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Controlled electrochemical and electroless 
deposition of noble metal nanoparticles on 
graphene† 
 

Concha Bosch-Navarro,*ab Jonathan P. Rourkeb and Neil R. Wilsona 

 
Electrodeposition of nanoparticles on graphene is described, providing a convenient approach for making 

graphene–nanoparticle composites as well as insight into the electrochemical activity of graphene. To 

avoid complications due to surface contamination, chemical vapour deposition grown graphene was used 

directly on its copper growth substrate. We identify and isolate two nanoparticle growth processes for both 

silver and palladium deposition: electroless deposition that appears to occur preferentially at defects and 

edges next to the underlying copper, and conventional electrodeposition that occurs uniformly across the 

graphene surface. We show that control over electrodeposited nanoparticle size and number density can 

be achieved through varying electrodeposition conditions. The resultant nanoparticles are homogeneously 

dispersed across the graphene surface, suggesting that here both edge-plane and basal-plane graphene 

sites are electroactive. These results demonstrate that, as with other carbon nanostructures, 

electrodeposition is a powerful and flexible tool for forming functional composites with graphene. 

 
Introduction 
 
Metal nanoparticles (NPs) are of great interest because of their 

unique catalytic and sensing properties.1–3 However, the prop-erties 

are tightly correlated with their size and morphology, and in 

addition, the dispersion of NPs onto appropriate substrates is a 

prerequisite for their implementation in practical devices.4 

Electrodeposition is a particularly interesting route to forming NPs 

structures, since by careful choice of the substrates and 

electrochemical parameters (i.e. applied potential, electrode-position 

time, analyte concentration), it is possible to control the size and 

morphology of the grown NPs.5–8 

 
Carbon nanostructures such as carbon nanotubes (CNTs), high 

oriented pyrolytic graphite (HOPG) or graphene (Gr) have been 

widely explored as supports for the deposition and/or 

electrodeposition of NPs.5–16 These three allotropes each have 

conjugated sp
2
 carbon arranged in a hexagonal lattice, but each with 

a diff erent geometry. Gr is a two dimensional material only a single 

layer thick, while HOPG is a 3D structure formed from regularly 

stacked Gr layers,17 and CNTs are a one dimensional material which 

result from rolling up Gr sheets into closed cylinders.18 The sp
2
 

structure of these materials confers on them  
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electronic properties which are appropriate for the development of 

nanoscopic electrodes. In fact, the use of HOPG as an elec-trode for 

the deposition of metal NPs has been known for a long time. Of 

particular interest is the work by Penner's group on the mechanism 

of electrodeposition of a variety of metal NPs onto HOPG 

electrodes.7–9,19 This work sets the scene for the utiliza-tion of other 

low dimensional carbon nanostructures (i.e. CNTs and Gr) as 

electrode materials for the electrodeposition of metal NPs. 

According to Penner et al. the growth of metal NPs onto HOPG is 

characterized by a rapid nucleation, followed by a progressive 

growth of NPs, which means that the growth is initially controlled by 

kinetics and then is diffusion limited. A similar trend has been 

observed by Macpherson's group when using CNTs as electrode 

material for the creation of metal nanowires.5,20–22 In fact, 

Macpherson was able to control size, particle distribution and 

particle density by varying deposition time and applied potential,5 

similar to Penner's work on HOPG.9,19 To date, though, similar use 

of electrodeposition on Gr has been complicated by the several 

methodologies employed for its synthesis, which result in a variety 

of Gr with varying structural and chemical properties.23–25 

 
Graphene can be obtained either following top-down (e.g. 

synthesis by reduction of graphene oxide)23,26–28 or bottom-up 

methodologies (e.g. chemical vapour deposition of Gr).24,29,30 The 

synthesis of Gr from the reduction of graphene oxide provides bulk 

quantities of a highly defective Gr material, usually referred to as 

reduced graphene oxide (rGO). Although electrodeposition has been 

employed to further modify rGO,31–33 its intrinsic defects complicate 

the study of the fundamentals of 
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electrodeposition on graphene. Chemical vapour deposition (CVD), 

on the other hand, is a promising route to the formation of large area, 

high quality graphene. Gr is formed by CVD through the 

decomposition of a carbon feedstock over a metallic substrate, 

typically nickel or copper, at high temperature. The use of copper 

substrates, rather than nickel, has proven to be more eff ective in 

achieving monolayer Gr of large grain size. As a result, the 

properties of monolayer CVD-Gr on copper are comparable to those 

of mechanically exfoliated graphene.29 However, the use of CVD-Gr 

grown on copper for electrochemical investigations has been 

hampered by the reactivity of copper itself, and the need to transfer 

Gr to an insulating substrate as a step prior to any electrochemical 

process.34–42 The transferring process typically involves the use of 

polymer layers and metal etchants that lead to surface contaminants 

on the lattice of graphene.41,43 Those contami-nants play a major 

role in the nal electrochemical behaviour and thus,40,44–46 are 

undesirable for such studies. We have recently shown how 

electrochemical experiments can be directly made on CVD-Gr on 

copper, making quick cheap and reproducible graphene electrodes.47 

In this paper we extend this approach and demonstrate for the rst 

time how metal NPs can be grown directly on CVD-Gr under 

electrochemical control; we isolate electroless and electrodeposition 

processes and show that the electrodeposition proceeds with a 

similar mechanism to that previously observed on HOPG and CNT, 

opening the way to using established approaches for the controlled 

electro-chemical modi cation of graphene. 

 

the Gr on copper foils as grown. ImageJ50 was used to analyse the 

SEM images (Fig. SI2†) and quantify the coverage of the samples 

and the size of the grown nanoparticles (see Fig. SI3†). 

 
Electrochemical processes 
 
BST8-stat instrument from MTI KJ group was used to record cyclic 

voltammograms (CVs). A three-electrode con guration was used, 

where CVD-Gr on copper was the working electrode. To achieve a 

constant surface area for the electrode, each sample was masked with 

a piece of 3M Model 470 Electroplater tape with a pre-cut 0.05 cm
2
 

hole. A GAMRY electrochemical cell (model PTC1 paint test cell) 

was clamped to the working elec-trode (see ESI1†). As reference 

electrode and counter electrode a GAMRY Ag/AgCl (in saturated 

KCl) and a Pt wire were used, respectively. For the electrodeposition 

process the system was set up in time base mode. In a typical 

electrodeposition exper-iment the potential was xed at 0.4 V and the 

time was set as desired. To avoid the electroless redox process 

between Ag
+
 and copper, the cell was mounted and the potential was 

xed at 0.46 V prior to the addition of electrolyte. A er deposition, the 

electrodes were thoroughly rinsed with deionized water and dried 

under nitrogen before SEM analysis. 

 

 

 
Solutions 
 
All chemicals were used as received. Aqueous solutions were 

prepared using high purity water. For electrodeposition exper-

iments, either silver nitrate or palladium nitrate in a supporting 

electrolyte of potassium nitrate were used (Sigma-Aldrich). 
 

Experimental methods 
 
Low-pressure CVD of graphene on copper 
 
Gr was grown on copper foil using a low-pressure CVD system as 

described previously.48 In brief, copper foil substrates (99.5% purity, 

0.025 mm thick, Alfa Aesar product number 13382) were cleaned by 

electrochemical polishing and washing, following the procedure 

described by Miseikis et al.49 Using a 1 inch tube furnace pumped to 

low pressure by a turbomolecular pump, the foil was heated to 1000 

C and annealed for 20 minutes prior to growth. A hydrogen ow was 

maintained throughout the process, with methane introduced for the 

growth stage. The standard growth conditions used were 10 standard 

cubic cen-timetres (sccm) of hydrogen, with 2.5 sccm of methane 

and a growth time of 20 minutes. For partial coverage samples the 

growth time was reduced to 10 minutes. A er cooling to room 

temperature, the Gr on copper samples were removed from the 

furnace and stored under ambient conditions before use. 

 

Raman spectroscopy and scanning electron microscopy (SEM) 
 
Raman spectra were recorded with a Renishaw InVia micro-Raman 

system using a 514 nm laser excitation, with a laser power of ca. 5 

mW. A confocal microscope with 50 lens was used to record spectra 

at a spatial resolution of 2 mm. SEM characterization was performed 

on a ZEISS Supra 55-VP eld emission SEM, operated at 10 kV, 

using the inLens secondary electron detector. Raman and SEM 

analysis were performed on 

 

Results and discussion 
 
Graphene on copper growth and characterization 
 
Graphene was grown on copper foil by low pressure CVD, as 

described in the experimental section. SEM analysis shows that 

continuous monolayer graphene coverage is formed (ESI2†): the 

CVD-Gr surface coverage is measured to be >99%, of which >95% 

is monolayer (ESI3†). This is consistent across CVD-Gr samples 

grown under the same conditions. With shorter growth times (see 

Experimental), an incomplete lm is formed and isolated Gr islands 

can be seen, resulting in a lower coverage of the copper surface 

(SEM, ESI2†).  
The quality of the grown Gr was assessed by Raman spec-

troscopy in situ on the copper substrate. Typical Raman spectra for 

this material show single peaks for the G and the 2D bands at ca. 

1580 cm 
1
 and 2690 cm 

1
, respectively,51 with no apparent D peak 

(expected at 1350 cm 
1
), as shown in ESI4.† Moreover, the 

sharpness of the G and the 2D bands, and the ratio between their 

intensities (I2D/IG 4) con rm that the sample is mainly composed of 

high quality monolayer graphene.51 

 
The as grown CVD-Gr was used without modi cation as a 

working electrode for electrodeposition of nanoparticles. 

 
Electrodeposition of silver NPs 
 
Most of the previous electrochemical studies on CVD-Gr have been 

performed a er transfer of the Gr monolayer to insulating 

 
 



 

 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1 Cyclic voltammogram at 0.1 V s 1 for the reduction of 0.7 mM 

AgNO3 in 0.2 M KNO3 using CVD-Gr as working electrode, with electrode 

surface area 0.05 cm2. The spikes between 0.1 and 0.05 V are acquisition 
artefacts.  
 

 

substrates (e.g. silicon oxide) in order to avoid interference from the 

underlying copper.34–42 However, we have recently demon-strated 

that electrochemical studies can be performed directly on CVD-Gr 

on copper with careful choice of the analytes.47 Thus, the use of 

KNO3 as supporting analyte, instead of the more typical KCl, allows 

the use of CVD-Gr in a potential window situated between 1.2 V 

and 0.4 V without corrosion and interference. This potential window 

is sufficient for the study of Ag and Pd deposition as described 

below.  
A typical cyclic voltammogram (CV) for Ag electrodeposition on 

to a fresh CVD-Gr electrode is shown in Fig. 1. The CV shows a 

peak in the cathodic current for the reduction of Ag
+
 to Ag

0
 at 

around 0.2 V vs. Ag/AgCl, with evidence of the stripping of silver 

(Ag
0
 to Ag

+
) in the reverse scan direction.  

To study the morphology of the deposited nanoparticles, 

electrodeposition with a de ned potential over set time periods was 

used. For the results shown in Fig. 2, 3 and SI6,† the potential at the 

CVD-Gr electrode was stepped from 0 V to 0.4 V (vs. Ag/AgCl) for 

a period of 30 s, and then to an open circuit. On both the fully 

covered CVD-Gr (Fig. 2a) and partially covered 
 

 
CVD-Gr (Fig. 2b) electrodes, two types of AgNP are immediately 

apparent. There are large, micrometre scale, AgNPs which on the 

partially covered CVD-Gr sample clearly preferentially nucleate and 

grow at the edges of the sheet. But for both the partially covered and 

fully covered samples, the graphene itself is covered with small (10 s 

of nm in diameter) nanoparticles which are not present on the copper 

surface. These two types of particles suggests that two types of 

process are occurring.  
Copper itself is electrochemically active, with the standard redox 

couple of Cu
2+

/Cu
0
 having a redox potential of 0.34 V. This means 

that copper metal can spontaneously reduce any other species that 

has a more positive redox potential: this includes Ag
+
 (E

0
(Ag

+
/Ag

0
) 

¼ 0.8 V). Therefore, Ag
+
 in contact with copper should react 

spontaneously, forming Ag in an electroless process.32,52–54 As a 

consequence a reduction peak very close to 0 V is observed in the 

CV obtained when using copper foil as working electrode (ESI5†). 

To study this electroless process, CVD-Gr samples were immersed 

for 2 s in a solution containing 0.7 mM AgNO3 in KNO3 0.2 M. 

Subsequent SEM analysis, as shown in Fig. SI7,† showed the large, 

micrometre scale, AgNPs predominantly at graphene sheet edges, 

but without the small AgNPs on the Gr surface. On partially covered 

CVD-Gr samples (Fig. SI7a and b†), the electroless deposition 

clearly preferen-tially occurs on the graphene next to exposed 

copper, as should be expected. For the fully covered CVD-Gr (Fig. 

SI7c and d†), electroless deposition seems to occur along lines 

(possibly grain boundaries) and at isolated points (perhaps pinholes 

in the graphene), suggesting that it identi es the defects in the gra-

phene lm. Prolonged electroless deposition on fully covered CVD-Gr 

electrodes results in tearing of the graphene and exposure of the 

copper (Fig. SI7e and f†). However, further work would be required 

to de nitively link the electroless deposition sites to defects in 

graphene. 

 
In order to con rm our hypothesis that the large particles are due 

to electroless deposition, we sought to suppress the elec-troless 

process. Taking into account the redox potentials (Cu
2+

/ Cu
0
 ¼ 0.34 

V, Ag
+
/Ag

0
 ¼ 0.8 V), the eff ective potential of the electroless redox 

reaction is 0.46 V (Cu
0
 + 2Ag

+
 / Cu

2+
 + 2Ag

0
).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2 SEM images of a(i–iii) full covered CVD-Gr and b(i–iii) partially covered CVD-Gr sample, after electrodeposition and electroless deposition of 

AgNPs (at three different magnifications). The SEM images were acquired after electrodeposition at 0.4 V for 30 s in 0.7 mM of AgNO3 in 0.2 M KNO3. 

 
 
 

 



  
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3 SEM images of a(i–iii) full covered CVD-Gr and b(i–iii) partially covered CVD-Gr sample at three different magnifications after electro-deposition of 
AgNPs, whilst avoiding the electroless process. To avoid the electroless process the applied potential was adjusted to 0.46 V, and the electrochemical 

cell was mounted before adding the AgNO3. The working solution consisted of 0.7 mM of AgNO3 in 0.2 M KNO3. 

    
 

Therefore, to avoid the electroless process a potential of 0.46 V 

should be applied during the whole process (i.e. before the Ag
+
 

comes into contact with the CVD-Gr electrode). With this aim, both 

fully covered CVD-Gr and a partially covered CVD-Gr had the 

potential stepped from 0 V to 0.46 V (vs. Ag/AgCl) before the 

addition of the AgNO3. Evidence of the suppression of the 

electroless process can be seen in the current–time transient curves 

(ESI8†) where, when the electroless process is not avoi-ded (ESI8,† 

dashed line) a current of 33 nA is measured at 0 s, whereas, when 

the electrochemical cell is set to 0.46 V prior to the addition of Ag
+
 

(ESI8,† solid line), the initial current is 0 A. In this second case, 

immediately a er adding AgNO3 two distinct behaviours over time 

are apparent: rst the current increases sharply to 70 nA (due to the 

start of the electrodepo-sition process) followed by a sharp decay in 

the current to 35 nA, and then a rapid increase up to 68 nA. This 

behaviour is consistent with a very rapid nucleation and growth of 

NPs, where the active area increases sharply. A erwards, the current 

decreases with time until a constant value of ca. 10 nA is ach-ieved. 

This can be attributed to the overlap of diffusion elds of 

neighbouring NPs,6 as has previously been observed in the 

electrodeposition of metal NPs on HOPG electrodes.9,19,55 

 
SEM analysis of the samples provides proof of the suppres-sion 

of the electroless process. As shown in Fig. 3, following the protocol 

described above, the big AgNPs are no longer observed but small 

AgNPs homogeneously and selectively decorate the Gr, with no 

nanoparticles visible on the copper substrate. 

 

Control over particle size and particle density 
 
The size and distribution of AgNPs depends on the electrode-

position parameters. As the phenomena of electroless and 

electrodeposition are in most regions independent of one another, a 

simple potential step process was used for further study of the 

electrodeposition process and the larger NPs formed from the 

electroless deposition were ignored. The dependence of the AgNPs 

on deposition time was studied by stepping the voltage from 0.0 to 

0.4 V (vs. Ag/AgCl) for 1, 5, 10 and 30 s. In all cases, the solution 

contained 0.7 mM AgNO3 in 

 

0.2 M KNO3. The particle size and particle number density (number 

of nanoparticles per unit area, mm 
2
) were analysed by SEM using 

image J so ware (ESI3†).50 In Fig. 4b the mean particle size versus 

the electrodeposition time is plotted; the mean particle size of the 

AgNPs increases from 22.9 9.4 nm at 1 s, to 50.2 17 nm at 30 s, 

while the number of particles per unit area decreases with deposition 

time until it reaches a minimum (Fig. 4c). This suggests that 

neighbouring NPs merge as the deposition progresses. Moreover, the 

size distri-bution of AgNPs becomes broader with increasing time. 

This behaviour is consistent with that observed for the growth of 

metal NPs on HOPG, where deposition typically proceeds by an 

initial rapid nucleation stage immediately a er the voltage is applied 

(kinetic control), and therea er, a gradually growth of the NPs 

(diffusion control).19 

 
The eff ect of the applied potential was studied by stepping the 

voltage from 0.0 V to 0.2 V, 0.4 V, 0.6 V and 0.8 V for 30 s, in a 

solution containing 0.7 mM AgNO3 in 0.2 M KNO3. As expected 

from the cyclic voltammogram (Fig. 1) at 0.2 V the driving force is 

on the limit for starting the electrodeposition process. As a 

consequence, a high polydispersity of NPs is observed, showing a 

very low particle density (Fig. 5). For increasing potentials (> 0.4 V 

vs. Ag/AgCl), the size distribution becomes narrower, the mean 

particle diameter decreases and the number of particles per unit area 

increases (Fig. 5). This behaviour is similar to that previously 

observed for the depo-sition of metal NPs onto carbon nanotubes;5 

increased nucle-ation density at higher overpotentials then results in 

a decreased (overlapping) ux to each NP and hence smaller NP size. 

 

 
Even at low overpotentials, the electrodeposition of AgNPs 

appears to be random and homogeneous across the whole of the Gr 

surface. There is no evidence for preferred deposition at wrinkles or 

other ‘defect’ sites, and it appears that the basal-plane Gr is 

electroactive, supporting what we and others have previously 

found,40,47,56 but in contrast to other reports that have suggested that 

the basal-plane of Gr has negligible electro-chemical activity.36,57 

 
 

 



 
 
 
 
 
 
 
 
 
 
 
 

 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4 (a) SEM images and corresponding histogram analysis showing the particle size distribution of the AgNPs deposited at CVD-Gr electrodes during 1 

s, 5 s, 10 s and 30 s. For all the cases, the solution contained 0.7 mM AgNO3 in 0.2 M KNO3 and the potential was stepped from 0.0 to 0.4 V. (b) Mean 
particle diameter vs. deposition time (as taken from SEM analysis). (c) Particle density vs. deposition time.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5 (a) SEM images and corresponding histogram analysis showing the particle size distribution of the AgNPs deposited at a CVD-Gr elec-trodes at 

0.2, 0.4 V, 0.6 V and 0.8 V for 30 s, from a solution containing 0.7 mM AgNO3 in 0.2 M KNO3. (b) Mean particle diameter vs. applied potential (as taken 
from SEM analysis). (c) Particle density vs. applied potential.  

 

 

Electrodeposition of palladium NPs 
 

The eff ectiveness of CVD-Gr as an electrode for the electrode-

position of metal NPs was further tested with the decoration of 

CVD-Gr with palladium NPs (PdNPs). According to the CV (ESI9†) 

obtained from a solution containing 0.5 mM Pd(NO3)2 in 0.2 M 

KNO3, the reduction of Pd
2+

 to Pd
0
 takes place 

 

 

irreversibly at a potential below 0.2 V (vs. Ag/AgCl), so for this 

experiment the potential was stepped from 0.0 V to 0.4 V for 30 s, in 

order to compare the results with those obtained for the 

electrodeposition of AgNPs under the same conditions. Note that the 

standard redox couple for the pair Pd
2+

/Pd
0
 is 0.987 V, and thus an 

electroless deposition process due to the presence of copper is also 

expected when applying a voltage below the 

 

 
 



 

 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

 
Fig. 6 SEM analysis of electrodeposition of PdNPs at a CVD-Gr electrode 
obtained by stepping the voltage 0.0 V to 0.4 V for 30 s, in a solution 

containing 0.5 mM Pd(NO3)2 in 0.2 M KNO3.  
 

 
“electroless suppression voltage” (i.e. 0.647 V vs. Ag/AgCl for Pd). 

Unfortunately, the occurrence of the electroless process hampers a 

proper comparison between the current–time curves obtained from 

the electrodeposition/electroless process of Ag and Pd NPs. 

However, a dominant factor in the metal nucle-ation rate will be the 

kinetics of the electron transfer. As already shown, the reduction of 

Ag
+
 to Ag

0
 is a fast one-electron process. According to previous 

reports, the reduction of Pd
2+

 to Pd
0
, being a two-electron process, 

usually shows slower kinetics.6 Therefore, in principle we might 

expect a slower particle nucleation for PdNPs compared with 

AgNPs.  
Fig. 6 and ESI10† show typical SEM images of electro-deposited 

PdNPs on CVD-Gr. As with silver electrodeposition, small (<50 nm) 

PdNPs decorate the whole surface of the Gr electrode along with a 

smaller number of larger ( 100 nm) particles which by comparison 

with the silver electrodeposition we can attribute to the electroless 

process. The size of the electrodeposited PdNPs were analysed and 

compared with the AgNPs obtained by applying equivalent 

conditions. As shown in Fig. 5 and 6, both systems showed a high 

particle density which suggest a rapid nucleation and growth of NPs, 

and further supports the strong electroactivity of the basal-plane of 

gra-phene. Moreover, under the same experimental conditions the 

size of the NPs is considerably smaller for the electrodeposited 

PdNPs (ca. 14.6 6.7 nm) than for the AgNPs (ca. 41.0 16.5 nm), in 

good agreement with previous reports.6 Finally, the chemical nature 

of the samples was con rmed by X-ray photo-electron spectroscopy 

(XPS; ESI11†) which clearly shows the presence of either silver or 

palladium, as expected. 

 
 
 

Conclusion 
 
In conclusion, we have proven that electrodeposition can be used to 

controllably deposit noble metal nanoparticles on gra-phene. By 

using chemical vapour deposition grown graphene directly on the 

copper growth substrate, we are able to study the electrodeposition 

process without the need to transfer (and contaminate) the graphene. 

We identify and isolate the elec-troless deposition process due to the 

underlying copper, as well as the intended electrodeposition process. 

The electroless process does not aff ect the electrodeposition process 

and can be completely suppressed for Ag by employing appropriate 

condi-tions. Using direct electrodeposition, it was possible to control 

 
the particle size and particle density on graphene via the applied 

potential and electrodeposition time. Interestingly, the homogeneous 

distribution of NPs across all the exposed Gr suggests that here both 

basal-plane and edge-plane of graphene are electrochemically active. 

 
The trends observed here for the electrodeposition of NPs on 

graphene are similar to those shown by carbon nanotubes or 

HOPG,5,9,19,20,55 where electrodeposition of metal NPs is typically 

characterized by a rapid nucleation of NPs (kinetical control) 

followed by a gradual growth (diffusion control). As a result, well 

dispersed NPs of narrow polydispersity are obtained. Although we 

have shown only simple single step electrodeposition processes for 

Ag and Pd here, these have shown behaviour consistent with prior 

work on HOPG and carbon nanotubes. As a result, our work 

demonstrates that the signi cant prior liter-ature on nanostructure 

electrodeposition on these surfaces can be directly translated to 

create functional nanostructures on graphene. Thus, it could be 

expected that this procedure could also be exploited for the 

electrodeposition of other noble metal nanoparticles or materials, 

including semiconductors or con-ducting polymers. Hence, the 

electrochemical modi cation of graphene off ers an easy and versatile 

approach for tailoring functionality for a variety of applications such 

as catalysis, sensing or biomedical applications.1–3,58 
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