 4.7 and Table 4.2, an increase in TDAdj leads to a longer peak time 

and setting time, but less oscillation of the AWIP. Moreover, an increase in TDAdj slightly 

reduces the peak level of the AWIP. It should be noted that the AWIP exhibits oscillatory 

behaviour for small values of TDAdj in response to unit step increase, due to the long-term 

fabrication delay (TF) and the amplified pull signal downstream (AN) as the input of the 

Push part. Similarly, the WS also experiences less bullwhip and fewer oscillations as 

TDAdj increases at the expense of a longer setting time. Similarly, an increasing TFGI 

reduces the overshot and undershot of the AWIP compromised by a slightly longer setting 

time. However, for a sufficiently long FGI correction time (large TFGI), there is no system 

overshot for the AWIP with a much shorter setting time. The WS experienced a high 

bullwhip level and more oscillation under small values of TFGI.  

Regarding the decision parameters in the upstream system, TAWIP significantly 

influences the dynamic response of the AWIP and WS. An increase in TAWIP dramatically 

increases the undershot (also peak time) and setting time of the AWIP, while the WS has 

less bullwhip, fewer oscillations and a shorter setting time. In particular, a small TAWIP 

introduces extra oscillatory behaviour in response to the AWIP and WS, due to the 

feedback loop control and long production delay. An increase in TFWIP damages the 

dynamic performance of the FWIP by producing more undershot and oscillations with a 
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longer setting time. Similarly, the WS response has more oscillations and a longer setting 

time at the expense of less bullwhip as TFWIP increases. Since the target FWIP is the 

summation of ED and AWIPADJ (AWIP feedback loop has been included for AWIPADJ), 

the long correction time for the feedback FWIP loop will further amplify the effect of the 

AWIP feedback loop by introducing extra dynamic behaviour for the AWIP and WS, 

which damages their dynamic performance by introducing more oscillations. Furthermore, 

based on Figure 4.6, the recommended settings in the APIOBPCS and VIOBPCS can still 

be utilised in the hybrid ATO supply chain to yield a ‘good’ dynamic response when 

considering the trade-off between bullwhip and inventory recovery. Table 4.1 summarises 

four decision parameters’ impact on the hybrid ATO step response by increasing their 

value: 

Decision  

parameters  

AWIP WS FGI AN 

p tp ts p tp ts p tp ts p tp ts 

TsAdj 0 ↓ ↓ ↑ ↓ ↑ ↓ ↓ ↓ ↑ ↓ ↓ 

TFGI ↑ ↓ ↑ ↑ ↓ ↑ ↓ ↓ ↓ ↑ ↓ ↓ 

TAWIP ↓ ↓ ↓ ↑ ↓ ↑ 0 0 0 0 0 0 

TFWIP ↓ ↓ ↑↓ ↑ ↓ ↓ 0 0 0 0 0 0 

Table 4. 1.. Summary of the system response by increasing the value of decision parameters (p: 

peak level, tp: time for peak level, ts: setting time, ↑: better performance. ↓: worse performance, 

0: no influence, ↑↓: from worse to better performance due to extra oscillations). 

It can be concluded that maintaining the hybrid ATO system in the semiconductor 

industry is highly desirable since customer orders can be fulfilled immediately. 

Feedforward forecasting compensation and three feedback correction loops (FGI, AWIP, 
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FWIP) have an impact on the bullwhip level. In particular, the CODP inventory policy 

(TAWIP) and the forecasting policy (TDAdj) significantly influence the bullwhip level; 

TAWIP also plays a major rule in the system’s oscillatory behaviour. Thus, managers 

should carefully tune TAWIP to balance the benefit between the cost of holding CODP 

inventory and the cost of supply chain dynamics. Moreover, practitioners should consider 

the choice of TFGI to balance the levels of two safety stock points (AWIP and FGI), as 

such a policy has a reverse influence on the AWIP and FGI. Finally, the recommended 

settings in the APVIOBPCS and VIOBPCS are still ‘good’ in the semiconductor hybrid 

system, although there are some differences between the APVIOBPCS-based reorder 

system and the MRP-based replenishment rule. Furthermore, the dynamic response of AN 

and WS, e.g. rising time, peak level and setting time, gives useful guidance for 

benchmarking the results derived from the nonlinear dynamic system to set an optimal 

capacity in the nonlinear system, which may balance the cost of bullwhip and inventory 

variance in response to a sudden but sustained change in demand. 

4.3. Comparing semiconductor ATO system with the IOBPCS family models 

 As analysed in Section 4.2.1, the stylised semiconductor hybrid ATO system 

consists of a VIOBPCS without lead times and similar APVIOBPCS archetypes. To 

benchmark the dynamic behaviour of the upstream Push representation with an exact 

APVIOBPCS, the block diagram in Figure 4.4 is re-drawn to represent the exact 

APVIOBPCS system, as shown in Figure 4.8. 

From Figures 4.3 and 4.7, unlike the traditional APVIOBPCS ordering rule that 

has only one input, i.e. demand from the MTO system, two inputs are utilised for the 

wafer production rate in the semiconductor MTS system: 1) demand from the next-level 

supply chain echelon; and 2) demand from the end customer order. Such a structure is, 

fundamentally, a material requirement planning (MRP) system, while the APVIOBPCS 
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has been defined as a ‘re-order system’ (Popplewell and Bonney, 1987). Table 4.2 

summarises the difference between the two ordering rules for the MTS system.  

 

Figure 4. 8. The APVIOBPCS-based hybrid ATO in block diagram form 

Type of system 

(the Push) 

Targeted Inventory  

(feedback loop) 

Targeted WIP 

(feedback loop) 

Feedforward 

forecasting loop  

Semiconductor 

MRP system 

(Figure 4.3) 

As a function of 

demand from the 

ordering rate at 

assembly production 

(AN*) 

As a function of the 

summation of inventory 

correction (AWIP) and 

demand from end customer 

(D) 

Based on final 

customer demand 

(D) 

Reorder 

system 

(APVIOBPCS) 

(Figure 4.7) 

As a function of 

demand from the 

ordering rate at 

assembly production 

(AN*) 

As a function of demand 

from the ordering rate at 

assembly production (AN*) 

Based on demand 

from the ordering 

rate at assembly 

production (AN*) 

Table 4. 2. The comparison of system structure between the semiconductor MRP and 

APVIOBPCS systems. 
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  To analytically explore the dynamic behaviour difference between these two 

archetypes, their nature frequency (𝜔𝑛) and damping ratio (𝜁) can be derived as follows: 

Semiconductor MRP system: 

 (1 + 𝑆𝑇𝐴)(1 + 𝑆𝑇FGI)(𝑇𝐹 + 𝑇FWIP + 𝑆(𝑇AWIP𝑇𝐹 + 𝑇AWIP𝑇FWIP) + 𝑆
2𝑇AWIP𝑇𝐹𝑇FWIP)    (4.21) 

Re-order system: 

   (1 + 𝑆𝑇𝐴)(1 + 𝑆𝑇FGI)(𝑇𝐹 + 𝑆(𝑇AWIP𝑇𝐹 + 𝑇AWIP𝑇FWIP) + 𝑆
2𝑇AWIP𝑇𝐹𝑇FWIP)     (4.22)     

          It can be seen that all polynomials, including (1 + 𝑆𝑇𝐴)(1 + 𝑆𝑇FGI), refer to the 

property of downstream MTO final assembly system, and as highlighted before, such 

second order polynomials always produce over-damped dynamic behaviour due to the 

value of damping ratio always being greater than one under the positive value of TA and 

TFGI. Also, such a system cannot generate oscillatory behaviour because the discriminant 

is always greater than or equal to zero (real roots).  

         Hence, for simplicity we can remove such second order differential equations and 

compare another second order polynomials involving more complex dynamic behaviour. 

Table 4.3 reports the comparison of system properties based on 𝜔𝑛 and 𝜁. It can be seen 

the natural frequency in a semiconductor MRP system is always larger than the 

corresponding re-order APVIOBPCS archetype for the same decision policy choice. Such 

a result indicates that the dynamic recovery speed of semiconductor MRP system is faster 

than the APVIOBPCS system, which may benefit the higher customer service level by 

increasing the inventory recovery speed in response to customer demand. However, re-

order APVIOBPCS always has larger 𝜁 than an MRP-based system for all positive values 

of TFWIP and TAWIP, which means an MRP system will produce more oscillations under 

the same policies settings and its associated production activities and cost, such as ramp 
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up and ramp down machines, hiring and firing staff, has to be considered in designing 

such production control systems. 

System type Structure of CEs Natural frequency 

(𝝎𝒏) 

Damping ratio (𝜻) 

Semiconductor 

MRP system 

(Figure 4.3) 

Second order 

polynomials 
√

1

𝑇AWIP𝑇FWIP
+

1

𝑇AWIP𝑇𝐹
    1

2
√
𝑇AWIP
𝑇𝐹

+
𝑇AWIP
𝑇𝐹𝑊𝐼𝑃

 

Re-order 

APVIOBPCS 

(Figure 4.7) 

Second order 

polynomials 
√

1

𝑇AWIP𝑇FWIP
           

1

2𝑇F
√𝑇AWIP𝑇𝐹𝑊𝐼𝑃 +

1

2
√
𝑇AWIP

𝑇𝐹𝑊𝐼𝑃
  

Table 4. 3. System properties comparison based on nature frequency and damping ratio. 

        Although a system’s transient response will depend on all poles and zeros, it can be 

concluded that for the same policy settings, an MRP-based production control system 

always has rapid system recovery ability, at the expense of more oscillations occurring 

during transient response compared to a reorder-based APVIOBPCS system. Unlike the 

APVIOBPOCS system in which WIP loop cancels out inventory signal and provides 

feedforward forecasting loop more contributions for reaching steady state (longer settings 

time with less overshoot), the MRP-based system utilises both averaged demand 

(forecasting) as well as inventory correction information as the desired WIP and thereby 

provides less contribution to feedforward forecasting loop to reach steady state (more 

peak with short setting time). Also, utilisation of inventory feedback loop in the WIP 

feedback loop introduces extra oscillations to the system due to the effect of multiple 

feedback loops. 

It can be concluded that production managers who design their production-

inventory system as a typical MRP-based ordering rule seek more responsiveness than 

leanness. The purpose, based on the analytical findings, is to ensure customer service 
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level in response to customer demand while maintaining low inventory. This is a typical 

target in the semiconductor industry under long-term fabrication lead times but short-term 

technology redundancy. The Intel supply chain (Gonçalves et al., 2005), as the example 

in this study, adopted the MRP-based ordering rule by frequently adjusting their capacity 

utilisation to avoid high backlog orders (high responsiveness) and high inventory level. 

4.4. Numerical study 

4.4.1. Simulation enhancement  

Although the analytical results derived from the linear system above offer deep 

insights into the system dynamic behaviour of a semiconductor ATO supply chain, linear 

assumptions are often criticised for being incapable of capturing nonlinear characteristics 

of the real supply chain system with resources constraints (e.g. capacity, non-negative 

order constraints) (Lin et al., 2017). To enhance the qualitative insights obtained from the 

linear analysis, we incorporate the nonlinearities to represent the capacity, as a CLIP 

function (

[0, Capacity limit]

) and non-negativities in the hybrid ATO model of Figure 4.4. It 

should be noted that a number of other capacity forms can be used to represent the 

capacitated semiconductor fabrication environment. e.g. see Orcun et al.’s (2006) 

exploration of the dynamic behaviour of Clearing Function (CF) based capacity models 

in a simple capacitated production system. 

The hybrid mode is still assumed to be in operation but in a resources-constrained 

environment, reflected in the block diagram representation shown in Figure 4.9. Note that 

the CLIP function is an addition that is not in the representation of Gonçalves et al. (2005). 

Like the linear system analysis, a step input is utilised and all system and control 

policy settings remain the same. Capacity limit in the MTS part is set at 50% larger than 

the step demand (i.e. 1.5), since, on average, manufacturing capacity must be greater than 
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required demand to keep the system stable. Figure 4.10 presents the impact of four system 

control policies (TDAdj, TFGI, TAWIP and TFWIP) on the dynamic behaviour of the Push part 

in the hybrid mode. The solid line represents the recommended settings in the original 

APVIOBPCS and VIOBPCS archetypes, although it does not need to be ‘optimal’ in the 

nonlinear environment, depending on the specific trade-offs design between inventory 

and capacity. It should be noted that the corresponding control policies assessment for the 

Pull part independent of the Push part is not reported here, due to the small dynamic 

impact of non-negative nonlinearity in response to a step increase in demand, i.e. the same 

dynamic behaviour is observed in the nonlinear Pull system 

 

Figure 4. 9. The semiconductor hybrid ATO supply chain in the nonlinear block diagram form. 
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Figure 4. 10. WS and AWIP responses for a step demand increase in the nonlinear settings
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In general, the simulation of a nonlinear hybrid ATO system shows that the insights 

obtained from the linearised analytical results are correct. The increase of policies in the Pull 

part, i.e. TFGI and TDAdj, negatively influences the dynamic performance of the CODP 

inventory (AWIP) by introducing more undershoot and longer setting time, while the better 

dynamic responses of WS are found with fewer oscillations and fast recovery speed. 

However, as expected, comparing the linear results (Figure 4.7) under the same control policy 

settings, the step increase in demand gives a higher initial drop of AWIP and slower recovery 

speed of AWIP and WS in the nonlinear environment. This is because more CODP inventory 

(AWIP) is needed and longer recovery time is influenced by the period when the 

manufacturing rate hits the capacity limit. Furthermore, TAWIP significantly influences the 

dynamic performance of the Push part in the nonlinear hybrid system in terms of oscillations 

and recovery speed. The WIP correction policy in the Push part, that is TFWIP, as expected, 

reported the same qualitative insights obtained from the linear system in which an increase 

in TFWIP led to worse dynamic behaviour of AWIP and WS by introducing more undershoot 

and oscillations. The whole hybrid ATO system experiences a significant reduction of 

bullwhip level (WS) at the expense of more AWIP variability in a capacitated based nonlinear 

system, in comparison with results obtained from the linear system.  

4.4.2. Sensitivity analysis  

In system dynamics study, one of the fundamental assumptions is that the supply 

chain design involving the selection of control parameters is based on a known and given 

lead-time. Furthermore, the semiconductor production and assembly quality or yield rate are 

important parameters that need to be considered regarding their impact on the dynamic 

performance of the semiconductor supply chains (Gonçalves  et al., 2005; Orcun et al., 2006; 
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Orcun and Uzsoy, 2011; Mönch et al., 2013). By undertaking a sensitivity analysis, it is 

possible to check on the dynamic performance due to possible changes in lead-time and 

production yield rate; that is, the physical parameters that designers cannot control or change.  

Lead-time sensitivity analysis  

Returning to the simplified hybrid ATO semiconductor system, there are only 

upstream fabrication lead times (TF) due to the assumption that the hybrid state is always 

operating, and final assembly delay is not considered. Also, such assumption leads to the fact 

that TF does not have an impact on the downstream final assembly echelon.  Given the 

nominal system parameter settings of the simplified nonlinear semiconductor ATO models, 

as illustrated by Figure 4.9, the impact of changes in TF (TF =8 in baseline setting) on the 

system performance, including WS and FWIP, is evaluated via using stochastic demand (i.i.d. 

demand with mean=1 and variance =0.5). All results are shown in Figure 4.11.  
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Figure 4. 1. Sensitivity analysis for semiconductor fabrication lead times. 

The results show that dynamic performance, including bullwhip and inventory 

variance, is sensitive to the change of fabrication lead times. As the TF increases, the bullwhip 

and inventory variance increase as well, leading to an increase of production on cost as well 

as a decrease of customer service level due to possible stock-out issues. The negative impact 

of long lead times on supply chain dynamics is well-recognised in literature (Towill, 1997; 

Geary et al., 2006; Towill and Gosling, 2010; Ponte et al., 2018).  

Production yield rate sensitivity analysis 

There are three production quality related parameters in the semiconductor ATO 

supply chain system: the unit yield (YU, the percentage of good chips for each assembly die); 

assembly line yield rate (YL, the percentage of good wafers per total); and the line yield (YD, 

the percentage of good die per fabricated wafers). Since YD and YL are always connected, i.e. 

the yield rate in upstream wafer fabrication, it can be considered as a single quality parameter 

in the sensitivity analysis. Table 4.5 demonstrates the baseline settings by following 

Gonçalves et al. (2005), while ±10% yield rate variation assumption is adopted to explore 

the impact of quality on the dynamic performance of the ATO system. 

https://www.researchgate.net/profile/Borja_Ponte
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Parameters Baseline setting ±10% variation  

𝑌𝑈 90% 100% 80% 

𝑌𝐷 ∙ 𝑌𝐿 90% 100% 80% 

Table 4. 4. The baseline and variation settings of yield rate in semiconductor ATO system. 

 

 

Figure 4. 2. Sensitivity analysis for different YU. 
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Figure 4. 3. Sensitivity analysis for different 𝑌𝐿 ∙ 𝑌𝐷. 

Figure 4.12 and 4.13 illustrates the sensitivity analysis results. It is apparent that the 

percentage of good chips for each assembly die (𝑌𝑈) is less sensitive for the dynamic performance, 

although the decrease of 𝑌𝑈  leads to higher mean level of inventory and order rate. This is 

because the decrease of downstream assembly line yield increases the requirement for the 

system’s safety stock level, including AWIP* and FWIP*, to ensure the same production 

complete rate (customer service level).  

Furthermore, the upstream fabrication yield, including die and line yield rate, 

influences the steady state of WS. The higher the YL and YU, the less the WS to be prepared, 
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indicating less mean level of WS, although such parameters is less sensitive for the dynamic 

performance of the fabrication system. Note that the upstream fabrication yield does not have 

an impact on the FWIP due to the setting of safety FWIP as the function of 𝑌𝑈 and final 

assembly time. 

4.5. Summary 

In this chapter, the dynamic properties of a hybrid ATO supply chain system within the 

context of the semiconductor industry have been analytically explored. The author used the 

supply chain model, empirically reported by Gonçalves et al. (2005), as a benchmark model, 

to extract the hybrid ATO (MTS-MTO) model and explore the underlying properties of such 

hybrid systems in the semiconductor production environment. By utilising control 

engineering techniques and the well-known IOBPCS family of archetypes, the author 

addressed the limitations of Gonçalves et al.'s (2005) simulation work, which lacks analytical 

results and guidance for practitioners regarding the underlying root causes of supply chain 

dynamics in an ATO supply chain environment.  

For the first objective, insight into the dynamic properties of the hybrid ATO supply 

chain system can be gained by designing the original complex system dynamic model; that 

is, simplifying and linearising the original complex dynamic model, including developing 

the block diagram form, removing nonlinearities and redundancies and eliminating one 

echelon of the supply chain system. Thus, it is possible to extract the scenario of the linear 

hybrid ATO and implement a linear control engineering approach to analyse its fundamental 

dynamic properties. Although the simplification method is based on the semiconductor 

supply chain system, this design approach can be applied to a broad production-inventory 

based manufacturing system.  
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Also, through control engineering approaches, including Laplace transform, 

characteristic equations and the unit step response analysis, it was revealed that feedforward 

forecasting compensation and the CODP inventory correction policy play a major role in the 

bullwhip effect in the semiconductor hybrid ATO system, instead of the production 

delay/feedback loop usually claimed in practice. Also, semiconductor managers may need to 

cautiously consider the balance between the cost of keeping an adequate CODP inventory to 

maintain the mode of ATO and the cost of supply chain dynamics, due to the policies’ settings 

in the CODP point being significantly sensitive to inventory variance and the bullwhip level. 

This finding is helpful for practitioners to carefully consider relevant trade-offs when 

designing their hybrid ATO system in the semiconductor industry.  

Furthermore, comparing the traditional APVIOBPCS archetype, dynamic recovery 

speed of semiconductor MRP system (i.e. the upstream of the CODP point) is faster 

comparing the traditional APVIOBPCS archetype, due to its natural frequency is always 

larger than the APVIOBPCS system for all positive control policy. However, semiconductor 

MRP system will produce more oscillations under the same policies settings and its 

associated production activities and cost, such as ramp up and ramp down machines, hiring 

and firing staff, have to be considered in designing such production control systems. This is 

driven by the fact that APVIOBPCS always has larger damping ratio than MRP-based system 

for all positive value. 

Finally, sensitivity analysis of physical fabrication lead times, as well as quality yield, 

was conducted. The long fabrication time and low quality yield rate negatively impact on the 

dynamic performance of the semiconductor ATO system by increasing operational cost 

driven by the increase of bullwhip and inventory variance. 
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Chapter 5. Dynamic modelling and analysis of a personal computer ATO 

system  

This chapter provides detailed modelling and analysis of the ATO system ordering 

structure from a system dynamics perspective. Based on supply chain material and 

information flow empirically evidenced by several PC companies, including Dell, HP and 

Lenovo (Kapuscinski et al., 2004; Huang and Li, 2010; Darwish and Odah, 2010; Katariya 

and Tekin, 2014), a stylised two-echelon system dynamics model, consisting of an original 

equipment manufacturer (OEM) and a part supplier as an illustration of the typical hybrid 

ATO system, is investigated in Section 5.1. Section 5.2 exclusively focuses on the truly 

hybrid ATO state in which all incoming orders can be satisfied in a desired time period. 

Particularly, capacity and non-negative order constraint nonlinearities are explored under the 

desired hybrid ATO state. Section 5.3, on the other hand, analyses the other two operational 

states when the CODP inventory is insufficient to cover the required incoming end customer 

orders and/or VMI replenishment orders. A linearisation method for delivery LT dynamics 

is proposed, so that analytical tools such as transfer functions can be implemented to gain 

deep insights into delivery LT dynamics. The dynamic performance of the nonlinear ATO 

system is explored based on the "performance triangle", i.e. capacity and the CODP inventory 

at the supplier and the delivery LT at the final assembly OEM echelon. 
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5.1. Dynamic modelling of the PC ATO supply chains 

In general, PC supply chains have three main manufacturing echelons from upstream 

to downstream: component fabrication (i.e. semiconductor industry), sub-assembly and final 

assembly (Huang and Li, 2010). Specifically, as visualized in Figure 5.1a, the component 

and sub-assembly manufacturers, called the suppliers, offer the ‘commodities’ required by 

downstream Original Equipment Manufacturers (OEMs), e.g. Lenovo, Apple, HP, Dell, for 

final assembly and delivery, and the corresponding delay is measured by 4-8 weeks 

(Gunasekaran and Ngai, 2005). For each component, suppliers offer a variety of products, 

e.g. Intel core processors with i3, i5, i7 processors and Disk suppliers give a number of 

capacity and write/read speed options. Thereby, OEMs are able to provide end customers a 

wide range of production configurations, and the final assembly and delivery are only 

triggered after customers place their customised orders.   

As material flows downstream, production moves from automated fabrication to 

highly manual assembly. Final assembly of a PC at the finished good assembly echelon is a 

largely manual process to allow quick changeover and high level of flexibility. The 

corresponding delay can be as short as hours, although final customers have to wait one to 

two weeks to receive their product due to the major delay of order processing (3-5 days) and 

third-party logistics shipment (3-5 days) (Kumar and Craig, 2007). 
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Figure 5.1a and 5.1b. Rich picture description and stock flow diagram of the PC ATO system. 

The materials/information flow of the PC ATO supply chain is modelled at an aggregate 

level, the model is restricted to one player per echelon and this corresponds to the minimum 

number of echelons required to analyse its dynamic behaviour. The entire supply chain is 

modelled as a two-echelon system, i.e. a PC component manufacturer (supplier) and a final 

assembler (OEM). 
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Based on Figure 5.1a, the detailed mathematical modelling process is now presented. 

The exogenous demand into the supply chain system begins when end customers’ demand 

information is received. The OEM checks the availability of AINVAS at the VMI hub and 

starts assembly and delivery. From the aggregate perspective, SH for each period is 

determined by the minimum value between SH* and SHMAX. The first order lag approach 

(Sarimveis et al., 2008) can be utilised to model MTO based final assembly process. 

Depending on the availability of AINVAS, the output of first order delay, i.e. SH, is 

determined by  

𝑆𝐻(𝑡) = 𝑀𝑖𝑛(𝑆𝐻∗(𝑡), 𝑆𝐻𝑀𝐴𝑋(𝑡))             (5.1) 

 

If required AINVAS are available for immediate final assembly, SH=SH*, the 

difference between inflow CONS and outflow SH* is calculated as measure of BL. i.e. a kind 

of work-in-progress orders, WIP (Wikner, 2003): 

 

𝐵𝐿(𝑡) = 𝐵𝐿(𝑡 − 1) + 𝐶𝑂𝑁𝑆(𝑡) − 𝑆𝐻(𝑡)    (5.2) 

 

The output SH* is the result of the fraction of WIP (1/τDD). In other words, τDD is the 

average delay of the production unit. As suggested by Atan et al. (2017), a fixed τDD is a 

realistic assumption due to high flexibility and reliable delivery time for the final assembly 

process. 

𝑆𝐻(𝑡) = S𝐻*(t) =
BL(t)

τDD

     (5.3) 
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Under such conditions, all incoming customised orders can be fulfilled by quoted τDD, 

that is, customers need to await physical final assembly and transport time only. However, if 

insufficient AINVAS constrains SH*, the OEM can only ship SHMAX estimated by current 

AINVAS and τDD.  

𝑆𝐻(𝑡) = 𝑆𝐻𝑀𝐴𝑋 =
𝐴𝐼𝑁𝑉𝐴𝑆(𝑡)

𝜏𝐷𝐷
   (5.4) 

 

As a result, the average delivery LT may be increased due to insufficient, and the 

further replenishment process of, AINVAS. Here AINVAS depends on accumulation between 

the replenishment from COMRATEAS and the depletion of SH:  

 

𝐴𝐼𝑁𝑉𝐴𝑆(𝑡) = 𝐴𝐼𝑁𝑉𝐴𝑆(𝑡 − 1) + 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝐴𝑆(𝑡) − 𝑆𝐻(𝑡)  (5.5)       

 

While SH depletes AINVAS, COMRATEAS replenishes it. COMRATEAS depends on 

delayed ORATEAS (transport delay between the supplier manufacturing and the OEM’s final 

assembly plant). A first order lag is used to model such a delay, in line with Sipahi and Delice 

(2010), 

𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝐴𝑆(𝑡) = 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝐴𝑆(𝑡 − 1) + 𝑏(𝑂𝑅𝐴𝑇𝐸𝐴𝑆(𝑡) − 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝐴𝑆(𝑡 − 1)) (5.6) 

Where 𝑏 =
1

(1+
τAS

△T
)
  (Towill, 1977) 

ORATEAS is determined by the minimum between desired Pull ORATEAS from the 

final assembly echelon and feasible Push ORATESA from the supplier echelon:  

 

ORATEAS(t) = 𝑀𝑖𝑛(𝑃𝑢𝑙𝑙 𝑂𝑅𝐴𝑇𝐸𝐴𝑆(𝑡), 𝑃𝑢𝑠ℎ  𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡))   (5.7) 
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If there are enough finished PC parts in the supplier manufacturing echelon, the 

customer’s orders still pull the replenishment of AINVAS, otherwise the supplier plant pushes 

all feasible AINVSA to meet VMI inventory requirement as soon as possible. By design, Pull 

ORATEAS aims to eliminate gaps for AINVAS and BL (adjusted by 𝛕I and 𝛕BL respectively). 

SH, as a more reliable proxy, is also utilised for deciding Pull ORATEAS and a non-negativity 

constraint is given to avoid negative orders placed on the supplier: 

 

      𝑃𝑢𝑙𝑙 𝑂𝑅𝐴𝑇𝐸𝐴𝑆(𝑡) = 𝑀𝑎𝑥 (0,  𝐴𝐼𝑁𝑉𝐴𝑆𝑎𝑑𝑗(𝑡) + 𝑆𝐻(𝑡) + 𝐵𝐿𝐴𝐷𝐽(𝑡))            (5.8) 

 

AINVASadj is the AINVAS feedback adjustment loop based on the discrepancies 

between AINVAS* and AINVAS adjusted by 𝛕I: 

 

𝐴𝐼𝑁𝑉𝐴𝑆𝑎𝑑𝑗(𝑡) =
1

τI

 (𝐴𝐼𝑁𝑉𝐴𝑆
∗ (𝑡) − 𝐴𝐼𝑁𝑉𝐴𝑆(𝑡)),         𝐴𝐼𝑁𝑉𝐴𝑆

∗ (𝑡) = τAS𝑆𝐻(𝑡)   (5.9) 

 

and BLADJ is the backlog control loop adjusted by 𝛕BL: 

 

𝐵𝐿𝐴𝐷𝐽(𝑡) =
1

τBL

(𝐵𝐿(𝑡) − 𝐵𝐿(𝑡)
∗ ),  𝐵𝐿(𝑡)

∗ = τDD𝐶𝑂𝑁𝑆(𝑡)  (5.10) 

 

The depletion of AINVSA will be replenished by COMRATESA. Due to the long 

production delay (usually 4-8 weeks, 𝛕SA), the supplier echelon is characterised by push 

production. The APVIOBPCS archetype (Wang et al., 2014), well recognised as the 

representation of the push-based system, can be utilised to model such a system. For each 

replenishment cycle, ORATESA is determined:  
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𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡) = 𝑀𝑖𝑛 (𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐿𝑖𝑚𝑖𝑡, 𝐴𝑉𝐶𝑂𝑁 (𝑡) + 𝐴𝐼𝑁𝑉𝐴𝑆𝑎𝑑𝑗(𝑡) + 𝐹𝑊𝐼𝑃𝐴𝐷𝐽(𝑡))        (5.11) 

 

Where a capacity limit (Min) is utilised to represent the manufacturing plant 

production resources constraints, AVCON(t) is a feedforward forecasting policy by directly 

utilising end customer demand shared by the OEM to forecast future demand, i.e. the DIDP 

is upstream of the CODP to ensure information transparency. The well recognised 

exponential smoothing is adopted (Dejonckheere et al., 2002; 2003): 

 

𝐴𝑉𝐶𝑂𝑁 (𝑡) = 𝐴𝑉𝐶𝑂𝑁 (𝑡 − 1) + 𝑎(𝐶𝑂𝑁(𝑡) − 𝐴𝑉𝐶𝑂𝑁 (𝑡 − 1)), 𝑎 =
1

(1+
τA

△T
)
   (5.12) 

AINVSAadj is the CODP inventory feedback loop adjusted by τAINV and safety stock 

(AINVSA*). It should be noted that safety stock for upstream suppliers is based on actual pull 

ORATEAS and 𝛕SA, although different setting methods may be adopted based on different 

companies’ policy: 

𝐴𝐼𝑁𝑉𝑆𝐴𝑎𝑑𝑗(𝑡) =
1

τAINV

(𝐴𝐼𝑁𝑉𝑆𝐴
∗ (𝑡) − 𝐴𝐼𝑁𝑉𝑆𝐴(𝑡)), 𝐴𝐼𝑁𝑉𝑆𝐴

∗ (𝑡) = τSA𝑃𝑢𝑙𝑙 𝑂𝑅𝐴𝑇𝐸𝐴𝑆(𝑡)(5.13) 

 

where AINVSA depends on the accumulation between COMRATESA and ORATEAS: 

 

𝐴𝐼𝑁𝑉𝑆𝐴(𝑡) = 𝐴𝐼𝑁𝑉𝑆𝐴(𝑡 − 1) + 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝑆𝐴(𝑡) − 𝑂𝑅𝐴𝑇𝐸𝐴𝑆(𝑡)    (5.14) 

 

Furthermore, the dynamic role of WIP inventory in the sub-assembly system is 

considered in an MRP ordering system, which can be interpreted as products queuing at a 
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disaggregate level. In line with John et al.’s (1994) standard modelling approach, a fraction 

of WIP error (WIPADJ) is corrected based on the difference between WIP* and WIP: 

 

𝑊𝐼𝑃𝐴𝐷𝐽 =
1

τWIP

(𝑊𝐼𝑃∗(𝑡) −𝑊𝐼𝑃(𝑡))    (5.15) 

 

Where WIP* depends on AVCON and estimated 𝛕SA (assume equal to actual 𝛕SA, 

consistent with John et al., 1994), and WIP is an accumulative level between COMRATESA 

and ORATESA:  

 

𝑊𝐼𝑃∗(𝑡) = 𝜏𝑆𝐴𝐴𝑉𝐶𝑂𝑁(𝑡), 𝑊𝐼𝑃(𝑡) =  𝑊𝐼𝑃(𝑡 − 1) + 𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡) − 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝑆𝐴(𝑡)(5.16) 

 

A first order delay is used to model the supplier manufacturing time, which can be 

interpreted as a production smoothing element representing how slowly the production units 

adapt to changes in ORATEAS (Wikner, 2003): 

 

𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝑆𝐴(𝑡) = 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝑆𝐴(𝑡 − 1) + 𝑐(𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡) − 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝑆𝐴(𝑡 − 1)),  

 𝑤ℎ𝑒𝑟𝑒 𝑐 =
1

(1+
τSA

△T
)
  (5.17) 

 

Furthermore, as delivery LT is implicit in the ATO model, we incorporate the 

nonlinear division loop ( )  to represent the delivery LT dynamics based on Little’s Law 

(Simchi-Levi and Trick, 2011): 
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          𝐿𝑇(𝑡) =
𝐵𝐿(𝑡)

𝑆𝐻(𝑡)
          (5.18) 

 

Based on Equations (5.1) - (5.18), we developed the generic PC ATO supply chain 

model in block diagram form, using the continuous time domain, Laplace s, representation 

as shown in Figure 5.2. The entire system consists of a form of VIOBPCS (Edghill and Towill, 

1990) (VIOBPCS plus final distribution and BL adjustment loops) and an exact 

APVIOBPCS archetype. Also, as in the Intel supply chain, there are two Min functions 

governing different operational states based on availability of AINVSA and AINVAS. The 

difference between the two systems, however, is the geographical location of supply chain 

systems. The Intel supply chain is an internal production-inventory system including 

fabrication, final assembly and distribution within their plant, while the PC ATO supply chain 

includes multiple parties (supplier, VMI and third-party Logistics) globally located in 

different areas; thus, the modelling of both production and logistics transport delay needs to 

be considered. Nevertheless, the logic of two Min functions remains the same; that is, 

compare the desired replenishment rate and maximum allowable rate as the input of the 

system. As a result, the similar interchangeable operational states based on two Min functions 

in the ATO system can be categorised as follows: 

1. Supplier manufacturing Push + final assembly (Pull+ Pull) state, known as the Push-

Pull-Pull state. The system performs as the desired ATO production if there are 

enough AINVAS and AINVSA, all incoming orders thereby can be fulfilled by 𝛕DD. 

2. Supplier manufacturing Push + final assembly (Pull+ Push) state, named as the Push-

Pull-Push state. If AINVAS is insufficient for incoming orders’ pull, the final 

assembly plant can only assemble what they have (AINVAS) and ship the 
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corresponding SHMAX. The increased backlog and inventory correction signals 

increase the replenishment rate of AINVAS, given the condition that customer orders 

can still pull the AINVSA at the supplier manufacturing site. The averaged delivery 

LT is larger than 𝛕DD, due to the extra PC part transport acquisition time (𝛕AS) needed.  

3. Supplier manufacturing Push + final assembly (Push+ Push) state, termed the Pure 

Push state. If AINVSA still constrains the pull ORATEAS, the whole supply chain 

system will switch to the pure push production, i.e. all AINVSA and AINVAS are 

‘pushed’ out as long as they are produced at the supplier site or arrive at the VMI hub. 

The increase of customer orders cannot be fulfilled for a short time period due to the 

long supplier manufacturing delay. 

Having developed the model, it is important to verify the logic and correctness of the 

model (Spiegler et al., 2016). This verification process is done by simulation on MatlabTM. 

Although we do not show the full verification results, part of the simulation analysis is 

reported in Table 5.1. The verification result shows the hybrid ATO model is logical and 

correct. Furthermore, Table 5.2. reports main nonlinearities present in the ATO system 

dynamic model and corresponding linearisation/simplification methods utilised in this 

chapter. 

There are several nonlinearities in the hybrid ATO system and, depending on the rate of 

change in the output in relation to input, they can be categorised as continuous and 

discontinuous nonlinearities. To analytically explore the dynamic ‘performance triangle’ of 

the ATO supply chains, a brief explanation of the main characteristics of different types of 

nonlinearities and corresponding simplification / linearisation approaches are reported in 

Table 5.2. 
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Verification 

test 

Details  Verification process Verification results 

Family 

member and 

parameters  

Behaviour 

reproduction for 

cognate system and 

consistent with 

system data and 

description 

1.Regarding the final assembly system, we 

use a similar Intel supply chain model (Lin 

et al., 2017) to reproduce its dynamic 

behaviour by utilising the same system 

parameter settings, i.e. τAS = τI = τBL = 2τDD 

= 4 with a unit step increase. 

2. For the supplier manufacturing system, 

since it is an exact APVIOBPCS archetype, 

order-up-to policy settings (i.e. τSA=τA/2=8, 

τAINV= τWIP=1) are utilised to check whether 

the dynamic behaviour is consistent with 

Dejonckheere et al., (2003) 

1. Dynamic behaviour of the final assembly is 

consistent with the Intel hybrid supply chain 

model e.g. maximum overshoot/undershoot, rising 

time and setting time.  

2. The dynamic performance of the order-up-to 

policy can be reproduced. 

Boundaries 

and Structure  

Include all important 

factors and are 

consistent with 

system description 

Related empirical works including 

Kapuscinski et al. (2004), Katariya et al. 

(2014) and Huang and Li (2010) are utilised 

to check the consistency regarding the 

system framework and important factors of 

the PC ATO supply chain. 

 

1. The ATO system dynamic model is consistent 

with empirical descriptions characterised by 

combined order- and forecasting-driven 

production, VMI strategy, and material and 

information CODP. 

2. All important factors are included for the 

system dynamic model. Also,  

the model is cross-checked by corresponding Intel 

supply chain (Lin et al., 2017), APVIOBPCS and 

VIOBPCS archetypes (Edghill and Towill, 1990; 

John et al., 1994; Dejonckheere et al., 2003). 
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Verification test 

(Continued) 

Details  Verification process Verification results 

Extremities Model is logical 

for extreme 

values 

1. We check whether the dynamic 

performance of the final assembly system is 

consistent with the VIOBPCS archetype 

(Edghill and Towill, 1990) if τBL = τDD = ∞  

2. For the supplier manufacturing part, we 

increased the value of τWIP, τAINV and τA to 

extreme conditions to see whether the system 

can generate the expected dynamic outcome. 

1. The dynamic behaviour of the final assembly 

system is consistent with corresponding 

performance in the original VIOBPCS if the 

backlog and shipment loops are removed. 

2. The extreme values of τA, τAINV, and τWIP will 

lead to the expected dynamic performance in 

responding to a step demand increase. For 

example, the infinite τAINV will remove the 

inventory feedback loop, which results in the 

permanent inventory drift in response to a step 

increase, as expected. 

Table 5. 1. The verification of the hybrid PC supply chain model 
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Type of nonlinearity in this study Simplification/linearisation methods in 

this study 

Single-valued discontinuous 

nonlinearity: 

1) Non-negative order constraint in final 

assembly plant, i.e. Equation (5.8).  

2) Capacity constraint in the supplier 

manufacturing plant, i.e. Equation (5.11). 

Describing function, to be presented in 

Section 5.2. 

Multi-valued discontinuous 

nonlinearity: 

1) Shipment constraint, i.e. Equation 

(5.1) 

2) CODP inventory constraint, i.e. 

Equation (5.7). 

Two multi-valued nonlinearities govern 

three operational states of the hybrid ATO 

system, depending on the feasible AINVAS 

and AINVSA; the author analysed them 

separately by assuming all discontinuous 

nonlinearities are not active and 

temporarily operate as a certain state. i.e. 

analysis of Push-Pull-Pull (Section 5.2), 

Push-Pull-Push and Pure Push (Section 

5.3) separately. 

Continuous nonlinearity: 

Delivery LT, as shown by Equation 

(5.18). 

Taylor series expansion with small 

perturbation theory will be utilised to 

linearise the delivery LT measurement 

(Section 5.3). 

Table 5. 2. Main nonlinearities present the ATO system dynamic model and corresponding 

simplification and linearisation methods.
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Figure 5. 2. System dynamics model for the PC hybrid ATO supply chain.
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5.2. Dynamic analysis of the hybrid Push-Pull-Pull state 

As illustrated in Section 5.1, two multi-valued nonlinearities (i.e. Min functions) 

govern three operational states of hybrid ATO system depending on the feasible AINVAS 

and AINVSA. In this section, the Push-Pull-Pull state (i.e. the true ATO state) is analysed 

separately, although the switch between different states driven by two multi-valued 

nonlinearities will be analysed in Section 5.3. Based on the empirical evidence (Kapuscinski 

et al., 2004; Huang and Li, 2010; Katariya et al., 2014), the hybrid Push-Pull-Pull state 

should be maintained for most of the time in responding to customised demand orders to 

balance cost efficiency and customer agility. Thus, it is important to explore the impact of 

such a structure on dynamic performance, including the feedback, feedforward and 

nonlinearities present in the structure, to provide supply chain dynamics related cost 

implication for companies.  

Specifically, by assuming the hybrid Push-Pull-Pull state is always operated, the two 

Min functions can be removed, i.e. 𝑆𝐻(𝑡) = 𝑆𝐻∗(𝑡) < 𝑆𝐻𝑀𝐴𝑋(𝑡) and 𝑂𝑅𝐴𝑇𝐸𝐴𝑆(𝑡) =

𝑃𝑢𝑙𝑙 𝑂𝑅𝐴𝑇𝐸𝐴𝑆(𝑡) < 𝑃𝑢𝑠ℎ 𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡). Also, under this assumption, the delivery LT becomes 

a constant level; that is, 𝛕DD. Therefore, it is not necessary to assess its dynamic performance. 

Consequently, the important system variables are two CODP stock points (AINVAS and 

AINVSA) and capacity adjustment at the supplier (ORATESA). The block diagram of hybrid 

Push-Pull-Pull state is demonstrated in Figure 5.3. 
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Figure 5. 3. System dynamics model for push-pull-pull state (true hybrid ATO state).
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5.2.1. The impact of feedback and feedforward on the hybrid Push-Pull-Pull system 

dynamics 

By assuming all nonlinearities are inactive (i.e. negative orders are permitted and no 

CL), it is possible to formulate the transfer functions of AINVAS, AINVSA and ORATESA. 

That is, based on Equations (5.1) to (5.17) and following the approach derived from Section 

4.2.2 (Transfer function analysis), two inventories and the supplier’s capacity adjustment, in 

relation to CONS can be derived as follows: 

𝐴𝐼𝑁𝑉𝐴𝑆
𝐶𝑂𝑁𝑆

=
(−𝜏𝑖𝜏DD

2 𝑠2 + 𝜏BL𝑠(𝜏𝑖 + 𝜏AS) + 𝜏BL)(1 + 𝜏AS𝑠) 

(1 + τ𝑖𝑠 + 𝜏𝑖𝜏AS𝑠
2)(𝜏BL + 𝜏BL𝜏DD𝑠)

      (5.19) 

𝑂𝑅𝐴𝑇𝐸𝑆𝐴
𝐶𝑂𝑁𝑆

=

(1 + 𝜏SA) (
(1 + 𝜏𝐴𝑠)(1 + 𝜏AS𝑠)(𝜏BL + 𝜏𝑖𝜏BL𝑠 + 𝜏AS𝜏BL𝑠 − 𝜏𝑖𝜏DD

2 𝑠2)(1 + 𝜏SA𝑠)𝜏WIP
+𝑠𝜏AINV(1 + τ𝑖𝑠(1 + 𝜏AS𝑠))𝜏BL(1 + 𝜏DD𝑠)(𝜏SA + 𝜏WIP) 

)

(1 + τ𝑖𝑠 + 𝜏𝑖𝜏AS𝑠
2)(𝜏BL + 𝜏BL𝜏DD𝑠)(1 + 𝜏𝐴𝑠)

(𝜏WIP + (𝜏AINV𝜏SA + 𝜏AINV𝜏WIP)𝑠 + 𝜏AINV𝜏SA𝜏WIP𝑠
2)

 (5.20) 

𝐴𝐼𝑁𝑉𝑆𝐴
𝐶𝑂𝑁𝑆

=
(

 
 
 
 
 

𝜏AINV𝑠(−𝜏AS(2 + 𝜏AS𝑠)𝜏BL + (1 + 𝜏𝑖𝑠(1 + 𝜏AS𝑠))𝜏BL𝜏DD + 𝜏𝑖𝑠(1 + 𝜏AS𝑠)𝜏DD
2 )𝜏SA

+(
𝜏AINV𝑠 (

−𝜏AS(2 + 𝜏AS𝑠)𝜏BL + (1 + 𝜏𝑖𝑠(1 + 𝜏AS𝑠))𝜏BL𝜏DD

+𝜏𝑖𝑠(1 + 𝜏AS𝑠)𝜏DD
2

)

−(𝜏AINV𝑠 − 1)(1 + 𝜏AS𝑠)((1 + (𝜏𝑖 + 𝜏AS)𝑠)𝜏BL − 𝜏𝑖𝜏DD
2 𝑠2)𝜏SA

) 𝜏WIP

−𝜏𝐴𝑠(1 + 𝜏AS𝑠)((1 + (𝜏𝑖 + 𝜏AS)𝑠)𝜏BL − 𝜏𝑖𝜏DD
2 𝑠2)

(𝜏AINV𝜏SA + (𝜏AINV + (𝜏AINV𝑠 − 1)𝜏SA)𝜏WIP) )

 
 
 
 
 

(1 + τ𝑖𝑠 + 𝜏𝑖𝜏AS𝑠
2)(𝜏BL + 𝜏BL𝜏DD𝑠)(1 + 𝜏𝐴𝑠)

(𝜏WIP + (𝜏AINV𝜏SA + 𝜏AINV𝜏WIP)𝑠 + 𝜏AINV𝜏SA𝜏WIP𝑠
2)

 (5.21) 

The starting point is the analysis of IVT and FVT to mathematically crosscheck the 

correctness of the transfer function, guide the appropriate initial condition required by a 

simulation and to understand the final steady state value of the dynamic response to help 

verify any simulation. The initial and final values of AINVAS, AINVSA, and ORATESA in 

responding to a unit step input are obtained.  
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          𝑙𝑖𝑚
𝑠→∞

𝑠
𝐴𝐼𝑁𝑉𝐴𝑆
𝐶𝑂𝑁𝑆

= 0                   𝑙𝑖𝑚
𝑠→0

𝑠
𝐴𝐼𝑁𝑉𝐴𝑆
𝐷

= 𝜏AS     

       𝑙𝑖𝑚
𝑠→∞

𝑠
𝐴𝐼𝑁𝑉𝑆𝐴
𝐶𝑂𝑁𝑆

= 0                   𝑙𝑖𝑚
𝑠→0

𝑠
𝐴𝐼𝑁𝑉𝑆𝐴
𝐷

= 𝜏SA     

                      𝑙𝑖𝑚
𝑠→∞

𝑠
𝑂𝑅𝐴𝑇𝐸𝑆𝐴
𝐶𝑂𝑁𝑆

= 0                 𝑙𝑖𝑚
𝑠→0

𝑠
𝑂𝑅𝐴𝑇𝐸𝑆𝐴
𝐶𝑂𝑁𝑆

= 1      (5.22)   

As expected, the initial values of AINVAS, AINVSA and ORATESA are zero, like the 

results obtained by John et al. (1994). The final value of the ORATESA for the upstream sub-

assembly system is, as expected, equal to demand, i.e. 1. The final value of the AINVSA and 

AINVAS is determined by the coefficient 𝜏SA and 𝜏AS, i.e. the steady state of two inventories 

in response to a step demand equal to the desired inventory level. Based on Equations (5.19) 

to (5.21), the dynamic property of the final assembly system is characterised as a third-order 

polynomial, while a sixth-order polynomial describes the dynamic property of the supplier’s 

manufacturing system.  

Also, there is a third-order polynomial, (1 + τ𝑖𝑠 + 𝜏𝑖𝜏AS𝑠
2)(𝜏BL + 𝜏BL𝜏DD𝑠) , in 

both CEs, i.e. the denominator of Equations (5.19) and (5.21), suggesting that the dynamic 

property of the final assembly system is not influenced by the sub-assembler manufacturing 

system, while the dynamic performance of the supplier manufacturing system can be 

partially manipulated by the final assembly control policies under the ATO system. The roots 

can be obtained based on equations (5.19) - (5.21) as follows: 

𝑅1&2 = −
1

2𝜏𝐴𝑆
±
√𝜏𝑖

2 − 4𝜏𝑖𝜏AS
2𝜏𝑖𝜏AS

, 𝑅3 = −
1

𝜏𝐴
, 𝑅4 = −

1

𝜏𝐷𝐷
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𝑅5&6 = −
1

2
(
1

𝜏𝑆𝐴
+

1

𝜏𝑊𝐼𝑃
) ±

√−4𝜏AINV𝜏SA𝜏WIP
2 + (𝜏AINV𝜏SA + 𝜏AINV𝜏WIP)

2

2𝜏AINV𝜏SA𝜏WIP
    (5.23) 

 

Inspecting Equation (5.23):  

1. Given that the physical delays, 𝜏SA and 𝜏𝐴𝑆, are positive, the Push-Pull-Pull state 

is permitted to be stable for any positive control policies, i.e. possible value of 

τA, τAINV, τWIP and τI. However, the system’s response will be continuously oscillatory if 

𝜏𝑆𝐴 = −𝜏𝑊𝐼𝑃, that is, the 𝑅5&6, become purely imaginary with no real part. 

2. Three feedback inventory loops, AINVAS, AINVSA and WIP adjustment, may 

characterise oscillations of the Push-Pull-Pull state if the square root part of 𝑅1&2 and 𝑅5&6 

becomes negative, i.e. 𝜏𝐼
2 − 4𝜏𝐼𝜏𝐴𝑆 < 0  and −4𝜏AINV𝜏WIP

2 𝜏SA + (𝜏AINV𝜏WIP +

𝜏AINV𝜏SA)
2 < 0. The corresponding CODP inventory-based control policies, 𝜏𝐼,  𝜏AINV and 

𝜏WIP, should be carefully adjusted to avoid a possible oscillatory system response.  

3. There are two independent negative feedback loops at final assembly (AINVAS 

adjustment) and supplier manufacturing site (AINVSA and WIP adjustment), suggesting a 

two degree-of-freedom system with possibly two underdamped natural frequencies subject 

to the control policy design, which may lead to a complex dynamic response including 

superposition or separation of dynamic oscillation, e.g. separated two-resonant peak 

frequencies (that is, the dynamic system can generate peak oscillations with greater 

amplitude, e.g. high bullwhip, at two different demand frequencies), as illustrated as an 

example in Figure 5.4. As a result, if the hybrid Push-Pull-Pull structure should be 

maintained, it is beneficial for different companies to collaboratively design the 
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replenishment policy to reduce the influence of two-resonance peak frequencies. This result 

also supports the benefit of those adopted operational strategies in practice, e.g. collaborative 

planning, forecasting and replenishment (CPFR). 

4. Given the supplier manufacturing delay, 𝜏SA, and associated inventory adjustment 

time (𝜏WIP) are longer than downstream transport acquisition delay  𝜏𝐴𝑆, the real part of 𝑅5&6, 

−
1

2
(
1

𝜏𝑆𝐴
+

1

𝜏𝑊𝐼𝑃
), is smaller than the real part of 𝑅1&2, i.e. −

1

2𝜏𝐴𝑆
. In other words, 𝑅5&6 are 

located in a closer position to the origin s plane compared to the location of 𝑅1&2 . 

Consequently, the upstream inventory feedback loops and forecasting loop may dominate 

the dynamic behaviour of the entire Push-Pull-Pull state. Particularly, inventory loop-based 

control policies, 𝜏AINV and 𝜏WIP,  play a key role in influencing the whole state’s oscillatory 

behaviour. 

 

Figure 5. 4. An example of the frequency response of ORATESA for the Push-Pull-Pull state with 

two peak magnification frequencies (𝜏A = 16, 𝜏AINV = 𝜏WIP = 24, 𝜏SA = 8, 𝜏DD = 0.5, 𝜏I =

2,  𝜏AS = 1) 



 

Dynamic modelling and analysis of a personal computer ATO system 
  

154 
 

To further understand the oscillation and system recovery properties, we derive the 𝜔𝑛 

and 𝜁  of two second order polynomials, (1 + τ𝑖𝑠 + 𝜏𝑖𝜏AS𝑠
2)  and (𝜏WIP + (𝜏AINV𝜏SA +

𝜏AINV𝜏WIP)𝑠 + 𝜏AINV𝜏SA𝜏WIP𝑠
2): 

              𝜔𝑛1 = √
1

𝜏𝐴𝑆𝜏𝐼
          𝜁1 =

1

2
√ 
𝜏𝐼
𝜏𝐴𝑆
                  (5.24) 

              𝜔𝑛2 = √
1

𝜏AINV𝜏SA
,    𝜁2 =

(𝜏SA + 𝜏WIP)

2𝜏WIP
√
𝜏AINV
𝜏SA

 

For VMI inventory (AINVAS) at the OEM site, both 𝜔𝑛1 and 𝜁1 are determined by 𝜏𝐼 

under physically fixed 𝜏𝐴𝑆, and 𝜏𝐼 has the reverse impact on nature frequency and damping 

ratio. The OEM system’s response and inventory recovery speed will be slower than the 

increase of 𝜏𝐼, due to the decrease of 𝜔𝑛1. However, the increase of 𝜏𝐼 will give the larger 

value of damping ratio and lead to the corresponding more ‘damped’ system with fewer 

oscillations. 𝜔𝑛1 and 𝜁1 could also lead to such impact on the dynamic behaviour of AINVSA 

and ORATESA at the supplier site. Furthermore, 𝜏AINV  and 𝜏SA  negatively determine the 

value of natural frequency for upstream supplier AINVSA feedback loop, whereby increasing 

their value will lead to slow system recovery speed to reach the steady state condition due to 

the decrease of value of 𝜔𝑛2. Moreover, 𝜏AINV and 𝜏WIP have the reverse impact for damping 

ratio. For a fixed system lead time, the increase of 𝜏AINV lead to less oscillatory while the 

increase of 𝜏WIP will produce more oscillations.  

5.2.2. The impact of nonlinearities on the hybrid Push-Pull-Pull system dynamics 

When capacity and non-negative order constraints are active in the OEM and upstream 

supplier sites, the dynamic behaviour becomes more complex due to the influence of such 
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nonlinearities. The describing function method can be utilised to explore the impact of two 

nonlinearities separately in responding to sinusoidal demand. 

5.2.2.1. Linearisation of capacity and non-negative order constraints at the supplier 

site 

In the linear system, upstream supplier production capacity is assumed to be unlimited 

and the order is permitted to be negative. This means that the supplier can freely return the 

raw materials to their suppliers and any order rate received can be allocated for immediate 

production. These are unrealistic assumptions due to the expensive production line system, 

e.g. see Lin et al. (2017), and the forbidden return policy usually agreed between material 

suppliers and the sub-assembler manufacturers. Thus, both constraints should be considered 

when analysing the dynamic property of the ATO system. We now linearise such 

nonlinearity before analysing its impact on the dynamic property of the ATO system. 

Specifically, in an open-loop form of such nonlinearity, an input 𝐷𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡)  

                             𝐷𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡) = 𝐴cos(𝜔𝑡) + 𝐵                              (5.25) 

[0, CL]

ORATESADORATESA

 

Figure 5. 5. The open loop form of saturation nonlinearity function in the supplier system extracted 

from Figure 5.3. 
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where A is the amplitude, B is the mean and 𝜔 is the angular frequency (𝜔 =
2𝜋

𝑡
), will 

produce an output 𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡) with the same frequency but different mean and amplitude. 

Figure 5.6 reports the main characteristics of this nonlinearity. The output 𝑂𝑅𝐴𝑇𝐸𝑆𝐴 does 

not rely on the past value of the input 𝐷𝑂𝑅𝐴𝑇𝐸𝑆𝐴, but it varies, depending on the actual 

status of input based on upper and lower limit. 

ORATESA

DORATESA

CL

0

 

(a) Time series for DORATESA and ORATESA         (b) The property of single-valued nonlinearity 

Figure 5. 6. Asymmetric output saturation in relation to sinusoidal input DORATESA 

It should be noted that a fundamental requirement for the system is that CL must be at 

least larger than average demand due to the accumulative errors driven by the feedback 

integrator (1/s). In other words, the DORATESA will increase exponentially if manufacturing 

capacity is less than averaged demand rate and the system will become unstable. Under such 

a fundamental assumption, the output function, ORATESA, can be represented by three linear 

piecewise equations, as follows: 
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𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡) = {

0                  𝑖𝑓     𝐷𝑂𝑅𝐴𝑇𝐸𝑆𝐴 ˂ 0
𝐷𝑂𝑅𝐴𝑇𝐸𝑆𝐴      𝑖𝑓    0 ˂ 𝐷𝑂𝑅𝐴𝑇𝐸𝑆𝐴 ˂ 𝐶𝐿
𝐶𝐿                 𝑖𝑓      𝐷𝑂𝑅𝐴𝑇𝐸𝑆𝐴 ˃ 𝐶𝐿

    (5.26) 

To analyse the discontinuous nonlinearities in the ATO system, the describing 

function method can be applied (Spiegler et al., 2016; Spiegler and Naim, 2017). This 

method is a quasi-linear representation for a nonlinear element subjected to specific input 

signal forms such as Bias, Sinusoid and Gaussian process and the system’s low-pass filter 

property (Vander and Wallace, 1968). The principle advantage of utilising the describing 

function method is it enables the aid of analytically designing nonlinear systems. The basic 

idea is to replace the nonlinear component by a type of transfer function, or a gain derived 

from the effect of input (e.g. sinusoidal input). For an asymmetric saturation, as illustrated 

in Figure 5.7, since DORATESA is smaller than zero or greater than CL, at least two terms 

need to be identified: one term describes the change in amplitude (NA(CA)) in relation to the 

input amplitude and the other defines the change in mean (NB(CA)) in relation to the input 

mean. Furthermore, output phase angle (ϕ) in relation to the input angle may also be changed. 

Therefore, given the input, i.e. Equation (5.25), the output ORATESA can be 

approximated to: 

𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡) = 𝑁𝐴(𝐶𝐴)𝐴Cos(𝜔𝑡 + ϕ) + 𝑁𝐵(𝐶𝐴)𝐵                              (5.27) 

The Fourier series expansion can be applied to obtain the terms of describing 

functions (NA, NB and ϕ): 
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𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡) ≈ 𝑏0 + 𝑎1 cos(𝜔𝑡) + 𝑏1 sin(𝜔𝑡) + 𝑎2 cos(2𝜔𝑡) + 𝑏2 sin(2𝜔𝑡) +···

≈ 𝑏0 +∑(𝑎𝑛 cos(𝑛𝜔𝑡) +

∞

𝑛=1

𝑏𝑛 sin(𝑛𝜔𝑡))                                   (5.28) 

Where the Fourier coefficient can be determined by: 

𝑎𝑛 =
1

𝜋
∫  𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡) cos(𝑛𝜔𝑡) 𝑑𝜔𝑡
𝜋

−𝜋

                 (5.29) 

𝑏𝑛 =
1

𝜋
∫  𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡) sin(𝑛𝜔𝑡) 𝑑𝜔𝑡
𝜋

−𝜋

                 (5.30) 

𝑏0 =
1

2𝜋
∫  𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡)𝑑𝜔𝑡

𝜋

−𝜋

                            (5.31) 

and ORATESA is the piecewise linear function (Figure 6a): 

𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡) =

{
 
 

 
 

0     −𝜋 < 𝜔𝑡 < −𝑟2
𝐴 cos(𝜔𝑡) + 𝐵      −𝑟2 < 𝜔𝑡 < −𝑟1

𝐶𝐿    −𝑟1 < 𝜔𝑡 < 𝑟1
𝐴cos(𝜔𝑡) + 𝐵       𝑟1 < 𝜔𝑡 < 𝑟2

0      𝑟2 < 𝜔𝑡 < 𝜋

      ( 0 < 𝑟1 < 𝑟2 ≤ 𝜋)  (5.32) 

 To approximate periodic series, only the first, or fundamental, harmonic is needed 

and thereby we need to find the first order coefficient of Fourier series expansion 

demonstrated in Equation (29)-(31). Note that such approximation is often useful for the 

symmetric system, including only odd functions and thus high order harmonic can be 

effectively attenuated by the linear dynamic of the system, i.e. the property of low-pass filter. 

For the asymmetric system, the aid of simulation is recommended (Atherton, 1975) to verify 
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the analytical results derived from the fundamental harmonic approximation. The first 

harmonic of the piecewise linear Equation (5.32) can be obtained as follows: 

  𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡) = 𝑏0 + 𝑎1 · cos(𝜔𝑡) + 𝑏1  · sin(𝑤𝑡) = 𝑏0 +√𝑎1
2 + 𝑏1

2 cos(𝑤𝑡 + ϕ)      (5.33)  

Where ϕ = arctan (
𝑏1 

𝑎1
) 

 By comparing Equations (5.27) and (5.33), we have the gain of describing function 

as follows: 

𝑁𝐴(𝐶𝐴) =
√𝑎1

2 + 𝑏1
2 

𝐴
 and 𝑁𝐵(𝐶𝐴) =

𝑏0 

𝐵
      (5.34) 

Due to the property of such single-valued nonlinearity, there is no output phase shift 

in relation to input; that is, 𝑏1 = 0 and ϕ = 0 . By calculating the Fourier coefficient 

𝑎1 and 𝑏0 (MathematicaTM), the describing function gains are obtained as follows: 

𝑁𝐴(𝐶𝐴) =
𝐴Cos(𝑟1)Sin(𝑟1) + (2𝐵 + 𝐴Cos(𝑟2))Sin(𝑟2) − 𝐴𝑟1 + 𝐴𝑟2

𝐴𝜋
       (5.35) 

𝑁𝐵(𝐶𝐴) =
𝐴(Sin(𝑟2) − Sin(𝑟1)) + 𝐴𝑟1Cos(𝑟1) + 𝐵𝑟2

𝐵𝜋
      (5.36) 

Where 𝑟1 = Cos
−1(

𝐶𝐿−𝐵

𝐴
) 𝑎𝑛𝑑  𝑟2 = Cos

−1(
−𝐵

𝐴
)  and Equations (5.35) and (5.36) 

can be further simplified as: 

𝑁𝐴(𝐶𝐴) =
(CL − 𝐵)√1 −

(CL − 𝐵)2

𝐴2
+ 𝐵√1 −

𝐵2

𝐴2
− 𝐴 cos−1 (

CL − 𝐵
𝐴 ) + 𝐴 cos−1 (−

𝐵
𝐴)

𝐴𝜋
(5.37) 
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𝑁𝐵(𝐶𝐴) =

𝐴(√1 −
𝐵2

𝐴2
 − √1 −

(CL − 𝐵)2

𝐴2
 ) + 𝐴(CL − 𝐵) cos−1 (

CL − 𝐵
𝐴 ) + 𝐵 cos−1 (−

𝐵
𝐴)

𝐵𝜋
(5.38) 

Figure 5.6 gives the density plot for the value of NA as the increase of A from CL to 

8CL, and the increase of B from 0.1 CL to CL. Overall the amplitude of DORATESA plays 

a major role in influencing the value of NA(CA). This means the higher the bullwhip, the lower 

the proportion of DORATESA that will be manufactured. Depending on different values of 

A and B, NA(CA) ranges between 0 and 1. Specifically, for a fixed B, NA(CA) monotonically 

decreases in A and this implies that only a fraction of DORATESA will be manufactured due 

to the capacity and non-negative order constraints.  However, the influence of B on amplitude 

gain depends on the relationship between A and CL. If A is larger than CL, B has little 

influence on amplitude gain due to the dominant influence of A on the NA(CA). if A is located 

within 0 and CL, NA(CA) depends on both A and B. NA(CA) may equal to 1 (the system will 

behave as linear) if DORATESA do not exceed the constraint range, i.e. [0, CL], while only 

a fraction of DORATESA will be manufactured if NA(CA) <1. 
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Figure 5. 7. The density plot of NA based on A and B in relation to CL 

 To explore how the relationship of A, B and CL influences the output mean gain, NB, 

we differentiate Equation (5.38) with respect to A and yield the following expression: 

𝑑𝑁𝐵(𝐶𝐴)
𝑑𝐴

=
√1 −

𝐵2

𝐴2
−√1 −

(CL − 𝐵)2

𝐴2

𝐵𝜋
     (5.39) 

Equation (5.39) shows that the zero gradient can be achieved if B =
1

2
CL and we 

obtain the corresponding value of NB: 

         𝑁𝐵(𝐶𝐴)|𝐵=1
2
𝐶𝐿
=
Cos−1(−

CL
2𝐴) + Cos

−1(
CL
2𝐴)

𝜋
= 1     (5.40) 

Thus, output mean gain, NB(CA), equals 1 irrelevant of input amplitude A if averaged 

input mean is half of CL, due to the fact that the system has a symmetric saturation in this 
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case, i.e. equal influence of upper capacity and nonnegative order constraints. Also, the 

increase of A leads to the increase of NB(CA) if B <
1

2
CL, while NB(CA) is monotonically 

decreasing in A if B >
1

2
CL. This means that if averaged input demand is less than half of 

CL, the non-negative order constraint has more impact on NB(CA) than the corresponding 

capacity constraint and thereby NB(CA) decreases by the increase of A due to order rate 

reaching zero more often than hitting CL. However, if averaged input demand is greater than 

the half of CL, NB(CA) is monotonically decreasing in A because the impact of capacity 

constraint dominates the output mean gain compared to the corresponding non-negative 

order constraint. Such findings are consistent with Spiegler et al.’s (2016a; 2016b) separate 

investigation of the effect of capacity constraint and non-negative order constraints on output 

mean gain. Figure 5.8 demonstrates two examples how NB(CA) varies as the increase of A 

related to AL when B=0.2CL and B=0.8CL. 

 

Figure 5. 8. The change of NB(CA) as the increase of A in relation to AL when B=0.2CL (Left) and 

B=0.8CL (Right). 
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5.2.2.2. Linearisation of non-negative order constraints at the OEM site 

In linear ATO system, ORATEAS at the VMI site is permitted to take negative values. 

It means that excess PC components at the VMI inventory hub can be freely returned to the 

supplier site. This is an unrealistic assumption due to long geographical distance and 

export/import policies between the final assembly and their PC parts subassemblies. As a 

result, the non-negative order constraint should be put into the model to prevent the free 

inventory return from final assembly site to the supplier site. The main characteristics of non-

negative nonlinearity is reported in Figure 5.9 and Equation (5.41) shows the piece linear 

function of ORATEAS: 

𝑂𝑅𝐴𝑇𝐸𝐴𝑆(𝑡) = {
0                            𝑖𝑓     𝑃𝑢𝑙𝑙 𝑂𝑅𝐴𝑇𝐸𝐴𝑆 ˂ 0
𝑃𝑢𝑙𝑙 𝑂𝑅𝐴𝑇𝐸𝑆𝐴      𝑖𝑓     𝑃𝑢𝑙𝑙 𝑂𝑅𝐴𝑇𝐸𝑆𝐴 > 0     (5.41) 

Where   𝑃𝑢𝑙𝑙 𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡) = 𝐴1 · cos(𝜔𝑡) + 𝐵1   and 𝑂𝑅𝐴𝑇𝐸𝐴𝑆(𝑡) can be approximated by  

𝑂𝑅𝐴𝑇𝐸𝐴𝑆(𝑡) ≈ 𝑁𝐴(𝑁𝑂)𝐴1cos(𝜔𝑡 + ϕ) + 𝑁𝐵(𝑁𝑂)𝐵1        (5.42) 

ORATEAS

Pull ORATEAS

0

 

Figure 5. 9. Main characteristics of non-negative order constraint at the VMI site. 
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Where NA(NO) is the change in amplitude in relation to the input amplitude and NB(NO) 

is the change in mean in relation to the input mean under non-negative order constraint policy. 

Like the linearisation of capacity and non-negative constraints for the supplier production, 

the describing function method can be applied for linearising such nonlinearity. The 

corresponding describing function gain can be derived as follows: 

𝑁𝐴(𝑁𝑂) =

𝐵√1 −
𝐵2

𝐴2

𝐴
+ Cos−1(−

𝐵
𝐴
)

𝜋
     (5.43) 

𝑁𝐵(𝑁𝑂) =
𝐴√1 −

𝐵2

𝐴2
+ 𝐵Cos−1(−

𝐵
𝐴)

𝐵𝜋
  (5.44) 

Figure 5.10 illustrates how the coefficients of the describing function vary as A1 

increases for any B1 > 0. For values of A1 lower than B1, the system behaves as linear and 

output o(t) will be equal to the input do(t) corresponding to NA(NO) = 1 (Figure 5.10a). 

However, when A1 increases, then only a fraction of this rate will actually be ordered 

corresponding to NA(NO) < 1. By inspecting Equation (5.43), we find that as A do approaches 

infinity, NA1 approaches 0.5. Thus, the amplitude gain of the describing function can only 

vary from 0.5 to 1. On the other hand, the value of NB1 rises as A1 increases because the limit 

value of the order rate is at its minimum (Figure 5.10b). 
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a) Amplitude gain                                                      b) Mean gain        

Figure 5. 10. Terms of describing function for the non-negativity constraint. 

             

5.2.2.3. Predict system dynamics behaviour  

Although two nonlinearities in the ATO system have different features, they both 

decrease their corresponding output amplitude gains (𝑁𝐴(𝐶𝐴) and 𝑁𝐴(𝑁𝑂) ) as the increase of 

input amplitude. Root locus techniques (Spiegler et al., 2016; Spiegler and Naim, 2017) can 

be used to predict how these nonlinearities affect the system responses. By replacing the  

and  with the corresponding amplitude gains, 𝑁𝐴(𝐶𝐴) and 𝑁𝐴(𝑁𝑂)  respectively, and 

using block diagram algebra, we find the new system CEs and compare with CEs in linear 

ATO state based on Equation (5.19) - (5.21). 

𝐶𝐸𝑂𝐸𝑀: (𝜏BL + 𝜏DD𝜏BL𝑠)(𝑁𝐴(𝑁𝑂) + τ𝑖𝑠+𝜏𝑖𝜏AS𝑠
2)     (5.45) 

𝐶𝐸𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟: 
 (1 + 𝜏𝐴𝑠)(𝜏BL + 𝜏DD𝜏BL𝑠)(𝑁𝐴(𝑁𝑂) + τ𝑖𝑠+𝜏𝑖𝜏AS𝑠

2)

(𝑁𝐴(𝐶𝐴)𝜏WIP + (𝜏AINV𝜏WIP + 𝜏AINV𝜏SA𝑁𝐴(𝐶𝐴))𝑠 + 𝜏AINV𝜏WIP𝜏SA𝑠
2)
     (5.46) 
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The 𝜔 and 𝜁 can be derived as follows: 

              𝜔𝑛1 = √
𝑁𝐴(𝑁𝑂)

𝜏𝐴𝑆𝜏𝐼
        𝜁1 =

1

2
√ 

𝜏𝐼
𝜏𝐴𝑆𝑁𝐴(𝑁𝑂)

                  (5.47) 

              𝜔𝑛2 = √
𝑁𝐴(𝐶𝐴)

𝜏AINV𝜏SA
,    𝜁2 =

(𝑁𝐴(𝐶𝐴)𝜏SA + 𝜏WIP)

2𝜏WIP
√

𝜏AINV
𝜏SA𝑁𝐴(𝐶𝐴)

 

Regarding the downstream final assembly system, the incorporation of 𝑁𝐴(𝑁𝑂) (ranging 

between 0.5 - 1) will result in a reverse impact on   𝜔𝑛1 and 𝜁1; that is, the decrease of  𝜔𝑛1 

but increase 𝜁1 as the decrease of 𝑁𝐴(𝑁𝑂). This means the incorporation of non-negative order 

constraint at the final assembly site leads to a ‘more damped’ system with fewer oscillations 

at the expense of slow system recovery speed. Also, as indicated by the Section 4.2.2, the 

𝑁𝐵(𝑁𝑂) will increase as the increase of input demand amplitude. The dynamic response of 

upstream sub-assembler variables, however, are influenced by both nonlinearities. The 

decrease of output amplitude gain, 𝑁𝐴(𝐶𝐴), resulting from the capacity and non-negative 

order constraints, leads to the decrease of  𝜔𝑛2 and 𝜁2. This gives both a slower and more 

oscillatory dynamic response of the ATO system. Note that, depending on the relationship 

between mean of input demand and the half of capacity constraint (i.e. the dominant zone), 

the increase of demand amplitude may lead to the increase or decrease of 𝑁𝐵(𝑁𝑂).  

5.2.2.4. Numerical studies   

In this section, numerical simulation is conducted to test whether the analytical results 

derived from the linearized model (Sections 5.2.2.1-5.2.2.3) hold under the non-linear case. 

Specifically, the true non-linear hybrid ATO model (Figure 5.3), including capacity and non-
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negative order constraints, is used as the base simulation model and the numerical study is 

conducted by SimulinkTM
 (Matlab). Regarding system parameter setting, we assume that the 

lead times ratio between 𝜏SA and 𝜏AS is 1:2 (i.e. 4 and 8 for transportation and component 

manufacturing delay), to represent the long upstream supplier’s manufacturing time and 

relatively short time for component acquisition delay between supplier and the OEM echelon. 

𝜏SA=2𝜏AS = 2𝜏I = 8𝜏DD = 8, 𝜏WIP = 16  𝜏AINV = 8 

 

5.2.2.4.1. Feedback and feedforward control policy 

To test the impact of feedback and feedforward control loops (𝜏I, 𝜏A, 𝜏AINV ) on 

bullwhip and CODP inventory variance analytically derived in Section 3.1, a unit step 

demand increase as the input is used due to its advantage of offering rich information for the 

dynamic behaviour of the system (John, Naim and Towill, 1994). It should be noted that all 

nonlinearities are assumed inactive during the simulation regarding the test of analytical 

results for feedback and feedforward control policies. The recommended settings of both 

VIOBPCS and APVIOBPCS will be used as the initial design as illustrated above in Section 

5.2.2.4, although different control policies are varied to understand the impact of each control 

policy on dynamic performance in the nonlinear environment (i.e. capacity limit is set as 2). 

All results are shown in Figure 5.11. 
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Figure 5.11a. The impact of 𝜏I on AINVAS, AINVSA and ORATESA dynamic response. 

 
Figure 5.11b. The impact of 𝜏A on AINVSA and ORATESA dynamic response. 

 

Figure 5. 1. The impact of 𝜏AINV on AINVSA and ORATESA dynamic response. 
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In general, the simulation results support the analytical insights. The increase of 𝜏I 

led to less oscillatory system response due to the increase of 𝜁1, at the expense of a slower 

response of the ATO system (e.g. slow recovery of AINVAS, Figure 5.11a) driven by the 

decrease of 𝜔𝑛1 . As a result, 𝜏I  should be carefully adjusted due to the availability of 

AINVAS that directly relate to the customer service level; i.e. whether all incoming 

customised orders can be immediately final-assembled and shipped out. Like the effect of 𝜏I, 

the increase of 𝜏AINV  benefits the more ‘damped’ system compromised by slow system 

recovery due to the decrease of   𝜔𝑛2 and increase of 𝜁2. Furthermore, the simulation result 

verifies the analytical result that 𝜏AINV significantly influences the dynamic behaviour of the 

ATO system, comparing the influence of 𝜏I and 𝜏A (compare Figures 5.11a, 5.11b and 5.11c). 

Quick adjustment of 𝜏AINV leads to high bullwhip and significant oscillations, while long-

term adjustment causes slow system recovery to reach the steady state condition. Thus, the 

upstream subassembly echelon should carefully tune their inventory policy to benefit the 

maintenance of true ATO state and the cost of supply chain dynamics, such as bullwhip and 

inventory variance. Note that, compared to other control policies, forecasting policy (𝜏A) has 

little impact on the dynamic property of the ATO system. 

5.2.2.4.2. The impact of nonlinearities on ATO dynamic performance 

To test whether the analytical results of nonlinearities derived from the linearised 

model (Section 5.2.2) hold under the non-linear model, the asymmetrical capacity and non-

negative constraint zone is set as [0, 1]. i.e. the minimum value will not be less than 0 and 

the CL is 1. Specifically, the sinusoidal input amplitude directly influences the describing 
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function gain, NA(CA) and NB(CA), of the sinusoidal output response at the sub-assembly plant 

under capacity and non-negative order constraints. Table 5.3 presents the comparison 

between analytical and simulation results of NA(CA). Sinusoidal input amplitudes ranging 

between 0.3 to 4 with 0.1rad/week frequency are used to examine the output amplitude gain 

change. Within reasonable error range, the simulation results support the analytical insights. 

𝑵𝑨(𝑪𝑨) simulation 

(analytical) results 

A=0.3 A=1 A=2 A=4 

B=0.2 

 

0.833 (0.890) 0.500 (0.574) 0.250 (0.311) 0.165 (0.158) 

B=0.5 

 

1 (1) 0.500 (0.608) 0.250 (0.314) 0.165 (0.158) 

B=0.8 

 

0.833 (0.890) 0.500 (0.574) 0.250 (0.311) 0.165 (0.158) 

Table 5. 3. Comparison between simulation and analytical results. 

Also, as highlighted by the analytical findings that the impact of input amplitude on 

mean gain (NB(CA) depends on the relationship between the average of input and the half of 

capacity limit, numerical simulation is implemented to test the analytical result shown in 

Table 5.4. The mean value of input demand is set 0.2, 0.5 (half) and 0.8 units to represent 

the different nonlinear dominated zones (non-negative order or capacity constraints). Input 

amplitudes ranging between CL to 5CL with 0.1rad/week frequency are utilised to examine 

the output mean gain change. It can be concluded that the simulation results support the 

analytical insights. 

Furthermore, simulation is conducted to test analytical insights derived by Root locus 

techniques (Spiegler et al., 2016a; Spiegler and Naim, 2017) regarding the prediction of the 

impact of nonlinearities on the system responses. Due to input, frequency does not impact 
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on the output gains of nonlinearities (the property of single-value discontinuous 

nonlinearities), CL=3 and sinusoidal demand pattern with mean=1, frequency = 3 rad/week 

and amplitudes = 5 is implemented for a better visualisation. All results are shown in Figure 

5.12. It should be noted that a mix of step increase, and sinusoidal demand patterns are 

adopted with zero initial condition, which has the advantage of visualising the impact of 

nonlinearities on ATO dynamic property in responding to both step and sinusoidal patterns 

𝑵𝑩(𝑪𝑨) 

simulation 

results 

A=0.3 A=1 A=2 A=3 A=4 Summary 

B=0.2 

 

1.08 1.660 1.770 1.845 1.590 NB(CA) is larger than 1 and is 

monotonically increasing 

in A 

B=0.5 

 

1.021 0.986 0.996 1.002 0.1004 NB(CA)=1 within a 

reasonable error range 

B=0.8 

 

0.931 0.806  0.791 0.783 0.763 NB(CA) is monotonically 

decreasing in A and less 

than 1 

Table 5. 4. Numerical simulation result for NB(CA) based on different input amplitude and mean. 

 

Figure 5.12a. Linear and nonlinear AINVAS response (the OEM non-negativity constraint only). 
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Figure 5. 2b. Linear and nonlinear AINVSA response (the supplier’s nonlinearity only) 

Overall, simulation results support the analytical findings. The incorporation of non-

negative constraints at the final assemble echelon leads to fewer oscillations (the increase of 

ζ1 ) but slow recovery speed (the decrease of  ω1n ). Also, the incorporation of such 

nonlinearity increases the mean level of AINVAS. This may improve the dynamic 

performance of the supplier internal system by reducing AINVSA but contradicts the OEM’s 

general objective, i.e. minimise inventory to reduce the risk of technological redundancy 

with ever shorter product life cycles of products entering the market. The sub-assembler’s 

constraints for both capacity and non-negative order, verified by simulation (Figure 5.12b), 

reduce the bullwhip (ORATESA), at the expense of slowing AINVSA recovery speed as well 

as increasing its mean level, driven by the decrease of NA(NO) and the increase of NB(NO). 

This finding is widely acknowledged in the literature, e.g. see Cannella, Ciancimino, and 

Marquez (2008); Nepal, Murat, and Chinnam (2012); Ponte et al. (2017). 
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5.2.2.4.3. Sensitivity analysis  

Like the analysis of the semiconductor ATO system, the impact of physical lead times, 

as well as quality parameters (upstream supplier yield rate and final assembly line efficiency) 

on the dynamic performance are evaluated by using i.i.d. demand with mean =1 and variance 

=0.5. Figure 5.13 demonstrates the impact of two physical lead times, 𝜏AS  and 𝜏SA , on 

dynamic performance of the hybrid ATO system under hybrid Push-Pull-Pull state. Note the 

capacity and non-negative order constraints are not considered during the sensitivity analysis 

to visualize the impact of physical lead times on bullwhip and inventory variance.  
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Figure 5.13a. The impact of 𝜏AS on the dynamic performance of the hybrid Push-Pull-Pull state. 

 

 

Figure 5. 3b. The impact of 𝜏SA on the dynamic performance of the hybrid Push-Pull-Pull state 
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As expected, the physical 𝜏AS  is sensitive for the dynamic performance of the system, 

negatively impacting on the dynamic property of ORATESA, AINVAS and AINVSA. i.e. the 

increase of  𝜏AS  leads to the increase in bullwhip of ORATESA and inventory variance of 

AINVAS and AINVSA. Also, the long 𝜏AS leads to increased mean level of AINVAS, 

indicating the fact that long transportation time may contribute to the high OEM inventory. 

Moreover, the large value of 𝜏SA yields unwanted dynamic performance of the push part of 

the hybrid system in terms of high bullwhip (ORATESA) and increased mean level of 

AINVSA, although the latter is due to the safety stock setting as the function of physical 

production time. Furthermore, comparing 𝜏AS , 𝜏SA  gives more impact on the dynamic 

performance of the hybrid system, the bullwhip level of ORATESA, for example. This 

indicates the long upstream production delay, comparing the downstream transportation and 

final assembly lead times, play a dominant role in influencing the dynamic performance of 

the hybrid ATO system.   

Furthermore, in the dynamic analysis above, one of the fundamental assumptions is 

that there is no loss of product quality or assembly line efficiency, which is not realistic in 

real-world ATO system. To test the impact of quality and assembly line efficiency, we 

incorporate two general parameters related to quality and efficiency, YF (final assembly line 

efficiency, the percentage of shippable goods for each final assembly line) and YS 

(subassembly quality yield rate), into original the nonlinear hybrid Push-Pull-Pull state 

(Figure 5.3), as presented in Figure 5.14. The perfect quality and efficiency (YF= YS=1) are 

used as the baseline setting, although we vary two parameters between 0.8 and 1. A step 
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demand input is introduced, and all nonlinearities are temporarily removed to visualize the 

key dynamic property such as peak level (bullwhip) and inventory variance. All results are 

presented in Figure 5.15.  
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Figure 5. 4. The incorporation of quality and efficiency parameters in hybrid ATO state.
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Figure 5. 5. The impact of YL and YF on dynamic property of the ATO system. 
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The simulation results show that the low-quality yield rate and line efficiency is 

sensitive for the ATO system, negatively impacting on its dynamic property. The decrease 

of YF and YS significantly increase the bullwhip of ORATESA, while, in comparing the 

significant impact of YF on inventory variance, YS has much less influence on AINVSA, due 

to the safety stock setting of AINVSA, i.e. AINV*
SA is only driven by the YF. To be more 

specific, the decrease of final assembly line efficiency, YF, indicates the requirement of a 

higher level of finished AINVSA to satisfy end customized orders in responding stochastics 

demand, which result in an increase of the safety stock needed in the subassembly site 

(AINV*
SA). This implies the importance of maintaining high final assembly line efficiency 

to not only ensure the customer service level, but also improve the dynamic performance of 

the whole ATO system to reduce supply chain dynamics related cost. Furthermore, as 

expected, the decrease of quality yield and efficiency may lead to an increase in mean value 

of ORATESA to ensure the same customer service level.  

5.2.3. Frequency response design 

Instead of developing the cost functions and minimising them, the concentration in 

this section is to design the ATO system to yield a ‘good’ dynamic performance from the 

frequency domain perspective. The rationale behind this is that cost control follows from 

good dynamic design, and we especially need to ensure high customer service level 

concurrently with small swings in capacity requirements (Towill et al., 2003; Towill et al., 

2007). At the heart of decision-making in production-inventory system is the desire to ensure 

that the system correctly identifies and tracks genuine variations in demand at minimum 
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bullwhip level, while simultaneously detecting and rejecting rogue variations in demand. 

Filter theory (Dejonckheere et al., 2002; Dejonckheere et al., 2003; Towill et al., 2003; 

Towill et al., 2007) can thereby be utilised to design such desirable systems based on 

frequency domain analysis as introduced in Section 3.2.1.3. 

Based on analysis of the CEs of the hybrid Push-Pull-Pull operational process in 

Section 4.2.1, major control policies influencing system oscillation and bullwhip, 𝜏I, 𝜏AINV 

and 𝜏A, are analysed in designing the ATO system’s filter capability (ORATESA response) in 

response to a range of sinusoidal demand. For a certain type of PC product, the customer 

demand cycle is roughly half a year, which are, T=52 weeks, the crossover frequency (𝜔𝑐𝑟) 

equals to  

𝜔𝑐𝑟 =
2𝜋

𝑇
≈
2 × 3.142

52
≈ 0.12 𝑟𝑎𝑑/𝑤𝑒𝑒𝑘  (5.48)    

This is a realistic assumption given the observation of demand pattern in the 

electronics sector, i.e. winter holiday demand peak (e.g. Black Friday, Christmas shopping 

and Chinese New Year) and the following off-season demand (Zhou et al., 2017). As a result, 

for those parts required in assembling a final laptop (e.g. core processor, graphics, hardware, 

motherboard etc.), the demand frequencies equal or lower than 0.12 𝑟𝑎𝑑/𝑤𝑒𝑒𝑘 should be 

treated as the true demand message and need to be traced at supplier plants. 

Three types of model designation are presented (Fast, Medium and Slow speed design) 

and five filter designs, following Towill et al. (1997; 2003), as shown in Table 5.5. Physical 

delay for final assembly/distribution, PC parts acquisition delay and the supplier’s production 
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are set as 1, 4 and 8 units to represent quick downstream final assembly/distribution but 

relatively long material acquisition and the supplier production time. 

Model 

designation 

Downstream 

final assembly 

echelon 

Downstream final 

assembly echelon 

Upstream 

supplier echelon 

Upstream 

supplier echelon 

𝝉𝐈 𝝉𝐀 𝝉𝐀𝐈𝐍𝐕 𝝉𝐖𝐈𝐏 

Fast 2 8 8 8 

Medium 4 16 16 16 

Slow 8 24 24 24 

Table 5.5a. Model designation based on major control policies in the hybrid ATO system. 

ATO system 

design 

A B C D E 

Final assembly Fast Medium Slow Fast Medium 

Subassembly Fast Medium Slow Slow Slow 

Table 5. 5b. Dynamic filter design for the hybrid ATO system. 

Figure 5.16 illustrates the Bode plot of ORATESA response for a range of demand 

frequencies based on five types of filter designs. Clearly, fast or medium design including 

Designs A and B are not desirable, due to the significant bullwhip level at both low and high 

frequency ranges (𝜔𝑐𝑟 ≈ 1𝑟𝑎𝑑/𝑤𝑒𝑒𝑘 𝑎𝑛𝑑 4𝑟𝑎𝑑/𝑤𝑒𝑒𝑘) . As a result, ‘noise demand’ 

(demand frequencies greater than 0.12 rad/week) cannot be filtered and orders can be 

significantly amplified at ‘true’ demand frequency, which leads to excess operational cost. 

Design D also cannot yield ‘good’ filter characteristics, due to the strong effect of two peak 

magnitudes driven by two natural frequencies. Therefore, although demand frequency range 

between around 0.08 rad/week to 0.24 rad/week can be filtered (magnitude is lower than 0 
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dB), the second peak frequency (about 5 dB) leads to further demand amplification between 

0.24 rad/week to 0.7 rad/week. Design C seems to produce adequate dynamic filter 

performance regarding its appropriate crossover frequency (0.12 rad/week) for the product 

demand cycle and fewer unwanted demand amplification at low frequencies range, 

comparing Designs A and B. Furthermore, compared with Design C, Design E has a similar 

dynamic performance at lower frequency range (ω<0.12rad/week), but such design yields 

slightly more bullwhip (around 2dB at second peak frequency) between 0.18 rad/week and 

0.32 rad/week due to the effect of two degrees of freedom system.  

 

Figure 5. 6. Five basic designs for ORATESA response under Push-Pull-Pull state  

To verify and enhance the linear frequency response design, the system dynamic 

simulation is conducted for Design C and Design E in the nonlinear ATO system. Dynamic 

response of ‘performance triangle’ (ORATESA, AINVSA and delivery LT) for sinusoidal 

demand with amplitude=mean=1 are presented in Figure 5.17. Three different demand 
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frequencies, which are, ω=0.06 rad/week, 0.12 rad/week and 0.60 rad/week, are chosen, 

based on crossover frequency derived before (ω=0.12 rad/week). The purpose is to test 

whether the low demand frequency (smaller than crossover frequency) can be traced, while 

the high demand frequency (larger than crossover frequency) can still be rejected in the 

nonlinear environment. 

All nonlinearities are incorporated, except for the capacity constraint at the supplier 

production, as such a limit may prevent the insight of outcome, i.e. whether ORATESA is 

successfully traced or filtered for different demand frequencies.  In general, the linear 

frequency design result remains robust in the nonlinear environment. For Design C, for 

example, the ORATESA response at crossover demand frequency (ω=0.12 rad/week) can be 

adequately traced (little demand amplification), although the peak level is slightly greater 

than 2 due to the effect of non-negative order nonlinearity. Similarly, at ω=0.06 rad/week, 

ORATESA response has slightly more demand amplification (Magnitude ≈ 1.65) than linear 

prediction (Magnitude ≈  3dB ≈  1.41) because of the nonnegative order restriction. 

Moreover, as expected, ORATESA response can be successfully rejected at high frequency 

demand. Furthermore, CODP inventory at the supplier site can be significantly amplified, 

adequately traced, or filtered when demand frequencies are lower (ω=0.06 rad/week), equal 

or higher (ω=0.60 rad/week) than crossover frequencies as predicted in the linear frequency 

response analysis.  
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However, by comparing Designs C and E, the better dynamic filter performance (C) 

in linear frequency analysis is no longer ‘good’ in the nonlinear ATO environment when 

delivery LT are considered. Although ORATESA in both Design C and E can be roughly 

traced and rejected for low and high demand frequency range respectively, delivery LT 

dynamics is better for design E in terms of peak level and recovery time, although both 

designs explore delivery LT variance at crossover and low demand frequency ranges. 

However, Design E delivery LT dynamic performance is better for the Design E (e.g. ω=0.60 

rad/week, green line), and this means the such production control designs can fulfil most 

‘noise’ demand patterns by the quoted time. This is important for an ATO system due to the 

significant cost of maintaining promised delivery LT (i.e. high customer service level). 

Furthermore, dynamic performance of CODP inventory and ORATESA for Design C is 

slightly better than Design E regarding amplification ratio at different frequency ranges, in 

which a natural trade-off design in the nonlinear ATO system between ‘performance triangle’ 

should be considered. 
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Figure 5. 7. Delivery LT, ORATESA and AINVSA  response for sinusoidal demand (Mean=Amplitude=1) with different frequencies (ω=0.06 

rad/week, 0.12 rad/week and 0.60 rad/week) in the nonlinear ATO system 
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Overall, by presenting the example of designing the ATO system in the frequency 

domain, linear frequency analysis offers a traceable starting point for designing a ‘good’ 

dynamic system, by retaining a useful demand pattern while rejecting rogue demand 

information to appropriately allocate the resources at minimum operational cost. There are 

two major corresponding managerial implications. First, managers need to carefully consider 

their ATO system structures before designing control policies, including the number of 

independent feedback loops in their system and the different kinds of nonlinearities. As 

illustrated in Section 5.2.1, the two-degrees-of-freedom system has two natural frequencies, 

which gives two peak demand amplifications at both low and high demand frequency ranges 

and this is particularly the case if the downstream and upstream systems of CODP follow the 

opposite extreme design principle, i.e. quick adjustment of final assembly raw materials to 

fulfil customer orders as soon as possible, while long time adjustment for CODP inventory 

at subassembly plant. Thus, managers may successfully trace low frequencies demand but 

still yield high bullwhip level for rogue high demand frequencies. 

Nonlinearity is another main factor in influencing the design philosophy. 

Nonnegativity order constraint prevents free return behaviour and thus leads to higher 

amplification ratio than the linear prediction. The switch between different operational 

processes due to the limitation of AINVSA and AINVAS can further increase the complexity 

of dynamic performance because of the change in fundamental system structure. The next 

section will give a detailed analysis of the impact of nonlinear switch on ‘performance 

triangle’ in the ATO system 
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5.3. Dynamic analysis of the Push-Pull-Push and pure Push states 

In this section the impact of two multi-valued nonlinearities on dynamic performance 

of the nonlinear ATO system will be examined. As highlighted before, two multi-valued 

nonlinearities (i.e. Min functions), depending on the feasible AINVAS and AINVSA, govern 

three operational states of the hybrid ATO system. The ATO system may, thereby, be 

switched to another state if AINVAS and AINVSA are insufficient. More importantly, the 

delivery LT can no longer be a constant level, and this means the average and variance of 

delivery LT may be increased for customers due to the shortage of CODP inventory. To 

understand how the switch of structure may influence the dynamic performance of the ATO 

system, especially the influence of ‘performance triangle’ in the ATO system, the author 

conducted detailed analysis in this section.    

5.3.1. Linearisation of delivery LT 

The continuous nonlinearity, delivery LT, as illustrated by Equation (5.18), can be 

linearised by using the Taylor series expansion technique. By temporarily removing all 

discontinuous nonlinearities, the whole system can be represented by a set of linear 

differential equations that do not need to be linearised. It should be noted that two multi-

valued nonlinearities govern the three-different operational status of the system (Push or 

Pull), and, therefore, there are three sets of linear differential equations, depending on the 

specific operational state. e.g. the system will become Push-Pull-Pull state if SH*>SHMAX 

and Pull ORATEAS<Push ORATESA. The only nonlinearity now is the delivery LT, so the 

problem becomes the linearisation of a nonlinear, continuous function with one state variable 
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and one input variable only. Let the output delivery 𝐿𝑇 = 𝑦, input 𝐵𝐿 = 𝑢 and 𝑆𝐻 = 𝑥, we 

have 

                           𝐿𝑇 =
𝐵𝐿

𝑆𝐻
 →  𝑦 = 𝑔(𝑥, 𝑢)                                 (5.49) 

The delivery LT can be linearised about a nominal operating state space x∗ for a given 

input u∗, by using small perturbation theory with Taylor series expansion. The first order 

Taylor series approximation of the nonlinear state derivatives leads to the following 

linearised function 

                   𝑦 − 𝑦∗ =
𝜕𝑔

𝜕𝑥
│

𝑥∗,𝑢∗
(𝑥 − 𝑥∗) +

𝜕𝑔

𝜕𝑢
│

𝑥∗,𝑢∗
(𝑢 − 𝑢∗)         (5.50) 

The equilibrium, or resting points (x∗, u∗), is determined by the final value theorem 

of a step input demand (D) with zero initial condition,  
𝜕𝑔

𝜕𝑥
│

𝑥∗,𝑢∗
 (final value of SH in 

responding to a step D) and 
𝜕𝑔

𝜕𝑢
│

𝑥∗,𝑢∗
 (final value of BL in responding to a step D) can be 

found through the partial derivatives of the output LT equations: 

              
𝜕𝑔

𝜕𝑥
│

𝑥∗,𝑢∗
= −

𝜏𝐷𝐷
𝐷
 ,

𝜕𝑔

𝜕𝑢
│

𝑥∗,𝑢∗
=
1

𝐷
 ,       𝑦∗ = 𝜏𝐷𝐷         (5.51) 

Thus, delivery LT can be linearised by 

     LT − 𝜏𝐷𝐷 = (−
𝜏𝐷𝐷𝐷

𝐷2
(𝑆𝐻 − 𝐷)) +

1

𝐷
(𝐵𝐿 − 𝜏𝐷𝐷𝐷) =

𝐵𝐿 − 𝜏𝐷𝐷𝑆𝐻

𝐷
        (5.52) 

So 

                       LT =
𝐵𝐿 − 𝜏𝐷𝐷𝑆𝐻

𝐷
+ 𝜏𝐷𝐷                        (5.53) 

Where SH depends on the minimum value of SH* and SHMAX, if SH* can be always 

satisfied, i.e. 𝑆𝐻∗ = 𝑆𝐻, so: 
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                               𝐵𝐿 = 𝑆𝐻∗𝜏𝐷𝐷 = 𝑆𝐻𝜏𝐷𝐷                                 (5.54) 

and consequently, delivery LT will become constant: 

                               LT =
𝐵𝐿 − 𝜏𝐷𝐷𝑆𝐻

𝐷
+ 𝜏𝐷𝐷 = 𝜏𝐷𝐷                           (5.55) 

From a customer perspective, this means that their customised PC products can be 

received by promised 𝜏𝐷𝐷 (100% customer service level). However, if there are insufficient 

AINVAS to meet SH* (SH*<SHMAX): 

                                   𝑆𝐻 =
𝐴𝐼𝑁𝑉𝐴𝑆
𝜏𝐷𝐷

                                             (5.56) 

and therefore, LT is time varying so that  

              LT =
𝐵𝐿 − 𝜏𝐷𝐷

𝐴𝐼𝑁𝑉𝐴𝑆
𝜏𝐷𝐷

𝐷
+ 𝜏𝐷𝐷 =

𝐵𝐿 − 𝐴𝐼𝑁𝑉𝐴𝑆
𝐷

+ 𝜏𝐷𝐷                 (5.57) 

As a result, if Equation (5.56) holds, LT can be approximated by the summation of 

𝜏𝐷𝐷  and the difference between BL and AINVAS level. Since 𝐵𝐿 − 𝐴𝐼𝑁𝑉𝐴𝑆 > 0  under 

SH*<SHMAX, the averaged delivery LT now is larger than 𝜏𝐷𝐷 and this means the time for 

end customer to wait is longer than the promised 𝜏𝐷𝐷 and thus leads to a decrease in customer 

service level.  

Moreover, AINVAS will be further determined by the CODP inventory constraint 

between downstream final assembly and supplier manufacturing, i.e. the minimum value of 

Pull ORATEAS and Push ORATESA. Numerical simulation in the system responding to a 

sinusoidal input with Mean =1, different frequency (ω) and amplitude (A) is conducted to 

verify the linearised LT results when SH*<SHMAX. The different operational states based on 

the discontinuous nonlinearity switch between Pull ORATEAS and Push ORATESA are 
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deliberately cross-checked; that is, comparing the original and linearised lead time response 

for Push-Pull-Push and pure Push production scenarios.  Note that two single-valued 

nonlinearities, capacity and non-negative constraints, are kept in the simulation verification 

to ensure system stability; as we will show in the next section, the linear system with Push-

Pull-Push state is fundamentally unstable. Figure 5.17 shows the result of Push-Pull-Push 

and pure Push states. It can be seen that overall the linearised delivery LT response is 

accurate. Furthermore, linearisation accuracy is increased from Push-Pull-Push to pure Push 

state and the linearised LT response tends to be more accurate with the increase in demand 

frequency. 

 

 

Figure 5. 8. Comparison between linearised and original LT response for Pull ORATEAS> Push 

ORATESA (Different scales in the y-axis). 
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5.3.2. The analysis of multi-valued nonlinearities 

To understand the impact of such multi-valued nonlinearities on dynamic 

performance, that is, the ‘performance triangle’, we analyse the three operational states, 

Push-Pull-Pull, Push-Pull-Push and pure Push separately by assuming all discontinuous 

nonlinearities inactive and the whole system temporarily operates as a certain production 

state. Due to the Push-Pull-Pull state with single-valued discontinuous nonlinearities having 

been explored in Section 5.2, the author now exclusively investigates two other states: hybrid 

Push-Pull-Pull and Pure Push states.   

5.3.2.1. The Push-Pull-Push operational state 

If AINVAS continuously falls and is insufficient for satisfying SH*, the OEM can only 

start assembly and ship what they have on hand, SMAX, to customers. As a result, the final 

assembly and distribution is switched from Pull to Push and if CODP inventory at the 

supplier site (AINVSA) can still be pulled by replenishment of VMI, the system now operates 

as Push-Pull-Push state, that is: 

                                    𝑆𝐻(𝑡) = 𝑆𝐻𝑀𝐴𝑋(𝑡) < 𝑆𝐻
∗(𝑡)                                 (5.58) 

𝑂𝑅𝐴𝑇𝐸𝐴𝑆(𝑡) = 𝑃𝑢𝑙𝑙 𝑂𝑅𝐴𝑇𝐸𝐴𝑆(𝑡) < 𝑃𝑢𝑠ℎ 𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡) 

 

The corresponding block diagram to represent such operational state can be derived, as 

illustrated in Figure 5.18. The only difference between hybrid Push-Pull-Pull and Push-Pull-

Push states (compare Figures 5.18 and 5.2) is that SH now equals to SHMAX due to the 

AINVAS constraint. The transfer function of ‘performance triangle’ is derived as follows: 
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𝐿𝑇

𝐶𝑂𝑁𝑆
=
(𝑠𝜏DD − 1)(𝜏DD(𝜏BL + (𝑠𝜏BL − 1)𝜏𝑖) + 𝜏AS𝜏BL(𝑠(1 + 𝑠𝜏DD)𝜏𝑖 − 1))

𝑠3𝜏𝑖𝜏AS𝜏BL𝜏DD + 𝑠
2(𝜏𝑖𝜏AS𝜏BL + 𝜏𝑖𝜏BL𝜏DD)

−𝑠(𝜏AS𝜏BL + 𝜏BL𝜏DD) + 𝜏𝑖

 (5.59) 

𝑂𝑅𝐴𝑇𝐸𝑆𝐴
𝐶𝑂𝑁𝑆

= (

 
 
 
 

(1 + 𝑠𝜏SA)

(

 
 
 
𝑠𝜏AINV (𝜏𝑖 + 𝑠𝜏BL (

−𝜏AS + 𝜏DD +

𝑠(𝜏DD + 𝜏AS(1 + 𝑠𝜏DD))𝜏𝑖
))

(𝜏SA + 𝜏WIP)

−(1 + 𝑠𝜏𝐴)(1 + 𝑠𝜏AS)

(−1 + 𝑠2𝜏DD
2 )𝜏𝑖(1 + 𝑠𝜏SA)𝜏WIP )

 
 
 

)

 
 
 
 

(1 + 𝑠𝜏𝐴) (
𝑠3𝜏𝑖𝜏AS𝜏BL𝜏DD + 𝑠

2(𝜏𝑖𝜏AS𝜏BL + 𝜏𝑖𝜏BL𝜏DD)

−𝑠(𝜏AS𝜏BL + 𝜏BL𝜏DD) + 𝜏𝑖
)

(𝜏WIP + 𝑠
2𝜏AINV𝜏SA𝜏WIP + 𝑠(𝜏AINV𝜏SA + 𝜏AINV𝜏WIP))

 (5.60) 

𝐴𝐼𝑁𝑉𝑆𝐴
𝐶𝑂𝑁𝑆

=
(

 
 
 
 

−(1 + 𝑠𝜏𝐴)(1 + 𝑠𝜏AS)(−1 + 𝑠
2𝜏DD
2 )𝜏𝑖𝜏SA𝜏WIP

+𝑠𝜏AINV

(

 
 
 

𝜏BL𝜏DD(1 + 𝑠𝜏𝑖)(𝜏SA + 𝜏WIP) +

𝜏𝑖 (
−𝜏SA𝜏WIP + 𝑠𝜏DD

2 (𝜏SA + 𝜏WIP + 𝑠𝜏SA𝜏WIP)

+𝜏𝐴(−1 + 𝑠
2𝜏DD
2 )(𝜏WIP + 𝜏SA(1 + 𝑠𝜏WIP))

)

+𝜏AS (
𝜏BL(−1 + 𝑠(1 + 𝑠𝜏DD)𝜏𝑖)(𝜏SA + 𝜏WIP)

+(1 + 𝑠𝜏𝐴)(−1 + 𝑠
2𝜏DD
2 )𝜏𝑖(𝜏WIP + 𝜏SA(1 + 𝑠𝜏WIP))

)
)

 
 
 

)

 
 
 
 

(
(1 + 𝑠𝜏𝐴) (

𝑠3𝜏𝑖𝜏AS𝜏BL𝜏DD + 𝑠
2(𝜏𝑖𝜏AS𝜏BL + 𝜏𝑖𝜏BL𝜏DD)

−𝑠(𝜏AS𝜏BL + 𝜏BL𝜏DD) + 𝜏𝑖
)

(𝜏WIP + 𝑠
2𝜏AINV𝜏SA𝜏WIP + 𝑠(𝜏AINV𝜏SA + 𝜏AINV𝜏WIP))

)

 (5.61) 

The CEs for both final assembly and supplier manufacturing echelons can be obtained: 

 

𝐶𝐸𝑓𝑖𝑛𝑎𝑙 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦:  𝑠
3𝜏𝑖𝜏AS𝜏BL𝜏DD + 𝑠

2(𝜏𝑖𝜏AS𝜏BL + 𝜏𝑖𝜏BL𝜏DD) − 𝑠(𝜏AS𝜏BL + 𝜏BL𝜏DD) + 𝜏𝑖  (5.62) 

𝐶𝐸𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔 : 
(1 + 𝑠𝜏𝐴) (

𝑠3𝜏𝑖𝜏AS𝜏BL𝜏DD + 𝑠
2(𝜏𝑖𝜏AS𝜏BL + 𝜏𝑖𝜏BL𝜏DD)

−𝑠(𝜏AS𝜏BL + 𝜏BL𝜏DD) + 𝜏𝑖
)

(𝜏WIP + (𝜏AINV𝜏SA + 𝜏AINV𝜏WIP)𝑠 + 𝜏AINV𝜏SA𝜏WIP𝑠
2)  

   (5.63) 

 

Equations (5.62) and (5.63) illustrate the upstream part of the Push-Pull-Push state, 

(𝜏WIP + (𝜏AINV𝜏SA + 𝜏AINV𝜏WIP)𝑠 + 𝜏AINV𝜏SA𝜏WIP𝑠
2), remain the same as the Push-Pull-
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Pull state, due to the assumption that CODP inventory at the supplier site can still be pulled 

by customer orders. However, the structure of downstream final assembly and distribution 

echelon changes, due to the constraint of AINVAS. Also, the delivery LT is no longer a 

constant level and its dynamic property can be characterised by a third order polynomial in 

non-factorised form including BL and AINVAS loops; that is, Equation (5.60). Furthermore, 

the non-factorised third order polynomial indicates that the independent feedforward BL→

SH*→BL loop in the desired Push-Pull-Pull state has now been transformed into part of the 

feedback loop, due to the SHMAX constraint caused by insufficient AINVAS, i.e. BL→

ORATEAS→AINVAS→BL. Thereby, AINVAS becomes work-in-process inventory and will 

be pushed out for final assembly, provided they have arrived in the VMI inventory hub.  

To access the stability of the Push-Pull-Push state, that is, the stability of the non-

factorised third-order polynomial, Equation (5.62), the Routh-Hurwitz stability criterion is 

utilised. As introduced in Section 3.2.1.3, substitute Equation (5.62) to (3.1) and (3.2) to 

yield (5.64): 

𝑆3

𝑆2

𝑆1

𝑆0

|

   𝜏𝑖𝜏AS𝜏BL𝜏DD −(𝜏AS𝜏BL + 𝜏BL𝜏DD)
        𝜏𝑖𝜏AS𝜏BL + 𝜏𝑖𝜏BL𝜏DD 𝜏𝑖
  −(𝜏𝑖 + 𝜏AS𝜏BL + 𝜏BL𝜏DD)                  0                

  𝜏𝑖                                               

|  (5.64) 

Given all physical and control parameters are positive, there are two sign changes in the 

first column and hence there are two complex roots with positive real parts. This means the 

system characterised by a third order polynomial is unstable. The switch, from desired Push-

Pull-Pull to Push-Pull-Push, resulting by stock out of AINVAS, not only decreases customer 
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service levels due to the increase of delivery LT, but also yields unstable dynamic response 

(exponentially growing) of CODP inventory and ORATESA and thus, such a state cannot be 

maintained for a long period of time.  

5.3.2.2 The pure Push operational state. 

If CODP inventory at the supplier site, AINVSA, still constrains Pull ORATEAS required 

by VMI hub replenishment, the system state will switch to the pure Push and its block 

diagram representation is reported in Figure 5.19. 

                            𝑆𝐻(𝑡) = 𝑆𝐻𝑀𝐴𝑋(𝑡) < 𝑆𝐻
∗(𝑡)                      (5.65)  

𝑂𝑅𝐴𝑇𝐸𝐴𝑆(𝑡) = 𝑃𝑢𝑠ℎ 𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡) < 𝑃𝑢𝑙𝑙 𝑂𝑅𝐴𝑇𝐸𝐴𝑆(𝑡)   (5.66) 

 

Similar to the analysis of hybrid Push-Pull-Pull state, the transfer function of 

‘performance triangle’ is derived as follows: 

𝐿𝑇

𝐶𝑂𝑁𝑆
= (

 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 

(1 + 𝑠𝜏DD)

(

 
 
 
 
 
 
 
 (1 + 𝑠𝜏𝐴) (

𝜏𝑖𝜏SA(𝜏DD + (−1 + 𝑠𝜏DD)𝜏SA)

+𝜏BL (
(1 + 𝑠𝜏AS)(1 + 𝑠𝜏DD)𝜏𝑖
−(𝜏AS − 𝜏DD + 𝜏𝑖)𝜏SA

)
) 𝜏WIP

+𝜏AINV𝜏BL𝜏𝑖

(

 
 
 

−𝜏SA(1 + 𝑠𝜏SA) +

(

 
 

𝑠 + 𝜏SA + 𝑠(1 + 𝑠)

(

𝜏DD + (1 + (1 + 𝑠)𝜏DD)𝜏SA +

𝜏AS(1 + 𝑠𝜏DD)(1 + (1 + 𝑠)𝜏SA)

+𝜏𝐴(1 + 𝑠𝜏AS)(1 + 𝑠𝜏DD)(1 + (1 + 𝑠)𝜏SA)
)

)

 
 
𝜏WIP

)

 
 
 

)

 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 

(1 + 𝜏𝐴𝑠)(

(𝜏𝑖𝜏SA + 𝑠𝜏BL((1 + 𝑠𝜏AS)(1 + 𝑠𝜏DD)𝜏𝑖 − (𝜏AS − 𝜏DD + 𝜏𝑖)𝜏SA))

𝜏WIP + 𝑠(1 + 𝑠)𝜏AINV(1 + 𝑠𝜏AS)𝜏BL
(1 + 𝑠𝜏DD)𝜏𝑖(𝜏WIP + 𝜏SA(1 + 𝑠𝜏WIP))

)

 (5.67) 
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Figure 5. 9. The Push-Pull-Push operational state in the block diagram form. 
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𝑂𝑅𝐴𝑇𝐸𝑆𝐴
𝐶𝑂𝑁𝑆

=

𝜏𝑖(1 + 𝑠)(1 + 𝑠𝜏AS)(1 + 𝑠𝜏DD)(1 + 𝑠𝜏SA)

((1 + 𝑠𝜏𝐴)(1 − 𝑠𝜏DD)𝜏SA𝜏WIP + 𝑠𝜏AINV𝜏BL(𝜏SA + 𝜏WIP))

(1 + 𝜏𝐴𝑠)

(

 
 
(𝜏𝑖𝜏SA + 𝑠𝜏BL (

(1 + 𝑠𝜏AS)(1 + 𝑠𝜏DD)𝜏𝑖
−(𝜏AS − 𝜏DD + 𝜏𝑖)𝜏SA

))

𝜏WIP + 𝑠(1 + 𝑠)𝜏AINV(1 + 𝑠𝜏AS)𝜏BL
(1 + 𝑠𝜏DD)𝜏𝑖(𝜏WIP + 𝜏SA(1 + 𝑠𝜏WIP)) )

 
 

 (5.68) 

𝐴𝐼𝑁𝑉𝑆𝐴
𝐶𝑂𝑁𝑆

=

(1 + 𝑠𝜏AS)(1 + 𝑠𝜏DD)𝜏𝑖(1 + 𝑠𝜏SA)

(−(1 + 𝑠𝜏𝐴)(−1 + 𝑠𝜏DD)𝜏SA𝜏WIP + 𝑠𝜏AINV𝜏BL(𝜏SA + 𝜏WIP))

(1 + 𝑠𝜏𝐴)

(

 
 
(𝜏𝑖𝜏SA + 𝑠𝜏BL (

(1 + 𝑠𝜏AS)(1 + 𝑠𝜏DD)𝜏𝑖
−(𝜏AS − 𝜏DD + 𝜏𝑖)𝜏SA

))

𝜏WIP + 𝑠(1 + 𝑠)𝜏AINV(1 + 𝑠𝜏AS)𝜏BL
(1 + 𝑠𝜏DD)𝜏𝑖(𝜏WIP + 𝜏SA(1 + 𝑠𝜏WIP)) )

 
 

 (5.69) 

The corresponding CEs can be derived as follows: 

𝐶𝐸𝑓𝑖𝑛𝑎𝑙 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦 = 𝐶𝐸𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔            

(1 + 𝑠𝜏𝐴)(

(𝜏𝑖𝜏SA + 𝑠𝜏BL((1 + 𝑠𝜏AS)(1 + 𝑠𝜏DD)𝜏𝑖 − (𝜏AS − 𝜏DD + 𝜏𝑖)𝜏SA))

𝜏WIP + 𝑠(1 + 𝑠)𝜏AINV(1 + 𝑠𝜏AS)𝜏BL
(1 + 𝑠𝜏DD)𝜏𝑖(𝜏WIP + 𝜏SA(1 + 𝑠𝜏WIP))

) (5.70) 

 

Comparing the Push-Pull-Push and Push-Pull-Pull state, the pure Push state is 

characterised by a sixth-order polynomial including a first order forecasting loop, and a new 

fifth-order polynomial in the non-factorised form. This suggests that the final assembly 

structure, independent of the supplier manufacturing site in the former two states (i.e. BL→

ORATEAS→AINVAS→BL), is now incorporated into the supplier’s AINVSA→ORATESA→

AINVSA feedback loop, i.e. a fifth order production push loop (Figure 5.20). The reduction 

of independent feedback loops thus may reduce the oscillatory behaviour and contribute to 

the corresponding decrease of bullwhip and inventory variance.  
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Figure 5. 20. The pure Push state in the block diagram for pure Push state. 
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The Routh-Hurwitz stability criterion is utilised to examine the stability of Pure Push 

operational state, i.e. the stability of Equation (5.70). Specifically, for a fifth order 

polynomial: 

𝑎5𝑠
5 + 𝑎4𝑠

4 + 𝑎3𝑠
3 + 𝑎2𝑠

2 + 𝑎1𝑠
1 + 𝑎0 = 0  (5.71) 

The necessary and sufficient conditions for a stable system are: 

𝑎2 · 𝑎5 − 𝑎3 · 𝑎4 < 0 , (𝑎0 · 𝑎3 − 𝑎1 · 𝑎2)
2 − (𝑎3 · 𝑎4 − 𝑎3 · 𝑎5) ∗ (𝑎1 · 𝑎2 − 𝑎0 · 𝑎3) < 0  (5.72) 

By inspecting the fifth-order polynomial, we yield the following necessary and 

sufficient conditions shown by Equations (5.73) and (5.74): 

−𝜏AINV𝜏BL
2 𝜏𝑖

2𝜏WIP (𝜏AS
2 𝜏DD

2 (1 + 𝜏SA)𝜏WIP + 𝜏AINV (𝜏DD𝜏SA(𝜏DD + (1 + 𝜏DD)𝜏SA)𝜏WIP +

𝜏AS(𝜏DD + (1 + 𝜏DD)𝜏SA)
2𝜏WIP + 𝜏AS

2 (1 + 𝜏SA)(𝜏DD
2 𝜏SA + (1 + 𝜏DD)(𝜏DD + 𝜏SA)𝜏WIP))) <

0      (5.73)  

 

𝜏BL
2 𝜏𝑖

2 (𝜏BL((−𝜏AS + 𝜏DD)𝜏SA + 𝜏𝑖(1 + 𝜏AINV + (−1 + 𝜏AINV)𝜏SA))(𝜏AS + 𝜏DD + 𝜏AINV(1 +

𝜏AS + 𝜏DD + (2 + 𝜏AS + 𝜏DD)𝜏SA)) − 𝜏𝑖𝜏SA (𝜏AS𝜏DD + 𝜏AINV(𝜏DD + 𝜏SA + 2𝜏DD𝜏SA + 𝜏AS(1 +

𝜏DD + (2 + 𝜏DD)𝜏SA)))) (𝜏BL((−𝜏AS + 𝜏DD)𝜏SA + 𝜏𝑖(1 + 𝜏AINV + (−1 + 𝜏AINV)𝜏SA))(𝜏AS +

𝜏DD + 𝜏AINV(1 + 𝜏AS + 𝜏DD + (2 + 𝜏AS + 𝜏DD)𝜏SA)) − 𝜏𝑖𝜏SA (𝜏AS𝜏DD + 𝜏AINV(𝜏DD + 𝜏SA +

2𝜏DD𝜏SA + 𝜏AS(1 + 𝜏DD + (2 + 𝜏DD)𝜏SA))) − 𝜏AINV𝜏BL𝜏𝑖 (𝜏DD𝜏SA + 𝜏AS(𝜏SA + 𝜏DD(1 +

𝜏SA))) (𝜏AS𝜏DD + 𝜏AINV(𝜏DD + 𝜏SA + 2𝜏DD𝜏SA + 𝜏AS(1 + 𝜏DD + (2 + 𝜏DD)𝜏SA)))) < 0  (5.74)  
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Equation (5.73) can always be negative for all positive values of physical and control 

parameters, while regarding Equation (5.74), it may be positive or negative. Two examples 

of the stability region based on different values of two inventory stock adjustments (𝜏AINV 

and 𝜏𝑖 ) are plotted in Figure 5.21, although the combination of different physical and 

controllable parameters may yield different stability regions. 

 

Figure 5. 10. Stability region based on range of 𝜏AINV and 𝜏𝑖 for different physical lead time. 

It is apparent that the system can be stable for long-term adjustment of two inventory 

stocks (𝜏AINV and 𝜏𝑖), although 𝜏AINV has a more profound impact on the system stability 

condition. Also, the stability region is subject to other control policies and physical lead time 

in pure Push state, e.g. the increase of lead time leads to an increase of instability region. To 

summarise, depending on the physical delay, the system is partially stable for a certain choice 

of control policies. Specifically, the system can be stable for long time adjustment of two 
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inventory stocks (𝜏AINV and 𝜏𝑖), although 𝜏AINV has a more profound impact on the system 

stability condition.  

The initial value and final value of the performance triangle related variables can be 

obtained as follows:  

             𝑙𝑖𝑚
𝑠→∞

𝑠
𝐿𝑇

𝐶𝑂𝑁𝑆
= 0       𝑙𝑖𝑚

𝑠→0
𝑠
𝐿𝑇

𝐶𝑂𝑁𝑆
= 𝜏𝐴 + 𝜏DD + 𝜏BL(

𝜏DD − 𝜏AS
𝜏𝑖

+
1

𝜏SA
− 1)     

     𝑙𝑖𝑚
𝑠→∞

𝑠
𝐴𝐼𝑁𝑉𝑆𝐴
𝐶𝑂𝑁𝑆

= 0                   𝑙𝑖𝑚
𝑠→0

𝑠
𝐴𝐼𝑁𝑉𝑆𝐴
𝐶𝑂𝑁𝑆

= 1     

                        𝑙𝑖𝑚
𝑠→∞

𝑠
𝑂𝑅𝐴𝑇𝐸𝑆𝐴
𝐶𝑂𝑁𝑆

= 0                 𝑙𝑖𝑚
𝑠→0

𝑠
𝑂𝑅𝐴𝑇𝐸𝑆𝐴
𝐶𝑂𝑁𝑆

= 1                       (5.75)   

 

The final value of AINVSA is 1, due to the stock-out condition that AINVSA become 

WIP inventory, which means all finished PC parts at the supplier manufacturing are pushed 

out as long as they are produced. As a result, the average of AINVSA will equal the average 

of CONS. The final value of delivery LT, as expected, is greater than the desired constant 𝜏DD 

and depends on the combined control policies for the final assembly and manufacturing 

systems. This is due to the increased average of BL driven by insufficient AINVAS and 

AINVSA, as well as long delay of transport and manufacturing delay (𝜏AS and 𝜏SA), if the 

system switches to the pure Push state.  
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5.4. Simulation studies   

To summarise, there are four different nonlinearities present in the ATO system. 

Particularly, two multi-valued nonlinearities govern the system states depending on the 

availability of two CODP inventories, which not only influence the dynamic behaviour of 

the system but may also change the system structure. This section uses repeated simulation 

approach to summarise and provide further insights of four nonlinearities in the ATO system. 

5.4.1. The impact of single-valued nonlinearities 

Two single-valued nonlinearities are found in the PC ATO system, including non-

negative order constraint at the VMI hub near the OEM’s final assembly factory and the 

supplier’s manufacturing capacity constraint, although non-negative order constraint is also 

found in the supplier manufacturing site. To understand the difference between two single-

valued nonlinearities, the non-negative order constraint is temporarily not considered in the 

supplier manufacturing site. 

5.4.1.1. Non-negative order constraint at the VMI hub 

 In the linear system, order rate is permitted to take negative values. This means that 

all participants in a supply chain can return excess product freely. Practically, this may mean 

that the excess inventory is not moved from one location to another but instead is considered 

in the possession of the upstream member until being used as part of a future replenishment 

(Hosoda and Disney, 2009). In the PC supply chain model, it means that the VMI inventory 

can be freely returned to the supplier’s site if desired ORATEAS is negative, which is an 
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unrealistic assumption due to extensive geographical distance and export/import policies 

between the OEMs and their PC parts suppliers.  

As a result, the non-negative order constraint, i.e. see Equation (5.8), should be put 

into the model to prevent the free inventory return from the VMI hub to the supplier site. 

Based on analytical findings in Section 5.2.2.2, the incorporation of non-negative order 

constraint at the OEM VMI site leads to the ‘more damped’ system with fewer oscillations 

at the expense of slow system recovery speed. Also, such nonlinearity leads to an increase in 

VMI inventory level (mean).  

 The simulation is conducted to verify and provide further insights regarding the 

impact of the VMI non-negative order constraint on both CODP inventory (AINVAS and 

AINVSA) and ORATESA at the supplier site. All difference equations utilised for simulation 

can be seen in Section 5.1 and will also be implemented in the following simulation study. 

Settings recommended by the original APVIOBPCS are utilised for simulation. The 

sinusoidal demand pattern with mean=1, amplitude=1 (make amplitude high enough to 

deliberately hit the negative order constraint) and w=0.12 rad/week is utilised as the input, 

since it represents the PC seasonal demand characteristics with peak demand periods (e.g. 

Christmas, Black Friday). It should be noted that all other nonlinearities are removed except 

for non-negative order constraint, which means the system always operates as Push-Pull-

Pull state in which the SH and Desired ORATEAS can always be satisfied. As a result, the 

delivery LT is a constant value, i.e. all customers’ order can be fulfilled by quoted 𝜏𝐷𝐷. 

𝑆𝐻(𝑡) = 𝑆𝐻∗(𝑡);  𝑂𝑅𝐴𝑇𝐸𝐴𝑆(𝑡) = 𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑂𝑅𝐴𝑇𝐸𝐴𝑆(𝑡)   (5.76) 
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Figure 5. 11. The impact of non-negative order constraint nonlinearity on the dynamic performance 

of the OEM (AINVAS and ORATEAS) and supplier manufacturing variables (AINVSA and 

ORATESA). Note: different scales in the y-axis. (Control parameter settings: τA= τWIP =2τSA = 2τAINV 

=16, τI= τAS = 2τBL=4 τDD=1). 

Figure 5.22 presents the dynamic response of order rate and inventory variables at 

both OEM and the supplier echelons. Specifically, the incorporation of non-negative order 

constraint decreases the variance of ORATEAS and AINVAS, i.e. the decrease of bullwhip 

and inventory variance measured by the variance ratio between the variance of output and 

input (demand), at the expense of increasing the mean level of them. This is consistent with 

Spiegler and Naim’s (2017) analytical results. In the linear system, as the customer demand 
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decreases, the excess inventory level may lead to negative ORATEAS. However, the non-

negative nonlinearity prevents such free return scenario and thereby increases the mean 

inventory level at the VMI hub site. Although the non-negative order constraint improves 

the dynamic performance of final assembly system by reducing bullwhip and inventory 

variance, the increase of mean of VMI inventory may be against the OEM’s general objective 

that minimises VMI inventory to reduce the risk of technological redundancy with ever 

shorter product life cycles of products entering the market. 

On the other hand, according to Figure 5.22, comparing the linear system, the supplier 

echelon may benefit the nonnegative order constraint policy by decreasing the mean of 

AINVSA as well as the improvement of dynamic performance, i.e. the reduction of bullwhip 

(ORATESA) and inventory variance (AINVSA). Note that the mean and variance of AINVSA 

are significantly higher than the AINVAS, which indicates the fact that CODP at the supplier 

site takes major responsibility in absorbing end customer demand fluctuation in a hybrid 

ATO supply chain structure.  

5.4.1.2. Capacity constraint at the supplier manufacturing site 

In contrast to the nonnegative order constraint that has a low boundary limit, the 

capacity constraint, i.e. Equation (5.11), at the supplier site, due to resources limits such as 

people, machines, raw materials, has the upper boundary constraint in which excess orders 

cannot be entered into the production line. As in the analysis of nonnegative order constraint, 

system dynamic simulation is conducted to analyse the impact of capacity constraints on the 

supplier site’s variables, AINVSA and ORATESA, under the Push-Pull-Pull state. The 
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dynamic response of the supplier’s variables, which are, AINVSA and ORATESA in the linear 

and nonlinear environment, are reported in Figure 5.23.  

 

Figure 5. 12. The impact of PC parts supplier capacity constraint (Capacity limit =2) on ORATESA 

and AINVSA. Note: different scales in the y-axis and control parameter settings: τA= τWIP =2τSA = 

2τAINV =16, τI= τAS = τI= 2τBL=4 τDD=1 

Consistent with the results of Spiegler et al. (2016) and Spiegler et al. (2017), the 

capacity constraint leads to a decrease of bullwhip effect (ORATESA) compromised by a 

decrease of average AINVSA. The decrease of inventory average may increase the stock-out 

probability and thus influence customer service level by delaying the fulfilment time; the 

delivery LT, for example. As discussed in the next section, the decrease of stock out level 

may also cause the switch from desired Push-Pull-Pull state to the pure Push state, further 

damaging the dynamic performance of the ATO system.  

5.4.2. The impact of multi-valued nonlinearities  

There are two multi-valued nonlinearities present in the PC supply chains illustrated 

by Equations (5.1) and (5.7): shipment constraints due to limited AINVAS and desired VMI 
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replenishment constraint due to the limited AINVSA. Their nature is fundamentally the same, 

which is the inventory constraint that avoids any final assembly made to the final customer 

or any shipment to the VMI hub if there are insufficient inventory available in two stock 

points. The shipment constraint nonlinearity is utilised as an example to illustrate its multi-

valued characteristics. Figure 5.23 shows the SH dynamic performance in responding to 

sinusoidal demand (mean=1) with different amplitude and frequency. Note that other 

nonlinearities are assumed inactive when investigating the impact of the multi-valued 

nonlinearities on dynamic performance of the ATO system. 

  

(a) ω=0.6rad/week, Input amplitude=0.5                (b) ω=0.6rad/week, Input amplitude=1 

  

(c) ω=0.1rad/week, Input amplitude=0.5           (d) ω=0.1rad/week, Input amplitude=1 
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Figure 5. 13. The dynamic response of SHMAX, SH* and SH for different frequencies and 

amplitudes 

The dynamic response of SH (output) depends on the history of the input (SH*) due 

to SHMAX being a time-varying constraint determined by the dynamic response of AINVAS. 

The simulation results show that SH equals to SH* for low amplitude and high frequency 

(11a); however, the increase of amplitude or the decrease of frequency leads to the nonlinear 

behaviour of SH because of the constraint of SHMAX. The simulation also indicates that the 

shipment constraint is the multi-valued nonlinearity in which a given SH* will result in 

different SH over time, depending on the past values of SH*. Figure (5.20d), for example, a 

given SH* value, 2, (blue line shown on y-axis), results in the different value of SH (red line, 

2 or 0.1), depending on the past state of SH*. To further understand the impact of multi-

valued nonlinearities on the dynamic performance in the ATO system, we analyse three 

distinct operational states separately, as categorised before; that is, assume the system 

operates as Push-Pull-Pull, Push-Pull-Push and Pure Push states temporarily based on the 

availability of AINVAS and AINVSA. 

Table 5.6 summarises the findings for the impact of two multi-value nonlinearities 

on the dynamic performance of the ATO system. Depending on the availability of AINVAS 

and AINVSA, the ATO system may be switched between different states. By design, the 

system operates the desired Push-Pull-Pull state in which two inventory stocks are pulled by 

end customer orders. Thus, all customised orders can be fulfilled by quoted 𝜏DD. Such system 

state is permitted to be stable for positive value of control policies and there are two feedback 
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inventory control loops that may characterise the oscillatory behaviour, although control 

policies in the supplier manufacturing system (e.g. 𝜏AINV) play a key role in determining the 

dynamic oscillations and recovery speed. 

Operation

al state 

Structure Initial insights for the 

dynamic properties 

Stability 

Push-Pull-

Pull 

Final 

assembly 

part 

Includes a first 

order BL and 

second order 

AINVAS 

adjustment 

loops 

1. Delivery LT is a constant 

level, 𝜏𝐷𝐷 . 

2. the state is characterised 

by a two-degrees-of-freedom 

system with independent 

feedback adjustment loop at 

final assembly and the 

supplier manufacturing sites, 

which may lead to complex 

dynamic response, such as 

two-resonance peak 

frequencies 

The system is 

stable for all 

positive values 

of control 

policies 

The 

supplier 

manufactur

ing part 

Includes a first 

order 

forecasting and 

second order 

AINVSA 

adjustment 

loops 

Push-Pull-

Push 

Final 

assembly 

part 

Characterised 

by a third order, 

non-factorized 

loop, due to the 

incorporation of 

BL adjustment 

loop into 

feedback 

AINVAS loop 

(i.e. stock out of 

AINVAS) 

Not applicable due to the 

state is unstable 

The system is 

unstable for 

all control 

policies 

selection 
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The 

supplier 

manufactur

ing part 

Same structure 

for the Push-

Pull-Pull state 

Pure Push The whole system is 

characterised by a first order 

forecasting loop and a fifth 

order, non-factorised loop, due 

to the incorporation of final 

assembly structure into the 

supplier manufacturing loops 

1. The average delivery LT 

is larger than 𝜏𝐷𝐷 and its 

dynamic performance due to 

physical delay and system 

control policies at both final 

assembly (VMI) and the 

supplier manufacturing site.  

2. AINVSA becomes WIP 

inventory and the average 

level equal to the mean of 

demand.  

3. the variance of ORATESA 

and AINVSA may be reduced 

due to the incorporation of 

final assembly structure. 

The system is 

conditionally 

stable for 

positive value 

of control 

policies 

Table 5. 6. Summary of three operational states based on two multi-valued nonlinearities. 

As the level of AINVAS falls sufficiently, the OEM can no longer pull required PC 

parts from AINVAS, instead, all feasible AINVAS at the VMI hub are pushed into the final 

assembly plant at the maximum shipment rate, i.e. SHMAX. This leads to a switch from 

desired Push-Pull-Pull state to Push-Pull-Push state under the condition that AIVNSA are 

still sufficient to be pulled by the VMI hub replenishment. As a result, delivery LT is 

increased, driven by a new third-order feedback loop (one real root and two complex roots), 

which depends on all control and physical parameters in the final assembly echelon and leads 
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to an increase in instability. Such an operational state is not stable and cannot be maintained 

for a long period of time due to the permanent AINVAS discrepancies. 

If AINVSA still constrain the pull ORATEAS, the whole system switches to the pure 

Push production state. Two inventory stock points, AINVAS and AINVSA, become WIP 

inventory to be pushed out as soon as possible. As a result, LT is further increased due to the 

longer upstream supplier manufacturing delay. The whole system is characterised as a first 

order forecasting loop and a fifth-order push loop. The new non-factorised fifth-order loops 

may increase instability but reduce the complex dynamic property contributed by 

independent feedback loops in the Push-Pull-Pull state. The pure Push state is conditionally 

stable subject to the choice of control policies and actual physical lead time ratio, although 

it seems 𝜏AINV has a key impact on system stability.   

To further analyse the dynamic performance of ORATESA, AINVSA and Delivery LT 

as the ‘performance triangle’ and to consider the hybrid ATO system switch from one state 

to another, Bode diagram and system dynamic simulation are utilised. A Bode Plot is a useful 

tool to show the gain response of a given linear, time-invariant system for different demand 

frequencies, which are, bullwhip, inventory and LT variance in the ATO context (Towill et 

al., 2003; Towill et al., 2007). For the Bode diagram, the dynamic performance of two 

different operational states are compared: the Push-Pull-Pull and pure Push. The control 

policies selected follow the recommended settings of APVIOBPCS (Wang et al., 2014) and 

VIOBPCS (Edghill and Towill, 1990) archetypes beside the different choices of 𝜏AINV, to 

deliberately maintain two different states. Regarding the simulation, we select sinusoidal 

demand, i.e. ω=0.12rad/week, mean=1 and amplitude=0.2, to represent the cyclical demand 
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pattern evident in the real-world PC industry. All result and policy settings can be found in 

Figure 5.25. Note that there is no Bode plot of delivery LT for the pure Push state due to the 

constant value of LT (𝜏DD); i.e. there is no dynamic oscillation (variance) of delivery LT but 

a constant value. 

  

 

  

Figure 5. 14. Bode plot of ORATESA, AINVSA and linearised LT for different operational modes 
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(𝜏SA=2𝜏AS = 2𝜏I = 8𝜏DD = 8, 𝜏WIP = 16  𝜏AINV = 8 for the Push-Pull-Pull and 𝜏AINV = 40 for 

the Pure Push states) 

Overall, the simulation results support the analytical insights. With the shift from 

Push-Pull-Pull to pure Push state due to the stock-out of AINVSA and AINVAS, the speed of 

ORATESA response becomes slow (the decrease of the cross-over frequency) and the 

unwanted demand amplification (bullwhip) is significantly decreased for a range of 

frequencies due to the change from the demand pull to the production push; that is, the shift 

from two-degrees-of-freedom state with two independent feedback loops to one-degree Push 

state. Although the corresponding bullwhip related cost will be decreased, e.g. ramping up / 

down machines, hiring and firing staff, the mean and variance of delivery LT is significantly 

increased as the move from desired hybrid state to pure Push state. For the desired Push-

Pull-Pull state, the delivery LT is a constant value and thus there is no Bode plot, i.e. the 

amplification ratio is zero (infinitely small) for all demand frequencies, so that consistent 

customer service levels can be guaranteed, even for highly volatile demand patterns. 

However, if the desirable state cannot be maintained, the peak magnification and bandwidth 

of LT response are dramatically increased for low frequencies demand range, which means 

both the variance and mean of LT are significantly increased due to the influence of CODP 

inventory shortage and long manufacturing and transport delay. Hence, high customer 

service level cannot be maintained with the increase of demand fulfilment uncertainty.  

The frequency response performance of AINVSA, as expected, is significantly 

improved from the desired Push-Pull-Pull to the pure Push state. This is because AINVSA 

becomes WIP inventory with the change of system structure, i.e. AINVSA will be pushed out 
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immediately, for as long as they are produced in the supplier plant. Note that AINVSA 

exhibits significant oscillatory behaviour for the desired hybrid state for demand with low 

frequencies (e.g. between 0.01 rad/week - 0.1 rad/week), suggesting CODP inventory 

utilised as the buffer will unavoidably experience high variance for maintaining ‘Leagile’ 

balance (Naylor et al., 1999). 

5.5. Summary  

In this chapter, a nonlinear system dynamic model, representing the typical PC ATO 

supply chain including a PC component supplier and OEM echelons, has been developed. 

Main nonlinearities present in the PC ATO system have been identified and analytically 

explored by utilising nonlinear control engineering, as well as simplification methods gained. 

Specifically, based on two ‘switches’ nonlinearities, three operational states have 

been identified: hybrid Push-Pull-Pull, Push-Pull-Push, and pure Push states. Due to the 

importance of maintaining truly hybrid Push-Pull-Pull state in practice, for the first part of 

the analysis the author has solely focused on such state by assuming it is always operated via 

ensuring sufficient two CODP inventories. Linear control techniques and the ‘Filter’ lens 

approach are adopted to explore the impact of major control loops, including feedback 

inventory and feedforward forecasting control. Also, main single-valued discontinuous 

nonlinearities present in the desired hybrid Push-Pull-Pull state are identified and the 

corresponding nonlinear control engineering approaches are conducted to give further 

analytical insights. The system dynamic simulation is utilised for verification and providing 

some further insights into the ATO dynamic property. 
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The theoretical result indicated that the hybrid Push-Pull-Pull state is always desired, 

as it is stable, and the customer delivery lead time can be guaranteed. Also, being aware of 

the impact of the system’s nonlinearities and constraints is very important for both the PC 

component suppliers and the OEM. Depending on the demand amplitude, the non-negative 

order constraint at the OEM VMI site may occur and this may lead to a significant increase 

of averaged VMI inventory level and a decrease of the recovery speed of VMI inventory. 

Furthermore, the amplitude of customer demand (variance) is also important for the supplier 

to manager CODP inventory at their site, due to the possible occurrence of capacity and non-

negative order constraints for PC component production. 

In terms of the second part of analysis, the author has mainly explored dynamic 

performance of the nonlinear ATO system based on ‘performance triangle’ driven by multi-

valued nonlinearities, i.e. capacity and the CODP inventory at the supplier measured by 

ORATESA AINVSA and the delivery LT at the final assembly echelon measured by LT. 

Delivery LT dynamics is incorporated into the ATO system dynamics model and nonlinear 

control engineering approach is utilised to linearise the delivery LT dynamics measurement, 

in which analytical techniques, such as transfer function, can be applied to assess dynamic 

performance.  

The analysis indicates that the hybrid Push-Pull-Pull state can only be maintained if 

there are sufficient AINVAS and AINVSA. In such circumstances, delivery LT is a constant 

level in which all customer orders can be fulfilled within the scheduled time. As a result, the 

trade-off of capacity and CODP inventory as the buffer (i.e. inventory or responsive capacity 
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buffer) should be considered, based on the cost assignment for capacity and inventory related 

parameter, such as inventory holding cost and machine/labour adjustment cost. The system 

will fail to operate as the desired state with a decrease in the CODP inventory at final 

assembly (VMI hub) and the supplier manufacturing site, leading to a shift from Push-Pull-

Pull to pure Push state. Although the variance of CODP inventory and the bullwhip (the 

corresponding capacity adjustment) will be significantly decreased, the mean and variance 

of the delivery LT are dramatically increased, due to the stock out issues, as well as long 

physical delay (𝜏SA and 𝜏AS). This is an undesirable condition because of the significant 

decrease in customer service level. In the real PC supply chain, upstream suppliers, such as 

semiconductor manufacturers, may design long-time inventory adjustment to retain ‘Lean’ 

production and avoid expensive capacity fluctuation (Lin et al., 2017). On the other hand, 

from the entire ATO supply chain perspective, this may cause operational shift from the 

desired hybrid structure to the pure Push state driven by the frequent stock out issue, which 

significantly influences the downstream OEMs’ customer service level; i.e. the long and 

unreliable delivery LT. Such findings also support the importance of adopting collaborative 

design and planning strategy between supplier and OEMs to reduce operational cost driven 

by poor supply chain dynamics.  Also, the theoretical analysis supports the practical rationale 

as to why PC OEMs make every effort, exploiting such approaches as supplier qualifying 

programmes and VMI to ensure CODP inventory availability for immediate final assembly.
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Chapter 6. Insights gained from the system dynamics of the ATO 

systems. 

This chapter summarises the insights gained from the research process. More 

specifically, the main gaps identified in Chapter 2 highlighted the system dynamics 

modelling of the ATO structure, as well as the need for evaluation of the performance triangle 

(bullwhip, inventory and lead times) and nonlinearities present in the ATO system. Also, 

major insights are illustrated in detail and synthesised regarding the design, modelling and 

analysis of the ATO system within the context of semiconductor and PC supply chains as 

given in Chapters 5 and 6. Finally, based on all main findings, a framework, adapted from 

Naim and Towill (1994), is proposed to design, model and analyse the dynamic performance 

of the ATO system. 
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6.1. Insights gained from the conceptual literature review  

 In summary, a conceptual literature review was used to critically examine the existing 

literature and to map knowledge in the area of ATO and system dynamics in order to 

conceptualise a framework. Many insights were gained when using this approach: 

• The concept of CODP and DIDP related to the material and information decoupling 

points is critically reviewed. Since the customer order flow is based on actual 

customer orders, it is necessary to position the DIDP upstream of the CODP, or 

possibly at the CODP. If DIDP is positioned upstream of the CODP the forecast used 

for the forecast driven flow can be improved, as it may be based on more up to date 

point of sales data. 

• Based on supply chain performance (Table 2.1), many performance metrics were 

examined in the ATO stochastic modelling and analysis literature. Among these 

performance metrics, time (CODP and end customer delivery LT), production 

capacity (e.g. component capacity, final assembly capacity), and CODP inventory 

are well-recognised as the most important metrics (Sections 2.1.1 to 2.1.4);  

• Within the system dynamics and IOBPCS family literature, bullwhip and inventory 

are the two main dynamics indicators. Very few studies have assessed time-based 

ATO dynamics performance, although some works have given implications for the 

dynamic behaviour of orderbook/backlog order in the MTO system. Based on 

findings gained from the stochastic analysis and literature gaps identified in the 

system dynamics literature, the so-called ‘performance triangle’ performance 
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assessment metrics, which are: capacity availability and CODP inventory at the 

supplier; delivery LT at the final assembler, are developed (Sections 2.1 to 2.3): 

• Despite the importance of the impact of nonlinearities on system dynamics 

performance, only simulation methods have been exploited to analyse complex, high-

order, nonlinear supply chain models. Although an emerging number of analytical 

studies (e.g. Wang et al., 2012; 2014; Spiegler et al., 2016a) have explored the impact 

of nonlinearities on dynamics performance, all of them focus on the MTS-based 

system by considering inventory and order variability as main performance indicators 

(Section 2.2.3). As the result, a review of linear and nonlinear control engineering 

approaches establishes the main analytical methods utilised in this study: ‘Shock’ 

lens and ‘Filter’ lens analysis techniques, describing function and Taylor series 

expansion linearisation approaches. Also, a combined system dynamics and control 

engineering analysis strategy is implemented in assessing the dynamics property of 

the ATO system to offer robust and traceable dynamics insights (Section 3.2). 

6.2. Insights gained from the semiconductor ATO supply chains (RQ2a and 2b) 

In Chapter 4, the existing Intel system dynamics model, originally developed by 

Gonçalves et al. (2005), is utilised as an illustration of a typical ATO system. The complete 

dynamic picture can be visualised, including main entities (e.g. balancing, reinforcing loops, 

delays and nonlinearities) and their interconnections. Thus, such a system dynamics model 

is referred to as Target model, i.e. the observed or current situation/problem to be addressed 

is identified, documented and modelled. 
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The Intel supply chain is highly nonlinear and complex (a ninth-order system), 

including various feedback balancing loops, delays and control policies monitoring the 

system states. Also, there are two nonlinear ‘switches’, defined by the Min functions (Figure 

4.1), governing the minimum value of two inputs as the output. The relative complexity of 

the block diagram suggests that it will be difficult to derive the transfer function and any 

quantitative analysis would have to rely on simulation alone. The simulation has the main 

drawback of lacking analytical guidance, due to its nature of a trial-and-error approach that 

may hinder the system improvement process (Sarimveis et al. 2008, Lin et al. 2017). As a 

result, instead of directly considering the ‘surface similarities’ (i.e. based on the mere 

appearance between two objects), the adoption of ‘behavioural similarity’ (based on the 

function, matching relations, and final goal of the problems, even when they do not appear 

to be similar) by source model(s)/candidate solutions should be considered.  

As analysed in Chapter 4, the IOBPCS family, enabled by control engineering, is 

utilised as the benchmark model for gaining analytical insights into the ATO system 

dynamics model. The insights of a high-order, nonlinear ATO system, as personified by the 

Intel system dynamics model, can be gained by adapting analogical reasoning (Gavetti and 

Rivkin, 2005; Naim et al., 2017) including the following three-step design and analysis 

method: 

Linearisation and/or simplification: several simplification procedures are conducted 

in the study of the Intel system dynamics model. Specifically, the nonlinearities are assumed 

temporarily inactive and thus, the capacity and non-negative order constraints in the original 
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Intel system dynamic model can be removed. Also, removing the system physical variables 

that do not influence dynamics behaviour, such as die yield rate, line yield rate, although 

their associated impact of quality issues (e.g. different yield rate) on dynamics performance 

are analysed in the sensitivity analysis Section 5.2.2.4.3. Furthermore, as the distribution 

delay in the semiconductor industry is much shorter than upstream assembly and fabrication, 

the corresponding echelon and redundancies can be temporarily eliminated; 

Search source model(s): after simplifying and linearising the original system 

dynamics model, the direct analogues with the IOBPCS family can be observed.  That is, the 

simplified semiconductor ATO system consists of a VIOBPCS (Edghill et al., 1990) without 

lead time, as well as similar APVIOBPCS (Wang et al, 2014) archetypes.  

Candidate solutions: As a result, the corresponding recommended settings can now 

be utilised to assess the dynamics property of the simplified semiconductor ATO system, to 

explore the underlying mechanisms of bullwhip and inventory variance. The linear control 

engineering approaches, including transfer function, stability analysis, characteristics 

equations analysis, can be implemented to provide further analytical insights into the 

simplified system.  

Furthermore, the simulation is again utilised to verify the semiconductor ATO model 

by re-installing nonlinearities, which give more robust and traceable analytical results. Based 

on these procedures, the summarised findings and corresponding managerial implications 

are presented in Table 6.1. 
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Systems  Findings Corresponding managerial implications  

Linear Pull 

part of hybrid 

ATO system 

 𝜔𝑛 𝑎𝑛𝑑  𝜁 

1. TsAdj and TFGI inversely proportional to 

 𝜔𝑛. 

2.  𝜁≥1 for all positive value of TsAdj and 

TFGI. 

1. Quick forecasting smoothing and inventory error correction 

lead to rapid system recovery to the steady state condition. 

2. The Pull part system always produces over-damped behaviour 

without oscillations.  

Stability 
The real roots are always negative for 

positive value of TsAdj and TFGI. 

The Pull part system is permitted to be stable and robust for any 

forecasting methods and a positive value of inventory correction 

policy. 

Dynamic 

response 

 TsAdj plays a major role in the AN 

response, while TFGI has a major impact 

on the FGI dynamic behaviour.  

Bullwhip is mainly caused by the feedforward compensation in 

the semiconductor Pull supply chains: A careful compromise 

between advance stock availability and bullwhip effect should 

be considered.   

Nonlinear 

Pull system 

Dynamic 

response 

The same insights from the linear MTO 

system are confirmed. 

The same managerial implications indicated by linear analysis 

are obtained. 

Linear Push 

part of hybrid 

ATO system 

 𝜔𝑛 𝑎𝑛𝑑  𝜁 

1. TAWIP and TFWIP inversely proportional 

to  𝜔𝑛. 

2.TAWIP has a major influence on 𝜁. 

1. Quick CODP (AWIP) and FWIP inventory error correction 

leads to the system’s rapid recovery to steady state conditions. 

2. The CODP (AWIP) inventory policy plays a major role in the 

system’s dynamic behaviour. 

Stability 
The real roots are always negative for 

positive value of TFWIP and TAWIP. 

The Push system is guaranteed to be stable for any positive 

choice of the AWIP and FWIP inventory correction policies.  

Dynamic 

response 

1. TsAdj, TFGI, TAWIP and TFWIP influence 

the bullwhip effect. However, TsAdj and 

TAWIP play a major role for bullwhip 

level. 

2. TAWIP is the key factor for system 

oscillations.  

1. The CODP inventory error correction and forecasting 

smoothing policy should be carefully tuned, due to their major 

influence on bullwhip level in the Push system. 

2. The trade-off between the cost of bullwhip (e.g. capacity ramp 

up/down, labour hiring and firing) and the benefit of 

implementing CODP strategy should be considered, due to the 

system’s oscillations being sensitive to the CODP policy 

settings.  
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Systems 

(Continued) 
 Findings Corresponding managerial implications  

Nonlinear 

Push part  

Dynamic 

response  

The same results regarding the impact of 

control policies on the dynamic behaviour 

can be confirmed in the nonlinear MTS 

system. However, the introduction of 

nonlinearities can reduce the bullwhip effect 

at the expense of increasing CODP inventory 

variability. 

Additional to the managerial insights gained from the linear 

analysis, the impact of capacity constraint should be 

considered for trade-offs design between the CODP inventory 

and capacity utilisation when the hybrid ATO production 

strategy is adopted. 

Comparison 

for the 

semiconductor 

Push (MRP) 

and the 

APVIOPBPCS 

system 

 𝜔𝑛 

Semiconductor MRP system is always larger 

than the APVIOBPCS system for all positive 

control policy. 

The dynamic recovery speed of semiconductor MRP system is 

faster than the APVIOBPCS system, which may benefit higher 

customer service level by increasing the inventory recovery 

speed in responding to customer demand 

𝜁 

On the other hand, re-order APVIOBPCS 

always has larger 𝜁 than MRP-based system 

for all positive value. 

MRP system will produce more oscillations under the same 

policies settings and its associated production activities and 

cost, such as ramp up and ramp down machines, hiring and 

firing staff, have to be considered in designing such production 

control systems. 

The impact of 

lead times and 

quality  

 

1. The increase of TF leads to high variance 

of WS and AWIP 

2.1. The decrease of TU, TL and TD leads to 

high variance of WS and AWIP 

The upstream wafer yield rate and downstream final assembly 

line efficiency should be monitored, since it is not only directly 

related to the customer service level (i.e. whether the 

customised orders can be delivered within quoted time), but 

also significantly drives the supply chain dynamics cost driven 

by the high bullwhip and inventory variance. 

Table 6. 1. Summary of the findings and managerial implications. 
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In summary, the analysis offers robust and traceable insights for the effect of 

fundamental system structures (feedback, feedforward) and the corresponding control 

policies on the dynamic behaviour of the hybrid ATO system, which contribute to the 

analytical guidance of supply chain system design in the context of the semiconductor 

industry. The analytical stability region map proides a basic framework for examining 

stability conditions in both a linear and nonlinear environment. The well-established results 

derived from the linear system, bullwhip level, fill rate and the corresponding economic 

implications, for example, can also be used as indicators to compare the nonlinear dynamic 

results. A good example is Ponte et al.'s (2017) method to set optimal capacity based on the 

benchmark of well-established linear analysis results in a capacitated production 

environment.  

6.3. Insights gained from the theoretical PC ATO system 

The thesis conducts extensive study on dynamic modelling and analysis of a stylised 

ATO system within the context of PC supply chains, to provide valuable insights regarding 

the scientific visualisation and assessment of system dynamic property of an ATO system 

structure from a system dynamics perspective. All main findings and corresponding 

managerial implications are summarised in Table 6.2. 

6.3.1. Modelling the ATO system 

Specifically, based on the literature review of the IOBPCS family model, as well as 

the insights gained from the Intel system dynamics model, the author developed a two-
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echelon, non-linear ATO system dynamic model to represent the main dynamics 

characteristics of the ATO system structure: 

Pull loops: there are two pull loops in a typical PC downstream supply chain if two 

CODP inventory are sufficient, including 1) end customers’ customised orders pull PC 

CODP component inventory from the VMI inventory hub near the final assembly site, and 

2) the VMI inventory replenishment pull PC CODP inventory at the supplier site. To model 

the first pull loop, as illustrated in Figure 6.1, the first order modelling approach can be 

utilised. The cumulative difference between inflow (CONS) and outflow (actual SH) can be 

obtained as a measure of backlog. i.e. a work-in-progress orders, WIP (Wikner, 2003).
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 Findings/Outcomes Managerial implications 

The analysis 

of hybrid 

Push-Pull-

Pull state 

Control  

loops 

1. The ATO is stable for any positive value 

of τA, τAINV, τWIP and τI. 

2.  𝜔𝑛1  and 𝜁1 are inversely proportional to 

𝜏𝐼. 

3.  𝜔𝑛2  and 𝜁2 are inversely proportional to 

𝜏AINV. 

4. 𝜏AINV plays a dominant role in influencing 

the whole state’s oscillatory behaviour. 

1. There is a need to consider the inventory policy of the 

downstream echelon to avoid excessive bullwhip and 

inventory variance. Managers need to avoid too quick an 

inventory adjustment, defined by 𝜏𝐼.   

2. There is a trade-off in the sub-assembler between 

capacity and CODP inventory variance defined by 

𝜏AINV . This policy parameter needs to be carefully 

selected due to its dominant influence on the dynamic 

behavior of the ATO system.  

3. The forecasting policy plays a substantively smaller 

role in influencing the dynamic performance of the ATO 

system in comparison to the other policies in the system, 

contrasting to previous studies that assumed linearity 

(Dejonckheere et al. 2002; Li, et al., 2014). 

An increase in 𝜏A leads to a reduction in 

bullwhip (ORATESA variance) at the expense 

of increasing AINVSA variance, although the 

effect of 𝜏A is limited comparing feedback 

control loops. 

Non-negative 

order 

constraint at 

the VMI site  

1. The occurrence of non-negative order 

constraints at the OEM VMI site lead to the 

change of 𝑁𝐴(𝑁𝑂) ranging between 0.5 and 1, 

which depends on the amplitude of input 

demand. 

2. 𝑁B(NO) increases with the increase in input 

demand amplitude  

1.Being aware of the impact of the system’s 

nonlinearities and constraints is very important for final 

assemblers. Depending on the demand amplitude, the 

non-negative order constraint at the final assembly plant 

may occur, such that  𝑁B(NO) will increase with demand 

amplitude, and this could lead to a significant increase 

in average inventory level, which increases total costs. 
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Capacity and 

nonnegative 

order 

constraint at 

the supplier 

site  

1. 𝑁𝐴(𝐶𝐴) decreases and can approach 0 as 

the increase of input demand amplitude 

triggered by the occurrence of capacity and 

non-negative order constraints at the supplier 

site. 

2. The change of 𝑁B(𝐶𝐴), however, depends 

on the relationship between mean of input 

(B) and half the capacity limit (CL). NB(CA) 

equals to 1 irrelevant to input amplitude A if 

B=CL/2. if B <
1

2
CL, the increase of A leads 

to the increase of NB(CA). Furthermore, NB 

monotonically decreases in A if B >
1

2
CL. 

2. Production managers at the subassembly site should 

carefully consider capacity utilization, i.e. should the 

mean of the orders received from the downstream final 

assembly exceed half of the maximum capacity, then the 

dominant impact on CODP inventory dynamics will be 

the capacity constraint rather than the non-negative 

order low boundary. Under such condition, 𝑁B(CA) will 

increase with demand amplitude, leading to the decrease 

in average inventory level.  

3.  In contrast, if the mean of the orders received is less 

than half of the maximum capacity then the non-

negative order boundary dominates. This leads to the 

increase in average CODP inventory level at sub-

assemblers. Alternatively, if the mean of the orders 

received equals half of the maximum capacity then 

nonlinearities do not have impact on the averaged 

inventory level. 

Impact of 

VMI non-

negative 

order 

The impact 

of 𝑁𝐴(𝑁𝑂)  

and 𝑁B(NO) 

As the decrease of 

𝑁𝐴(𝑁𝑂), will result the 

decrease of  𝜔𝑛1 but the 

increase of  𝜁1.  

1. An increase in demand amplitude, which influences 

𝑁𝐴(𝑁𝑂) , will yield a system with lower bullwhip and 

inventory variance, although at the expense of a slower 

inventory recovery speed at the final assembly. The 
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constraint 

gains 

the 𝑁𝐵(𝑁𝑂) will be also 

increased as the increase of 

input demand amplitude. 

latter suggests a decrease in customer service level due 

to the increased probability of stock-out, in particular 

when the system’s steady state condition is disturbed by 

a sudden but a sustained demand increase. 

2. An increase in demand amplitude (influences 

𝑁𝐴(𝐶𝐴)) will decrease CODP inventory recovery speed 

at the subassembly, which also directly increases the 

stock-out probability of CODP inventory at the final 

assembly site. 

Final assembler should aware their final assembly line 

efficiency, defined by YF, and the sub-assembler needs 

to consider yield losses, given by YS, since they not only 

directly relate to the customer service level, i.e. whether 

the total orders can be delivered within the quoted lead 

times, but also increase supply chain dynamics costs of 

the upstream supplier in the ATO system. 

Impact of 

supplier 

capacity and 

non-negative 

order 

constraints 

The impact 

of 𝑁𝐴(𝐶𝐴) 

and 𝑁B(𝐶𝐴) 

The decrease of output 

amplitude gain, 𝑁𝐴(𝐶𝐴),  

resulting from the capacity 

and non-negative order 

constraints at the supplier 

site, will lead to the decrease 

of  𝜔𝑛2 and 𝜁2. 

Depending on the relationship 

between mean of input 

demand and the half of 

capacity constraint, the 

increase of demand amplitude 

may lead to the increase of 

decrease of 𝑁𝐵(𝑁𝑂).   

Delivery LT 

linearization  

Based on Taylor series expansion with small perturbation 

theory, delivery LT can be linearised by the following 

equations: 

𝐿𝑇 = 𝜏𝐷𝐷                                𝑖𝑓  𝑆𝐻𝑀𝐴𝑋 > 𝑆𝐻
∗ 

𝐿𝑇 = 𝜏𝐷𝐷 + 𝐵𝐿 − 𝐴𝐼𝑁𝑉𝐴𝑆   𝑖𝑓  𝑆𝐻𝑀𝐴𝑋 < 𝑆𝐻
∗ 

Managers may simply calculate the estimated delivery 

LT by considering the difference between current 

backlog and raw materials inventory level at final 

assembly plant (VMI hub), under the condition that 

desired shipment rate cannot be fully satisfied. 
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The analysis 

of hybrid 

Push-Pull-

Push state 

The final OEM assembly echelon is characterised by a third 

order, non-factorised loop, due to the incorporation of BL 

adjustment loop into feedback AINVAS loop (i.e. stock out of 

AINVAS), while the structure of upstream supplier is same for 

the Push-Pull-Pull state. 

Not applicable due to the state being unstable. 

The analysis 

of pure Push 

state 

1. The average delivery LT is larger than, 𝜏𝐷𝐷 and its 

dynamic performance due to physical delay and system 

control policies at both final assembly (VMI) and the supplier 

manufacturing site.  

2. The variance of ORATESA and AINVSA may be reduced due 

to the incorporation of final assembly structure. 

Although both downstream and upstream players 

benefit from the reduction of supply chain dynamics cost 

driven by the decrease of inventory variance and 

bullwhip, the mean and variance of delivery LT is 

significantly increased and this directly influences the 

customer service level. 

The 

summary of 

performance 

triangle  

As the switch from true hybrid Push-Pull-Pull to pure Push 

state, the mean and variance of delivery LT can be 

significantly increased, although ORATESA and AINVSA 

variance can be mitigated due to independent inventory 

feedback loops at both final assembly and supplier 

manufacturing sites has been integrated as a fifth-order 

production push feedback loop.  

Due to nonlinear switch between different operational 

processes, maintaining the ‘true’ hybrid ATO 

operational state is always desirable to ensure customer 

service level; that is, the reliable LT. 

 

 

Two peak frequencies can be observed in the Bode plot 

diagram of ORATESA due to the effect of two natural 

frequencies driven by two independent feedback loops (two-

degrees-of-freedom system). 

It is important for managers to consider the adoption of 

collaborative control policy design with their supply 

chain partners to reduce the influence of supply chain 

dynamics. 

Table 6. 2. Main results and managerial insights based on modelling and analysis of the stylised PC ATO system dynamic model.
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The output SH is the result of the fraction of WIP (1/τDD) depending on the minimum 

between SH* and SHMAX, i.e. the availability of VMI inventory (AINVAS). τDD is the average 

delay of the production unit.  

+-

𝑆𝐻𝑀𝐴𝑋  
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-
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𝑠
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Figure 6. 1. The first order modelling approach for the first pull loop. 

The second pull loop (Figure 6.2) representing the VMI hub inventory replenishment, 

based on Darwish and Odah (2010) and Katariya and Tekin (2014), is determined by three 

factors: 1) the VMI inventory adjustment, which is a feedback loop well-recognised in the 

IOBPCS family literature, 2) the feedforward shipment compensation loops utilised as a 

reliable proxy to replenish the VMI inventory and 3) feedforward backlog adjustment based 

on desired backlog and actual backlog level. 
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Figure 6. 2. The second pull loop modelling approach. 

Push loop: as the upstream PC component supplier is a typical MTS with information 

sharing (forecasting sharing by the downstream OEM; in other words, the DIDP is positioned 

in the upstream supplier site), the well recognised APVIOBPCS archetype can be utilised for 

directly modelling such a system. Specifically, for each ordering cycle, the replenishment 

decision is based on three variables of the system: feedforward forecasting adjustment, 

feedback inventory adjustment and feedback work-in-process inventory adjustment.  

Thereby, two echelons stylised system dynamic model, representing main ATO 

characteristics, including pull and push loops, information (forecasting sharing) and material 

CODP positions, can be developed. 
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6.3.2. Dynamic analysis of the truly ATO state (hybrid Push-Pull-Pull state) 

 Based on the system dynamic model developed in Section 5.1, four discontinuous 

nonlinearities are found in the ATO system, although continuous nonlinear lead times 

measurement as the output measurement does not influence the dynamic property of the ATO 

system. Two multi-valued nonlinearities, i.e. two CODP inventory constraints, may govern 

the system states, depending on the availability of two CODP inventory, which not only 

influences the dynamic behaviour of the system, but may also change the ATO system 

structure. Due to the importance of maintaining a truly hybrid ATO state, the impact of such 

a structure on the dynamic behaviour was analysed, including main feedback and 

feedforward loops, and nonlinearities present in such a state. The three steps design method 

(Figure 6.1) gained from the analysis of Intel ATO supply chains can be implemented to 

extract and analyse the truly hybrid ATO state. From the ‘Filter’ lens perspective, the 

describing function method, as reviewed in Section 3.2.1.3 and analysed in Section 5.2.2, is 

utilized to linearise the single-valued nonlinearities including capacity and non-negative 

order constraints at the supplier site, as well as the non-negative order constraint at the VMI 

inventory hub site.  Then, the linear control engineering approach, including transfer function, 

characteristics equations analysis can be further applied to gain further dynamic property of 

the truly hybrid ATO state. 

 To summarise, similar insights, by comparing the Intel supply chains, are gained 

regarding the impact of feedback and feedforward loops on the dynamic behaviour of the 

ATO system. That is, the CODP inventory adjustment policy at the supplier site should be 
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fine-tuned to balance the cost of supply chain dynamics and the benefit of maintaining a 

hybrid ATO state, as such policy plays a key role for oscillation. Furthermore, two single-

valued nonlinearities can influence the recovery speed and oscillations of the ATO system, 

depending on the amplitude of input demand from the ‘filter’ lens perspective.  

6.3.3. Dynamic analysis of multi-valued nonlinearities 

If two multi-valued CODP constraints are re-installed in the ATO system, the 

dynamic behaviour become complex due to the introduction of delivery LT dynamics as the 

third important performance measurement in the ATO system. To summarise, based on 

different operational states governed by the two multi-valued nonlinearities, there are three 

distinctive states due to the existence of two stock points:  

1) A ‘desired’ ATO state in which both stock points are available for immediate VMI 

replenishment shipment, and final assembly,  

2) A ‘hybrid push-pull-push state’, where the PC parts are available for VMI 

replenishment shipment but not for immediate final assembly, and  

3) The ‘pure push’ state, where both stock points run out of inventory.  

The analysis of two stock constraints nonlinearities suggests the “hybrid” ATO structure 

can switch to the pure push structure triggered by insufficient CODP inventory. This state is 

undesirable, not only due to the high probability of stock-out itself, but also because it leads 

to increased bullwhip and higher delivery LT variance, which further damages supply chain 

performance. By maintaining the desired ATO state, the trade-off between capacity and 
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CODP inventory as the buffer should be considered. The theoretical modelling also supports 

the practical rationale as to why PC OEMs make every effort, exploiting such approaches as 

supplier qualifying programmes and VMI to ensure CODP inventory availability for 

immediate final assembly.  

6.4. A framework for designing, modelling and analysing the dynamic ATO system  

Based on insights gained above and by adapting the widely recognised framework 

developed by Naim and Towill (1994), the author develops a holistic framework to design, 

model and analyse the impact of ATO structure on dynamic performance, as illustrated in 

Figure 6.3.  

Specifically, there are two distinct but overlapping phases of analyses: qualitative 

and quantitative stages. The qualitative phase focuses on the exploration of a specific supply 

chain system (i.e. the ATO based systems) and defining its boundaries and interfaces. Naim 

and Towill (1994) suggested that four main business objectives can be evaluated using their 

framework. These are: inventory reduction target, controlled service levels, minimum 

variance in material flow, and minimum total cost of operations and procurement. In the 

ATO system, the end customer delivery LT dynamics is incorporated as the fifth objective. 

Moreover, organisations should be aware that there are trade-offs between these objectives 

and different weighting may be given to each of them. 
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Figure 6. 3. A holistic framework for system dynamic analysis of an ATO system, adapted from 

Naim and Towill (1994) and Naim et al. (2017) 
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More specifically, if the system dynamics model of the ATO has been created and 

verified, a three-step design (see the source models/candidate solutions illustrated in Section 

6.2), can be implemented to gain deep insights into its dynamic property, especially the 

underlying causes of supply chain dynamics; bullwhip effect, for example. In this thesis, the 

existing Intel system dynamic model, developed by Gonçalves et al. (2005), is chosen and 

analyzed.  

If the system dynamic model of ATO is not available, qualitative modelling 

procedures need to be followed before quantitative modelling and analysis. This thesis 

focuses on the development of a generic two-echelon PC ATO system. Soft modelling 

techniques, including cause loop diagram and/or stock-flow diagram, can be applied to 

develop a conceptual model to map and visualise main entities and their relationship within 

the system, e.g. feedback, feedforward, delay, nonlinearities. These illustrative diagrams are 

also reported to help in communicating with the relevant people in the supply chain and 

extracting more information to refine the model (Naim and Towill, 1994). Other methods, 

as illustrated in Table 5.1, such as extremities test, boundary and structure validation, and 

family members and parameters reproduction are applied to verify the system dynamic 

model. The conceptual model can then be formulated by the block diagram to describe the 

overall concept of a complex system without concerning the details of implementation, as 

well as allowing for both a visual and an analytical representation within a single entity.  

 During the quantitative analysis stage, the author synthesises the original framework 

(Naim and Towill, 1994), i.e. chooses one or more of three possible techniques for analysing 
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the supply chain, including control theory, computer simulation and statistical analysis, as 

well as three-stage analogical reasoning design based on insights gained from analysis of the 

Intel semiconductor ATO system, i.e. the three-step design and analysis. It should be noted 

that, unlike the Intel supply chains, only simplification is conducted; the linearisation, 

enabled by the non-linear control engineering approaches, is also adopted in the study of the 

nonlinear PC ATO system. 

Specifically, based on the findings of this thesis, the describing function method is 

appropriate for linearising discontinuous nonlinearities, including capacity and non-negative 

order constraints, as well as CODP inventory constraints. Furthermore, Taylor series 

expansion with small perturbation theory can be applied for continuous nonlinearities, i.e. 

the delivery LT dynamics as the output measurement. The validation procedure is involved 

to compare the simplified and linearised models with the original ones. For each step taken 

in the simplification and linearisation process, frequency and/or step output responses have 

been used for comparison and validation. 

After simplifying and linearising the original nonlinear, complex system dynamics 

model of the ATO system, the direct analogues with the benchmark models (e.g. the IOBPCS 

family) can be observed. Like the Intel supply chain design and analysis, the benchmark 

models’ recommended system settings now can be utilised for assessing the dynamic 

property of the ATO system, to explore the underlying mechanisms of bullwhip and 

inventory variance. The linear control engineering approaches and computer simulation 
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approaches give further analytical insights into the system, which can be summarised as 

follows (Naim and Towill, 1994): 

• Tuning existing parameters: supply chains can be redesigned by maintaining the 

original supply chain structure but varying the control parameters to improve 

performance.  

• Structural re-design: this involves altering the model’s structure, such as removing 

an echelon or including feedback information in the control system. Moreover, re-

engineering processes, such as the inclusion of new feedback control systems, were 

beyond the scope of this research.  

• ‘What if?’ business scenarios: this involves testing how the supply chain would 

perform for alternative business propositions or unexpected changes in the business 

scenario. This thesis has tested the impact of both expected changes in control 

parameters, such as forecasting and inventory control policies, and physical 

parameters, including physical lead times and production yield, on the dynamic 

performance of the ATO system.  

The analytical insights based on the procedures above can be obtained regarding the 

impact of major control loops and nonlinearities on the ATO system dynamic performance. 

Finally, managerial implication derived can contribute feedback to the real-world scenario 

to guide practitioners in designing and analysing their ATO ordering system structure. Note 

that the real-world data or further analytical tools (optimisation, for example) can be applied 

to conduct trade-off design and analysis, although this is outside the scope of this thesis.  
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6.5. Summary  

This chapter synthesises insights gained from the thesis. Regarding the literature 

review and method chapters, the author critically assesses two branches of research 

directions: the CODP and ATO systems, as well as system dynamics with the IOBPCS 

family models. The author has identified that the ATO system remains unexplored within 

the context of supply chain dynamics, although ATO topics are well-researched in stochastic 

modelling and analysis literature. A so-called ‘performance triangle’ assessment framework 

is developed to evaluate the dynamic performance of the ATO system; that is, the capacity 

variation and CODP inventory variance at the supplier and end customer delivery LT at the 

final assembly site.  A series of linear and nonlinear control methods are reviewed and 

selected as main approaches to investigate the research questions.  

The author utilises existing system dynamics model of Intel, as the starting point, and 

develops the corresponding simplification/linearisation method to gain insights into the 

impact of control loops on dynamic performance in the present ATO structure. Then, a 

generic two-echelon system dynamic model, based on PC sector supply chains, is developed, 

which includes the main characteristics of the ATO system, including CODP, hybrid Push-

Pull and ‘performance triangle’. The author also contributes to the linearisation methodology 

development regarding main nonlinearities present in the PC ATO system dynamics model, 

so that analytical tools can be implemented to explore its impact on system dynamics.  

Furthermore, the theoretical analysis of the PC ATO system structure supports the 

practical rationale as to why PC OEMs make every effort, exploiting such approaches as 

supplier qualifying programmes and VMI, to ensure CODP inventory availability for 
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immediate final assembly. Finally, a framework for the design, modelling and analysis of the 

ATO system is proposed based on Naim and Towill (1994), which contributes to the 

guidance to explore the impact of the ATO system structure on dynamics performance. 
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Chapter 7. Conclusion  

This chapter will relate the findings back to the research questions that emerged from 

the preliminary investigation for this research and from the literature review process. In 

addition, the contributions of this research to theory, methodology and practice will be 

summarised. Finally, the limitations and potential areas for further investigation will be 

discussed. 
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7.1 Theoretical contributions  

7.1.1 Answer RQs related to the research objective 1 (RQ1a, RQ1b) 

 The ATO system is well-adopted in the PC and semiconductor industries, and 

academic communities have extensively explored such a system from the stochastic 

modelling and analysis perspective. e.g. Hsu et al., 2006; 2007; Fu et al.. 2006; Benjaafar 

and Elhafsi, 2006; Feng et al., 2008; Lu et al., 2010; Cheng et al., 2011; Kebils and Feng, 

2012; Lu et al., 2015). 

However, the ATO system’s dynamic property remains unexplored, especially given 

that adopting industries suffer severally from poor supply chain dynamics (Gonçalves et al., 

2005; Hofmann, 2017; Li and Disney, 2017; Lin et al., 2017). System dynamics and control 

policies have been pointed to as a central activity in the management of material and 

information flow (Mason-Jones and Towill, 1998) and as major sources of supply chain 

disruption (Colicchia et al., 2010). System dynamics can be studied by utilising the well-

known IOBPCS family as a base framework to model the new ATO systems and benchmark 

to existing system dynamics models of ATO. Therefore, the answers to RQ1 and RQ2 

contribute to supply chain theory development, i.e. the complement of exploring the IOBPCS 

family model in studying supply chain dynamics and, specifically, for the ATO system.  
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RQ1a. How may the IOBPCS family be utilised to study ATO system dynamics? 

Based on Lin et al.’s (2017) systematic citations review of Towill (1982) and John et 

al. (1994) from 1982 to 2016, as well as the updated citations review to May 2018 in Chapter 

2, Figure 2.6 reported the synthesis of the adoption of IOBPCS family in studying supply 

chain dynamics. Although details can be found in Section 2.2.2 and Figure 2.4, the author 

summarises the review result as follows: 

• The IOBPCS family models are extensively studied in the context of MTS 

production-inventory, as well as supply chain systems based on four inherent policies, 

including 1) forecasting policy, 2) inventory adjustment policy, 3) lead time policy 

and 4) work-in-process inventory policy; 

• Adopting the IOBPCS family as an entire system to study supply chain dynamics. 

For these articles, a framework of dynamic system control was adopted in order to 

categorise contributions into the sensing, assessing, selecting and acting clusters. 

• The extension of the IOBPCS family into different supply chain contexts, including 

remanufacturing, supply chain resilience, order-based system, e.g. MTO and ATO), 

and nonlinearities. 

• The modelling and analysis of order-driven systems by utilising the IOBPCS family 

models remains very rare; only two studies are found, i.e. Wikner et al. (2007) and 

Wikner et al. (2017). Most research studies utilise bullwhip and inventory variance 

as the two main performance indicators for assessing MTS supply chain dynamics. 

Furthermore, most studies assume the system is completely linear and thus ignore 
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common nonlinearities present in the system, such as physical constraints (e.g. 

capacity, shipment) and policy constraints (e.g. forbidden return) (Lin et al., 2017). 

RQ1b. What kind of criteria can be utilised to assess the performance of the ATO system 

dynamics? 

Based on cost-related supply chain performance, the author reviews the study of the 

ATO system from an analytical modelling and analysis perspective as the starting point to 

capture the main performance metrics utilised for assessing ATO systems in Chapter 2. To 

conclude, four major metrics are utilised for performance evaluation in the ATO system, 

including delivery LT, component (CODP) inventory, production/final assembly capacity 

and pricing. Within the system dynamics and IOBPCS family literature, bullwhip and 

inventory are the two main dynamics indicators, while limited study has explored time-

related metrics, such as delivery time dynamics performance. 

Based on findings and literature gaps identified in the system dynamics literature in 

Chapter 2, performance assessment metrics are developed, known as a ‘performance triangle’ 

comprising capacity availability (bullwhip) and CODP inventory at the supplier, with 

delivery lead times at the final assembler.  

7.1.2. Answer RQs related to the research objective 2 (RQ2a and 2b) 

Facing complex, non-linear high order dynamics systems, only simulation is 

recommended (Forrester, 1961; Wikner et al., 1991; Naim and Towill, 1994; Shukla et al., 

2009). Although system dynamics simulations contribute to a representation of a real system 
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by incorporating nonlinear components and complex structures, it is a trial-and-error 

approach that may hinder the system improvement process (Towill, 1982; Sarimveis et al., 

2008).  This is also true in the semiconductor industry in which simulation is the primary 

choice when investigating system dynamics (Gonçalves, et al., 2005; Orcun et al., 2006; 

Orcun and Uzsoy, 2011).  

For this reason, the author utilises the Intel supply chains introduced in Section 3.3.2, 

as an example of an existing complex ATO system, and develop a simplification method to 

analytically explore its dynamic property. The underlying causes of supply chain dynamics 

in the ATO system are analytically explored and the corresponding mitigation strategies can 

be proposed to reduce unwanted poor supply chain dynamics.  

RQ2a. How to design the nonlinear, high-order ATO supply chain to gain insight into its 

dynamic properties as personified by the Intel system dynamics model? 

Simplification: simplification techniques were applied first in Section 4.1 to decrease 

the number of equations and variables in the model. The purpose is to allow the investigator 

to understand the underlying causes of bullwhip among many feedback, feedforward and 

delay loops. The system dynamic simulation will be conducted by re-installing the 

nonlinearities after analysing the dynamic property of linearized ATO system. 

Benchmark to the IOBPCS family: the IOBPCS family now can be utilised to 

benchmark with the stylised ATO semiconductor model. The rationale is that the well-

understood family model with recommended system parameter setting can be used to test 

the dynamic behaviour of such stylised ATO systems, to see whether the system dynamic 

file:///C:/Users/JUNYI/Google%20Drive/Phd%20fouth%20year/EJOR%20paper/IJPE%20special%20issue%20paper/special%20issue%20paper%20(1).docx%23_ENREF_60
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performance is still ‘good’ enough (Sections 4.2.1, 4.2.4, and 4.2.6). Also, since the ATO 

system is now completely linear, the linear control engineering approaches such as transfer 

function, characteristics equation analysis, and stability analysis can be applied to gain deep 

insights into such a stylised ATO dynamic property.  

 

RQ2b. What are the underlying mechanisms of the dynamic behaviour in a semiconductor 

ATO supply chain and how can these dynamics be mitigated? 

Based on Sections 4.2.2 and 4.2.5, the author found feedforward forecasting 

compensation and the CODP inventory correction policy play a major role in the bullwhip 

effect in the semiconductor hybrid ATO system, instead of the production delay/feedback 

loop usually claimed in practice. Also, semiconductor managers may need to cautiously 

consider the balance between the cost of keeping an adequate CODP inventory to maintain 

the mode of ATO and the cost of supply chain dynamics, due to the policies’ settings in the 

CODP point being significantly sensitive to inventory variance and bullwhip level. 

7.1.3. Answer RQs related to the research objective 3 (RQ3a, 3b, 3c and 3d). 

RQ3a. How to develop an ATO system dynamics model within the context of PC sector?  

The PC system can be modelled as a two-echelon ATO system, consisting of a 

downstream OEM echelon and the upstream supplier echelons. From an information flow 

perspective, as discussed in Section 3.3.2.2, the hybrid ATO production strategy implements 

the CODP in the OEMs’ final assembly plants. The downstream production of the CODP 

(final assembly) essentially operates as an MTO (pull) in which end customers’ orders pull 
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the available CODP inventory based on their specific PC configurations. However, upstream 

production of the CODP, i.e. the PC components manufacturing, is characterised by MTS 

(push): long-term demand forecasting is shared by the OEM and the CODP inventory to 

determine production rates. In other words, similar to the Intel supply chain, the DIDP is 

located in the upstream PC supply chain to share end customer demand with PC components 

suppliers. 

Thus, the generic ATO system dynamic model can be developed by modelling the 

pull and push parts separately. Section 5.1 illustrates the detailed mathematical modelling 

process of push and pull loops in the PC ATO system. The distribution pull part can be 

modelled by utilising the first order delay approach, by which the desired shipment rate can 

be interpreted as ratio between the work-in-process orders and estimated physical delay. On 

the other hand, the similar VIOBPCS archetype can be utilised for modelling the VMI 

inventory pull loop, while the APVIOBPCS archetype, as reviewed and analysed in Section 

4.3, is used for modelling the upstream supplier production-inventory system. 

RQ3b. How to measure delivery LT dynamics and how to analytically assess delivery LT 

dynamics? 

Based on Little’s law, the delivery LT can be measured as the ratio between current 

backlog order level (BL) and current shipment rate (SH). However, it is a continuous 

nonlinearity and thus needed to be linearised in order to analytically assess its dynamic 

behaviour. By reviewing and categorising different types of nonlinearities present in the 

supply chain system in Section 3.2.1, Small perturbation theory can be applied to investigate 
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the continuous nonlinearities. Then, the Taylor series expansion is used because the delivery 

LT nonlinearities are single-valued (Section 5.3.1). The result shows that the estimated 

delivery LT can be calculated by considering the difference between current backlog and 

raw materials inventory level at final assembly plant (VMI hub), if the desired shipment rate 

cannot be fully satisfied. 

RQ3c. What are nonlinearities present in the PC ATO system and how do nonlinearities 

influence the dynamic performance of the ATO system? 

By reviewing the categorisation of different types of nonlinearities present in the 

supply chain system in Section 3.2.1, the results (Section 5.1) show that there are usually 

four inherent nonlinearities present in PC supply chains. Note that, in addition to four 

nonlinearities, the delivery lead time dynamics is a kind of continuous nonlinearity in which 

such variables do not impact on the dynamic performance of the ATO system itself, but the 

kind of performance metrics needs to be evaluated. 

These four nonlinearities are discontinuous nonlinearities in which sharp changes in 

output values or gradients occur in relation to input (e.g. piecewise linear function). There 

are two single-valued nonlinearities, namely non-negative order constraint at the VMI hub 

near the OEM’s final assembly factory, and supplier’s manufacturing capacity constraint. 

Single-valued nonlinearities are also called memory-less, which means that the output value 

does not depend on the history of the input (Spiegler et al., 2016a). 
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Also, there are two multi-valued nonlinearities in the PC ATO system, i.e. two 

inventory stock point constraints at the VMI hub and supplier site. In contrast to the single-

value nonlinearity, the output value of multi-valued discontinuous nonlinearity depends on 

the history of the input.  For example, the output shipment depends on the history of input 

demand, i.e. the variable shipment constraints (dynamic response) are driven by the history 

of demand. 

Two multi-valued nonlinearities, the two CODP inventory constraints, can categorise 

the nonlinear ATO system as three interchangeable states: Push-Pull-Pull, Push-Pull-Push 

and Pure Push states. Due to the importance of maintaining a true ATO system state, the 

author begins to analyse the linear and nonlinear hybrid Push-Pull-Pull state with capacity 

and non-negative order constraints by assuming two multi-valued nonlinearities are inactive 

(Section 5.2). Under the Push-Pull-Pull state the delivery LT for end customer can be 

guaranteed but the trade-off design between CODP inventory and capacity variation needs 

to be considered, which is significantly influenced by the CODP inventory control policy 

(Section 5.2.1).  

Under true hybrid ATO state (Push-Pull-Pull state), there are only single-value 

discontinuous nonlinearities, including non-negative order and capacity constraints. The 

describing function method can be applied to linearise them so that the analytical tools, such 

as root causes analysis, can be utilised to gain further insights (Section 5.2.2). The results 

show that, depending on the demand amplitude, the non-negative order constraint at the final 

assembler site may occur, and this may lead to a significant increase of average inventory 
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levels and a decrease in speed to recovery. Also, an increase in demand amplitude will 

decrease CODP inventory recovery speed at the upstream supplier, due to the capacity and 

non-negative order constraints simultaneously present at the supplier site. This also directly 

increases the stock-out probability of inventory at the final assembly site. Furthermore, 

driven by the capacity and non-negative order constraints, the change of average inventory 

level at the supplier site will depend on the relationship between incoming orders from 

downstream assembler and half of the maximum capacity level.  

If two CODP inventory constraints are considered, the ATO system may switch 

between different states driven by the insufficient CODP inventory, and thereby customer 

delivery LT dynamics may be created, which is analysed specifically in Section 5.3.  Based 

on the ‘performance triangle’ developed in Chapter 2, the system may fail to operate as the 

desired state with the decrease in the CODP inventory at final assembly (VMI hub) and the 

supplier manufacturing site, leading to a shift from Push-Pull-Pull to pure Push state. 

Although the variance of CODP inventory and the bullwhip (the corresponding capacity 

adjustment) will be significantly decreased, mean and variance of the delivery LT, however, 

are dramatically increased due to the stock out issues, as well as long physical delay 

(𝜏SA and 𝜏AS ). This is an undesirable condition because of the significant decrease of 

customer service level. In a real PC supply chain, the upstream suppliers, such as 

semiconductor manufacturers, may design long-time inventory adjustment to retain ‘Lean’ 

production and avoid expensive capacity fluctuation (Lin et al., 2017). On the other hand, 

from the entire ATO supply chain perspective, this may cause operational shift from the 
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desired hybrid structure to pure Push state driven by the frequent stock out issue, which 

significantly influences the downstream OEMs’ customer service level, i.e. long and 

unreliable delivery lead times. Such findings also support the importance of adopting 

collaborative design and planning strategy between supplier and OEMs to reduce operational 

cost driven by poor supply chain dynamics. 

   

7.1.4. Summary of theoretical contributions  

 

• A ‘performance triangle’ of performance assessment metrics, comprising capacity 

availability (bullwhip) and CODP inventory at the supplier, delivery lead times at 

the final assembler, are developed, which contribute to the extension of a traditional 

assessment of studying supply chain dynamics from Push-driven systems to the time- 

and/or order-oriented Pull systems. 

• Nonlinearities play an important role in influencing system dynamics behaviour of 

the ATO supply chain and are comprehensively assessed based on the generic PC 

ATO system. The non-negative order constraint at the downstream final assembler 

site (OEM) leads to an increase in averaged inventory level and a decrease in its 

recovery speed. The capacity and non-negative order constraints at the upstream 

supplier site also play a crucial role for dynamic performance. When these two 

nonlinearities occur simultaneously, the mean of demand received from the 

downstream final assembly is an important indicator in influencing the dynamic 
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performance due to the nonlinearities with capacity upper and non-negative order 

low boundary may have a different impact on the level of CODP inventory.  

• The two inventory constraints nonlinearities (i.e. see Figure 4.1 for Intel ATO and 

Figure 5.1 for the PC ATO supply chains), on the other hand, lead to the structure of 

the ATO supply chains as three interchangeable operational states depending on two 

stock points (CODP at the supplier site and finished goods inventory at the final 

assembly site): hybrid Push-Pull-Pull, hybrid Push-Pull-Push and pure Push states.  

Regarding the desired hybrid Push-Pull-Pull state, that is, all customised orders are 

fulfilled within a quoted time, the trade-off between CODP and capacity utilisation 

as the buffer are found in both Intel and PC ATO systems. The CODP inventory 

control policy significantly influences such trade-off design and thereby should be 

fine-tuned. Furthermore, if two inventory constraints nonlinearities occur, the trade-

off between delivery lead times, CODP inventory and capacity utilisation (bullwhip) 

are found as the switch between different states. Specifically, due to the insufficient 

inventory (CODP or finished goods inventory), the mean and variance of delivery 

lead times is significantly increased, although upstream supplier may benefit from 

the reduction of CODP inventory and bullwhip reduction.  This theoretical analysis 

supports the practical rationale as to why PC OEMs make every effort, exploiting 

such approaches as supplier qualifying programmes and VMI to ensure CODP 

inventory availability for immediate final assembly 
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• The IOBPCS family models (Towill, 1982; John et al., 1994; Lin et al., 2017), 

traditionally used in representing the Push/MTS based system, are extended to model 

the ATO system, including both Pull and Push part connected by the CODP inventory 

point. The Pull part can be modelled by a similar VIOBPCS (Edghill et al., 1990) 

with a first order backlog order control, while the Push part of the ATO can be 

represented by the well-established APVIOBPCS archetype (Wang et al., 2014).  

• A three-step design and analysis method, enabled by the linear and/or nonlinear 

control engineering approach, is developed in order to analytically explore the impact 

of the ordering structure (feedback/feedforward, delay and nonlinearities) on the 

system dynamics performance. This includes 1) simplification and/or linearisation, 

2) Search source model(s) (i.e. the IOPBPCS family) and 3) the Candidate solution.  

• The linearisation methods based on Taylor series expansion with Small perturbation 

theory, is developed to allow for the analytical dynamic analysis of delivery lead 

times present in the ATO system. If there is sufficient inventory at the downstream 

final assembler (e.g. VMI hub near the OEM site), delivery lead times are a constant 

level determined by the estimated physical delay, including final assembly and 

transport. If insufficient inventory constrains the desired incoming orders, the 

delivery lead times can be approximated by the difference between current backlog 

orders and inventory level, plus constant physical delay (final assembly and 

transport). 
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• Synthesising all findings and insights gained from the previous chapters, a holistic 

framework, adapted from Naim and Towill (1994) and based on the idea of analogical 

reasoning (Gavetti and Rivkin, 2005; Naim et al., 2017), is developed to assess ATO 

system dynamics (Section 6.4).  

• The linearization methods, including describing function method as well as Taylor 

series expansion can be used for analysing other type of nonlinearities present in real-

world supply chain systems. Specifically, the describing function method, utilized in 

this thesis for analysing fixed capacity and non-negative order constraints, can be 

also applied to the various capacity constraint and shipment constraints environment. 

Note that these two nonlinearities are multi-valued in which its output not only 

depend on the current state of the system, but also is determined by the history of the 

system. Also, the Taylor series expansion based on perturbation theory can be also 

used for assessing time-varying parameters in supply chain dynamics model. e.g. 

Shipment rate and production completion rate (nonlinear time delay rate).  

• Although the semiconductor ATO model is considerably simple comparing the 

original Intel ATO system, the simplified base ATO framework can be used for other 

industries who adopted the similar ATO system. Also, the insights gained from the 

analytical results can be generalized to other high-volume and low-variety supply 

chains.  

• The PC ATO system dynamics model developed in Chapter 5 is a very general ATO 

framework and can be extended to study other ATO-based system under different 
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industries or products. Furthermore, the modelling concept, i.e. the Pull part and Push 

part separated by the CODP stock point, can be exploited for modelling other types of 

hybrid systems with different location of the CODP, as in Figure 2.2. For example, in the 

case of the engineering-to-order system where the CODP is located fully upstream in the 

design process. (see Gosling et al., 2018). Details how to implement CODP into ETO 

can be found in Gosling et al. (2018). Another example is the Make-to-Stock system 

where the CODP is located further downstream in the distribution process.  

 

7.2. Contributions for practice  

The managerial implications can be summarised as follows: 

The true ATO structure (Semiconductor supply chains) 

• Feedforward forecasting compensation and the CODP inventory correction policy 

play a major role in the bullwhip effect in the semiconductor hybrid ATO system, 

instead of the production delay/feedback loop usually claimed in practice. Also, 

semiconductor managers may need to cautiously consider the balance between the 

cost of keeping an adequate CODP inventory to maintain the state of ATO and the 

cost of supply chain dynamics, due to the policies’ settings in the CODP point being 

significantly sensitive to inventory variance and bullwhip level. 

• Targeted pipeline inventory setting is important due to its significant impact on 

dynamic performance. The utilisation of summation of feedback inventory correction 
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and feedforward forecasted demand as targeted pipeline inventory may benefit from 

high customer service level increasing the inventory recovery speed at the expense 

of higher supply chain dynamics cost driven by high bullwhip. 

• The upstream wafer yield rate and downstream final assembly line efficiency should 

be monitored, since they are not only directly related to the customer service level 

(i.e. whether the customised orders can be delivered within the quoted time), but also 

significantly drive the supply chain dynamics cost, driven by the high bullwhip and 

inventory variance. 

The true ATO structure (PC supply chains).  

• Being aware of the impact of the system’s capacity and non-negative order 

constraints is very important for both the PC component suppliers and the final 

assemblers. Depending on the demand amplitude, non-negative order constraint at 

the final assembler site may occur, and this may lead to a significant increase in 

average inventory levels and a decrease in speed to recovery. While this may improve 

the dynamic performance of the upstream supplier internal system, it enhances 

OEM’s risk of technological redundancy with ever shorter product life cycles of 

products entering the market; 

• The amplitude of cyclic customer demand is also important for the supplier to manage 

CODP inventory at their site, due to the possible occurrence of capacity and non-

negative order constraints. Although the bullwhip level may be decreased, the 

recovery speed for CODP inventory is slow if such nonlinearity occurs, which also 
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directly increases the stock-out probability and further influences the end customer 

service levels.  

• Production managers at the supplier site need to carefully consider capacity 

utilisation, i.e. whether the mean of orders received from the final assemblers exceeds 

half of the available capacity, as nonlinearities with capacity upper limits and non-

negative order boundary may differentially impact on the mean level of CODP 

inventory.  

Nonlinear ATO systems and the ‘performance triangle’  

• Managers may simply calculate the estimated delivery LT by considering the 

difference between current backlog and raw materials inventory level at final 

assembly plant (VMI hub), under the condition that desired shipment rate cannot be 

fully satisfied. 

• Due to nonlinear switch between different operational processes, maintaining the 

‘true’ hybrid ATO operational state by ensuring sufficient CODP stock is always 

desirable to ensure customer service level; that is, the reliable delivery LT. However, 

by maintaining the desired ATO state, the trade-off between capacity and CODP 

inventory as the buffer should be considered. The theoretical modelling and analysis 

support the practical rationale as to why PC OEMs make every effort, exploiting such 

approaches as supplier qualifying programmes and VMI to ensure CODP inventory 

availability for immediate final assembly. 
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• Two independent negative feedback loops are present in the ATO system, which may 

lead to superposition or separation of dynamic oscillations, e.g. separate two-resonant 

peak frequencies (that is, the dynamic system can generate peak oscillations with 

greater amplitude, e.g. high bullwhip, at two different demand frequencies). As a 

result, it is beneficial for different companies to collaboratively design the 

replenishment policy to reduce the influence of two-resonance peak frequencies, 

which support the practical adoption of collaborative planning, forecasting and 

replenishment (CPFR) from the system dynamics perspective. 

7.3. Limitations and future research agenda 

This thesis systematically assesses the impact of ATO ordering structures on dynamic 

performance. However, several limitations should be highlighted and a corresponding future 

research agenda can be illustrated as follows: 

• The IOBPCS-based production control frameworks (linear or nonlinear 

representations) may not be capable of capturing the nonlinear increase of cycle time 

in the semiconductor fab production at high resources utilisation condition (Orcun 

et al., 2006) due to the lead time modelling approaches, i.e. first order/third order 

delay under the fixed mean lead time assumption. To be more specific, with the 

increase of WIP level, longer time is required for the semiconductor fab system to 

transform releases into output, resulting from the nonlinear increase of cycle time in 

both mean and variability, which may lead to different dynamic behaviour under high 

capacity utilisation level compared with the corresponding response of the IOBPCS 
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family. Although a similar behaviour can be obtained from IOBPCS-based and non 

IOBPCS-based systems (e.g. the adoption of the clearing functions) at low utilisation 

level, the exploration of alternative lead time/capacity modelling approaches in the 

IOBPCS family, e.g. Clearing Function based capacity models that expected output 

of a production resource over a given planning period is related to the WIP level 

during that period (Orcun et al., 2006), in representing a more realistic semiconductor 

fab WIP congestion condition is strongly recommended for future study. 

• Due to the importance of maintaining ATO structures to ensure customer service 

level, further control policy optimal design between capacity and CODP inventory 

should be considered to minimise the corresponding operational cost within the 

context of the PC sector. 

• Researchers should consider the adoption of empirical methodologies, such as survey 

or interview/case studies, to validate and generalise the theoretical findings in 

industries where the hybrid ATO supply chain strategy is adopted, such as the steel 

industry (Denton et al., 2003; Kerkkanen, 2007; Perona et al., 2009), food production 

and processing organisations (van Donk, 2001; Soman et al., 2004) and the 

automobile industry (Choi et al., 2012). 

• Two kinds of demand input are evaluated: cyclic and step demand increase. Although 

these two inputs are commonly-observed in semiconductor and PC real-world supply 

chains, other important demand patterns, such as the stochastics demand (‘variance 

lens’) following different probability distributions, step demand decrease, saw-tooth 
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and impulse, can be explored. In particular, real stochastic data can be utilised to 

assess the dynamic property of the ATO ordering system and propose corresponding 

control design.  

• The study for dynamic performance of multiple ATO systems in the PC industry 

connected to each other can be another extension for future research. The PC industry, 

including the upstream semiconductor and downstream sub-assembler and OEM, 

contains multiple ATO systems. An interesting scenario thereby observed is that the 

upstream semiconductor’s order-driven system (i.e. the pull part of the ATO system) 

may receive the downstream players’ order (e.g. sub-assemblers or OEMs) that is the 

forecasted data based on end customer demand, i.e. the push part of the downstream 

players’ ATO system. As a result, the two ATO systems, for example, can be 

connected as Push-Pull-Push-Pull and its dynamic performance should be further 

explored. 
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7.4. Summary 

This chapter has sought to draw the thesis to a close, highlighting the overall 

conclusions, as well as the contributions that these make to the literature and industrial 

practice. The author contributes to the modelling, design and analysis of the ATO system 

from a system dynamics perspective. Specifically, the author contributes to the synthesis of 

the well-established IOBPCS family as the foundations for modelling and analysing the ATO 

system.  

The author uses the Intel supply chains as an example of an existing complex ATO 

system and proposes a simplification method to analytically explore its dynamic property, 

especially for the underlying mechanisms of bullwhip that are usually investigated only by 

simulation when facing complex, non-linear system dynamics model.  

Furthermore, a generic PC ATO system dynamic model is developed and analysed. 

A ‘performance triangle’, i.e. capacity at the supplier, CODP inventory and the delivery lead-

time for the end customer, is developed and its dynamic property is formally assessed. The 

author contributes to methodological developments by proposing a linearisation method to 

allow for rigorous synthesis of customer delivery lead-time dynamics, often neglected in the 

existing literature that generally focuses on bullwhip and inventory variance.  
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The limitations brought about as a result of the methods adopted are also recognised, 

together with potential lines of further enquiry, including the nonlinear modelling and 

analysis of lead time variance, the assessment of different demand patterns, optimisation of 

the CODP inventory and bullwhip under the desired hybrid ATO state, and the exploration 

of multiple ATO systems connected to each other in the PC sector.  
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Appendix 1. Mathematical modelling of the Intel ATO system 
The author gives a brief introduction to the supply chain operational design, while 

full details can be found in Gonçalves et al. (2005). Specifically, there are three stages in the 

Intel supply chain including two production stages (wafer manufacturing and die assembly) 

and one distribution process.  

Distribution pull (with possibly switch to push) 

Customer demand ultimately drives production activities. Current demand determines 

the replenishment of FGI and assembly, while long-term demand forecast drives wafer 

production. To model the distribution process, the relationship between customer demand 

and replenishment of FGI need to be captured. By design, S is determined by the minimum 

of S* and SMAX: 

S(t) = Min (𝑆∗(𝑡), 𝑆𝑀𝐴𝑋(𝑡)) (1.1) 

S* is determined by the ratio of B and DD*, and SMAX is the ratio of FGI and order 

processing time, 𝑇𝑜𝑝:  

𝑆∗(𝑡) =
𝐵(𝑡)

𝐷𝐷∗(𝑡)
  (1.2) 

𝑆𝑀𝐴𝑋 =
𝐹𝐺𝐼(𝑡)

𝑇𝑜𝑝
   (1.3) 

B is the cumulative level for the difference between D and S and FGI depends on the 

accumulation between the replenishment from AN(t) and the depletion of S: 
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𝐵(𝑡) = 𝐵(𝑡 − 1) + 𝐷(𝑡) − 𝑆(𝑡)  (1.4) 

FGI(t) = FGI(t) + 𝐴𝑁(𝑡) − 𝑆(𝑡)   (1.5) 

So, the switch between pull and push in the distribution process is ultimately 

determined by customer demand and feasible FGI. The distribution mode operates in ‘pull’ 

mode if there is enough FGI to meet customer orders immediately, otherwise the system will 

‘push’ all feasible FGI and the backlog orders will directly ‘pull’ from assembly die 

inventory, ADI 

Assembly pull (with possibly switch to push) 

While shipment deplete the FGI, assembly complete rate AN replenish it. The AN is 

determined by the product of AG and YU, i.e. the percentage of good chips for each 

assembly die: 

𝐴𝑁(𝑡) = 𝐴𝐺(𝑡) ∗ 𝑌𝑈(1.6) 

Where AG is resulted of the minimum of ‘pull’ gross signal from downstream 

distribution and the feasible ‘push’ gross assembly complete signal:  

𝐴𝐺(𝑡) = 𝑀𝑖𝑛 (𝑃𝑢𝑙𝑙 𝐴𝐺(𝑡), 𝑃𝑢𝑠ℎ 𝐴𝐺(𝑡)) (1.7) 

By design, the intel assembly operates as ‘pull’ mode adjusted by the ratio of 𝐴𝑁
∗  and 

YU, where desired net assembly aims to eliminate any gaps for FGI and remove any excess 

for Backlog. More reliable ES as a proxy is also utilized for deciding 𝐴𝑁
∗ . However, if there 

is no enough AWIP to meet desired pull signal, the assembly process will automatically 
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switch to ‘push’ mode in which AWIP and average TA decide the push AG. For simplicity, a 

first order delay is utilized: 

𝑃𝑢𝑙𝑙 𝐴𝐺(𝑡) = 𝑀𝑎𝑥 (0,
𝐴𝑁
∗ (𝑡)

𝑌𝑢
) = 𝑀𝑎𝑥(0, 𝐹𝐺𝐼𝐴𝐷𝐽(𝑡) + 𝐵𝐴𝐷𝐽(𝑡) + 𝐸𝑆(𝑡))   (1.8) 

𝑃𝑢𝑠ℎ 𝐴𝐺(𝑡) =
𝐴𝑊𝐼𝑃(𝑡)

𝑇𝐴
     (1.9) 

𝐹𝐺𝐼𝐴𝐷𝐽(𝑡) =
1

𝑇𝐹𝐺𝐼
(𝐹𝐺𝐼∗(𝑡) − 𝐹𝐺𝐼(𝑡)),         𝐹𝐺𝐼∗(𝑡) = 𝐸𝑆(𝑡) ∙ 𝑊𝑂𝐼  (1.10) 

𝐵𝐴𝐷𝐽(𝑡) =
1

𝑇𝐵
(𝐵∗(𝑡) − 𝐵(𝑡)),       𝐵∗(𝑡) = 𝐷(𝑡) ∙ 𝐷𝐷    (1.11) 

𝐸𝑆(𝑡) = 𝐸𝑆(𝑡 − 1) + 𝑎 ∙ (𝐷(𝑡) − 𝐸𝑆(𝑡 − 1),

𝑎𝑛𝑑   𝑎 =
1

1 +
𝑇𝐴
△ 𝑇

  (𝑇𝑜𝑤𝑖𝑙𝑙 1970)  (1.12)  

Where TFGI and TB are the adjustment time for eliminating FGI and Backlog errors, 

WOI is the desired weeks of safety FGI, recent shipment is determined by smoothed 

demand in which the relationship between smoothing level 𝑎 and TA is justified by Towill 

(1970). 

Wafer production push  

While AN depletes the AWIP, DI in upstream fabrication production replenishes it: 

AWIP(t) = AWIP(t) + 𝐷𝐼(𝑡) − 𝐹𝐺(𝑡)  (1.13) 
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Where DI is measured by die/month and is given by gross fabrication rate (FG, 

wafers/month) and adjusted by the number of DPW, DL and YL, i.e. the percentage of good 

fabricated wafers: 

𝐷𝐼(𝑡) = 𝐹𝐺(𝑡) ∙ 𝐷𝑃𝑊 ∙ 𝐷𝐿 ∙ 𝑌𝐿   (1.14) 

The FG is given by the ratio of available FWIP and 𝑇𝐹: 

𝐹𝐺(𝑡) =
𝐹𝑊𝐼𝑃(𝑡)

𝑇𝐹
   (1.15) 

Where the accumulation of difference between WS and FG determine the FWIP: 

𝐹𝑊𝐼𝑃(𝑡) = 𝐹𝑊𝐼𝑃(𝑡 − 1) +𝑊𝑆(𝑡) − 𝐹𝐺(𝑡)         (1.16) 

Production wafer starts perform the ‘push’ mode in which WS is the result of FWIP 

adjustment to reflect managers’ desired for adjusting the local FWIP level and the D*
I 

requested by assembly plant. Non-negativity constraint prevents negative wafer start rate 

𝑊𝑆(𝑡) = 𝑀𝑎𝑥(0, 𝐹𝑊𝐼𝑃𝐴𝐷𝐽 + 𝐷𝐼
∗)    (1.17) 

FGIADJ aims to eliminate the gaps between desired FWIP (FWIP*, determined by 

desired die inflow and fabrication time) and actual FWIP 

𝐹𝑊𝐼𝑃𝐴𝐷𝐽(𝑡) =
𝐹𝑊𝐼𝑃∗(𝑡) − 𝐹𝑊𝐼𝑃(𝑡)

𝑇𝐹𝑊𝐼𝑃
   (1.18) 

Where D*
I depend on the long-term forecasting (ED) and the adjustment from AWIP 

(AWIPADJ). For simplicity, a first order lag is used for long-term forecasting. The AWIP 
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adjustment reflect the managers’ desired time (𝑇𝐴𝑊𝐼𝑃) to correct the assembly inventory 

error between targeted AWIP and actual AWIP. Non-negativity constraint prevents negative 

die inflow rate 

𝐷𝐼
∗(𝑡) = 𝑀𝑎𝑥 (0,

𝐸𝐷(𝑡)

𝑌𝑈
+ 𝐴𝑊𝐼𝑃𝐴𝐷𝐽(𝑡))  (1.19) 

𝐸𝐷(𝑡) = 𝐸𝐷(𝑡 − 1) + 𝑎 ∙ (𝐷(𝑡) − 𝐸𝐷(𝑡 − 1))      𝑎𝑛𝑑   𝑎 =
1

1 +
𝑇𝑠𝐴𝑑𝑗
△ 𝑇

   (1.20) 

𝐴𝑊𝐼𝑃𝐴𝐷𝐽(𝑡) =
1

𝑇𝐹𝑊𝐼𝑃
∙ (𝐴𝑊𝐼𝑃∗(𝑡) − 𝐴𝑊𝐼𝑃(𝑡)) (1.21) 
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Appendix 2. An introduction of the (AP)IOBPCS archetypes  

 

1) Demand Policy: 

                     𝐴𝑉𝐶𝑂𝑁𝑡 = 𝑎 ∙ (𝐶𝑂𝑁𝑡 − 𝐴𝑉𝐶𝑂𝑁𝑡−1) + 𝐴𝑉𝐶𝑂𝑁𝑡−1              (2.1) 

Where  

                                                         𝑎 =
1

1 +
𝑇𝑎
△ 𝑇

                                                (2.2)  

2) WIP policy: 

𝑊𝐼𝑃𝑡 =
1

𝑇𝑤
∙ (𝐷𝑊𝐼𝑃𝑡 − 𝐴𝑊𝐼𝑃𝑡) =

1

𝑇𝑤
∙ (𝐴𝑉𝐶𝑂𝑁𝑡 × 𝑇𝑃 − 𝐴𝑊𝐼𝑃𝑡)       (2.3)       

3) Lead time policy: 

                                         
1

1 + 𝑇𝑝 S
                                                            (2.4)    

As we are interested in the relationship between CONS and AINV/COMRATE/WIP, the 

transfer function of APIOBPCS archetype are shown as follow: 

     
𝐴𝐼𝑁𝑉

 𝐶𝑂𝑁𝑆
= −𝑇𝑖 ∙

⌊
 
 
 
 
𝑇𝑝 − 𝑇𝑝′

𝑇𝑤
+ (𝑇𝑎 + 𝑇𝑝 +

𝑇𝑎𝑇𝑝
𝑇𝑤

) 𝑠 + 𝑇𝑎𝑇𝑝𝑆
2

(1 + 𝑇𝑎𝑠) (1 + (1 +
𝑇𝑝
𝑇𝑤
) 𝑇𝑖𝑠 + 𝑇𝑝𝑇𝑖𝑠2)

⌋
 
 
 
 

         (2.5)  

               
𝐶𝑂𝑀𝑅𝐴𝑇𝐸

𝐶𝑂𝑁𝑆
=

1 + (𝑇𝑎 + 𝑇𝑖 +
𝑇𝑝′𝑇𝑖
𝑇𝑤

) 𝑠

(1 + 𝑇𝑎𝑠) (1 + (1 +
𝑇𝑝
𝑇𝑤
) 𝑇𝑖𝑠 + 𝑇𝑝𝑇𝑖𝑠2)

             (2.6)   
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𝑊𝐼𝑃

𝐶𝑂𝑁𝑆
=  𝑇𝑝 ∙

⌊
 
 
 
 1 + (𝑇𝑎 + 𝑇𝑝 +

𝑇𝑎𝑇𝑝𝑇𝑝′

𝑇𝑤
) 𝑠

(1 + 𝑇𝑎𝑠) (1 + (1 +
𝑇𝑝
𝑇𝑤
) 𝑇𝑖𝑠 + 𝑇𝑝𝑇𝑖𝑠2)

⌋
 
 
 
 

            (2.7) 

It should be noted that equations above can represent the original IOBPCS by 

setting 𝑇𝑤 =∞. The Initial/final value theorem can be applied to the equation (2.5)  

                
𝐴𝐼𝑁𝑉

 𝐶𝑂𝑁𝑆𝐼𝑉𝑇
= 0;        

𝐴𝐼𝑁𝑉

 𝐶𝑂𝑁𝑆𝐹𝑉𝑇
=
𝑇𝑖(𝑇𝑝′ − 𝑇𝑝)

𝑇𝑤
                       (2.8) 

The noise bandwidth can be represented as follow: 

                    𝑊𝑁 = ∫ |
𝐶𝑂𝑀𝑅𝐴𝑇𝐸

𝐶𝑂𝑁𝑆
(𝑗𝑤)|

2

𝑑𝑤
∞

0

                                      (2.9) 

 


