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Abstract 

The volcanogenic massive sulfide (VMS) deposits in the Troodos ophiolite (Cyprus) are ancient 

analogues for modern day seafloor massive sulfide mineralisation formed in a subduction zone 

environment.  In this study we present the first detailed in situ study of trace elements in sulfides from 

twenty VMS deposits hosted in the Troodos ophiolite to better understand factors that influence the 

distribution, enrichment and incorporation of trace elements in different sulfide minerals. 

On a mineral scale, trace elements exhibit systematic variations between pyrite, chalcopyrite and 

sphalerite. Pyrite preferentially incorporates As, Sb, Au and Te, whilst chalcopyrite is enriched in Co 

and Se. Sphalerite is trace element poor with the exception of Ag and Cd. Selenium averages 278 ppm 

(n= 150) in chalcopyrite but only 42 ppm (n=1322) in pyrite. Bismuth and Te in pyrite show a weak 

positive correlation (R2= 0.41) in some VMS deposits possibly linked with the occurrence of Bi-telluride 

inclusions. Trace element concentrations also vary between colloform and euhedral pyrite, with an 

enrichment of Au, As, Sb, Cu and Zn in colloform compared to euhedral pyrite.  

Time resolved laser ablation profiles reveal that the trace element distribution on a mineral scale is 

not uniform and varies with crystallographic effects, fluctuating physicochemical fluid conditions such 

as temperature, pH, fS2, fO2 and ligand availability during sulfide precipitation. Incorporation 

mechanisms in sulfides differ between elements in pyrite, Ag, As, Se and Pb are hosted in solid solution 

or as nanoscale inclusions, whilst Au, Sb and Te may form micro-scale inclusions. 

On a regional scale (20 km) the distribution of trace elements exhibits systematic variations between 

three major structural domains; namely the Solea, Mitsero and Larnaca grabens. The VMS deposits of 

the magmatic-tectonic Solea graben are enriched in Se, Co, Te, Au and Cu relative to Mitsero, which 

is a purely extensional feature. Therefore, we hypothesise that a variable magmatic volatile influx 

related to a) ‘magma’ volume, b) migration of the magmatic-hydrothermal crack front and associated 



  

brine liberation or c) a variation in protolith metal concentration are responsible for regional scale 

variations in VMS geochemistry. This is suggested to be intrinsically linked to the spreading 

architecture of Troodos.  

Key words: LA-ICP-MS, VMS, Troodos, sulfides, magmatic volatile influx, pyrite 

 

1. Introduction  
Volcanogenic Massive Sulfide (VMS) deposits are important resources of base and trace metals (Barrie 

and  Hannington, 1999; Galley et al., 2007; Mercier-Langevin et al., 2011). With the discovery of >500 

active vent sites in a range of tectonic settings we turn to fossil analogues to better understand 3D 

relationships, alteration and mineral chemistry that lead to the enrichment of trace metals. Fossil 

analogues allow us to better understand the depth relationship of mineralisation and trace element 

distribution, whilst active Seafloor Massive Sulfide (SMS) systems provide direct information on fluid 

chemistry and mineral precipitation temperatures. Consequently, the combination of modern and 

fossil analogues provides important information on the distribution of trace metals that may be key 

in the future feasibility and exploitation of SMS deposits (Boschen et al., 2013; Humphris et al., 1995; 

Humphris and Klein, 2018). 

Volcanogenic Massive Sulfides form through the interaction of heated evolved seawater with newly 

formed oceanic crust and the subsequent precipitation of sulfides due to seawater mixing at or near 

the seafloor (Franklin et al., 2005; Galley et al., 2007; Hannington et al., 2011). Seawater penetrates 

into the crust and is progressively heated by thermal transfer from the underlying heat source with 

fluids reaching greenschist facies temperatures (350-400˚C) (Humphris and Klein, 2018; Jowitt et al., 

2012). At these temperatures an pH ~2, widespread ion exchange occurs between wall rock and the 

hydrothermal fluid (e.g. Jowitt et al., 2012; Patten et al., 2017; Seewald and Seyfried Jr., 1990). This 

buoyant metal rich fluid ascends to the seafloor, upon exhalation it forms sulfide mineralisation that 

may be preserved as VMS ores (Galley et al., 2007; Hannington et al., 2011).  

Subduction zone magmas commonly reach volatile saturation during differentiation in the crust, 

which results in the release of magmatic volatiles potentially rich in Cu, Au, Pb, As, Tl and other trace 

metals that can be contributed to the overlying hydrothermal system (de Ronde et al., 2011; Keith et 

al., 2018; Herzig et al., 1998; White and Hedenquist, 1990; Williams-Jones and Heinrich, 2005; 

Wohlgemuth-Ueberwasser et al., 2015).  It is now widely accepted that the Troodos ophiolite 

hydrothermal systems and associated VMS deposits are fossil analogues to modern systems actively 

forming on the ocean floor  (e.g. Franklin et al., 1981; Hannington et al., 1998; Humphris and Klein, 

2018; Monecke et al., 2014). 



  

Physicochemical fluid parameters such as temperature, pressure, fO2, fS2 and pH control metal and 

ligand (Cl-, HS-, H2S and OH-) solubility and transport in the hydrothermal system (Seewald and 

Seyfried, 1990; Seyfried and Bischoff, 1977). Furthermore, these are influenced by local parameters 

including host rock geochemistry, permeability, water-rock ratios, the potential contribution of 

magmatic volatiles and the water depth  (Metz and Trefry, 2000; Mottl and Holland, 1978). Both, 

experimental studies (e.g. Seewald and Seyfried Jr., 1990; Seyfried and Bischoff, 1977) and fluid 

chemistry (e.g. Koschinsky et al., 2008; Metz and Trefry, 2000) provide evidence for the behaviour of 

metals in SMS systems. However, in fossil VMS systems pristine fluid information is not available. 

Instead mineralogy and mineral chemistry provide evidence of past physicochemical ore-forming 

conditions. Hence, the comparison of ancient VMS with active SMS systems allows us to constrain ore-

forming processes in modern systems, their alteration and evolution over time. 

Metal zonation in fossil VMS occurs due to zone refining, a process synonymous with mature SMS; 

low temperature Zn and Pb (<200˚C- Reed and Palandri, 2006) are mobilised and re-precipitated by 

subsequent fluid pulses. Copper occupies only the high temperature >265˚C central mound and 

stockwork (Herzig and Hannington, 1995). Pyrite is ubiquitous in VMS mineralisation, commonly 

occurring as low-temperature colloform and high temperature euhedral varieties (Keith et al., 2016b). 

Pyrite often contains appreciable concentrations of economic and/or deleterious trace elements, such 

as Au, As, Te, Se and Sb (Genna and Gaboury, 2015; Hannington et al., 1999; Keith et al., 2016a,b; 

Layton-Matthews et al., 2008). 

Phase separation is directly related to temperature, pressure (i.e. formation depth) and salinity 

(Monecke et al., 2014; Schmidt et al., 2007). Evidence for supercritical fluids can be inferred from fluid 

inclusions in fossil VMS systems (e.g. Kelley and Robinson, 1990; Kelley et al., 1992). At 5˚S on the Mid 

Atlantic Ridge (MAR) fluids are intermittently vented at 464 ˚C (average 407 ˚C; 3000 m depth; 

Koschinsky et al., 2008), well above the critical point of seawater and thus sub-seafloor phase 

separation may be important in generating metal and chloride rich brines in SMS systems that may be 

important for metal enrichment in fossil analogues, if the brine is contributed to the overlying 

hydrothermal system (de Ronde et al., 2011; Keith et al., 2016b; Koschinsky et al., 2008). Kelley and 

Robinson (1990) and Kelley et al. (1992) pointed out the importance of metal-rich brines in the fossil 

Troodos hydrothermal systems. 

Back-arc spreading centres and submerged island arc volcanoes account for 34 % of known vent sites 

(Hannington et al., 2005; Humphris and Klein, 2018). Seafloor sulfide mineralisation in these 

environments is typically enriched in Zn, Pb, Au, Ag, Te, Se, Sb, Tl, As and Bi compared to MOR 

hydrothermal systems, which are interpreted to be due to the contribution of a magmatic volatile 



  

component derived from subduction zone-related magmas (Dekov et al, 2016;  Herzig and 

Hannington, 1995; Humphris and Klein, 2018; Moss and Scott, 2001).  

Fossil analogues of back-arc spreading environments represent ideal natural laboratories to 

investigate the distribution and incorporation mechanisms of different trace elements in 

hydrothermal sulfide ores and their host minerals. The Troodos ophiolite (Cyprus) formed in a 

subduction zone environment possibly associated with back-arc spreading, and therefore may exhibit 

an enrichment in magmatic volatile elements (Hannington et al., 1998; Regelous et al., 2014; 

Robertson and Xenophontos, 1993). Hence, the VMS systems hosted in the Troodos ophiolite offer 

the opportunity to study the processes of ore-formation and trace metal enrichment with respect to 

spatial and temporal changes in the tectonic regime of subduction zone-related rift structures.  

2. Geological overview and sample localities  
 

The Late Cretaceous (~92 Ma) Troodos ophiolite is located in the eastern Mediterranean (Figure 1) 

comprising a complete, almost undisturbed sequence of oceanic lithosphere hosting fossil 

hydrothermal systems; the type locality for Cyprus-type or mafic VMS deposits (Cox and Singer, 1986; 

Galley et al., 2007; Gass, 1980).  Whilst the exact tectonic environment of formation remains debated, 

it is now widely accepted that Troodos formed in a supra-subduction zone environment (Miyashiro, 

1973; Pearce et al., 1984;  Pearce and Robinson, 2010; Regelous et al., 2014).  

Three original seafloor rift structures are preserved on the northern flank of the Troodos ophiolite 

comprising the Larnaca, Mitsero and Solea grabens (Figure 1) (Varga and Moores, 1985).  The graben 

axes are defined by inversely dipping sheeted dykes on either side of the axis (Moores and Vine, 1971; 

Varga and Moores, 1985; Varga et al., 1999). Grabens formed in periods of magmatic quiescence when 

spreading was accomplished through thinning of the upper crust via detachment faulting and rotation 

of upper crustal blocks in a ‘bookshelf’ manner (Nuriel et al., 2009; Varga and Moores, 1985). 

Associated with these prominent graben bounding faults are numerous VMS deposits (e.g. Adamides, 

2010; Allerton and Vine, 1991; Constantinou, 1980- Figure 2). 

Faulting related to graben formation was important in increasing the permeability of newly formed 

oceanic crust and facilitating large-scale hydrothermal fluid convection. Epidosites, which are zones 

of intensely altered sheeted dykes are widely documented at Troodos (e.g. Lemithou, Jowitt et al., 

2012; Kelley et al., 1992; Richardson et al., 1987). They are interpreted as a source of metals for the 

overlying VMS systems (Jowitt et al., 2012; Patten et al., 2017). Volcanogenic massive sulfide ores 

occur in two main morphologies; shallow massive exhalative sulfide ores and sub-seafloor stockwork 



  

ores (Hannington et al., 1998, 1990). Due to historic mining dating from pre-Roman times the mound 

mineralisation is not always preserved.  

In total, samples from twenty different VMS deposits were investigated in this study. These have 

subsequently been classified into districts based on their corresponding structural domain 

(summarised in Table 1, Figure 2). For the purpose of this study we simplify the original classification 

by Moores et al. (1990) into five domains, from east to west:  Larnaca, Southern Troodos Transform 

Fault Zone (STTFZ), Mitsero, Solea and Polis (Table 1, Figure 2). Structural domains are classified based 

on dip direction of the sheeted dyke complex (after Moores et al., 1990; Figure 2).  

The wide geographical spread of samples and diverse range of ore types including massive, 

disseminated, semi-massive and jasper rich morphologies ensures that a wide range of ore-forming 

processes are investigated within and between different structural domains (Figure 1 and 2, Table 1). 

Hence, the data is representative for regional scale ore-forming processes related to spreading centre 

evolution. 

3. Methods 
Electron microprobe analysis (EMPA) was performed for selected sulfide samples to obtain major 

element data. Concentrations were obtained using a JEOL JXA-8200 Superprobe at the GeoZentrum 

Nordbayern. The quantitative EMP analyses were performed with a focused beam using an 

accelerating voltage of 20 kV and a beam current of 20 nA. The electron microprobe was calibrated by 

the following standards: FeS2 (Fe,S), CuFeS2 (Cu) and ZnS (Zn).  

Laser Ablation ICP-MS (LA-ICP-MS) was used to determine in situ trace element concentrations in 

hydrothermal sulfides from 20 VMS across Troodos. Spot (n= 1558) and line (n =7) analyses were 

performed on polished blocks and thin sections (n=56) (Table 2). Elements analysed include 57Fe, 65Cu, 

59Co, 66Zn, 75As, 77Se, 109Ag, 111Cd, 121Sb, 125Te, 185Re, 189Os, 193Ir, 195Pt, 197Au 206Pb and 209Bi (see Appendix 

A1-A4). 77Se was used preferentially over 82Se due to lower interference levels from the Ar-Cl ablation 

gas. Analyses were carried out at the GeoZentrum Nordbayern (dataset A) and Cardiff University 

(dataset B, Appendix A1-A3).  

Dataset A was analysed using a New Wave Research UP193 FX laser coupled to an Agilent 7500i ICP-

MS. A single spot ablation pattern was utilised at a frequency of 15 Hz with a typical beam size of 25 

µm, and on occasion 20 and 15 μm according to pyrite crystal size. Total acquisition time of each spot 

was 40 seconds including a 20 second gas blank prior to each analysis. Data set B was collected using 

a New Wave Research UP213 UV laser coupled to a Thermo X-series 2 ICP-MS. Samples were analysed 

in time resolved analysis mode at a frequency of 10 Hz and a nominal spot size of 55-80 µm depending 



  

on the size of the analysed sulfide grain. Acquisition lasted 45 seconds with gas blank measured for 20 

seconds prior to analysis. 

Standards used for external calibration (dataset A) include Po724 B2 SRM (Au) (Memorial University 

Newfoundland) and MASS-1 (USGS) (V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, Sb, Te, W, Pb, Bi). 

For dataset B calibration was performed using a series of synthetic NiFe-S standards and Memorial 

FeS (Memorial University Newfoundland) (S, Ni, Fe, and Cu as major elements and Co, Zn, As, Se, Ru, 

Rh, Pd, Ag, Cd, Sb, Te, Re, Os, Ir, Pt, Au, and Bi as trace elements- see Prichard et al., 2013).  

Line analyses were performed at Cardiff University using a UP213 UV laser coupled to a Thermo X-

series 2 ICP-MS. A 55 µm beam diameter was employed at a frequency of 10 Hz; ablation lasted 

between 80-120 seconds and a gas blank was measured for 20 seconds prior to analysis. The beam 

followed a pre-selected pattern designed to sample different sulfide phases. The sample translated at 

6 µm/s relative to the laser.  

Sulfur was used as an internal standard on all LA ICP-MS analyses. Sulfur measurements from EMP 

analyses (n =905) yielded average S concentrations for pyrite of 52.97 wt.% +/- 1.14 (2σ) (n=905), 

therefore the stoichiometric values of 53.4 to 53.5 wt. % for dataset A are within error of measured 

values for dataset B (see Appendix A1-A3). Similarly, S concentrations of 34.25 wt.% +/- 0.70 (2σ) in 

chalcopyrite are within error of the stoichiometric values for S (35-35.5 wt.%) used in dataset B.   

4. Results 

4.1 Ore petrography  

Samples of sulfides have been classified into the following categories based on morphological and 

textural differences: massive (euhedral and colloform), semi-massive, stockwork, disseminated and 

jasper (Figure 3).  

4.1.2 Pyrite 

Pyrite is present in all samples analysed in this study (Table 1). The texture and morphology vary 

reflecting the fluid conditions under which it formed (e.g. temperature, fO2, fS2 etc.). Pyrite occurs as 

massive (>75%) (Figure 3 A and B), semi-massive (50-75%) (Figure 3 C), colloform (Figure 3 D and E), 

disseminated (10-20%) (Figure 3 F and G) and veined varieties (Figure 3 H). Within these textures, 

pyrite grains vary from euhedral to anhedral and rarely framboidal. Many pyrite grains exhibit a degree 

of dissolution; originally euhedral pyrite may be altered to subhedral or ‘feathery’ textures. Granular 

pyrite is common in the upper VMS stratigraphy with framboidal grains, associated with jarosite, 

goethite and covellite (Figure 3L). Resorbed grains commonly exhibit a porous or vuggy core; this is 

especially common for jasperitic samples where pyrite is intergrown with hematite and silica (Figure 



  

3 E, I and L- yellow arrows). Inclusions of galena and sphalerite are present in some pyrite grains and 

are usually a few microns in size (via SEM).   

4.1.3 Chalcopyrite 

Chalcopyrite in massive pyrite samples (Figure 3   A, B, J and K and Table 1) forms interstitially as crude 

layers, surrounded by pyrite (Figure 3A and B). In stockwork samples massive chalcopyrite forms as 

aggregates of globular grains that are cut by secondary covellite-digenite (Figure 3 A, B, K). 

Disseminated chalcopyrite is rare and overprints early pyrite (Figure 3F). Secondary, seafloor or uplift-

exposure related supergene alteration of chalcopyrite is evident in many VMS (e.g. Phoucasa or Apliki- 

Figure 3 K, L and M); in these samples chalcopyrite is variably altered to covellite and chalcocite. 

4.1.4 Sphalerite  

Sphalerite represents a minor constituent of the ores and was only observed at the Agrokipia B and 

the Mathiatis North VMS deposits (Table 1). It occurs as discrete subhedral crystals in veins and usually 

exhibits variable amounts of chalcopyrite disease (Figure 3 N and O). Sphalerite is commonly 

associated with pyrite and rarely with chalcopyrite (Figure 3 H, N and O). 

4.2 Mineral Chemistry  

The analysed sulfides show a distinct trace element distribution. Variations in trace element 

concentrations are observed between pyrite (n= 1322), chalcopyrite (n = 150) and sphalerite (n =86) 

(Figure 4, Table 2, 3 and 4). Pyrite contains elevated As, Te, and Sb relative to chalcopyrite and 

sphalerite. Chalcopyrite is notably enriched in Se over pyrite averaging 278 ppm (n= 150) in 

chalcopyrite but only 42 ppm (n=1322) in pyrite (Figure 4, Table 2 and 5). Sphalerite is depleted in 

most trace elements except Ag and Cd (Figure 4). Pyrite that co-precipitated with chalcopyrite is 

enriched in Cu with concentrations up to 1.1 wt.% (Table 2 Apliki, Figure 3M). 

In pyrite, systematic variations between colloform and euhedral textures are observed, colloform 

pyrite is enriched in Ag, Cd and Mo relative to euhedral pyrite and depleted in Te, Co and Sb. Other 

elements exhibit no variation between different pyrite types. Gold at Skouriotissa, for example, has 

an average concentration of 0.5 ppm in both the euhedral (n=202) and colloform varaties (n=53). Most 

elements in pyrite (n=1322) display no notable correlation (linear R values- Table 3). Exceptions are 

Au and As that show a weak to moderate positive correlation (R2= 0.46), as well as Pb and Ag (R2= 

0.31) and Cd and Zn (R2= 0.53). On an ophiolite wide scale Te exhibits no corrleation with Bi in pyrite 

(R2= 0.05). Pearson correlation coefficients (linear R values) between all elements analysed in pyrite 

are listed in Table 3, those for sphalerite and chalcopyrite can be found in Appendix A5. 



  

4.3 Time Resolved Analysis  

To resolve the distribution of trace elements in different sulfide phases, a series of time-resolved line 

analyses were carried out by LA-ICP-MS (Figure 5). Line analyses are essential to obtain information 

on trace element distribution and their incorporation mechanism down to a micron-scale.  

Additionally, time resolved analysis provided qualitative information on element concentration with 

count rate indicating the relative concentration of each given element. Three euhedral pyrites from 

Apliki (Figure 5E) exhibit variations in element concentrations between and within individual crystals, 

i.e. trace metal zonation. The variability in each element, i.e. a jagged (Figure 5 D- Te) or smooth 

appearance of the time resolved analysis profile (Figure 5 D- Se) may indicate their incorporation 

mechanism (see section 5.1). 

5. Discussion  

5.1 Mineral scale metal incorporation and distribution   

Trace metal incorporation into sulfides is accomplished through either solid solution, i.e. lattice bound 

substitution, or as micro- to nanoscale mineral inclusions (Abraitis et al., 2004; Cook et al., 2009; 

Deditius and Reich 2016; Deditius et al., 2011; Genna and Gaboury, 2015; Gregory et al., 2015; Reich 

et al., 2013; Tardani et al., 2017; Wohlgemuth-Ueberwasser et al., 2015). The incorporation of trace 

elements depends upon physical and chemical fluid factors (e.g. temperature, fO2, fS2: Huston et al., 

1995; Wohlgmuth-Ueberwasser et al., 2015, Revan et al., 2014; Keith et al., 2016a, b), as well as 

crystallographic effects including the valance states and covalent radii of different lattice bound 

elements (Reich et al., 2005; Keith et al., 2018).  

We do acknowledge that LA-ICP-MS cannot distinguish between nanoscale inclusions and lattice 

bound elements, as these would both produce a smooth ablation profile (Gregory et al., 2015; 

Wohlgemuth-Ueberwasser et al., 2015). However, elements that display a jagged saw-tooth pattern 

most likely occur as mineral inclusions (Figure 5 B and D, Te). 

Variation of elements in time resolved laser ablation profiles can be explained by different 

incorporation mechanisms of metals in pyrite. Huston et al. (1995) identified three groups of trace 

elements based on their incorporation mechanisms in VMS pyrite. This includes (1)  Cu, Zn, Pb, Ba, Bi, 

Ag and Sb as micro- or nanoscale inclusions, (2) As, Tl, Au and Mo due to non-stoichiometric 

substitution and (3) elements with a stoichiometric substitution for S (Se and Te) and Fe (Co and Ni) 

(Chouinard et al., 2005; Huston et. al, 1995).  

The incorporation mechanism of Te remains debated with Huston et al., (1995) and Butler and Nesbitt 

(1999) favouring its incorporation in solid solution. Given the larger covalent radii of Te (1.38 Å; 

Cordero et al., 2008), substitution in solid solution in pyrite is unlikely and Keith et al. (2018) prefer its 



  

incorporation as micro- to nanoscale inclusions. Analysis from this study for Te do not favour one 

single incorporation mechanism; instead Te incorporation appears variable and depends on the 

sample analysed. Tellurium in pyrite from Apliki exhibits a saw tooth ablation profile (Figure 5 D and 

E) suggesting incorporation of Te as microscale inclusions compared with Se that has a smooth 

ablation profile suggesting that Se occurs in solid solution substituting S in pyrite and chalcopyrite 

(Huston et al., 1995; Maslennikov et al., 2009, 2017; Keith et al., 2018).  

In contrast, pyrite from Skouriotissa exhibits a smoother profile for Te (Figure 5G) indicating nanoscale 

inclusions or a lattice bound appearance (Deditius et al., 2011). However, variations between pyrite 

grains suggest different incorporation mechanisms for Te that include nanoscale inclusions or solid 

solution at Skouriotissa (Figure 5 G) to microscale inclusions at Apliki (Figure 5 D and E). 

It has been shown that As rich pyrite can incorporate high concentrations of trace elements compared 

to As poor pyrite either in solid solution or as inclusions (Reich et al., 2005; Deditius et al., 2014, 2011, 

2008; Keith et al., 2018). Arsenic occurs in several oxidation states (-I, +II, +III, +V) and therefore may 

be substituted into the pyrite lattice either as an anion or cation depending on the prevailing redox 

conditions in the ore-forming fluid (Chouinard et al., 2005; Qian et al., 2013; Reich et al., 2005). 

Previous studies have identified As(OH)3 as the major As species in reduced ore fluids (e.g. Pokrovski 

et al., 2002). Arsenic as an anion is incorporated in pyrite as a substitution with S and as a cation via a 

coupled substitution with Fe (Chouinard et al., 2005; Deditius et al., 2008). We assume that under 

reduced conditions As occurs as an anion in Troodos pyrite (e.g. Nesbitt et al., 1995; Simon et al., 

1999). This suggests that As rich pyrite from the Troodos VMS deposits may contain appreciable trace 

elements concentrations.  

Arsenic is used as a discrimination tool to decipher the incorporation of trace elements in the pyrite 

structrue i.e. their incorporation as a lattice bound substitution or as micro- or nano-particle inclusions 

(Figure 6- after Deditius et al., 2014; Keith et al., 2018; Reich et al., 2010, 2013). Data points for the 

elements considered (Au, Ag, Sb, Pb and Te) plot within the wedge-shaped zone (Figrue 6) which 

defines the upper solubility limits between mineral inclusions and lattice substituted elements. 

Concentrations which plot outside the wedge-shaped or toward the upper solubility limits of the zone 

suggest inclusions (red dashed line- Figure 6), while compositions in the wedge-shaped zone represent 

lattice bound substitutions or nanoscale-inclusions. When plotted in log-log space the solubility limits 

of Te and As in pyrite define a wedge shaped zone (after Keith et al., 2018). This indicates the solubility 

limits of Te in a lattice bound substitution and as inclusions (Figure 6 E). When applied to Troodos VMS 

pyrite, several points plot outside the wedge shaped zone and thus represent the occurrence of 

inclusions. We apply the Au solubility line (Figure 6A after Reich et al., 2005) defining the solubility 



  

limits of Au0 hosted as sub-micron inclusions to Te-As space (Figure 6E; black dashed line). Keith et al., 

(2018) suggest that a positive correlation between Au and Te (R2=0.55) at low As but high Te-(Au) that 

Au telluride inclusions (e.g. calavarite AuTe2) host appreciable Te. In Troodos VMS we find no 

correlation (R2 = <0.01) between Au and Te. This strongly suggests the incorporation of Te in solid 

solution and less commonly mineral inclusions (Figure 5 E). Points that plot to the far right of the 

wedge-shaped zone (i.e. high As, low Te) could represent As rich mineral inclusions (e.g. Tennantite).  

In this study we find that trace element incorporation into pyrite in the ancient Troodos VMS systems 

is almost identical to the modern analogues considered by Keith et al. (2016b; Figure 6). Most data for 

As-Au, As-Ag, As-Sb, As-Pb plot within the wedge-shaped zone and below the solubility limit (for Au). 

We find that a higher proportion of Sb and Pb points for Troodos plot outside the wedge-shaped zone 

at 7 and 25 % respectively compared to modern analogues at 3 and 6 % for Sb and Pb (Keith et al., 

2016b). This relates in particular to Mathiatis North (Figure 6 C), where Sb reaches 2873 ppm at a 

maximum As content of 76 ppm. Additionally, we find that a higher proportion of Pb is inclusion-

hosted in pyrite from the Troodos ophiolite, this is confirmed microscopically as galena inclusions in 

pyrite.  

Telluride minerals were not observed in this study; however, previous studies highlighted the localised 

occurrence of tellurobismuthite (Bi2Te3) at Skouriotissa (Figure 7-Taylor, 2015). The systematic 

variation of Bi and Te in time resolved ablation profiles suggests that concentrations of Bi and Te 

exhibit a coupled relationship (e.g. Figure 5 A). However, Bi and Te exhibit no correlation (R2=0.05) in 

pyrite across all VMS deposits. The Te-Bi correlation coefficients in pyrite vary between different 

deposits (Figure 7). This suggests variable incorporation mechanisms for Te, most likely in response to 

changes in the local physicochemical fluid conditions (e.g. temperature, fS2, fO2) and the 

concentrations of other lattice modifying trace elements, such as As (Figure 6; Keith et al., 2018). The 

best correlation between Bi and Te was observed in pyrite from the Apliki (R2=0.35) and Phoucasa 

(R2=0.32; Figure 7). In contrast, Se exhibits a smooth ablation profile that closely follows that of S 

(Figure 5 A and D) probably indicating a lattice bound substitution of Se for S (Huston et al., 1995).  

Trace elements in chalcopyrite are hosted as two distinct groups identified by their incorporation 

mechanism; those incorporated as inclusions (e.g. Pb, Bi, Ba, Zn), or elements in a lattice bound 

substitution (e.g. Ag, In, Sn, Se, Zn) (Huston et al., 1995). Lattice bound substitution is achieved via 

either a simple substitution (e.g. Zn2+↔Fe2+ or S2-↔Se2-) or a coupled substitution (e.g. 2 Zn2+↔Cu+ + 

In3+) (Ye et al., 2011). The reader is directed to numerous references that address the incorporation of 

trace elements in chalcopyrite in further detail (e.g. Huston et al., 1995; George et al., 2018; Reich et 

al., 2013; Revan et al., 2014; Wohlgameth-Uberwasser et al., 2015). 



  

Selenium concentrations are elevated in chalcopyrite compared to pyrite (Table 4 and 2). Selenium 

exhibits an order of magnitude variation within and between different VMS. At Apliki Se in 

chalcopyrite ranges from 103.7 to 3956 ppm; the higher concentrations are comparable to those 

reported by Butler and Nesbitt (1999) for the active Broken Spur vent field. The smooth time resolved 

profile (Figure 5C- Apliki) suggests that Se is hosted in a lattice bound substitution with S in 

chalcopyrite (Huston et al., 1995; Butler and Nesbitt, 1999). We suggest variation in Se concentration 

is due to local physicochemical factors relating to fluid temperature, magmatic influx or co-

precipitating sulfide phases (Layton-Matthews et al., 2008; Huston et al., 1995). Increased magmatic 

influx favours high Se (e.g. de Ronde et al., 2005; Rouxel et al., 2004) whereas the precipitation of 

galena (or clausthalite - PbSe) would preferentially incorporate Se leading to a depletion in any co-

precipitated chalcopyrite (George et al., 2018). Furthermore, Beteheke and Barton (1971) state that 

at 390 °C, chalcopyrite can incorporate up to 2150 ppm Se forming a solid solution with eskebornite 

(CuFeSe2). Similar concentrations are observed in this study in chalcopyrite. 

Tellurium concentrations in chalcopyrite are significantly less variable than in pyrite averaging 6.1 ppm 

(median 2.2 ppm). From 150 analysis (Table 4) 104 are above detection limit (~0.6 ppm). Several values 

at Phoucasa (44.1 and 171 ppm Te) are significantly higher than the average and median values. 

Elevated Te correlates with Au (4.30 and 3.58 ppm respectively) and Pt, Ir and Os signifying a possible 

Au-Pt-Te inclusion (Appendix 2B). This is consistent with observations from the Urals VMS where 

elevated Au and Te are attributed to telluride inclusions (e.g. calavrite - AuTe2) (Maslennikov et al., 

2009).  

Zinc in chalcopyrite may be incorporated as both a solid solution element and as inclusions (Huston et 

al., 1995). Zinc concentrations <2000 ppm are suggested to be incorporated as a solid solution, 

possibly substituting for Fe and those >2000 ppm occur as inclusions (Huston et al., 1995). In Troodos, 

VMS Zn concentrations vary from below detection limit to 22.5 wt.% (Table 4); the latter clearly 

indicating sphalerite inclusions. For most VMS deposits the available data suggest the incorporation 

of Zn in a solid solution with median values of 292 ppm, well below the suggested 2000 ppm threshold. 

Arsenic values are commonly below detection limit (22 detected out of 150; average ~1.5 ppm) with 

a maximum of 387.4 ppm at Kokkinoyia. These low but variable concentrations demonstrate the 

limited incorporation potential of As in chalcopyrite. At concentrations <2000 ppm, As is likely to be 

incorporated as a solid solution in chalcopyrite (Huston et al., 1995). This is supported by a smooth 

laser ablation profile for As in chalcopyrite in Troodos VMS (Figure 5E). Additionally, the As profile 

follows that of other elements hosted in solid solution (e.g. Se – Figure 5E). 

 



  

Gold and Ag concentrations in chalcopyrite from Troodos VMS are low with 31 and 49 (of 150) analysis 

above detection limit for Au and Ag respectively (Appendix A2). Gold concentrations reach a maximum 

of 4.3 ppm and in some instances these high Au values correlate with increased Te and Pt suggesting 

at high concentrations Au is hosted as discrete mineral phases (e.g. Maslennikov et al., 2009). Gold is 

generally below 1 ppm in Troodos VMS (Table 4), comparable to concentrations in other VMS (Cook 

et al., 2011; Maslennikov et al., 2009; Revan et al., 2014).  

Silver demonstrates similar variability in chalcopyrite to Au with a maximum value of 16.3 ppm (Three 

Hills). These low concentrations suggest that Ag is incorporated as Ag+ as a lattice bound substitution 

with Cu+ (Huston et al., 1995). Substantially higher Ag values in chalcopyrite are suggested to indicate 

the presence of argentiferous galena inclusions and in some instances elevated Pb correlates with 

increased Ag (Huston et al., 1995), however this was not directly observed in Troodos VMS. 

Concentrations of Ag between different VMS deposits are pronounced; at Apliki with one exception 

all analysis are below detection limit, whereas at Three Hills 12 of 15 analysis are above detection 

limit. We attribute this variation to the mineral scale partitioning of Ag between different sulfide 

phases, i.e. galena preferentially incorporates Ag (George et al., 2016, 2018; Large et al., 2009).   

Bismuth, Cd and Sb may also form trace constituents in chalcopyrite (Table 4). Bismuth occurs 

consistently in minor amounts < 1 ppm throughout most chalcopyrite grains analysed; 82 analyses of 

150 yield values above detection limit (>0.05 ppm). High Bi values are reported for Urals VMS and 

active SMS and are associated with inclusions of bismuthinite (Bi2S3) or bismuth tellurides (e.g. 

tellurobismuthite, Bi2Te3) (Gena et al., 2013; Maslennikov et al., 2012), however comparatively high 

values were not observed in Troodos. Cadmium concentrations in pyrite vary spatially between 

different VMS. This reflects variable amounts of co-precipitated sphalerite and its preferential 

incorporation of Cd over chalcopyrite. High Cd levels correlate with elevated Zn that probably indicate 

the analysis of Cd rich sphalerite inclusions (Table 4 and 5) (e.g. Cook et al., 2009; George et al., 2018). 

Cadmium concentrations range from below detection to 13.4 ppm (average: 0.81 ppm, median: 0.59 

ppm). These observations are consistent with data from Huston et al. (1995) who state that Cd may 

occur as a lattice bound substitution in chalcopyrite at levels (<2000 ppm), however mineral inclusions 

and sulfosalts cannot be ruled out. Very little data is available on Sb incorporation and only 22 analysis 

of 150 in chalcopyrite returned concentrations above detection limit (Table 4). Huston et al. (1995) 

suggest that concentrations of Sb >500 ppm are hosted as mineral inclusions of tennantite-

tetrahedrite series minerals. In Troodos VMS an R2 value of >0.01 between As and Sb suggesting 

tennantite-tetrahedrite inclusions do not host significant Sb.  



  

Sphalerite is poor host for trace elements in Troodos VMS compared with chalcopyrite and pyrite. The 

only element notably enriched in sphalerite is Cd with maximum concentrations of 3400 ppm at 

Kynousa (Table 5). Two groups of elements are identified in sphalerite; those forming inclusions (e.g. 

Ba and Pb) or elements hosted in a lattice bound substitution (e.g. Cd, Cu, Te, Ag) (Huston et al., 1995; 

Cook et al., 2009). Cadmium in Troodos VMS was above detection in all bar one analyses (n=85) and 

concentrations exhibit an order of magnitude variation between different deposits (Table 5). The 

smooth ablation profile for Cd in sphalerite (Figure 5F) that closely mimics Zn in shape suggests Cd is 

hosted as a lattice bound substitution element. Cook et al. (2009) state that Cd occurs in 

concentrations typically >0.2 wt% in sphalerite due to the substitution of Cd2+ with Zn2+; this is likely 

the case in Troodos VMS.  

Copper in sphalerite was detectable in most sphalerite grains analysed at concentrations between 

0.09 to 8.97 wt.%. Huston et al. (1995) suggest that Cu values <1.6 wt.% are likely incorporated in a 

solid solution and erratically high values (>1.6 wt.%) probably result from chalcopyrite inclusions. This 

suggests that the majority of Cu in sphalerite at Skouriotissa is hosted as inclusions, and in some case 

visible chalcopyrite disease was present to confirm this. This is further supported by the time resolved 

analysis of sphalerite from Agrokipia (Figure 5F) where Cu at low concentrations >0.62 wt.% has a 

smooth ablation profile supporting its incorporation as a solid solution. All other elements (Ag, As, Sb, 

Pb and Se) occur in minor amounts <200 ppm (Table 5). Mathiatis North exhibits an enrichment in Se 

and Ag in sphalerite compared to all other deposits; with limited analyses available, the reason for this 

enrichment is unclear.  

5.2 Physiochemical conditions of ore-formation  

Colloform and euhedral pyrite show variable time resolved LA-ICP-MS profiles indicating that pyrite 

texture influences trace element concentrations (Figure 5 A and B). Aggregates of interlocking pyrite 

(Figure 5 A) form crude bands at the base of porous colloform pyrite (Figure 5 B). Microscopically 

multiple pyrite crystals can be distinguished (Figure 5A); laser ablation profiles across three pyrite 

grains indicate radial zonation in trace elements across different pyrite crystals (Figure 5 A). This 

demonstrates that the physicochemical conditions (e.g. temperature) of the fluid fluctuated 

temporally during pyrite precipitation. By comparison, Mo is also enriched in colloform pyrite relative 

to euhedral varieties; this is due to a seawater source of Mo (Kristall et al., 2011; Metz and Trefry, 

2000; Keith et al., 2016a,b). A similar trend of trace element enrichment is reported in pyrite from 

Skouriotissa where deep euhedral pyrite is enriched in Te, Se and Co relative to colloform varieties 

(Keith et al, 2016b).  



  

Sulfide mound growth is accomplished through the collapse and re-precipitation of sulfides that lead 

to zone refining in response to changes in fluid composition and the collapse and reworking of 

unstable chimney structures (Hannington et al., 1998; Herzig and Hannington, 1995; Revan et al., 

2014). Oxygen fugacity, fS2, temperature and pH vary spatially and temporally during mound growth 

and system maturation (e.g., Galley et al., 2007). Such variability is demonstrated by the laser ablation 

profiles showing variable trace element intensities from core to rim in euhedral pyrite reflecting 

changes in physiochemical fluid conditions and metal flux in the VMS systems (Figure 5 D and E). Whilst 

the exact nature of these changes cannot be distinguished, typically reduced conductive cooling, 

compaction of the sulfide mound and reduced seawater infiltration during maturation increases the 

precipitation temperatures, whilst fault movement facilitates seawater ingress and cooling leading to 

fluctuating fluid chemistry that in turn influences trace element incorporation leading to metal 

zonation in precipitating pyrite (Gillis and Roberts, 1999; Humphris and Cann, 2000; von Damm, 1990).  

Four different types of pyrite mineralisation can be distinguished in the Troodos VMS ores; massive 

(Figure 3 B and K), colloform (Figure 3 D), stockwork (Figure 3 M) and jasper (Figure 3 I). These different 

pyrite types form in different regions of the VMS stratigraphy. Jasper (hematite + pyrite + silica) forms 

at the oxidised margins of the mound as centimetre scale veins, whilst euhedral pyrite forms in the 

high temperatures regions (Hannington et al., 1998). Colloform pyrite crystallised rapidly indicating 

disequilibrium conditions associated with the upper mound where seawater interaction is high and 

the temperatures are low (Berkenbosch et al., 2012; Keith et al., 2016a,b). No clear systematic 

variation in the trace element distribution in pyrite is noted with depth in the Skouriotissa ore body 

(i.e. shallow vs. deep stockwork) and we are unable to convincingly reproduce such systematic 

variations in other trace elements as reported by Keith et al. (2016a) for Te and Se. This strongly 

suggests that the trace element composition is influenced by complex physicochemical changes on 

the local scale (cm to m) along fluid pathways that govern trace element incorporation. Thus, 

explaining the poor systematic variation between trace elements in pyrite from Troodos VMS deposits 

(Table 3).  

All jasper samples contain pyrite as the only sulfide phase. Chalcopyrite is absent, indicating that jasper 

precipitated at relatively low temperatures (<265˚C;  Safina et al., 2016), and due to the inclusion of 

hematite, under relatively oxidised conditions. Trace element analyses show that pyrite associated 

with jasper is enriched in Se compared to other samples at Phoucasa averaging 193 ppm Se (n=17, σ= 

132). Huston et al. (1995) and Keith et al., (2018) suggested that Se incorporation in pyrite favours 

lower temperatures and more oxidised conditions, however Hannington et al. (1998) and Auclair et 



  

al. (1987) prefer Se enrichment at high fluid temperatures. In this study we support the observation 

that Se in pyrite is preferentially enriched in low temperature environments.  

Chalcopyrite contains higher average Se (278 ppm, n= 150) compared to pyrite (42 ppm, n=1322). 

Therefore, we suggest that chalcopyrite-rich VMS ores (i.e. stockwork) at depth may cause a 

corresponding Se depletion in pyrite-rich ores, especially in the upper mound regions of the VMS 

deposit. Selenium in the hydrothermal fluids preferentially partitions into chalcopyrite in the deeper 

stratigraphic sections of VMS deposits and is therefore depleted in the hydrothermal fluids and 

associated sulfides at or near the seafloor (Rouxel et al., 2004). At temperatures <260˚C associated 

with the waning stages of the hydrothermal system, chalcopyrite precipitation ceases in response to 

cooling of the hydrothermal system. At these lower temperatures Se is no longer incorporated into 

precipitating chalcopyrite but instead migrates through the stockwork to the upper VMS stratigraphy 

where it is incorporated in pyrite and galena (if present- e.g. George et al., 2018). In this study on a 

regional scale we find extremely variable Se concentrations in pyrite and chalcopyrite range from <10 

ppm to 4942 ppm and 7.5 to 3955 in pyrite (n=1322) and chalcopyrite (n=150) respectively. This 

variation can be explained by (1) co-precipitation of different sulfide phases and the preferential 

uptake of Se by chalcopyrite, and (2) the effect of zone refining and Se re-mobilisation into late stage 

pyrite (Martin et al., 2018).  

Time resolved LA-ICP-MS analyses across multiple pyrite generations reveal concentric zoning of 

elements recording the evolution of the hydrothermal fluid and preferential incorporation of trace 

elements under temporally distinct physicochemical conditions. With no mineralogical 

(recrystallization or subsequent normal grain growth) or structural evidence of metamorphism (Gass, 

1980), we assume that the trace element profiles preserved in pyrite from Troodos represent primary 

features, and thus have not been affected by later metamorphism leading to element mobilisation 

(Genna and Gaboury, 2015).  

Time resolved spectra across three euhedral pyrite grains (Figure 5 E) show that euhedral pyrite 1 is 

depleted in Se, Te and Bi but enriched in Sb and Zn relative to euhedral pyrites 2 and 3. All pyrite grains 

contain elevated As but appear to be concentrically zoned with increased As counts measured in the 

centre of the grain.   We suggest that these zones reflect temporal variations in physicochemical fluid 

conditions (e.g. pH, temperature) of the ore-forming fluid which are related to pulsed magmatic influx 

into the VMS system. If As concentrations in the fluid decrease leading to the precipitation of As poor 

zones, the ability of pyrite to incorporate Te as a solid solution or nanoscale-inclusions would 

decrease, hence at low As concentrations (<100 ppm) we see Te plotting outside the wedge shaped 

zone forming mineral-scale inclusions (cf. section 5.1; Figure 6 E). 



  

In addition to changes in the local physicochemical fluid conditions, systematic variations in 

magmatophile trace elements in pyrite (Table 6: Se, Co, Cu, Te, Bi, Au- de Ronde et al., 2011) on a 

district or graben scale (~20 km) suggest a variable metal source, namely the host rocks or the 

potential contribution of magmatic volatiles to the hydrothermal system. 

5.3 Source rock variation and trace element composition 

Trace element variations on a district scale may be a function of (1) source rock composition or (2) a 

variable magmatic volatile influx; all of which ultimately relate to a magmatic source (Herzig et al., 

1998; Jowitt et al., 2012; Patten et al., 2017; Yang and Scott, 2002; Keith et al., 2016a,b; 2018; cf. 

Lüders et al., 2002). The Troodos lithosphere formed in a subduction zone environment and lava 

geochemistry is significantly different from typical MORB, lavas are enriched in volatile elements, have 

a higher H2O content and may be more evolved in composition (andesites, boninites etc.)  (e.g. Kelley 

and Robinson, 1990; Patten et al., 2017; Pearce and Robinson, 2010; Regelous et al., 2014). Therefore 

the metal content of VMS deposits is expected to differ compared to MOR hydrothermal systems.  

The chemical composition of volcanic glass from the Troodos ophiolite is different from typical MORB 

due to elevated As (850 ppb), Sb (78 ppb) and Pb (1.93 ppm) contents, which makes it comparable to 

subduction related hydrothermal systems such as the Manus Basin (Herzig et al., 1998; Patten et al., 

2017; Yeats et al., 2014). In contrast, Se is depleted in the Troodos glass at 119 +/- 53 ppb compared 

to 243-723 ppb in MORB (Patten et al., 2017). The enrichment of trace metals during magmatic 

fractionation is not uniform; Cu, Au and Se behave incompatibly during the first stage of crystallisation 

prior to magnetite saturation (Jenner et al., 2010; Patten et al., 2017). During the second magmatic 

differentiation stage, (i.e. post magnetite) the melt will be depleted in Cu, Se and Au due to sulfide 

liquid segregation compared to Zn, As, Sb and Pb showing a typical incompatible behaviour (Patten et 

al., 2017).  

This study highlights the systematic variation of trace metals in VMS ores on a district scale (Figure 2). 

Deposits of the Solea graben are enriched in Cu, Co, Au and Se (e.g. Skouriotissa or Apliki- Table 6), 

whilst deposits of the Mitsero graben (e.g. Kokkinoyia or Agrokipia) are enriched in As and Sb (Table 

6). We propose that this variation could be due to chemical differences in the composition of the 

protolithic material in the epidotised zones or the interaction of hydrothermal fluids with different 

volumes of fresh plutonic igneous rocks (i.e. sheeted dykes/upper plutonics). The extrusive sequence 

of Troodos is chemically stratified and classified into primitive basaltic upper pillow lavas (UPL) and 

andesite-dacite lower pillow lavas (LPL) (Gass, 1980; Malpas and Langdon, 1984; Rautenschlein et al., 

1985). Hence, an epidosite zone with a higher proportion of more primitive (UPL affinity) dykes would 

lead to the relative enrichment in Au, Se and Cu, since these elements are enriched in basaltic relative 



  

to an andesitic to dacitic melt (Patten et al., 2017). Given the scale of epidosite zones, estimated at 5-

10 km3 (Jowitt et al., 2012; Patten et al., 2017), local variation could account for the formation of a 

VMS district that contains elevated Cu, Se and Au. This enrichment is observed in the Solea district 

(Table 6) that contains the largest (discovered) VMS deposits in the Troodos ophiolite including 

Skouriotissa and Phoucasa (5.4 Mt at 2.3 % Cu), Phoenix (15 Mt at 0.5 % Cu) and Three Hills (6.2 Mt at 

0.4 % Cu), as well as Mavrovouni (15 Mt at 3.8 % Cu) and the smaller Apliki (1.7 Mt at 1.8 % Cu) and 

Mala deposits (6 Mt at 0.4 % Cu and 12.3 % Zn- exploration report BMG, 2013; Adamides, 2010; 

Hannington et al., 1998). The deposits of the Mitsero graben are generally of lower tonnage and 

contain less Cu, such as Mathiatis North (4.5 Mt at 0.17 % Cu) and Sha (1 Mt at 1.9 % Cu; Hannington 

et al., 1998). We propose a variation in metal source composition or generation of a magmatic volatile 

phase would be required to account for the systematic variation in metals between the Solea and 

Mitsero VMS districts. 

The spatial association between source rocks and VMS deposits is clearly demonstrated in the 

southern Troodos Mountains with the occurrence of auriferous VMS deposits (Au grades >3.5 ppm, 

Au tonnage ≥ 31 t or Au to base metal ratio over unity, Mercier-Langevin et al., 2011). Enrichment of 

Au at Kalavasos (Table 2) on the southern margin of Troodos (Figure 2) is attributed to a Au enriched 

source rock. The lava geochemistry of the southern Troodos Mountains are characterised by increased 

volumes of mafic-ultramafic basaltic to picritic and boninitic affinity lavas (MacLeod and Murton, 

1993; Thy, 1987; Thy and Moores, 1988). Patten et al. (2017) show that more primitive basaltic-

andesites from Troodos contain higher concentrations of Au (2.1 +/- 0.1 ppb) compared to andesitic 

glass samples (0.8 ppb). The increased abundance of primitive lavas in the southern Troodos 

Mountains may be responsible for the Au enrichment in the Kalavasos mines with reported average 

Au grades of 1.17 ppm (Mercier-Langevin et al., 2011).  

Pyrite from Kalavasos has an average Au concentration of 2.1 ppm (n =260, σ = 6.7, max = 40.4 ppm), 

and is therefore significantly enriched compared to pyrite from the other VMS deposits (average 

=0.95, median= 0.29 ppm, n = 1062). Like Kalavasos, Mala is located in the southern Troodos 

Mountains and is enriched in Au averaging 1.7 ppm in pyrite (n= 5, σ= 1.1, max = 2.9- Figure 8) and 

therefore could also be classified as auriferous.  

Keith et al. (2016b) showed that pyrite from the ultramafic-hosted Logatchev vent field on the MAR 

hosts significant Au as Au0 inclusions and Au1+ in solid solution (Figure 8). Host rock serpentinization 

causes a H2S increase in the hydrothermal fluids (Klein and Bach, 2009) enhancing Au solubility and 

transport potential. It has been shown that serpentinization is a widespread process in the ultramafic 

domains of the Troodos ophiolite including the southern Troodos Mountains, similar to oceanic core 



  

complexes on the modern seafloor (Nuriel et al., 2009). Therefore, it is likely that Kalavasos and Mala 

are enriched in Au as a function of both source rock Au content and enhanced Au solubility in H2S rich 

fluids (William-Jones and Heinrich, 2005). 

In modern mafic-ultramafic hosted SMS deposits that exhibit a Au enrichment, such as the Semenov 

2 hydrothermal field (average 65 ppm Au- bulk ore), an additional source is hypothesised to explain 

the Au enrichment (Melekestseva et al., 2017). Whilst we realise that the Au content of Troodos VMS 

is significantly less than the 65 ppm average for Semenov 2; Melekestseva et al. (2017) also reported 

elevated concentrations of Se, Te, Cu and Au which they find inconsistent with a purely basaltic-

ultramafic source. Instead Melekestseva et al. (2017) prefer an additional metal contribution from a 

fluid source via a magmatic volatile influx into the hydrothermal system. 

 

5.4 Magmatic volatile fluid flux to the hydrothermal system  

In addition to variation in host rock chemistry a direct magmatic influx through volatiles into the 

hydrothermal system could explain the enrichment in magmatophile trace elements in the Solea 

domain (Layton-Matthews et al., 2013; de Ronde et al., 2003, 2005; Yang and Scott, 2002). The Se/S 

ratio of pyrite(Se/S*106) can be used as a proxy for the influx  of magmatic volatiles into VMS 

hydrothermal systems (Layton-Matthews et al., 2008, 2013). For example, elevated Se/S ratios in 

pyrite from the Bornite Zone at Kidd Creek of >20,000 are attributed to and associated with a late 

magmatic influx (Hannington et al., 1999). Selenium/S ratios of >500 represent an increased magmatic 

volatile component in VMS systems and all values for sediment-free ridges (back-arc and MOR), such 

as Troodos (Robertson and Xenophontos, 1993) are predicted to fall below 1500 (Figure 9) (Layton-

Matthews et al., 2008). However, the Se/S ratios in pyrite from this study range from 1.6 to 9240 

suggesting a variable magmatic volatile influx into the Troodos hydrothermal systems (Figure 9).  

The structural domains of Solea and Mitsero display systematically different pyrite Se/S ratios 

(Appendix A6). The Solea graben shows the highest average Se/S ratio at 581 (max= 9280, n= 427) and 

the Mitsero graben the lowest at 31 (max= 640 n=100- Figure 9). This systematic variation between 

these two structural domains may be due to a variable magmatic volatile influx with the Solea graben 

experiencing the highest magmatic contribution.  Keith et al. (2016a) reported δ34S isotope values in 

pyrite (mineral separates) from Skouriotissa that are skewed towards light magmatic (Troodos 0-1 ‰: 

Alt, 1994; Vibetti, 1993) δ34S values at -1.6 ‰. This is significantly lighter than average δ34S values 

quoted by Alt (1994) for other Troodos VMS sulfides of +4 to +7 ‰. Herzig et al. (1998) demonstrate 

large variations in δ34S composition in hydrothermal sulfides from the Valu Fa Ridge (Manus Basin).  

They show that the δ34S composition of SMS pyrite is directly linked to the spreading evolution of the 



  

Valu Fa Ridge where vent fields separated by just 30 km are characterised by extreme δ34S  variations 

from -7.3 ‰ at Hine Hina to + 10.9 ‰ at Vai Lili (Herzig et al., 1998). Such variations can be attributed 

to local spreading centre evolution with Hine Hina forming proximal to a magmatic source and thus 

experiencing an increased ingress of magmatic derived volatiles with a δ34S isotopic signature lighter 

than typical for a seawater dominated system. Herzig et al., (1998) suggest the reduction of magmatic 

SO2 to H2S form shallow magma conduits and decreased seawater ingress to explain the extremely 

light δ34S values at Hine Hina. 

Whilst the Se/S ratio in pyrite is only a proxy for the magmatic influx and detailed δ34S analyses are 

needed to confirm these results, the systematic variation in Se/S between the Solea and Mitsero 

graben can be preliminary linked to the spreading evolution of the Troodos ophiolite. Evidence suggest 

that the Solea graben represents a full spreading ridge whilst Mitsero formed during migration of 

spreading between two rift structures, most likely as a propagating ridge tip  (Everdingen et al., 1995; 

Hurst et al., 1994; Varga and Moores, 1985). The lower average Se/S ratio of 31  (n=100) (Figure 9) for 

Mitsero supports the structural observation that Mitsero formed through extension of older oceanic 

crust in an off-axis position (see Everdingen et al., 1995). In this scenario, the magmatic volatile influx 

to the VMS system would be diminished and the pyrite Se/S ratio would be lower relative to Solea; a 

‘full’ magmatic spreading centre that experienced higher magmatic volatile input. 

The Troodos lava geochemistry is different to MORB showing an enrichment in volatile elements and 

H2O (2-4.5 wt.% H2O- Fonseca et al., 2017; Patten et al., 2017). Highly saline quartz-and epidote hosted 

fluid inclusions (TH=400-500˚C, 36-61 wt.% NaCl equivalent) provide further evidence for a magmatic 

volatile contribution to the Troodos hydrothermal systems and associated VMS deposits (Kelley et al., 

1992, 1993; Kelley and Robinson, 1990). The brine rich inclusions are concentrated in plagiogranites 

and associated epidosites, the residual products of fractional crystallisation or partial melting of 

hydrated lower crustal gabbroic rocks (Grimes et al., 2013; Freund et al., 2014). Plagiogranites 

generally form below the penetration depth of seawater, with only the upper most crack front or 

contact aureole showing evidence of hydrothermal alteration (epidote veins etc.), therefore, brine 

and associated volatiles are only partly accessible to the hydrothermal fluid (Gillis and Roberts, 1999; 

Gillis and Coogan, 2002;  Kelley et al., 1992; Vibetti, 1993). Any magma derived brine must breach the 

boundary conductive layer in order to be accessible to the hydrothermal system otherwise metals 

may not be transferred from the magmatic to hydrothermal environment (Gillis and Roberts, 1999- 

Figure 10). The repeated non-steady state injection of high level magma conduits would lead to the 

temporal migration of the boundary conductive layer (Figure 10) (Gillis and Roberts, 1999; Kelley and 

Robinson, 1990). The migration of the boundary and crucially generation of extensive fracturing would 

allow hydrothermal fluids to penetrate and incorporate magmatic volatile rich brines (and metals) 



  

from the upper plutonics. Thus, we hypothesis that this magmatophile trace element signature is 

preserved in the Troodos VMS deposits as a systematic variation in Se/S and the distribution of 

magmatophile elements, such as Te, Se, Bi and Cu between the Solea and Mitsero graben (Figures 8, 

9 and 10). At Solea the boundary conductive layer is subject to multiple magma injections, i.e. a full 

spreading ridge, suggesting a higher fracture density due to repetitive magma injection and 

penecontemporaneous graben formation leading to an increased probability of brine migration from 

the magmatic to the hydrothermal system (Figure 10). In contrast the boundary would be less mobile 

at Mitsero and volatile enrichment is less likely to occur leading to a depletion in magmatophile 

elements and lower Se/S ratios in pyrite relative to Solea (Figure 10). 

6. Summary and conclusions 
This study provides the first extensive high-resolution in situ data for trace elements in sulfide minerals 

for the VMS deposits of the Troodos ophiolite allowing us to study regional scale ore-forming 

processes related to spreading centre evolution. Spot and line analyses by LA-ICP-MS show that the 

distribution of trace elements in hydrothermal sulfides from various Troodos VMS deposits are 

extremely variable on both a deposit and a regional scale, i.e. between structural domains. Minor 

correlation of most trace elements on a deposit scale suggests that local changes in physicochemical 

factors, such as fluid temperature affect the trace element distribution in a highly dynamic 

environment. In particular, Se is preferentially incorporated in chalcopyrite rich ore that is more 

common in the lower VMS stratigraphy. Upon cooling to <260˚C chalcopyrite precipitation ceased, 

leading to a reduction in Se uptake in the lower VMS stratigraphy and the preferential incorporation 

of Se into pyrite in the upper near seafloor sections of the deposit. 

Time resolved LA-ICP-MS analysis demonstrates that some trace elements are incorporated in sulfides 

via lattice substitution in solid solution (e.g., Se, As, Sb), whilst others likely occur as both micro- and 

nanoscale inclusions or in solid solution (e.g. Te). Discrimination diagrams demonstrate the 

importance of As in incorporating elements with large covalent radii such as Te into the pyrite lattice. 

Colloform pyrite acts as a reservoir for Mo, Sb and Au, while euhedral pyrite exhibits an enrichment 

in Co, Te, Bi and Se. The variation in trace element composition between the two pyrite types is 

attributed to the rapid, disequilibrium precipitation of colloform pyrite relative to euhedral pyrite.  

Chalcopyrite from the stockwork zone contains elevated Co, Ni and Se compared to pyrite which 

reflects the enhanced substitution potential of Se, Ni and Co in chalcopyrite relative to pyrite.  

Systematic variations of the Se/S ratio in pyrite on a graben scale coupled with our current 

understanding of the spreading evolution of Troodos suggest a heterogeneous source of trace metals 

in the Troodos VMS deposits. Variable magmatic volatile influx related to a) ‘magma’ volume, b) 



  

migration of the magmatic-hydrothermal crack front and brine liberation, or c) a variation in protolith 

metal concentration are proposed as mechanisms to explain regional scale variations in VMS 

geochemistry.  

Compared to typical MOR hydrothermal systems, VMS deposits of the Troodos ophiolite and in 

particular those of Solea (Mala, Apliki and Skouriotissa) are enriched in magmatophile elements 

derived from a volatile source. We hypothesise a variable magmatic volatile influx linked with the 

subduction zone nature of the Troodos ophiolite that leads to the enrichment of Te, Se, Bi, and Cu. 

We propose that the Troodos hydrothermal systems and associated sulfide deposits are similar to 

those of the Valu Fa Ridge, where magmatic volatile signatures vary on a 30 km scale leading to distinct 

magmatophile rich trace element profiles in seafloor massive sulfides that experienced variable 

amounts of magmatic volatile influx. This raises the question whether Cyprus-type VMS deposits can 

still be considered representative as true ancient analogues for modern active hydrothermal systems 

at sediment-free mid-ocean ridge spreading centres.  
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Figure Captions  

Figure 1:  Simplified geological map of the 92 Ma Troodos ophiolite. STTFZ = Southern Troodos 

Transform Fault Zone (after Martin et al., 2018). 

Figure 2: Structural domain map of the Troodos ophiolite showing VMS deposits and structural 

domains based on dyke dip and strike. Simplified from the nine original districts defined by Moores et 

al. (1990). VMS deposit names analysed in this study are listed from W to E. 

Table 1: Summary, location and mineral occurrences in VMS deposits considered in this study. PY = 

pyrite, CCP= chalcopyrite, SPH= sphalerite, CV= covellite.  

Figure 3: Reflected light photomicrographs of common sulfide textures in Troodos VMS. A) Banded 

pyrite-chalcopyrite in massive ore (Kokkinoyia). B) Late euhedral pyrite overprinting chalcopyrite that 

is altered to covellite (Phoucasa). C) Colliomorphic pyrite with interstitial chalcopyrite and silica. D) 

Colloform, crudely layered pyrite (Mala). E) Pyrite overprinted by chalcopyrite with silica and goethite 

(Kokkinoyia). F) Disseminated euhedral pyrite in chloritised wall-rock with minor interstitial 

chalcopyrite (Limni). G) Disseminated pyrite infilling vesicles (Kokkinopezula). H) Anhedral aggregates 

of pyrite lining vein margins from Agrokipia B. I) Photograph of jasper (red) with quartz and feathery 

pyrite dissolution texture. J) Semi-massive ore from Kokkinoyia, pyrite overprinted by chalcopyrite. K) 

Close up of euhedral pyrite overprinting chalcopyrite and extensive covellite (Phoucasa). L) Granular 

upper mound facies, pyrite is rounded and framboidal (Phoucasa). M) Stockwork with massive 

chalcopyrite and minor subhedral pyrite (Apliki). N) Chalcopyrite, sphalerite and pyrite in quartz from 

Agrokipia B. O) Subhedral sphalerite occupying the centre of a quartz vein with minor disseminated 

pyrite (Agrokipia B). Yellow arrows indicate pyrite cores. PY= pyrite, CCP= chalcopyrite, SPH 

=sphalerite, CV= covellite. 

Table 2: Summary of pyrite geochemistry from 20 VMS of Troodos. Maximum (Max), minimum (Min), 

average, median and standard deviation (σ) (full data and detection limits are available in 

supplementary material Appendix 1 and 7). 

Table 3: Correlation (Linear R values) matrix of trace elements in pyrite (n=1322). Correlation between 

trace elements is limited with the notable exception of Zn-Cd, Pb-Ag and Au-As. 

Table 4: Summary of chalcopyrite geochemistry from 8 VMS of Troodos. Maximum (Max), Minimum 

(Min), average, median and standard deviation (σ) (full data is available in supplementary material 

A2). 



  

Table 5: Summary of sphalerite geochemistry from 4 VMS of Troodos. Maximum (Max), Minimum 

(Min), average, median and standard deviation (σ). *indicates analysis via LA-ICP-MS (full data is 

available in supplementary material A3). 

Figure 4: Average concentration of major and trace elements by mineral in ppm. Ru and Pd are average 

values of 105,106,108 Pd and 99,101 Ru. Chalcopyrite preferentially incorporates PGE’S, Se, Co and Ni. Pyrite 

is enriched in Bi, Te, As, Sb and Au. Sphalerite is enriched in Ag and Cd. 

Figure 5: LA-ICP-MS Time Resolved Analysis (TRA) of selected sulfide minerals (red arrow indicates 

laser motion). (A) Pyrite aggregate (Mala) multiple pyrite crystals are identifiable due to variation in 

TRA shape showing variations from core to rim. (B) Colloform pyrite (Mala) is depleted in solid solution 

hosted elements (e.g. Se) but enriched in inclusion hosted elements (e.g. Sb). (C) Chalcopyrite (Apliki), 

note the preferential incorporation of Se in chalcopyrite with a smooth ablation profile. (D) Euhedral 

pyrite (Apliki) exhibiting a smooth TRA profile for Se and a more jagged profile for Te suggesting 

variable mechanisms of incorporation in pyrite. (E) Multiple generations of euhedral pyrite 

demonstrating the variable physicochemical conditions during pyrite precipitation (Apliki). (F) 

Sphalerite spot analysis (Agrokipia B), note correlation of Cd and Ag with Zn. (G) Euhedral to subhedral 

pyrite (Skouriotissa); Bi and Te profiles mirror each other possibly suggesting a coupled behaviour. 

Figure 6: Concentrations of (A) Au, (B) Ag, (C) Sb, (D) Pb, (E) Te, (F) Se vs. As in pyrite for all Troodos 

VMS. Red dashed lines define the wedge-shaped zone, points that plot within this zone are hosted in 

a solid solution and outside as mineral-nanoscale inclusions (after Deditius et al., 2014; Reich et al., 

2005, 2010, 2013 and Keith et al., 2016b). Selenium vs. As does not form a wedge shaped zone with 

high Se concentrations realised at a range of As concentrations- thus supporting Se's incorporation in 

a solid solution with S. The black dashed line (6A and 6E) represents the solubility limit of Au0 in pyrite 

as a function of As (Keith et al., 2018; Reich et al., 2005). Modern SMS data from Keith et al. (2016b). 

Figure 7A: Concentration of Te vs. Bi for Skouriotissa (Phoucasa) and Apliki VMS. The moderate 

positive correlation between Bi and Te suggests Te (R2= 0.35 and 0.32) may be hosted by Bi-Telluride 

inclusions or discrete mineral phases (B) Tellurobismuthite (Bi2Te3) from Skouriotissa forming along 

pyrite grain boundaries (Taylor, 2015). 

Figure 8: Concentrations of Au vs. As for auriferous VMS deposits of southern Troodos; Kalavasos (n= 

39), Mala (n= 6), Mathiatis North (n=107) and the Logatchev hydrothermal field (n=22) (*Keith et al., 

2016b). Data shows that at high Au and low As concentrations <1000 ppm Au may be incorporated as 

Au0 in mineral- or nanoscale-inclusions in pyrite. A large proportion of points are hosted a as solid 

solution located within the Au+1 zone.   



  

Table 6: Concentration of trace elements between the Solea and Mitsero structural domain (ppm). 

Solea is enriched in magmatophile elements (Te, Se, Au, Cu) relative to Mitsero.  

Figure 9: Selenium/Sulfur ratios in pyrite from VMS of the Solea and Mitsero domains. Dashed line 

indicates the magmatic-hydrothermal threshold (500) identified by Layton-Matthews et al., (2008). 

Upper dashed line (1500) shows maximum Se/S for modern MOR SMS (Layton-Matthews et al., 2008). 

Selenium/Sulfur ratios from Solea are skewed towards magmatic values with a maximum of 9280 

whilst Mitsero are lower with a maximum of 640 (also see Appendix A6). 

Figure 10: A model of magmatic volatile influx in the Troodos VMS system. Figure (A): Increased 

magmatic influx into the VMS hydrothermal system at Solea due to increased magmatism and a 

mobile crack front. Figure (B); influence of lava geochemistry and epidosite formation with Solea 

epidosite zone containing a higher proportion of mafic (basaltic) Se, Au, Cu rich dykes that are 

subsequently epidotised releasing relatively higher quantities of Se, Au and Cu into the hydrothermal 

system. The inverse is true at Mitsero that contains less evolved dykes within the epidosite zone. 

Figure (C); the effect of a low magmatic influx and a static crack front; brine is not liberated into the 

hydrothermal system and VMS deposits are depleted in magmatophile elements at Mitsero.  
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Locality  Location (WGS 1984) Structural domain Sample type Mineral  

Limni 045294 3877209 Polis Disseminated, Massive PY,CCP 

Kynousa/Lysos 045555 3876810 Polis Massive, Stockwork  PY, SPH, CCP 

Pournaji  045529 3876352 Polis Massive PY 

‘77’ 045404 3877993 Polis Massive  PY 

Mala 047042 3864323 Solea Massive PY 

Apliki 048575 3881758 Solea Stockwork CV,CCP,PY 

Phoucasa 048990 3883713 Solea Stockwork, Massive CCP, CV, PY 

Phoenix 048993 3884050 Solea Stockwork, Jasper CCP, PY 

Three Hills 049088 3883189 Solea Stockwork  CCP, PY 

Memi 050366 3877476 Mitsero Massive, Disseminated PY 

Kokkinopezula 051038 3877259 Mitsero Jasper PY 

Kokkinoyia  050974 3877946 Mitsero Stockwork, Massive PY, CCP 

Agrokipia A 051327 3878134 Mitsero Massive, Disseminated PY 

Agrokipia B N/A Mitsero Stockwork  CCP, PY, SPH 

Kaphedes  052394 3871610 Larnaca Massive, Disseminated PY 

Kampia  052501 3872967 Larnaca Massive, Jasper PY 

Mathiatis North 053185 3870606 Larnaca Stockwork, Massive CCP,PY,SPH 

Mathiatis South 053170 3867617 Larnaca Massive PY 

Sha  053414 3867843 Larnaca Massive PY 

Kalavasos  052371 3850315 STTFZ Stockwork PY 
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Table 3 

 

  

Pyrite Co Ni Cu Zn As Se Mo Ag Cd Sb Te Re Pb Au Bi  
Co 1                 
Ni 0.22 1                
Cu 0.01 0.02 1               
Zn -0.05 0.14 -0.01 1              
As -0.05 -0.03 -0.01 0.03 1             
Se -0.06 0.21 0.05 -0.09 -0.05 1            
Mo -0.10 -0.05 -0.02 -0.05 0.33 -0.07 1           
Ag -0.06 0.03 0.04 0.17 0.30 -0.02 0.05 1          
Cd -0.05 0.00 0.05 0.73 0.03 -0.03 0.00 0.27 1         
Sb -0.05 -0.02 -0.01 -0.03 0.30 -0.06 0.23 0.12 -0.02 1        
Te 0.07 0.00 -0.04 0.04 0.02 -0.06 -0.09 -0.10 0.01 -0.06 1       
Re 0.11 0.01 0.00 -0.04 0.02 0.27 -0.18 0.00 -0.07 -0.07 0.19 1      
Pb -0.06 0.28 0.03 0.17 0.41 -0.05 -0.01 0.52 0.27 0.24 -0.09 0.03 1     
Au -0.05 -0.03 -0.03 -0.04 0.68 -0.16 0.26 0.09 0.03 0.12 -0.02 -0.05 -0.08 1    
Bi -0.01 0.00 -0.01 0.30 0.01 0.06 -0.02 -0.02 0.25 -0.02 0.23 0.04 0.06 -0.03 1  
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Table 5 

 

  

Locality   S Fe Zn  Cu As Se Ag Cd Sb 

Sphalerite  n= 86 % % %  % ppm ppm ppm ppm ppm 

   EMPA        LA-ICP-MS 

Kynousa Max 33.28 1.12 65.46  0.19    3400  

n = 2  Min 32.58 0.90 65.22  0.09    3400  

 Average 32.93 1.01 65.34  0.14    3400  

 Median  32.93 1.01 65.34  0.14      

 σ 0.49 0.16 0.17  0.07      

Phoucasa Max 39.35 29.48 55.97  8.97    2060  

n = 65 Min 33.51 8.64 30.14  0.07    70.0  

 Average 34.72 14.77 47.52  2.21    910.9  

 Median 34.23 13.91 48.42  1.14    720.0  

 σ 1.33 3.79 4.56  2.39    461.0  

Agrokipia B Max   69.0*  0.62*  20.0 1.3 192.8 1.3 

n =10  Min Not Analysed  61.1*  0.46*  20.0 0.7 119.0 0.3 

 Average   65.3*  0.53*  20.0 1.1 155.8 0.8 

 Median   64.5*  0.52*   1.2 157.7 0.6 

 σ   3.0*  0.07*   0.3 26.9 0.4 

Mathiati N Max 33.13 13.98 60.97  0.88 29.7 98.3 26.0 1500 193.0 

n = 9 Min 32.10 5.65 52.11  <0.01 1.1 19.5 1.8 400.0 0.2 

 Average 32.85 10.59 55.47  0.20 15.4 46.8 8.8 800.0 29.8 

 Median 32.89 11.45 54.33  0.14 15.4 37.7 6.2 800.0 0.3 

 σ 0.31 2.71 2.89  0.07 20.2 31.6 8.1 353.6 72.2 



  

Table 6 

 

Element Mitsero Solea 

Au 0.3 0.5 

Te 5.4 8.6 

Se 47 662 

Bi 3.2 1.7 

Cu 800 1800 

Co 116 299 

Sb 52 3.2 

As 671 119 
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Highlights 

 In situ geochemistry of sulfides from 20 VMS deposits spanning the entire Troodos ophiolite, 

Cyprus 

 Partitioning behaviour of trace elements between pyrite, chalcopyrite and sphalerite  

 Solubility limits and incorporation of Au, Te, Sb, Pb and Ag in pyrite  

 Se/S ratios and trace element profiles as an indicator for variable magmatic volatile influx 

 


