
Molecular Psychiatry
https://doi.org/10.1038/s41380-019-0355-y

ARTICLE

Schizophrenia-associated genomic copy number variants
and subcortical brain volumes in the UK Biobank

Anthony Warland 1
● Kimberley M. Kendall 1

● Elliott Rees1 ● George Kirov1 ● Xavier Caseras1

Received: 23 August 2018 / Revised: 11 December 2018 / Accepted: 26 December 2018
© The Author(s) 2019. This article is published with open access

Abstract
Schizophrenia is a highly heritable disorder for which anatomical brain alterations have been repeatedly reported in clinical
samples. Unaffected at-risk groups have also been studied in an attempt to identify brain changes that do not reflect reverse
causation or treatment effects. However, no robust associations have been observed between neuroanatomical phenotypes
and known genetic risk factors for schizophrenia. We tested subcortical brain volume differences between 49 unaffected
participants carrying at least one of the 12 copy number variants associated with schizophrenia in UK Biobank and 9063
individuals who did not carry any of the 93 copy number variants reported to be pathogenic. Our results show that CNV
carriers have reduced volume in some of the subcortical structures previously shown to be reduced in schizophrenia.
Moreover, these associations partially accounted for the association between pathogenic copy number variants and cognitive
impairment, which is one of the features of schizophrenia.

Introduction

Schizophrenia (SZ) is a severe psychiatric disorder with a
profound impact on affected individuals, their families and
society. Patients with SZ have an average life expectancy
10–20 years shorter than the general population, around 20%
experience chronic psychotic symptoms, 50% long-term psy-
chiatric problems and 80–90% unemployment [1–4].
Despite research efforts, our ability to treat SZ remains limited
and no new therapeutic targets of proven efficacy have been
developed for decades. Clozapine, discovered almost six
decades ago, still stands as the most effective treatment for SZ
[5]. To a large extent, this lack of progress is due to our poor
understanding of the neurobiological underpinnings of the
disorder; although recent developments in brain imaging have
opened new opportunities to advance on this knowledge.

Multiple case–control studies have consistently shown the
existence of anatomical abnormalities in the brains of indivi-
duals with SZ, although limitations in statistical power and
sample representativeness have resulted in frequent dis-
crepancies with regards to a more detailed description of these
abnormalities. Overcoming these limitations, ENIGMA—a
large international consortia effort [6]—recently showed
reduction in the volume of the hippocampus, thalamus,
amygdala and accumbens, but increased volume in lateral
ventricles and pallidum, in individuals with SZ relative to
controls [7]; results largely replicated by a parallel Japanese
consortium (COCORO) [8]. However, it remains possible that
findings from case-controls studies reflect reverse causation
and/or treatment effects rather than causal neurobiological
mechanisms.

Since SZ is a highly heritable disorder [9], it would be
expected that any potential marker of pathogenic mechanisms
would also be detectable in participants at high genetic risk
who are unaffected by SZ. Important advantages of this
approach lie in its ability to access large samples of partici-
pants and avoid the possibility of reverse causation or treat-
ment effects. A recent study probed the association between
common genetic risk for SZ, i.e., polygenic score based on
the latest GWAS data available [10], and subcortical brain
volumes in a sample of over 11,000 participants [11], but
found no significant associations, calling into question whe-
ther any of the above ENIGMA findings were driven by
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genetic risk. Although common risk variants collectively
account for a greater proportion of the genetic liability to SZ
than known rare risk variants, such as copy number variation
(CNV), individually the latter show much higher penetrance
for the disorder (ranging between 2–18%) [12]. Therefore,
rare risk CNVs might be better suited to capture some of the
brain anatomical variability associated with SZ. Following the
above study [11], we aimed to investigate the association
between genetic risk for SZ, defined as carrying at least one
CNV known to increase risk for SZ, and volume of sub-
cortical brain structures in a large sample of ~10,000 unaf-
fected participants from the UK Biobank project. We
hypothesised that individuals carrying SZ-associated CNVs
(SZ-CNVs) will have smaller volume in hippocampus, tha-
lamus, amygdala and accumbens, but larger in pallidum.
Volume of lateral ventricles is not currently an available
measure from UK Biobank participants; therefore, we use
overall ventricular volume as a proxy. We based our selection
of SZ-CNVs on previously published work [13–16], which
found 12 specific CNVs to be significantly associated with SZ
after correction for multiple testing. Since cognitive impair-
ment is a core feature of SZ and previous research has shown
genetic overlap between IQ and SZ [17], we also aimed to
examine whether a previously reported association between
SZ-CNVs and cognitive performance [18] was mediated by
subcortical volume alterations. Of the cognitive measures
available from scanned participants in UK Biobank, we
selected fluid intelligence (FI) score due to its strong herit-
ability and robustness against influences from education and
training [19].

Materials and methods

Participants

This study used a subsample of participants from UK
Biobank (www.ukbiobank.ac.uk). All subjects provided
informed consent to participate in UK Biobank and agreed
to follow-up assessments. Ethical approval was granted by
the North West Multi-Centre Ethics committee. Data were
released to Cardiff University after application to the UK
Biobank (project ref. 17044).

Based on our aim to investigate participants with no
personal history of severe neuropsychiatric disorders, par-
ticipants were removed if they were recorded as being
affected by SZ, psychosis, autism spectrum disorder,
dementia or intellectual disability across any of the fol-
lowing three diagnosis methods: self-reported diagnosis
from a doctor at any assessment visit, self-reported diag-
nosis on the online follow-up mental health questionnaire,
an ICD-10 hospital admission code for the relevant dis-
order; or if they self-reported other than white British and

Irish descent. At this stage, 1112 participants with neu-
ropsychiatric disorders and 46,522 participants of non-white
British and Irish descent were removed from the original
sample (remaining n= 454,985).

Genotyping, CNV calling and CNV QC

Genotyping was performed using the Affymetrix UK BiLEVE
Axiom array (807,411 probes) on an initial 50,000 partici-
pants, and the Affymetrix UK Biobank Axiom® array
(820,967 probes) on the rest of the sample. The two arrays
have over 95% common content. Sample processing at UK
Biobank is described in their documentation (https://biobank.
ctsu.ox.ac.uk/crystal/docs/genotyping_sample_workflow.pdf).

CNV calling was conducted following the same proce-
dure as described in a previous study [18]. Briefly, nor-
malised signal intensity, genotype calls and confidences
were generated using ~750,000 biallelic markers common
to both arrays that were further processed with PennCNV-
Affy software [20]. Individual samples were excluded if
they had >30 CNVs, a waviness factor > 0.03 or < -0.03 or
call rate <96%. This quality control process resulted in the
further exclusion of 13,652 individuals (3.0%; remaining
n= 441,333). Individual CNVs were excluded if they were
covered by <10 probes or had a density coverage of less
than one probe per 20,000 base pairs [18].

CNV annotation

To date, 12 CNVs have been significantly associated with
SZ after correction for multiple testing [13–16] and con-
stituted the focus of this study (SZ-CNVs). A list of these
12 CNVs, and the genomic coordinates of their critical
regions, can be found in Supplemental Table 1. The
breakpoints of all SZ-CNVs included in our study were
manually inspected to confirm that they met our CNV
calling criteria (Supplemental Table 1). Briefly, we required
a CNV to cover more than half of the critical interval and to
include the key genes in the region (if known), or in the case
of single gene CNVs the deletions to intersect at least one
exon and the duplications to cover the whole gene. As a
control comparison, we used individuals that carried none
of the 93 CNVs that have previously been associated with
neurodevelopmental disorders [20–22] (non-CNV carriers).
The criteria for defining pathogenic CNVs has been pre-
viously fully described [18].

Brain imaging data

MRI data were collected in a single Siemens Skyra 3 T
scanner located at UK Biobank’s recruitment centre at
Stockport (UK). Details of the brain imaging protocols have
been published elsewhere [23]. Briefly, this project focuses
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on the 15 metrics of subcortical volumes—i.e., left and right
thalamus, caudate, putamen, pallidum, hippocampus,
amygdala and accumbens, overall ventricular volume—
generated and provided by UK Biobank after applying
FIRST (FMRIB’s Integrated Registration and Segmentation
Tool [24]) to the T1-weighted brain images. At the outset of
this study, brain MRI data were available for 9112 indivi-
duals in our remaining sample (n= 9063 non-CNV carriers
and n= 49 SZ-CNVs carriers).

To avoid the potential effect of extreme values, outlier
brain volumes— defined as values ± 2.5 standard deviations
from the group mean—in any subcortical brain structures
were removed from the analyses. After removal of outliers,
all brain measures were normally distributed and variance
did not differ between groups. The volume of each sub-
cortical structure was then z-transformed using the mean
and standard deviation from the non-CNV carriers group as
reference; therefore, individual z-scores for these variables
represent the deviation in standard units from the non-CNV
group’s mean.

Cognitive test

During their MRI visit, participants underwent cognitive
testing, including a measure of FI. The FI score corresponds
to the total number of correct answers out of 13 verbal
and numerical reasoning questions that participants
were able to answer within 2 min. FI scores were available
for 8694 participants in our sample, were normally dis-
tributed and were also z-transformed in reference to the non-
CNV group.

Analyses

To investigate association between subcortical brain
volumes and CNV carrier status, regression analyses with
the former as the predicted variable and the latter as the
predictor were run for each brain structure. In an initial
step, age, sex and brain size (total grey matter+ white
matter volume) were entered into the model, followed by
CNV carrier status. The significance threshold was set at
a p < 0.05 (two-sided), and false discovery rate (p.adjust
in R [25]) was used to correct for multiple testing.

Brain volumes significantly associated with CNV car-
rier status from the above analyses were taken into a
mediation analyses, if they were also found to be sig-
nificantly associated with performance in the FI test.
Multiple mediation analysis was conducted using the
latent variable analysis package (lavaan) [26] for R.
Age, sex and brain size were included as covariates and
the covariation between mediators was also factored into
the model.

Results

Among SZ-CNVs carriers, 49% carried the most common
15q11.2deletion CNV. Our sample did not include carriers
of the rarer SZ-CNVs (see Table 1). Previous work from our
group has shown consistency of individual CNV fre-
quencies between UK Biobank batches, and between the
UK Biobank and other independent control data sets [18].

Participants’ mean age was 61.6 years (sd= 7.04,
range= 45–73 years), with SZ-CNV carriers being
approximately 2 years older than non-carriers (mean= 63.5,
sd= 5.97 vs. mean= 61.6, sd= 7.04), t(48)= 2.26, p=
0.029. Sex was equally distributed across group; Chi2(1)=
0.68, p > 0.1; 52% female participants.

Subcortical brain volumes association with SZ-CNVs
carrier status

Five subcortical brain volumes showed significant associa-
tion with SZ-CNV carrier status after correction for multiple
testing (Table 2). In all these subcortical structures, carrying
a SZ-CNV was predictive of a reduction in volume com-
pared with non-CNV carriers. Only two subcortical struc-
tures showed no association with SZ-CNV carrier status in
either left or right hemisphere: caudate and amygdala; and
no differences were found either for bilateral ventricular
volume (Table 2 and Fig. 1). In order to ascertain whether
these results were explained by the small age difference

Table 1 List of schizophrenia-associated copy number variants
(CNVs) and their prevalence (%) in our sample

CNV n Prevalence (%) in
the sample

Prevalence (%)
among carriers

1q21.1del 4 0.04 8.16

1q21.1dup 6 0.07 12.25

NRXN1del 2 0.02 4.08

3q29del – – –

7q11.23dupa – – –

15q11.2del 24 0.26 48.98

15q11-q13dupb – – –

15q13.3del – – –

16p13.11dup 9 0.10 18.37

16p12.1del 2 0.02 4.08

16p11.2dup 2 0.02 4.08

22q11.2del – – –

SZ-CNV carriers 49 0.54 100

CNV non-carriers 9063 99.46 –

Total 9112 100 –

del deletion, dup duplication, SZ-CNV SZ-associated CNVs
aWilliams-Beuren syndrome
bPrader-Willi/Angelman syndrome

Schizophrenia-associated genomic copy number variants and subcortical brain volumes in the UK Biobank



between groups, we selected a subgroup of non-CNV car-
riers that perfectly matched SZ-CNV carriers by age (t(48)
= 0.001, p= 0.999) and the results remained the same (see
supplemental Table 2).

To determine whether any of these effects were driven by
the most frequent SZ-CNV in our sample—i.e.,
15q11.2deletion—we tested subcortical brain volumes in
15q11.2deletion carriers vs. non-CNV carriers, and in carriers
of any SZ-CNVs other than the 15q11.2deletion vs. non-CNV
carriers. The results of these two tests replicated the above
findings, with both CNV carrier groups showing the same
direction of effects relative to non-carriers for all but one
subcortical structure (Fig. 1 and Supplemental Tables 3 and
4). Left hippocampus, showed a nominally significant volume
reduction in 15q11.2deletion carriers compared to non-CNV
carriers (B=−0.46, SE= 0.18, p= 0.013, pFDR= 0.066),
whereas carriers of any other SZ-CNVs showed no significant
difference (Fig. 1 and Supplemental Tables 3 and 4). A direct
comparison between 15q11.2deletion carriers and carriers of
any other SZ-CNVs showed hippocampal volume to be
reduced in the former compared to the latter (B= –0.58,
SE= 0.27, p= 0.035).

Mediation of subcortical volume change over the
association between SZ-CNV carrier status and
cognitive performance

As expected from previous research [18], SZ-CNV carriers
performed worse in the FI test than non-CNV carriers (B=

−0.55, SE= 0.14, p < 0.001). Moreover, all five brain
volumes significantly associated with SZ-CNV carrier sta-
tus were also significantly associated with FI score: right
hippocampus, thalamus and accumbens, and left putamen
and pallidum (Table 3). From the mediation analysis
including these five volumes (Fig. 2), there was a significant
direct effect of SZ-CNV carrier status on FI (B=−0.46,
p= 0.002) and this association was partially mediated by
the right thalamus (B=−0.04, p= 0.009). The right hip-
pocampus and left putamen showed a trend towards
significance in mediating the association (B=−0.02,
p= 0.063; B=−0.02, p= 0.060), whereas right accum-
bens and left pallidum were not significant. However, the
total indirect effect of these five variables remained sig-
nificant (B=−0.07, p < 0.001), accounting for almost 14%
(p= 0.006) of the variance of the association between SZ-
CNV carrier status and FI score.

Discussion

The main aim of this study was to ascertain whether unaf-
fected SZ-CNV carriers present similar anatomical alterations
in subcortical volumes to those previously found in clinical
samples. Our results show this to be the case for thalamus,
hippocampus and accumbens, whereas we find no association
between SZ-CNV carrier status and amygdala, and an inverse
association to that previously reported in clinical research
with pallidum. Importantly, we show thalamic and

Table 2 Summary statistics from linear regression analysis of the effect of schizophrenia-associated copy number variants (SZ-CNV) carrier status
on the 15 subcortical brain volumes

Subcortical volume Nnon-carriers Ncarriers B SE p pfdr

Thalamus (left) 8511 47 −0.18 0.09 0.052 0.097

Thalamus (right) 8515 47 −0.21 0.09 0.016 0.048

Caudate (left) 8501 48 −0.10 0.12 0.420 0.524

Caudate (right) 8514 48 −0.08 0.12 0.511 0.582

Putamen (left) 8535 48 −0.33 0.11 0.002 0.014

Putamen (right) 8525 47 −0.23 0.11 0.028 0.070

Pallidum (left) 8472 46 −0.26 0.12 0.036 0.076

Pallidum (right) 8480 47 −0.36 0.12 0.003 0.014

Hippocampus (left) 8484 46 −0.14 0.13 0.281 0.383

Hippocampus (right) 8460 47 −0.48 0.13 <0.001 0.002

Amygdala (left) 8540 46 −0.03 0.14 0.827 0.827

Amygdala (right) 8526 47 −0.20 0.14 0.155 0.232

Accumbens (left) 8505 47 −0.24 0.13 0.065 0.108

Accumbens (right) 8519 48 −0.34 0.13 0.007 0.027

Ventricular volume 8440 45 0.07 0.13 0.543 0.582

In all the cases, results after controlling for the effects of age, sex and brain size. Nsubgroup= number of observations in subgroup, this number
changes on the basis of QC for each brain subcortical volume measure; B= difference from CNV non-carriers in z-scores; SE= standard error;
p= nominal p-value; pfdr= false discovery rate corrected p-values. Significant p values after false discovery rate correction are highlighted in bold
and italic

A. Warland et al.



hippocampal volumes to mediate the association between SZ-
CNV carrier status and cognitive performance, demonstrating
their relevance for explaining phenotypic variance.

Concordant with our hypothesis, we found evidence for a
reduced volume in SZ-CNV carriers compared to non-CNV
carriers in three subcortical brain structures previously
found to be reduced in volume in SZ patients [7, 8], thus
suggesting their potential to represent intermediate pheno-
types for the disorder. Thalamus, accumbens and hippo-
campus in the right hemisphere were found to be smaller in
SZ-CNV carriers after correction for multiple testing.

Thalamus and accumbens in the left hemisphere showed a
nominally significant reduction and a trend towards sig-
nificance respectively, indicating the same direction of
effect, albeit milder. Although the right hippocampus
showed the strongest effect-size in our sample—almost
half a standard deviation difference in volume between
groups—the left hippocampus showed no association;
suggesting clear interhemispheric differences that warrant
further research. These results largely concur with recently
reported results from two independent international con-
sortia [7, 8], which showed the volumes of these three
subcortical structures to be reduced in SZ patients compared
to healthy controls. Moreover, subjects at high risk for SZ
(i.e., first-degree relatives or prodromal individuals) have
also shown reductions in these same structures compared to
healthy samples [26–30], with a recent meta-analysis also
suggesting that hippocampal volumetric differences would
be restricted to the right hemisphere [31]. Previous clinical
research [7, 8] along with the results presented here suggest
that the volume of the thalamus, the accumbens and the
right hippocampus could represent genetically moderated
premorbid risk markers for SZ, rather than reverse con-
sequences of having the condition.

Contrary to our hypotheses, we found reduced volume in
the pallidum in SZ-CNV carriers, and no group differences

Fig. 1 Differences in the volume of subcortical structures across SZ-
associated CNVs (SZ-CNV) carriers vs. non-CNV carriers (left panel),
15q11.2deletion vs. non-CNV carriers (middle panel) and other SZ-
CNV than 15q11.2deletion vs. non-CNV carriers (right panel). The x-
axis reflects the standardised B-value (z-score difference between

groups, negative values indicate reduced volume in SZ-CNV carriers).
Error bars indicate 95% confidence interval. Asterisks indicate dif-
ferences that survive false discovery rate correction for multiple
comparison. CNV copy number variation

Table 3 Summary statistics from linear regression analysis of the effect
of the volume of subcortical structures associated with schizophrenia-
associated copy number variants (SZ-CNV) carrier status on the
performance (correct responses) in the fluid intelligence test

Subcortical volume Cognitive test n B SE p

Thalamus (right) Fluid
intelligence

8202 0.09 0.02 < 0.001

Putamen (left) 8225 0.04 0.01 0.004

Pallidum (right) 8167 0.03 0.01 0.032

Hippocampus
(right)

8149 0.05 0.01 < 0.001

Accumbens (right) 8202 0.02 0.01 0.050

In all the cases, results after controlling for age, sex and brain size.
Significant p values are highlighted in bold and italic

Schizophrenia-associated genomic copy number variants and subcortical brain volumes in the UK Biobank



in amygdala or ventricular size. A previous study from our
group [32] showed a negative association between volume
in the pallidum and risk for psychosis based on common
variants in healthy volunteers, again opposing the results
obtained from clinical samples. Like then, it can be argued
that clinical samples can conceal the effects of illness
related factors such use of antipsychotic drugs [33], and this
could explain the different results between clinical and at-
risk but otherwise healthy samples. In any case, our results
indicate that previous volumetric differences observed in
pallidum and amygdala between patients and controls are
more likely to be a consequence of disorder status than a
premorbid genetic marker of SZ. As per overall ventricular

volume, the fact that lateral ventricular size was not avail-
able for this study—measure used in previous clinical
studies—precludes any clear interpretation of our results.
Future longitudinal studies following at-risk populations
into disorder development would be helpful in establishing
the temporal sequence and potential causes of these anato-
mical changes.

Due to a sample size limitation, we were not able to study
the potential effects of each individual SZ-CNVs, limiting our
ability to provide insight into specific neurobiology associated
with the disorder. However, we examined the differential
effects of the most frequent SZ-CNV in our sample—
15q11.2deletion—against the rest of SZ-CNVs tested as a

Fig. 2 Results from the
mediation analysis of brain
volume over the association
between SZ-associated CNVs
(SZ-CNV) carrier status and
performance in the fluid
intelligence test. N= 7768
participants (44 SZ-CNV
carriers vs. 7724 non-CNV
carriers)

A. Warland et al.



group. Overall, the pattern of results was very similar between
15q11.2deletion and the remaining SZ-CNVs, indicating that
our overall group effects were not driven by this particular
CNV. On the contrary, both carriers groups showed similar
subcortical volumetric differences relative to non-CNV car-
riers, suggestive of a potential common pathobiological effect.
In fact, supplementary analyses contrasting carriers of the
16p13.11 (n= 9) and 1q21.1 (n= 6) duplications against
non-CNV carriers suggest similar effects—i.e., reductions in
volume—in most subcortical structures, although no analysis
for 16p13.11duplication reached significance (Supplemental
Tables 5 and 6). Notably, carriers of the 15q11.2deletion
showed a nominally significant reduction in left hippocampus
volume compared to healthy controls, whereas carriers of any
other SZ-CNVs showed no reduction. In a direct comparison
between these two SZ-CNVs carrier groups, the volume of
the left hippocampus was reduced in 15q11.2deletion carriers
compared with any other SZ-CNVs carriers. This suggests
that the left hippocampus could be one of the subcortical brain
structures most susceptible to variation due to the causal
mechanisms linked to rare genetic variation. If confirmed, this
would help to inform a potential characterisation of pheno-
typic subtypes of SZ in a similar manner to a recent study
which showed that hippocampal volume, taken bilaterally,
characterises subtypes of SZ patients classified on the basis of
cognitive decline [34]. However, the reduction in statistical
power which resulted from dividing our sample into two
CNV carrier subgroups calls for caution when interpreting
this result.

Significant associations between SZ genetic risk factors and
brain biomarkers are of interest if they can translate into or
modulate clinical phenotypes, since those have more potential
to inform patient stratification and research into new treatment
interventions. Previous research has shown impaired cognitive
performance in SZ cases compared to control participants [17],
and in SZ-CNVs carriers [18, 35, 36] compared to non-CNV
carriers, this cognitive deficit (score in a FI test) also being
present in our sample. A mediation analysis indicated that the
volume of the five subcortical structures differing between SZ-
CNV and non-CNV carriers explained a significant proportion
of the association between SZ-CNV status and FI score, with
the volume of the right thalamus showing the strongest effect.
This result highlights the importance of investigating the
impact of SZ-CNVs on brain anatomy, due to the potential for
brain markers to mediate the effect of genetic risk on clinically
relevant phenotypes. Our results do not discount that many
other variables not examined in our study could also mediate
this association; or that the right thalamus, or any of the other
biomarkers identified here, could also mediate other CNV-
phenotypic associations relevant for SZ, such as anhedonia.
Since the SZ-CNVs considered here do not only increase risk
for SZ but also for other neurodevelopmental disorders such as
autism, it could be expected that any brain abnormalities

associated with these CNVs would mediate the association
between these rare variants and behavioural phenotypes rele-
vant for these clinical diagnoses as a whole (as could be FI),
following a cross-disorder perspective.

It is important to note that although we present here the
results from the largest association study between CNVs
and brain anatomy to date, the number of SZ-CNV carriers
in our sample still limits the power of our analytical
approaches. The fact that these genetic variants are rare
resulted in fewer than 50 healthy carriers from an initial
sample of ~10,000 participants. The UK Biobank project
continues to acquire data and has set a target of
~100,000 scanned/genotyped participants to be completed
within the next few years. This final sample will certainly
improve our ability to explore genetic-biomarker-
phenotypic associations, as well as providing replication
samples for the results presented here. Also, despite the
wealth of the UK Biobank data, phenotypic variables rele-
vant for SZ or psychiatry in general are limited, which
restricts its potential in this area of research. Finally, it is
also important to note that the nature of recruitment in UK
Biobank (volunteers put themselves forwards to be scan-
ned) makes this resource not truly representative of the
general population [37], though it is difficult to see how this
could result in type I error in the present study.

In summary, previous unsuccessful attempts to associate
common genetic risk with subcortical brain volumes [11, 38]
resulted in the hypothesis that these biomarkers could not
associate with genetic risk for SZ. Here, we prove that
genetic risk factors associated with SZ, at least from the risk
conferred by CNVs as opposed to common variants, are
significantly associated with anatomical brain markers.
Some of the associations found mirror previous results in
clinical samples, highlighting the potential for these bio-
markers to represent intermediate phenotypes for the dis-
order (i.e., volume in thalamus, accumbens and
hippocampus); however, some of our results also oppose
previous findings in clinical samples (i.e., pallidum and
amygdala) indicating that these alterations are more likely to
represent consequences, rather than premorbid markers, of
the disorder. Importantly, we also show the above associa-
tions to mediate the correlation between genetic risk and a
core clinical phenotype: cognitive performance.
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