

Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository: https://orca.cardiff.ac.uk/id/eprint/119179/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Mohammed, Anber F., Andrei, Graciela, Hayallah, Alaa M., Abdel-Moty, Samia G., Snoeck, Robert and Simons, Claire ORCID: https://orcid.org/0000-0002-9487-1100 2019. Synthesis and anti-HSV activity of tricyclic penciclovir and hydroxybutylguanine derivatives. Bioorganic & Medicinal Chemistry 27 (6), pp. 1023-1033. 10.1016/j.bmc.2019.02.005 file

Publishers page: http://dx.doi.org/10.1016/j.bmc.2019.02.005 < http://dx.doi.org/10.1016/j.bmc.2019.02.005 >

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies.

See


http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

Graphical Abstract

Synthesis and anti-HSV activity of tricyclic penciclovir and hydroxybutylguanine derivatives

Anber F. Mohammed, Graciela Andrei, Alaa M. Hayallah, Samia G. Abdel-Moty, Robert Snoeck and Claire Simons

Synthesis and anti-HSV activity of tricyclic penciclovir and hydroxybutylguanine derivatives

Anber F. Mohammed, a,b Graciela Andrei, Alaa M. Hayallah, Samia G. Abdel-Moty, Robert Snoeck, and Claire Simons *

^a School of Pharmacy & Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK;

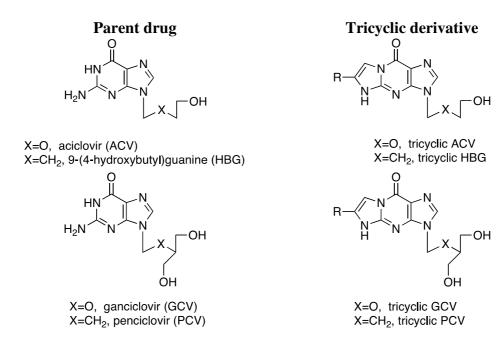
^bDepartment of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt

^cRega Institute for Medical Research, KU Leuven, Herestraat 49 box 1030, Leuven3000, Belgium ^dPresent address: Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, El-Minia, Egypt

* Address for correspondence: Claire Simons, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, Wales, UK. Tel: 02920-876307. E-mail: simonsc@cardiff.ac.uk

Abstract

A series of tricyclic penciclovir (PCV) and hydroxybutylguanine (HBG) derivatives have been prepared with enhanced lipophilicity following an efficient synthetic route. All the novel tricyclic derivatives were evaluated for inhibitory activity against herpes simplex virus 1 and 2 (HSV-1, HSV-2) and thymidine kinase deficient (ACV resistant) HSV-1. The tricyclic HBG derivatives were devoid of inhibitory activity however several of the tricyclic PCV derivatives showed promising antiviral activity, in particular **9g** (R=4-MeO-C₆H₄) displayed good inhibitory activity (HSV-1 EC₅₀ 1.5 μM, HSV-2 EC₅₀ 0.8 μM) and retained inhibitory activity in HSV-1 TK⁻ cells (EC₅₀ 0.8 μM). Computational docking experiments supported the biological data observed and this preliminary study provides useful data for further development of tricyclic acyclic nucleoside derivatives with improved lipophilicity and retention of activity in HSV-1 TK deficient strains. Also, the new tricyclic derivatives were evaluated against a broad range of other DNA and RNA viruses, but were found to be inactive at subtoxic concentrations. In addition, weak to moderate cytostatic effect was observed for the new compounds.


Keywords

Tricyclic penciclovir (PCV) derivatives; tricyclic hydroxybutylguanine (HBG) derivatives; herpes simplex virus (HSV); herpes simplex encephalitis (HSE); molecular modelling.

1.Introduction

The herpes simplex virus (HSV), like all herpes viruses, establishes lifelong latency following a primary infection. HSV-associated diseases can range from mild orolabial ulcers (cold sores) to severe encephalitis. Herpes simplex viruses are categorised into two types: HSV-1, which is mainly transmitted through oral-oral contact resulting mainly in cold sores; and HSV-2, which is mainly sexually transmitted resulting in the most common infection of genital herpes. Globally two thirds of the population under the age of 50 are estimated to be infected with HSV-1.

Herpes simplex encephalitis (HSE) is the most common cause of sporadic fatal viral encephalitis, accounting for almost 20% of all cases of encephalitis.⁴ HSE presents as an acute focal necrotising infection of the brain, which, if untreated, has a 70% mortality rate.⁵ The first line treatment of HSE is aciclovir (ACV), administered intravenously for 14-21 days, however even when treated, HSE is associated with a 30% mortality rate and permanent neurological damage.⁶⁻⁸ Limitations of ACV therapy for HSE are the development of viral resistance⁹ and low CNS uptake.¹⁰

Figure 1. Parent acyclic nucleosides and tricyclic derivatives

Tricyclic ACV and ganciclovir (GCV) derivatives (Figure 1) were shown to be

effective inhibitors of HSV-1 thymidine kinase (TK) and are of interest as they maintain

the inhibitory activity against the enzyme and, as they are more lipophilic than the current medications, may be valuable agents for the treatment of CNS infections. ¹¹⁻¹³ Moreover, these tricyclic compounds were found to exhibit strong intrinsic fluorescent properties, which allows for sensitive concentration monitoring and optimal therapeutic dosing. ¹¹⁻¹³ Penciclovir (PCV) and hydroxybutylguanine (HBG) (Figure 1) are the carbocyclic analogues of GCV and ACV, respectively. The spectrum of activity of PCV against human herpesviruses was found to be similar to that of ACV, however in certain circumstances PCV was more active than ACV owing to the higher stability of PCV-TP in infected cells relative to ACV-TP. ¹⁴ Also, at concentrations up to 100 µg/mL, it was confirmed that PCV, like ACV, was highly selective and subsequently did not exhibit any toxicity in cell culture. ¹⁴ Similarly, HBG is reported to have higher affinity for HSV-1 TK than ACV in addition to relatively comparable selectivity for inhibition of viral DNA synthesis and good safety profile in cell culture. ¹⁵

Application of the tricyclic scaffold modification to PCV and HBG was of interest to determine whether antiviral activity was maintained and, importantly, modification of the nucleobase moiety with an additional ring may result in beneficial physicochemical properties (enhanced lipophilicity, fluorescence) and /or enhanced enzyme binding interaction. A library of tricyclic PCV and HBG derivatives (Figure 2) was designed and synthesised to evaluate antiviral activity and study structure-activity relationships, supported by computational docking analysis.

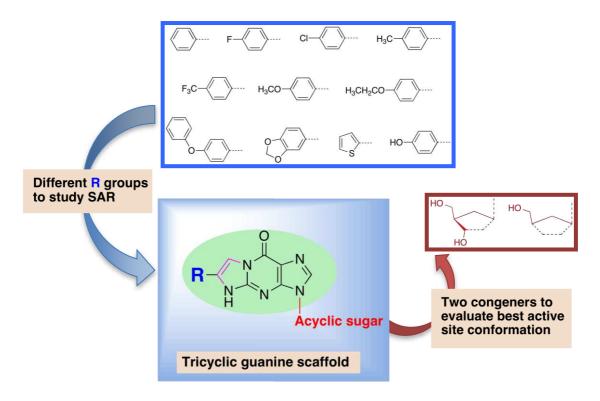


Figure 2. Library for the designed tricyclic PCV and HBG nucleosides

2. Results and discussion

2.1 Chemistry

PCV (6) and HBG (7) were prepared as previously described by reaction of 2-amino-6-chloropurine (1) with 5-(2-bromoethyl)-2-phenyl-1,3-dioxane (2)¹⁶ or 4-bromobutylacetate (3)¹⁷ with subsequent acid hydrolysis of the protected derivatives (4) and (5) (Scheme 1).

The new tricyclic analogues of PCV and HBG, 3-[4-hydroxy-3-(hydroxymethyl)butyl]-6-(aryl)-3,5 dihydro-9*H*-imidazo[1,2-*a*]purin-9-one (**9**) and 3-(4-hydroxybutyl)-6-(aryl)-3,5-dihydro-9*H*-imidazo[1,2-*a*]purin-9-one (**10**) were obtained upon reaction of the sodium salt of PCV (**6**) and HBG (**7**), generated *in situ* on treatment with NaH, and the appropriate bromoketone (**8**) in 38-79 % yield (Table 1). The new compounds were purified by flash column chromatography using a gradient eluting mixture of CH₂Cl₂-MeOH followed by recrystallisation (Scheme 1). The procedure used for the

preparation of the new derivatives mostly followed a previously reported method for the preparation of analogously modified guanosine and other tricyclic derivatives.¹²

Scheme 1. Reagents and conditions: (i) K_2CO_3 , 18-crown-6, DMF, r.t. 72 h for synthesis of **4**, 94 %, 16 h for synthesis of **5**, 81% (ii) (a) 2M aqueous HCl, 90 °C, 3h (b) 10% aqueous NaOH, 4 °C 24 h, 77 % (iii) (a) 2M aqueous HCl, THF, 75 °C overnight (b) 10% aqueous NaOH, 4 °C 24 h, 81% (iv) NaH, DMF, r.t. 6 h, 38-79%.

The tricyclic derivatives showed some sensitivity towards light and air, so were protected by wrapping with foil and rapid storage in amber coloured vials. The 6-thien-2-yl group was highly unstable to light and air and in the case of the PCV derivative

decomposed rapidly during collection. Conversely, its HBG congener (10h) was stable enough to be collected safely.

Table 1. Yields and mp data for final tricyclic PCV and HBG derivatives 9 and 10

No.	R	Yield	m.p.	No.	R	Yield	m.p.
		(%)	(°C)			(%)	$({}^{\mathrm{o}}\bar{\mathbf{C}})$
9a		68	212-	10a		61	248-
			214				250
9b	F—	65	>300	10b	F—	62	288-
	' \ <u>_</u> /				' \ <u>_</u> /		290
9c	CI—	62	258-	10c	CI—	62	280-
	<u> </u>		260		<u> </u>		282
9d	H ₃ C-\(\biggredge\)	61	112-	10d	H ₃ C	67	260-
	\ <u></u> /		114				261
9e	F ₃ C	55	>300	10e	F ₃ C —	71	292-
	. 30				- 30		293
9f	но—	38	>300	10f	MeO—	61	252-
							254
9g	MeO	79	202-	10g	O—————————————————————————————————————	69	272-
			203				274
ΩL		77	276	101-	0	<i>C</i> 1	246
9h	EtO// >	77	276- 278	10h	[]>	64	246-
o:		60			` S		247
9i	0~\ \}	68	259- 260				
			200				
9j		75	276-				
- J			278				

2.2 Biological evaluation

2.2.1 Antiviral activity

The tricyclic compounds (9 and 10) were screened as inhibitors of HSV using herpes simplex virus-1 (KOS strain), herpes simplex virus-2 (G strain), thymidine kinase deficient (aciclovir resistant) herpes simplex virus-1 (HSV-1 TK-KOS ACV^r strain) in

human embryonic lung (HEL) cells. None of the tricyclic HBG derivatives (**10**) showed any inhibitory activity (EC₅₀>100 μ M) or cytotoxicity (>100 μ M) against HSV-1 or HSV-2. However, some of the tricyclic PCV derivatives (**9**) exhibited anti-herpetic activity (Table 2).

Table 2. Inhibitory activity of tricyclic PCV derivatives (9) against HSV and cytotoxicity data

	Antivi	Cytotoxicity (µM)		
Compound	HSV-1 (KOS)	HSV-2 (G)	HSV-1 TK	Cell Morphology
			KOS ACV ^r	$(MCC)^b$
PCV (6)	0.8	0.2	0.2	>100
9a	>100	>100	>100	>100
9b	8.9	28	12	>100
9c	>100	>100	>100	>100
9d	>100	>100	>100	>100
9e	20	31.7	>100	>100
9f	7.6	2.3	>100	>100
9g	1.5	0.8	0.8	>100
9h	76.5	>20	>100	>100
9i	44.7	40.9	>100	>100
9j	>100	>100	>100	>100
HBG (7)	1.5	2.1	10	>100
GCV	0.07	0.4	0.8	>250
CDV	2.0	2	5	>250
ACV	0.9	0.9	100	>250
BVDU	0.04	>250	14	>250

^aRequired to reduce virus-induced cytopathogenicity by 50 %.

Of the newly synthesised tricyclic PCV derivatives, compounds $\bf 9a$, $\bf 9c$, $\bf 9d$ and $\bf 9j$ were inactive as antiviral agents. Compounds $\bf 9h$ and $\bf 9i$ showed anti-HSV-1 activity only at a relatively high concentration (EC₅₀ = 76.5 and 44.7 μ M, respectively), compounds $\bf 9b$ and $\bf 9e$ showed moderate anti-HSV-1 activity (EC₅₀ = 8.9 and 20.00 μ M/mL, respectively), whereas $\bf 9g$ and $\bf 9f$ were the most active and were inhibitory to HSV-1 replication with EC₅₀ = 1.5 and 7.6 μ M, respectively. Similar to anti-HSV-1 results,

^bRequired to cause a microscopically detectable alteration of normal cell morphology. Aciclovir (ACV), Brivudin (BVDU), Cidofovir (CDV), Ganciclovir (GCV)

among the synthesised tricyclic PCV compounds, compounds **9g** and **9f** were the most active against the HSV-2 strain and showed marked inhibition (EC₅₀ = 0.8 and 2.3 μ M, respectively). Also, compounds **9b**, **9e** and **9i** showed moderate activity against HSV-2 strain (EC₅₀ = 28 - 40.9 μ M), whereas the remaining compounds did not show any activity against the HSV-2 strain. Two compounds, **9b** and **9g**, retained activity against the TK⁻ ACV resistant strain of HSV-1. Compound **9g** showed potent inhibitory activity against HSV-1 TK⁻ (EC₅₀ = 0.8 μ M), whereas compound **9b** was moderately active against HSV-1 TK⁻ (EC₅₀ = 12 μ M). The data suggest that in the case of the resistant strain TK⁻, compounds **9f** and **9g** are independent of viral TK catalysed phosphorylation for antiviral activity and/or may use a different metabolic activation pathway and/or display a unique mechanism of antiviral action by the un-metabolised nucleoside analogue.

Table 3. Inhibitory activity of tricyclic PCV derivatives (9) against VZV and HCMV and cytotoxicity data

Compound	Antiv	Cytotoxicity (µM)			
compound _	VZV TK+ VZV TK-		HCMV	HCMV	Cell Morphology
	Oka strain	07-1 strain	AD-169 strain	Davis strain	$(MCC)^b$
PCV (6)	3.5	33.4	>100	>100	>100
9a	>100	>100	>100	>100	>100
9b	>100	>100	>100	>100	>100
9c	>100	>100	>100	>100	>100
9 d	63.14	>100	>100	>100	>100
9e	49.5	100	63.1	76.5	100
9 f	9.6	≥74.5	>100	>100	>100
9g	66.87	100	>100	>100	>100
9h	>100	>100	>100	>100	>100
9i	>20	>100	>100	>100	100
9 j	62.8	>100	>100	>100	>100
HBG (7)	76.5	>100	>100	>100	>100
GCV	ND	ND	6.5	4.6	>250
CDV	ND	ND	0.72	0.87	>250
ACV	5.0	59.2	ND	ND	>250
BVDU	0.037	7.9	ND	ND	>250

^aRequired to reduce virus-induced cytopathogenicity (HCMV) or plaque formation (VZV) by 50 %.

^bRequired to cause a microscopically detectable alteration of normal cell morphology.

Aciclovir (ACV), Brivudin (BVDU), Cidofovir (CDV), Ganciclovir (GCV).

ND: not determined.

In addition to HSV all the tricyclic derivatives (9 and 10) were screening against a broad range of DNA and RNA viruses including vaccinia virus, adenovirus-2, human coronavirus (229E), human cytomegalovirus (HCMV) (AD-169 strain and Davis strain), varicella-zoster virus (TK+VZV OKA strain and TK- VZV 07-1 strain), vesicular stomatitis virus, Coxsackie virus B4, respiratory syncytial virus, parainfluenza-3 virus, reovirus-1, Sindbis virus, Punta Toro virus, yellow fever virus, influenza A virus (H₁N₁ and H₃N₂ subtypes) and influenza B virus. Of all the compounds, only a few displayed any inhibitory activity < 100 µM against VZV and HCMV (Table 3): 9e (R = CF₃-C₆H₄-) showed weak inhibitory activity against cytomegalovirus AD-169 strain and Davis strain (EC₅₀ = 63.1 μ M and 76.5 μ M respectively) compared with GCV as the reference compound (EC₅₀ = $6.5 \mu M$ and $4.6 \mu M$ μ M respectively) and the TK+ VZV Oka strain (EC₅₀= 49.5 μ M); **9f** (R = HO-C₆H₄-) showed inhibitory activity against varicella-zoster virus TK+VZV OKA strain and TK-VZV 07-1 strain (EC₅₀ = 9.6 μ M and \geq 74.5 μ M respectively) compared with ACV as the reference compound (EC₅₀ = 5.0 μ M and 59.2 μ M respectively); **9d** and **9j** only displayed minimal activity against the VZV TK+ strain Oka (EC₅₀ = $63 \mu M$). It should be noted that in contrast to HSV, HBG (7) proved inactive against HCMV and poorly inhibited the VZV TK+ strain (EC₅₀= $76.5 \mu M$). PCV was not inhibitory to HCMV but inhibited VZV with EC₅₀ values comparable with those of ACV, i.e. 3.5 and 33.4 µM, respectively for TK+ and TK- VZV strains (Table 3).

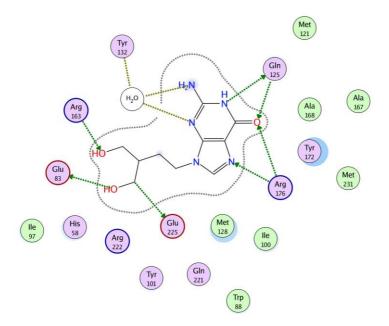
2.2.2 Cytostatic activity

The new compounds were screened for their potential cytostatic activity against eight human cancer cell lines. The 50% cytostatic inhibitory concentration (IC₅₀) causing a 50% decrease in cell proliferation was determined against retina (non-cancerous) hTERT RPE-1, pancreatic adenocarcinoma Capan-1, chronic myeloid leukaemia Hap1, lung carcinoma NCI-H460, acute lymphoblastic leukaemia DND-41, acute myeloid leukaemia HL-60, chronic myeloid leukaemia K-562 and non-Hodgkin lymphoma Z-138 (Table 4).

Table 4: Cytostatic activity results of compounds 9 and 10

IC ₅₀ (μM) ^a							
hTERT	Capan-	II 1	NCI-	DND-	HL-	K-	7 120
RPE-1 1	нарт	H460	41	60	562	Z-138	
>100	93.0	>100	>100	>100	>100	>100	>100
78.6	58.3	>100	>100	>100	>100	>100	>100
>100	82.8	>100	>100	>100	>100	>100	>100
>100	84.8	>100	>100	>100	>100	>100	>100
>100	>100	>100	>100	>100	>100	>100	>100
51.5	17.2	37.8	12.5	56.5	55.3	>100	76.1
>100	>100	>100	>100	>100	>100	>100	>100
>100	>100	>100	>100	>100	>100	>100	>100
>100	>100	>100	95.4	>100	>100	>100	>100
>100	78.8	>100	>100	>100	>100	>100	>100
16.9	46.4	44.0	47.2	90.4	63.3	>100	>100
>100	72.7	>100	>100	>100	>100	>100	>100
>100	69.1	>100	>100	>100	>100	>100	>100
>100	56.1	>100	55.5	>100	>100	>100	>100
>100	64.4	>100	>100	>100	>100	>100	>100
>100	78.9	>100	>100	>100	>100	>100	>100
>100	36.1	63.8	52.5	>100	>100	>100	>100
>100	98.9	>100	>100	>100	>100	>100	>100
>100	92.8	>100	>100	>100	>100	>100	>100
>100	>100	>100	>100	>100	>100	>100	>100
25.0	0.95	1.19	0.89	1.63	1.94	3.00	3.00
0.23	0.15	0.04	1.35	0.06	0.03	0.54	1.06
0.25	0.66	3.55	11.50	21.5	9.24	23.10	21.50
	RPE-1 >100 78.6 >100 >100 >100 >100 >100 >100 >100 >10	RPE-1 1 >100 93.0 78.6 58.3 >100 82.8 >100 84.8 >100 >100 51.5 17.2 >100 >100	hTERT Capan-RPE-1 Hap1 >100 93.0 >100 78.6 58.3 >100 >100 82.8 >100 >100 84.8 >100 >100 >100 >100 51.5 17.2 37.8 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 78.8 >100 >100 56.1 >100 >100 56.1 >100 >100 56.1 >100 >100 36.1 63.8 >100 98.9 >100 >100 92.8 >100 >100 >100 >100 >100 90 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 <td>hTERT Capan-RPE-1 Lap1 NCI-Hap1 100 93.0 >100 >100 78.6 58.3 >100 >100 >100 82.8 >100 >100 >100 84.8 >100 >100 >100 >100 >100 >100 >100 78.8 >100 >100 >100 72.7 >100 >100 >100 56.1 >100 >100 >100 56.1 >100 >100 >100 78.9 >100 >100 >100 36.1 63.8 52.5 >100 98.9 >100 >100 >100 92.8 >100 >100</td> <td>hTERT Capan-RPE-1 1 Hap1 H460 MCI-DND-H460 DND-H460 41 >100 93.0 >100 >100 >100 78.6 58.3 >100 >100 >100 >100 82.8 >100 >100 >100 >100 84.8 >100 >100 >100 >100 >100 >100 >100 >100 >100 78.8 >100 >100 >100 >100 72.7 >100 >100 >100 >100 56.1 >100 >100 >100 >100 56.1 >100 >100 >100 >100 78</td> <td>hTERT Capan-RPE-1 Hap1 NCI-H460 DND-HL-H460 >100 93.0 >100 >100 >100 78.6 58.3 >100 >100 >100 >100 82.8 >100 >100 >100 >100 84.8 >100 >100 >100 >100 >100 >100 >100 >100 >100 78.8 >100 >100 >100 >100 >100 72.7 >100 >100 >100 >100 >100 56.1 >100 >100 >100 >100 >10</td> <td>hTERT Capan-RPE-1 Hap1 NCI-H460 DND-HL-K-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-</td>	hTERT Capan-RPE-1 Lap1 NCI-Hap1 100 93.0 >100 >100 78.6 58.3 >100 >100 >100 82.8 >100 >100 >100 84.8 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 78.8 >100 >100 >100 72.7 >100 >100 >100 56.1 >100 >100 >100 56.1 >100 >100 >100 78.9 >100 >100 >100 36.1 63.8 52.5 >100 98.9 >100 >100 >100 92.8 >100 >100	hTERT Capan-RPE-1 1 Hap1 H460 MCI-DND-H460 DND-H460 41 >100 93.0 >100 >100 >100 78.6 58.3 >100 >100 >100 >100 82.8 >100 >100 >100 >100 84.8 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 78.8 >100 >100 >100 >100 72.7 >100 >100 >100 >100 56.1 >100 >100 >100 >100 56.1 >100 >100 >100 >100 78	hTERT Capan-RPE-1 Hap1 NCI-H460 DND-HL-H460 >100 93.0 >100 >100 >100 78.6 58.3 >100 >100 >100 >100 82.8 >100 >100 >100 >100 84.8 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 78.8 >100 >100 >100 >100 >100 72.7 >100 >100 >100 >100 >100 56.1 >100 >100 >100 >100 >10	hTERT Capan-RPE-1 Hap1 NCI-H460 DND-HL-K-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-

^a50% Inhibitory concentration or compound concentration required to inhibit cell proliferation by 50%. hTERT RPE-1 *retina* (non cancerous); Capan-1 pancreatic adenocarcinoma; Hap1 chronic myeloid leukemia; NCI-H460 lung carcinoma; DND-41 acute lymphoblastic leukemia; HL-60 acute myeloid leukemia; K-562 chronic myeloid leukemia; Z-138 non-Hodgkin lymphoma


Among the tricyclic PCV derivatives compounds $9e(R = CF_3-C_6H_4-)$ and $9j(R = C_6H_5-C_6H_4-)$ showed moderate cytostatic activity against at least six cell lines in the range of 12.5 - 76.1 μ M and 16.9 - 90.4 μ M respectively. The tricyclic HBG derivatives (10) were generally inactive or displayed very weak cytostatic activity. Of the tricyclic HBG derivatives the trifluoromethyl aryl derivative of HBG $10e(R = CF_3-C_6H_4-)$ was the most effective against the range of cancer cell lines. Proliferation of the pancreatic adenocarcinoma Capan-1 cell line was slightly inhibited by most of the new tricyclic compounds as well as the parent compounds PCV and HBG (Table 4).

2.3 Molecular Modelling

Molecular modelling of the compounds was performed using Molecular Operating Environment (MOE) software¹⁸ and the crystal structure of HSV-1 thymidine kinase co-crystallised with PCV (PDB 1KI3)¹⁹ and 9-(4-hydroxybutyl)-N2-phenylguanine (HBPG) (PDB 1QHI)²⁰.

The crystal structures of HSV-1 TK do not include an ATP molecule and a sulphate ion is observed at the supposed position of the β -phosphate of ATP. ^{19,20} Therefore, the distance between OH of the acyclic chain and SO₄ was measured to give an idea about the proper orientation of the ligand within the active site and the possibility for the compound acyclic OH to be phosphorylated by the enzyme. Results indicated that PCV analogues **9a-j** display distances in the range of 2.73-6.82 Å compared with PCV (4.61 Å). The HSV-1 TK pocket is predominately lipophilic with several regions of hydrophilicity. PCV and HBPG probe the space of the enzyme active site in a manner that maintains both the base moiety (guanine) and the acyclic sugar hydroxyl groups in a good geometry.

A

В

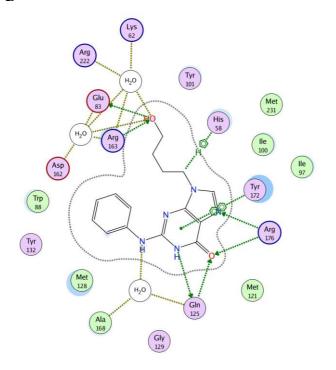
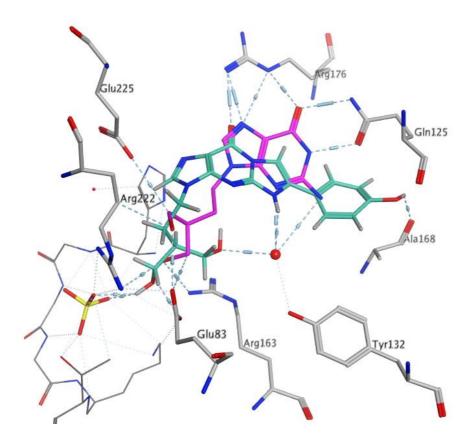



Figure 3. 2D
Ligplots
illustrating the amino acids in
HSV-1 TK active site involved in binding interactions with
(A) PCV and (B)
HBPG

Overall docking results revealed some important interactions for the binding of the reference ligands PCV and HBPG within the active site (Figure 3). The base moiety is lying in a location that stacks with Tyr172 and makes hydrophobic interactions with the amino acid residues; Tyr172, Met128, His58. Also, H-bond interactions are observed between the carbonyl group as well as the top ring nitrogens with Arg176 and

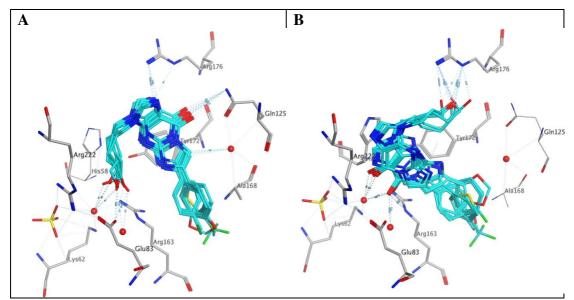

Gln125. The acyclic sugar moiety forms two important H-bond interactions with amino acid residues Arg163 and Glu83 (Figure 3).

Figure 4. Docking of representative tricyclic PCV derivative **9f** (cyan) in the HSV-1 TK active site compared with PCV (magenta).

The tricyclic PCV compounds lead to interactions with additional amino acids and, amongst the new compounds, the observed interactions of the most active compounds **9f** and **9g** (R= 4-HO-C₆H₄, and 4-MeO-C₆H₄) closely mimic the interactions observed with PCV binding. However, rather than Gln125, the 4-HO-C₆H₄ and 4-MeO-C₆H₄ form a H-bond interaction with Ala168 or water-bridged H-bonds with Ala168 and Gln125 (Figure 4). The moderately active fluoro substituted analogues, **9b** and **9e**, showed almost similar binding modes, although the small fluoro substituent was better docked within the base pocket with the tricyclic moiety forming π - π interaction with Tyr172.

As the tricyclic purine moiety is longer than the guanine base of PCV, the orientation of the 6-arylgroup has an impact on the geometry of the acyclic hydroxyl groups and hence the stability of the formed complex for further phosphorylation. PCV analogues **9h**, **9i** and **9j** with relatively more bulky ether moieties (4-EtO-C₆H₄, 3-OCH₂O-4-C₆H₃and 4-C₆H₅O-C₆H₄) formed weak interactions within the acyclic sugar binding pocket. In addition a steric clash was observed in case of compound **9j**. The steric effect might consequently diminish or abolish their complex stability.

Figure 5: Docking of HBG analogues **10a-h** showing two different orientations adopted by the compounds on binding within the HSV-1 TK active site.

Analysis of the docked HBG analogues **10a-h** compared with HBPG suggests that the ligand likely competes between two different binding orientations within the active site. In one orientation the tricyclic base moiety stacks with Tyr172 with the carbonyl group forming a H-bond from Gln125, while the acyclic hydroxyl group is situated 5.73-7.13 Å from the sulphate group (HPBG 5.66 Å) and donates a H-bond to Glu83 and/or accepts water bridged H-bonds from Arg163, Glu83, Arg222 and Lys62. Also, Arg176, in some derivatives, donates a H-bond to N-1 (Figure 5A). In the other orientation the tricyclic structure is lying in a location that allows a stacking interaction with His58

and the carbonyl group is being upturned to accept a H-bond from Arg163 and /or water-bridged H-bonds from Arg163, Glu83, Arg222 and Lys62. In contrast, the same acyclic hydroxyl group in the second ligand orientation is 12.75 Å away from the sulphate compared with the former orientation where it accepts a H-bond from Arg176 (Figure 5B). In both orientations no contribution in ligand binding was observed for the 6-aryl group resulting in more flexibility and weaker binding of the whole compound within the active site.

3. Conclusion

Comparing antiviral activity to compound structure provides an insight into which functional groups may be beneficial towards HSV-1 inhibitory activity.

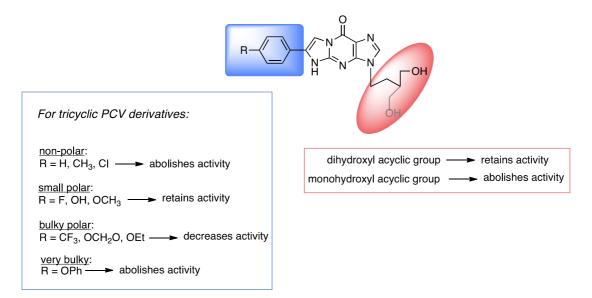


Figure 6: Summary for SAR of the new tricyclic PCV compounds

The SAR study suggested that a di-hydroxyl acyclic sugar moiety was essential for the activity. For the PCV derivatives, activity was only retained in those that have a hydrogen bond forming group on the tricyclic ring, however the size of the hydrogen bond forming group is limited with larger groups inducing a steric effect that exhibits an apparent impact on activity, which was supported by molecular docking (Figure 6).

The new tricyclic analogues of PCV and HBG are the carbocyclic analogues of the previously reported tricyclic analogues of GCV and ACV^{11,12}, (Figure 1). For both the tricyclic ACV and GCV derivatives, inhibitory activity against HSV-1 and HSV-2 were generally comparable, however this activity was not retained in HSV-1 TK-KOS ACV^r strain. Replacing oxygen in the acyclic chain of the tricyclic ACV analogues by carbon in the new tricyclic HBG derivatives abolished their activity, highlighting the preference of O rather than CH₂ in the acyclic chain of the tricyclic guanine derivative. In the case of the tricyclic PCV derivatives the activity generally decreased noticeably however activity was retained only in the tricyclic PCV derivatives with R=6-(4-MeO-C₆H₄) and R=6-(4-HO-C₆H₄) and R=6-(4-F-C₆H₄) groups as discussed in the present study. Importantly, for two of the tricyclic PCV derivatives with R=6-(4-MeO-C₆H₄) and R=6-(4-F-C₆H₄) groups activity was retained in the ACV resistant HSV-1 TK-KOS strain, which was not observed for the tricyclic GCV compounds^{11,12}.

This preliminary study provides useful data for further development of tricyclic acyclic nucleoside derivatives with improved lipophilicity and retention of activity in TK deficient strains.

4. Experimental

4.1 General Experimental

All reagents and solvents were of general purpose or analytical grade and purchased from Sigma-Aldrich Ltd, Fisher Scientific, Fluka and Acros. ¹H, ¹³C and ¹⁹F NMR spectra were recorded with a Bruker Avance DPX500 spectrometer operating at 500, 125 and 470 MHz respectively, with Me₄Si as internal standard. Elemental analysis was performed (for compounds **10e** and **10g**) by MEDAC Ltd (Chobham, Surrey, UK). High resolution mass spectra (HRMS) were determined (for compounds **9a-j**, **10a-d**, **10f**, and **10h**) at

the EPSRC National Mass Spectrometry Facility at Swansea University and Medac Ltd (Chobham, Surrey, UK), using ESI (Electrospray Ionisation). Flash column chromatography was performed with silica gel 60 (230-400 mesh) (Merck) and TLC was carried out on precoated silica plates (kiesel gel 60 F_{254} , BDH). Compounds were visualised by illumination under UV light (254 nm). Melting points were determined on an electrothermal instrument and are uncorrected. All solvents were dried prior to use and stored over 4 Å molecular sieves, under nitrogen. All the compounds were \geq 95% pure.

The following compounds were prepared as previously described: PCV (6), ¹⁶ HBG (7), ¹⁷ and the bromoketones (8). ²¹⁻²⁵

4.2 Chemistry

4.2.1. General method for the synthesis of tricyclic PCV and HBG derivatives 9 and

10. To a suspension of penciclovir (6) or hydroxybutylguanine (7) (0.2 g, 0.8 mmol or 0.9 mmol, respectively) in dry dimethylformamide (16 mL), sodium hydride (60% suspension in mineral oil, 1.2 eq.) was added and the reaction stirred at room temperature (21 ℃) for 1.5 h. Bromoketone (8) (1.3 eq.) was then added and the reaction stirred for 6 h. Aqueous ammonia (25% solution 5 mL) was added to quench the reaction, which was concentrated under reduced pressure and the residual oil purified by flash column chromatography using gradient elution (CH₂Cl₂-MeOH). The obtained products were recrystallised from a mixture of CH₂Cl₂ and MeOH.

4.2.1.1. 3-(4-Hydroxy-3-(hydroxymethyl)butyl)-6-phenyl-3,5-dihydro-9H-imidazo[1,2-a]purin-9-one(9a). Prepared from PCV (0.2 g, 0.8 mmol) and 2-bromo-1-(phenyl)ethan-1-one (8a) (0.21 g, 1.04 mmol) and purified by flash column chromatography eluting with CH₂Cl₂-MeOH 95:5 to 90:10 v/v to give the product as a white solid. Yield: 0.19 g (68%), m.p. 212-214 °C, TLC (CH₂Cl₂-MeOH 95:5 v/v) Rf

0.26. 1 H-NMR (DMSO- d_6): δ 1.51 (septet, 1H, J=6.0 Hz, H-3'), 1.82 (q, 2H, J=7.0 Hz, H-2'), 3.40 and 3.47 (two quint, 4H, J=5.4Hz, H-4'), 4.17 (t, 2H, J=7.5Hz, H-1'), 4.48 (t, 2H, J= 5.3 Hz, 2 x OH), 7.39 (t, 1H, J=7.0 Hz, H-4"), 7.49 (t, 2H, J= 7.7 Hz, H-3" and H-5"), 7.91 (d, 2H, J= 7.4 Hz, H-2" and H-6"), 7.95 (s, 1H, H-2), 8.21 (s, 1H, H-7), 13.07 (br.s, 1H, H-5). 13 C-NMR (DMSO- d_6): δ 29.1 (C-2'), 41.3 (C-3'), 42.0 (C-1'), 61.8 (C-4'), 103.6 (C-7), 115.9 (C-9a), 125.4 (C-4"), 128.4 (C-6), 129.2 (C-2" and C-6"), 129.4 (C-1"), 129.5 (C-3" and C-5"), 139.0 (C-2), 146.9 (C-4a), 150.6 (C-3a), 151.7 (C-9). [ESI-HRMS] calculated for $C_{18}H_{20}N_5O_3$: 354.1561 [M+H]⁺. Found: 354.1562 [M+H]⁺.

4.2.1.2. 6-(4-Fluorophenyl)-3-(4-hydroxy-3-(hydroxymethyl)butyl)-3,5-dihydro-9Himidazo[1,2-a]purin-9-one (9b). Prepared from PCV (0.2 g, 0.8 mmol) and 2-bromo-1-(4-fluorophenyl)ethanone (8b) (0.23 g, 1.04 mmol) and purified by flash column chromatography eluting with CH₂Cl₂-MeOH 98:2 to 91:9 v/v to give the product as a white solid. Yield: 0.19 g (65%), m.p. > 300 °C, TLC (CH₂Cl₂-MeOH 9:1 v/v) Rf 0.49. ¹H-NMR (DMSO- d_{δ}): δ 1.50 (septet, 1H, J=6.0 Hz, H-3'), 1.81 (q, 2H, J=7.0 Hz, H-2'), 3.38 and 3.46 (two quint, 4H, *J*=5.4 Hz, H-4'), 4.17 (t, 2H, *J*= 7.5 Hz, H-1'), 4.48 (t, 2H, J=5.25 Hz, 2 x OH), 7.34 (t, 2H, J_{HF} = 8.8 Hz, H-3" and H-5"), 7.97 (s, 1H, H-2), 7.98 (dd, 2H, J_{HH} , J_{HF} = 6.0, 8.5 Hz, H-2" and H-6"), 8.21 (s, 1H, H-7), 13.10 (br.s, 1H, H-5). ${}^{13}\text{C-NMR}(\text{DMSO-}d_6)$: δ 29.1 (C-2'), 41.3 (C-3'), 42.0 (C-1'), 61.8 (C-4'), 103.6 (C-7), 116.1 (C-9a), 116.6 (d, 2C, J_{CF} =22 Hz, C-3" and C-5"), 125.1 (C-1"), 127.7 (d, 2C, J_{CF} = 8.0 Hz, C-2" and C-6"), 128.5 (C-6), 139.6 (C-2), 146.8 (C-4a), 150.6 (C-3a), 151.8 (C-9), 162.6 (d, 1C, J_{CF} = 245 Hz, C-4"). ¹⁹F-NMR(DMSO- d_6): δ-112.40. [ESI-HRMS] calculated for C₁₈H₁₉N₅O₃F: 372.1472 [M+H]⁺. Found: 372.1483 $[M+H]^{+}$.

4.2.1.3. 6-(4-Chlorophenyl)-3-(4-hydroxy-3-(hydroxymethyl)butyl)-3,5-dihydro-9H-imidazo[1,2-a]purin-9-one, (9c). Prepared from PCV (0.2 g, 0.8 mmol) and 2-bromo-1-(4-chlorophenyl)ethanone (8c) (0.24 g, 1.04 mmol) and purified by flash column chromatography eluting with CH₂Cl₂-MeOH 95:5 to 90:10 v/v to give the product as a white solid. Yield: 0.19 g (62%), m.p. 258-260 °C, TLC (CH₂Cl₂-MeOH 95:5 v/v) Rf 0.29. ¹H-NMR (DMSO-d₆): δ 1.50 (septet, 1H, *J*=6.0 Hz, H-3'), 1.81 (q, 2H, *J*=7.0 Hz, H-2'), 3.38 and 3.46 (two quint, 4H, *J*=5.5 Hz, H-4'), 4.17 (t, 2H, *J*= 7.5 Hz, H-1'), 4.48 (t, 2H, *J*= 5.2 Hz, 2 x OH), 7.56 (d, 2H, *J*=8.6 Hz, H-2" and H-6"), 7.94 (s, 1H, H-2), 7.95 (d, 2H, *J*=8.6 Hz, H-3" and H-5"), 8.29 (s, 1H, H-7), 13.13 (br.s, 1H, H-5). ¹³C-NMR (DMSO-d₆): δ 29.1 (C-2'), 41.3 (C-3'), 42.0 (C-1'), 61.8 (C-4'), 104.3 (C-7), 116.0 (C-9a), 127.2 (C-2" and C-6"), 127.5 (C-1"), 128.4 (C-6), 129.6 (C-3" and C-5"), 133.7 (C-4"), 139.5 (C-2), 146.9 (C-4a), 150.7 (C-3a), 151.8 (C-9). [ESI-HRMS] calculated for C₁₈H₁₉N₅O₃Cl: 388.1176 [M+H]⁺. Found: 388.1187 [M+H]⁺.

4.2.1.4. 3-(4-Hydroxy-3-(hydroxymethyl)butyl)-6-(p-tolyl)-3,5-dihydro-9H-imidazo[1,2-a]purin-9-one (9d). Prepared from PCV (0.2 g, 0.8 mmol) and 2-bromo-1-(p-tolyl)ethanone (8d) (0.22 g, 1.04 mmol) and purified by flash column chromatography eluting with CH₂Cl₂-MeOH 100:0 to 85:15 v/v to give the product as a white solid. Yield: 0.18 g (61%), m.p. 112-114 °C, TLC (CH₂Cl₂-MeOH 95:5 v/v) Rf 0.47. ¹H-NMR (DMSO-d₆): δ 1.50 (septet, 1H, J=6.0 Hz, H-3'), 1.82 (q, 2H, J=7.0 Hz, H-2'), 2.34 (s, 3H, CH₃), 3.39 and 3.46 (two quint, 4H, J=5.4 Hz, H-4'), 4.17 (t, 2H, J=7.5 Hz, H-1'), 4.48 (t, 2H, J=5.3 Hz, 2 x OH), 7.28 (d, 2H, J=8.0 Hz, H-3" and H-5"), 7.79 (d, 2H, J=8.0 Hz, H-2" and H-6"), 7.95 (s, 1H, H-2), 8.13 (s, 1H, H-7), 13.01 (br.s, 1H, H-5). ¹³C-NMR (DMSO-d₆): δ 21.3 (CH₃), 29.1 (C-2'), 41.3 (C-3'), 44.0 (C-1'), 61.8 (C-4'), 103.0 (C-7), 116.0 (C-9a), 125.4 (C-3" and C-5"), 125.7 (C-1"), 129.5 (C-6), 130.0 (C-2" and C-6"), 138.8 (C-4"), 139.5 (C-2), 146.8 (C-4a), 150.6 (C-3a), 151.8

- (C-9). [ESI-HRMS] calculated for $C_{19}H_{21}N_5O_3Na$: 390.1537[M+Na]⁺. Found: 390.1533[M+Na]⁺.
- 4.2.1.5. *3-*(4-Hydroxy-3-(hydroxymethyl)butyl)-6-(4-(trifluoromethyl)phenyl)-3,5dihydro-9H-imidazo[1,2-a]purin-9-one (9e). Prepared from PCV (0.2 g, 0.8 mmol) and 2-bromo-1-(4-(trifluoromethyl)phenyl)ethanone (8e) (0.28 g, 1.04 mmol) and purified by flash column chromatography eluting with CH₂Cl₂-MeOH 95:5 to 92:8 v/v to give the product as a white solid. Yield: 0.18 g (55%), m.p. > 300 °C, TLC (CH₂Cl₂-MeOH 95:5 v/v) Rf 0.43. ¹H-NMR (DMSO- d_6): δ 1.51 (septet, 1H, J= 6.0 Hz, H-3'), 1.82 (q, 2H, J = 7.0 Hz, H-2'), 3.39 and 3.46 (two quint, 4H, J = 5.4 Hz, H-4'), 4.18 (t, 2H, J = 7.0Hz, H-1'), 4.45 (br s, 2H, 2 x OH), 7.85 (d, 2H, J = 7.8 Hz, H-2" and H-6"), 7.98 (s, 1H, H-2), 8.15 (d, 2H, J = 7.7 Hz, H-3" and H-5"), 8.42 (s, 1H, H-7), 13.24 (br.s, 1H, H-5). ¹³C-NMR (DMSO- d_6): δ 29.2 (C-2'), 42.0 (C-3'), 42.3 (C-1'), 61.8 (C-4'), 105.7 (C-7), 116.1 (C-9a), 124.5 (d, 1C, J_{CF} = 272 Hz, CF₃), 126.1(C-2" and C-6"), 126.4 (d, 2C, J_{CF} = 3.8 Hz, C-3" and C-5"), 128.0 (C-6), 128.5 (q, 1C, J_{CF} = 31.8 Hz, C-4"), 132.6 (C-1"), 139.7 (C-2), 147.0 (C-4a), 150.8 (C-3a), 151.7 (C-9). 19 F-NMR(DMSO- d_6): δ -61.11.[ESI-HRMS] calculated for $C_{19}H_{19}N_5O_3F_3$: 422.1440 [M+H]⁺, Found: 422.1430 $[M+H]^{+}$.
- 4.2.1.6. 3-(4-Hydroxy-3-(hydroxymethyl)butyl)-6-(4-hydroxyphenyl)-3,5-dihydro-9H-imidazo[1,2-a]purin-9-one (9f).Prepared from PCV (0.2 g, 0.8 mmol) and 2-bromo-1-(4-hydroxyphenyl)ethanone (8f) (0.22 g, 1.04 mmol) and purified by flash column chromatography eluting with CH₂Cl₂-MeOH 95:5 to 90:10 v/v to give the product as a pale yellow solid. Yield: 0.11 g (38%), m.p. > 300 °C, TLC (CH₂Cl₂-MeOH 9:1 v/v) Rf 0.25. 1 H-NMR (DMSO- d_6): δ 1.51 (septet, 1H, J= 6.0 Hz, H-3'), 1.81 (q, 2H, J= 7.0 Hz, H-2'), 3.38 and 3.45 (two quint, 4H, J = 5.4 Hz, H-4'), 4.17 (t, 2H, J=7.0 Hz, H-1'), 4.47 (br s, 2H, 2 x OH), 6.86 (d, 2H, J = 8.7 Hz, H-3" and H-5"), 7.72 (d, 2H, J = 8.7

Hz, H-2" and H-6"), 7.95 (br s, 2H, H-2 and H-7) 9.87 (br s, 1H, phenolic OH), 12.89 (br.s, 1H, H-5). ¹³C-NMR (DMSO-d₆): δ 29.1 (C-2'), 41.3 (C-3'), 42.0 (C-1'), 61.8 (C-1') 4'), 101.4 (C-7), 116.0 (C-9a), 116.3 (C-3" and C-5"), 119.2 (C-1"), 127.1 (C-2" and C-6"), 129.9 (C-6), 139.6 (C-2), 146.6 (C-4a), 150.5 (C-3a) 151.8 (C-9), 158.6 (C-4"). [ESI-HRMS] calculated for C₁₈H₁₈N₅O₄: 368.1359 [M-H]⁺. Found: 368.1349 [M-H]⁺. *4.2.1.7. 3-*(*4-Hydroxy-3-*(*hydroxymethyl*)*butyl*)-*6-*(*4-methoxyphenyl*)-*3,5-dihydro-*9*H*imidazo[1,2-a]purin-9-one (9g). Prepared from PCV (0.2 g, 0.8 mmol) and 2-bromo-1-(4-methoxyphenyl)ethanone (8g) (0.24 g, 1.04 mmol) and purified by flash column chromatography eluting with CH₂Cl₂-MeOH 97.5:2.5 to 87:13 v/v to give the product as a white solid. Yield: 0.24 g (79%), m.p. 202-203 °C, TLC (CH₂Cl₂-MeOH 9:1 v/v) Rf 0.45. ¹H-NMR (DMSO- d_6): δ 1.51 (septet, 1H, J=6.0 Hz, H-3'), 1.81 (q, 2H, J=7.0 Hz, H-2'), 3.39 and 3.46 (two quint, 4H, J=5.5 Hz, H-4'), 3.81 (s, 3H, OCH₃), 4.17 (t, 2H, J=7.5 Hz, H-1'), 4.47 (t, 2H, J=5.2 Hz, 2 x OH), 7.04 (d, 2H, J=8.0 Hz, H-3" and H-5"), 7.85 (d, 2H, J=8.0 Hz, H-2" and H-6"), 7.95 (s, 1H, H-2), 8.07 (s, 1H, H-7), 12.97 (br.s, 1H, H-5). 13 C-NMR (DMSO- d_6): δ 29.1 (C-2'), 41.3 (C-3'), 42.0 (C-1'), 55.8 (OCH₃), 61.8 (C-4'), 102.2 (C-7), 115.0 (C-3" and C-5"), 116.1 (C-9a), 120.9 (C-1"), 127.0 (C-2" and C-6"), 129.4 (C-6), 139.5 (C-2), 146.7 (C-4a), 150.5 (C-3a), 151.8 (C-9), 160.1 (C-4"). [ESI-HRMS] calculated for C₁₉H₂₂N₅O₄: 384.1666 [M+H]⁺. Found: 384.1666 [M+H]⁺.

4.2.1.8. 6-(4-Ethoxyphenyl)-3-(4-hydroxy-3-(hydroxymethyl)butyl)-3,5-dihydro-9H-imidazo[1,2-a]purin-9-one (9h). Prepared from PCV (0.2 g, 0.8 mmol) and 2-bromo-1-(4-ethoxyphenyl)ethanone (8h) (0.25 g, 1.04 mmol) and purified by flash column chromatography eluting with CH₂Cl₂-MeOH 95:5 to 91:9 v/v to give the product as a pale yellow solid. Yield: 0.24 g (77%), m.p. 276-278 °C, TLC (CH₂Cl₂-MeOH 9:1 v/v) Rf 0.5. 1 H-NMR (DMSO- d_6): δ 1.35 (t, 3H, J= 7.0 Hz, CH₃), 1.51 (septet, 1H, J=6.0

Hz, H-3'), 1.82 (q, 2H, J=7.0 Hz, H-2'), 3.39 and 3.46 (two quint, 4H, J=5.5 Hz, H-4'), 4.08 (q, 2H, J= 7.0 Hz, OCH₂), 4.17 (t, 2H, J=7.0 Hz, H-1'), 4.44 (br s, 2H, 2 x OH), 7.02 (d, 2H, J= 8.3 Hz, H-3" and H-5"), 7.83 (d, 2H, J= 8.3 Hz, H-2" and H-6"), 7.94 (s, 1H, H-2), 8.05 (s, 1H, H-7), 12.93 (br.s, 1H, H-5). ¹³C-NMR (DMSO- d_6): δ 15.1 (CH₃), 29.2 (C-2'), 41.4 (C-3'), 42.0 (C-1'), 61.8 (C-4'), 63.7 (OCH₂), 102.1 (C-7), 115.4 (C-3" and C-5"), 116.1 (C-9a), 120.8 (C-1"), 127.0 (C-2" and C-6"), 129.4 (C-6), 140.0 (C-2), 146.7 (C-4a), 150.5 (C-3a), 151.8 (C-9), 159.4 (C-4"). [ESI-HRMS] calculated for C₂₀H₂₂N₅O₄: 396.1672 [M-H]⁺, Found: 396.1668 [M-H]⁺.

4.2.1.9. 6-(Benzo[d][1,3]dioxol-5-yl)-3-(4-hydroxy-3-(hydroxymethyl)butyl)-3,5-dihydro-9H-imidazo[1,2-a]purin-9-one (9i). Prepared from PCV (0.2 g, 0.8 mmol) and 1-(benzo[d][1,3]dioxol-5-yl)-2-bromoethanone (8i) (0.25 g, 1.04 mmol) and purified by flash column chromatography eluting with CH₂Cl₂-MeOH-acetone 80:10:10 v/v/v to give the product as a pale yellow solid. Yield: 0.21 g (68%), m.p. 259-260 °C, TLC (CH₂Cl₂-MeOH 9:1 v/v) Rf 026. ¹H-NMR (DMSO-d₆): δ 1.51 (septet, 1H, *J*=6.0 Hz, H-3'), 1.82 (q, 2H, *J*=7.0 Hz, H-2'), 3.38 and 3.46 (two quint, 4H, *J*=5.5 Hz, H-4'), 4.17 (t, 2H, *J*=7.5 Hz, H-1') 4.45 (t, 2H, *J*= 5.2 Hz, 2 x OH), 6.09 (s, 2H, H-2"), 7.03 (d, 1H, *J*= 8.1 Hz, H-7"), 7.41 (dd, 1H, *J*= 1.8, 8.1 Hz, H-6"), 7.53 (d, 1H, *J*= 1.7 Hz, H-4"), 7.94 (s, 1H, H-2), 8.11 (s, 1H, H-7), 12.92 (br.s, 1H, H-5). ¹³C-NMR (DMSO-d₆): δ 29.2 (C-2'), 41.4 (C-3'), 42.0 (C-1'), 61.8 (C-4'), 101.9 (C-2"), 102.8 (C-7), 106.0 (C-4"), 109.2 (C-7"), 116.1 (C-9a), 119.5 (C-6"), 122.4 (C-5"), 129.3 (C-6), 139.6 (C-2), 146.7 (C-4a), 148.2 (C-7a"), 148.5 (C-3a"), 150.6 (C-3a) 151.8 (C-9). [ESI-HRMS] calculated for C₁₉H₂₀N₅O₅: 398.1459 [M+H]⁺. Found: 398.1460 [M+H]⁺.

4.2.1.10. 3-(4-Hydroxy-3-(hydroxymethyl)butyl)-6-(4-phenoxyphenyl)-3,5-dihydro-9H-imidazo[1,2-a]purin-9-one (9j). Prepared from PCV (0.2 g, 0.8 mmol) and 2-bromo-1-(4-phenoxyphenyl)ethanone (8j) (0.3 g, 1.04 mmol) and purified by flash

column chromatography eluting with CH₂Cl₂-MeOH 100:0 to 92:8 v/v to give the product as a white solid. Yield: 0.26 g (75%), m.p. 278-280 °C, TLC (CH₂Cl₂-MeOH 9:1 v/v) R*f* 0.53. ¹H-NMR (DMSO-*d*₆): δ 1.52 (septet, 1H, *J*=6.0 Hz, H-3'), 1.82 (q, 2H, *J*=7.0 Hz, H-2'), 3.38 and 3.46 (two quint, 4H, *J*=5.5 Hz, H-4'), 4.18 (t, 2H, *J*= 7.5 Hz, H-1'), 4.44 (br s, 2H, 2 x OH), 7.09 (d, 4H, *J*= 8.1 Hz, H-3", H-5", H-2" and H-6"'), 7.20 (t, 1H, *J*= 7.4 Hz, H-4"'), 7.44 (t, 2H, *J*=8.0 Hz, H-3"' and H-5"'), 7.93 (d, 2H, *J*= 8.8 Hz, H- 2" and H-6"), 7.98 (s, 1H, H-2), 8.14 (s, 1H, H-7), 13.04 (br.s, 1H, H-5). ¹³C-NMR (DMSO-*d*₆): δ 29.1 (C-2'), 41.4 (C-3'), 42.0 (C-1'), 61.8 (C-4'), 103.1 (C-7), 115.9 (C-9a), 119.2 and 119.6 (C-3", C-5", C-2"' and C-6"'), 123.6 (C-1"), 124.5 (C-4"'), 127.4 and 130.7 (C-2", C-6", C-3"' and C-5"'), 129.0 (C-6), 139.5 (C-2), 146.8 (C-4a), 150.6 (C-3a), 151.7 (C-9), 156.5 and 157.7 (C- 4" and C-1"'). [ESI-HRMS] calculated for C₂₄H₂₂N₅O₄:444.1672 [M-H]⁺, Found: 444.1675 [M-H]⁺.

4.2.1.11. 3-(4-Hydroxybutyl)-6-phenyl-3,5-dihydro-9H-imidazo[1,2-a]purin-9-one (10a). Prepared from HBG (0.2 g, 0.9 mmol) and 2-bromo-1-(phenyl)ethan-1-one (8a) (0.23 g, 1.17 mmol) and purified by flash column chromatography eluting with CH₂Cl₂-MeOH 95:5 to 93:7 v/v to give the product as a white solid. Yield: 0.18 g (61%), m.p. 248-250 °C, TLC (CH₂Cl₂-MeOH 95:5 v/v) Rf 0.32. ¹H-NMR (DMSO-d₆): δ 1.43 (quint., 2H, *J*=7.0 Hz, H-3'), 1.85 (quint, 2H, *J*= 7.0 Hz, H- 2'), 3.42 (q, 2H, *J*= 5.5 Hz, H-4'), 4.11 (t, 2H, *J*=7.2 Hz, H-1'), 4.49 (t, 1H, *J*= 4.8 Hz, OH), 7.39 (t, 1H, *J*= 7.4 Hz, H-4"), 7.48 (t, 2H, *J*= 7.7 Hz, H-3" and H-5"), 7.91 (d, 2H, *J*= 7.6 Hz, H-2" and H-6"), 7.95 (s, 1H, H-2), 8.22 (s, 1H, H-7), 13.07 (br.s, 1H, H-5). ¹³C-NMR (DMSO-d₆): δ 26.7 (C-2'), 30.0 (C-3'), 43.5 (C-1'), 60.6 (C-4'), 103.6 (C-7), 116.1 (C-9a), 125.4 (C-4"), 128.5 (C-6), 129.2 (C-2" and C-6"), 129.4 (C-1"), 129.5 (C-3" and C-5"), 139.7 (C-2), 146.9 (C-4a), 150.9 (C-3a), 151.8 (C-9). [ESI-HRMS] calculated for C₁₇H₂₈N₅O₂: 322.1309 [M+H]⁺. Found: 322.1302 [M+H]⁺.

6-(4-Fluorophenyl)-3-(4-hydroxybutyl)-3,5-dihydro-9H-imidazo[1,2-*4.2.1.12.* alpurin-9-one (10b). Prepared from HBG (0.2 g, 0.9 mmol) and 2-bromo-1-(4fluorophenyl)ethanone (8b) (0.25 g, 1.17 mmol) and purified by flash column chromatography eluting with CH₂Cl₂-MeOH 100:0 to 94:6 v/v to give the product as a white solid. Yield: 0.19 g (62%), m.p. 288-290 °C, TLC (CH₂Cl₂-MeOH 95:5 v/v) Rf 0.31. ¹H-NMR (DMSO- d_6): δ 1.43 (quint, 2H, J=7.5 Hz, H-3'), 1.85 (quint, 2H, J=7.5Hz, H-2'), 3.42 (q, 2H, *J*=5.4 Hz, H-4'), 4.11 (t, 2H, *J*=7.0 Hz, H-1'), 4.49 (t, 1H, *J*= 5.0 Hz, OH), 7.34 (t, 2H, J_{HF} = 8.9 Hz, H-3" and H-5"), 7.96 (dd, 2H, J_{HF} = 5.0, 9.0 Hz, H-2" and H-6"), 7.96 (s, 1H, H-2), 8.22 (d, 1H, J= 2.0 Hz, H-7), 13.09 (br.s, 1H, H-5). ¹³C-NMR (DMSO- d_6): δ 26.7 (C-2'), 30.0 (C-3'), 43.5 (C-1'), 60.6 (C-4'), 103.6 (C-7), 116.1 (C-9a), 116.6 (d, 2C, J_{CF} = 22.6 Hz, C-3" and C-5"), 125.1 (d, 1C, J= 3.8 Hz, C-1"), 127.7 (d, 2C, *J*= 7.5 Hz, C-2" and C-6"), 128.5 (C-6), 139.7 (C-2), 146.8 (C-4a), 150.7 (C-3a), 151.8 (C-9), 162.6 (d, 1C, J= 246.5 Hz, C-4"). ¹⁹F-NMR(DMSO- d_6): δ -112.40. [ESI-HRMS] calculated for $C_{17}H_{17}N_5O_2F$: 342.1366 [M+H]⁺. Found: 342.1373 $[M+H]^+$.

4.2.1.13. 6-(4-Chlorophenyl)-3-(4-hydroxybutyl)-3,5-dihydro-9H-imidazo[1,2-a]purin-9-one (10c). Prepared from HBG (0.2 g, 0.9 mmol) and 2-bromo-1-(4-chlorophenyl)ethanone (8c) (0.27 g, 1.17 mmol) and purified by flash column chromatography eluting with CH₂Cl₂-MeOH 95:5 to 92:8 v/v to give the product as a white solid. Yield: 0.2 g (62%), m.p. 280-282 °C, TLC (CH₂Cl₂-MeOH 95:5 v/v) Rf 0.36. 1 H-NMR (DMSO- 2 6): δ 1.43 (quint, 2H, J = 7.0 Hz, H-3'), 1.85 (quint, 2H, J = 7.5 Hz; H-2'), 3.42 (q, 2H, J=5.5 Hz, H-4'), 4.10 (t, 2H, J=7.0 Hz, H-1'), 4.48 (t, 1H, J=5.0 Hz, OH), 7.53 (d, 2H, J=8.4 Hz, H-2" and H-6"), 7.92 (d, 2H, J=8.4 Hz, H-3" and H-5"), 7.94 (s, 1H, H-2), 8.27 (s, 1H, H-7), 14.00 (br.s, 1H, H-5). 13 C-NMR (DMSO- 2 6): δ 26.7 (C-2'), 30.0 (C-3'), 43.5 (C-1'), 60.6 (C-4'), 104.3 (C-7), 116.1 (C-9a), 127.1

(C-2" and 6"), 127.4 (C-1"), 128.3 (C-6), 129.5 (C-3" and C-5"), 133.6 (C-4"), 139.7 (C-2), 146.9 (C-4a), 150.7 (C-3a), 151.7 (C-9).[ESI-HRMS] calculated for C₁₇H₁₇N₅O₂Cl: 358.1071 [M+H]⁺. Found: 358.1075 [M+H]⁺.

4.2.1.14. 3-(4-Hydroxybutyl)-6-(p-tolyl)-3,5-dihydro-9H-imidazo[1,2-a]purin-9-one (10d). Prepared from HBG (0.2 g, 0.9 mmol) and 2-bromo-1-(p-tolyl)ethanone (8d) (0.25 g, 1.17 mmol) and purified by flash column chromatography eluting with CH₂Cl₂-MeOH 100:0 to 94:6 v/v to give the product as a white solid. Yield: 0.2 g (67%), m.p. 260-261 °C, TLC (CH₂Cl₂-MeOH 95:5 v/v) Rf 0.63. ¹H-NMR (DMSO-d₆): δ 1.43 (quint, 2H, J=7.0 Hz, H-3'), 1.85 (quint, 2H, J= 7.5 Hz, H-2'), 2.34 (s, 3H, CH₃), 3.42 (q, 2H, J=5.5 Hz, H-4'), 4.11 (t, 2H, J=7.2 Hz, H-1'), 4.49 (t, 1H, J= 5 Hz, OH), 7.28 (d, 2H, J= 8.0 Hz, H-3" and H-5"), 7.79 (d, 2H, J= 8.2 Hz, H-2" and H-6"), 7.95 (s, 1H, H-2), 8.14 (s, 1H, H-7), 13.01 (br.s, 1H, H- 5). ¹³C-NMR (DMSO-d₆): δ 21.3 (CH₃), 26.7 (C-2'), 30.0 (C-3'), 43.5 (C-1'), 60.6 (C-4'), 103.0 (C-7), 116.0 (C-9a), 125.4 (C-3" and 5"), 125.6 (C-1"), 129.5 (C- 6), 130.1 (C-2" and C-6"), 138.8 (C-4"), 139.6 (C-2), 146.8 (C-4a), 150.6 (C- 3a), 151.8 (C-9). [ESI-HRMS] calculated for C₁₈H₂₀N₅O₂: 338.1617 [M+H]⁺. Found: 338.1626 [M+H]⁺.

4.2.1.15. 3-(4-Hydroxybutyl)-6-(4-(trifluoromethyl)phenyl)-3,5-dihydro-9H-imidazo[1,2-a]purin-9-one (10e). Prepared from HBG (0.2 g, 0.9 mmol) and 2-bromo-1-(4-(trifluoromethyl)phenyl)ethanone (8e) (0.3 g, 1.17 mmol) and purified by flash column chromatography eluting with CH₂Cl₂-MeOH 97.5:2.5 to 92:8 v/v to give the product as a white solid. Yield: 0.25 g (71%), m.p. 292-293 °C, TLC (CH₂Cl₂-MeOH 95:5 v/v) Rf 0.58. ¹H-NMR (DMSO- d_6): δ 1.44 (quint, 2H, J=7.0 Hz, H-3'), 1.86 (quint, 2H, J=7.5 Hz, H-2'), 3.43 (q, 2H, J=5.5 Hz, H-4'), 4.12 (t, 2H, J=7.0 Hz, H-1'), 4.45 (t, 1H, J=5.0 Hz, OH), 7.84 (d, 2H, J=8.0 Hz, H-2" and H-6"), 7.96 (s, 1H, H-2), 8.14 (d, 2H, J=8.0 Hz, H-3" and H-5"), 8.42 (s, 1H, H-7), 13.23 (br.s, 1H, H-5). ¹³C-NMR

(DMSO- d_6): δ 26.7 (C-2'), 30.0 (C-3'), 43.5 (C-1'), 60.6 (C-4'), 105.7 (C-7), 116.1 (C-9a), 124.5 (d, 1C, J= 272.0 Hz, CF₃), 126.0 (C-2" and C-6"), 126.4 (d, 2C, J= 3.6 Hz, C-3" and C-5"), 128.0 (C-6), 128.5 (q, 1C, J_{CF} = 32.0 Hz, C-4"), 132.6 (C-1"), 139.8 (C-2), 147.1 (C-4a), 150.8 (C-3a), 151.7 (C-9). ¹⁹F-NMR(DMSO- d_6): δ -61.14. Anal. Calcd for C₁₈H₁₆F₃N₅O₂•0.5H₂O (400.1309): C, 54.00; H, 2.38; N, 17.49. Found: C, 53.56; H, 3.84; N, 17.33.

4.2.1.16. 3-(4-Hydroxybutyl)-6-(4-methoxyphenyl)-3,5-dihydro-9H-imidazo[1,2-a]purin-9-one (10f). Prepared from HBG (0.2 g, 0.9 mmol) and 2-bromo-1-(4-methoxyphenyl)ethanone (8g) (0.27 g, 1.17 mmol) and purified by flash column chromatography eluting with CH₂Cl₂-MeOH 95:5 to 93:7 v/v to give the product as a white solid. Yield: 0.19 g (61%), m.p. 252-254°C, TLC (CH₂Cl₂-MeOH 95:5 v/v) Rf 0.23. 1 H-NMR (DMSO- 2 6): δ 1.43 (quint, 2H, 2 7.0 Hz, H-3'), 1.85 (quint, 2H, 2 7.5 Hz; H-2'), 3.42 (q, 2H, 2 5.4 Hz, H-4'), 3.81 (s, 3H, OCH₃) 4.11 (t, 2H, 2 7.0 Hz, H-1'), 4.48 (t, 1H, 2 7.5 Hz, OH), 7.04 (d, 2H, 2 7.8 Hz, H-3" and 5"), 7.84 (d, 2H, 2 8.8 Hz, H-2" and H-6"), 7.94 (s, 1H, H-2), 8.08 (s, 1H, H-7), 12.97 (br.s, 1H, H-5). 13 C-NMR (DMSO- 2 6): δ 26.7 (C-2'), 30.1 (C-3'), 43.5 (C-1'), 55.7 (OCH₃), 60.6 (C-4'), 102.2 (C-7), 115.0 (C-3" and C-5"), 116.0 (C-9a), 120.9 (C-1"), 126.9 (C-2" and C-6"), 129.4 (C-6), 139.6 (C-2), 146.7 (C-4a), 150.5 (C-3a), 151.8 (C-9), 160.1 (C-4"). [ESI-HRMS] calculated for C₁₈H₂₀N₅O₃: 354.1566 [M+H]⁺. Found: 354.1563 [M+H]⁺.

4.2.1.17. 6-(Benzo[d][1,3]dioxol-5-yl)-3-(4-hydroxybutyl)-3,5-dihydro-9H-imidazo[1,2-a]purin-9-one (10g). Prepared from HBG (0.2 g, 0.9 mmol) and 1-(benzo[d][1,3]dioxol-5-yl)-2-bromoethanone (8i) (0.28 g, 1.17 mmol) and purified by flash column chromatography eluting with CH₂Cl₂-MeOH 97.5:2.5 to 92:8 v/v to give the product as a pale yellow solid. Yield: 0.23 g (69%), m.p. 272-274°C, TLC (CH₂Cl₂-MeOH 95:5 v/v) Rf 0.38. 1 H-NMR (DMSO- 2 d₆): δ 1.43 (quint, 2H, 2 J=7.5 Hz, H-3'),

1.85 (quint, 2H, J= 7.5 Hz; H-2'), 3.42 (q, 2H, J=5.5 Hz, H-4'), 4.11 (t, 2H, J=7 Hz, H-1'), 4.45 (t, 1H, J= 5 Hz, OH), 6.09 (s, 1H, H-2"), 7.03 (d, 1H, J= 8.2 Hz, H-7"), 7.41 (d, 1H, J= 8.1 Hz, H-6"), 7.53 (s, 1H, H-4"), 7.93 (s, 1H, H-2), 8.12 (s, 1H, H-7), 12.92 (br.s, 1H, H-5). 13 C-NMR (DMSO- d_6): δ 26.7 (C-2'), 30.1 (C-3'), 43.5 (C-1'), 60.7 (C-4'), 101.9 (C-2"), 102.8 (C-7), 106.0 (C-4"), 109.2 (C-7"), 116.0 (C-9a), 119.4 (C-6"), 122.5 (C-5"), 129.4 (C-6), 139.9 (C-2), 146.7 (C-4a), 148.2 (C-7a"), 148.5 (C-3a"), 150.6 (C-3a), 151.8 (C-9). Anal. Calcd for $C_{18}H_{17}N_5O_4 \bullet 0.3H_2O$ (372.5312): C, 58.00; H, 4.76; N, 18.79. Found: C, 57.60; H, 4.37; N, 18.56.

4.2.1.18. 3-(4-Hydroxybutyl)-6-(thiophen-2-yl)-3,5-dihydro-9H-imidazo[1,2-a]purin-9-one (10h). Prepared from HBG (0.2 g, 0.9 mmol) and 2-bromo-1-(thiophen-2-yl)ethanone (**8k**) (0.24 g, 1.17 mmol) and purified by flash column chromatography eluting with CH₂Cl₂-MeOH 95:5 to 92:8 v/v to give the product as a pale yellow solid. Yield: 0.19 g (64%), m.p. 246-247°C, TLC (CH₂Cl₂-MeOH 9:1 v/v) R*f* 0.67. ¹H-NMR (DMSO-*d*₆): δ 1.43 (quint., 2H, *J*=7.0 Hz, H-3'), 1.85 (quint, 2H, *J*= 7.5 Hz; H-2'), 3.42 (q, 2H, *J*=5.5 Hz, H-4'), 4.11 (t, 2H, *J*=7.0 Hz, H-1'), 4.45 (t, 1H, *J*= 5.0 Hz, OH), 7.18 (t, 1H, *J*= 4.2 Hz, H-4"), 7.61 (d, 1H, *J*= 3.3 Hz, H-3"), 7.66 (d, 1H, *J*= 4.9 Hz, H-5"), 7.91 (s, 1H, H-2), 7.95 (s, 1H, H-7), 13.14 (br.s, 1H, H-5). ¹³C-NMR (DMSO-*d*₆): δ 26.6 (C-2'), 30.0 (C-3'), 43.5 (C-1'), 60.6 (C-4'), 102.7 (C-7), 116.1 (C-9a), 124.6 (C-6), 126.6 (C-3"), 127.5 (C-4"), 128.6 (C-5"), 139.7 (C-2), 146.5 (C-4a), 150.6 (C-3a), 151.7 (C-9). [ESI-HRMS] calculated for C₁₅H₁₆N₅O₂S: 330.1019 [M+H]⁺. Found: 330.1021 [M+H]⁺.

4.3. Antiviral and Cytotoxicity assays

The antiviral assays were based on inhibition of virus-induced cytopathicity or plaque formation in HEL [herpes simplex virus 1 (HSV-1) (KOS), HSV-2 (G), vaccínia virus, vesicular stomatitis virus, cytomegalovirus (HCMV), varicella-zoster virus (VZV),

adenovirus-2, and human corona virus (299E)], Vero (para-influenza-3, reovirus-1, Sindbisvirus, and Coxsackie B4), HeLa (vesicular stomatitis virus, Coxsackie virus B4, and respiratorysyncytial virus), or MDCK [influenza A (H1N1; H3N2) and influenza B] cell cultures. Confluent cell cultures (or nearly confluent for MDCK cells) in microtiter 96-well plates were inoculated with 100 CCID₅₀ of virus (1 CCID₅₀ being the virus dose to infect 50% of the cell cultures) or with 20 plaque- forming units (PFU). After 1–2h virus adsorption period, residual virus was removed, and the cell cultures were incubated in the presence of varying concentrations (200, 40, 8, 1.6, 0.32 µM) of the test compounds. Viral cytopathicity was recorded as soon as it reached completion in the control virus-infected cell cultures that were not treated with the test compounds. Antiviral activity was expressed as the EC₅₀ (50% effective concentration) or compound concentration required to reduce virus-induced cytopathogenicity or viral plaque formation by 50%. The MCC (minimal cytotoxic concentration) values were determined as the compound concentration required to afford a microscopically visible alteration of cell morphology. The new compounds were screened for their potential cytostatic activity against eight human cancer cell lines. The 50% cytostatic inhibitory concentration (IC₅₀) causing a 50% decrease in cell proliferation relative to the number of cells in the untreated controls was determined against retina (non cancerous) hTERT RPE-1, pancreatic adenocarcinomaCapan-1, chronic myeloid leukaemia Hap1, lung carcinoma NCI-H460, acute lymphoblastic leukaemia DND-41, acute myeloid leukaemia HL-60, chronic myeloid leukaemia K-562 and non-Hodgkin lymphoma Z-138.

4.4. Molecular modelling

Docking studies were performed using the MOE¹⁸ crystal structure of HSV-1 thymidine kinase co-crystallised with PCV (PDB 1KI3)¹⁹ and 9-(4-hydroxybutyl)-N2-phenylguanine (HBPG) (PDB 1QHI)²⁰. All minimisations were performed with MOE until a RMSD gradient of 0.01 Kcal/mol/A with the MMFF94 forcefield and partial charges were automatically calculated. The Alpha Triangle placement, which derives poses by random superposition of ligand atom triplets through alpha sphere dummies in the receptor site, was chosen to determine the poses. The London ΔG scoring function estimates the free energy of binding of the ligand from a given pose. Refinement of the results was done using the MMFF94 forcefield, and rescoring of the refined results using the London ΔG scoring function was applied. The output database dock file was created with different poses for each ligand and arranged according to the final score function (S), which is the score of the last stage that was not set to zero.

Acknowledgements

We thank the Egyptian Government for a Channel research scholarship to AFM and the EPSRC Mass Spectrometry Centre, Swansea, U.K. for mass spectroscopy data. The authors wish to express their gratitude to Mrs Leentje Persoons, Mrs Ellen De Waegenaere, Mrs Bianca Stals, Mrs Kirsten Lepaige, and Mrs. Nathalie Van Winkel for excellent technical assistance.

References

- (1)World Health Organization. *Herpes simplex virus*. Fact sheets. http://www.who.int/news-room/fact-sheets/detail/herpes-simplex-virus **2017**(accessed 5/10/2018).
- (2) Gupta, R.; Warren, T.; Wald, A. Genital herpes. *Lancet***2007**, *370*, 2127–2137.

- (3) Looker, K.J.; Margaret, A.S.; May, M.T.; Turner, K.M.E.; Vickerman, P.; Gottlieb, S.L.; Newman, L.M. Global and regional estimates of prevalent and incident herpes simplex virus type 1 infections in 2012. *PLoS One***2015**, 10(10): e0140765.17pp (4)Granerod, J.; Ambrose, H.E.; Davies, N.W.; Clewley, J.P.; Walsh, A.L.; Morgan, D.; Cunningham, R.; Zuckerman, M.; Mutton, K.J.; Solomon, T.; Ward, K.N.; Lunn, M.P.; Irani S.R.; Vincent, A.; Brown, D.W.; Crowcroft, N.S.; UK Health Protection Agency (HPA) Aetiology of Encephalitis Study Group. Causes of encephalitis and differences in their clinical presentations in England: a multicentre, population-based prospective study. *Lancet Infect. Dis.***2010**, *10*, 835-44.
- (5) Whitley, R.J. Herpes simplex encephalitis: adolescents and adults. *Antiviral Res.***2006**,*71*, 141-148.
- (6)Rozenberg, F.; Deback, C.; Agut, H. Herpes simplex encephalitis: from virus to therapy. Infectious Disorders Drug Targets **2011**, *11*, 235-250.
- (7) Zuo, X-Z.; Tang, W-J.; Chen, X-Y.; Huang, W. A review with comments on herpes simplex virus encephalitis in adults. *Neuroimmunol.Neuroinflammation***2017**, *4*, 24-7.
- (8) Bradshaw, M.J.; Venkatesan, A. Herpes simplex virus-1 encephalitis in adults: pathophysiology, diagnosis, and management. *Neurotherapeutics***2016**, *13*, 493-508.
- (9) Piret, J.; Boivin, G. Resistance of herpes simplex viruses to nucleoside analogues: mechanisms, prevalence, and management. *Antimicrob. Agents Chemother.***2011**, *55*, 459–472.
- (10) Kawaguchi, T.; Kusumi, M.; Hasegawa, T.; Nagata, T.; Saneyoshi, M.; Nakano, M.; Hamada, A. Roles of hydrophobicity, protein binding and the probenecid-sensitive transport system in the cerebrospinal fluid delivery of nucleoside analogues with antiviral activity. *Biol. Pharm. Bull.* **2000**, *23*, 979-983.
- (11) Golankiewicz, B.; Ostrowski, T.; Goslinski, T.; Januszczyk, P.; Zeidler, J.;

- Baranowski, D.; de Clercq, E. Fluorescent Tricyclic Analogues of Acyclovir and Ganciclovir. A Structure-Antiviral Activity Study. *J. Med. Chem.* **2001**, *44*, 4284–4287.
- (12) Goslinski, T.; Golankiewicz, B.; De Clercq, E.; Balzarini, J. Synthesis and Biological Activity of Strongly Fluorescent Tricyclic Analogues of Acyclovir and Ganciclovir. *J. Med. Chem.* **2002**, *45*, 5052–5057.
- (13) Golankiewicz, B.; Ostrowski, T. Tricyclic nucleoside analogues as antiherpes agents. *Antiviral Res.* **2006**, *71*, 134-140.
- (14) Boyd, M. R.; Safrin, S.; Kern, E. R. Penciclovir: a review of its spectrum of activity, selectivity, and cross-resistance pattern. *Antivir. Chem. Chemother.***1993**, *4* (6_suppl), 3–11.
- (15) Larsson, A.; Alenius, S.; Johansson, N. G.; Oberg, B. Antiherpetic activity and mechanism of action of 9-(4-hydroxybutyl)guanine. *Antiviral Res.* **1983**, *3*, 77-86.
- (16) Toyokuni, T.; Walsh, J. C.; Namavari, M.; Shinde, S. S.; Moore, J. R.; Barrio, J. R.; Satyamurthy, N. Selective and practical synthesis of penciclovir. *Synth. Commun.* **2003**, *33*, 3897–3905.
- (17) Volpini, R.; Mishra, R. C.; Kachare, D. D.; Ben, D. D.; Lambertucci, C.; Antonini, I.; Vittori, S.; Marucci, G.; Sokolova, E.; Nistri, A.; Cristalli, G. Adenine based acyclic nucleotides as novel P2X₃ receptor ligands. *J. Med. Chem.***2009**, *52*, 4596–4603.
- (18) *Molecular Operating Environment (MOE)*, 2014.0901; Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, **2016**.
- (19) Champness, J. N.; Bennett, M. S.; Wien, F.; Visse, R.; Summers, W. C.; Herdewijn, P.; de Clercq, E.; Ostrowski, T.; Jarvest, R. L.; Sanderson, M. R. Exploring the active site of herpes simplex virus type-1 thymidine kinase by X-ray crystallography of

- complexes with aciclovir and other ligands. *Proteins Struct. Funct. Genet.***1998**, *32*, 350–361
- (20) Bennett, M. S.; Wien, F.; Champness, J. N.; Batuwangala, T.; Rutherford, T.;Summers, W. C.; Sun, H.; Wright, G.; Sanderson, M. R. Structure to 1.9 Å resolution of a complex with herpes simplex virus type-1 thymidine kinase of a novel, non-substrate inhibitor: X-ray crystallographic comparison with binding of aciclovir. *FEBS Lett.* **1999**, *443*, 121–125.
- (21) Cowper, R. M.; Davidson, L. H.; Smith, L.I.; Kaiser, E.W. Phenacyl bromide. In *Organic Syntheses*, John Wiley & Sons, Inc.: **2003**.
- (22) Bellale, E.; Naik, M.; Varun, V.B.; Ambady, A.; Narayan, A.; Ravishankar, S.; Ramachandran, V.; Kaur, P.; McLaughlin, R.; Whiteaker, J.; Morayya, S.; Guptha, S.; Sharma, S.; Raichurkar, A.; Awasthy, D.; Achar, V.; Vachaspati, P.; Bandodkar, B.; Panda, M.; Chatterji, M. Diarylthiazole: an antimycobacterial scaffold potentially targetingPrrB-PrrA two-component Ssystem. *J. Med. Chem.***2014**, *57*, 6572-6582.
- (23) Joy, A.; Sun, S. Substituted phenacyl molecules and photoresponsive polymers. WO2013090892A1, **2013**.
- (24) Abdel-Aziz, H. A.; Ghabbour, H. A.; Eldehna, W. M.; Al-Rashood, S. T.; Al-Rashood, K. A.; Fun, H. K.; Al-Tahhan, M.; Al-Dhfyan, A. 2-((Benzimidazol-2-yl)thio)-1-arylethan-1-ones: synthesis, crystal study and cancer stem cells CD133 targeting potential. *Eur. J. Med. Chem.***2015**, *104*, 1-10.
- (25) Wei, S.; Feng, X.; Du, H. A metal-free hydrogenation of 3-substituted 2*H*-1,4-benzoxazines. *Org. Biomol. Chem.***2016**, *14*, 8026-8029.