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Abstract

Sensorineural systems often use groups of redundant neurons to represent stimulus
information both during transduction and population coding of features. This re-
dundancy makes the system more robust to corruption in the representation. We
approximate neural coding as a projection of the stimulus onto a set of vectors, with
the result encoded by spike trains. We use the formalism of frame theory to quan-
tify the inherent noise reduction properties of such population codes. Additionally,
computing features from the stimulus signal can also be thought of as projecting
the coefficients of a sensory representation onto another set of vectors specific to
the feature of interest. The conditions under which a combination of different fea-
tures form a complete representation for the stimulus signal can be found through
a recent extension to frame theory called “frames of subspaces.” We extend the
frame of subspaces theory to quantify the noise reduction properties of a collection
of redundant feature spaces.
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1 Introduction

Sensorineural systems often use groups of redundant neurons to represent stim-
ulus information. This situation holds true in both the initial transduction of
sensory information and the population coding of a single feature parame-
ter. By using many neurons that overlap in the information they represent, a
system becomes more robust to corruption (noise). We use the formalism of

∗ Corresponding author: crozell@rice.edu

Preprint submitted to Elsevier Science 20 May 2005



frame theory to quantify the inherent noise reduction properties of such pop-
ulation codes. This linear vector space approach approximates neural coding
as a projection of the stimulus onto a set of vectors, with the result (noisily)
encoded by spike trains.

In addition, computing features from the stimulus signal can also be thought
of as projecting the coefficients of a sensory representation onto another set of
vectors specific to the feature of interest. The conditions under which a com-
bination of different features form a complete representation for the stimulus
signal can be found through a recent extension to frame theory called “frames
of subspaces.” We extend the frame of subspaces theory to quantify the noise
reduction properties of a collection of redundant feature spaces.

2 Modeling sensory front-ends with frame theory

The initial receptors that transduce a stimulus signal in a particular sensory
modality (e.g., audition, vision, etc.) can be approximated as a filtering oper-
ation over space ~x and time t. For instance, the response at time t of a unit
with a receptive field at location ~xk to the input signal s has the form of an
inner product,

rk(t) =
∫

h(~x, ~xk, τ, t)s(~x, τ) d~x dτ, (1)

where h(~x, ~xk, τ, t) is the response at time t of a receptor at location ~xk to
an impulse at time τ . Sensory front-ends provide complete information about
all signals within their operating range (e.g., a space of spatially and tem-
porally bandlimited signals). Because the sensing units generally overlap in
bandwidth, amplitude range, and spatial coverage area, the representation of
the scene by the collection {rk(t)} is redundant. This redundancy means that
neural systems can reduce the communication and computational require-
ments by effectively transmitting lower resolution, noisy data and exploiting
the redundancy to recover from errors.

Because of the limited temporal resolution achieved by biological systems, we
will often assume for analytic reasons that the response is sampled at time
steps tm. Mathematically, the sensing operation described in equation (1) is a
projection onto a set of vectors indexed by location and time sample. Expand-
ing a signal in a set of orthogonal basis vectors is well-understood. However,
because of the redundancy between the sensing units described earlier, the fa-
miliar analysis of an orthogonal basis does not apply. Instead, we rely on frame

theory [1], which generalizes the notion of a basis to a redundant collection
of vectors. The specific indexing of the receptive fields {rk(tm)} by k and tm
isn’t important to our mathematical results and the two-dimensional indexing
can be cumbersome. For clarity in this report, we will simply discuss a col-
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lection of vectors {φi} indexed by i, which represents the receptive fields of a
neural population covering a signal space H (which may be two-dimensional,
such as the class of spatially and temporally bandlimited signals). This collec-
tion of vectors is called a frame for a Hilbert space H if there exist constants
0 < A ≤ B < ∞ such that for any signal s ∈ H the Parseval relation is
bounded,

A ‖s‖2 ≤
∑

i
|〈s, φi〉|

2 ≤ B ‖s‖2 . (2)

Typically, frame vectors are not linearly independent, meaning that every

signal will normally have non-zero projections onto multiple frame vectors.
When the frame vectors are normalized ‖φi‖

2 = 1, the frame is uniform and
the constant A measures the frame’s minimum redundancy. Frames with A =
B are called tight, and represent the case where the collection of sensing units
preserve the energy in all signals uniformly well. A special case of a uniform
tight frame is an orthonormal basis, which has A = 1.

Frame theory explicitly shows how to determine a set of reconstruction vectors
{φ̃i} needed to reconstruct the signal from the coefficients ci = 〈s, φi〉,

s =
∑

i
ciφ̃i . (3)

While it is not clear that the brain would ever want to perform a reconstruc-
tion such as in equation (3), analyzing the reconstruction accuracy can serve
as a proxy to assess how well the stimulus information is represented. One
clear benefit of redundancy found in the stimulus representation is the re-
duction of corruption resulting from imperfect communication. Consider the
case when the frame coefficients are corrupted by independent additive noise
n ∼ N (0, σ2) and the signal is reconstructed from the noisy coefficients

ŝ =
∑

i
(ci + n) φ̃i .

The frame’s inherent redundancy reduces the mean-squared reconstruction
error per signal dimension [1, 2] by

σ2

B
≤

E[‖ŝ − s‖2]

N
≤

σ2

A
. (4)

This result means that by viewing the receptive fields described in equation (1)
as a frame for some signal space, the lower frame bound A yields an upper
bound on the corruption caused by imperfections due to additive noise.

While the robustness properties of a representation with regard to additive
noise can be interesting, additive noise is a poor model for neural coding.
Consider a population code that corresponds to a tight frame where the coef-
ficients are encoded by a Poisson rate process, c̃i = Poisson

(
[ci]+

)
, where [·]

+

is a positive rectifier. We have calculated that reconstructing the signal with
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Poisson encoded coefficients yields a MSE per signal dimension of

E[‖ŝp − s‖2]

N
=

1

A

(
1

M

M∑

i=1

ci

)
,

where M the number of frame vectors. This result shows that the average noise
variance (which is proportional to the coefficient magnitude) is also reduced
by a factor of A in the Poisson encoding case.

3 Modeling feature extraction using frames of subspaces

Neural systems typically extract features from raw sensory input measure-
ments. Even when a feature represents a single parameter of the signal, it is
often encoded by a redundant population code [3]. If a feature is calculated by
a linear operation (i.e., filtering), the feature calculation can be described as
the projection of the measurement coefficients from primary receptive fields
onto a set of redundant feature vectors. For example, the measurement coef-
ficients corresponding to the receptive field for one sensing unit over several
time samples could be projected onto a collection of feature vectors to perform
spectral analysis. In the case of a Fourier transform calculation, no informa-
tion about the stimulus is lost and the new coefficients can be thought of as
also representing a frame for the signal space. However, many individual fea-
tures calculated by sensory systems do not represent the full signal space (i.e.,
the resulting coefficients do not satisfy the lower bound in (2)). A population
code for a feature that does not cover the whole input signal space represents
a frame for a subspace of the signal space corresponding to that feature.

While one single feature may not represent the entire stimulus signal space,
a collection of features computed in parallel might together form a complete
representation. A formalism called “frames of subspaces” [4] provides methods
for analyzing the relationships between the feature spaces. Mathematically,
the `th feature space represents a redundant collection of vectors that span
a subspace W` ⊆ H, with π` (s) denoting the projection of the signal s onto
W`. The collection of L (possibly overlapping) subspaces {W`} is a frame of

subspaces if, for any signal s ∈ H, constants 0 < C ≤ D < ∞ exist such that

C ‖s‖2 ≤
L∑

`=1

‖π` (s) ‖2 ≤ D ‖s‖2. (5)

A frame of subspaces is, in many ways, analogous to a frame. Feature spaces
are not linearly independent and the bounds C and D measure the minimum
and maximum redundancy (respectively) between the subspaces. Each feature
space has its own redundant local representation formed by a population code
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that corresponds to a local frame (i.e., a frame only spanning that feature
space) with bounds (A`, B`). Casazza [4] shows that the total collection of
population codes representing all feature spaces is a frame for the signal space
with frame bounds (A, B) satisfying C · Amax ≤ A and B ≤ D · Bmax, with
equality when the same local frame bounds apply to each feature space. This
result gives explicit conditions under which all of the feature-space represen-
tations together form a complete representation for the input signal space and
it bounds the redundancy of that representation.

The noise reduction properties inherent in a single redundant population code
are well known and have been discussed in section 2. In related work, we ex-
tended the frame of subspaces theory to quantify the noise reduction inherent
in the redundancy between subspaces [5]. When feature spaces have corrupted
population codes (i.e., perturbed by additive noise with a variance of σ2) and
an estimate ŝf is formed from reconstructed features, the MSE is bounded by

Lσ2

BmaxD2
≤

E‖ŝf − s‖

N
≤

Lσ2

AminC2
,

where L is the number of feature spaces and (Amin, Bmax) are the extreme
frame bounds of the local population codes. An interesting question to ask is
how much noise reduction ability is lost by the system in performing feature-
based processing (i.e., how much more could the noise be reduced if the pop-
ulation codes were all pooled and processed in a centralized way). Our results
indicate that the upper bound on the noise reduction for a feature-based pro-
cessing system is a factor of L

C
higher (L ≥ C) then a comparable centralized

processing scheme. We have also shown that in the special case when the
feature spaces cover the stimulus space equally (C = D) and the underly-
ing population codes representing each feature cover their respective feature
spaces equally (Ai = Amin = Bi = Bmax), the noise reduction abilities of a
feature-based and a centralized processing scheme are equal (the system pays
no penalty in noise reduction ability for processing each feature separately).
While this mathematical condition seems restrictive, known asymptotic re-
sults [2] lead us to believe that as increasing numbers of features and popula-
tion sizes tend to produce the necessary conditions.

4 Conclusions

Technological problems limit the amount of experimental data that can be
collected from even a single functional population. It can be difficult to even
determine the size of a functional population, let alone its information process-
ing abilities. A theoretical understanding of the informational limits of both
a single functional population and the interaction of several populations is
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necessary to help define a framework that yields experimental predictions and
provides structure for analysis in the face of limited data. With the specific be-
havior of these populations unknown, it is necessary to start theoretical work
with a general paradigm so that it can apply to any feature encoding popu-
lation that may be found in the future. The formalism of frames and frames
of subspaces begin to provide general tools for quantifying the properties of
redundant populations.

While the analysis presented here is very abstract, we do hope to analyze spe-
cific known sensorineural systems more precisely in the future. As a concrete
example, consider cells of the medial superior temporal area of the visual
system which respond to at least three different types of stimulus parame-
ters: expansion/contraction, rotation, and translation motions (left/right and
up/down) [6]. The space of stimuli defined by these parameter combinations
can be described as a four-dimensional space. Hypothetically speaking, 100
units with tuning curves uniformly distributed to respond to combinations of
these stimuli features at a point in space would correspond to a tight frame
able to reduce noise by a factor of A = (100/4) = 25. However, if the tuning
curves were not uniform, A would be smaller. How much smaller depends the
shape and distribution of the tuning curves. Thus, based on how the indi-
vidual neuron’s analyze information, we can derive the fundamental limits of
accuracy of the population’s representation. The sole caveat is the degree to
which the representation process can be described as a linear projection.
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