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Abstract 

Objective: Clozapine is the only effective medication for treatment-resistant schizophrenia (TRS), 

but its worldwide use is still very limited due to its complex titration protocols. While the discovery 

of pharmacogenomic variants of clozapine metabolism might improve clinical management, no 

robust findings have yet been reported. Our study is the first to adopt the framework of genome-

wide association studies to discover genetic markers of clozapine plasma concentrations in a large 

sample of TRS patients. 

Method: We used mixed-model regression to combine data from multiple assays of clozapine 

metabolite plasma concentrations from a clozapine monitoring service, and carried out a 

genome-wide analysis of clozapine, norclozapine and their ratio on 10,353 assays from 2,989 

individuals. We adjusted these analyses for demographic factors known to influence clozapine 

metabolism, although it was not possible to adjust for all potential mediators given the available 

data. GWAS results were used to pinpoint specific enzymes and metabolic pathways, and 

compounds which might interact with clozapine pharmacokinetics.  

Results: We identify four distinct genome-wide significant loci, which harbour common variants 

impacting the metabolism of clozapine or its metabolites. Detailed examination pointed to coding 

and regulatory variants at several CYP* and UGT* genes, and corroborative evidence for 

interactions between the metabolism of clozapine, coffee and tobacco. Individual effect of single 

SNPs fine-mapped from these loci were large, such as the minor allele of rs2472297, which was 

associated with a reduction in clozapine concentrations roughly equivalent to a decrease in 

clozapine dose of 50 mg/day. On their own, these single SNPs explained from 1.15% to 9.48% of 

the variance in our plasma concentration data. 

Conclusions: Common genetic variants with large effects on clozapine metabolism exist and can 

be found via genome-wide approaches. Their identification opens the way for clinical studies 

assessing the use of pharmacogenomics in the clinical management of TRS patients.
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Introduction 

Schizophrenia affects approximately 0.7% of the population (1), is characterized by disturbances 

in cognition, emotion, perception and thought, and severely impacts quality and length of life (2). 

Around a third of patients experience treatment-resistant schizophrenia (TRS), a form of the 

disorder marked by severe functional impairment in which symptoms fail to respond adequately 

to at least two first line antipsychotics (3). Clozapine is the most effective treatment (4) and the 

only licensed medication for TRS. Despite extensive evidence supporting its effectiveness 

clozapine remains under-prescribed worldwide, including in countries with highly-developed 

health services (5, 6). A key factor limiting clozapine’s use is its potential to induce severe adverse 

drug reactions (ADRs) including agranulocytosis, which occurs in up to 1% of patients and 

necessitates regular haematological monitoring (7). Other ADRs such as seizures, tachycardia, 

sedation, weight-gain, and hypersalivation have been associated with either clozapine dosage or 

high plasma concentrations (8).  

Clinicians routinely use clozapine levels to assess adherence and guide dosage in the management 

of both therapeutic response and side effects (9). This is an important strategy as adverse effects 

are the primary reason for clozapine discontinuation (10). However, there is high inter-individual 

variability in plasma clozapine concentrations at given doses (11), also due to the effects of 

concomitant medication (12), which complicates titration and presents challenges for any 

research that aims to assess the relationship between dose, efficacy and ADRs. Guidelines for 

therapeutic drug monitoring (TDM) indicate that clozapine plasma concentrations in the range 

0.35-0.60mg/L are optimal for response (13), while concentrations higher than 0.60mg/L have 

been linked to serious ADRs. Dose-response relationships between clozapine concentration and 

weight gain (14) or sedation (15) have been suggested, although this has not been seen for all 

ADRs (8). The accurate prediction of clozapine plasma levels therefore has important clinical 

implications. Sophisticated models incorporating lifestyle habits and metabolic indicators can 

explain up to 48% of the variance in clozapine levels in large patient samples (16, 17), but no 

individual factors other than age, smoking habits or sex have been found to be of clinical value 

(11). 

The use of genetic approaches to identify biomarkers that explain individual variability in drug 

metabolism and response is the basis of the field of pharmacogenomics. While this discipline 

experienced a strong growth in the mid-2000s fostered by successes related to cardiology and 

oncology (18), translation of these results into clinical settings has been proven challenging (19). 
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This has been particularly true in psychiatry (20), and clozapine research in this area showcases 

some of the difficulties of carrying out robust pharmacogenomics studies. Clozapine is 

metabolised by the liver (21) with first-pass metabolism, driven primarily by the CYP1A2 enzyme, 

producing norclozapine (N-desmethylclozapine), a pharmacologically active compound that can 

reach up to 90% of the circulating concentration of clozapine (22, 23). Other metabolites have 

been identified, such as clozapine-N-oxide, formed by CYP3A4 (22), and N-glucuronides, which 

are secondary and tertiary metabolites produced by the UDP-glucuronosyltransferase (UGT) 

protein superfamily (24). These enzymes are all implicated in other drug metabolic pathways (25, 

26), and have been the focus of the search for genetic variants associated with clozapine plasma 

concentrations. Previous studies have examined candidate polymorphisms in small (usually 

N<100) samples (27, 28). Promising results have been reported for variants of the ABCB1 drug 

transporter (28) but no finding has yet passed the threshold of genome-wide significance, which 

is now widely accepted as being required for robust association, even in candidate gene studies 

(29).  

Here we report the first genome-wide association study (GWAS) of plasma concentrations of 

clozapine and its metabolites; by applying modern statistical modelling techniques, we exploit 

information from over 10,000 metabolite concentration assays taken from a sample of nearly 

3,000 TRS patients. We identify genome-wide significant polymorphisms that delineate 

clozapine’s metabolic pathways, and discuss their relevance to the clinical management of TRS. 

 

Methods 

Sample 

Data were acquired as part of the CLOZUK2 study (30) from individuals prescribed clozapine for 

TRS in the UK. Sample and data acquisition were arranged through collaboration with Leyden 

Delta (Nijmegen, Netherlands), who monitor clozapine in the UK. The study was conducted in 

accordance with its UK NHS ethics permissions. The CLOZUK2 sample is described fully elsewhere 

(30).  

Genotyping and imputation 

Genotyping of the CLOZUK2 sample was performed by deCODE Genetics (Reykjavik, Iceland), 

using an Illumina HumanOmniExpress-12 array. Quality control (QC) and analyses were 

performed using PLINK v1.9 (31) unless otherwise specified. QC followed standard GWAS 



 6 

protocols (32), including the removal of samples and markers with >2% missingness or 

homozygosity (F) >0.2.  Post-QC, 7,287 individuals with data from 698,442 markers remained in 

the dataset. 

The Haplotype Reference Consortium (HRC) panel, accessed through the Michigan Imputation 

Server (33, 34), was used for genotype imputation. Since using this service to impute X-

chromosome data was not possible at the time of this study, genotype data from the X-

chromosome was imputed locally using the Cardiff University RAVEN cluster (35). For this, the 

SHAPEIT/IMPUTE2 algorithms (36) and a combination of the 1000 Genomes phase 3 (1KGPp3) 

and UK10K reference panels (37) were used. Both approaches have been shown to perform 

similarly when imputing GWAS variants (33), which traditionally have minor allele frequencies 

(MAF) >1%. After imputation, 20 million SNPs with INFO scores >0.8 remained in the dataset. 

Selection of individuals for analysis 

In order to select a sample of individuals with homogeneous genetic ancestry, we selected a 

custom panel of ancestry informative markers (AIMs), as described previously (38). Briefly, using 

principal components and a classification algorithm based on linear discriminant analysis, we 

identified 5,900 CLOZUK2 individuals with >90% probability of European ancestry. Individuals not 

fulfilling this criterion were excluded from all further analysis, given the small number of non-

European individuals with plasma concentration data.  

From the imputed genotypes we retained SNPs with MAF ≥ 1% and Hardy-Weinberg Equilibrium 

(HWE) p-value ≤ 10-6, leaving 7.5 million SNPs for analysis. 

Clozapine and norclozapine levels in blood 

Clozapine and norclozapine plasma concentration assays were conducted at Magma laboratories 

and were determined by Liquid Chromatography Mass Spectrometry (LC-MS/MS) using standard 

procedures for clozapine assays, summarised in Supplementary Methods.  

Curation of plasma concentration data 

The clozapine and norclozapine plasma concentrations of the CLOZUK2 sample formed a dataset 

of assays taken at 15,504 time points from 3,986 unique individuals. Data available for each time 

point included: age of patient; daily clozapine dose; date and time of last dose; date and time the 

blood was sampled; and measured clozapine and norclozapine levels. Clozapine or norclozapine 

concentrations <0.05 mg/L (corresponding to the minimal detection thresholds of the HPLC 

instrument) were removed as indicating non-adherence. We also excluded outliers outside the 
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99th percentile of plasma concentrations. We noted that removing data from a broader range of 

the extremes of the plasma concentration distributions did not meaningfully alter our results. 

Finally, we removed assays where the blood was sampled <6 hours or >24 hours since the last 

clozapine dose taken, since a 6-24 hour post-dose measurement interval is recommended for 

clozapine monitoring to ensure adequate drug absorption (11). After this process, 10,353 assays 

from 2,989 individuals (range of 1-42 per individual) remained (Supplementary Figure 1). 2,022 

individuals (67.8% of the total) had assay data from more than 1 time point. We did not undertake 

analyses specifically on steady-state levels (39) given we could not strictly determine this on the 

available data, but noted that in restricting to those with more than one clozapine measurement 

(and hence more likely to have taken the medication for a longer period) the results were 

unchanged; indeed the data from the majority of our patients with >1 assay measurement 

spanned a much longer period (median time= 361 days). 

Generation of plasma concentration phenotypes 

We examined three primary metabolic outcome variables: the plasma concentrations of clozapine 

and norclozapine, as well as the clozapine-to-norclozapine ratio (the “metabolic ratio”) (16). In 

order to make maximum use of the data available at multiple time points we employed a 

regression modelling framework to combine data from multiple assays into a single phenotype 

per individual, as detailed in Supplementary Methods. Briefly, we identified the best-fitting 

distribution for each metabolic outcome variable and used this to specify a random-effects model 

controlling for known predictors of clozapine metabolism (clozapine dose, time between dose 

and assay, and age at assay). From this model, random-effects coefficients were extracted for 

each individual; this corresponds to the variation in plasma concentrations for that individual 

(clozapine, norclozapine, and their ratio), independent of the effects of the known predictors 

(dose, time since dose and age); this co-efficient was then used as our primary outcome 

phenotype for our GWAS.  

GWAS of plasma concentrations 

The above approach to derive our primary outcome allowed us to use standard methods to 

perform a GWAS of clozapine concentration, norclozapine concentration and their metabolic 

ratio. We undertook the GWAS on the CLOZUK2 imputed data, using the “leave-one-

chromosome-out” linear mixed-model (LMM-LOCO) implemented in GCTA v1.26 (40). This 

analysis requires genotype relatedness matrices to control for family and population structure, 

which we calculated from non-imputed genotypes to avoid introducing biases due to imputation 
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accuracy. Sex was used as a covariate for this analysis. As we did not have information on other 

factors known to influence drug plasma concentrations, such as weight or cigarette smoking 

habits, we performed secondary sensitivity analyses controlling for proxy measures based on 

polygenic risk scores (PRS) for those traits (Supplementary Methods). From each LMM-LOCO 

analysis we identified approximately independent index SNPs (r2=0.1) using the PLINK linkage 

disequilibrium (LD) clumping procedure (P < 10-4 and distance < 3000 kb).  

Identification of putatively causal SNPs and genes 

For each genome-wide significant locus (P < 5x10-8), FINEMAP v1.1 (41) was used to pinpoint 

putatively causal SNPs. These were defined as individual SNPs with posterior probability 

(PPFINEMAP) higher than 95%. In the absence of such SNPs, a list of credible SNPs was generated, 

which included those with cumulative PPFINEMAP = 95%. Sets of credible SNPs were annotated to 

function using the Ensembl Variant Effect Predictor (VEP) tool (42). To attempt a more accurate 

identification of putatively causal genes in these loci, we also analysed gene expression from 

multiple tissues, including liver, using data from GTEx v7 (43) (Supplementary Methods). 

Information about hepatic promoters, enhancers and topologically-associated domains (TADs) 

was retrieved from (44) and added to the SNP-based annotations. 

Estimating the effect of individual SNPs on plasma concentration. 

The modelling we undertook to derive our primary GWAS phenotype produces genetic effect sizes 

in LMM-LOCO that are related to the residuals used as our primary outcome rather than to the 

raw assay data, which would be easily interpretable. To explicitly estimate genetic effects on the 

scale of our clozapine metabolite plasma concentrations, we extracted the minor allele counts 

(“allelic dosages”) for genome-wide significant SNPs of each GWAS for each individual. Mixed 

regression models were fitted for each outcome variable including as covariates clozapine dose, 

time since dose, age, sex, allelic dosage and the first 20 principal components (PCs) derived from 

the genotype data using PC-AiR (45). A random effect covariate was used to capture individual-

level variance in this model. The effect of allelic dosage on plasma concentration was then 

estimated within the same mixed linear regression framework used to generate the GWAS 

phenotypes, which produces a more meaningful result from the clinical point of view. Model 

fitting statistics (e.g. variance explained by fixed and random effects, proportion of variance 

explained by single SNPs) were determined as described in Supplementary Methods.  

Locating shared associations with other metabolic traits 
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We used GWAS-pw v0.21 (46) to identify genetic markers associated with clozapine and 

norclozapine concentrations that were also associated with the concentrations of other 

metabolites in the KORA/TWINSUK study (47) in a genome-wide context. We focused on the 285 

metabolites and xenobiotics confidently identified in that study, disregarding unknown 

compounds and metabolite ratios. Using the summary statistics from a GWAS of each metabolite, 

we generated co-localisation posterior probabilities (PPCOLOC) with our clozapine and norclozapine 

summary statistics. Probabilities were calculated for all individual SNPs with complete data, in 

order to identify shared effects inside and outside genome-wide significant loci, thus allowing us 

to pinpoint more robust shared effects than would emerge from examining a limited number of 

loci.  

Analysis of human metabolic pathways 

To study the genetic component of clozapine metabolism in the context of the human metabolic 

network, we retrieved the most recent metabolome reconstruction, RECON 2.2, capturing 5,324 

metabolites and 1,675 genes (48). We grouped genes into subsystems (e.g. “extracellular 

transport”, “steroid metabolism”), resulting in 79 gene-sets. One additional set was created from 

203 genes analysed in a recent drug metabolism study (49), representing known pharmacokinetic-

relevant enzymes and receptors. Gene-set enrichment analysis was performed with MAGMA 

v1.06 (50), using the “multi” method to calculate gene-wide p-values from GWAS summary 

statistics. Within each analysis, gene-set p-values were corrected using the family-wise error rate 

(FWER) with 100,000 permutations.  

 

Results 

Genome-wide significant SNPs associated with clozapine plasma concentrations 

The GWAS of clozapine levels identified a single genome-wide significant association at 

rs2472297, an intergenic variant between CYP1A1 and CYP1A2 (Figure 1A; Table 1; 

Supplementary Table 1; Supplementary Figure 2). Analysis of GTEx hepatocyte expression data 

did not relate this signal to any particular gene (Supplementary Methods), though rs2472297 has 

been previously associated with CYP1A2 activity on the basis of its effect on caffeine metabolite 

concentrations (51). In the mixed-model analysis, the minor allele of this variant was shown to be 

associated with reduced clozapine plasma concentrations, with a proportion of variance 
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explained (PVE) of 1.47% (Table 2, Figure 2, Supplementary Methods). Model-fitting statistics for 

the complete groups of fixed and random effects are listed in Supplementary Table 2. 

The GWAS of norclozapine levels identified two genome-wide significant loci (Figure 1B; Table 1; 

Supplementary Table 1; Supplementary Figure 3). The first was indexed by rs72846859, an 

intergenic variant upstream of UGT2B10.  FINEMAP revealed a complex association signal in this 

region, with 171 credible SNPs (Supplementary Table 3) including a missense variant (Asp/Tyr) in 

UGT2B10, rs61750900. LD between the index and missense variants was high (r2= 0.964), and 

given its higher prior probability of causality (Supplementary Methods) we incorporated 

rs61750900 into the mixed regression model of norclozapine plasma levels. For the second 

genome-wide significant locus, the index SNP was rs2011425, a missense variant (Leu/Val) in 

UGT1A4, which also obtained the highest FINEMAP probability out of 47 credible SNPs 

(Supplementary Table 3). The minor alleles of both SNPs were associated with lower norclozapine 

plasma levels, with a PVE=2.32% for rs61750900 and PVE=1.15% for rs2011425 (Table 2). 

The GWAS of clozapine/norclozapine metabolic ratio identified three independent genome-wide 

significant associations at two distinct loci (Figure 1C; Table 1; Supplementary Table 1; 

Supplementary Figure 4). Two of these LD-independent SNPs (rs10023464, rs7668556) tagged a 

locus on chromosome 4 that includes seven genes of the UGT2 family. The remaining SNP, 

rs12767583, is an intronic variant in CYP2C19. FINEMAP showed that both loci harbour complex 

association signals, returning 65 and 102 credible SNPs, respectively (Supplementary Table 4). At 

each locus, the set of credible SNPs included a missense variant in high LD (r2>0.9) with the top 

FINEMAP SNP, one of which (rs61750900) was also genome-wide significant in the norclozapine 

analysis. Both missense variants, rs61750900 (PVE=9.48%) and rs1126545 (CYP2C18 Thr/Met; 

PVE=1.85%), were incorporated into a log-normal model, where their minor allele dosage was 

shown to increase the clozapine/norclozapine ratio (Table 2).  

Secondary GWAS analyses controlling for smoking and BMI PRS gave very similar results to those 

reported here, with no gain or loss of genome-wide significant signals (Supplementary Methods). 

Also, confirming observations from a previous study conducted using multiple assays (52), we find 

that our approach of using mixed model residuals as a GWAS phenotype gives results similar to 

the use of summary statistics (averages or maximum values), but with tighter standard errors 

resulting in improved significance for individual loci (Supplementary Figure 6). 

Co-localisation analysis of metabolite levels 
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We employed a co-localisation procedure to test whether SNPs implicated in clozapine levels 

might also impact the plasma concentrations of other compounds, as this can provide insight into 

the causal mechanisms behind these signals and reveal metabolic convergences and potential 

clinically important interactions. Analysis of the clozapine levels GWAS showed that the 

association at the CYP1A2 locus, indexed by rs2472297, was also observed (PPCOLOC > 94%) in 

GWAS of five xenobiotic metabolites: caffeine, theophylline, 7-methylxanthine, paraxanthine, and 

Leu-Pro cyclopeptide. All of these are putative biomarkers of coffee consumption (53): the first 

four are implicated in caffeine metabolism, while Leu-Pro cyclopeptide is a component of roasted 

coffee. On the basis of these results, we carried out a polygenic score analysis to obtain a 

surrogate metric of daily coffee intake (Supplementary Methods), which we found to be 

significantly associated with all of our phenotypes (Supplementary Table 5). 

Analysing the norclozapine levels GWAS, the xenobiotic metabolite pelargonate co-localised at 

the main UGT2B10 locus (PPCOLOC = 96.97%), while caffeine and theophylline co-localised at the 

CYP1A1/CYP1A2 locus (PPCOLOC > 98%), which for norclozapine is indexed by rs2472297 

(P=3.52x10-5). Although pelargonate is a component of some commercial coffee varieties, it is not 

part of the caffeine metabolic pathway, but of the wider system of fatty acid metabolism, as is 

UGT2B10 (54). Interestingly, pelargonate shares structural similarities with the antiepileptic 

valproate, and it has recently been shown that valproate co-administration with clozapine 

reduces norclozapine plasma levels (55). 

Genome-wide enrichment of metabolic pathways 

After correction for multiple testing, 5 gene-sets were significant in our analysis of RECON 

biochemical pathways (Table 3, Supplementary Table 6). Vitamin A (retinol) metabolism was the 

top enriched pathway for both clozapine and norclozapine, while linoleate metabolism was the 

second norclozapine pathway and the top pathway for the clozapine/norclozapine ratio. In 

clozapine and norclozapine, we also observed significant FWER-corrected enrichment for the set 

of 203 drug metabolising enzymes; repeating the enrichment analysis using this gene-set as a 

covariate removed all other gene-set signals from the clozapine GWAS, while vitamin A and 

linoleate (a fatty acid) remained significant in in the gene-set analyses of norclozapine and the 

metabolic ratio (Supplementary Table 7). 

 

Discussion 
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We have carried out the first GWAS of clozapine metabolite plasma concentrations in 2,989 

European individuals, the majority of whom had been assayed at multiple time points. Using 

statistical modelling to take advantage of all the available data, and a linear mixed-model GWAS 

approach, we provide the first robust evidence that alleles of specific CYP and UGT genes 

contribute to clozapine pharmacokinetics. This represents an advance from previous inconclusive 

studies (28), mostly based on candidate marker surveys, and clarifies the relevance of common 

genetic variation in the proteins implicated in the clozapine metabolic route, which has been a 

matter of extensive debate. More specifically, our results support the hypothesis that the genetic 

architecture of clozapine metabolism might be driven by a few variants of large effect 

(Supplementary Figure 7), in line with other well-studied metabolic traits (56).  

The CYP1A1/CYP1A2 SNP rs2472297 associated with clozapine plasma concentrations lies in an 

intergenic region rich in binding sites for the Aryl Hydrocarbon Receptor (AHR) protein, sites which 

are collectively known as “xenobiotic response elements” (57). AHR binding is known to induce 

the expression of CYP enzymes in hepatocytes in response to the detection of many compounds, 

and thus variation in the regulatory function of AHR provides a strong candidate mechanism 

underpinning this association. While a causal association cannot be made solely on these grounds, 

disruption of normal AHR binding has also been suggested as explaining the association between 

variants at this locus and caffeine plasma levels, which may also influence coffee consumption 

(51). Previous studies of clozapine levels and candidate polymorphisms at this locus have focussed 

on common alleles within CYP1A2 (27, 28), none of which has been shown to influence its 

expression (58). We also note we find no support for other candidate genes from the literature, 

including the ABCB1 variant rs1045642 (P=0.84) which was previously reported as associated with 

clozapine plasma concentrations in smaller (N<100) samples (28). Both of these examples 

demonstrate the limitations of candidate SNP approaches that have been common in psychiatric 

pharmacogenomics to date and support genome-wide analysis to capture both coding and non-

coding functional elements. 

The results of our regression modelling show that the genetic modifiers of clozapine levels are 

comparable in impact to other known clinical and demographic variables, with their effect sizes 

being of the same magnitude as sex (Table 1, Table 2). An example to illustrate these effects and 

place them in clinical context is the observation that carrying one minor allele of rs2472297 at 

CYP1A1/CYP1A2 is associated with a reduction in clozapine plasma concentrations roughly 

equivalent to a decrease in clozapine by 50 mg/day, and homozygosity for the minor allele is 
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equivalent to a reduction by 100mg (Figure 2). Similar effects were found for the missense SNPs 

associated with norclozapine levels (Supplementary Figure 8). The impacts on clozapine 

metabolite concentrations captured by these SNPs warrants their further study within the context 

of personalised drug therapy, given their potential clinically significant impact on dosing.  

In following up the results of the GWAS we sought genomic regions associated with clozapine 

metabolism that have also been identified as influencing metabolism of other compounds. We 

identified a strong relationship between the genetics of clozapine and caffeine metabolism, a 

finding with potential clinical relevance. A link between clozapine and caffeine metabolism was 

first proposed on the basis that the results of caffeine clearance tests, used as an index of CYP1A2 

activity, correlate with clozapine clearance (59). Whilst there have not been large-scale studies in 

clinical settings, the available evidence suggests that caffeine interacts competitively with 

clozapine, causing heavy coffee drinkers to have higher baseline clozapine plasma levels (60). 

Among factors that may have obscured this finding in previous research are the proven 

correlation between smoking and coffee consumption (61), and the observation that even 

decaffeinated coffee might lower the activity of some hepatic enzymes (62). In this regard, our 

analysis of metabolic-genetic association data showed commonalities, which hint to potential 

interactions, with several compounds related to coffee and caffeine. Remarkably, loci outside of 

the widely-studied CYP1A2 region seem to jointly impact both coffee consumption habits and 

plasma concentration of clozapine metabolites, as we have shown using a polygenic score 

approach (Supplementary Methods). However, given that we did not have access to coffee or 

caffeine consumption data, we could not assess the degree to which caffeine may be mediating 

or moderating the genetic associations with clozapine metabolite levels. Nonetheless our results 

add to the existing evidence of the potential clinical importance of the interaction between the 

metabolic pathways for clozapine and caffeine.   

Our data can also be interpreted in the light of the proposed mechanistic link between smoking 

tobacco and clozapine metabolism, which is thought to result from induction by tobacco of 

CYP1A2 activity, which in turn increases the first-pass metabolism of clozapine (63). Current 

guidelines state that patients on clozapine need to be more closely monitored if they stop 

smoking, as their plasma levels can suddenly rise as the CYP1A2 induction fades. This effect, also 

seen with other medications, has been attributed to the effect of polycyclic hydrocarbons present 

in tobacco smoke, rather than a direct action of nicotine (64). As such, non-smoke alternatives to 

tobacco, such as nicotine patches or e-cigarettes, are generally considered not likely to interact 
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with clozapine treatment. However, we have shown that genetic variants in UGT enzymes, which 

are responsible for nicotine glucuronidation, also have a role in the clozapine metabolism. 

Specifically, we have highlighted a missense polymorphism in UGT2B10, previously shown to 

result in impaired enzymatic function (65), as a credible causal variant for influencing norclozapine 

plasma levels. This enzyme has also been shown to be a substrate of several antipsychotic drugs 

with similar structural properties to clozapine (66).  Given that nicotine is a specific high-affinity 

inhibitor of UGT2B10, our results support the possibility of nicotine-clozapine interactions in the 

glucuronidation excretion pathway (26, 66), which should be investigated in more detail.  

One of the limitations of this study is that our regression models do not explain as much variance 

in plasma concentrations as previous studies (16, 17). However, we note that these included the 

clozapine/norclozapine metabolic ratio as a covariate of clozapine plasma concentrations. Given 

our data, and considering all fixed effect covariates (Supplementary Table 2), this addition would 

have increased the variance explained by our mixed model from 19.28% to 32.34%, but at the 

cost of adding collinearity and hindering its interpretability. In any case, these models likely 

represent a lower bound of variance explained for clozapine plasma concentrations, given we 

lacked individual measures of some known predictors of clozapine metabolism, including smoking 

habit and weight. We have attempted to address this limitation in the discovery GWAS by using a 

novel application of PRS as genetically informative proxies of these measures (Supplementary 

Methods). While this did not impact the results, we acknowledge these are just markers of the 

exposures and do not capture their full effects. A further limitation is the lack of detailed individual 

level data on concomitant medications that could interact with clozapine. Co-prescription of such 

medications (e.g. carbamazepine and fluvoxamine) has been shown to be rare given their 

potential for clinically important interactions (67), and hence it does not seem feasible that such 

co-prescription could be an important source of bias in our findings. Furthermore, given that the 

absence of detailed individual-level exposure data is known to obscure the detection of genetic 

influences in metabolic enzymes (68), our finding of detectable GWAS signals is reassuring. A final 

limitation is the potential that those who have had their clozapine levels taken might be an 

unrepresentative sample of all those taking clozapine, which would constitute a form of selection 

bias. In examining this issue we did not detect differences between those with or without 

clozapine TDM assays in the distribution of age, gender and several PRS (schizophrenia, IQ, BMI, 

smoking). Nonetheless we cannot rule out other selection effects, and thus our findings should 

be interpreted as relevant to the population in which clozapine TDM levels are monitored. 
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In summary, our analysis has allowed us to dissect the clozapine metabolic pathway using genetic 

and pharmacokinetic data. We have also demonstrated commonalities with the metabolism of 

other biological compounds, in particular nicotine and caffeine, which highlight relevant facets of 

metabolism and indicate potential interactions of clinical importance. Furthermore, our findings 

indicate avenues for next-stage clinical studies to determine the utility of pharmacogenomic 

testing as a complement to clozapine monitoring procedures, with the potential to impact clinical 

care through improved titration, dosing, and minimising of ADRs. 
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Table 1: Association statistics of the index SNPs for each phenotype and LD-independent locus. Results for fine-mapped missense variants in high LD 

with each index SNP are also shown.  

Phenotype Locus SNP Allele Annotation GWAS P-value 

Clozapine chr15:74817689-75404506 rs2472297 T Intergenic 4.35x10-10 

Norclozapine chr4:69542100-70312793 rs11725502 T Intergenic 5.47x10-15 

Norclozapine chr4:69542100-70312793 rs61750900 T Missense 8.91x10-15 

Norclozapine chr2:234611523-234676118 rs2011425 G Missense 8.37x10-9 

Ratio chr4:69542100-70387482 rs10023464 T Intergenic 8.72x10-66 

Ratio chr4:69542100-70387482 rs61750900 T Missense 1.69x10-64 

Ratio chr10:96098093-96974830 rs12767583 T Intronic 4.64x10-14 

Ratio chr10:96098093-96974830 rs1126545 T Missense 1.02x10-13 
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Table 2: Effect sizes of genetic, demographic and clinical covariates as estimated with linear mixed 

regression modelling. All models also included age2 and 20 genotype principal components as 

fixed effects (omitted) 

Phenotype Covariate Beta Standard error P-value 

Clozapine rs2472297 (T) -0.089 0.013 2.40x10-11 

Clozapine Clozapine daily dose (mg) 0.002 4.03x10-5 <1x10-300 

Clozapine Time since last dose (hours) -0.009 0.002 8.11x10-6 

Clozapine Patient age (years) 0.004 0.004 0.384 

Clozapine Patient gender (reference=male) -0.147 0.019 1.31x10-14 

Norclozapine rs61750900 (T) -0.149 0.018 3.17x10-17 

Norclozapine rs2011425 (G) -0.112 0.019 3.34x10-9 

Norclozapine Clozapine daily dose (mg) 0.002 3.67 x10-5 <1x10-300 

Norclozapine Time since last dose (hours) 6.81x10-4 0.002 0.701 

Norclozapine Patient age (years) -0.003 0.004 0.444 

Norclozapine Patient gender (reference=male) -0.120 0.017 3.61x10-12 

Ratio rs61750900 (T) 0.212 0.012 5.01x10-70 

Ratio rs1126545 (T) 0.078 0.010 5.96x10-14 

Ratio Clozapine daily dose (mg) -1.49x10-4 2.40x10-5 5.22x10-10 

Ratio Time since last dose (hours) -0.014 0.001 1.03x10-33 

Ratio Patient age (years) 0.007 0.003 0.006 

Ratio Patient gender (reference=male) -0.016 0.012 0.164 
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Table 3: Gene sets surviving FWER correction (PFWER > 0.05) from the MAGMA gene set analysis 

of the RECON metabolic pathways. 

 

 

Phenotype Gene set NGENES β s.e. PMAGMA PFWER 

Clozapine Retinol metabolism 33 0.635 0.18 2.07x10-4 0.016 

Norclozapine Retinol metabolism 33 1.08 0.0448 3.95x10-10 3.12x10-8 

Norclozapine Linoleate metabolism 16 1.5 0.0433 2.30x10-7 6.00x10-5 

Norclozapine Arachidonate metabolism 22 0.552 0.0187 1.17x10-4 0.009 

Norclozapine Steroid metabolism 41 0.528 0.0244 1.53x10-4 0.012 

Ratio Linoleate metabolism 16 1.54 0.0445 5.95x10-7 1.30x10-4 

Ratio Chondroitin degradation 10 0.753 0.0172 2.07x10-4 0.039 
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Figure 1: Manhattan plots of the clozapine (A), norclozapine (B) and metabolic ratio (C) GWAS. 
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Figure 2: Effect of the rs2472297 genotype on clozapine plasma levels, at different daily clozapine 
doses. For this analysis, only the last time point of each CLOZUK2 individual was used. For each 
interval of daily clozapine dose, average plasma concentrations and standard deviations are 
shown. Values inside the central point represent the number of individuals within each 
genotype/interval category. 
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