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“Science is an ongoing race between our inventing ways to fool ourselves, and our 

inventing ways to avoid fooling ourselves.” -- Saul Perlmutter 

 

 

 

 

 

 

 

“At the heart of science is an essential balance between two seemingly contradictory 

attitudes--an openness to new ideas, no matter how bizarre or counterintuitive they may 

be, and the most ruthless skeptical scrutiny of all ideas, old and new. This is how deep 

truths are winnowed from deep nonsense.” -- Carl Sagan 
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SUMMARY 

Neurofeedback training represents a form of biofeedback training with a history of over 

50 years. During neurofeedback training participants aim to gain control over a feedback 

signal that represents the activity of a brain region or network of interest. As such, it holds 

promise for clinical translation as an add-on treatment for psychiatric and neurological 

conditions. Yet, currently available evidence for its therapeutic efficacy remains limited.  

 

Originally provided based on cortical signals measured with electroencephalography 

(EEG), methodological developments have allowed providing neurofeedback based on 

(cortical and subcortical) brain signals acquired from functional magnetic resonance 

imaging (fMRI). The aim of this thesis was to test the feasibility and clinical efficacy of 

fMRI neurofeedback (fMRI-NF) training in a psychiatric population and to develop 

protocols that allow translating the technique to motor rehabilitation. Specifically, this 

thesis summarises the clinical and neuroimaging results from a randomised controlled 

trial conducted in patients suffering from depression. Depression represents a leading 

cause of disability in adults and epidemiological data indicates that up to one third of 

patients remain depressed after treatment.  

 

Another focus was the development of a motor imagery-based fMRI-NF protocol in 

healthy participants. This work has informed a proof-of-concept study for motor 

rehabilitation in stroke survivors, for which the methodology was preregistered on a 

public platform before data collection started to increase transparency. The thesis aims to 

address problematic research practices that have been attributed to the replication crisis 

in many areas of science, including a clear separation of planned and exploratory 

hypotheses and the use and adaptation of alternative statistical methods. A review chapter 

discusses potential electrophysiological target signatures for EEG-NF to improve motor 

symptoms in Parkinson’s disease patients. The thesis concludes with a discussion of 

current premises, promises, and pitfalls in clinical applications of neurofeedback training 

and considerations for clinical trials development.  
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1 INTRODUCTION  
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This Chapter serves as an introduction to the clinical conditions that will be addressed in the 

context of neurofeedback training in this thesis. The chapter commences with a brief meta-

research review about replicability and reproducibility in the biomedical sciences to introduce 

some criteria for assessing the evidential value of published literature. Specifically, the 

replication crisis and research practices that have led to it are discussed, followed by an 

overview of developments that aim to address problematic research practices and that can 

increase the robustness of scientific research. The chapter continues with a review of the main 

clinical characteristics, accepted and experimental treatment options for the mood disorder 

unipolar depression, as well as upper limb rehabilitation in stroke and Parkinson’s disease (PD). 

Further, real-time fMRI neurofeedback (fMRI-NF) studies that have been conducted for these 

conditions will be reviewed. The chapter will close with a presentation of remaining research 

questions and a short outlook how these will be addressed in this thesis.  
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1.1 Robust Science  

“Reproducibility, rigor, transparency, and independent verification are cornerstones of the 

scientific method” (McNutt, 2014). The Scientific method describes a set of techniques used 

in investigating phenomena to acquire new or correct previous knowledge. The concept of 

falsifiability describes the ability to test and reject statements, e.g. in the form of hypotheses, 

and it is thus considered a central element of scientific discovery (Popper, 2005). Falsifiability 

relies on reproducibility and replicability to allow comparability between results and thereby 

justify valid rejection of hypotheses. This thesis aims to highlight developments in the scientific 

community to increase and maintain falsifiability and show where these have been realised in 

the presented work. Seemingly pervasive failure to replicate previous research questions the 

robustness of findings reported in many scientific disciplines including clinical medicine 

(Moonesinghe et al., 2007) and psychology (Open Science Collaboration, 2015) and requires 

developing a better understanding of underlying reasons. Also known as the “replication 

crisis”, recent meta-research has shown that a substantial amount of published work fails to 

replicate (or reproduce). Besides reproducibility, replicability forms a prerequisite for robust 

science. Although the concepts of reproducibility and replicability are related and both are 

central to scientific practices, they describe different aspects: whereas reproducibility describes 

the capacity to re-calculate results within an existing data set and existing methods, replicability 

describes the chance that other scientists will find a consistent result in a new data set but using 

a highly similar design (Patil et al., 2016). A lack of transparent reporting of methodology, 

valid use of reliable statistical methods and selective publications of outcome variables have 

been identified as some main reasons for these crises (Chambers, 2017; Munafò et al., 2017). 

The following paragraphs summarise the replication crisis and highlight some underlying 

causes (Chapter 1.1.1) and describe developments that have been introduced to improve the 

status quo (Chapter 1.1.2). These developments include 1) reporting guidelines such as the 

CONSORT statement (Chapter 3.4.4) and trial registration (Chapter 3.4.5) for RCTs, and 2) 

preregistration and registered reports (Chapter 3.5). Although the principles of falsification are 

key for the definition of robust science as presented in this thesis, it should be mentioned that 

other philosophies of science have put less emphasis on this principle. In fact, the philosopher 

Paul Feyerabend for instance critiqued the call for falsifiability as a methodological monism 

that may obstruct scientific breakthroughs. He referred to case studies of major discoveries in 

the history of science, including Galileo Galilei’s contributions to the heliocentric model. 
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Feyerabend pointed out how practices often deviated from the rational scientific method 

proposed by Popper and other advocates of critical rationalism (Feyerabend, 1993).  

1.1.1 Replication crisis and questionable research practices 

Many scientific disciplines including cancer biology (Begley and Ellis, 2012; Willingham et 

al., 2017), psychology (Open Science Collaboration, 2015), clinical medicine (Moonesinghe 

et al., 2007), computational science (Peng, 2011), and lately also Artificial Intelligence 

(Hutson, 2018) are facing a replication crisis: a substantial amount of published work fails to 

replicate. The underlying reasons for the replication crisis are numerous. The high prevalence 

of underpowered studies in biomedical research and neuroscience is one major factor (Button 

et al., 2013; Dumas-Mallet et al., 2017; Nord et al., 2017; Nosek et al., 2012). For neuroscience, 

Button et al.'s (2013) reported an alarmingly low median power of only 0.21, which means that 

an effect could only be found once in five times it was investigated. However, their analysis 

was performed as a meta-analysis on all meta-analyses published in neuroscience in 2011 (N 

= 49), if all studies stemmed from the same population of studies. In response, Nord et al. tested 

if these studied stemmed from different underlying populations using Gaussian mixture 

modelling (GMM), a technique that tries to recover separate normal distributions that in sum 

produce the observed distribution (Nord et al., 2017). For instance, if a data set featured many 

low and a few highly powered studies, a median merely reports that (at least) 50% of these 

studies feature low power. In contrast, GMM can infer that a distinct subset of highly powered 

studies exists and hence allows a more nuanced interpretation of the data. Nord et al.’s analysis 

revealed that over 70% of studies featured low or very low power of less than 0.5 (i.e., less 

than the chance level of landing heads or tails in a coin toss). However, their data also suggested 

that over 10% of studies appeared highly powered (>0.8). Further, the authors discovered 

remarkable differences between subfields with very low power (<0.2) for genetic association 

studies and relatively high power (>0.9) in neurochemistry. Similar results were reported for 

the literature in the biomedical sciences by another study that investigated power in 660 studies 

that were included in meta-analysis between 2008 and 2012 (Dumas-Mallet et al., 2017). The 

authors found that 50% of studies had very low statistical power (mean power <0.2). Splitting 

results by methodology, they found that purely cognitive/behavioural studies had high power 

(median power 0.93), genetic studies very low power (median power 0.08), and brain imaging 

low to medium, but still inadequate power (median power 0.27). Lastly, also with regards to 

clinical trials, underpowered studies dominate the literature. One study estimated that the 
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proportion of Cochrane meta-analyses that consist exclusively of underpowered studies 

(defined as power < 0.5) was as high as 70% (Turner et al., 2013). 

 

Two conclusions can be drawn from a literature that is plagued by underpowered studies:  

1) If the majority of published research was initially underpowered to detect meaningful effect 

sizes, published findings that report significant findings are likely predominantly false positives 

(Ioannidis, 2005; Simmons et al., 2011). Indeed, recent estimates suggest more than 50% of 

published findings in neuroscience are likely false positives (Szucs and Ioannidis, 2017), 

compromising the  evidence that can be drawn from literature reviews, which are traditionally 

regarded as the gold standard for evidence based medicine (Ault, 2003). In other words, 

treatments that are reported to work may not work reliably, genes that are reported to contribute 

to a phenotype may contribute little, and conditions that are reported to matter for cognitive 

processes may only play a marginal role.  

 

2) Underpowered studies are less likely to detect an effect, yet, the literature is largely 

dominated by positive findings (Cristea and Ioannidis, 2018; Fanelli, 2012). Further, while the 

prevalence of positive findings has decreased for clinical trials since trial registration was 

introduced (Kaplan and Irvin, 2015), meta-research suggests that negative findings largely 

remain unreported. Two mechanisms likely drive the high significance rates despite low 

average power. a) researcher bias— e.g. “Hypothesizing After the Results are Known” (Kerr, 

1998), “Selected Hypothesized Areas after Results are Known” (Poldrack et al., 2017) and 

other forms of post-hoc selection of dependent and control variables, “P-hacking” (Simmons 

et al., 2011), as well as selective submission of positive results, also called file drawer effect 

(Rosenthal, 1979); b) publication bias—significant results are more likely accepted for 

publication than nonsignificant findings (Easterbrook et al., 1991). Table 1.1 provides a more 

detailed overview of these and other questionable research practices and external constraints 

(Wicherts et al., 2016).  

 

P-Hacking 

Statistical tests and data selection criteria 

are modified based on the outcome of 

previous tests to reach a desired statistical 

outcome. Such questionable practices 

include selectively discarding data, e.g. by 
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applying post-hoc exclusion criteria, and 

changing statistical tests. Besides data 

analysis, also data acquisition can be 

instrumentalised for p-hacking, e.g. by 

employing a flexible sampling plan with a 

stopping rule that is based on the 

(uncorrected) test statistic (Simmons et 

al., 2011).  

HARKing 

Short for “Hypothesizing After the 

Results are Known” (Kerr, 1998). Post-

hoc interpretations are being falsely 

declared as planned hypothesis that were 

formulated prior to data collection (i.e. 

they declared as a priori).  

SHARKing 

Short for “Selecting hypothesized areas 

after results are known” (Poldrack et al., 

2017). This questionable research practice 

represents a special form of HARKing and 

affects neuroimaging studies where 

regions of interest (ROIs) are being 

analysed. Such ROI analyses are falsely 

declared as planned hypothesis tests, 

while they are truly based on a previous 

(unreported) exploratory analysis.  

Double-dipping 

Using the same dataset for selection and 

selective analysis (Kriegeskorte et al., 

2009). SHARKing can involve double-

dipping, e.g. when the same data set is 

used for hypothesis generation and 

hypothesis confirmation.  Other examples 

include classification studies where 

training and test data sets are not clearly 
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separated, and classification accuracy is 

being inflated by fitting correlated noise.  

Publication bias /  

File-drawer 

effect 

 

Studies with statistically significant 

results are more likely to be published 

than studies with negative or inconclusive 

results (Scargle, 2000). As a result, 

authors are less incentivized to compose 

articles about studies that contain negative 

or null findings (file-drawer effect).  

Improper 

use of  

statistical 

methods  

 

Improper use of statistical methods likely 

represents the most active area of debate 

within the sciences and spans a wide range 

of questionable practices. In 

neuroimaging, it refers in particular to 

inflated false-positive rates , but also 

inflated false-negative rates due to in- 

appropriate correction for multiple 

comparison (Eklund et al., 2016; Kessler 

et al., 2017). Other examples include the 

fallacy of inferring the absence of an 

effect from not observing evidence for an 

effect (and hence, from merely 

inconclusive data; Lakens et al., 2018), 

and interpreting single group differences 

without demonstrating formal interactions 

(Gelman and Stern, 2006; Nieuwenhuis et 

al., 2011).  

Table 1.1 Questionable research practices (QRPs). Modified from (Lorenz, 2017).  

 

Within current reward structures, researchers are incentivised to find significant results and 

rapidly publish in high impact journals (Chambers, 2017; Higginson and Munafò, 2016; 

Munafò et al., 2017). Research fields that work with high dimensional data—such as produced 

by brain signals—require complex pre-processing and data analysis pipelines. These usually 
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involve numerous pre-processing and data analysis steps, which often result in many ways of 

analysing such data. In consequence, different analysis pipelines can lead to vastly different 

analysis outcomes and interpretations (Carp, 2012a). Questionable research practices (QRPs) 

have been investigated for different neuroscience fields. For functional neuroimaging, Carp 

(2012b) demonstrated how exhaustive combinations of possible pre-processing and data 

analysis steps results in several thousand unique analysis pipelines. Their results varied 

remarkably with regards to brain activation strength, location, and extent. Moreover, out of a 

random sample of more than 240 fMRI studies, more than 80% of studies featured unique 

analysis pipelines, which often lacked sufficient detail in justifying processing and analysis 

decisions (Carp, 2012b). For event-related potentials (ERPs) in electrophysiology, Luck and 

Gaspelin (2017) demonstrated how the common practice of first selecting time windows based 

on a test statistic (e.g. the grand average) and then comparing conditions on the very same 

statistic may yield statistically significant, but hardly replicable results. For non-invasive brain 

stimulation, Héroux et al. (2017) investigated the prevalence of questionable research practices 

among researchers who work with brain stimulation techniques. In their survey, the authors 

found that a high proportion admitted committing questionable research practices such as 

selective reporting of outcomes and adjusting statistical analyses to reach significant results. 

As we would expect, when researchers tweak analyses to reach significant results, small or 

non-existent effects become inflated and appear more reliable in the literature than they really 

are (Héroux et al., 2017).  

 

 

Low powered studies, which mostly result from small sample sizes, in combination with 

publication bias – positive findings are rewarded and more likely to be published compared to 

null findings (Franco et al., 2014; Rosenthal, 1979) – lead in particular to inflated effect sizes. 

Small studies usually contain higher levels of noise and are thus less likely to find an effect. 

However, if a statistically significant result is found with a small sample, some researchers tend 

to believe that it must reflect a truly large effect (“what does not kill my effect makes it 

stronger”; Loken and Gelman 2017). This belief is misleading because the increased noise in 

small studies renders effect size estimates imprecise and increases their variability (compare 

shape and means of distributions in Figure 1.1). In fact, significant estimates are often inflated, 

i.e. much larger than the true effect sizes (Loken and Gelman, 2017). High power estimates 

can occur either with a) large samples that can detect small to moderate, realistic effect sizes, 
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or b) with small samples that can only detect large effect sizes—which likely represent inflated 

estimates of small effects. This follows from three assumptions:  

 

1) Only few effects that are not trivial and hence worthwhile investigating with scientific 

instruments are truly large, but many are small to moderate. For instance the average 

effect size for fMRI neuroimaging (across different task paradigms) has been estimated 

as  a Cohen’s d (d) of about 0.5 (Poldrack et al., 2017), and for behavioural Psychology 

around d = 0.2 – 0.3 (Open Science Collaboration, 2015).  

 

2) As shown in Figure 1.1, small effects can only become significant in typical small 

samples  if they are inflated (Loken and Gelman, 2017).  

 

3) Significant effects are more likely to be published (publication bias). This effect is also 

illustrated in Figure 1.1. Small sample sizes result in larger variability and hence a 

broader distribution (see red distribution) compared to large sample sizes (see green 

distribution). Assuming publication bias and a true effect size of d = 0.30, small studies 

with significant results overestimate the true effect more than large studies with 

significant results.  

 

 

Figure 1.1  Distribution of sample estimates of a small effect either in large studies 

(green distribution) or in small studies (red distribution). Shaded areas indicate reported 
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effects if only significant results are reported (publication bias). When there is a true 

effect of d = 0.30 (cyan vertical line), most studies (80%) with large samples will detect it 

and yield a significant result for effect size estimates > 0.21 (shaded in green). In contrast, 

studies with small samples can only detect it for effect size estimates > 0.42, and thus only 

a small fraction (30%) will detect the effect (shaded in red). In the presence of strong 

publication bias, small-sample studies only get published when they yield a significant 

result. Such studies will always overestimate the true effect (indicated by the lack of an 

overlap between the red shaded area and the cyan vertical line) and will do so to a greater 

extent than large published studies (see difference between green and red vertical line). 

The following parameters were used to create the figure: The small sample size (N = 25) 

is based on 0.30 power to detect an effect of Cohen’s d = 0.30. Power of 0.30 is equivalent 

to the median power in neuroscience found by Nord et al. after excluding null results 

from meta-analyses. The large sample size (N = 90) is based on a hypothetical statistical 

power of 0.80, which is a value that is often recommended. Shown are results for a one-

sample two-sided t-test at an alpha level of 0.05. Adapted from (Algermissen and Mehler, 

2018).  

One remarkable demonstration of the effect of publication bias has been provided by 

(Kühberger et al., 2014) who correlated reported sample sizes with estimated effect sizes for a 

random sample of 1,000 psychological articles. While these two measures should in theory be 

independent, the authors found a moderate negative relationship (r = −.45), indicating that in 

particular small samples report high effect sizes. It is thus likely that also recent studies that 

reviewed power in neuroscience (Button et al., 2013; Dumas-Mallet et al., 2017; Nord et al., 

2017) reported findings which were likely inflated because these meta-analyses were based on 

published weighted mean effect sizes. Thereby, these studies relied on empirical effect sizes 

that were subjected to QRPs and publication bias. Hence,  the true power of included studies 

was likely even less to detect realistic effect sizes (Open Science Collaboration, 2015; Poldrack 

et al., 2017).  

 

In the following paragraph some remedies for QRPs will be presented, including ways to 

reinforce better reporting standards and approaches that address researcher bias and 

publication bias. Moreover, the publishing formats preregistration and registered reports (RRs) 

will be highlighted. These require separating planned from exploratory hypotheses and hence 

protect against various above described QRPs (Chambers, 2015; Munafò et al., 2017).  
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1.1.2 Some remedies for (more) robust science 

A review of the replication crisis and underlying biases demonstrates that transparent 

documentation and reporting is pivotal for robust science. With regards to RCTs, 

inconsistencies and a lack of sufficient reporting of key design details such as randomisation 

(Altman and Doré, 1990; Schulz et al., 1994), sample size (Pocock et al., 1987), power 

calculations (Moher et al., 1994) and outcome variables (Pocock et al., 1987) have motivated 

the development of structured reporting guidelines (Andrew, 1994). Introduced in 1996 and 

since then continuously refined (Begg et al., 1996; Moher et al., 2010, 2001), the Consolidated 

Standards of Reporting Trials (CONSORT) statement contains a checklist for details about the 

trial design (e.g. blinding and randomization) and results such as attrition rates, main clinical 

outcome and exploratory analyses. The CONSORT checklist forms a requirement for trial 

manuscript submissions to medical journals. Moreover, trials are required to be registered 

before start of data collection in a public record, and provide information about outcome 

measures, trial dates and planned sample sizes.  

 

First meta-analyses indicate that these measures have improved the quality of trials reporting. 

For instance, the introduction of CONSORT was linked to improved reporting for some 

measures, but reporting standards require further improvements (Turner et al., 2012). 

Moreover, the proportion of null findings has remarkably increased by about 50% (Kaplan and 

Irvin, 2015). However, despite ubiquitous registration of clinical trials and a rise in reported 

null findings among published studies, a significant proportion of registered trials remains 

unpublished. For instance, one study estimated that almost 1/3 out of a set of 585 large 

registered trials with more than 500 participants were not published within 5 years of study 

completion (Jones et al., 2013), indicating substantial publication bias. By focusing exclusively 

on large, laborious trials, the authors limited the likelihood that studies were not published due 

to a mere lack of interest of the involved scientists (thus minimising a file-drawer effect). The 

omission to report trials of this size represents a major loss of information because these studies 

were likely sufficiently powered to provide evidence for the absence of an effect (Munafò and 

Neill, 2016; Walker and Nowacki, 2011) . Taken together, while CONSORT in combination 

with trial registration allows to rule out certain questionable practices including a) switching 

of primary and secondary outcomes, b) unjustified changes of trial duration and c) arbitrary 

stopping rules in data collection, RCTs are not safeguarded against the file drawer effect 
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(Rosenthal, 1979), or publication bias (Easterbrook et al., 1991). Both factors therefore remain 

an issue, imperil the robustness of findings, and likely contributed to the replication crisis 

encountered in medicine (Ioannidis, 2005; Moonesinghe et al., 2007).  

 

How can clinical trials and neuroscience become more reliable? The trial registration practice 

has inspired the new publishing formats preregistration and registered reports (RR) (Chambers, 

2013). RRs are peer-reviewed before data collection based on the study’s rationale, design, 

power calculation and analysis plan, and may result in an acceptance in principle (Chapter 2.5). 

Importantly, RRs distinguish between planned and exploratory hypotheses and hence reduce. 

Hence, RRs can effectively reduce or even eliminate several biases researcher bias and 

publication bias.  

 

With regards to CONSORT, future versions may benefit by incorporating elements of RRs that 

are currently not included:  

 

 Peer-review of power calculations: this would likely improve the quality of adequate 

sample size estimations. Although a priori defined sample sizes are required, the 

underlying effect sizes and exact power calculations are usually not reported, which 

bears the risk that trials are statistically underpowered.  

 A priori declaration of analysis plans: Trial registrations usually do not contain a 

detailed description of analysis plans, which leaves many “researcher degrees of 

freedom” in data preprocessing and analysis, in particular for complex interventions 

that involve digital signals (e.g. neuroimaging).  

 In principle acceptance: While trial registrations offer a public record for trial protocols 

and outcome that allows conducting meta-science studies, a large proportion of research 

remains unreported and is thus lost for the public (Jones et al., 2013).  

 

Altogether, these mechanisms should protect research against QRPs and consequently result in 

a higher proportion of non-significant findings reported in the literature. Indeed, a preliminary 

analysis conducted on the prevalence of reported null findings in published registered reports 

listed in the registered report database (The Registered Reports Steering Committee, May 

2017) suggested that a substantially larger proportion than estimates of 5-20% of null findings 

that have been traditionally reported in the literature (Cristea and Ioannidis, 2018; Fanelli, 
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2012). When compared to a relatively liberal test value of 30%, classical and Bayesian 

binomial tests indicated that published preregistered studies feature a substantially larger 

proportion of null findings (Table 1.2, Figure 1.2). These results are in line with reports from 

clinical medicine, where required study preregistrations was associated with a rise of reported 

of null findings (Kaplan and Irvin, 2015). Since RRs give scientists a guarantee to publish work 

as a peer-reviewed study irrespective of significance status of results, null findings do not end 

up in a file drawer and researchers gain a publication. Taken together, this data supports the 

idea that RRs might help alleviate publication bias towards positive findings.   

 

 95% Confidence Interval  

    Counts  Total  Proportion  p  VS-MPR*  Lower  Upper  

     Null findings  67   95   0.705   < .001   2.173e +13   0.603   0.794   

Table 1.2 Binomial Test of null finding prevalence in a sample of preregistered 

published studies (May 2017). Vovk-Sellke Maximum p -Ratio: Based on the p -value, 

the maximum possible odds in favour of H₁ over H₀ equals 1/(-e p log( p )) for p ≤ .37 

(Sellke, Bayarri, & Berger, 2001). Proportions tested against a value 0.3, which 

represents a conservative estimate for the proportion of null findings among published 

literature.  Analyses were carried out based on preregistered studies published prior to 

May 2017 which were listed in a public repository on the Open Science Framework 

(https://www.zotero.org/groups/479248/osf/items/collectionKey/VKXUAZM7). 

Specifically, prespecified independent hypotheses were identified in the preregistration 

document, compared with reported results, and coded as either a null finding or a 

positive finding.  

 

https://www.zotero.org/groups/479248/osf/items/collectionKey/VKXUAZM7
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Figure 1.2 Bayesian binominal test based on observed proportion of null findings 

(~0.7) tested against a level comparable to the upper limit of the proportion of null 

findings reported in the literature (0.3; (Cristea and Ioannidis, 2018; Fanelli, 2012)).  

 

Taken together, the introduction of peer-reviewed RRs at medical journals represents a 

desirable development that is in line with the principles of trial registration and CONSORT. 

Although guidelines for statistical analysis plans do not exist yet for trial registrations, first 

recommendations for their conceptualisation have recently been formulated (Gamble et al., 

2017). Considering the relatively short time span of about 2 years that it took between first 

recommendations (Andrew, 1994) for structured reporting of RCTs and the introduction of a 

first template (Begg et al., 1996) in the form of CONSORT, analysis plans may become part 

of trial registrations in the near future. Open science practices that can improve transparency, 

replicability and reproducibility are thus likely becoming increasingly important in clinical 

research. Indeed, the International Committee of Medical Journal Editors (Taichman et al., 

2017), whose recommendations are binding for most leading biomedical journals, has recently 

issued a data-sharing statement policy. According to this consensus statement, clinical trials 

submitted for publication must include a data sharing statement as of July 2018 and new trials 

beginning to enrol patients from 2019 are required to include a data sharing plan.  

 



Clinical Applications of fMRI neurofeedback training – David Marc Anton Mehler – November 2018 

     29 

W
o

rd
 T

e
m

p
la

te
 b

y
 F

ri
ed

m
an

 &
 M

o
rg

an
 2

0
1

4
 

How can neuroscientists solve their power problem? First, they can improve their power 

calculations (Chapter 3.4.1.2), which form an essential part in the peer review process of RRs 

(Chapter 3.5). To do so, researchers should calculate power before data collection and specify 

their smallest effect size of interest (SESOI; Lakens et al. 2018). They should neither rely on 

effect sizes reported in the literature, which are often inflated, nor on effect size estimates from 

small-sample pilot studies, which vary largely (Figure 1.1, red distribution) and might thus 

severely underestimate the sample size required for adequate power. In contrast, SESOIs 

(Chapter 3.4.1.5) require that researchers specify the smallest effect size they consider 

worthwhile investigating. SESOIs may vary between different fields and hypotheses. For 

instance, for translational and clinical research minimal clinically important differences 

(MCIDs) define how large a change on an outcome variable (e.g. a clinical scale) should be to 

be considered worthwhile detecting (Mcglothlin and Lewis, 2014). Taken together, researchers 

who work with SESOIs are more likely to conduct adequately powered studies. A related, albeit 

independent aspect is the use of appropriate statistics, which is key to draw valid inferences: 

this includes controlling type-I error rates by appropriate correction for multiple testing 

(Asendorpf et al., 2013; Eklund et al., 2016), avoiding fallacies in the interpretation of 

interactions (Nieuwenhuis et al., 2011), and employing statistical techniques that allow 

providing evidence for the absence of an effect (Dienes, 2014; Lakens, 2017). Defining SESOIs 

before data collection allows conducting reliable equivalence or non-inferiority tests (Lakens 

et al., 2018; Walker and Nowacki, 2011) and can inform prior distributions for Bayesian 

hypothesis testing (Dienes, 2014). Both techniques allow to provide evidence for a negligible, 

or null effect (Chapters 3.4.1.5 and 3.4.2).  

 

Second, novel real-time imaging and optimisation techniques provide additional scope to 

optimise data acquisition and minimises researcher bias. Specifically, experiments that involve 

real-time data analysis, such as fMRI-NF studies, can effectively limit researcher’s degrees of 

freedom, because their pipelines require pre-specifying crucial parameters:  

 

 Online pre-processing parameters (e.g. spatial smoothing kernel’s and motion 

correction) are predefined in the real time analysis protocol, pre-determining substantial 

parts of the analytic pre-processing space that researchers can justify for offline 

analyses (Carp, 2012a).  
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 Data analysis parameters and region of interests are usually localised in an independent 

scan (functional localiser) before the training starts. Hence, the exact coordinates and 

number of voxels comprising regions of interest are predefined. Hence, real-time 

experiments implicitly predefine their main neural outcome measures, which may help 

avoiding forms of double-dipping (Kriegeskorte et al., 2009), HARKing (Kerr, 1998), 

and SHARKing (Poldrack et al., 2017).  

 Other experimental parameters that pertain the brain imaging data, for instance the way 

the feedback is calculated based on model estimates or raw percent signal changes, are 

also prespecified. Hence, additional degrees of freedom that arise during the analysis 

are limited, which can avoid forms of p-hacking (Wicherts et al., 2016).  

 

These principles are largely applicable for neurofeedback studies that use other modalities such 

as Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). Hence, 

neurofeedback studies in general implicitly preregister most of their analysis pipeline, and they 

are thus in particular suited for study preregistrations and  the publication of training protocols 

(Cox et al., 2016). However, to ascertain compliance with prespecified real-time analysis 

pipelines, it is mandatory that either real-time data is subsequently used for offline data 

analysis, or that offline data analysis based on raw acquired data replicates online-analyses 

using identical parameter settings.    
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1.2 Clinical conditions of interest 

1.2.1 Unipolar depression 

1.2.1.1 Main clinical characteristics and pathophysiology 

The main clinical features of depressive disorder are persistent low mood, which is often 

accompanied by anxiety, loss of pleasure (anhedonia), lack of energy (lethargy), and symptoms 

of insomnia (Geddes et al., 2012). Depression is diagnosed based on detailed medical 

interviews such as the Mini-International Neuropsychiatric Interview (MINI) or the Structured 

Diagnostic Interview for DSM-5 (SKID) that are conducted by trained healthcare professionals 

(Pettersson et al., 2018; Tolin et al., 2018). For clinical purposes, however, severity is currently 

staged based on the 10th revision of the International Statistical Classification of Diseases and 

Related Health Problems (ICD-10). The ICD-10 criteria for depression distinguish between 

key symptoms including persistent low mood, loss or interest (anhedonia) and fatigue, as well 

as associated symptoms such as disturbed sleep, poor concentration and feelings of guilt. 

According to the number of symptoms, the ICD-10 classifies patients as not depressed (fewer 

than two symptoms), mild depression (two or three symptoms), moderate depression (four or 

more symptoms), and severe depression that additionally features feelings of worthlessness, 

guilt, and often suicidal thoughts (Geddes et al., 2012).  

 

In fact, the risk of suicidality is increased such that about 10% of patients eventually commit 

suicide (Geddes et al., 2012). Therefore, a careful examination of individual symptoms is 

required to grade the severity of depression and evaluate suicidal risks. For research purposes, 

additional questionnaires such as the clinician rated Hamilton Depression Rating Scale 

(HDRS) and the self-reported Beck Depression Inventory (BDI) are used to assess depression 

severity and monitor changes in response to treatment. One defining character of depression is 

that it occurs in episodes that consists of relapses and remission in a substantial proportion of 

patients (Andrews, 2001). Thresholds have been defined that help assessing treatment success; 

on the HDRS-17 a response is usually defined as a reduction of >50%, remission is defined as 

an HDRS-17 score <=7, and a relapse entails an HDRS-17 score >=14.  

 

The presentation of symptoms between different patients is heterogeneous (Chen et al., 2000; 

Geddes et al., 2012). Indeed, different subtypes of depression have been suggested based on 

constellations of symptoms with the aim to stratify patients and identify more effective 



Clinical Applications of fMRI neurofeedback training – David Marc Anton Mehler – November 2018 

     32 

W
o

rd
 T

e
m

p
la

te
 b

y
 F

ri
ed

m
an

 &
 M

o
rg

an
 2

0
1

4
 

treatment strategies. For instance, melancholic depression is characterised by pervasive 

anhedonia, depressed mood that is not reactive to changes circumstances and psychomotor 

retardation. In contrast, atypical depression is characterised by the absence of symptoms that 

define melancholic depression, a reactive mood, and fatigue. Depression subtype 

classifications have been explored as means of identifying more effective 

psychopharmacological treatment strategies for patients (Joyce and Paykel, 1989). However, 

the prognostic value of depression subtypes remains unclear. One longitudinal population-

based study suggested that rather depression severity than depression subtypes is indicative for 

the course of depression (Chen et al., 2000). This notion was corroborated by a multi-centre 

pharmacological trial that found no prognostic value for melancholic, atypical and anxious 

depression subtypes regarding treatment response to commonly used psychopharmacological 

medication (Uher et al., 2011). Of interest, symptom based subtyping may still be informative 

with regards to interactions with other co-morbidities such as cardiovascular disease (Baune et 

al., 2012). With regards to treatment stratification in depression, one criticism is that the 

neurobiological basis of phenotypes still largely remains unclear, which has incited the 

exploration of neurophysiological markers (Drysdale et al., 2016, but see also Dinga et al., 

2018).  

 

Epidemiological predictions suggest that depressive disorder will represent the largest 

contributor to disability globally by 2020 (World Health Organization, 2017). The lifetime 

prevalence of unipolar depression ranges between 15 and 20% for developed countries (Geddes 

et al., 2012; Kessler et al., 2003). However, given that most epidemiological studies estimate 

prevalence retrospectively and rely on responses from patients and may thus be affected by 

response biases, these numbers may underestimate true prevalence rates. This conjecture has 

been corroborated by data from a prospective epidemiological study that found a nearly 20% 

prevalence of depression over a period of only 13 years (Patten, 2009). The authors noted that 

these estimates were nearly twice as high as lifetime prevalence of major depressive episodes 

reported during the same time interval. Hence, available literature that estimated life time 

prevalence of depression likely underestimated the true ratios to a remarkable extent, likely 

because many cases remained unreported. With regards to gender ratios, women are more 

likely to be diagnosed with depression (2:1). To which extent this gender difference mainly 

results from biopsychological factors or the way female and male patients present symptoms 

differently or may seek (psychiatric) consultation to a different degree, remains an active field 

of research (Geddes et al., 2012).  
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Depressive disorder can result from an interaction between stressful life events and so called 

constitutional factors, which include genetic predispositions (Wray et al., 2018), childhood 

experiences and cognitive coping strategies (Maciejewski et al., 2000). Epidemiological data 

suggest that the occurrence of a severely stressful lifetime event  increases the odds to suffer 

from depression within the following 6 months by a factor of six (Geddes et al., 2012). This 

observation highlights the relevance of life experiences in the development of depressive 

disorder. Studies in clinical psychology suggest that the effect of stressful, or even traumatising 

experiences on an individual’s mental well-being depends on how individuals process stressful 

life experiences. Whereas negative cognitive biases on the one hand can increase the likelihood 

that a negative experience will trigger the beginning of a depressive episode, cognitive coping 

strategies on the other hand can help preventing the onset and relapse. Predisposing 

psychological factors include a bias to remembering life events or experiences that were 

associated with negative emotions (Geddes et al., 2012) and cognitive distortions (Disner et 

al., 2011) such as the tendency to overgeneralize from a singular negative experience to other 

experiences (negativism bias). Cognitive coping strategies that can reduce an individual’s 

vulnerability include self-efficacy and certain personality trait factors such as low levels of 

neuroticism (Mulder, 2002). Self-efficacy describes an individual’s perceived capacity to cope 

with challenges (Bandura, 1982) and may thus protect individuals from developing depression. 

For instance, one population-based longitudinal study with over 2,800 respondents found that 

self-efficacy mediates the vulnerability to develop depressive symptoms following stressful 

life events (Maciejewski et al., 2000). High levels of self-efficacy also reduce the impact of 

depression on engaging in detrimental behaviour such as nicotine abuse (Minnix et al., 2011).  

 

Unipolar depression is recognised as a pathological entity, it should be noted, however, that 

depressive episodes also occur, together with other symptoms such as mania, in patients 

suffering from bipolar disorder (Geddes et al., 2012). The putative neurobiological aetiology 

of depression is complex and involves various neurotransmitter and neurohormonal systems, 

including the monoamines serotonin, noradrenaline and dopamine, as well as non-monoamines 

such as glucorticoids (Berton and Nestler, 2006; Nestler et al., 2002). Depression is 

increasingly viewed as a mood disorder that results from maladaptive, stress-induced 

neuroplastic changes that involve brain regions of the limbic system, as well as the prefrontal 

cortex (Krishnan and Nestler, 2008). Based on invasive electrophysiological studies as well as 

non-invasive neuroimaging studies conducted in humans, neural circuit based models have 
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been developed and linked to psychopathological patterns observed in depressed patients 

(Beck, 2008; Disner et al., 2011; Mayberg, 2003).  

 

Replicable neural correlates associated with recovery from depression have motivated the 

development of translational applications, including invasive and non-invasive brain circuit 

based intervention methods such as deep brain stimulation (DBS) and fMRI-NF (Delaloye and 

Holtzheimer, 2014; Linden, 2014).  For instance, brodmann area 25 (BA25) as part of the 

subcallosal cingulate has been found to indicate whether patients likely do respond to 

pharmacological (see Chapter 1.2.1.2.1) or psychological (see Chapter 1.2.1.2.2) treatment 

(Dunlop and Mayberg, 2014). Specifically, patients who failed to respond to either treatment 

showed hyperactivation at rest in BA25 during baseline scans relative to patients who had 

subsequently responded to these treatments. BA25 is interconnected with medial prefrontal 

cortex, the anterior cingulate gyrus, but also the hippocampus and the amygdala. It hence 

represents a hub that interlinks areas which are involved in cognitive control, affect expression 

and regulation, as well as memory formation. These processes play an important role in 

cognitive models of depression, for instance with regards to biased processing of neural and 

negative information (Disner et al., 2011). BA25 itself represents a promising target area for 

experimental deep brain stimulation (DBS; see Chapter 1.2.1.2.4) treatment (Delaloye and 

Holtzheimer, 2014). Moreover, the areas it is connected with have been reported to change 

activity after successful psychological treatment using cognitive behavioural therapy (CBT), 

rendering them potential biomarkers and also target areas for stimulation-based treatment 

approaches such as neurofeedback (Franklin et al., 2016). Besides functional correlates, 

structural correlates have been suggested as prognostic markers in depression and reported for 

some of these areas. For instance, volume reductions of the in the body/tail of the hippocampus 

predicted poorer outcome for pharmacological treatment, a finding that has been repeatedly 

replicated (see for review; Dunlop and Mayberg, 2014). The insular cortex is another brain area 

that has been proposed as a biomarker for treatment success and to indicate trajectories of 

depressive episodes. For instance, the metabolism at rest in the right anterior insular cortex pre-

treatment has been found to be higher in non-responders relative to responders of CBT 

(McGrath et al., 2013). For pharmacological treatment (citalopram), responders showed a 

higher pre-treatment activity relative to non-responders. Further, it was reported that the 

metabolism levels in the right anterior insula correlated with clinical improvements for CBT, 

and anti-correlated with clinical improvements for pharmacological treatment (McGrath et al., 

2013). A more recently published study that followed up patients over 2 years identified grey 
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matter volume of the insular cortex as a predictor for relapse in patients who had remitted from 

a previous depressive episode (Zaremba et al., 2018). While patients who had relapsed showed 

such reduction, patients that did not show such relationship did not. However, these findings 

should be interpreted with caution since no direct statistical comparison between groups was 

reported (see also Table 1.1). Besides changes in brain function/structure in response to 

treatment, functional neuroimaging data acquired during exposure tasks or paradigms that 

involve regulation of emotion may reveal further correlates of impaired mental function in 

depressed patients. Notably, one recent meta-analysis that included neuroimaging data (fMRI 

and positron emission tomography [PET]) from over 50 studies with over 1,000 did not a find 

a stable correlate (Müller et al., 2017). The authors highlighted that heterogeneity across studies 

and paradigms may partly explain the lack of convergence, underscoring the importance of 

replication studies in this field. Hence, while the surveyed studies suggest that neural correlates 

following treatment in depression may provide stable markers and promising targets for 

interventions, the informative value of neuroimaging studies that employ affective cognitive 

tasks remains to be demonstrated.  

 

Taken together, depression is a mood disorder with putative contribution of both 

neurochemical/ -endocrinological factors and life events. Affected patients show substantial 

heterogeneity with regards to symptoms, and biological as well as clinical subtypes that allow 

a better understanding for personalised treatment remain to be identified. From a 

neurobiological perspective, depression is a circuit disorder for which multiple neural 

correlates have been reported, offering new ways to interrogate with invasive and non-invasive 

translational medicine. Further, entraining protective cognitive factors may be worthwhile to 

consider when developing new approaches to treat depression. Self-regulation training of 

relevant brain areas through fMRI-NF may for instance allow fostering perceived self-efficacy 

in patients.  

1.2.1.2 Treatment 

1.2.1.2.1 Pharmacological treatment 

The monoamine deficiency hypothesis remains the predominant pathological model in the 

treatment of individuals suffering from depressive disorder. Pharmacotherapy in depression 

acts on receptors of different monoamine transmitter systems, including Serotonin (e.g. specific 

serotonin reuptake inhibitors [SSRIs] such as Citalopram and Sertraline), Noradrenaline (e.g. 

selective serotonin and noradrenaline reuptake inhibitors such as Venlafaxine and Duloxetine). 
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Other pharmacotherapy is acting less selectively modulating activity of multiple receptor types. 

Tetracyclic antidepressant drugs for instance act on noradrenergic, serotonergic, but also 

dopaminergic and cholinergic receptors. The exact pharmacodynamics and thus also potential 

side effects of a given medication hence depend on the class that it belongs to, but also the 

specific compound (Geddes et al., 2012). For instance, where tricyclic medication often 

involves anticholinergic side effects (e.g. dry mouth and sweating), SSRIs may cause nausea 

and affect sexual functions (Anderson et al., 2000). More severe side effects and complications 

can include suicidal ideation, which has been associated in particular with SSRIs, and 

symptoms of Parkinsonism, which has been mainly reported for antipsychotic drugs that block 

dopamine receptors (Lenze et al., 2015). The efficacy of antidepressant medication compared 

to placebo has been repeatedly demonstrated. For instance, earlier meta-analyses suggested  an 

on average superiority with standardized mean difference of reduction in depressive scores by 

about 0.3 (Kirsch et al., 2008). However, the margin of gain is partly dependent on factors such 

as depression severity at baseline and duration of intake ( Fournier et al., 2010; Kirsch et al., 

2008; Sugarman et al., 2014). For instance, standardized mean differences between treatment 

and placebo may range from about 0.1 to about 0.5 for a range of baseline HDRS-17 scores 

from 18 to 28 (Sugarman et al., 2014). Another more recent meta-analysis, which represents 

the largest comparison between antidepressant and placebo medication published to-date 

including over 500 RCT with over 116,000 patients, corroborated and extended these findings 

to standardized mean differences in remission rates of about 0.3 (Cipriani et al., 2018). Further, 

the authors analysed the efficacy and acceptability of 21 different medications compared to 

placebo individually after correction for factors such as depression severity at baseline. All 

compounds were found more effective, however, odds ratio (OR) varied between 1.4 

(Reboxetine, a norepinephrine reuptake inhibitor) to 2.1 (amitriptyline, a tricyclic 

antidepressant) with regards to response rates. Efficacy was found in favour of the active drug 

for all included compounds. Acceptance was found largest for Agomelatine (a derivative of 

melatonin, OR 0.9) and lowest for Clomipramine (a tricyclic antidepressant, OR 1.3 in favour 

of the placebo). Noteworthy, quality control suggested that the majority (73%) of included 

studies were affected by publication bias to a moderate degree and hence reported efficacies 

likely were likely overestimated. First line treatment for moderate depressed patients usually 

includes the prescription of SSRIs. Epidemiological data obtained from the ‘Sequenced 

Treatment Alternatives to Relieve Depression’ (STAR*D) trial, which compared acute and 

longer-term treatment outcomes associated with up to four successive steps of treatment 

adaptation in over 4,000 moderately depressed patients, suggests that initial treatment with 
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Citalopram (an SSRI) is associated with a remission rate of over 35% (Rush et al., 2006). If 

patients do not respond adequately to a monotherapy, drug regimens can be combined, e.g. 

with another medication or psychotherapy (Chapter 1.1.13). Common medication 

combinations involve lithium and one of the above listed antidepressant, or a combination of a 

tricyclic compound and an SSRI (Anderson et al., 2000; Geddes et al., 2012). Subsequent 

strategies tested in STAR*D included switching to another treatment, or augmenting existing 

treatment, which yielded an average remission rate of about 30%. Of interest, STAR*D data 

also suggested that on average about 40% of patients who had completed treatment with 

Citalopram also relapsed after about 4 months. Taken together, pharmacological treatment 

yields remarkable clinical improvement, but individual treatment recommendations need to 

factor in potential side effects to optimise treatment compliance. Moreover, data suggested that 

while combining and changing medication can improve response and remission likelihood, 

about one third of patients remain depressed (Rush et al., 2006).  

 

1.2.1.2.2 Psychotherapy  

Besides psychopharmacology, mainstream treatments options currently include various forms 

of psychological treatment. The main psychological treatment that is being prescribed is 

cognitive behavioural therapy (CBT), which aims to modify destructive thinking patterns and 

behaviour in individuals suffering from mood disorder. One main goal of CBT is to equip 

individuals with more effective strategies to cope with challenges, it thus constitutes a form of 

therapy and prevention and is in particular recommended for individuals suffering from 

moderate to severe depression (Geddes et al., 2012). CBT employs mental imagery techniques, 

for instance to help patients mentalizing themselves in a different context (“reframing”) or help 

individuals in finding relaxation (Holmes et al., 2016; Holmes and Mathews, 2010; Pearson et 

al., 2015). With regards to the clinical efficacy of CBT, which is often prescribed alongside 

pharmacotherapy, meta-analyses suggest that it can yield moderate (Cuijpers et al., 2013a; 

Hofmann et al., 2012) to large (Johnsen and Friborg, 2015) effects.  

 

One challenge in demonstrating evidence for clinical efficacy of CBT is the choice of a suitable 

control group that can effectively control for unspecific effects including placebo. One 

prominent type of control involves randomizing patients to a waiting list, but this control group 

likely only captures relatively slowly occurring spontaneous remission and regression to the 

mean effects (Keller et al., 1992). Other studies refer to “treatment as usual” control groups 
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(TAU), against which CBT has shown superiority (Watts et al., 2015). However, the data also 

suggest that the exact definition of TAU form a heterogenous set of different interventions and 

treatment providers (Watts et al., 2015). Other meta-analyses have compared the clinical 

efficacy of psychotherapy in general (including CBT) to pharmacotherapy alone, and CBT to 

other forms of psychotherapy. Other forms of psychotherapy include psychodynamic therapy 

and interpersonal therapy. While the psychodynamic therapy mainly focuses on revealing and 

addressing unresolved unconscious intra and interpersonal conflicts, interpersonal therapy 

addresses interpersonal conflicts and social adjustment. One meta-analysis found that 

psychotherapy showed larger effects compared to tricyclic antidepressants (Cuijpers et al., 

2013b). It should be noted that this type of antidepressant medication does not represent first 

line treatment in depression and thus factors such as duration and chronicity that the meta-

analysis did not control for may have partly mediated these effects. Another meta-analysis 

found CBT to be more effective than psychodynamic therapy, but not more effective than 

interpersonal therapy (Tolin, 2010). Likewise with regards to prevention of relapse effects, 

both CBT and interpersonal are effective compared to groups that receive no treatment with a 

number needed to treat of about 22 (Cuijpers et al., 2008). Lastly, also the efficacy of 

combination therapy (psycho-and pharmacotherapy) compared to monotherapies 

(pharmacotherapy alone) has been investigated in meta-analyses. Data suggest that adding 

psychotherapy to medication yields larger clinical effects with a number needed to treat 

between 4 and 6 (Cuijpers et al., 2014). However, overall the literature suggests that therapeutic 

effects of CBT depend on factors such as the individual predisposing factors to develop 

depression, including the presence of other co-morbidities (Cuijpers et al., 2009), but also 

personality trait factors (Mulder, 2002). Overall, findings reported for CBT treatments require 

cautious interpretation because the literature is likely strongly affected by publication bias 

(Cuijpers et al., 2013a, 2010), and hence many reported effect sizes are likely overestimated 

(Figure 1.1). The effect of publication bias on reported effects in the psychotherapy literature 

(based on both self-reported and clinician rated measures) is also reflected in a negative trend 

over time with regards to the size of reported effect sizes, starting around the year 2000 when 

trial registration was introduced (Johnsen and Friborg, 2015). Similar patterns have also been 

identified for trials in other fields of medicine (Kaplan and Irvin, 2015) and can be explained 

by more rigorous and correct reporting that is reinforced by trial preregistration (e.g. avoiding 

the switch of outcome measures). Insightful epidemiological data of clinical effects have been 

reported by the STAR*D trial, which found CBT to yield (descriptively) superior remission 

rates compared to medication when patients switched from an SSRI to CBT. However, CBT 
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shows only comparable, or slightly inferior effects compared to other pharmacotherapy when 

used as an augmentation therapy (Rush et al., 2006). Taken together, meta-analytical evidence 

suggests that CBT yields moderate to large effects in the treatment of depression, although the 

choice of suitable control conditions remains a challenge. Further, when used in combination 

with pharmacotherapy or as a switch option, it likely yields larger effects compared to 

pharmacotherapy alone. However, treatment effects likely depend on the individual etiology 

and individual factors such as personality traits, which may mediate the acceptance of 

treatment.  

 

Mindfulness training combines mental exercises such as mental imagery techniques, with 

relaxation training and attention regulation. Mindfulness has been recommended by the 

National Institute for Health and Care Excellence (NICE) to prevent relapse into and treat acute 

depressive episodes and is being supported by the UK’s National Health Service (Marx et al., 

2015). Meta-analyses suggest that the average effect size of mindfulness training is moderate 

(Khoury et al., 2013; Strauss et al., 2014) compared to no treatment. However, the technique 

has shown no superiority compared to active controls that either received CBT or 

psychoeducation (Strauss et al., 2014). Further, the credibility of mindfulness trials published 

until 2013 has been called into question by a meta-analysis that found that only one in five 

published trials were registered, while the remaining trials did not fulfill this basic requirement 

set for evidence-based medicine. Further, no registered trial specified the primary outcome 

measure adequately, and over 60% of registered trials remained unpublished up to 2,5 years 

post-trial completion (Coronado-Montoya et al., 2016), indicating strong publication bias and 

file drawer effects (Chapter 1.2.1). Taken together, these data challenge the evidence based on 

which NICE has declared mindfulness training an effective treatment for depressed patients.  

 

1.2.1.2.3 Electroconvulsive therapy (ECT) 

For severely depressed patients or patients who are at acute risk to commit suicide, sessions of 

electroconvulsive therapy (ECT) may be prescribed (Geddes et al., 2012), which involve 

eliciting electric seizures that are applied to the scalp at sites close to the frontal or temporal 

lobes. Introduced in 1934, it is the oldest currently performed biological therapy (Payne and 

Prudic, 2009). ECT treatment is usually performed in an inpatient setting or ambulatory 

hospital setting because it involves anesthesia in form of a muscle relaxant and sometimes mild 

sedation (Geddes et al., 2012) and it thus requires medical supervision. ECT usually leads to 
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side effects such as headaches (due to muscle spasms) and it can also impair cognitive 

functions. Clinical experience (Geddes et al., 2012) and meta-analytical evidence suggest, 

however, that the majority of patients show improved cognitive performance (e.g. with regards 

to processing speed in reading, working memory and aspects of executive function) compared 

to baseline (Semkovska and McLoughlin, 2010). This may result from general mood 

improvement and therapeutic effects associated with the treatment. Long-term side effects (e.g. 

of re-occurring ECT treatment regimens) remain to be systematically investigated (Oremus et 

al., 2015). With regards to treatment response, ECT shows excellent effects, given the 

circumstance that it is predominantly used in patients where pharmaco-and psychotherapy has 

failed. The remissions rates following ECT are high with about 50% (Dierckx et al., 2012), and 

it may even be higher in patients who show larger treatment response to initial 

pharmacotherapy (Heijnen et al., 2010). Predictors for ECT response include old age and the 

presence of psychotic symptoms, a symptom that mostly occurs in severely depressed patients 

(van Diermen et al., 2018). Also, depression severity itself predicted response rates to a 

moderate degree, but it did not predict remission rates. Comparisons between the two dominant 

forms of ECT, bitemporal and high-dose right unilateral ECT, suggest that they are effective 

to a similar degree with regards to remission rates and change in depression scores. Moreover, 

both montages show a similar relapse rate. However, immediate side effects such as retrograde 

autobiographical memory loss are more severe for bitemporal ECT (Kolshus et al., 2017). One 

challenge in the evaluation of verum ECT treatment responses lies in the absence of 

placebo/sham control groups for the majority of conduced trials (Rasmussen, 2009; Read and 

Arnold, 2017). Further, remarkable remission rates reported for ECT are accompanied with 

similarly large relapse rates: according to one meta-analysis, every second patient relapses 

within 12 months, and every third patient relapses within 6 months despite continuation 

pharmacotherapy or continuation ECT (Kolshus et al., 2017). Yet, compared to other accepted 

treatments, these relapse rates remain largely comparable, if not superior to those reported for 

augmentation pharmacotherapy (Rush et al., 2006). Taken together, ECT remains a viable 

option for severely depressed patients where it shows remarkable effects, but the field still lacks 

convincing evidence of superiority over placebo treatment, which remains an admittedly 

challenging, but nevertheless required test given the ethical implications of ECT (Read and 

Arnold, 2017).  
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1.2.1.2.4 Experimental treatment options 

The treatment options reviewed in this paragraph are partly approved by the US based Food 

and Drug Administration and may thus not be universally considered as experimental. 

However, these treatment options are still largely investigated in early phase trials (Chapter 

3.4.3) and not widely prescribed. Hence, they are labelled as experimental for this review. 

Despite various treatment forms that are available in healthcare systems of developed countries, 

many patients do not respond to treatments prescribed through respective health care 

professionals. Overall, about one third of patients do not respond to standard treatments 

(pharmacological and /or psychological), often resulting in repeated hospitalizations and 

chronic disability (Rush et al., 2006), necessitating further exploration of alternative treatments. 

Several invasive and non-invasive treatments are currently being explored, including 

transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and 

deep brain stimulation (DBS). The last decade has seen considerable investment with regards 

to the non-invasive brain stimulation technique TMS. One meta-analysis published in 2017 

included 81 RCTs that had compared TMS treatment to sham stimulation (Brunoni et al., 

2017). Different TMS protocols exist that vary in stimulation frequency (e.g. low versus high 

frequency) and placement of stimulation coils (uni- vs. bilateral). With regards to response 

rates, more established TMS interventions such as low- and high frequency stimulation as well 

as bilateral stimulation of the dorsolateral prefrontal cortex yielded substantial effects 

compared to sham stimulation with OR ranging from 2.3 to 4.6. However, the study did not 

provide any formal test for publication bias and thus reported findings require cautious 

interpretation. Of interest, a small number of RCTs have also compared clinical effects of 

(high-frequency 10 Hz) TMS to ECT and found no group differences, although sample sizes 

were relatively small (Grunhaus et al., 2003, 2000; Rosa et al., 2006). Given that no 

equivalence tests or non-inferiority tests were provided, these results hence remain 

inconclusive and differences in efficacy cannot be ruled out (Chapter 3.4.1.5). For tDCS, fewer 

RCTs have been published and thus meta-analytical evidence is still scarce. One meta-analysis 

that included 6 RCTs concluded that patients showed larger reduction in symptoms compared 

to sham stimulation (Kalu et al., 2012). The study further provided data that indicated 

successful blinding of patients. Overall response rates were still relatively small with on 

average about 20% in main treatment groups. It should be noted that the level of evidence for 

tDCS RCTs in depression is compromised by several factors: relatively few studies with 

relatively small sample sizes have been published to date. Data suggests significant 

heterogeneity with regards to reported effects and used montage, rendering comparability 
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difficult. Further, many studies lack of clinical information regarding severity and chronicity 

of depression, which limits the generalisability and interpretability of reported findings (Kalu 

et al., 2012).  

 

DBS represents a set of invasive brain stimulation techniques, which has been mainly 

investigated for patients suffering from severe treatment resistant depression. Originally 

developed for the treatment of PD (Chapter 1.3.3.2.3), DBS was subsequently investigated for 

its therapeutic effects in obsessive compulsive disorder as the first neuropsychiatric application 

(Delaloye and Holtzheimer, 2014). DBS involves stereotactic neurosurgery and the 

implantation of stimulation electrodes. Reported perioperative side effects and complications 

are likely comparable to those reported for PD, where they have been reviewed more 

systematically (Benabid et al., 2009), including headache, seizure, infection and hemorrhage. 

Stimulation specific side effects depend on the location of electrodes. Previous trials have 

investigated the therapeutic potential of various stimulation sites including the nucleus 

accumbens, Brodmann area 25 (BA25) as part of subcallosal cingulate, ventral capsule/striatum 

and median forebrain bundle (Delaloye and Holtzheimer, 2014). For instance, one early open 

label study that targeted BA25 reported around 60% response and 50% remission rates, effects 

that lasted for several years. These results were largely replicated in larger open label studies 

that followed. Subsequently, the therapeutic potential of this technology was tested in a recent 

relatively large multi-center RCT, the Broaden trial (Holtzheimer et al., 2017). In total, 90 

patients were randomized to either a main treatment group (N = 60) that received active 

stimulation from trial beginning, or a placebo control group (N = 30) that received delayed 

active stimulation after 6 months. A remission rate of 40%, (based on a score ≤ 10 on the 

physician rated Montgomery-Åsberg Depression Rating Scale (Montgomery and Asberg, 

1979)) in the primary treatment group after 6 months of subcallosal DBS stimulation was 

defined as the trial’s target. In contrast, data suggested that only about 5% of patients had 

reached remission after 6 months. Moreover, the placebo group showed a very comparable 

reduction in their depressive scores, suggesting that observed clinical improvements were 

largely unspecific responses (Holtzheimer et al., 2017). Of interest, the trial sponsor (and 

manufacturer of the stimulation device) subsequently decided to pre-terminate the trial and the 

originally planned sample size of 200 patients was thus not reached. Data from long term 

follow-up to 30 months indicated, however, that the stimulation group had reached remission 

rates of 25-30% after 25-30 months. Moreover, this rate was about twice as large compared to 

the group that did not receive stimulation from the beginning. Hence, DBS remains a promising 
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brain circuit-based modulation technique that requires further exploration. Further refinement, 

for instance by means of neural markers, may yield larger clinical responses (Delaloye and 

Holtzheimer, 2014).   

 

fMRI-NF neurofeedback training represents a non-invasive way to modulate activity of brain 

areas (Chapter 1.3). The technique can enable patients to learn modulating activity in a specific 

cortical region using mental imagery and has been increasingly explored to treat psychiatric 

conditions including depression (Arns et al., 2017; Sitaram et al., 2017). fMRI-NF thus uses 

elements of CBT within a biopsychological framework that, similar to TMS and tDCS, 

understands psychiatric symptoms in a causal relationship with neural dysfunction Linden, 

2014). Compared to (passive) external brain stimulation, fMRI-NF entails an active component 

such that patients train positive mental imagery and may eventually experience the ability to 

self-regulate their own brain activity. It has been suggested that fMRI-NF may exploit 

cognitive mechanisms that play a role in the etiology and treatment of depression. For instance, 

by learning to self-regulate brain activity, patients may experiences increases  in self-efficacy 

(Linden et al., 2012; Linden, 2014), which describes an individual’s self-reported capacity to 

cope with challenges (Bandura, 1982) and can be measured with the self-efficacy scale (Sherer 

et al., 1982). Moreover, compared to brain stimulation, fMRI-NF is spatially not constrained 

to cortical regions and voxels can be selected in subcortical areas with a relatively high spatial 

precision (Weiskopf, 2012). Lastly, in search for neurofeedback protocols that are effective in 

treating depression, or even certain symptoms in depression, it may benefit from a rich body 

of existing literature that has described cognitive processes that are affected by the disorder 

and their neural correlates (Arnone et al., 2012; Bar, 2009; Linden, 2012).  

 

1.2.2 Stroke 

1.2.2.1 Main clinical characteristics and pathophysiology  

Stroke is the leading cause of adult disability and third leading cause for death (Losseff et al., 

2009). Although stroke mainly occurs in elderly patients, it may occur at any age and even 

before birth. Perinatal stroke represents the leading cause of cerebral palsy and about 25% of 

strokes occur before the age of 65. In an increasingly aging population, the prevalence of stroke 

in high-income countries among individuals below 75 years has increased from about 0.4 to 

0.5% between 1990 and 2000, while the incidence has decreased from about 0.15% to 0.14% 
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(Feigin et al., 2014). Data from individuals above 75 years shows a similar trend although 

changes are larger by the order of one magnitude (incidence 1990 to 2010 decreased from 3.2% 

to 2.6% and the prevalence increased from 4.9% to 6.2%). The costs of patient care are high 

and currently require an allocation of about 5% of the total health care budget in the UK. 

Regarding monetary investment into stroke research, stroke research represents an 

underfunded field in the UK relative to its health and economic impact on society and compared 

to other biomedical research areas including cancer and coronary heart disease  (Luengo-

Fernandez et al., 2015). Specifically, for every 10£ that is being spent for health and social 

costs associated with a respective health care condition, stroke research received in 2012 about 

0.19£, making up less than 1/5 (cancer) and less than 1/3 (coronary heart disease) of received 

research funding in other areas. 

 

Cerebral stroke is defined by a neurovascular injury that leads to hypo oxygenation in 

neighbouring parenchyma, resulting in cell death. Most cerebral infarcts are ischemic. In about 

10% of cerebrovascular stroke brain vessels cannot resist the increased pressure and hence tear, 

leading to cerebral bleeding and a haemorrhagic stroke (Losseff et al., 2009). The aetiology of 

a cerebrovascular event can be categorised intro three main types: 1) endogenous causes 

including infection, chemical agents, 2) exogenous causes including traumatic brain injury, and 

3) a combination of both. Haematogenic thrombi are the main endogenous cause. Risk factors 

include endogenous predispositions, including vessel malformations and genetic variants of 

lipoproteins, as well as modifiable exogenous risk factors such as smoking, and diabetes type 

II. Irrespective of the cause, hypertension and immobility are main risk factors for thrombosis, 

which may result in an embolism causing an infarct (Losseff et al., 2009). The time passed 

after stroke determines whether cases are classified as acute (1-3 weeks), subacute (1-3 months) 

or chronic  stroke, although different classifications have been suggested (Page et al., 2008; 

Tohgi et al., 1990) 

 

The vascular system that supplies the brain with oxygenated blood can be subdivided into an 

anterior and posterior circulation. The internal carotid artery (ICA) gives rise to the middle 

cerebral artery (MCA), which itself gives rise to the anterior cerebral artery (ACA). Vertebral 

arteries give rise to the basilar artery, from which smaller branches supply the brain stem 

structures including the pons, as well as the cerebellum. The basilar artery gives rise to the 

posterior cerebral artery (PCA), which communicates with the ACA, and it further intersects 

via smaller communicating arteries with the ICA via posterior communicating arteries. Also, 
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the left and right ACA form connections via anterior communicating arteries. This vessel 

architecture forms a collateral circulation system that has been described as the “Circle of 

Willis” (DeFelice et al., 2007; Liebeskind, 2003; Losseff et al., 2009). Anastomoses allow 

compensation for changes in blood perfusion and can maintain constant levels of blood flow 

to a certain extent, thereby preventing ischemic damage (Liebeskind, 2003). Major 

anastomoses are also formed between cortical branches of the ACA and MCA. Thereby, the 

system can compensate for perfusion deficits in the event of an infarct. Besides these main 

arteries, smaller vessels supply the brain stem (basilar arteries) and the cerebellum (anterior 

and posterior cerebellar artery).  

 

Clinical signs resulting from stroke depend on the location of the cerebral infarct and the 

affected vessel. For instance, infarcts in the PCA may result in cortical signs, including 

dysphasia (receptive or productive) including spatial neglects, hemianopia or other forms of 

cortical blindness (Losseff et al., 2009). The MCA is divided into several branches which 

supply frontal regions (upper branch), temporal brain areas (lower branch), and the basal 

ganglia (sphenoidal segment). Infarcts that involve the MCA perfusion territory, as confirmed 

by a CT, represent the most common types of stroke (Heinsius et al., 1998). MCA infarcts may 

result in hemiplegia, in particular of the upper limb and proximal lower limb, hemisensory loss, 

but also hemispatial neglect, and apraxia. Infarcts of distal branches that perforate parts of the 

frontal, parietal and temporal lobule often cause cortical signs. The ACA mainly supplies 

frontal regions, including the medial aspect of the motor cortex. Infarcts of more distal branches 

result in hemiparesis of the lower limb (Bogousslavsky and Regli, 1990). Further, patients may 

show impaired motor planning, also called ideomotor apraxia (Losseff et al., 2009) if aspects 

of the supplementary motor area (SMA), a premotor area that plays a key role in motor 

planning, are affected. Motor planning deficits occur mainly during acute stroke stages and 

may improve during subacute and chronic stroke phases (Brugger et al., 2015). In their most 

extreme form, ACA strokes may cause an alien hand syndrome such that the patient loses the 

sense of agency over the control of the affected limb. Productive aphasia (i.e. impaired speech 

production) and mutism are associated with left ACA stroke in particular (Kumral et al., 2002).  

 

Stroke is mainly diagnosed clinically and radiologically and indicated by a sudden acute 

neurological deficit (Kim et al., 2013; Losseff et al., 2009). Besides neurological examinations, 

neuroimaging facilitates the diagnosis and helps to determine the location and extent of the 

infarct. For ischemic stroke, MRI seems the most sensitive modality to image lesions, whereas 
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for haemorrhagic stroke, Positron emission tomography–computed tomography (PET/CT; 

without any contrast enhancements) is slightly more sensitive compared to MRI (Chalela et al., 

2007), however, it is rarely used. CT scans remain the method of choice to detect 

haemorrhages. Albeit not included in guideline recommendations yet, molecular imaging may 

provide more sensitive diagnostic and prognostic information markers in the future (Kim et al., 

2013).  

 

1.2.2.2 Treatment 

1.2.2.2.1 Acute treatment 

Stroke is an acute event that can be treated acutely to decrease neural damage and prevent 

functional impairment of stroke survivors. Specifically, causal treatments for acute ischemic 

stroke mainly aim to maintain cerebral hyper perfusion using pharmacological anticoagulation 

and, if available within the first four to five hours, pharmacological thrombolysis (Alper et al., 

2015). Given the limited time window and availability of specialised stroke units though, only 

an estimated  small fraction (5-15%) of stroke survivors can receive acute treatment options 

(Cramer, 2018; Grefkes and Ward, 2014). Furthermore, neurosurgical clot removal remains an 

option if performed within up to seven hours of symptom onset (Saver et al., 2016), although 

radiological thrombectomy seems to yield preferable outcomes and is increasingly being used 

in large stroke centres (Jansen et al., 2018). Long term treatment of stroke aims to prevent 

future thrombosis in the form of pharmacological anticoagulation and life style modification, 

and it targets cognitive and motor deficits using physiotherapy.  

 

1.2.2.2.2 Physiotherapy and constraint induced movement therapy 

Rehabilitation treatment for stroke survivors mainly consists of physiotherapy, which 

combines various techniques including strength, endurance and coordination training. Meta-

analytical evidence suggests that 30-60min physiotherapy training up to five days per week can 

yield small to medium improvement of motor function (Pollock et al., 2014). However, about 

one-third of patients with stroke suffer from persistent disability (Dimyan and Cohen, 2011). 

Several new therapies that target motor recovery of the hand and arm are currently evaluated 

with regards to their clinical efficacy. These include constraint induced movement therapy 

(CIMT), TMS (Schaechter, 2004), and motor imagery-based techniques (Sharma et al., 2006; 

Zimmermann-Schlatter et al., 2008). In CIMT, patients’ non-paretic limb is constrained in 

order to promote the use and recovery of the paretic limb: stroke causes mostly unilateral brain 
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lesions with contralateral hemiparesis and in consequence, patients often learn to compensate 

with their initially not impaired “good” limb, which results in “learned non-use” of the paretic 

limb (Taub et al., 2002). Such behavioural compensation is postulated to counteract motor skill 

rehabilitation via transcallosal projections and interhemispheric competition (Allred et al., 

2010). The framework of interhemispheric competition suggests that hyperexcitability of the 

unaffected (contralesional) hemisphere enhances inhibition of the affected (ipsilesional) 

hemisphere and hampers sufficient motor rehabilitation (Nowak et al., 2009; Hummel and 

Cohen, 2006). One meta-analysis across 15 RCTs found that CIMT treatment was associated 

with small additional improvement of arm motor function (~ Cohen’s d = 0.3)compared to 

treatment as usual (Corbetta et al., 2015).  

 

1.2.2.2.3 Non-invasive experimental therapies 

Some TMS protocols have also been designed to modulate pathological interhemispheric 

inhibition (Ward and Cohen, 2004), either by repetitive TMS stimulation (e.g. at 3Hz) of the 

affected hemisphere to increase its activity, or by applying inhibiting TMS pulses over the 

intact hemisphere, thereby decreasing its suppressive projections to the affected hemisphere 

(“re-facilitation”). However, the concept of disbalanced interhemispheric inhibition has been 

recently challenged by findings from a meta-analysis across 112 studies (McDonnell and 

Stinear, 2017). The authors reported no evidence for hyper-excitability of the unaffected 

hemisphere or imbalances in interhemispheric inhibition, which forms a main assumption of 

the interhemispheric inhibition disbalance model. The authors hence concluded that active 

stimulation of the affected hemisphere may be more effective in promoting post stroke 

recovery. Indeed, while this work suggests that the mechanism of actions remains unclear, it 

should be noted that moderate effects compared to sham stimulation have been reported for 

(ipsilesional) M1 TMS stimulation, in particular subcortical stroke patients (Hsu et al., 2012).  

 

Another form of adjunctive therapy that is currently being investigated for its potential in 

restoring motor function is motor imagery training, which constitutes a form of mental practice 

(Sharma et al., 2009b, 2006). The neural circuitry involved in motor imagery largely overlaps 

with the circuitry involved in motor execution, as shown by functional neuroimaging studies 

(see for review; Hétu et al. 2013). The available literature of mental practice-based trials in 

stroke motor rehabilitation is limited to a small number of studies. One meta-analysis reviewed 

effects reported in 5 placebo controlled studies and found that mental practice combined with 



Clinical Applications of fMRI neurofeedback training – David Marc Anton Mehler – November 2018 

     48 

W
o

rd
 T

e
m

p
la

te
 b

y
 F

ri
ed

m
an

 &
 M

o
rg

an
 2

0
1

4
 

physiotherapy outperformed physiotherapy training alone (Barclay-Goddard et al., 2011). The 

associated effect size was found to be large, but it requires cautious interpretation and further 

(independent) replication given the small number of studies that mainly stem from one research 

group (Figure 1.1).  

 

Robot-assisted motor training is another interactive, high-technology approach that is being 

investigated in clinical trials for its potential to promote upper limb recovery after stroke 

(Turner et al., 2013). In robot-assisted motor training patients learn to control a robotic 

manipulandum with their affected limb. Various paradigms have been developed that can be 

adapted for training needs of the individual patient, including training of coordination and 

force. Most robot manipulanda setups consist of a robotic arm that allows patients to control a 

cursor on the screen. Motors of the manipulandum can be programmed to interact physically 

with patients’ limb kinematics, for instance to facilitate movement initiation, guide whole arm 

movements along a desired trajectory, or perturb movements by creating resistance during 

goal-oriented reaching movements. Other more recently developed paradigms have introduced 

implicit reinforcement learning that allow participants to learn new joint configurations without 

conscious awareness of underlying task dimensions (Mehler et al., 2017b). Compared to other 

experimental treatment forms, the literature of robot-assisted motor training features more 

published RCTs, providing a more robust estimate of evidence. Based on 31 trials published 

until February 2015, a meta-analysis estimated a small to medium effect sizes for motor 

function improvement of the upper limb as well as increase in arm muscle strength (Mehrholz 

et al., 2015).  

 

Brain Computer Interfaces (BCI), including neurofeedback training represent a more recently 

developed set of techniques that combine motor imagery training with a reinforcement signal. 

BCIs are brain machine interfaces (BMIs) that use real-time analysis of brain signals that are 

transformed into either a form of feedback or a control command for an external device 

(Birbaumer et al., 2009). Neurofeedback experiments are one specialised form of BCIs, but not 

all BCIs provide neurofeedback. During BCI experiments, recorded brain signals are usually 

amplified and filtered and then submitted to an algorithm that computes a brain activity 

measure of interest. Target signatures may include power changes of a specific frequency band, 

lateralisation differences in activity between hemispheres, or more generally multivariate 

classification of different brain states (Chaudhary et al., 2016). The output of the computation 

can then be transformed to provide feedback to the participant, for instance in form of a visual 
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thermometer that represents the activity strength during motor imagery, auditory feedback 

whose amplitude varies with activity strength, or a visual arrow that indicates the decoded 

direction of imagined (left or right) hand movements. Alternatively, the output can be used to 

control more complex external technology such as a spelling device to study basic 

communication capacities in patients suffering from complete locked-in syndrome (Chaudhary 

et al., 2017), a robotic arm (Chapin et al., 1999) as a mind controlled protheses (Pruszynski and 

Diedrichsen, 2015), or non-invasive brain stimulation (e.g. TMS) of an area of interest (see 

overview of ongoing trials in Chaudhary et al. 2017).  

 

Despite a growing interest in BCIs for motor rehabilitation (Chaudhary et al., 2016), currently 

available evidence from controlled clinical studies conducted in stroke patients remains 

limited. A recent meta-analysis identified 9 controlled BCI studies that targeted upper limb 

functional recovery (Cervera et al., 2017). The authors found moderate evidence compared to 

control groups, but they also noted that studies varied considerably with respect to reported 

effect sizes, as well as with respect to the type of control that was used. Of interest, while the 

authors found that clinical effects exceeded the MCID defined for stroke (a reduction of 5.25 

points measured on the Fugl-Mayer scale) in 8 out of 9 trials, however, the superiority of the 

main over the control group exceeded the MCID in only 3 studies (Cervera et al., 2017).  

  

Lastly, one meta-analysis compared the effectiveness of different adjunctive motor 

rehabilitation approaches for upper limb treatment (Langhorne et al., 2009). The review 

identified 19 different categories of interventions, including mental practice (i.e. motor 

imagery) based techniques, reinforcement feedback based robotic therapy and CIMT. Direct 

comparisons revealed that these treatments seemed most effective in promoting upper arm 

recovery. Of interest, neurofeedback training combines some of these elements and may further 

specifically target neural correlates that have been identified after conventional treatment and 

during natural recovery.  

 

1.2.3 Parkinson’s disease  

1.2.3.1 Main clinical characteristics and pathophysiology 

Idiopathic Parkinson’s disease (PD) is the second most common neurodegenerative disorder, 

affecting 1% of people over the age 60 and 3% of people over 80 years (de Lau & Breteler, 
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2006). Cardinal symptoms in early PD stages include tremor (shaking), rigor (stiffness), 

bradykinesia (slowing of movements) and later akinesia (absence of movement), as well as 

postural instability. These motor symptoms form the basis of the clinical diagnosis Parkinson’s 

disease. Besides motor symptoms, it should be noted that PD patients also suffer from non-

motor symptoms including sleep disturbances, mood disorders and cognitive impairment 

(Marsili et al., 2018).  

 

The underlying molecular neuropathology is complex and affects multiple neurotransmitter 

systems including the serotonergic raphe nuclei, the cholinergic nucleus basalis, as well as the 

dopaminergic midbrain (Losseff et al., 2009). Central for an understanding of key motor 

symptoms and successful pharmacological therapy are changes of the dopaminergic midbrain 

due to cell death of dopaminergic cells in the substantia nigra pars compacta (SNc). The SNc 

forms an integral part of the basal ganglia (Fig. 5.1). Two pathways between the SNc and the 

putamen have been identified that are dopamine mediated and act via excitatory (D1 receptor 

mediated) and inhibitory (D2 receptor mediated) pathways on the putamen. In healthy 

individuals, excitatory dopaminergic simulation from the SNc to the putamen disinhibit the 

globus pallidus internus (GPi) and thereby the thalamus. In consequence, the thalamus sends 

more glutamergic excitatory projections to the cortex (historically known as the direct 

pathway). With increasing loss of dopaminergic cells in PD, this pathway fails to disinhibit the 

thalamus and reduces excitatory stimulation of the cortex.  
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Figure 1.3  Schematic diagram of basal ganglia circuitry in healthy controls (A) and 

PD patients (B), modified from (Lewis et al., 2003).  

A second pathway (historically known as the indirect pathway) comprises inhibitory 

projections from the SNc to the putamen, which disinhibit globus pallidus externus (GPe). As 

a result, the GPe disinhibits the thalamus, which itself is suppressed in its activity via the GPi 

(as described above), as well as the substantia nigra pars reticularis (SNr). Loss of 

dopaminergic projections from the SNc result in an imbalance such that the (movement 

suppressing) indirect pathway becomes hyperactive and the (movement disinhibiting) direct 

pathway becomes hypoactive (Figure 1.3 A, B). Moreover, projections between the STN and 

motor cortices (hyperdirect pathway) mediate the activation and suppression of motor 

programmes by interacting with the GPi and SNr (Nambu et al., 2002). Cortical structures such 

as the supplementary motor area (SMA) and the primary motor cortex (M1) send and receive 

direct projections to and from the STN. Although the role of the hyperdirect pathway in the 

development of motor deficits is currently less well understood (Nambu, 2008), it likely 

promotes voluntary movements in healthy individuals and that this function is dependent on 

dopamine (Chu et al., 2017). Disturbances of the pathway due to dopaminergic loss contribute 

to poverty, slowness and eventually absence of movement in PD patients (Nambu et al., 2015; 

Rodriguez-Oroz et al., 2009). Taken together, alterations in three neural pathways central to 

motor control have been described in PD and related to slowed movements and rigid joint 

control. With disease progression, patients also increasingly suffer from cognitive deficits,  

including learning difficulties, memory loss, attention deficits and dementia that manifest in 

80-90% of late stage PD patients (Biundo et al., 2016; Gratwicke et al., 2015).  

 

Disease progression can be classified into different stages based on the severity of 

motor symptoms. Two widely used staging systems for PD are the Hoehn-Yahr (HY) score, 

and the modified Unified Parkinson’s Disease Rating Scale (MDS-UPDRS). The HY 

classification grossly defines PD by five stages based on the extent of motor impairment (Table 

1.3). The MDS-UPDRS scale, in contrast, is a continuous scale that is partly based on patients 

self-reports, partly on ratings by a (blinded) assessor (Goetz et al., 2008). The MDS-UPDRS 

scale comprises four subparts that focus on the impact of non-motor symptoms such as mood, 

perception and vegetative functions (Part I), a self-evaluation of the impact of PD on activities 

of daily life including handwriting, tremor and hygiene (Part II), a clinician-scored monitored 

evaluation of motor symptoms including rigidity, bradykinesia and various evaluations of 
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tremor (Part III), and lastly evaluations of therapy complications including dyskinesia (Part 

IV).  

 

Stage Hoehn and Yahr Scale 
Median total months 

to transit 

 

1 

Unilateral involvement only usually with minimal or 

no functional disability 

 

      - 

 

2 

Bilateral or midline involvement without 

impairment of balance 

 

       20 

 

3 

Bilateral disease: mild to moderate disability with 

impaired postural reflexes; physically independent 

 

     107 

 

4 

Severely disabling disease; still able to walk or stand 

unassisted 

 

     131 

 

5 Confinement to bed or wheelchair unless aided      157  

Table 1.3  Hoehn and Yahr Scale staging. Months in far right column show the 

median time until a respective stages was reached in an observational study with over 690 

patients (Zhao et al., 2010).   

 

1.2.3.2 Treatment 

1.2.3.2.1 Pharmacological treatment 

Pharmacological treatment represents the main treatment for PD and focuses predominantly on 

compensating for the loss of dopaminergic SNc neurons. Different pharmacological agents that 

act on the dopaminergic circuitry from different angles are available. These include dopamine 

receptor agonists that mimic dopamine effects, monoamine oxidase inhibitors (MAOI) that 

prolong the presence of available dopamine, and Levodopa (L-Dopa) as a brain barrier 

permeable precursor amino acid of dopamine that is converted into Dopamine by an enzyme 

(Aromatic L-amino acid decarboxylase). L-Dopa, however, may lead to involuntary excessive 
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movements (dyskinesia). Up to 40% of patients may experience dyskinesia after 4-6 years of 

treatment (Ahlskog and Muenter, 2001). To minimise the risk for such motor complications, 

guidelines recommend using receptor agonists or MAOI in early disease stages, thereby 

postponing treatment with L-Dopa to later disease stages (Connolly and Lang, 2014). On the 

other hand, dopamine agonists may have an adverse side effect profile including somnolence, 

neuropsychiatric symptoms such as hallucinations and impulse control disorder, but also 

(partly reversable) fibrosis of organ cavities such as the pericardium or lung pleura (Antonini 

et al., 2009). Overall, pharmacological treatment is an essential component in managing motor 

symptoms in PD patients. Yet, benefit-to-risk ratios must be considered by the clinician to 

minimise side effects and limit treatment discontinuation.  

 

1.2.3.2.2 Physiotherapy 

For physiotherapy, effects of exercise training have been investigated with respect to gait and 

postural stability. Meta-analyses found moderate effects for health care facility based compared 

to home based interventions (Klamroth et al., 2016; Shen et al., 2016). Likewise, another recent 

review concluded that physical therapy training can modify long-term motor symptoms and 

shows promise with regards to balance. Further, new technology such as Google Glass could 

be used to support patients by cuing movement (Mak et al., 2017). With regards to alternative 

forms of movement therapy, one meta-analysis analysis of dance therapy interventions reported 

moderate effects on gait stability, improvements for the UDPRS-III, and increased self-

reported quality of life (Sharp and Hewitt, 2014). However, it should be noted that in particular 

earlier physiotherapy studies show strong indications of publication bias and lacked 

meaningful follow-up periods (Gage and Storey, 2004). Although it remains to be tested, study 

quality may also have improved for physiotherapy trials in PD with the introduction of trials 

registration and CONSORT, resulting in more published null findings. Noteworthy, two 

independent recent well controlled RCTs question the futility of physiotherapy as an add-on 

treatment in PD: the studies compared changes in motor symptoms and quality of life for 

different forms of physiotherapy (patient-centred and high intensity exercise) that were 

prescribed in addition to pharmacotherapy versus TAU (i.e. pharmacotherapy alone) and found 

no clinically meaningful (MCID) superiority for additional physiotherapy (Clarke et al., 2016; 

Schenkman et al., 2017). Given these findings, larger futility trials are warranted. Noteworthy, 

although group means did not show clinically meaningful changes (>3.5 points) compared to 

TAU, individual data points in either group indicated that some patients improved remarkably 
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(by about 20 points on the UDPRS-III), whereas others deteriorated to a similar degree. Taken 

together, albeit widely prescribed in clinical practice, the evidence for the therapeutic value of 

physiotherapy remains unclear. Moving the focus beyond group means, however, data 

indicates that some patients deviate largely in their response. Employing cross-over trial 

designs in combination with detailed phenotyping of patients (including a personal sports and 

exercise histories) could allow identifying predictors for whether patients would benefit or 

deteriorate from a specific treatment form.  

 

1.2.3.2.3 Invasive deep brain stimulation (DBS) 

Deep brain stimulation (DBS) remains a treatment option for individuals where 

pharmacological treatment and adjunctive physiotherapy do not provide sufficient 

improvement of motor symptoms, or where medication associated dyskinesia becomes 

unbearable (Benabid et al., 2009). DBS involves the implantation of electrodes whose activity 

is controlled by a battery-operated implantable pulse generator. The procedure involves 

stereotactic neurosurgery, requiring that patients are in a general good health condition. DBS 

stimulation protocols mostly operate with high-frequency stimulation (~140Hz) of the STN, 

but also the GPi and thalamus may be targeted and provide good clinical outcome in reducing 

resting tremors. Optimal stimulation frequencies are determined in patients individually during 

follow-up phase (Benabid et al., 2009). Identifying the underlying neurophysiological 

mechanism(s) of action remains an active field of research and several models have been 

suggested based on electrophysiological recordings in PD patients, animal models, and 

computer simulation work (Chiken and Nambu, 2015; Santaniello et al., 2015; van Wijk, 

2017). However, one main observation that has replicated in multiple studies is an amplitude 

reduction in beta frequency band (13-30Hz) after STN (Hammond et al., 2007; Santaniello et 

al., 2015; van Wijk, 2017) and pallidal DBS (Wang et al., 2018), which correlates with 

improvements of motor symptoms. Within the STN, beta oscillations are mainly detected 

within the dorsolateral portion, which is organised somatotopically (Miyachi et al., 2006). The 

potential significance of this finding in the search for potential electrophysiological markers 

for EEG-NF training will be discussed in Chapter 8. DBS has been found highly effective in 

reducing motor symptoms. One comprehensive meta-analysis based on 15 years clinical trial 

experience with DBS treatment in advanced PD patients reported 30-70% improvement for 

rigidity, 60-90% improvement of resting tremor, and 30-70% on the UPDRS-III. As a result, 

patients’ medication dose (measured in the equivalence of L-Dopa) could be decreased by 20-
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65% (Benabid et al., 2009). In consequence, also medication related dyskinesia decreased in a 

substantial proportion of patients (40-90%). Recent work suggests that the hyperdirect pathway 

plays a pivotal role in the clinical effects that can be achieved with DBS (Akram et al., 2017; 

Chou et al., 2015; Muthuraman et al., 2017). This suggests that direct communication between 

these two areas may relate to some key clinical motor features observed in PD.  

 

Regarding the side effects that can occur during DBS treatment, one can distinguish between 

complications arising from the implantation procedure (peri-operatively), from physical 

irritation of surrounding tissue by the hardware, and from the high frequency stimulation itself. 

Implantation related complications mainly include haemorrhages, which occur on average in 

about 8% of patients, and postoperative confusion (about 10%). Peri-operative mortality can 

occur, but currently available data limits estimating its prevalence. One study found that in 109 

DBS PD patients that received some of the first available STN implantations between 1998 

and 2002, two patients died due to complications related to surgical procedures (embolisms 

and pneumonia) that can occur particularly in elderly patients (Umemura et al., 2003). The 

second type of complications are related to the implanted hardware and are more prevalent. 

These complications mainly consist of infections with reported incidences varying largely 

between studies (from 2.5% up to 50%), as well as malfunctioning of hardware parts. Although 

hardware failure represents a relatively common complication among all DBS treatment 

associated complications, it is well manageable in most cases and requires treatment 

discontinuation in a fraction (~6%) of patients (Benabid et al., 2009). Lastly, simulation related 

neurological side-effects can occur, but these are rarely permanent and can be reversed, e.g. by 

optimising the stimulation protocol. Stimulation related side effects  include dysarthria and 

hypophonia (4-17%), as well as voltage-dependent dyskinesia, which can be reduced or 

stopped by reducing the stimulation strength (Benabid et al., 2009). To summarise, DBS 

treatment provides effective reduction of key PD motor symptoms and can reduce motor 

complications that result from dopamine replacement therapy. Moreover, DBS treatment in 

combination with simultaneous recordings provide a better understanding of 

electrophysiological correlates of movement deficits observed in untreated PD patients. 

However, the risk of side effects and their potential impact on the patient need to be considered 

on a case by case basis.  
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1.2.3.2.4 Non-invasive experimental forms of treatment 

Experimental nonpharmacological and non-invasive interventions include brain stimulation 

(Chou et al., 2015), motor imagery training (Harris and Hebert, 2015), and neurofeedback 

training (Esmail and Linden, 2014). These techniques are being investigated for their clinical 

potential as add-on therapies, and if they are found being effective, they may help improving 

motor symptoms, delay disease progression, or possibly allow reducing the dose of on-going 

pharmacological treatment. However, current evidence for the effectiveness of all these 

techniques is scarce. For non-invasive TMS brain stimulation, one recent meta-analysis 

suggested moderate superiority compared to placebo control sham TMS (Chou et al., 2015). 

Data further indicates that effects for certain brain sides and stimulation parameters may lead 

larger clinical benefits. For instance, high-frequency (>5Hz) TMS over M1 seems to show 

higher clinical efficacy compared to high-frequency TMS over frontal regions. With regards to 

motor imagery training, preliminary work found that motor imagery training in combination 

with physical exercise can reduce bradykinesia (Tamir et al., 2007). These findings have more 

recently been corroborated in a randomised, single-blinded controlled trial with a relatively 

large sample size (N = 66) that included 40 training sessions of mental imagery training per 

patients over 8 weeks (Ajimsha et al., 2014). The main treatment group received in addition to 

physical exercise training instructed mental imagery training that consisted of motor imagery 

exercises, but also relaxation and body scanning mentalisation techniques. The control group 

received physical exercise training only. Both groups showed significant improvements in 

motor symptoms on the UPDRS-III, but the combination group showed a larger improvement 

of 6.8 points at the primary end-point, including a stronger reduction of bradykinesia (2 points) 

and resting tremor (1.5 points). Superiority was also maintained four weeks later at follow-up 

with 4.3 points, a group effect that lies within the range of MCID defined for PD motor 

symptoms (Horvath et al., 2014). Lastly, neurofeedback training, which combines motor 

imagery training with positive reinforcement learning (Chapter 2.1.1), may provide another 

way to target brain activity non-invasively. Neurofeedback in PD has been investigated using 

fMRI and EEG in a small number of studies (see for review Chapter 2.1.5 and Chapter 8).   
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2 REVIEW OF CLINICAL REAL-

TIME FMRI NEUROFEEDBACK 

APPLICATIONS  
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2.1.1 Principles of learning and transfer 

Neurofeedback training constitutes a special form of Brain Computer Interfaces (BCI) and 

hence a special form of biofeedback training (Birbaumer et al., 2013). In biofeedback training, 

biological signals, for instance the pulse or skin conductivity, are measured in real time. Signal 

intensities are transformed to a measure of activity that reflects the training goal, for instance 

a percent signal change compared to a rest period. The obtained value is then transformed into 

a feedback cue, for instance a thermometer with filling bars, that reflects the activity level and 

that is fed back to the participant. The goal of biofeedback techniques is to train participants in 

attaining volitional control over the underlying signal that informs the feedback they are 

presented with. At first, participants usually have no concept of the cause of signal, although 

initial strategies such as mental imagery techniques may be provided to accelerate the early 

learning phase. Through trial and error, participants can learn to manipulate the signal by the 

means of instrumental operant (reinforcement) learning (Birbaumer et al., 2013). Classical 

operant learning requires a contingent association between a stimulus that is being conditioned 

(CS) and a reinforcing signal that is an unconditioned signal (US). In the context of 

neurofeedback training, the CS represents the brain response that is being trained, and the US 

constitutes the feedback signal which acts as a reward. The specific task that participants 

perform during training (e.g. mental imagery) constitutes the operant behaviour that is being 

rewarded. Of interest, it has been shown that learned up-regulation of target motor areas 

through motor imagery training can be modulated by the presentation of cues that have been 

rewarded in a different context (Mendelsohn et al., 2014). Specifically, activation in motor 

imagery related areas as well as areas associated with motivation in general (e.g. the ventral 

striatum) could be enhanced during concurrent presentation of reward-related cues. This 

finding indicates that the association between CS and US can be modulated by Pavlonian-

instrumental-transfer (PIT) learning, rendering mental imagery-based reinforcement 

biofeedback training a viable option to modify cognition and behaviour. PIT represents a key 

concept in the study of cue related behaviour and cognition (Cartoni et al., 2016) and may thus 

provide a therapeutic mechanism in the treatment of psychiatric conditions, including 

depressive disorder (Huys et al., 2016), but also in neurorehabilitation by modifying preference 

of limb use after neural injury (Hosp and Luft, 2013; Mosberger et al., 2016).  

 

The first reports of neurofeedback training used electroencephalography (EEG) in the late 

1950’s (Thibault et al., 2016). During EEG neurofeedback (EEG-NF) training, 
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electrophysiological activity recorded from the scalp comprises the biological signal that 

participants are trained to control (see Chapter 3.1 for a more detailed description). Real-time 

functional magnetic resonance imaging neurofeedback (fMRI-NF) is a rather recent 

development (Weiskopf et al., 2003). During fMRI-NF training, the blood oxygenation level 

dependent (BOLD) contrast represents the biological signal that participants are trained to 

control. The BOLD contrast is an indirect measure of neural activity because its biological 

basis is the local level of deoxyhaemoglobin (see Chapter 3.2 for a more detailed description). 

BOLD is regulated by various molecular pathways that are linked neural computations, the 

vascular architecture and metabolic demands (Shmuel, 2010). Hence, during real-time fMRI-

NF training, the biological signal that is being fed back to the participant is partly modulated 

by neural activity, but also other non-neural factors that can modulate the BOLD signal 

including changes in breathing, heart rate and carbon dioxide (Murphy et al., 2013). Moreover, 

it depends on the ability of brain vessels to adapt local arterial blood supply by the means of 

constriction and dilatation in response to changing metabolic demands (that result from 

variations in neural activity during a given task). Birbaumer and colleagues have thus 

hypothesised that successful NF training constitutes a form of skill learning and highlighted 

the central role of the basal ganglia, which form a key structure in reward processing and 

reinforcement operant learning. This conjecture was partly supported by a recent meta-analysis 

(Emmert et al., 2016), which reported that parts of the basal ganglia, as well as the anterior 

insula were activated across various fMRI-NF paradigms. However, it should be noted that this 

analysis did not account for mere self-regulation attempts in the absence of feedback. Indeed, 

earlier work suggests that these areas, together with structures such as the supplementary motor 

area (SMA), form part of a frontoparietal network that is involved in cognitive control (Ninaus 

et al., 2013). Hence, the specificity of neural correlates identified during fMRI-NF tasks 

remains to be shown to allow dissociating in how far these reflect true learning of self-

regulation, or merely exerting cognitive control. Additional models that have been proposed to 

describe neurofeedback learning mechanisms are summarised in (Sitaram et al., 2017).  

 

Besides neural and behavioural effects co-occurring during neurofeedback training, training 

effects that last after training periods are of interest. Briefly, lasting training effects can be 

achieved at different levels of organisation, representing different degrees of generalizability. 

For instance, individuals may learn to self-regulate the activity of an area or a network when 

no feedback is being provided. Depending on the way the feedback is being calibrated, 

individual successful strategies may vary with regards to content and modality between 
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participants. The ability to self-regulate activity is predominantly tested with transfer runs 

during which participants apply learned mental strategies but do not receive feedback. Another 

training goal may aim to enhance mentalising specific content (e.g. motor imagery, or positive 

autobiographical mental imagery), for which fMRI-NF training mainly represents a training 

vector that enables participants to develop successful mentalising strategies. Such training 

effects can be tested using mental imagery questionnaires or mental imagery-based tasks where 

accuracy and reaction times provide additional measures of mental imagery performance. 

Furthermore, successful training strategies may be associated with additional training effects, 

and for instance generalize as a behavioural effect that can be detected with a psychometric 

measure, a clinical scale or an independent behavioural task. Generalisation beyond the training 

task constitutes the ultimate goal behind fMRI-NF training interventions because they can 

modify behaviour in a way that yields favourable clinical outcomes, for instance by reducing 

pathological, and/or increasing physiological or compensatory behavioural strategies. (Arns et 

al., 2017). Studies that aim to demonstrate generalisability of training effects ideally include 

adequate control groups, randomised treatment allocation and blinded assessment (RCTs), 

allowing to demonstrate specificity of training effects and minimise potential biases (see 

Chapter 3.4.4). Besides behavioural changes, physiological changes may result from training 

effects. These include functional measurements such as peripheral skin conductance, or the 

covariance structure of fMRI time series between brain regions, as well as changes related to 

the integrity of white matter pathways (Sitaram et al., 2017).  

2.1.2 Clinical applications of fMRI-NF 

Main training goals of fMRI-NF paradigms include reinforcing specific mental strategies of 

participants and their associated neural states. Clinical fMRI-NF training based on motor 

regions may for instance aim to improve stroke survivors’ ability to imagine movements 

performed with a lesioned arm (Sharma et al., 2009b; Sitaram et al., 2012). Another application 

for fMRI-NF may be to support patients in achieving a mental state with the aim to reduce 

specific symptoms. Patients suffering from depression for instance often report lacking the 

ability to mentalise positive thoughts. fMRI-NF training based on regions that are associated 

with positive affect may for example aim to facilitate this process. These examples constitute 

a form of supervised mental imagery training, in which the teaching signal is provided by the 

feedback that indicates activation of a region of network that is of interest for the individual 

condition. Most neurofeedback experiments that have been conducted to date represent a form 

of supervised mental imagery training (Sulzer et al., 2013). Compared to traditional EEG-NF 
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or EEG based BCI paradigms, fMRI-NF provides a relatively high spatial resolution and thus 

allows targeting motor regions with higher specificity. In particular, the ability to achieve 

whole brain coverage renders fMRI-NF a promising technique for non-invasive neurological 

and psychiatric rehabilitation, allowing to provide feedback from subcortical brain areas 

(Weiskopf, 2012). Most current fMRI-NF protocols instruct participants to engage in a form 

of mental imagery (Sulzer et al., 2013), but neurofeedback has also been provided on other 

tasks such as motor execution (Neyedli et al., 2017). Another set of techniques that employs 

multivariate statistical analyses (decoded neurofeedback training; DecNef) does not require 

conscious mental strategies. The technique entrains activity patterns associated with desired 

perceptive or attentive states, opposed up- or down-regulation training of regions in 

conventional univariate fMRI-NF (Shibata et al., 2011; Watanabe et al., 2017). A detailed 

review of DecNef would exceed the scope of this thesis, but discussions in Chapters 5 and 9 

will touch on potential advantages compared to conventional fMRI-NF training.  

 

Various fMRI-NF paradigms have been piloted for application in psychiatric (Arns et al., 2017; 

Sulzer et al., 2013) and neurological patients over the last seven years (Wang et al., 2017). 

With regards to psychiatric applications, proof-of-concept (PoC) studies have been conducted 

in patients suffering from substance use disorder involving alcohol or cocaine, as well as in 

nicotine dependence (Hartwell et al., 2016; Karch et al., 2015; Kirschner et al., 2018; Li et al., 

2012). For anxiety disorders, fMRI-NF training has been explored in patients suffering from 

general anxiety disorder,  phobia and post-traumatic stress disorder, demonstrating general 

feasibility (Cordes et al., 2015; Gerin et al., 2016; Hampson et al., 2012; Keynan et al., 2016; 

Scheinost et al., 2013; Zilverstand et al., 2015). Other studies have demonstrated general 

feasibility  in patients suffering from unipolar depressive disorder (Linden et al., 2012; Young 

et al., 2014). However, evidence for clinical efficacy from randomised controlled studies 

conducted in patients remains scarce. To-date (January 2018), the published literature of fMRI-

NF for psychiatric conditions consists of only one registered RCT that was conducted in 

depressed patients (Young et al., 2017). With regards to other psychiatric conditions, several 

RCTs are currently registered on clinicaltrials.gov (as of January 2018) that investigate 

therapeutic effects of fMRI-NF training in alcohol addiction (Linden et al., NCT02486900), 

anxiety in adolescents (Cohen-Kadosh et al., NCT02440451), autism spectrum disorder 

(Castelo-Branco et al., NCT02440451), eating disorders (Hallschmid et al., NCT02148770) 

and various registered trials in depression (Chapter 2.1.3).  
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In comparison to fMRI-NF studies with psychiatric applications, less work with neurological 

patients has been published. Two PoC studies focused on the rehabilitation of cognitive 

functions, including one study that aimed to improve memory in Alzheimer’s disease 

(Hohenfeld, Christian Nellessen et al., 2017), and one study that trained higher visual areas 

with the aim to reduce visuospatial neglect in stroke patients (Robineau et al., 2017). With 

regards to motor rehabilitation, more PoC studies have been published, including one PoC 

study with Huntington’s disease patients (Papoutsi et al., 2018), two small PoC studies with 

stroke patients (Liew et al., 2015; Sitaram et al., 2012) and two PoC studies with Parkinson’s 

disease patients (Buyukturkoglu et al., 2013; Subramanian et al., 2011). The PoC studies in 

Parkinson’s disease patients has informed the design of a more recently published registered 

RCT (Subramanian et al., 2016). Lastly, one fMRI-NF RCT in stroke is currently (as of January 

2018) registered on clinicaltrials.gov (Cohen et al., NCT02089776).  

 

2.1.3 fMRI-NF in Major Depressive Disorder 

Major depressive disorder (MDD) is currently the most intensively studied psychiatric 

condition in the context of fMRI neurofeedback. Out of 14 psychiatric RCTs that registered on 

ClinicalTrials.gov as either completed or still active, five trials (~36%) focused on depression 

(the search term “fMRI neurofeedback” was used; studies with status terminated, withdrawn 

or unknown as of January 2018 were excluded). The higher spatial precision of fMRI-NF and 

better access to deep brain areas compared to EEG-NF (Thibault et al., 2016) comes in 

particular to fruition in the treatment of depression, where the technique can target neural 

mechanisms underlying widely accepted cognitive models of depression (Disner et al., 2011). 

Specifically, neuroimaging studies indicate that negative cognitive biases observed in patients 

can be explained in terms of an increased drive of subcortical emotion processing and 

attenuated top-down cognitive control. Published and ongoing PoC studies and trials employ 

self-regulation of emotions using mental imagery, recall of autobiographical memories, or 

cognitive control strategies during exposure to affective external stimuli. fMRI-NF research 

published to-date has focused on one of either two aspects of the cognitive model: One set of 

studies (Johnston et al., 2011; Linden et al., 2012; Young et al., 2017, 2014; Zotev et al., 2011) 

has focused on increasing positive thoughts by training participants in up-regulating brain areas 

using positive mental imagery and memories. For instance, pilot studies with healthy 

participants (Johnston et al., 2011; Zotev et al., 2011) showed that self-regulation of brain areas 

associated with positive images was feasible. Similar paradigms have been translated to PoC 
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studies with depressed patients (Linden et al., 2012; Young et al., 2017, 2014). Another set of 

studies (Brühl et al., 2014; Hamilton et al., 2016; Paret et al., 2014) has focused on modifying 

patients’ attentional bias towards negative stimuli by training individuals in exerting cognitive 

control to overcome such bias when being exposed to triggering stimuli. Specifically, PoC 

studies in healthy participants successfully trained individuals in down-regulating the response 

in limbic areas such as the amygdala when participants were presented with aversive stimuli 

(Brühl et al., 2014; Paret et al., 2014). However, both studies lacked any additional outcome 

measure (e.g. psychometric measures) to test whether the down-regulation was related to 

changes in affective states. A comparable fMRI-NF protocol was used more recently in 

depressed patients who trained down-regulating the anterior cingulate cortex (Hamilton et al., 

2016). The study reported a decrease of about 20% in ratings of negative affective stimuli for 

the group that received fMRI-NF, but not for the control group that received yoked feedback. 

Yet, a direct comparison between groups was not provided and thus no superiority shown. A 

more detailed review of to-date published fMRI-NF trials will be provided in the following 

paragraphs.  

 

2.1.3.1 Comparison of trial designs 

In the following paragraph I will shortly review the designs of fMRI-NF studies published until 

January 2018 that were conducted with depressed and stroke patients. Figure 2.1 describes the 

main design features of 4 published studies, including one RCT (Young et al., 2017; 

NCT02078610). For comparison, it also shows the key design features of an unpublished RCT 

that will be presented in detail in this thesis (NCT01544205), as well as details of an ongoing 

RCT (Young, NCT02709161). Besides these three RCTs, other previous studies in healthy 

participants and patients were not registered and did not randomize patients, and two studies 

(Hamilton et al., 2016; Young et al., 2014) blinded patients and assessors. Overall, data 

indicated that published studies were rather heterogeneous with regards to the design, patient 

population and outcome measures. For instance, the number of training sessions was overall 

relatively low and ranged between 1 and 4 training sessions. Trials were also rather 

heterogenous regarding their inclusion and exclusion criteria for patients, for example with 

regards to other ongoing treatment and co-morbidities. While the study by Linden and 

colleagues (Linden et al., 2012) only included patients that had received 

psychopharmacological treatment for at least six weeks, both studies by Young and colleagues 

(Young et al., 2017, 2014) reported only data from unmedicated patients. The choice of the 
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control group represents another major difference between trial designs: whereas (Linden et 

al., 2012) included a control group that performed similar mental imagery but did not receive 

brain scans, Young and colleagues (Young et al., 2017, 2014) trained a proportion of patients 

on a control target area (the intraparietal sulcus) with an instruction (positive autobiographical 

memories) that did not allow participants to up-regulate the target area. Another form of control 

was delivered by (Hamilton et al., 2016), who used yoked-feedback, which constitutes a replay 

of feedback that is being matched randomly from another participant. These different control 

conditions address different aspects of neurofeedback training. The approach used by Young 

and colleagues aimed to control for motivation levels and the belief that one is receiving 

veridical feedback. In contrast, the approach used by Hamilton and colleagues aimed to match 

groups for the amount of (rewarding) feedback that groups are provided with (Thibault et al., 

2016). Patients in both trials did not report awareness of group allocation. However, 

neurofeedback data reported by Young et al. indicated that patients in the control group did not 

attain self-regulation to a similar extent as the main experimental group. Hence, groups were 

not matched for the rewarding experience (Thibault et al., 2016). Moreover, it is possible that 

patients in this control group experienced different levels of frustration because they did no 

achieve self-regulation during most training runs. This circumstance may have partly 

confounded results: depressed patients are highly susceptible to negative effects on mood 

caused by frustration because of they attend more to negative thoughts and experience (Disner 

et al., 2011; Gotlib et al., 2004). Taken together, these examples illustrate the challenge in 

choosing an adequate control condition for complex clinical interventions such as fMRI-NF, 

which will be discussed in more detail in Chapter 9.  
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Figure 2.1 Overview of fMRI-NF studies conducted in depressed patients as of 

January 2018.  

  

2.1.3.2 Comparison of main outcomes  

The choice of an adequate outcome measure that shows sufficient specificity and sensitivity 

represents another key aspect in designing a successful intervention. Previous studies of fMRI-

NF in depression varied largely with regards to their main outcome measures (Table 2.4) and 

included the Profile of Mood States (POMS) (McNair, 1971), Hamilton Depression Rating 

Scale (HDRS) (Hamilton, 1960) and the Montgomery-Åsberg Depression Rating Scale 

(MADRS) (Montgomery and Asberg, 1979). Whereas the HDRS and MADRS are physician 

rated scales accepted to diagnose and stage clinical depression, the POMS merely is a 

psychometric, multiscale measure, whose subscales and total score show satisfactory 

discriminate validity compared to other validated scales (Nyenhuis et al., 1999). Hence, the 

level of generalisability of different scales varies between published studies. Further, the 

comparability of reported clinical outcomes between trials is likely limited.  
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Study Main Outcome 

Linden et al.,  

2012 

HDRS-17: significant 40% decrease in main group;  

POMS: no superiority of main group (no effect size 

reported).  

Young et al.,  

2014 

POMS: Significant decrease in depression subscale for 

main group with very large Cohen’s d = 3.74$, no 

superiority compared to control group with a medium 

effect size of r = 0.3$.  

Hamilton et al., 

2016 

Ratings of affective stimuli: significant decrease of 

about 20% only in experimental group, no superiority 

compared to control group.  

Young et al.,  

2017 

MADRS after 2 sessions (primary*): significant 49% 

decrease in main experimental group, 8 % reduction in 

sham control group. Group difference significant with 

Cohen’s d = 1.22$.  

HDRS-21 after 2 sessions: significant 46% decrease in 

main experimental group, 10 % reduction in sham 

control group. Group difference significant, no effect 

size reported.  

Mehler et al.,  

2018 

HDRS-17 after 5 sessions (primary*) – reported in 

Chapter 4.  

Young (ongoing) 

2016-2019 

NCT02709161 

MADRS after 2 sessions (primary*) – to be determined.  

Table 2.4  Reported main outcome measures for published fMRI-NF trials conducted 

in depressed patients. HDRS-17/HDRS-21 = 17-item and 21-item version of the Hamilton 

Depression Rating Scale; POMS = Profile of Mood States; MADRS = Montgomery-

Åsberg Depression Rating Scale. *) Studies that preregistered primary clinical outcome. 

$) Conversions to standardised effect sizes were performed based on reported t-values 

using formulas provided by (Lakens, 2013).  

 

Linden and colleagues demonstrated in a first PoC study that patients suffering from mild to 

moderate depression could activate brain areas that were localised with positive affective visual 
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stimulation using positive mental imagery (Linden et al., 2012). However, the study did not 

include pure mental imagery or transfer runs in the fMRI protocol and thus could not test if 

providing of feedback increased activation levels. Moreover, as pointed out by the authors, 

voxel selected was adapted from run to run for some patients (Linden et al., 2012) and hence  

analyses were partly circular such that the same data was used for selection and selective 

analyses (Kriegeskorte et al., 2009). With regards to the clinical results, the authors found that 

only the group that completed fMRI-NF training (but not the control group that completed 

exclusively mental imagery) showed significant improvement in mood (measured on the 

HDRS-17 score) within four training sessions (Linden et al., 2012). Further, an interaction 

analysis demonstrated superiority of the fMRI-NF group, which remained after correcting for 

gender as a covariate. However, the analysis did not correct for baseline HDRS-17 scores, 

which may have biased results. The POMS data revealed an improvement in both groups, but 

this effect did not remain significant after correcting for baseline scores. Hence, these findings 

remained limited given the relatively small sample, lack of rater blinding, and the circumstance 

that the control group did not interact with a high-tech environment that may have induced 

unspecific clinical effects (Thibault et al., 2018b, 2016), requiring replication in larger RCTs 

(Linden et al., 2012; Linden, 2014).  

 

The PoC study published by Young and colleagues included a double-blind design and also 

employed a positive mental imagery task (Young et al., 2014). Their main experimental group 

trained exclusively up-regulating of the left amygdala, while a control group trained up-

regulating of the intraparietal sulcus as a control region. The authors reported that the amygdala 

was only up-regulated in the main group. Moreover, a transfer run after the training indicated 

that patients retained the capacity to up-regulate the left amygdala. With regards to clinical 

training effects, the study only provided very limited insight because patients’ symptom 

severity was not assessed with a clinical scale (e.g. the HDRS or the MADRS). Instead, the 

authors only reported pre-post changes in mood using the POMS, which they only found for 

the experimental group for the depression subscale. Superiority over the control group, 

however, was not reported (Young et al., 2014). Linking the neuroimaging with clinical 

changes, the study reported only for the experimental group a negative relationship between 

up-regulation success and patient’s scores on a subscale of the Toronto Alexithymia Scale 

(Bagby et al., 1994), which measures the inability to identify and describe one’s own emotions 

verbally. A direct comparison to the control, however, was not performed and hence the 

specificity of the finding is questionable. Moreover, it should be noted that this correlation 
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analysis was not declared as exploratory. The authors reported that 4 subscales were 

administered before training together with two other scales related to the experience of 

emotions, totaling in at least 10 possible correlation analyses that could have been explored to 

test a similar hypothesis. Yet, no other correlations besides the significant correlation were 

reported and no correction for multiple comparison was carried out for any statistic. The 

reported results should thus be interpreted with caution. To conclude, (Young et al., 2014) 

showed that an fMRI-NF paradigm that was earlier successfully piloted in healthy participants 

(Zotev et al., 2011) could be translated to patients suffering from depression in a double-blind 

design, but it did not provide further insight into potential clinical effects.  

 

A different approach of fMRI-NF was studied by Hamilton and colleagues, who trained 

patients to down-regulate the activity in areas of the salience-network while being exposed to 

images that evoke a negative affect (Hamilton et al., 2016).  The authors compared a main 

experimental group to a control group that received yoked feedback and report that the PoC 

study was conducted double-blinded. However, the study only consisted of a single training 

session and did not assess clinical outcomes. The authors reported that only the main group 

showed reduced activity in training areas, and that only the main group also showed a reduction 

in affective ratings of images, but no formal demonstration of superiority was reported, and 

non-significant results were reported as being significant. Hence, also this study was affected 

by some questionable research practices. Taken together, the evidence from previous PoC with 

regards to the clinical efficacy of fMRI-NF was very limited, and reported evidence partly 

compromised due to poor design quality and research practices, highlighting the necessity for 

clinical trials (Linden, 2014; Sacchet and Gotlib, 2016).  

 

Indeed, standards were remarkably improved in a recently reported first double-blind, placebo-

controlled randomized clinical trial (RCT) that was conducted in unmedicated patients (Young 

et al., 2017). The training protocol as largely similar to earlier work by the same authors (Young 

et al., 2014; Zotev et al., 2011) and compared amygdala fMRI-NF to fMRI-NF of a control 

area (the intraparietal sulcus) using positive mental imagery instruction. Participants attended 

one weekly training session for two subsequent weeks, which included a baseline and a transfer 

scan (both without feedback) at the beginning and end of each session to assess pre-post 

differences in target region up-regulation and whether participants retained the capacity to up-

regulate in the absence of feedback. The authors found only participants in the experimental 

group showed activation of the amygdala. This activation was retained during the transfer run 
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and exceeded activation during the pre-clinical baseline run. Data further indicated that patients 

in the control group did largely not activate the control region over the trial. Only for the last 

training and transfer run the authors reported significant differences between groups for both 

target regions. The authors found over 40% reduction in depressive symptoms in the 

intervention, and only 8-10% improvement in the placebo neurofeedback control group on two 

established scales to rate depression severity (Young et al., 2017). However, since patients in 

the control group did not attain self-regulation success for most training runs of the trial, groups 

were not matched for the reward experience. Therefore, it remains unclear whether this efficacy 

is specific to feedback from emotion-regulating regions, or whether the general experience of 

self-regulation during fMRI-NF may be therapeutic. To test for potential psychophysiological 

mechanisms underlying the remarkable clinical effects, the authors included an in-house 

developed autobiographical memory test that allowed assessing whether training success was 

related to performance changes in cued recalling of positive autobiographical memory. The 

authors modeled the relationship with a mediation analysis and found that neurofeedback 

success during the last transfer run large explained the relationship between gains in recalling 

positive autobiographical memories at follow-up. On a critical note, the model seemed flawed 

such that the measurement of the mediator variable (transfer run) preceded the measurement 

of the predictor (change memory performance) and response variable (change). Conceptually, 

a mediation analysis requires that the mediator variable should be measured at a time point that 

follows the predictor and precedes the response variable. Hence, the authors’ approach reduced 

the analysis to a hierarchical (manually selected) stepwise regression model in these sense that 

adding neurofeedback success to the model improved the model fit. Hence, presumably 

exploited degrees of freedom and the lack of preregistration for this analysis (for a critique of 

these biasing factors see Chapter 1.2.1) reduce confidence in this analysis.  

 

In conclusion, the published literature of fMRI-NF studies conducted in depressed patients 

provides evidence for technical feasibility, tolerable attrition rates and safety of the 

intervention. Moreover, first evidence for clinical efficacy has been provided, but more RCTs 

are required that allow replicating reported findings, explore alternative designs, and identify 

potential neural mechanisms.  
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2.1.4 fMRI-NF for motor rehabilitation in stroke 

2.1.4.1 Available evidence from previous fMRI-NF studies in stroke 

With regards to stroke, the available data is very limited with only two small published PoC 

studies (Liew et al., 2015; Sitaram et al., 2012). Sitaram and colleagues tested whether stroke 

patients can activate the ipsilesional ventral premotor cortex (vPMC). The authors used an 

action observation task, which consisted of a video sequence showing a person holding and 

moving a coffee mug. This approach allowed to target voxels in the vPMC in stroke patients 

who were compromised in executing movements. The study included two stroke patients with 

right-sided hemiparesis (i.e. left hemispheric stroke) with mild impairment, as indicated by 55 

and 60 out of 66 points on the Fugl-Mayer (FM) scale (Sitaram et al., 2012), and four healthy 

participants for comparison. Participants used motor imagery to learn to increase activation in 

the vPMC. Moreover, the authors compared two forms of feedback presentation: a video replay 

similar to the one used during the localiser and where the picture frames grew proportionally 

to the activity, and a traditional thermometer display which indicated both activation and 

deactivation. Results suggested that the percent signal change was positive to a similar extent 

for both feedback forms and for healthy participants and patients alike. Moreover, the authors 

reported that PSC values increased over time, suggesting that stroke patients were able to learn 

up-regulating the region within a 3-day training period with daily fMRI-NF sessions. 

Noteworthy, the study also included a reference region in the white matter to control for 

nonspecific global effects, including head motion.  

 

The fMRI-NF study by Liew and colleagues included four stroke patients who were severely 

impaired with an average FM score of about 20 and a range of 13 to 28 points (Liew et al., 

2015). Patients were trained on two days for two hours each, the feedback signal was based on 

a functional connectivity measure between the perilesional M1 and the ipsilesional thalamus 

(measured by Pearson correlation). The authors reported that connectivity estimates increased 

mainly for more severely impaired stroke patients, arguing that these could benefit in particular. 

However, an alternative explanation for this seemingly surprising result is head motion: the 

study did not correct for spurious correlations induced by head motion and may thus have been 

confounded in their results, as documented for healthy participants (Power et al., 2014, 2012) 

and stroke patients (Siegel et al., 2017). Severe stroke patients likely show more head motion 

(Wylie et al., 2014), and are thus more likely to induce larger spurious correlations in 

connectivity estimates. Head motion may also explain why connectivity estimates towards the 
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end of a two-hour long training session were larger than at training beginning for most patients, 

except the most recovered patient (Liew et al., 2015). Taken together, the available data suggest 

that stroke survivors tolerate fMRI-NF scan sessions. Further, preliminary results suggest that 

stroke survivors can likely activate target regions and may also learn to increase activation over 

repeated sessions. However, adequate control for head motion remains a challenge. Hence, 

replication and extension of findings in larger samples is required to demonstrate that the 

technique is technically feasible and to warrant testing for clinical effects in future RCTs. Given 

the limited evidence from published fMRI-NF conducted with stroke patients, the following 

paragraph will provide a review of potential targets.  

 

2.1.4.2 fMRI correlates of recovery and potential fMRI-NF targets  

Neuroimaging studies provide insight into functional and structural changes occurring during 

different phases after stroke. Changes in activity of motor regions and motor networks have 

been related to motor outcomes, allowing to conceptualise preliminary network models of 

motor recovery after stroke. For instance, fMRI experiments of hand movements conducted in 

acute and chronic stroke patients with upper limb impairment identified bilateral activation 

patterns over motor and premotor cortices compared to rather lateralised activation patterns in 

healthy controls (Grefkes and Ward, 2014). Early work in chronic stroke patients that 

investigated the extent of contralesional recruitment of sensorimotor areas reported an inverse 

relation between residual motor function and recruitment of ipsi- and contralesional areas 

including M1 and dPMC (Ward et al., 2003). The study presented a set of inverse correlations 

between the strength of activation in different motor areas and a motor outcome measure across 

stroke survivors. However, this set of bivariate correlational analyses could not indicate to 

which extent bilateral activation was related to poor motor scores within individual patients. 

Addressing this question would require using a multivariate model. Further, given the large 

range of time past stroke (3 months to 6 years), it is not clear when lateralisation differences 

had built up. One longitudinal study provided further insight into the dynamics of neural 

correlates of outcome after stroke in severely to mildly impaired patients (Rehme et al., 2011b). 

The study reported that bilateral activation (hyperactivation) built up gradually during the first 

two weeks following ischemic stroke, and then decreased at later (3-6 months) follow-up 

measurements (Rehme et al., 2011a). The authors further reported that a decrease in bilateral 

activation had coincided with an increase of the group’s mean motor performance, but the 

relationship between these variables was not directly tested. One main question that arises is 
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whether increased bilateral activation represents merely an early compensatory mechanism, or 

whether it may be indicative of the motor outcome and potential to recover.  

 

Several studies indeed suggest that an increase in contralesional (i.e. ipsilateral) motor areas 

likely compensate for neural loss to some extent. For instance, a combined fMRI-TMS study 

found that paired pulses applied over the contralesional dorsal premotor cortex (dPMC) at rest 

correlated with a faciliatory state (measured by motor evoked potentials; Bestmann et al., 

2010). This effect correlated with the level of motor impairment (measured by a composite 

clinical score). Further, applied TMS pulses over contralesional dPMC during a hand grip task 

resulted in greater modulation of ipsi- and contralesional motor areas (dPMC and SMA), and 

this modulation was also correlated with the degree of motor impairment. These results indicate 

that the neurophysiological and behavioural role of the contralesional dPMC varies with the 

state of the motor system and therefore depends on the level of motor impairment. The 

experiment corroborated and extended earlier reports which found that interfering TMS pulses 

over the contralesional/ipsilateral dPMC increased reaction times, and more so in more 

severely impaired patients, who also showed more bilateral cortical activations during a finger 

movement task (Johansen-Berg et al., 2002). Hence, these findings suggest that contralesional 

dPMC may compensate for neural loss in the contralateral hemisphere. Another approach to 

study the role of contralesional/ipsilateral dPMC in stroke recovery was taken by Lotze and 

colleagues. The authors applied repetitive TMS pulses over different motor areas, including 

the dPMC, while  stroke patients who had nearly fully recovered from initially severe 

impairment were performing sequential finger movements (Lotze et al., 2006). Compared to 

an age-matched healthy control group, they found reduced motor performance after stimulation 

of contralesional dPMC, as well as M1 and the superior parietal lobule, indicating that these 

contralesional regions may play a role in the recovery process. Taken together, several cross-

sectional perturbation studies using TMS suggested that contralesional cortices including 

dPMC and M1 facilitate residual motor function, in particular, but not exclusively for more 

severely impaired patients.  

 

In an elegant series of TMS induced virtual lesion experiments, O’Shea and colleagues 

explored functional reorganisation of dPMC following disruption of neural communication 

(O’Shea et al., 2007). The authors applied TMS pulses over the dominant dPMC of healthy 

participants while these performed an action selection task and found immediate compensatory 

increases in the contralateral dPMC. This activation was only observed during the action 
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preparation, but not action execution phase in the absence of a significant change in task 

performance. This result indicated that the contralateral dPMC compensated for dominant 

dPMC that had been perturbed with TMS. The authors replicated and extended these findings 

in a second experiment, in which a second TMS pulse was applied to the contralateral dPMC 

during action selection. As expected, this second perturbation interfered with task performance, 

supporting the interpretation that the “contralesional” dPMC can flexibly compensate when the 

other hemisphere is being perturbed. More generally, these data suggest that the brain can 

counteract lesions by recruiting homologue or other interconnected areas in a way that can 

maintain task performance.  

 

Apart from perturbation studies, meta-analyses reviewing fMRI correlates of motor 

impairment provide further insights. For instance, one meta-analysis that computed activation 

likelihood estimation maps across 36 studies (including 472 patients with upper limb 

impairment) that had studied various motor tasks in stroke survivors reported that the activation 

of contralesional dPMC (and the bilateral SMA) was anticorrelated with time post-stroke when 

controlling for impairment. Further, activation in the contralesional dPMC (and bilateral pre-

SMA) was anticorrelated with motor impairment when controlling for time post-stroke (Rehme 

et al., 2012). Thus, both time post stroke and motor impairment correlate independently with 

less activation in contralateral dPMC and pre-SMA/SMA. In contrast, no cluster in 

contralateral dPMC was reported for motor impairment when controlling for task complexity. 

Although interpretations based on null findings are limited if no evidence for the absence of an 

effect is being provided (Chapter 3.4.1.5), these contrasts together indicate that task complexity 

may mediate the involvement of the contralesional (ipsilateral) dPMC during motor execution. 

Preliminary data from Riecker and colleagues illustrate this aspect (Riecker et al., 2010). The 

authors studied fMRI correlates of right-hand finger tapping at different speeds in right handed 

left-side chronic MCA stroke patients and age-matched healthy controls. As expected, 

increased tapping speeds resulted in a linear increase in activity of the left (contralateral and 

ipsilesional) SMA in both groups. However, only the patient group also showed a linear 

increase in the right (ipsilateral and contralesional) dPMC in response to increasing tapping 

speeds. In other words, the involvement of ipsilateral/contralesional motor cortices varies as a 

function of the challenges that the impaired motor system is confronted with (Riecker et al., 

2010; see also Schaechter et al., 2008). Studies in healthy participants support this view: 

recruitment of the ipsilateral motor cortex has been reported during challenges resulting from 

neural perturbation (O’Shea et al., 2007) and behavioural complexity (Verstynen, 2004), as 
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well as skill acquisition learning (Waters et al., 2017). Moreover, recent fMRI work suggests 

that movement kinematics (e.g. endpoint variability) are likely processed in parietal areas 

across hemispheres (Haar et al., 2017b, 2017a). In the context of stroke and motor impairment, 

in particular neural correlates of movement variability are of interest because excessive (task 

relevant) movement variability represents one main symptom in stroke (Cirstea et al., 2003; 

Cirstea and Levin, 2000). One potential explanation why the motor system integrates 

information about movement variability across arms and hemispheres may be that such 

interhemispheric cooperation facilitates motor learning and allows compensating more flexibly 

for potential unilateral perturbations. In other words, bihemispheric monitoring of movement 

variability (and hence potential movement errors) may come at a higher computational cost for 

the motor system, it allows both hemispheres to learn and act based on experience sampled by 

either limb (Mehler and Reschechtko, 2018).  

 

Longitudinal studies during stroke recovery that explored correlations in activity between intra- 

and interhemispheric regions (functional connectivity analyses) can provide additional insights 

(Rehme et al., 2011a). For instance, correlations in activity between the ipsilesional SMA and 

M1 change in the months following stroke, predicting motor function 3-6 months post stroke. 

Similar relations were reported for correlations between activity of ipsilesional SMA and M1, 

as well as dPMC and M1 within days after stroke and two weeks post stroke These data suggest 

that early synergistic reorganisation between premotor areas and M1 may facilitate restoring 

some motor function. Moreover, a positive relationship between structural integrity of 

ipsilesional intrahemispheric connections between motor cortices and motor function were 

reported from a cross-sectional study (Schulz et al., 2015). After correcting for potential 

confounding factors such as the lesion site and patients’ age, the authors found positive 

relationships between motor function and a measure of tract integrity (fractional anisotropy) 

between ipsilesional M1 and the (ventral and dorsal) premotor cortices. The corticospinal tract 

(CST) originates from M1, as well as from premotor areas including the SMA, and the 

structural integrity of these tracks is a reliable predictor for residual motor function and 

treatment effects of upper limb therapy (Riley et al., 2011; Schulz et al., 2012). In fact, it has 

been suggested that the integrity of descending CST may be a better predictor for motor 

impairment in stroke compared to other measures such as the size of lesions (Park et al., 2016). 

For instance, residual structural integrity of CST was found to correlate with grip strength 

across motor and premotor cortices (Schulz et al., 2012). Further, damage to the CST after 

stroke correlates with contralesional compensatory cortical activation (Lotze et al., 2012; 
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Schaechter et al., 2008). Of interest, it has been suggested that the integrity of the CST mediates 

the relationship between tract integrity between premotor-motor (vPMC and M1) connections 

and residual motor function. The study used a relatively large sample (N = 53), and was thus 

was presumably sufficiently powered to detect such interaction (Schulz et al., 2017). 

Specifically, the authors reported the outcome of a multiple regression model that found a 

positive relationship between M1-vPMC integrity and residual upper limb motor score 

(measured as a combination of force grip and FM score). Importantly, the slope of this 

relationship gradually declined as a function of CST integrity, suggesting that M1-vPMC 

projections mainly mediate residual motor output in patients with more severe CST disruption 

(Schulz et al., 2017). Altogether, these studies suggest that dynamic inter- and intrahemispheric 

changes in function of motor cortices allow compensating for loss in motor function early after 

stroke, and that these processes largely depend on the structural integrity of CST descending 

motor fibres.  

 

Another body of literature focuses on non-crossing corticofugal motor fibres that may facilitate 

residual motor function and can partly compensate for damage to the CST (Grefkes and Ward, 

2014; Peters et al., 2018; Plow et al., 2015; Rüber et al., 2012). For instance, in preliminary 

data in chronic stroke patients the microstructure of bilateral tracts to the red nuclei were found 

to be correlated with motor function (Rüber et al., 2012). These findings were more recently 

corroborated in a lager study (N = 43) that investigated the relationship between microstructural 

integrity of tracts between M1/SMA and subcortical areas, including the red nucleus in chronic 

stroke patients (Peters et al., 2018). Moreover, the compensatory role of the red nucleus seems 

supported by a longitudinal study that measured tract integrity over 3 months following stroke 

(Takenobu et al., 2014). The authors reported an increased in structural density of the red 

nucleus, which correlated with a change in motor function on the FM. Albeit being limited by 

a relatively small sample (N = 10) and likely inflated estimates (by pooling within and between 

subject variance within the same correlation analysis), these preliminary data are in line with 

previous reports. Noteworthy, the SMA contributes substantially to corticofugal motor fibres 

(Peters et al., 2018), as also supported by work in primates (Palmer et al., 1981). Other work 

in primates suggests that the SMA likely sends direct projections to spinal motor neurons that 

innervate the hand (Dum and Strick, 2002).  

 

Based on the reviewed literature, the following motor imagery-based fMRI-NF paradigms 

could promote motor recovery after stroke:  
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1) The Ipsilateral/contralesional dPMC is likely involved in compensatory motor function 

of stroke patients. This part of motor cortex could be trained in an up-regulation fMRI-

NF paradigm.  

 

2) fMRI-NF could be used to retrain lateralisation of cortical activation, for instance 

during motor imagery tasks (Chiew et al., 2012). However, such training bears the risk 

of interfering with compensatory mechanism that are sustained by the contralesional 

hemisphere, and that may facilitate natural recovery.  

 

3) Bilateral SMA activation has been associated with better motor outcome (Favre et al., 

2014; Rehme et al., 2012). Further, the SMA contributes fibres to the CST and 

corticofugal tracts, which can partly compensate for lost motor function. Patients could 

train up-regulating the SMA (Subramanian et al., 2016).  

 

This review has informed the design for a preregistered PoC study in MCA stroke survivors, 

which is summarised in Chapter 7.  

2.1.5 fMRI-NF training in PD 

Most neurofeedback training paradigms that aim to improve motor symptoms in PD combine 

motor imagery training with a visual or acoustic feedback signal that is based on a neural target 

correlate. As such, motor imagery based neurofeedback training combines two therapeutic 

approaches that may yield improvements of motor symptoms for PD patients in their own right 

(Mirelman et al., 2013).  

 

The first fMRI-NF study conducted in patients was a PoC study with early-stage PD patients 

(N = 5) who engaged in motor imagery based fMRI-NF training of the SMA for two scan 

sessions (Subramanian et al., 2011). A control group of PD patients (N = 5) also trained motor 

imagery whilst lying in the scanner and receiving yoked feedback from a matched patient in 

the experimental group. In contrast to other fMRI-NF studies that have employed yoked 

feedback (Hamilton et al., 2016; Neyedli et al., 2017; Ninaus et al., 2013; Rance et al., 2018; 

Thibault et al., 2016), patients in the control group were instructed to ignore the presented 

feedback. Hence, patient groups were mainly matched for a similar visual input, rather than 

sham controlled for similar levels of motivation or self-regulation experience. Both groups 
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were further matched for their PD severity and medication status. Apart from motor imagery 

training during scanning sessions, both groups practiced motor imagery strategies at home for 

a period of 2-6 months before they attended a second training session. Neuroimaging data 

indicated that the experimental group, but not the control group, successfully activated the 

SMA during motor imagery practice. However, no group comparison was performed to 

demonstrate that fMRI-NF was associated with larger signal change in the SMA compared to 

motor imagery only. The authors interpreted this result as an indication that the feedback 

presentation enabled patients in the experimental group to increase the activation level of the 

SMA. An alternative explanation why the experimental group but not the control group showed 

significant SMA activation compared to rest could be that only patients in the experimental 

group likely intended to control the feedback. Previous work suggests that motor imagery 

combined with yoked feedback and the belief to be under control of the feedback can yield 

SMA activation (Ninaus et al., 2013). From a clinical perspective, the main finding of this PoC 

study was that only participants in the experimental group showed significant improvements 

(37%) in motor symptoms relative to baseline on the MDS-UPDRS-Part III. Specifically, four 

out of five patients showed improvement in limb bradykinesia. This clinical finding was also 

supported by an independent motor task (finger tapping) that showed speed gains only for 

participants in the experimental group. Although these findings are promising, their 

generalisability may be limited given the small sample size and the lack of blinding of the 

assessor, which could have biased results, as well as of patients, which could have resulted in 

a placebo effect in the experimental group.  

 

Based on this PoC study, a larger registered, single-blinded randomised controlled trial (RCT) 

has been conducted more recently (Subramanian et al., 2016). Using a two-armed design, the 

RCT compared a group that completed three sessions of fMRI-NF of the SMA (N = 13) to an 

active control group that completed three sessions of supervised physical exercise (N = 13). 

The physical exercise training consisted of a gaming console that provides visual and auditory 

feedback based on motor performance and has been shown to improve motor symptoms in PD  

patients (Barry et al., 2014). Hence, both groups were controlled for several factors that may 

modulate positive expectations and thus induce placebo responses, including the regular 

interaction with research personnel, regular visits to a research facility, and training in 

feedback-based training that involves high-technology components. Additionally, both groups 

were instructed to continue with either with unsupervised motor imagery training at home 

(fMRI-NF group), or with supervised physical exercise training (exercise group). This design 
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hence increased the potential efficacy of neurofeedback sessions by combining it with 

additional treatment that was matched between groups. Blinded clinical assessment indicated 

that the fMRI-NF improved on the MDS-UDPRS-MS by about 4.5 points. Although the 

experimental group showed a statistically significant improvement, a formal test for superiority 

over the active control group remained insignificant. Importantly, a decrease of 4.5 points on 

the MDS-UDPRS-MS lies within range of minimal clinically important change score (MCID) 

defined for PD (Horváth et al., 2015), and thus represents a clinically significant improvement. 

Moreover, this improvement is descriptively also larger than placebo effects of 1 to 3 points 

that have been observed for sham TMS stimulation in PD patients (Chou et al., 2015). The 

neuroimaging data further suggested that PD patients could activate the SMA when feedback 

was provided, as well as during a final transfer run when no feedback was provided. Since no 

baseline motor imagery data was acquired, the trial could not demonstrate the feedback from 

the SMA increased its activation during motor imagery. Further, the trial reported a correlation 

(at trend level) between neurofeedback success, quantified as the average activation of the 

SMA, and clinical improvement. This finding may indicate that the average up-regulation 

success of patients related to clinical improvements. Nevertheless, as noted earlier, the 

intention to control feedback may be sufficient to yield SMA activation (Ninaus et al., 2013), 

and thus this finding may also be explained by motivational factors. One way to control for 

potential confounding factors would be a design in which PD receive well designed yoked 

feedback from the SMA. However, previous work indicates that such design likely requires 

relatively large sample sizes to demonstrate statistically significant differences in SMA 

activation levels between groups. An alternative approach may be to employ a different 

measure of self-regulation success that better reflects self-regulation and partly controls for 

potential confounding cognitive factors such as a general intention to self-regulate. Taken 

together, first studies have provided preliminary evidence that training of the SMA is 

associated with clinically meaningful improvements of motor symptoms in early-stage PD 

patients. Yet, the relationships between measures of feedback success and clinical 

improvement and neural mechanism underlying clinical effects remain unclear. Future trials 

will likely benefit from designs that allow controlling for general cognitive effects associated 

with self-regulation training, thereby allowing to separate mere intention to control feedback 

from true feedback self-regulation. EEG signatures for motor imagery-based EEG-NF 

paradigms, will be reviewed in Chapter 8.   
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2.2 Research questions and aims 

Based on the above reviewed literature, I define seven main research questions and aims that 

will be addressed in this thesis.  

 

1) For fMRI-NF in the treatment of depression, clinical efficacy remains to be tested under 

controlled conditions that include blinding and randomisation of participants. Previous 

studies have trained patients in up-regulating the activity in areas that are involved in 

processing positive affect. The groups in these controlled paradigms, however, were 

not matched for the rewarding experience associated with successful fMRI-NF self-

regulation. It thus remains to be tested whether self-regulation of areas involved in 

processing positive affect yields superior clinical effects compared to a control 

condition in which patients receive veridical feedback from areas that are not mainly 

involved in processing positive affect. Chapter 4 and 5 will address these questions, 

presenting clinical and neuroimaging data acquired in a registered single-blind RCT 

(NCT01544205) that tested if fMRI-NF up-regulation training of areas processing 

positive emotions (NFE) yields superior efficacy compared to up-regulation of a control 

region activated by scenes (NFS). Moderately to severely depressed medicated patients 

were randomly assigned to five sessions augmentation treatment of either NFE or NFS 

training, Clinical effects were evaluated at trial completion and a follow-up assessment 

several weeks after the last training session.  

 

2) First open label and controlled studies of fMRI-NF training have reported clinical 

improvements for depression (Linden et al., 2012; Young et al., 2017), but underlying 

mechanisms of action remain to be identified. Cognitive models in depression postulate 

that the self-concept self-efficacy can mediate therapeutic effects. It has further been 

postulated that self-efficacy could be enhanced by the experience of successful 

regulation of one’s own brain activity. Chapter 4 will thus explore whether successful 

self-regulation improved self-efficacy ratings in depressed patients, and whether 

changes in self-efficacy relate to clinical changes. Chapter 5 will explore for 

relationships between measures of self-regulation success changes in self-efficacy and 

depression severity, respectively.  

 



Clinical Applications of fMRI neurofeedback training – David Marc Anton Mehler – November 2018 

     80 

W
o

rd
 T

e
m

p
la

te
 b

y
 F

ri
ed

m
an

 &
 M

o
rg

an
 2

0
1

4
 

3) One important design aspect in fMRI-NF training is the choice of a suitable target 

region. Besides potential therapeutic effects that may unfold from activating or 

deactivating a specific target region, its trainability should be established first. Chapter 

6 summarises a comparative study of motor imagery-based fMRI-NF training of two 

target regions (SMA and M1) that are of particular interest for motor rehabilitation in 

stroke and Parkinson’s disease. Healthy participants will train with graded 

neurofeedback, which allows to separate generic activation of training regions (e.g. 

resulting from the intention to control the feedback) from true self-regulation effects. 

Chapter 5 will thus introduce a framework that yields a new measure to test for self-

regulation success. The findings of this study will inform the translation of a similar 

design in a PoC study with stroke patients (Chapter 7).  

 

4) Chapter 7 will present a preregistered PoC study of motor imagery-based fMRI-NF 

with stroke patients. Specifically, middle cerebral artery (MCA) stroke survivors 

completed sessions of motor imagery based graded fMRI-NF training of the SMA. 

Based on the experience gained in the pilot study with participants in a similar paradigm 

(Chapter 6), a priori hypotheses were formulated, and a complete analysis plan 

anticipated. Together with a detailed documentation of the used methodology, this 

information has been preregistered and made publicly available on the Open Science 

Framework before data collection started: https://osf.io/qnsv7/ 

 

5) Besides fMRI-NF, EEG-NF remains a viable option for motor rehabilitation. For 

instance, EEG is more affordable, portable and available for health care settings 

compared to fMRI. For Parkinson’s disease (PD), electrophysiological correlates of 

motor symptoms and treatment success have been intensively studied, providing a rich 

body of literature that can inform translational EEG-NF paradigms. Surprisingly, only 

a small number of motor rehabilitation EEG-NF studies have been conducted in PD 

patients (Esmail and Linden, 2014). Chapter 8 will review potential EEG signatures 

that could be translated as targets for EEG-NF training in PD patients. This review has 

partly informed the design of a registered EEG-NF PoC study that is currently being 

conducted in PD patients (ISRCTN16783092).  

 

6) Replicability and reproducibility of scientific work are tightly linked to the way 

statistical tests are used and results are being reported. This thesis addresses various 

https://osf.io/qnsv7/
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issues that have suggested to enhance these pillars of robust science. Specifically, 

planned and exploratory hypotheses are explicitly declared as such and kept separate, 

following one key principle of preregistration. Further, recent developments of 

recommended statistical and reporting practices are employed throughout the thesis, 

including reporting of effect sizes and conducting statistical tests that allow providing 

testing for the absence of an effect (e.g. frequentist equivalence tests and Bayesian 

hypothesis testing). To comply with best practice in evidence based clinical research, 

the RCT conducted with depressed patients (Chapters 4 and 5) and the PoC study 

(Chapter 7) conducted with stroke survivors have been preregistered before data 

collected started.   

 

7) The thesis will close with a general discussion (Chapter 9) that embeds the main 

findings of the experimental chapters 4 to 7 in a broader context of evidence-based 

translation of neuroimaging. The role of reliable control conditions, data quality, and 

sufficient statistical power will be reviewed. Providing convincing evidence for clinical 

usefulness of neurofeedback training may represent “a long winding road” (Arns et al., 

2014). However, building an intersection between neuroimaging, computational 

neuroscience and translational clinical medicine, the field benefits from rich 

interdisciplinary collaboration. Neurofeedback researchers can thus make use of 

various tools that help overcoming these challenges and possibly establish the 

technique as a valid treatment alternative for certain neurological and psychiatric 

conditions. Moreover, neurofeedback research is a useful test dummy for translating 

neuroimaging from the bench to the bedside, possibly creating “spill over effects”. The 

multidisciplinary field may drive innovations that can be adapted and adopted by 

researchers in other areas of translational neuroscience.  
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3 METHODS 
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3.1 Basic principles of Electroencephalography (EEG) 

Electroencephalography (EEG) was invented by German psychiatrist Hans Berger in the 1920s 

as the first device that allowed recording brain activity non-invasively. EEG uses scalp 

electrodes which measure local field potentials (LFPs), which represent the summed activity 

of local neural populations. LFPs reflect the electric potential in the extracellular space, which 

is largely determined by post-synaptic activity. When neurons generate electrical currents, 

negatively and positively charged ions are exchanged with the extracellular space along the 

neuron. The direction of ion flow is determined by the electric potential that is generated at the 

post-synapse: Excitatory post synaptic potentials (EPSP) entail an inflow of positively charged 

ions, resulting in a depolarisation of the post-synaptic neuron. In contrast, inhibitory post 

synaptic potentials (IPSP) entail an inflow of negatively charged ions, resulting in a 

hyperpolarisation of the post-synaptic neuron. These local ion currents change concentrations 

of ions in the extracellular space, creating an electric potential along the neuron. For instance, 

in the case of an EPSP, negatively charged ions (e.g. chloride) dominate and create negative 

polarity (a sink). In contrast, further along the neuron passive ion movements follow this 

gradient, resulting in positive polarity (a source). Together, sink and source form a bipolar 

potential. The sum of these bipolar potentials results in local field potentials (LFPs), which 

form the basis for the neural signal that can be detected with electrodes placed on the scalp 

(Lopes da Silva, 2010). In contrast to LFP recorded directly in the extracellular space of brain 

tissue, the signal detected by EEG has first propagated through various media that lie between 

the electrode and the extracellular space, including the cerebrospinal fluid, the cranium and 

muscle.  

 

Electrical activity measured with EEG can be characterised by their frequency (measured in 

hertz, Hz) and amplitude (measured in microvolt, µV). Raw EEG data consists of a mixture of 

various frequency bands, however, through digital filtering (e.g. a fast Fourier transformation) 

data is transformed from the time domain into the frequency domain. Additional band pass 

filtering allows separating a frequency spectrogram into discrete frequency bands. Some main 

types of frequency bands include the alpha-band (8-12Hz), beta-band (13-30Hz), and low 

gamma-band (30-70Hz) and high gamma-band (70-300Hz). Alpha, beta and lower-gamma 

oscillations play a critical role in motor control (Lopes da Silva, 2010). For instance, one 

predominating view in the motor control literature is that gamma oscillations encode 

feedforward information from the sensory signals (predictions) whilst beta oscillations encode 
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feedback information (prediction errors) modulating feedforward signals based on the current 

context (Bastos et al., 2015; Tan et al., 2016). Changes in these frequency bands have been 

identified in response to treatment for Parkinson’s disease (PD) and will be discussed in 

Chapter 8 with regards to their potential as target frequencies for an EEG-NF intervention in 

early-stage PD patients. Other slower frequency bands include the delta (0.5-4Hz) and theta 

rhythms (4-8Hz).  

 

The strength of oscillations within a certain frequency band is measured in amplitude (µV) and 

reflects the relative level of neural synchrony at a given frequency range. When measured over 

time, this allows to quantify EEG changes relative to baseline periods (e.g. as percent signal 

change) in response to specific events. Relative to baseline, a given task may either increase 

(event-related synchronisation; ERS) or decrease the synchrony (event-related 

desynchronisation; ERD) of cortical neural populations. ERDs and ERSs are of interest for our 

understanding of motor control, pathological processes, and therapeutic responses (Chapter 8). 

Further, they provide potential EEG markers that can be targeted with neurofeedback training. 

For instance, for motor imagery event-related, lateralized changes can be expected in the alpha 

and beta band over central electrode (Pfurtscheller et al., 2005): for left hand motor imagery, 

typically ERD occurs in the alpha and beta band over the contralateral (i.e. right) hemisphere, 

while ERS occurs  for both frequency bands over the ipsilateral (i.e. left) hemisphere. Besides 

motor imagery, also motor execution shows similar patterns of ERD and ERS, indicating that 

they are likely involved in the preparation, execution, but also in the evaluation of a movement 

outcome (Tan et al., 2016). ERDs in the alpha band have been successfully used for motor 

imagery based EEG-NG training (Ring et al., 2015), such that healthy participants learned to 

voluntary control the ERD. Moreover, in particular lateralization patterns are used in BCI 

experiments that use classification algorithm to decode the side and limb with which motor 

imagery is being performed (Morash et al., 2008).  

 

3.2 Basic principles of functional MRI 

The results and discussions presented in this thesis were mainly informed by data stemming 

from functional magnetic resonance imaging (fMRI) measurements. Specifically, the image 

contrast used for the outlined real-time fMRI neurofeedback studies is based on the blood 

oxygenation level dependent signal (BOLD), which is inversely proportional to the local level 

of deoxyhaemoglobin (desoxyHB; Shmuel, 2010). Hence, BOLD only represents an indirect 
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measure of neural activity. The neural  basis of the BOLD signal lies in LFPs, which constitute 

the activity in local neural populations (Logothetis, 2002). However, LFP amplitudes depend 

on various factors, including the strength of synaptic input, the transmembrane potential and 

the synchrony of current. Further, the functional anatomy of the cortex including the 

cytoarchitecture modulates local LFPs and thus the BOLD signal. Whereas large Purkinje cells 

in the cerebellum induce a large BOLD response, small inhibitory neurons do not contribute to 

the LFP (Lauritzen, 2005). Hence, the neurophysiological correlate of the BOLD signal mainly 

represents the local input and processing of information, but it does not inform directly about 

the output signal that is sent to other regions. Of interest, the relationship between BOLD and 

LFPs is particularly pronounced for certain frequencies, suggesting that these mainly contribute 

to the measured signal. These include alpha (8–12 Hz), beta (18–30 Hz), and gamma (40–100 

Hz) LFP bands (Magri et al., 2012).  

 

Neurophysiological processes are not the only correlate of the BOLD. The BOLD contrast is 

based on the idea to exploit an endogenous contrast that has originally evolved to regulate 

blood flow. One mechanism that contributes to blood flow regulation is autoregulation, which 

counteracts fluctuations of arterial blood pressure. Autoregulation is limited to only a few 

organs, including the brain and the kidneys. Yet, changes in neuronal activity require changes 

in blood flow, a process that is regulated via a second mechanism: neurovascular coupling.  

 

Neural processes and vascular responses that regulate the supply of oxygenated blood are 

linked through neurovascular coupling (Iadecola, 2004). When local metabolic demands 

increase due to increased firing rates, different vasoactive mediators including ions (e.g. 

potassium), neurotransmitters (e.g. gaba-aminobutyric acid (GABA)) and neuromodulators 

(e.g. dopamine) are released. These vasomodulators may merely constitute by-products of 

metabolic processes (e.g. carbon dioxide), or they may play a key role in the neural processing 

itself (e.g. dopamine and GABA). Also, interneurons that project neurites directly to blood 

vessels release vasoactive factors when neural activity increases. Vasoactive modulators 

regulate local arterial cerebral blood flow (CBF), and thereby the concentration of desoxyHB 

decreases in the local vessels, resulting in a positive BOLD signal compared to rest (Shmuel, 

2010).  

 

Noteworthy, temporal delays in neurovascular coupling render the BOLD response a 

temporally low-pass-filtered version of the underlying neurophysiological response that is 
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delayed by 1.5 – 2s (Ashby, 2011; Shmuel, 2010). Moreover, the peak blood flow and hence 

the BOLD plateau are reached in healthy individuals after 4-6s. These delays, however, may 

vary between brain regions and also change with aging and pathological processes including 

stroke (Lin et al., 2011; Schroeter et al., 2007).  

 

The brief outline of the underlying neurophysiology also provides a better understanding of 

some limitations of BOLD contrast, which shall be shortly summarised. The signal arises from 

a multitude of vasoactive factors that may relate to different underlying physiological processes 

including changes in the metabolic rate due to changes in firing rates, the computational 

architecture including inhibitory and excitatory processes realised via neuromodulators such as 

GABA, and other context dependent aspects including memory processes and motivational 

aspects. The BOLD signal thus contains information of brain function dependent processing, 

but also neuromodulators and physiological processes. Therefore, comparisons between 

magnitudes of the BOLD contrast, e.g. between two brain regions or between two tasks within 

the same brain region, require cautious interpretation (Logothetis, 2008).  

3.3 fMRI Data pre-processing and analysis 

3.3.1 fMRI processing 

The main goal of fMRI pre-processing is to minimise the impact of physical and physiological 

artefacts and to validate model assumptions of parametric statistics used for fMRI analysis 

(Lindquist, 2008), which will be discussed in the next paragraph (3.3.2). This paragraph serves 

as a brief overview of some predominant pre-processing steps that are relevant for the 

univariate analyses of fMRI data that will be presented in this thesis.  

 

Brain volumes are acquired in slices, often with an inter slice time of 70 milliseconds or more. 

In contrast, statistical analyses assume that data in all voxels was acquired simultaneously. 

With a repetition time (TR) of 2 seconds for instance, the true temporal difference between 

slices may be, however, up to two seconds. Moreover, within this time the participant may have 

moved their head. fMRI analyses assume that each data point in a time series from a given 

voxel only consists of data from a specific voxel. Hence, two important early pre-processing 

steps in fMRI data analysis are slice timing correction and head motion correction (Ashby, 

2011; Lindquist, 2008). During slice timing correction, time courses are shifted with respect to 

an indicator. Head motion represents one main source for variation in fMRI time series 
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(Lindquist, 2008), which  varies between contextual factors such as the task and certain clinical 

populations such as stroke (Seto et al., 2001), or age groups  (Yuan et al., 2009). When 

uncorrected, head motion violates model assumptions because signal from neighbouring voxels 

“contaminates” the signal from a specific voxel of interest (Lindquist, 2008). At the beginning 

of motion correction procedures, a refence image is determined to which other volumes are 

registered and corrected, e.g. based on contrast differences at edges of the image. This reference 

image may be the first volume of a scan, such that all following volumes and scans within a 

scan session are aligned to this image (“intrasession alignment”). Different approaches exist to 

solve this optimisation problem, which vary between fMRI analysis software (Oakes et al., 

2005) and can be characterised by the interpolation method (e.g. Fourier or trilinear), the 

optimisation technique (e.g. iterative gradient descent), and the cost function used to avoid 

overfitting and control optimisation speed (e.g. weighted lest squares).  One predominant 

technique of motion correction is a rigid body transformation, which involves 3 translation 

variables and 3 rotation variables (along the x, y, and z axis, respectively). During the process, 

a cost function is minimised to achieve optimal parameter estimates for displacement along 

these 6 dimensions between a given image and a reference image. Transformation parameters 

can further be used as nuisance regressors in subsequent statistical analyses to account for 

spurious variations in the BOLD signal that have occurred due to head motion. Once motion 

correction is completed, estimated displacement parameters are used to interpolate a new image 

which is assumed/treated as “motion free” for the parametric analysis (Lindquist, 2008).  

 

The spatial resolution of BOLD fMRI is limited by the architecture of the brain’s vascular 

system. Hence, compared to a structural anatomical acquired at the same field strength, the 

BOLD image will feature less spatial acuity. However, spatial acuity in the evaluation of 

functional images can be increased by co-registering functional to structural data. Specifically, 

the co-registration of functional and anatomical data allows to map functional activity onto a 

high-resolution anatomical image. Moreover, a transformation to a standard space such as 

Talairach (Talairach and Tournoux, 1988) or MNI (Evans et al., 1992) allows comparing 

coordinates across participants and studies. Transformation to a standard space hence makes it 

possible to pool data across participants and perform group analyses, which greatly improves 

statistical power (Desmond and Glover, 2002). However, in contrast to image alignment within 

one acquisition mode (e.g. functional BOLD imaging), co-registration across acquisition 

modes (e.g. functional BOLD imaging and structural T1 weighted imaging) entails a higher 

degree of interindividual anatomical variations, requiring non-linear transformations (for 
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instance trilinear or sinc interpolation) as opposed to mere rigid-body transformations (Ashby, 

2011; Lindquist, 2008).  

 

When working with group data and mass univariate statistics (Chapter 3.3.2), spatial 

smoothing is another commonly practiced pre-processing step. Spatial smoothing is a form of 

data filtering such that the intensity values of voxels become more similar to neighbouring 

voxels. Practically, smoothing kernel is a function that is convolved with image, yielding voxel 

intensities that represent a weighted average of neighbouring voxel intensities (Lindquist, 

2008). Smoothing reduces between subject variations in anatomical and functional variations, 

which may interfere with the co-registration process. Spatial smoothing can increase the signal-

to-noise ratio because it reduces the effect of random voxel fluctuations due to noise. Moreover, 

smoothing reduces the effect of outliers on the data and thereby contributes to a normal 

distribution of residuals (Ashby, 2011). This latter aspect increases the validity of inferential 

parametric statistical tests (such as a t-test) that are commonly applied in imaging data. The 

size of smoothing kernels (measured in mm) is dependent on factors such as regions of interest 

as well as the task at hand (Ashby, 2011). One disadvantage of spatial smoothing, however, is 

that the spatial resolution is compromised. It may hence reduce the power for other sets of 

statistical techniques such as multivariate pattern analysis (Hendriks et al., 2017). Taken 

together, the application of smoothing kernels should be informed by the research question.   

  

3.3.2 fMRI analysis 

General Liner Models (GLMs) represent the predominant statistical approach in analysing 

univariate neuroimaging data (Ashby, 2011). GLMs are statistical models that can be solved 

with ordinary least square methods. In principle, GLMs as used in most block design fMRI 

experiments attempt to model a measured time series (Y) of every voxel using a given set of 

predictors and an assumed shape of the hemodynamic response function (HRF) that is 

convolved with (and hence scaled by) predictor variables. Predictors may represent events, for 

instance the onset and offset of a task (“box-car” function”), or confounding variables such as 

head motion parameters as well as other factors that may impact the BOLD signal. If available, 

physiological signals such as respiration or end-tidal carbon dioxide (PET CO2) can for instance 

be measured and included as predictor variables once it has been pre-processed accordingly 

(Murphy et al., 2013). All predictors are entered into a matrix (X), for which the number of 
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predictors determines the number of columns, and the number of time points determines the 

number of rows:  

 

Eq. (3.1):  Y = XB + e,  

  

It is hence another way to represent a multiple linear regression model in the form of  

 

Eq. (3.2):    Y = β0 + X1β1 … Xnβn + ε 

 

, β0 is the estimated constant (baseline), the numerated betas correspond to the estimated beta 

regression weights of the entered predictors, and ε represents the residual error. Predictors are 

entered into the GLM and regression weights (i.e. βn) are estimated using a closed form 

ordinary least square approximation. Through rearrangement of the equation, it can be solved 

with ordinary least square methods (Friston et al., 1994). One main assumption that parametric 

methods make is that residuals (errors) are normally distributed. However, due to the nature of 

the BOLD response, which is related to cerebral blood flow and other physiological noise such 

as heart rate and respiration but also other factors, periodic fluctuations in the BOLD signal 

that have not been modelled in the GLM result in autocorrelated residuals. One way to tackle 

temporal autocorrelation is by estimating the temporal dependencies, readjust the time course 

and re-iterate the model estimation (Bullmore et al., 1996). In approaches that study the 

representational geometry of functional imaging data (e.g. representational similarly analysis), 

one can also normalise for spatial dependencies using spatial “pre-whitening” (Ejaz et al., 

2015). Lastly, multivariate techniques, so called model-free techniques such as independent 

component analysis (ICA), represent an alternative to model-based correction procedures. ICA 

allows dissociating the BOLD signal into additive subcomponents (Beckmann and Smith, 

2004) such that signal components related to noise can be identified and discarded in a semi-

automatised way.   

 

With regards to statistical analysis of model-based mass univariate statistics fMRI data, 

appropriate procedures for multiple comparisons need to be considered to allow valid 

inferences and minimise false positives (see Chapter 3.4.1.3 for more details). Specifically, 

contrasting of beta weights between conditions (e.g. in form of a t-test) is performed on a voxel-

by-voxel basis and hence requires appropriate correction methods. Frequentist statistics assume 

that no effect is present, i.e. that the null hypothesis is true (Chapter 3.4.1.1). The null 
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hypothesis can only be rejected if the data is more surprising than it could be expected with a 

certain probability if there was no effect, which is commonly called a significant effect. This 

probability is represented as the alpha level, an error rate that is considered tolerable and that 

is usually defined as 5% (i.e. p < 0.05) in the life sciences. However, this error rate is set per 

test and as the number of tests increase, the overall error rate increases proportionally (see 

Chapter 3.4.1.3). To maintain the validity of statistical inferences, multiple comparison 

correction is required, in particular for fMRI data which comprises many thousand voxels and 

hence often many thousand (univariate) tests. Four main approaches of multiple testing 

correction shall be shortly reviewed here (Ashby, 2011): 1) family-wise-error-rate (FWER) 

correction aims to retain the α-level at 5% across experiments and represents one of the most 

conservative approaches. 2) False discovery rate (FDR) based approaches aim to limit the 

number of false positives per experiment. It thus aims to control the α-level per experiment. 3) 

Another set of techniques are cluster wise inference approaches, which instead of correcting at 

voxel level, estimate the minimum number of adjacent voxels one would expect to find under 

the null hypothesis. Cluster extent-based correction techniques use information about the 

spatial smoothness of the data and require users to set two thresholds: a cluster defined 

threshold (CDT) that retains only voxels whose p-value is below it (e.g. CDT p < 0.001), and 

a cluster-level extent threshold (e.g. p < 0.05), which represents the error rate of falsely retained 

clusters (assuming that an appropriate CDT was applied, and all other model assumptions are 

met). Parametric cluster wise inference methods are widely used to correct for multiple testing 

and reliable in controlling for the type-I error rate when appropriate thresholds are chosen 

(Eklund et al., 2016). 4) Another set of techniques are non-parametric permutation tests. In 

contrast to parametric approaches that assume the distribution of the statistic of interest under 

the null hypothesis, non-parametric permutation based procedures can find the statistic under 

the null hypothesis by permuting the labels and reiterating analyses (Smith and Nichols, 2009; 

Winkler et al., 2014). Both techniques have been shown to reliably control FWER around the 

nominal 5% level, although permutation tests show slightly better performance (Eklund et al., 

2016), and cluster inference based methods can control reliably for FDR nominal 5% level 

(Kessler et al., 2017). One advantage of cluster wise inference over permutation based methods 

is their higher sensitivity in detecting effects (Woo et al., 2014). This sensitivity may come at 

the cost of inflated false positives if too liberal CDTs are chosen (Eklund et al., 2016). 

However, if used with appropriate primary thresholds (CDT p < 0.001), they represent a 

reliable and economic way to control for multiple testing and hence a justifiable trade-off 
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between statistical rigorousness and sensitivity. For this reason, they have been the primary 

method that was applied to inferential whole brain analyses reported in this thesis.   

3.3.3 Real-time fMRI setup and processing 

Most real-time fMRI setups consist of three main elements that require computing 

infrastructure: an acquisition element, a real-time analysis and processing element, and a 

feedback presentation element (Figure 3.1). In many current setups, these three elements are 

processed by at least two dedicated computing units. The real time acquisition assures timely 

export of data and performs real-time image reconstruction. Reconstructed images are 

transmitted (often via a Transmission Control Protocol/Internet Protocol [TCP/IP] network 

connection) to the analysis element, a computer system that is equipped with fMRI analysis 

software capable of performing real-time analyses. The experiments presented in this thesis 

were exclusively analysed with the commercial software package Turbo-BrainVoyager (Brain 

innovation, Maastricht, The Netherlands). However, it should be noted that freely available 

alternatives have been more recently developed as well (Koush et al., 2017; Sato et al., 2013).  

Similar to conventional (offline) fMRI analyses, real-time fMRI analyses include pre-

processing steps. In particular realignment to reference volumes to correct for head motion is 

critical to ensure that training can be performed on selected voxels. Also, spatial smoothing is 

usually performed to increase the signal to noise ratio. When feedback is provided based on 

model estimates obtained from an incremental GLM, head motion regressors can be included 

to account for spurious correlations caused by the head motion. Also linear drift term can be 

included to account for scanner drifts, e.g. due to thermic changes and instabilities (Lindquist, 

2008). These result in relatively slow confounding changes of voxels intensities which can be 

modelled within the incremental GLM. Given that real-time analyses are usually constrained 

to regions of interest (but also limited with regards to the temporal signal to noise ratio), real-

time fMRI experiments usually do not control for multiple comparison correction during online 

analyses.  
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Figure 3.1 Schematic real-time neurofeedback setup. Modified from (Arns et al., 

2017).  

3.4 Statistical approaches to hypothesis testing 

Statistics play a central role in the interpretation and presentation of data (Chapter 1.1). In this 

thesis statistical approaches more recently introduced to neuroscience will be applied, 

including frequentist equivalence tests and Bayesian statistics. Hence the rationale of classical 

frequentist hypothesis testing, potential pitfalls, and basics of Bayesian hypothesis testing will 

be shortly reviewed. The goal of this section is to provide the reader with an intuition of these 

techniques and refer to relevant literature for a more detailed discussion.    

3.4.1 Frequentist hypothesis testing  

3.4.1.1 Principles of frequentist hypothesis testing 

Two general forms of statistics can be distinguished: descriptive statistics are concerned with 

quantifying the shape of data points and provide measures of centrality (e.g. mean), variability 

(e.g. variance) and skewness. Frequentist inferential statistics test in how far a given 

distribution of data deviates from a distribution when no effect is present (i.e. the null 

distribution). Frequentist statistics provide test statistics that allow to test how probable the 

empirical data is given that the null hypothesis is true. Specifically, they test for the probability 

of obtaining a result as extreme (or more extreme) as the empirical result, given that the null 

hypothesis is true. This probability is expressed as a probability value, or p-value. It thus 
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implies the notion of uncertainty. In frequentist statistics, it is assumed that measurements 

underlie various forms of error, sampling error: data collection constitutes sampling data points 

from a population. Even if there was on average no effect on a measure of interest in the 

population that one is sampling from, it is possible that one is mainly sampling data points from 

extreme data points of the null distribution, resulting in a false positive effect. However, in 

theory repeated sampling would converge eventually over time on the true population average. 

This thought experiment describes the rationale behind frequentist statistics, which treat 

probabilities as long run relative frequencies. On the level of the individual experiment or test, 

potential errors are accounted for by a pre-defined error rate that is deemed tolerable, the α-

level (or type-I error). If the empirical p-value is smaller than the prespecified α-level, the test 

statistic deviates significantly from test statistics that can be expected under the null hypothesis, 

and the null hypothesis is rejected. This principle shall be shortly illustrated with an example 

in which one wants to test whether two group means differ. To test for a group difference on 

some measure x, using a two-sample t-test and assuming similar variances between groups, a 

t-statistic can be obtained,  

 

Eq. (3.3):  𝑇 =
𝑋̅1−𝑋̅2

𝑠𝑝⋅√
1

𝑛1
+

1

𝑛2

 

 

, where 𝑋̅ represents the means of two independent samples, Sp their pooled standard deviation 

and n their respective sample size. This t-statistic hence represents a ratio between measures of 

centrality and variability that are weighted by the respective sample sizes. Given the degrees 

of freedom (df; in this example df = n1 + n2 -2), the obtained t-statistic can be expected with a 

certain probability under the null hypothesis, yielding a p-value. As noted earlier, the p-value 

indicates the probability of obtaining a result as extreme (or more extreme) as the observed 

one, given that the null hypothesis is true. It does not, however, indicate the probability that the 

null hypothesis was true, which represents one common misconception that occur in the 

interpretation of frequentist statistical results (Greenland et al., 2016). To express such 

probability, it is required to know the probability of the alternative hypothesis, which is 

impossible to derive using a frequentist approach because empirical distributions are always 

tested for their comparability with the null distribution. This circumstance indicates one main 

limitation behind frequentist null hypothesis testing, such that the p-value is biased against the 

null hypothesis because it does not allow to quantify evidence for the absence of an effect (see 

Chapters 3.4.1.4., 3.4.1.5, and 3.4.2). Another limitation of p-values is that they are not 
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indicative of the size of an effect (Greenland et al., 2016). As shown in Eq. 3.3, for a given 

sample size, a large t-value can be obtained when the difference between group means is large, 

or when the standard deviation is relatively small. Moreover, with increasing sample sizes p-

values will decrease. Effect sizes, on the other hand represent this information, and it is thus 

recommended to report these together with their confidence interval alongside inferential 

statistical results (Ioannidis, 2018). Confidence intervals estimate the range of values for a point 

estimate (e.g. a mean or effect size) that can be expected for a given percentage (e.g. 95%) of 

experiments if it was repeated many times, representing its long run frequency distribution.  

  

3.4.1.2 Statistical Power 

Besides the type-I error rate (α), another concept central to frequentist statistics is statistical 

power. Statistical power describes the probability of a statistical test to detect an effect of 

interest, representing the inverse of the type-II error rate (β) of missing to detect an existing 

effect. Statistical power depends on the effect size one is interested in (e.g. a Cohen’s d of 0.5), 

the specific statistical test (e.g. a two-sample t-test), and the error rate (e.g. an α -level p = 0.05). 

Hence, when researchers define an effect that they hope to detect with an experiment, the 

probabilities α and β allow to calculate the required sample size (Figure 3.2).  
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Figure 3.2 Example power calculation for a one-sided (A) and two-sided (B) 

independent t-test conducted in G*power software (Faul et al., 2007). Calculation was 

based the following input parameters: an effect size of Cohen’s d = 0.5, a desired power 

of 0.8 (β = 0.2), an α-level of 0.05, and an allocation ratio N2/N1 = 1. The null distribution 

is shown in red, the simulated empirical distribution corresponding to the pre-specified 

input parameters is shown in blue, the critical t-values to reject the null hypothesis are 

indicated by green vertical lines.  

A priori calculated statistical power gives researchers an indication of the required sample size 

to detect an effect of interest with a certain probability. Moreover, if studies are designed in 

way that they can detect smallest effect sizes of interest (SESOI), researchers increase the 

probability to reject the null hypothesis, as well as a range of SESOIs if the null hypothesis test 

remains inconclusive (see Chapter 3.4.1.5). In contrast, a posteori (i.e. post-hoc, empirical) 

power calculations result from a mere transformation of the null-hypothesis p-value. Post-hoc 

power estimates thus represent a frequency probability that is contingent upon the individual 

design, including the effect sizes used for the original power calculation that may have 

determined the acquired sample size, rather than the effect one is interested in (Hoenig and 
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Heisey, 2001). For this reason, but also factors such as researcher bias and publication bias 

(Algermissen and Mehler, 2018), post-hoc power calculations do not provide a reliable 

estimate to plan prospective a priori power calculations (see also Chapter 1.1).  

 

3.4.1.3 Multiple testing correction 

To maintain valid inferences, frequentist statistics rely on maintaining the α-level at an 

acceptable rate (e.g. 5%) in order to control type-I errors (i.e. falsely rejected null hypotheses). 

When multiple tests are carried out, the chance to commit a type-I error increases with the 

number of tests. Hence, techniques that correct for multiple testing either adjust the obtained 

test statistics (i.e. p-values), or the α-level and thereby control for the rate of false positives. 

One prominent way to correct for multiple testing is the Bonferroni method, for which the 

critical α-level is adjusted by the number tests that are being conducted. However, this approach 

assumes that the hypotheses and their associated tests are independent. In the case of (partly) 

correlated hypotheses, for instance when two similar hypotheses are tested using two correlated 

items from a questionnaire, this assumption does not hold, and Bonferroni correction is too 

conservative. One alternative way is to correct for the “False Discovery Rate” (FDR), which 

adjusts obtained p-values to control for the proportion of potential false positives among all 

tests that reject the null hypothesis (Benjamini and Yekutieli, 2001). FDR thus represents a less 

conservative approach that is particularly suitable if data is partly correlated. Multiple testing 

correction also plays an important role in neuroimaging, where usually many univariate tests 

(e.g. t-tests) are performed on a given set of voxels. Therefore, the neuroimaging field has 

developed other techniques that also consider spatial correlations between neighbouring voxels 

(i.e. smoothness and spatial autocorrelation) to generate more appropriate null distributions 

from the data (see Chapter 3.3.2).  

 

3.4.1.4 Some pitfalls of frequentist statistics 

The need to adjust for multiple testing reduces power of frequentist tests. Specifically, because 

frequentist statistics operate with long run frequencies of probabilities (the p-value), statistical 

test results require adjustment when being obtained during an ongoing sampling plan. Hence, 

the ability to implement flexible data collection stopping rules is limited with frequentist 

statistics because power is reduced (Schönbrodt et al., 2015; Schönbrodt and Wagenmakers, 

2016). Further, flexible stopping is performed without multiple testing correction, such 
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undeclared and uncorrected flexible stopping rules constitute a (relatively common) 

questionable research practice (Chapter 1.1.1). Another pitfall of frequentist hypothesis testing 

represents its earlier mentioned (Chapter 3.4.1.1) bias against the null hypothesis (Berger and 

Sellke, 1987; Rouder et al., 2009). However, frequentist equivalence tests (Chapter 3.4.1.5) 

allow testing for other null hypotheses such as a range of SESOIs. Another often discussed 

disadvantage of frequentist statistics is that they remain agnostic to any prior knowledge. For 

instance, it may be possible that certain effect sizes are implausible for an experiment. 

Integrating prior knowledge and observed data underlies the principle of Bayesian statistics, 

which will be briefly introduced in Chapter 3.4.2.  

 

3.4.1.5 Equivalence Tests 

When a statistical test does not reach a declared significance level and the null hypothesis can 

thus not be rejected, it may be that there is truly no effect present, or that the study was not 

sufficiently powered to detect the effect of interest. Null hypothesis testing implies a point 

hypothesis that assumes that the effect is zero. This scenario, however, is rarely observed, 

partly owed to the fact that it is likely impossible to completely isolate phenomena and their 

effects from all other (correlated) influences that remain measurable. Moreover, if independent 

measurements are compared, independent (and identically distributed; iid) noise is assumed 

independent and hence even in the presence of no real effect, subtle differences in noise will 

remain for small samples and in particular for noisy measurements such as fMRI (Cremers et 

al., 2017; Eklund et al., 2016). Hence, most empirical non-significant results rather represent 

small effects that were not detectable with the given sample size, and that may be negligible in 

the first place. This raises the questions what constitutes a too small, and thus negligible effect, 

and how can negligible effects be rejected in a given data set? Frequentist equivalence tests 

allow addressing this question by testing whether a range of smallest effect sizes of interest 

(SESOIs) can be rejected in a given sample (Lakens et al., 2018; Walker and Nowacki, 2011). 

SESOIs are ideally specified a priori and chosen based on theoretically plausible effect sizes. 

When following up a null hypothesis test with an equivalence test based on a given SESOI, 

both tests may be not significant, indicating that the data remains inconclusive to reject null 

hypothesis as well as a range of smallest effect sizes of interest (Figure 3.3 A, B). In this 

situation, more data collection would be required to yield a conclusive test statistic. 

Alternatively, it is possible that the null hypothesis test remains inconclusive, but the 

equivalence test can reject the SESOI (Figure 3.3 C). In this situation, it is possible to show 
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that even though no overall significant effect can be established, smallest effect sizes that are 

worthwhile detecting can be rejected.  

 

Figure 3.3 Example equivalence tests for a two-sided independent t-test and a group 

mean difference of zero and different SESOIs. Equivalence bounds set to Cohen’s d = 0.3 

(A), 0.6 (B) and 0.9 (C), corresponding bounds in native units shown with dotted vertical 

lines. Group mean difference centred at zero with its 90% confidence interval (CI; thick 

line) and for comparison also the 95% CI (thin line). Only if the 90% CI does not include 

the equivalence bounds (C), one can declare equivalence. TOST: Two one-sided test. 

NHST: Null hypothesis significance test.  

3.4.2 Bayesian hypothesis testing 

Bayesian statistics form a branch of statistics named after the 18th century British philosopher 

and statistician Thomas Bayes. They can address some of the limitations that are associated 
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with frequentist statistics and have hence been used alongside frequentist tests in this thesis. 

The following paragraphs intend to provide a short overview of the principles underlying 

Bayesian hypothesis testing and highlight features that can complement frequentist hypothesis 

testing.   

3.4.2.1 Principles of Bayesian hypothesis testing 

When researchers conduct an experiment, they are rarely completely agnostic about possible 

outcomes. In fact, they may have prior knowledge about plausible effects that could be used to 

inform their analysis and hypothesis tests. Further, this prior knowledge is likely associated 

with some uncertainty (if it was not, the experiment would likely be trivial and not 

funded/conducted in the first place). However, frequentist statistics do not allow to incorporate 

a priori knowledge and its associated uncertainties into statistical analyses and hypothesis tests. 

Bayesian statistics, in contrast, operate with conditional probabilities and thus allow 

incorporating prior knowledge. Frequentist statistical tests calculate the probability of the 

observed data given that the null hypothesis is true. In contrast, Bayesian statistical tests 

calculate the posterior probability that a specific model (and a hypothesis derived from it) is 

true given the evidence (i.e. data). In other words, Bayesian statistics equip researchers who 

intend to test the plausibility of a theory (and the models and hypotheses they have derived 

from this theory) with a technique that allows testing how well a model is supported by 

observations. Notably, the influence of new observations is weighted by prior beliefs about an 

event. The calculation of Bayesian updating is based on Bayes’ theorem, which can be derived 

by applying the rules of conditional probabilities:  

 

Eq. (3.4)  𝑃(𝐴|𝐵) =
P(A AND B)

P(B)
 

 

, where A and B can be thought of as separate events. Applying the rules of conditional 

probabilities, Eq. (3.4) yields  

 

Eq. (3.5)  𝑃(𝐵|𝐴) =
P(B AND A)

P(A)
=

P(A AND B)

P(A)
 

 

Reordering Eq. (3.5) for 𝑃(𝐴 𝐴𝑁𝐷 𝐵) yields 

 

Eq. (3.6)   𝑃(𝐴 𝐴𝑁𝐷 𝐵) = P(B|A) ∗ 𝑃(𝐴) 
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Substituting the numerator in Eq. (3.4) by the derived expression of the right-hand side of Eq. 

(3.6), Bayes’ theorem is derived,  

 

Eq. (3.7)   𝑃(𝐴|𝐵) =
P(B|A)∗𝑃(𝐴)

𝑃(𝐵)
 

 

, where 𝑃(𝐴|𝐵) represents the posterior (e.g. the probability for model A given the observed 

data B), P(B|A) the likelihood (i.e. the non-normalised probability function for a range of 

parameters/values under the model), 𝑃(𝐴) the prior (i.e. a priori beliefs in the model), and 

P(B) the marginal likelihood (i.e. the normalised likelihood function of the data integrated over 

the complete parameter/model space):  

 

Eq. (3.8)   𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑∗𝑝𝑟𝑖𝑜𝑟

𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑
 

 

The derived Bayes theorem allows parameter estimation by integrating respective probability 

distributions (e.g. a prior distribution, likelihood distribution of data) and thereby can ignore 

the marginal likelihood, which indicates the model evidence. In contrast, for Bayesian 

hypothesis testing the marginal likelihood is central because it indicates the probability of the 

data under a given model. The ratio of marginal likelihoods between competing models (for 

instance a null and an alternative models) is the Bayes Factor (BF; (Kass and Raftery, 1995)):  

 

Eq. (3.9)  𝐵𝐹10 =
𝑝(𝑦|𝑀1)

𝑝(𝑦|𝑀0)
  

 

Eq. (3.9) indicates that Bayesian hypothesis testing allows model comparison, which represents 

a desirable property (Chapter 3.4.2.2). The Bayesian approach thus does not only allow to 

calculate the evidence for the null model relative to the alternative, but also any other model of 

interest. While the BF calculation is relatively simple for simple models, the underlying 

calculations become exponentially more computing intensive for complex models 

(Wagenmakers et al., 2010). However, it is possible to calculate the BF directly from the ratio 

between the density prior and posterior functions at a point of interest (“Savage-Dickey trick”):  

  

Eq. (3.10) 𝐵𝐹10 =
𝑝(𝛿=0|𝑀1,𝑦)

𝑝(𝛿=0|𝑀1)
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Figure 3.4 provides an example for a two-sided independent t-test two groups where no group 

mean difference was found (Figure 3.3).  

 

Figure 3.4 Example calculation of the Savage-Dickey ratio for a two-sided Bayesian t-

test. A wide tailed Cauchy prior distribution scaled by an effect size r = 0.707 was used, 

representing a prior belief that 50% of expected effect sizes will fall within the range of -

0.707 and 0.707. The point hypothesis was set to zero. The BF in favour of the alternative 

hypothesis (BF10) is below 1, indicating that the evidence for the null hypothesis is larger 

(BF01 = 2.97). The relationship of evidence between the alternative and the null hypothesis 

is illustrated in the cake diagram. Calculations performed with the JASP software 

package (Team, 2017).  

As mentioned earlier, prior distributions allow incorporating knowledge about plausible sizes 

of effects, as well as the uncertainty around these estimates, indicated by the density. For 

analysis based on continuous data, this uncertainty is expressed in the form of the prior 

distribution tails. For the example illustrated in Figure 3.4 a Cauchy prior distribution was used, 

which features wide tails and thus assigns some probability to extreme values. Besides Cauchy 
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priors, other prior distributions such as the normal or t-distribution can also be used and scaled 

by values that are deemed plausible effect sizes for the research question at hand (Rouder et 

al., 2009).  

 

Bayes Factors allow expressing the plausibility of competing models (and hypotheses) in terms 

of likelihood ratios and can thus inform decision making, for instance with regards to best 

practice recommendations in medicine (Ashby, 2009). Hence, categories to aid the 

interpretation of BF calculations have been developed (Table 3.1) that provide a general 

indication for what is considered for example strong versus anecdotal evidence.   

 

Statistic (BF10) Interpretation 

> 100 Decisive/extreme evidence for H1 

30 – 100 Very strong evidence for H1 

10 – 30 Strong evidence for H1 

3 – 10 Moderate evidence for H1  

1 – 3 Anecdotal evidence for H1  

1 No evidence in favour of H1 or H0 

0.333 – 1 Anecdotal evidence for H0 

0.1 –  0.333 Moderate evidence for H0 

0.033 – 0.1 Strong evidence for H0 

0.001 – 0.033 Very strong evidence for H0 

< 0.001 Decisive/extreme evidence for H0 

Table 3.1 Evidence categories for Bayes Factor (BF10), modified from (Wetzels et al., 

2011).  

This terminology will be used in this thesis where BF results are interpreted. Taken together, 

we have derived Bayes theorem that allows us to express beliefs about an event in terms of 

conditional probability to yield a posterior belief. In this probability calculation, uncertainty 

about prior beliefs is incorporated. The next paragraph will highlight a few aspects of Bayesian 

hypothesis testing that overcome some limitations of frequentist hypothesis testing.  

3.4.2.2 Advantages of Bayesian statistics and hypothesis testing 

Bayes factors allow quantifying the evidence for a hypothesis over another, given the observed 

data and prior beliefs. Important, BFs thus allow specifying evidence for the null hypothesis 
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relative to the alternative hypothesis. This property seems in particular relevant with regards to 

questionable research practices that have contributed to the replication crisis (Chapter 1.1) 

because it can render results more informative and conclusive (Dienes, 2014; Morey and 

Rouder, 2011; Rouder et al., 2009). Moreover, the Bayesian approach allows comparing an 

arbitrary number of models because the Bayesian approach is comparative (Eq. 3.9). 

Hypotheses are tested against each other in a way that yields three desirable properties:  

 

1) Bayesian inference-based model comparison avoids overfitting of complex parameters 

because marginal likelihood integrates over the complete parameters space. Specifically, 

complex models assign lower likelihoods to a larger range of parameters (e.g. possible effect 

sizes), whereas simpler models assign larger likelihoods to a smaller set of parameters. This 

built-in “Occam’s razor” (Smith and Spiegelhalter, 1980) protects Bayesian model estimation 

against overfitting and yields a model selection mechanism that prefers parsimonious models 

that are more likely generalisable.  

 

2) One convenient mathematical property of BFs is their transitivity, such that they can be re-

combined as a ratio that expresses the belief that one model is more likely than another. Given 

that BFs represent the ratio between the posterior to a prior distribution (Salvage-Dickey trick, 

Chapter 3.4.2.1), transitive combination of BFs requires that these were computed using the 

same data, that both original tests were carried out against one common hypothesis (e.g. the 

same null hypothesis), and that identical prior distributions were used. Transitive combinations 

of BFs allows asking new forms of research questions, for instance for the relative evidence of 

a positive opposed to a negative correlation or group mean difference between two conditions 

(see for example Chapter 7.5.4.2).  

 

3) Bayesian inference is not affected by multiple testing and thus does not require multiple 

comparison adjustment. This is because Bayesian statistics do not treat probabilities as long 

run relative frequencies (as opposed to frequentist null hypothesis testing) and hence results 

are not subject to type-I error rates. Hence, repeated testing does not alter results and does not 

require adjustments of the test statistic. This allows investigators to describe how evidence is 

accumulated in an experiment as a function of new data being acquired (Figure 3.5). This 

property implies that Bayesian Inference allows flexible stopping rules for data collection 

(Schönbrodt et al., 2015). Employing a Bayesian sequential sampling (BSS) approach, one can 

design experiments in which data collection is continued until a predefined threshold of 
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sufficient evidence is reached (see sampling plan used in Chapter 7.2.3.2). Simulation results 

indicate that such an approach allows more economic, still robust designs (Schönbrodt et al., 

2015; Schönbrodt and Wagenmakers, 2016). However, although the concepts of power and 

type-I error do not exist, Bayesian inference can still yield false positive and false negative 

results. The probability of false positive and false negative errors is determined by the choice 

of parameters (the scaling factors and the BF threshold), the sample size and the true effect 

determine the false negative rate false positive (Schönbrodt et al., 2015). These can be balanced 

against each other when designing a BSS plan.  

 

Figure 3.5 Bayesian Sequential analysis for a two-sided independent t-test. Data and 

prior identical to those used for Figure 3.4. The plot shows the accumulation of evidence 

in favour of the null hypothesis as a function of n (the number of participants). Dots of 

differences sizes and colours indicate different priors, indicating the sensitivity of the 

result to the prior distribution. Given that the data yielded a zero group mean difference, 

wider priors that cover a larger range of effect sizes yield relatively more evidence for a 

null effect.  
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Lastly, one potential criticism against Bayes may be that priors can be selected in arbitrary way 

(possibly after data has been analysed) and data is thereby overfitted. This criticism can be 

addressed in a number of ways, e.g. either by choosing very generalizable, so called default 

prior distributions (Morey and Rouder, 2011), or by providing convincing justifications for a 

given prior distribution choice (e.g. priors that are informed by SESOIs). Additionally, analyses 

can be amended by a sensitivity analysis that informs about the influence of different prior 

distribution on the Bayes Factor (see legend Figure 3.5).  

3.4.3 Randomised Clinical Trials 

Randomised Clinical Trials (RCTs) are considered the gold standard to demonstrate 

empirically the superiority of an intervention over a control condition (Bothwell et al., 2016). 

Tested interventions may include pharmacological substances but also training programmes 

that aim to modify behaviour or cognitive processes. Some main trial types, control procedures 

and analysis principles will be briefly outlined here.   

One main rationale that guides trial design is minimising potential biases during data 

acquisition, analysis and interpretation. These aims are achieved by three main principles: 1) 

randomization of participants (Chapter 3.4.3.1) to minimise risk of confounding and bias, 2) 

control conditions (Chapter 3.4.3.2) to control for unspecific (e.g. placebo) effects, and 3) 

blinding of assessment as well as of treatment where applicable (Chapter 3.4.3.3).  

For the development of new medical interventions and medical substances, RCTs are 

traditionally categorized in different phases (Table 3.3) based on their development stage and 

focus. Early phase trials focus on assessing mechanisms (in Phase 0, e.g. pharmacodynamics), 

where later trials in humans focus on establishing safety (Phase 1), efficacy (Phase 2). Final 

confirmation of safety and efficacy is provided in large sample RCTs (Phase 3) and follow-up 

safety studies (Phase 4) that are conducted after the intervention has received approval from 

medical administration councils.   

Phase Objectives Dose 
Approximate 

Size/Population 

Phase 1 
Pharmacodynamics, 

bioavailability 

Often subtherapeutic, 

but with ascending 

doses 

First in vitro and/or 

animal models;  
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Testing of drug on healthy 

volunteers to confirm safety and 

likely therapeutic dose 

Later healthy 

participants 

Phase 2 
Testing of drug on patients to 

assess efficacy and safety 
Therapeutic dose 

Several dozen up to 

a few hundred 

patients 

Phase 3 

Testing of drug on patients to 

assess efficacy, effectiveness and 

safety 

Therapeutic dose 
Over a few hundred 

patients 

Phase 4 

Post-marketing surveillance – 

monitoring the use of the drug 

after approval 

Therapeutic dose 

Anyone seeking 

treatment from their 

doctor 

Table 3.2  Clinical trial phases for drug development, modified from 

(Friedman et al., 2010).  

While these traditional categories may largely apply for RCTs involved in drug development 

and other medical procedures, they may not fully apply to non-invasive translational work 

where animal models are not available. Further, an understanding of a mechanism of action 

and efficient therapeutic doses may still be refined in late stages. For translational technologies, 

including brain circuit-based interventions such as DBS and fMRI-NF, it is particularly 

challenging to identify causal interactions in a complex system such as the human brain that 

can largely be only assessed non-invasively (e.g. using neuroimaging techniques). In the case 

of clinical fMRI-NF development, working hypotheses based on published literature about 

circuit dynamics usually replaces empirical Phase 0 studies. First empirical knowledge about 

technical feasibility is gained from pilot and feasibility studies in healthy humans (Phase 1), 

followed by small, often uncontrolled and not randomised (Thibault et al., 2018b) feasibility 

studies with patient groups (Phase 2). Albeit to a limited extent, first translations into RCTs 

(Phase 3) have been achieved (Chapter 2.1.2). However, in contrast to the phases of traditional 

drug development trials, uncovering mechanisms of actions remain an important component of 

Phase 3 trials in the development of clinical fMRI-NF. Taken together, while traditional phases 

of trial development provide a guidance for the pathway from a preclinical model to a 
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successfully developed health product, the phases of clinical fMRI-NF development partly 

deviate and may necessitate a theoretical framework.  

3.4.3.1 Randomisation 

Randomisation procedures assign participants to treatment groups. The goal of randomisation 

procedures is to eliminate potential pre-treatment differences between groups to allow a pre-

post treatment comparison where group results mainly stem from differences in the 

intervention. Thereby, randomisation procedures aim to avoid pre-existing group differences 

regarding the primary (or secondary) outcome, as well as for factors that may interact with (i.e. 

confound) treatment effects. Different approaches exist: for instance, during simple 

randomisation, participants are randomly assigned to intervention groups, but the 

randomisation procedure remains agnostic to individual factors. In contrast, during adaptive 

randomisation a minimisation procedure can be applied such that new participants are assigned 

to a group in a way that minimises between group difference of possible confounding factors 

(see Chapter 4.2.2). These factors typically include age, gender, duration and severity of an 

illness, as well as the medication status (if applicable) in clinical trials. Hence, an adaptive 

randomisation sequence is informed by the data and aims to balance for potential confounding 

factors between groups. With regards to randomisation procedures of fMRI-NF studies, it 

should be mentioned that additional randomisation factors may be relevant depending on the 

choice of control conditions (Chapter 3.4.3.2). For instance, researchers may expect to find 

differences in the ability of self-regulation based on certain neuroimaging or psychometric 

markers.  

3.4.3.2 Control Conditions 

Control conditions in RCTs mainly serve to minimise the influence of potential confounders 

and provide evidence for the specificity of potential treatment effects. An effective control 

condition can be designed based on epidemiological insight of the condition and the 

pathophysiological model of interest. Moreover, the nature of the intervention may require 

different forms of control because multiple elements of the intervention may interfere with 

therapeutic processes and confound results. For fMRI-NF, multiple purpose of control groups 

have been identified (Thibault et al., 2016): Groups may for instance be matched for received 

feedback (yoked feedback) by providing participants in the control with non-contingent sham 

feedback from participants of the experimental group. Another purpose may be to control for 

motivation levels and the belief of self-control by providing contingent sham feedback from an 
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area that is not related to a pathophysiological model of interest. Inverse sham feedback 

represents an alternative control condition. In this setup, participants engage in neurofeedback 

training for which opposite effects are expected, for instance up-regulation and down-

regulation motor imagery-based fMRI-NF training of the motor area). Other control conditions 

do not involve fMRI acquisition but merely exposure to similar cognitive training such as 

mental imagery training only control groups. Altogether, fMRI-NF experiments are complex 

experiments and thus consist of many elements that can be controlled for. Moreover, since 

fMRI-NF training involves an interaction of the individual with the setup, the implementation 

of control conditions should be informed by the level of blinding that is desired (Chapter 

3.4.3.3). A more in-depth discussion of pros and cons for different control conditions will be 

provided in the general discussion (Chapter 9).  

3.4.3.3 Blinding 

Blinding in RCTs aims to minimise potential biases and confounds that may result from 

knowledge about treatment allocation. Studies that do not use blinding procedures are 

considered open label studies. Traditionally, three grades of blinding procedures have been 

described for RCTs: single-blind, where conventionally only the participant (or for some 

designs only the investigator) is blinded to the intervention allocation, double-blinding where 

both the participant and investigator are blinded, and triple-blinding where additionally the data 

analyst is blinded (Umscheid et al., 2012). A lack of sufficient information about blinding 

procedures of trials has been documented and criticized, for instance every second study 

published in PubMed journals in December 2000 did only refer to the blinding type but not 

provide details on the procedure (Chan and Altman, 2005). Hence, applied blinding procedures 

require scrutiny in the evaluation of RCTs, for interventions such as fMRI-NF where active 

involvement of the patient forms part of the procedure. While these grades of blinding are 

generally applicable for trials that test interventions which do not require an active interaction 

of the patient, feasible blinding strategies for fMRI-NF trial designs largely depend on the 

choice of control conditions (Chapter 3.4.3.2).  

3.4.4 The CONSORT statement  

In response to reporting deficits of clinical trials, including lacking details on blinding status, 

but also outcome specification and randomization procedures, the Consolidated Standards of 

Reporting Trials (CONSORT) statement was introduced in 1996 with the aim to improve the 

quality of reporting in clinical trial research. CONSORT is considered best practice in clinical 



Clinical Applications of fMRI neurofeedback training – David Marc Anton Mehler – November 2018 

     109 

W
o

rd
 T

e
m

p
la

te
 b

y
 F

ri
ed

m
an

 &
 M

o
rg

an
 2

0
1

4
 

trial reporting and forms a prerequisite for article submissions of RCTs to most medical 

journals. CONSORT includes detailed specification items on blinding procedures since its in 

2001 revised version (Moher et al., 2001). In its currently recommended version, which was 

revised in 2010, CONSORT comprises a 25-item checklist and a flow chart diagram about 

patient flow (Appendix A Figure A1). The checklist requires the provision of details about the 

methodology (e.g. blinding and randomization), results (e.g. attrition rates, main clinical 

outcome and exploratory analyses), as well as information about a public registration, trial 

protocol and funders. According to one large COCHRANE meta-analysis that included 50 

published evaluations of reporting standards across more than 16,000 entries (Turner et al., 

2012), the introduction of CONSORT was associated with an improved quality of clinical trial 

reporting. For instance, trials increasingly reported randomization concealment (i.e. separating 

randomization from recruitment) and mention the rationale behind an intervention. Yet, details 

of the blinding procedure remained insufficiently specified in about 80% of trials (Turner et 

al., 2012). Taken together, the CONSORT statement and its endorsement by major medical 

journals has likely improved the reporting standards in trials research. However, given that 

certain aspects of the CONSORT checklist remain underspecified, it likely does not (yet) 

constitute a decisive element in the peer-review process.   

3.4.5 Trial registration 

Trial registrations are a public record of clinical trials that contain key information including 

outcome measures, start and end dates, as well as planned sample sizes. They have been 

introduced in response to reporting biases in the medical literature and have been a requirement 

by the International Committee of Medical Journal editors since 2004 (De Angelis et al., 2004). 

To avoid being biased by preliminary results, trials registrations need to be completed before 

data collection. Registered trials receive ID numbers, which are required to be reported in 

submitted manuscripts. The largest registry for clinical trials is ClinicalTrials.gov, which has 

been founded in February 2000. As of August 2013, more than 150,000 entries were made 

(Jones et al., 2013). Moreover, since September 2008 a results data base is available, which 

contained data of more than 7,600 trials as of February 2013 (Williams et al., 2015).   
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3.4.6 Missing data and data analysis 

Clinical trials require the documentation of missing outcomes and noncompliance to allow 

assessing safety and potential sources for biases. For instance, when comparing two treatment 

methods, it is possible that attrition rates vary between treatment A and treatment B, which 

may indicate worse compliance for treatment B. Furthermore, if attrition interacts with certain 

patient characteristics such as the severity of condition, outcome estimates may bias. For 

instance, it may be possible that despite similar drop-out rates between treatment conditions, 

predominantly severe cases interrupt treatment B. To address this issue and test for potential 

bias, researchers can use intention-to-treat (ITT) analyses (Gupta, 2011), which are considered 

best practice. Another aspect worth emphasizing is that analyses of RCT outcomes may benefit 

from adjustment of covariates. Four  main reasons for main goals of covariate adjustment 

include 1) to correct for potential slight imbalances in baseline prognostic covariates (e.g. 

baseline severity or medication status), 2) to increase statistical power by modelling variability 

in the outcome variable that is explained by prognostic covariate, 3) to arrive at treatment 

effects that are more representative to treatment effects of individual patients (because 

individual variation in dependence of covariates such as age or gender is taken into account), 

and 4) to incorporate specific study design features in the data analysis (Yu et al., 2010). 

CONSORT recommends adjusting for covariates and predeclaring these in the trial registration 

to restrict degrees of freedom for p-hacking. However, the majority of trials often do not follow 

these recommendations (Yu et al., 2010).  

3.5 Preregistration and Registered Reports 

Trial registration and CONSORT statements inspired similar developments outside of clinical 

medicine. In particular, open science methods including preregistration and registered reports 

(RRs) have been suggested as a solution to address researcher bias and thereby make science 

more reproducible and replicable (Chambers, 2017; Ioannidis, 2012; Munafò et al., 2017; Peng, 

2011). For instance, by defining and publishing hypotheses and analysis pipelines before data 

collection, the robustness of statistical inferences is improved as post-hoc analysis options are 

rendered transparent (Chambers, 2013). This public declaration is central to the new publishing 

formats of study preregistration and RRs. These two formats ask researchers to predefine their 

hypotheses, methods and analysis plans which are then published. Hence, both preregistrations 

and RRs make the crucial distinction between confirmatory hypothesis testing and post-hoc 

exploratory hypothesis generating and thus address a major contributor to the replication crisis 
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(Munafò et al., 2017). Preregistrations are comparable to clinical trial registrations and 

comprise a document that describes the rationale and hypotheses, however, they usually 

describe the methodology in more detail and they should provide an analysis plan that is 

registered and accessible at a public repository. RRs represent a peer-reviewed extension of 

preregistrations (Nosek and Lakens, 2014). Specifically, the initial peer review of RRs (Stage 

1) should be based on criteria such the studies’ scientific validity, the plausibility of statistical 

power calculations, and its novelty (Figure 3.6). Approved submissions receive an acceptance 

in principle. Originally launched at the neuroscience journal Cortex (Chambers, 2017), more 

than 100 journals offer a form of RR as of January 2018.  

 

Figure 3.6 Registered Reports (RRs) Workflow Diagram adapted from (The 

Registered Reports Steering Committee, 2018).  

After data collection and analysis is completed, a second review is performed (Stage 2) to 

assess that analyses were performed according to the analysis plan and that authors draw valid 

conclusions. Final manuscripts may also contain exploratory analyses that were not 

preregistered, but importantly these are indicated as such, reducing their evidential value. 

Crucially, final manuscript acceptance is not contingent upon results and authors can hence 
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publish studies even in the event of an inconclusive null result. Taken together, RRs can 

effectively reduce, or even eliminate researcher bias including file drawer effects, as well as 

publication bias. Transparency can be further increased by providing access to data, computer 

code and research materials. Overall, transparency as evidence by preregistrations and 

registered reports is becoming increasingly desired and required by journals and founders 

(Bloom et al., 2014; Eglen et al., 2017; Picciotto, 2018). Moreover, increased transparency 

encourages and facilitates direct replication attempts and allows immediate comparison 

between studies, fostering one pillar of the scientific endeavour. Necessary infrastructures and 

incentive structures are largely not in place yet, however, they become increasingly available. 

Taken together, publishing formats such as preregistration and RRs likely transform the way 

research is conducted and communicated, equipping scientists with new tools to control for 

bias and falsify previous work to advance theory and science (Popper, 2005).  
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4 CLINICAL EFFECTS OF FMRI-

NF TRAINING IN DEPRESSION 

  



Clinical Applications of fMRI neurofeedback training – David Marc Anton Mehler – November 2018 

     114 

W
o

rd
 T

e
m

p
la

te
 b

y
 F

ri
ed

m
an

 &
 M

o
rg

an
 2

0
1

4
 

4.1 Introduction 

Neurofeedback can enable patients to develop personal strategies that are effective in self-

regulating brain areas and networks associated with mental imagery through the feedback of 

signals that reflect their own neural activation patterns. Mental imagery can be therapeutic for 

depression by increasing cognitive flexibility and capacity for positive mental simulation 

(Holmes et al., 2016). Thus, with neurofeedback, patients’ engagement in mental imagery can 

be enhanced by monitoring and feeding back the associated brain activation. Proof-of-concept 

(PoC) studies with mildly to moderately depressed patients have shown that patients can learn 

to up-regulate brain areas localised with positive affective stimulation (Linden et al., 2012; 

Young et al., 2014). Moreover, one study suggested that only the group that completed real-

time fMRI-NF training, but not a mental imagery only control group, experienced significant 

improvement in mood within three training sessions (Linden et al., 2012). These findings have 

recently been corroborated in a double-blind, placebo-controlled RCT conducted in 

unmedicated patients (Young et al., 2017). This RCT found over 40% reduction in depressive 

symptoms in the intervention, but not a placebo neurofeedback group. However, patients in the 

placebo group of that trial did not attain self-regulation success, and thus groups were not 

matched for the reward experience. Hence, it remains unclear whether this efficacy is specific 

to feedback from emotion-regulating regions, or whether the general experience of self-

regulation during fMRI-NF may be therapeutic. Further, the clinical efficacy of fMRI-NF as 

an add-on treatment to psychopharmacology remains to be tested. Also, no follow-up tests have 

yet been conducted to determine whether clinical effects are lasting. This chapter presents 

results from an RCT of rt-fMRI-NF training in medicated patients with moderate to severe 

depression. The current trial compared up-regulation of brain areas involved in emotion 

processing (NFE) with an active control procedure that involved up-regulation of brain areas 

involved in higher visual processes (NFS). Specifically, both groups were provided with 

information that enabled patients to up-regulate selected target areas. Whereas the NFE group 

was instructed to imagine positive images similar to those seen in the respective blocks of the 

localiser run (Linden et al., 2012), the NFS group was instructed to imagine relaxing scenes 

(Habes et al., 2016).This design also gave patients of the control group the opportunity to 

experience self-regulation success and reward experience. The main hypothesis was that 

neurofeedback of areas involved in processing positive emotions would produce clinical 

improvements exceeding those seen in the active control group. Patients’ clinical status was 

assessed again at a follow-up approximately 6 weeks after the completion of the intervention.  
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4.2 Methods 

This section exclusively covers methodological details about patient recruitment, 

randomisation, the overall trial design, clinical and psychometric measures, the power 

calculation for the main clinical outcome measure, and statistical analyses of planned and 

exploratory analyses. For methodological details about the MRI acquisition and analysis, 

please refer to Chapter 5.2.  

4.2.1 Patient recruitment 

The study was approved in January 2012 by the South East Wales Research Ethics Committee 

and registered in February 2012 (NCT01544205). The first patient started the study in March 

2012. All patients provided written informed consent and were compensated for their time and 

travel costs in cash. Patients were recruited via general practitioner (GP) surgeries and 

Community Mental Health Teams (CMHTs) in South Wales and the National Centre for 

Mental Health (NCMH). Patients had to meet all the following inclusion criteria:  

 diagnosis of unipolar depression,  

 currently moderate or severe depression confirmed with the Mini International 

Neuropsychiatric Interview (MINI),  

 and current antidepressant treatment (with no change of dose in the preceding three 

months).  

Patients meeting following criteria were not included in the trial:  

 psychotic symptoms,  

 current or lifetime substance or alcohol dependence,  

 eating disorders,  

 claustrophobia and other MRI contraindications,  

 and ongoing non-pharmacological treatment (e.g. psychotherapy).  

 

4.2.2 Randomisation and masking 

Patients were randomly assigned to one of two groups using an adaptive randomization 

protocol developed by the South East Wales Trials Unit (SEWTU). The randomization protocol 

allocated patients to two groups, minimising for differences in age, gender, duration of illness, 

medication type (with three categories: SSRI only; non-SSRI antidepressant; combination 

treatment) and baseline depression severity as measured with the Hamilton Depression Rating 
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Scale (HDRS-17). After the patient had consented and completed all baseline measures, these 

were entered in a computer program (scripted in Microsoft Excel) and an allocation was 

provided to the investigators conducting the study. Investigators running the MRI sessions 

needed to know group allocation to apply the appropriate imaging protocols, but those 

conducting the assessments were blind to group allocation.  

 

4.2.3 Trial design 

The intervention in both groups consisted of five training sessions, starting with four weekly 

sessions followed by a consolidation session after a break of one month to test if patients 

retained the ability to self-regulate target ROIs. The third session served as a transfer session 

during which no neurofeedback was provided to test if patients could up-regulate target ROIs 

based on successful strategies learned during the previous two neurofeedback sessions. The 

actual duration of the intervention period was on average 12 weeks because of the need to 

schedule sessions around patients’ availability. Before the randomisation, baseline measures of 

all clinical outcomes were recorded. Clinical measures were recorded again after the fifth 

neurofeedback session (week 12), and at follow-up (FU; on average week 18 after start of the 

intervention). All patients who completed the trial received verbal debriefing at FU. 

4.2.4 Primary (registered) clinical outcome measure 

The primary outcome measure was group mean difference in the Hamilton Depression Rating 

Scale (HDRS-17) (Hamilton, 1960) at the end of  the intervention (session 5), which was 

administered by a clinician who was blinded to treatment group.  

4.2.5 Secondary (registered) clinical outcome measure 

Secondary clinical outcome measures were the group mean differences in the HDRS at follow-

up and group mean differences at both time points in the Hospital Anxiety and Depression 

Scale (HADS) (Zigmond and Snaith, 1983), which includes anxiety (HADS (A)) and 

depression subscales (HADS (D)), the Quality Of Life scale (QoL) (Flanagan, 1982), and lastly 

the EuroQol research foundation questionnaire (EQ-5D-5L), which assessed the subject's 

health utility.  
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4.2.6 Other (registered) outcome measure 

The following self-rated psychometric measures were also acquired before and after the 

intervention and at follow-up: The Thought Control Ability Questionnaire (TCAQ) (Luciano 

et al., 2005) to measure the perceived ability to control unwanted, intrusive thoughts; the 

Thought Control Questionnaire (TCQ) (Wells and Davies, 1994) to measure techniques that 

individuals use to control unpleasant and unwanted thoughts; the Self-Efficacy Scale (SES) to 

measure optimistic self-beliefs to cope with difficult life demands, with subscales for General 

Self-Efficacy (SES (G)) and Social Self-Efficacy (SES (S)) (Sherer et al., 1982); the Behavioral 

Inhibition System and Behavioral Activation System (BIS/BAS) (Carver & White, 1994) to 

assess approach and avoidance motivation. Further, patients’ employment status and healthy 

service utilisation was also recorded (not reported here). Lastly, patients completed the Profile 

of Mood States (POMS) questionnaire before and after every neurofeedback session to assess 

the current mood state and level of fatigue (McNair, 1971).  

4.2.7 Power calculation 

The data from our pilot study (Linden et al., 2012) yielded an effect size (Cohen’s d) of 1.5 for 

the group difference in HDRS-17 improvement between active neurofeedback and a control 

intervention. Expecting a slightly more conservative effect size of 1.2, it was estimated that a 

sample size of 15 patients in each group would achieve >80% power for post-hoc t-tests 

(Bonferroni corrected, alpha-level 0.025, two-sided) and set a recruitment target of 40 patients 

to allow for 25% attrition. Although this effect size is unusually large for add-on medication 

treatments (Cuijpers et al., 2014), similar effect sizes have been reported for some non-

pharmacological interventions (Janssen et al., 2016), as well as for rt-fMRI-NF compared to a 

sham feedback condition (Young et al., 2017). Furthermore, because fMRI-NF is still in the 

early phases of clinical evaluation and there is no agreement on the most suitable comparators 

for clinical trials, logistic and economic factors were also taken into consideration when setting 

up the trial.  

4.2.8 Statistical tools and planned analyses 

The factors used to randomise patients (gender, age, duration of illness, dummy-coded 

medication type, and baseline HDRS-17) were first tested for any systematic differences 

between treatment conditions using frequentist and Bayesian statistical tests (independent t-

test for continuous variables, chi-square association test for categorical items). For Bayesian 

tests, default Cauchy priors (r=0.707) were used.  
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The primary and secondary outcome measures for patients with complete data were analysed 

using Statistical Package for Social Science (SPSS, version 23). To test for any significant 

differences between groups, linear regression analyses were performed on the outcome 

measures post-intervention (separately for the primary endpoint after session 5 and for the 

follow-up session) with pre-intervention scores as regressors of no interest. Further, the 

following regressors of no interest were entered to reflect the minimisation procedure applied 

during randomisation: gender, age, duration of illness, dummy-coded medication type, the 

score for the respective outcome variable at baseline and HDRS-17 score at baseline (Yu et al., 

2010).  

 

P-values for all secondary and other measures were adjusted for a False discovery rate at q = 

0.05. For POMS scores that were assessed immediately before and after each neurofeedback 

session, the research question was slightly different. The focus of analyses was changes in the 

POMS TMD (total mood score) and the depression subscale (POMS Depression). Hence, this data 

could indicate immediate changes in mood and depression following neurofeedback training. 

Second, they gave an indication of changes that occurred between the first and fifth session for 

which no clinical data was assessed. Data from one participant was incomplete and thus 

excluded from analyses. Further, pre-post scores for POMS TMD were not available at session 

3 for one patient. Hence, analyses conducted on POMS TMD were carried out with N = 30, and 

POMS Depression were carried out with N = 31. To test for pre-post changes, potential effects of 

group, or time, within-session difference scores for each session were submitted to mixed 

ANOVA with session as the within and group as the between factor. To account for the severity 

of patients’ depression, pre-score differences between the first and last session, as well as their 

(dummy coded) medication status were entered as covariates. To explore for potential gender 

differences, these were entered as a grouping factor (Linden et al., 2012). These analyses were 

carried out in the Statistical Package for Social Science (SPSS, version 23). To follow-up for 

pre-post differences across the intervention, the pre-test scores (i.e. baseline) of session 1 and 

post-test scores of session 5 were submitted to two-sided frequentist and Bayesian paired 

samples t-tests. The Bayesian t-tests were carried out using a default prior (Cauchy r = 0.707). 

To compare within and between-session changes, data was plotted, and descriptive statistics 

reported. To assess whether within session changes showed an effect of time, pre-post 

difference scores of each session were submitted to a repeated measures ANOVA consisting 

on the within-subject factor session (5 levels).  
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Pre-post differences within group means were also computed for all primary, secondary and 

other clinical outcome measures. For all pre-post comparisons, %-change and 95%-confidence 

intervals of the changes in scores were calculated separately for both groups. Remission was 

defined by an HDRS-17 score ≤ 7, and remission rates were calculated based on all patients 

for whom we had complete data up to the relevant time point. Effect sizes (ES) of clinical 

outcome on the HDRS-17 were quantified using Hedges g based on difference scores with 

respect to baseline for both session 5 (post-intervention) and FU. Confidence intervals were 

bootstrapped based on 10,000 iterations using the R package bootES (version 1.3-20) (Canty 

and Ripley, 2017).  

4.2.9 Exploratory analyses  

4.2.9.1 Intention-to-treat analyses 

Intention-to-treat (ITT) analyses aim to test whether patients who have completed an 

intervention differ to patients who have interrupted an intervention with regards to intervention 

related, or relevant prognostic factors (e.g. group allocation or clinical severity; 2.3.6). The ITT 

was not specified and is thus listed as an exploratory analysis. For the current study, ITT was 

limited to follow-up tests of baseline characteristics because clinical re-assessment of the 

primary outcome measure (as well as all other clinical measures) was performed after trial 

completion (session 5). Hence, with the data available in the present trial we could address two 

questions:  

 

1) Systematic differences between treatment groups regarding side effects, comfort or training 

feasibility would likely be reflected in differences of attrition rates. Hence, the group allocation 

of patients who did not complete the intervention (i.e. did not attend their 5th scanning session) 

was tested with a frequentist and a Bayesian binominal test (using a test value of 0.5, which 

reflects chance level).  

 

2) It was possible that patients with certain baseline characteristics were more likely to stop the 

trial. Hence it was tested whether patients who did not complete the intervention differed on 

average in their baseline HDRS-17 scores and the duration of illness using an analysis of 

covariance (ANCOVA), in which baseline HDRS-17 or duration were the dependent variable, 

respectively, and binary coded completion status a fixed factor, and age, gender, dummy-coded 
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medication type and group allocation entered as covariates. Both baseline characteristics 

(HDRS-17 and duration of illness) were further compared between completers and non-

completers using a frequentist Welch t-test (Delacre et al., 2017) and a Bayesian independent 

t-test with a normal prior distribution (N(0, 0.3)), which is considered minimal clinically 

important difference.  

 

4.2.9.2 Testing for null effects 

Given the absence of group effects for the main clinical outcome (HDRS-17; see Results), post-

hoc tests were conducted to assess if 1) evidence for a null effect based on an assumed effect 

size (Cohen’s d = 1.2) that was used for the power calculation could be found (Quintana and 

Donald, 2017), and 2) if a smallest clinically meaningful effect size could be rejected (Lakens, 

2017; Walker and Nowacki, 2011). To assess evidence for the null, Bayesian ANCOVA with 

treatment group as a fixed effect and the randomisation factors (gender, age, duration of illness, 

medication type and the HDRS-17 score at baseline) as nuisance covariates were carried out 

using JASP (JASP Team (2016), version 0.8.0.1). The prior for group as a fixed effect was 

scaled by r = 1.2, which reflects the effect size used for the power analysis. The prior for 

covariates was scaled by a default value (r = 0.354).  

 

To test if the smallest effect size of interest (SESOI) could be rejected, two one-sided tests for 

equivalence (TOST) were performed (Schuirmann, 1987) using the TOSTER package (version 

0.2.3) in RStudio (version 1.0.136). A SESOI = -0.3 to 0.3 [with raw score lower limit 90% CI 

= -1.695 and upper limit 90% CI = 1.695] was chosen, which has been suggested as a common 

effect size for the additional benefit of anti-depressive medication compared to placebo (Kirsch 

et al., 2008). Although this was lower than our originally expected effect size, this analysis 

allows to test whether group effects that are clinically still relevant could be rejected at the 

nominal 5% alpha level. Moreover, based on the confidence interval around the empirical effect 

size for a group difference, equivalence bounds were calculated (i.e. the lower and upper bound 

for the smallest SESOI that could be rejected in either direction). This allowed exploring the 

limit of effect sizes that one could reject based on the data from the current sample.  

 

Given the absence of group effects, the following analyses were conducted based on the 

complete sample (i.e. data was pooled across both interventions NFE and NFS).  

 



Clinical Applications of fMRI neurofeedback training – David Marc Anton Mehler – November 2018 

     121 

W
o

rd
 T

e
m

p
la

te
 b

y
 F

ri
ed

m
an

 &
 M

o
rg

an
 2

0
1

4
 

4.2.9.3 Test against placebo effect reported for high-technology intervention in depression 

Given the absence of a group mean difference on the HDRS-17, but an overall strong and 

similar clinical response in both groups, it was tested whether unspecific effects reported for 

high-technology augmentation therapy could be rejected.  For example, an improvement of 5.5 

points on the HDRS-17 was reported for sham whole-body hyperthermia treatment (Janssen et 

al., 2016).  

 

4.2.9.4 Relationship self-efficacy and clinical improvement (HDRS-17) 

Self-efficacy describes an individual’s self-reported capacity to cope with challenges (Bandura, 

1982). To test whether pre-post changes in self-efficacy (combined scores of the general and 

social self-efficacy subscale) predicted changes in depression scores, a regression analysis was 

performed on residualised HDRS-17 scores of the primary endpoint (session 5). Specifically, 

to minimise potential confounding by baseline HDRS-17 and baseline self-efficacy scores, 

these were first regressed from primary endpoint HDRS-17 scores. Obtained residuals were 

submitted to a robust (iteratively weighted least squares) regression analysis, a technique that 

is more robust against extreme data points (Rousseeuw and Leroy, 1987).  

 

4.2.9.5 Changes in HDRS item scores 

HDRS-17 sum scores only reflect overall changes over a range of symptoms, including 

depressive mood, feeling of guilt, suicidality, and anxiety, as well as physiological and somatic 

symptoms including different aspects of insomnia, gastrointestinal symptoms (GIT), genital 

symptoms (GS) and weight loss (WS) (Hamilton, 1960). Further, Cohen’s d effect size was 

computed, including its 95% CI between baseline and primary endpoint, as well as between 

baseline and follow-up using the R package MBESS (version 4.4.3). Given the high number of 

items (N = 17), the relatively small sample (N = 16 per group) and the lack of an a priori 

hypothesis, no inferential statistics were applied. Any inferential statistics would have required 

substantial correction for multiple comparison, after which any incidental effect would likely 

be insignificant.  

 

Apart from potential group differences, changes over time for different items were also of 

interest. For instance, SSRI treatments are often associated with an improvement of most 

clinical scores, with the exception of GIT, GS, and WS (Hieronymus et al., 2016). In fact, 

scores on these items tend to increase in response to SSRI treatment, which likely result from 
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side effects on associated physiological systems (Geddes et al., 2012). To limit the number of 

tests, a sign rank test was only carried out for these three items (GIT, GS and WL) for the 

difference between the primary endpoint and baseline and FDR corrected for multiple testing.  

 

4.2.9.6 Relationship between POMS and HDRS-17 

To investigate the relationship between POMS and HDRS-17 data, their relationship between 

baseline measures as well as between their between-session difference scores (i.e. difference 

between HDRS session 1 and 5 vs difference between POMS score at baseline session 1 and 

post-test session 5) were explored for POMS TMD and the POMS Depression subscale using right-

sided Spearman’s rho correlation analyses.   
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4.3 Results 

4.3.1 Recruitment, randomisation and termination 

The patient flow is summarised in the CONSORT diagram (Figure 4.1). A total of 147 patients 

agreed to be screened for the present study, of which 104 patients were excluded because they 

did not meet inclusion criteria or because they decided not to participate in the trial. The 

remaining 43 patients were randomised. Recruitment ended in June 2014 when the sample size 

target was achieved, and the last follow-up assessment was completed in September 2014. 32 

patients (16 per group) completed the intervention: their demographical data are documented 

in Table 4.1. Overall, 28 patients (88%) also participated in the FU assessment. With respect 

to the total number of randomised patients, the attrition rate across both groups was ~26% at 

the end of the intervention (session 5) and ~35% at FU. Three patients in the NFE group 

increased their antidepressant medication during the trial, and five patients (four in the NFE 

and one in the NFS group) decreased or stopped medication. Hence, overall attrition rates in 

our trial were relatively low and comparable to other non-invasive intervention methods tested 

for MDD (Hollon et al., 2014; Janssen et al., 2016), suggesting that the procedure was well 

accepted by patients.  
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Figure 4.1 CONSORT patient flow diagram. Adapted from (Mehler et al., 2018).  
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4.3.2 Attrition, baseline characteristics, and completion rates 

In total, 32 patients (16 in each group) completed the intervention, yielding an attrition rate 

from intervention start to the primary endpoint of about 26% (11/43) across both groups. All 

remaining 32 patients were included in the analysis of clinical, psychometric and neuroimaging 

data at the primary end point. Demographical and baseline data of patients who completed the 

intervention are documented in Table 4.1. Post-hoc analyses showed that randomisation was 

successful such that there no group differences with regards to the randomization factors 

gender, age, duration of depressive disorder, dummy coded medication type, and baseline 

HDRS-17 (Table 4.1). Also, with regards to handedness no group differences were detected.  

 

Characteristics  NFE Group (n = 16)  NFS Group (n = 16)  Group differences 

 Statistical values P values /  

BF01  

Gender Female = 11;  

Male = 5 

Female = 10;  

Male = 6 

Pearson Chi-

square = 0.139  

0.71 /  

2.374 

Age (years) 47.19 ± 12.50 46.94 ± 12.74 t30 = 0.6 0.96 /  

2.702  

 

Handedness Right = 14; Left = 1; 

Ambidextrous = 1                   

Right = 13; Left = 3 

 

Pearson Chi-

square = 2.037 

0.36 /  

1.133 

Depression 

severity 

(HDRS-17)  

19.88 ± 3.65 19.09 ± 5.09 t30 = 0.5 0.62 /  

2.965 

Duration of 

depressive 

19 ± 12.39 18.56 ± 14.76 t30 = 0.9 0.93 /  

2.970 
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disorder 

(years)  

Medication SSRI only = 4; Non-

SSRI=6; 

Combination*=6 

(Combined = 3; 

Augmentation = 3) 

SSRI only = 7; Non-

SSRI=5; 

Combination*=4 

(Augmentation = 4) 

Pearson Chi-

square =  

1.31 

0.52 /  

2.557 

Table 4.1 Demographical and clinical baseline data of completers. Estimates of 

duration reported as group mean ± standard deviation. (*): Combination included 

patients who received combined therapy with two compounds classified as antidepressant 

medication, and patients who received augmentation with an additional compound that 

is classified as a mood stabiliser (lithium or 2nd generation antipsychotic in addition to 

antidepressant). Adapted from (Mehler et al., 2018).  

Of the remaining 32 patients, 28 patients (~88%) also attended follow-up assessments and were 

included in the analysis of clinical and psychometric data at FU, yielding an attrition rate from 

intervention start to FU of about 35% (15/43) across both groups. Further, three patients in the 

NFE group (~19%) increased their antidepressant medication during the trial. Moreover, four 

patients in the NFE (25%) and one patient in the NFS group (~6%), either decreased or stopped 

their prescribed psychopharmacological medication during the trial.   

4.3.3 Primary (registered) clinical outcome measure 

Second-rater scores for the HDRS-17 were available for 12 sessions, with high interrater 

correlation (Pearson’s correlation: r = 0.95, p < 0.001). There was no significant difference 

between groups on HDRS-17 (B = - 0.415, [95% CI -4.847 to 4.016], p = 0.848) at the primary 

endpoint (12 weeks). Pre-post comparisons of HDRS-17 (and all secondary and other outcome 

measures) across the three sessions (baseline, end of intervention and follow-up) are 

documented in Table 4.3. Depressive symptoms in both groups improved similarly on the 

HDRS-17 (NFE: -8.34 [95% CI -4.92 to -11.77]; NFS: - 8.34 [95% CI -5.81 to -10.87]; Figure 

4.2A), such that the NFE group improved by 42% on the HDRS-17 and the NFS improved by 

44%. Overall, the effect size for HDRS-17 was g = 1.46 [95% CI 0.97 to 1.95] at session 5 

(NFE g = 1.23; [95% CI 0.63 to 1.92] vs. NFS g = 1.67 [95% CI 0.94 to 2.48]). Figure 4.2 B 
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shows the remission rates, which were overall 38% (12/32) with 25% for NFE (4/16) and 50% 

for NFS (8/16).  

 

Figure 4.2 Change in primary outcome measure HDRS (A) and remission rate (B) for 

baseline, primary endpoint (12 weeks) and FU assessment (18 weeks). Adapted from 

(Mehler et al., 2018).  

 

4.3.4 Secondary (registered) clinical outcome measures 

Group differences for other clinical and psychological outcome measures are shown in Table 

4.2. There was no significant difference between groups on the HDRS-17 (B = -1.121 [95% CI 

-4.948 to 2.706], p = 0.548) or any of the secondary clinical outcome measures at follow-up. 

Both groups improved compared to baseline on the HDRS-17 (NFE: -9.65 [95% CI -6.25 to -

13.06]; NFS: -11.53 [95% CI -8.61 to -14.45]), such that scores decreased on average by about 

48% in the NFE group, and 59% in the NFS group. The overall effect size for HDRS-17 

improvement at follow-up was g = 1.88 [95% CI 1.24 to 2.54]; (NFE: g = 1.57 [95% CI 1.04 

to 2.14] vs. NFS: g = 2.05 [95% CI 0.96 to 3.72]). Figure 4.2 B shows the remission rates at 
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follow-up, which remained at 38% on average across groups (31% remission in the NFE group 

and 44% remission in the NFS group). Pre-post differences were observed for multiple 

outcomes, a detailed list of descriptive statistics including effect sizes and their confidence 

intervals is documented in Table 4.3 for the primary endpoint (and Appendix A Table A1 for 

FU assessment).  

 

Table 4.2 Group mean difference estimates, based on a linear regression model that 

included minimisation factors used for randomisation as nuisance regressors, shown for 

primary endpoint (week 12) and follow-up (week 18, listed in row below). Adapted from 

(Mehler et al., 2018).  
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Outcome 

Measures 

Change from baseline to primary endpoint (12 weeks) 

for NFE / NFS 

 

 M 95% CI % -age Hedge’s g 95% CI 

HDRS-17 -8.35/-8.34 
-4.92 to -11.77/  

-5.81 to -10.87 
-42/ -44 -1.23 /-1.67 

-1.92 to -0.63/  

-2.48 to -0.94  

HADS (A) -1.81/ -3.19 
0.07 to -3.69/  

-1.44 to -4.93 
-14/-25 -0.49 / -0.92 

-.97 to 0.09/  

-1.26 to -0.53 

HADS (D) -3.06/ -3.81 
-0.87 to -5.25/ 

-1.35 to -6.28 
-23/-31 -0.71 / -0.78 

-1.09 to -0.24/  

-1.71 to -0.01   

BIS 0.75/ 0.94 
-1.23 to 2.73/  

-0.06 to 1.94 
6/6 0.19 / 0.47 

-0.33 to 0.61/  

-0.04 to 0.95 

BAS -2.69/ 0.94 
-5.71 to 0.33/  

-1.09 to 2.96 
-8/3 -0.45 / 0.23 

-1.11 to 0.10/  

-0.03 to 0.95 

QoL 7.63/ 8.94 
2.7 to 12.55/  

3.83 to 14.05 
14/16 0.78 / 0.88 

0.31 to 1.24/  

0.25 to 1.54 

TCQ 5.25/ 2.19 
-0.5 to 11/  

-1.85 to 6.23 
9/4 0.46 / 0.27 

-0.07 to 0.79/  

-0.22 to 0.74 

TCAQ 9.19/ 3.75 
1.58 to 16.79/  

-3.03 to 10.53 
17/7 0.61 / 0.28 

0.04 to 1.15/  

-0.25 to 0.86 

SES (G) 3.56/ 5.81 
-1.53 to 8.66/  

0.61 to 11.02 
8/12 0.35/ 0.56 

-0.13 to 0.86/  

0.13 to 1.05 

SES (S) 0.69/ 3.94 
-1.29 to 2.67/  

1.86 to 6.01 
4/28 0.18/ 0.96 

-0.33 to 0.64/  

0.25 to 1.64 

EQ-5D-5L -0.38/ -1.00 
-2.25 to 1.48/  

-2.18 to 0.18 
-3/-10 -0.21/ -0.38 

-0.78 to 0.45/  

-0.38 to 0.80 

Table 4.3  Changes over time in raw mean scores and standardised effect sizes 

both including 95% confidence interval estimates at primary endpoint assessment. 

Change in percentage (%-age). Adapted from (Mehler et al., 2018).  
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4.3.5 Other (registered) outcome measures 

There were no significant group differences except for SES (S) at session 5 (B = 3.350 [95% 

CI 0.408 to 6.302], p = 0.027) and at FU (B = 4.206 [95% CI 0.410 to 8.001], p = 0.032), as 

well as for BAS at FU (B = 5.763 [95% CI 0.207 to 11.043], p = 0.043. However, after FDR 

correction for multiple testing, these differences did not remain significant.  

 

With regards to pre-post changes of the POMS TMD, no effect of group (F1,23 = 0.357, p = 0.556, 

η²p = 0.015) was found. A Mauchly’s test of sphericity (W = 0.393, p = 0.018) was significant 

for the within subject effect (session) and thus Greenhouse-Geisser correction applied. No 

significant effect of session was found (F2.83,65.02 = 0.183, p =0.899, η²p = 0.008). Yet, a 

significant intercept (F1,23 = 4.70, p = 0.041, η²p = 0.17) and interaction between session and 

baseline scores (F2.83,65.02 = 5.569, p = 0.002, η²p = 0.195) was found. Taken together, data 

suggested that both groups showed comparable improvements on the POMS TMD. Further, the 

significant interaction indicated that improvements over session covaried with differences in 

baseline POMS TMD between the first and last session.  

 

With regards to pre-post changes of the subscale POMS Depression, no group effect (F1,24 = 1.065, 

p = 0.312, η²p = 0.042) or session effect (F4,96 = 0.50, p = 0.736, η²p = 0.020) was found. Also, 

for this subscale a significant intercept (F1,24 = 11.501, p = 0.002, η² p = 0.324) and interaction 

between session and baseline difference scores was found (F4,96 = 15.854, p = 0.001, η²p = 

0.398). Taken together, results suggested that both groups improved to a similar extent and that 

POMS Depression improvement decreased over sessions as a function of reduced POMS Depression 

baseline scores. Moreover, an effect of gender was found (F1,24 = 4.360, p = 0.042, η²p = 0.154), 

which was confirmed by a corrected follow-up test (Mean difference = 3.405, 95% CI [0.04, 

6.770], F 1, 24 = 4.360, p Bonferroni = 0.048, η²p = 0.154), suggesting that male patients (7.642, 

95% CI [4.982, 10.301 ]) in the current sample showed overall larger improvements on the 

POMS Depression scale compared to female patients (4.327, 95% [2.288, 6.186]).  

 

Frequentist paired samples t-tests indicated that both measures improved significantly (Table 

4.4) and Bayesian tests suggested very strong evidence for such effect (POMS Depression: BF10 = 

12537.6; POMS TMD: BF10 = 570.3).  
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 95% CI for Cohen's d  

         t  df  p  Cohen's d  Lower  Upper  

pre-Depression S1   -   post-Depression S5   5.988   30   < .001   1.076   0.626   1.514   

pre-TMD S1   -   post-TMD S5   4.794   30   < .001   0.861   0.442   1.269   

Table 4.4 Paired samples t-Test between pre-test score at session 1 and post-test score 

at session 5 for POMS Depression and POMS TMD, respectively.  

 

Descriptive data indicated that both POMS Depression and POMS TMD scores decreased gradually 

over sessions (Figure 4.4 A and B), except from the last two sessions, which showed almost 

identical group mean pre-test scores. Further, data also indicated that group mean post-test 

scores were below pre-test scores of subsequent training sessions, suggesting that within-

session improvement partly deteriorated until the next session.  

 

 

Figure 4.3 Group mean scores over sessions for pre-and post-tests for POMS TMD (A) 

and POMS Depression (B), respectively.  

 

Descriptive data suggest that the largest within-session decrease was observed during the first 

and fourth session for POMS TMD scores (Table 4.5), and during the first and third session for 

POMS Depression scores (Table 4.6).  
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session  Mean  SD  N  

1   23.367   32.42   30   

2   10.700   27.52   30   

3   8.967   25.09   30   

4   14.067   23.14   30   

5   5.367   21.50   30   

Table 4.5 Descriptive statistics of within-session improvement for POMS TMD.  

 

sessions  Mean  SD  N  

1   7.774   11.060   31   

2   4.548   8.663   31   

3   6.742   9.352   31   

4   4.226   7.504   31   

5   3.839   6.674   31   

Table 4.6 Descriptive statistics of within-session improvement for POMS Depression. 

4.3.6 Exploratory analyses 

4.3.6.1 Intention-to-treat analyses 

Among non-completers, group allocation was balanced, with a proportion of five patients from 

NFE and 6 patients from the NFS group (0.455 vs. 0.545, p =1; BF01 = 2.707). The ANCOVA 

found no evidence that completion status explained baseline HDRS-17 scores (F1, 35 = 0.361, p 

= 0.552) or duration of illness (F1, 35 = 0.467, p = 0.499). Likewise, a frequentist independent 

t-test found no evidence for a difference in baseline HDRS-17 between completers and non-

completers (t14.72 = -0.486, p = 0.634, Cohen’s d = -0.178), while a Bayes Factor remained 

inconclusive (BF10 = 0.808). Likewise, for duration of illness, no difference was found (t28.82 = 

-0.302, p = 0.765, Cohen’s d = -0.093) and Bayes Factor remained inconclusive (BF10 = 0.768). 

Taken together, the ITT suggested no significant differences between completers and non-

completers with regards to group allocation, or key baseline characteristics. Bayesian test 

results provided anecdotal evidence for the absence of biases between completers and non-

completers of the intervention.  
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4.3.6.2 Testing for null effects 

Due to the lack of a group effect on the main clinical outcome measure HDRS-17, follow-up 

tests were conducted to test whether there was evidence for the absence of an effect. A Bayesian 

linear regression analysis was performed that controlled for randomisation factors. Moderate 

evidence was found for a null effect of group at both the primary endpoint (BF01 = 6.01) and 

at follow-up (BF01 = 3.51). Further, frequentist equivalence tests were conducted to test 

whether a SESOI could be rejected. However, these tests remained undetermined at both the 

primary endpoint (t27.62 = -0.849; p = 0.202, raw score lower limit 90% CI = -3.40 and upper 

limit 90% CI = 3.40) and at follow-up (t24.68 = - 0.104; p = 0.541, raw score lower limit 90% 

CI = -5.478 and upper limit 90% CI = 1.718), indicating that the current sample was too small 

to reject a clinical effect within the range of the SESOI. Lastly, based on the confidence 

intervals of the empirical effect size it was determined that only effect sizes larger than Cohen’s 

d = |0.6| in either direction could have been rejected in the current sample. Taken together, the 

Bayesian analysis whose prior was scaled based on the effect size from the original power 

calculation suggested evidence for the absence of a group effect. In contrast, equivalence tests 

could not rule out group differences of the size that have been described for add-on treatment, 

but only effects that were at least twice as large. To summarise, the Bayesian ANCOVA 

provided evidence for the null model compared to a model that contained treatment group as a 

factor. This result indicated that the null model was preferred over the alternative model. 

Equivalence tests suggested that the present sample was too small to rule out group differences 

of the size that have been reported for anti-depressive medication as the gain in reduction of 

depression severity compared to mere placebo treatment (Cohen’s d = 0.3).  

 

4.3.6.3 Test against placebo effect reported for high-technology intervention in depression 

A survey of placebo effects reported for high-technology based interventions in depression 

found that sham whole-body hyperthermia treatment was associated with an improvement of 

5.5 points on the HDRS-17 (Janssen et al., 2016). A two-sided t-test against a test value of 6 

found that our effect was significantly larger than that expected placebo response (t 31 = 2.385, 

p = 0.023, Cohen’s d = 0.422 [95% CI 0.057 to 0.780]).  

 

4.3.6.4 Relationship between self-efficacy and HDRS-17 

The exploratory robust regression analysis suggested that changes in self-efficacy predicted 

residualised depression scores at the primary endpoint (R2 = 0.18, adjusted R2 = 0.15, β = -



Clinical Applications of fMRI neurofeedback training – David Marc Anton Mehler – November 2018 

     134 

W
o

rd
 T

e
m

p
la

te
 b

y
 F

ri
ed

m
an

 &
 M

o
rg

an
 2

0
1

4
 

0.187 ± 0.073, Figure 4.3), such that increase in self-efficacy was associated with less 

depression severity (t 30 = -2.551, p = 0.016).  

 

 

Figure 4.4 Robust regression analysis between change in total self-efficacy scores and 

residualised HDRS-17 scores at primary endpoint. *p<0.05. Adapted from (Mehler et al., 

2018).  

 

4.3.6.5 Changes in HDRS item scores 

With regards to statistical tests for items that have been identified as indicators for side effects 

in response to psychopharmacological (SSRI) treatment, data indicates that scores improved 

significantly for gastrointestinal symptoms (p FDR = 0.023) and genital symptoms (p FDR = 

0.023). Also scores for weight-loss improved (p FDR = 0.25) but remained insignificant.  

 

4.3.6.6 Relationship between POMS and HDRS-17 

Both the TMD and Depression subscale of the POMS, showed a moderate correlation with the 

HDRS-17 at baseline (POMS TMD vs. HDRS-17: Spearman's rho = 0.353, p = 0.024; POMS 

Depression vs. HDRS-17: Spearman's rho = 0.306, p = 0.04). With regards to correlations between 

measures based on difference scores (i.e. changes over time), results were only significant for 

POMS TMD (Spearman's rho = 0.309, p = 0.045) and at trend level for POMS Depression 
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(Spearman's rho = 0.266, p = 0.074). Taken together, baseline measures and pre-post changes 

on the POMS TMD, and to a slightly lesser extent also on the POMS Depression subscale, reflected 

the primary outcome (HDRS-17).   
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4.4 Discussion 

The current RCT demonstrated feasibility and clinical efficacy of fMRI neurofeedback training 

in moderate to severely depressed medicated patients with a longstanding history of clinical 

depression. Neurofeedback training of emotional areas was not superior to the control 

neurofeedback intervention. Nonetheless, both intervention groups showed a clinically 

significant improvement of the primary outcome measure with over 40% reduction in the 

HDRS-17. The overall remission rate was about 38%. Importantly, both measures were 

maintained, if not slightly improved at follow-up. Hence, this trial reproduced and extended 

clinical effects reported for the intervention group of a recent placebo controlled fMRI-NF 

RCT that was conducted in unmedicated patients (Young et al., 2017).  

 

The absence of a group effect was supported by a Bayesian regression analysis. However, 

frequentist equivalence testing failed to reject the SESOI. Together with the non-significant 

ANCOVA, results thus remained inconclusive, indicating that the sample was likely too small 

to detect an effect of the prespecified size (Cohen’s d = 0.3; Kirsch et al. 2008). Secondary and 

other outcome measures also suggest similar improvements in both groups. Overall, attrition 

rates were relatively low and comparable to other non-invasive intervention methods tested for 

MDD (Hollon et al., 2014; Janssen et al., 2016), suggesting that the technique was well 

accepted by patients. This interpretation is supported by substantial pre-post improvements 

found for both groups for secondary clinical outcome measures of anxiety and depression and 

reported positive effects on their quality of life. Further, besides changes on the HDRS-17 sum 

score, changes of item-based data indicated that symptoms related to gastrointestinal (GIT) and 

sexual dysfunction (GS) improved. In contrast, these symptoms represent side effects of 

psychopharmacological treatment and thus worsening of these symptoms is usually reported, 

in particular for increasing dosage or augmentation of existing medication (Hieronymus et al., 

2016). Side-effects have been identified as one main reason for non-compliance and 

discontinuation (Demyttenaere, 1997; Johnson, 1981) and their reduction may thus not only 

contribute to patients’ quality of life, but also to long term treatment adherence. Given the 

overall strong clinical response, fMRI-NF training may thus provide an attractive option as an 

add-on treatment in patients who remain depressed despite psychopharmacological treatment.  

 

The current trial design with 5 training sessions allowed the assessment of immediate pre-post 

changes based on the POMS as a surrogate measure for depressive symptoms (Depression 
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subscale) and mood states (TMD). Indeed, a moderate correlation between both POMS scores 

and the HDRS-17 at baseline was found, and changes between baseline and primary endpoint 

correlated partly. These results suggest that changes in depression are captured to some extent 

by these secondary measures. It hence remains possible that the clinical improvement on the 

observed HDRS-17 was also gradual from session to session. POMS TMD and POMS Depression 

data indicated that both groups experienced immediate mood improvements to a similar extent, 

replicating and extending earlier findings (Linden et al., 2012). However, it should be noted 

that the POMS rather represent an implicit measure of mood and depression, in contrast to the 

HDRS-17, which is based on a structured, physician-led interview. Yet, although reported 

correlations are relatively small to moderate (around r = 0.3), they are largely comparable to 

some reports for more similar measures of depression severity such as the self-rated BDI and 

physician rated HDRS-17 (Schotte et al., 1997). Moreover, immediate changes partly lasted 

largely until the next feedback session, indicating that the impact of fMRI-NF on patients’ 

mood was not merely a temporary effect. Yet, group mean post-test and pre-test scores of 

subsequent sessions indicated that within-session effects partly deteriorated. Moreover, group 

mean pre-test scores between the last two sessions were largely comparable, indicating that 

treatment effects on this implicit measure of mood and depression had levelled off. Notably, a 

gender difference was found for improvements on the POMS TMD, suggesting that men 

responded more than women to this implicit measure of depressive symptoms and general 

mood state. Overall, these analyses show how POMS data can complement clinical 

assessments data because it captures immediate improvements in mood at individual sessions. 

Measures such as the HDRS-17 usually require longer temporal intervals (e.g. 2 weeks) and 

hence may not be suitable for weekly assessments (Geddes et al., 2012; Hamilton, 1980, 1960; 

Montgomery and Asberg, 1979) Of interest, data indicated that in particular clinical 

improvements of the fourth neurofeedback session were retained until the next feedback 

session. This finding may be of interest for two reasons: first, visual feedback was reintroduced 

during this session after it had been withdrawn from patients during the third transfer session. 

As such, the experience over sessions two to four can be seen as a slow cycle of intermittent 

feedback presentation, which may render the training experience more rewarding. Second, the 

fifth training session was on average one 3-4 weeks later than the other training sessions 

(Chapter 4.2.3), indicating that clinical changes were stable on group level after several weeks. 

Given that these analyses were declared as exploratory they require replication in larger 

samples.  
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A key question is why the active control neurofeedback group (NFS) also showed a substantial 

clinical improvement. The clinical efficacy of the NFS group may be explained by a similarly 

rewarding experience and the type of mental imagery training patients engaged in. Both groups 

up-regulated target ROIs to a similar extent, as shown by equivalence tests. Hence, participants 

in the NFS group also experienced success of self-regulation and they were positively 

reinforced for task success. Generic psychological or physiological factors could thus be 

important for any clinical efficacy of neurofeedback training in depression. We have earlier 

suggested that self-regulation experience during neurofeedback training may be associated 

with an increase of self-efficacy and explain therapeutic effects of fMRI-NF training in 

depression (Linden, 2014; Linden et al., 2012). This conjecture is supported by an exploratory 

robust regression analysis between changes in self-efficacy and residualised HDRS-17 scores 

(Figure 4.2 C). Self-efficacy has been shown to mediate vulnerability to develop depressive 

symptoms (Maciejewski et al., 2000), as well as the effect of depression on developing 

detrimental behaviour including nicotine abuse (Minnix et al., 2011). The reported changes in 

self-efficacy may thus yield secondary benefits including less vulnerability to relapse and 

enhancement of cognitive resources to cope with challenges (Bandura, 1982). However, larger 

trials of longer follow-up periods (Rance et al., 2018). Moreover, they should include transfer 

tasks that involve implicit and explicit measures of self-efficacy to test whether this 

psychological mechanism underlies observed therapeutic effects of fMRI-NF training. We 

further note that the task of NFS group – imagining relaxing visual scenes – may also have had 

a therapeutic effect. Relaxation therapies are used in clinical practice to treat depression 

(Bowers, 1990; Golding et al., 2017). A Cochrane review found that patients who completed 

relaxation interventions reported reduced depression severity compared to patients in wait-list 

or no treatment control groups (Jorm et al., 2008). Compared to patients in the wait-list 

condition, relaxation therapy showed moderate clinical effects for self-reported measures 

(SMD = -0.59, 95% CI [-0.94, -0.24]), and physician-rated depression scores showed non-

significant differences in the same direction (SMD = -1.35 ([95% CI -3.06 to 0.37]). Taken 

together, our active control group likely received therapeutic self-regulation training and thus 

showed substantial improvement. It is hence possible that our control intervention was too 

conservative with respect to our aim of showing superiority of targeting the affective brain. 

Chapter 5 will present the neuroimaging data, providing insights into the neural correlates of 

the intervention that may provide further mechanistic explanations for the observed clinical 

effects.  
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Two (partly related) remaining questions are whether the reported clinical findings are specific, 

and whether they are comparable to effective active interventions or usual care. Because the 

current design did not include a sham-feedback or a care as usual control group, we will argue 

based on epidemiological data that the clinical effects reported here 1) exceed spontaneous 

remission rates, 2) are comparable to clinical effects reported for first line treatment as well as 

current best augmentation treatment alternatives, and 3) exceed placebo effects reported for 

sham controlled high-technology therapies.  

 

First, the improvement of 40% on the HDRS-17 exceeds the minimal clinically relevant 

improvement of about 27% (Qids et al., 2003) and thus represents a substantial clinical effect. 

Findings also exceed expected regression to the mean effects for chronically depressed and 

partly treatment resistant patients (the average duration of illness was 19 years), for which 

epidemiological data only suggests a rather sluggish improvement of 10-15% (Keller et al., 

1992). Further, given that patients in our trial had received stable medication for at least three 

months, the main response to pharmacological treatment had probably already occurred before 

enrolment (Rush et al., 2006).  

 

Second, the effects reported here across both groups for the primary endpoint – about 8.3 points 

improvement and 37.5% [95% CI 22.9 to 54.8] remission on the HDRS-17 – are comparable 

to initial responses found for first line pharmacological treatment (8 to 9 points improvement 

on the HDRS-17 and 36.8% remission) in patients with depression of comparable severity and 

chronicity (Fournier et al., 2010; Rush et al., 2006). Indeed, the confidence interval around our 

remission rate excludes the estimated remission rate (22%) for placebo groups in first level 

pharmacotherapy treatment (Meister et al., 2017). However, these comparisons seem rather 

conservative given that patients received fMRI-NF as an augmentation, or even as a second 

augmentation treatment (one third of patients were already receiving combined 

pharmacological treatment), because augmentation treatments usually yield gradually 

diminishing clinical improvement. Notably, the presented clinical effects are similar and partly 

larger than effects reported for other accepted augmentation strategies: the ‘Sequenced 

Treatment Alternatives to Relieve Depression’ (STAR*D) trial reported 35% average 

remission for first augmentation, with about 36% for non-SSRIs and 29.4% for behavioural 

therapy, and remission rates of only 20.5% for secondary augmentation therapy (Rush et al., 

2006).  
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Third, our clinical findings are also comparable to reported effects of other high-tech 

interventions for depression. We note that the size of non-specific treatment effects depends on 

patients’ expectancies, beliefs, as well as the psychosocial context (Price et al., 2008), and non-

specific treatment effects may thus be particularly large for fMRI-NF. However, a recent sham-

controlled RCT of fMRI-NF of similar size in (unmedicated) depressed patients only found a 

marginal improvement of 2 points (HDRS-21) and 6% remission in a sham control group 

(Young et al., 2017). In contrast, the treatment group in their study that engaged in similar 

fMRI-NF training as our NFE group improved by about 11.5 points and showed 32% 

remission. Similarly, our results are comparable for treatment groups and outperform placebo 

groups in other sham-controlled high-technology interventions tested for depression: meta-

analyses of transcranial magnetic stimulation (TMS) trials suggest about 35% remission for 

treatment groups, while sham TMS groups show only 5-10% remission (Berlim et al., 2014, 

2013). Further, one whole body hyperthermia trial reported an improvement of 8.3 points 

(HDRS-17) and a remission rate of 40% remission for their treatment group, while sham 

treatment only led to a placebo response of 5.5 points and 0% remission (Janssen et al., 2016). 

Importantly, we could reject a large placebo response of 6 points in an exploratory analysis, 

thereby showing the superiority of our clinical findings. Altogether, this survey of the size of 

expected placebo responses suggests that the clinical effects found in our trial exceed a mere 

regression to the mean or placebo effect. Rather, our findings are comparable to treatment 

effects reported for accepted augmentation therapies and other high-technology therapies 

currently being investigated for depression.  

 

Besides control for placebo effects through effective control conditions, blinding of 

participants, assessors and intervention represents an important design aspect of RCTs for 

reducing biases (Chapter 3.4.3). In the current trial, assessors were blinded to group 

assignment. However, they were not blinded to the fact that the intervention was a fMRI-NF 

trial and overall clinical findings may be overestimated. Hence, to address potential criticisms 

(Thibault et al., 2017a; Thibault et al., 2018b, 2018a), future trials could blind assessors to the 

general intervention that is being conducted. Blinding of patients was very limited in the current 

trial because both groups received veridical feedback from target regions that were matched to 

mental imagery instructions. As a result, both groups likely had a similar experience in terms 

of neurofeedback success, which formed the main rationale behind the choice of the active 

control group. Self-regulation effects between groups will be explored in Chapter 5 based on 

the neuroimaging data. Lastly, the researchers who provided the fMRI-NF training were not 
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blinded to the assignment, which was not feasible in the current setup because they operated 

the scanner including the localiser scan, chose target regions, and instructed patients with 

regards to the mental imagery task. Nevertheless, this circumstance cannot explain why no 

group differences were observed. If the lack of blinding on the intervention confounded results, 

rather the opposite (an increase in group differences) would be expected. Overall, the choice 

of control group remains a crucial aspect in trial designs of fMRI-NF interventions to 

demonstrate specificity of observed clinical effects. For instance, a randomised no-treatment 

control group captures effects such as regression to the mean, spontaneous remission and 

delayed effects of pharmacotherapy. However, a no-treatment group cannot control for 

therapeutic effects that may result from mere mental imagery training, or for various other 

psychological and neurobiological factors that likely play a role in complex interventions such 

as fMRI-NF training (Thibault et al., 2016; Thibault and Raz, 2016). Further, the choice of the 

control intervention will also determine the difference that one may hope to detect between 

groups, and thus the sample size needed to achieve sufficient statistical power (Chapter 

3.4.1.2). Potential control designs for future fMRI-NF trials and associated methodological 

challenges will be reviewed in the general discussion (Chapter 9).  

 

In conclusion, the present trial did not find statistically larger effects for self-regulation training 

of areas involved in processing positive emotions compared to training of areas that process 

merely higher visual information. Hence, in contrast to the initial hypothesis, no superiority of 

emotion-based fMRI-NF training was found. Importantly, both groups showed a clinical 

improvement that was comparable to effects reported for accepted augmentation therapy and 

that exceeded expected regression to the mean and commonly observed placebo effects. Hence, 

this trial demonstrated that if moderately to severely depressed patients can up-regulate a brain 

area that is not immediately linked to affective processing (NFS group), they can experience 

similar clinical benefits compared to patients that completed emotion-focused neurofeedback 

training (NFE group). Exploratory analyses suggested that the experience of brain control and 

the positive reinforcement of mental imagery may be necessary components for therapeutic 

effects of neurofeedback and should therefore be considered for future designs. Overall, 

neurofeedback was well tolerated, but it remains advisable for clinical neurofeedback protocols 

to be clinically supervised and to monitor mental strategies and psychological effects. This will 

allow patients to discuss their individual experience so training protocols can be adjusted if 

needed. Further, data suggest that further exploration of the clinical efficacy of real-time fMRI 

neurofeedback protocols and neural as well as psychological mechanisms are needed. To 
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understand underlying mechanisms, further exploration of the clinical efficacy fMRI-NF and 

its relation to neural as well as psychological mechanisms is needed (Chapter 5).  
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5 NEUROIMAGING CORRELATES 

OF NEUROFEEDBACK 

TRAINING IN DEPRESSION 
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5.1 Introduction 

 

Proof-of-concept (PoC) studies have shown that patients who suffered from mild to moderate 

depression can learn to up-regulate brain areas that were localised with positive affective 

stimulation, such as the anterior insula, lateral prefrontal areas, and the amygdala (Linden et 

al., 2012; Young et al., 2014). A recent double-blind RCT corroborated these findings, showing 

that unmedicated, moderately depressed patients learned to up-regulate the amygdala using 

positive mental imagery, while a control group that trained in up-regulating the intraparietal 

sulcus did not activate the amygdala (Young et al., 2017). Moreover, results suggested that the 

control group did not succeed in up-regulating the control area either until the last 

neurofeedback run, when relatively small activation was achieved (about 1/5 of the activation 

that was achieved in the amygdala training group. Clinical results showed that a) only patients 

who trained in up-regulating the amygdala showed significant clinical improvements on 

standardised rating scales such as the HDRS-17, and further that b) these changes were superior 

to changes in the control group. However, given that patients in their control group did not 

attain self-regulation success, groups were not matched for the reward experience. Therefore, 

it remains unclear whether the reported clinical superiority of amygdala fMRI-NF training is 

specific to feedback from emotion-regulating regions, or whether the general experience of 

self-regulation during fMRI-NF may be in itself therapeutic. Moreover, it remains to be tested 

if similar findings can be replicated in a sample of medicated patients. fMRI-NF training is 

designed to reinforce therapeutic cognitive strategies used in CBT, (e.g. positive mental 

imagery and reappraisal) in a reward learning based paradigm. Therefore, psychometric 

measures that are relevant to depression – such as self-efficacy – are of particular interest to 

explore potential predictors of neurofeedback success and mechanisms that may mediate 

therapeutic effects (Chapter 4.3.6.5). The present RCT included medicated patients with 

moderate to severe depression and compared up-regulation of brain areas involved in emotion 

processing to an active control procedure that involved up-regulation of brain areas involved 

in higher visual processes. This design gave patients in the control group the opportunity to 

experience self-regulation success and reward experience as well. It was hypothesised that 

neurofeedback of areas involved in processing positive emotions would produce clinical 

improvements exceeding those seen in the active control group. Lastly, relation between up-

regulation success, clinical improvement and changes in psychometric measures of self-

efficacy were explored.  
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5.2 Methods 

5.2.1 Participants 

Patients who had completed the intervention at the primary endpoint (session 5) were included 

in neuroimaging analyses. In total, 32 patients were counted as completers, with 16 patients 

respectively in the NFE and NFS group. Participants were matched for age, gender, depression 

severity, duration of illness, medication, and handedness (see Table 4.1).   

5.2.2 MR image acquisition  

A 3 Tesla whole body MRI system (General Electric, Milwaukee, USA) with an 8-channel 

head coil was used at the Cardiff University Brain Research Imaging Centre (CUBRIC). An 

echo planar imaging (EPI) sequence (TR = 2s, TE = 45ms, flip angle =80o, 30 slices, field of 

view = 192 mm, image matrix 64 x 64, in plane voxel size = 3 mm x 3mm, slice thickness = 4 

mm, gap of 1 mm) was used for fMRI, and a high-resolution 3D T1-weighted image (TR 7.9s, 

TE 3.0ms, TI 450ms, flip angle 20°, matrix size 256 x 256, 1 mm isotropic voxel resolution) 

was acquired for anatomical co-registration.  

5.2.3 Physiological recordings 

To control for physiological confounding factors of the BOLD signal (Heunis et al., 2018; 

Murphy et al., 2013), heart rate (HR) and respiration volume per time (RVT) were measured 

using pulse oximetry and a respiratory belt, respectively, and recorded with Spike2 (version 

5.21, Cambridge Electronics Design Limited, Cambridge, UK). In-house MATLAB 

(Mathworks Inc) scripts compiled by Dr Kevin Murphy and modified by David Mehler at 

CUBRIC (Cardiff University Brain Research Imaging Centre) were used for quality control 

and to compute the average heart rate (HR) and respiration volume per time (RVT) during each 

obtained volume.  

5.2.4 fMRI-NF setup 

Acquired EPI data was submitted to real-time motion correction and spatial smoothing 

(FWHM 4mm). For the localiser scan, real-time statistical analyses were carried out via an 

incremental general linear model (GLM) using Turbo-BrainVoyager (TBV) (Version 3.0, 

Brain innovation, Maastricht, The Netherlands). Target regions of interest (ROIs) in the 

respective groups were identified during a localiser scan based on the t-statistic of the contrasts 

of interest, which were defined as positive vs. neutral pictures in the NFE group and scene vs. 
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face pictures in the NFS group. Target ROIs in the NFE group were limited to limbic and 

frontal portions of the anterior cerebrum based on models of emotion processing in the human 

brain (Phillips et al., 2008). This focus also helped to exclude areas involved in early visual 

processing. For the localiser scans of the NFE group, we used a previously described procedure 

(Linden et al., 2012) using pictures rated as positive, negative and neutral from the International 

Affective Pictures System (IAPS) (Mikels et al., 2005). We aimed for a control condition that 

would entail similar up-regulation success – and thus reward experience – in both groups. Thus, 

the NFS group was presented with visual stimuli showing faces, scenes and animals to localise 

higher visual brain areas. Patients in both groups were presented with four series of four 

pictures (1.5s each) per category in pseudorandom order with alternating presentation and 

fixation baseline blocks. The parahippocampal place area (PPA) was chosen as the main target 

region in the NFS group. The PPA has been identified with the presentation of neutral scene 

stimuli (Epstein et al., 2003; Epstein and Kanwisher, 1998), but it is also activated during 

mental imagery of scenes (O’Craven and Kanwisher, 2000), and can be up-regulated with 

fMRI-NF (Habes et al., 2016).  

 

To identify target ROIs for neurofeedback training, each session began with a functional 

localiser (325 volumes, first 6 volumes discarded to ensure T1 equilibrium magnetization) 

scan, which was followed by six neurofeedback scans (100 volumes, first 6 volumes discarded 

to ensure T1 equilibrium magnetization). Neurofeedback scans contained four 20s up-

regulation blocks alternating with 20s rest blocks (the first rest block was 40s long). 

Neurofeedback was provided with a visual thermometer display projected onto the screen in 

the scanner and provided continuously (i.e. updated with each volume) as described previously 

(Linden et al., 2012). Real-time statistical analyses were carried using Turbo-BrainVoyager 

(TBV) (Version 3.0, Brain Innovation, Maastricht, The Netherlands). The signal intensity of 

target areas was measured as the percent signal change (PSC) relative to baseline. 

Neurofeedback was provided based on the Percent Signal Change of the target ROI and 

presented using PsychoPy (Peirce, 2007). Specifically, the feedback was calculated as the 

running average of the pre-processed BOLD signal over the three preceding TRs, normalized 

by the mean BOLD signal of the last five TRs from the preceding baseline block. The 

maximum feedback signal was set to 1 percent signal change, the thermometer contained ten 

bars such that each bar represented 0.1 percent signal change. The thermometer was 

continuously updated and shown during the neurofeedback and rest period. The third session 

served as a transfer session during which neurofeedback was not provided to test if patients 
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could up-regulate target ROIs based on successful strategies learned during the previous two 

neurofeedback sessions. The last neurofeedback session occurred approximately four weeks 

after the fourth session to test if patients retained similar up-regulation success.  

5.2.5 Mental imagery instructions 

Both groups were instructed to increase activation in their target areas during the up-regulation 

periods. Patients were not restricted in their mental strategies and could use any strategy that 

would enable them to achieve this. They did not receive specific instructions but were informed 

that using imagery of positive stimuli (NFE) or imagery of scenes (NFS) might be a potential 

starting strategy. During rest periods patients were instructed to engage in simple mental 

calculations (counting backwards from 99 in steps of 3). Patients were made aware of the 

temporal delay (6s) associated with the visual feedback on the thermometer, resulting from the 

nature of the BOLD signal.  

5.2.6 Offline fMRI analysis 

The neuroimaging data was analysed offline using Brain Voyager QX 2.8.4 (Brain Innovation, 

Maastricht, the Netherlands) and custom-written MATLAB scripts (Version 8.2, The 

MathWorks Inc., Natick, MA, 2000). T1 images were inhomogeneity corrected and normalized 

to Talairach space. EPI data was slice time corrected. To correct for head movements, spatial 

alignment of all volumes to the first volume of the localiser was performed. The fMRI data 

was co-registered to T1 images based on anatomical landmark points, and co-registration was 

manually corrected if necessary. The data was normalized to Talairach space using rigid body 

transformation and scaling. Linear drifts were removed and a temporal high-pass filter (2 

cycles) was applied to remove non-linear drifts in the time series. Data were spatially smoothed 

using a Gaussian kernel with 6-mm full width at half maximum and temporally smoothed with 

a Gaussian kernel with 3s full width at half maximum. Motion parameters and physiological 

measures (heart rate, respiration volume per time) were z-transformed and included as nuisance 

regressors in the General Linear Model. To quantify the homogeneity of target areas within 

and distinctness of target areas between the groups’ probability maps were calculated based on 

the Talairach coordinates of chosen target areas.  

5.2.7 Comparisons between size of target regions 

As an implementation check the sizes of target regions between groups was compared. Given 

the small sample and hence low power to detect potential interactions, the number of voxels of 
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data regions from all sessions were plotted for visual inspection using boxplots that indicated 

the median, interquartile range, and potential outliers. To test if the size of target regions 

differed between sessions or groups during neurofeedback, the number of selected voxels from 

all neurofeedback sessions were submitted to a 4 (session) x 2 (group) mixed ANOVA.  

5.2.8 Region of interest analysis 

ROI GLM analyses included time courses of six motion head motion parameters (three 

translation and rotation, respectively), and two physiology parameters (RVT and HR) as 

nuisance regressors. To correct for serial correlations, ROI analyses were performed with a 2nd 

order temporal autoregressive model (AR2), using Brain Voyager QX 2.8.4 (Brain Innovation, 

Maastricht, the Netherlands). AR2 models have been shown to outperform AR1 models in 

reducing biased error terms, and hence yield more reliable t-statistics (Lenoski et al., 2008). To 

test whether patients successfully up-regulated target areas within a session, ROI analyses of 

patient’s target regions were performed for each session. Obtained t-test values of ROI analyses 

were submitted to two-sided t-tests for each session to test for activation on group level. P-

values were adjusted based on the false discovery rate (FDR) to correct for multiple testing 

(Benjamini and Yekutieli, 2001). To test for effects of time, t-values were also submitted to a 

repeated mixed 2 (group) by 5 (session) ANOVA with the between factor group (NFE vs. NFS) 

and within factor session. Since the visual feedback provided to patients was based on the PSC 

during the task relative to rest, PSC values per session were also submitted to t-tests. This data 

indicated whether patients had on average managed to fill the thermometer display. For this 

manipulation check test statistics were not corrected for multiple testing as they were also not 

during real-time feedback. Further, inspection of these PSC values allowed a numerical 

comparison with the PSC value that was used to calibrate/scale the visual feedback (PSC = 1) 

and check whether ceiling effects had potentially occurred (i.e. if patients’ PSCs were on 

average above this value, it would indicate that feedback was likely ineffective because patients 

would not have been informed about any signal change occurring above this cut-off).  

5.2.9 Exploratory analyses 

5.2.9.1 Equivalence test of target region up-regulation 

Given the absence of a group effect in up-regulation and the similar clinical effects observed 

in both groups we also conducted equivalence tests (Lakens et al., 2018) based on participants’ 

median ROI t values across the four neurofeedback training sessions. The test was conducted 
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with a Welch t-test (corrected for unequal variances) and with a SESOI = -0.7 to 0.7 [with raw 

score lower limit 90% CI = -1.799 and upper limit 90% CI = 1.799].  

 

5.2.9.2 Self-regulation success of target region and clinical improvement (HDRS-17) 

Two neurofeedback success measures were explored with regards to their relation to the main 

clinical outcome measure, the improvement on the HDRS-17 between baseline and session 5: 

1) the average ROI up-regulation measured by the median t-value over all sessions served as a 

measure of centrality for the brain activation that participants had achieved. 2) the difference 

in t-values between session 5 and 1 served as a proxy for individual learning effects. Although 

no effect of time was found with regards to up-regulation, it remained possible that some 

patients increased up-regulation over time. Spearman’s correlations were computed between 

each measure and HDRS-17 between sessions 1 and 5, respectively. In contrast to Pearson’s 

correlation, which assumes linearity, Spearman’s rho estimates monotonic relationships 

irrespective of linearity. Such relaxation of assumptions seemed adequate given the long 

duration of the trial and the logarithmic shape of response functions documented for 

psychopharmacological (Keller et al., 1992), psychotherapeutic treatment, and their 

combination in depression (Team, 2007). Results of Pearson’s correlations were also reported 

for comparison.  

 

5.2.9.3 Other (registered) neuroimaging related outcome measures 

In the registration protocol, neuroimaging parameters and follow-up analyses were not further 

specified. The protocol states that the relation between self-regulation success and certain 

psychometric measures (SES, TCQ, TCAQ, BIS/BAS) will be analysed. However, the exact 

analysis plan and success measure for self-regulation, were not specified, leaving many degrees 

of freedom in analysing the data. Indeed, exploring the relation between changes in self-

regulation and measures of self-efficacy was of particular interest given the earlier reported 

relationship between pre and post differences in self-efficacy and clinical improvement 

(3.3.7.4). Yet, to limit multiple testing and thereby preserve statistical power, two measures of 

neurofeedback success were first explored with regards to their relationship to the main clinical 

outcome (HDRS-17). To minimise multiple testing, this contrast was then subsequently entered 

in a multiple linear regression model, which allows interpretation of regression weights. 

Regressors were first tested for multi-collinearity and then entered as predictors.  
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5.2.9.4 Whole brain analysis 

To identify task specific brain activity patterns, whole brain analyses were computed offline 

for both groups separately using a random effect General Linear Model and a task versus 

baseline contrast was defined. To test for effects of time, group and their interaction, an 

ANCOVA random effect General Linear Model was calculated and contrasts for intervention 

group (NFE vs. NFS) and time (linear contrast over all five sessions) tested. To limit multiple 

comparison correction, a mask was used that covered the cerebrum and upper brain stem and 

upper cerebellum. Active brain regions were identified based on the nearest grey matter 

coordinates using the Talairach Daemon atlas tool (Lancaster et al., 2000). Several contrasts 

were computed: 1) To test for task effects in the two groups, separate task vs. rest contrasts 

were computed. 2)  To test for group differences, a contrast NFS>NFS was computed. 3) To 

explore effects of time, a linear time contrast across both groups S5>S1 was computed. All 

statistical parametric maps were multiple comparison-corrected using the Monte Carlo 

simulation implemented in Brain Voyager and recommended statistical thresholds (primary 

threshold p < 0.001; cluster-extent threshold p < 0.05) (Eklund et al., 2016). For the between-

group contrast this primary threshold corresponded to FDR correction (p < 0.05). The time 

contrast was corrected at a more liberal threshold to increase sensitivity (primary threshold p < 

0.01; cluster-extent threshold p < 0.05) (Eklund et al., 2016).  

 

5.2.9.5 Relation between changes POMS score and up-regulation 

POMS scores were assessed before and after each neurofeedback session and thus provided a 

psychometric measure that captured immediate changes in mood. Previous studies have tested 

for changes in POMS scores before and after fMRI-NF training (Linden et al., 2012; Young et 

al., 2014), although the relation between changes in POMS scores and neurofeedback success, 

defined as activation strength for up-regulation paradigms, remains to be explored. 

Specifically, two research hypotheses were of interest: 1) Is there a positive relationship 

between up-regulation and pre-post changes in mood during neurofeedback sessions, and 2) is 

there a positive relation between target region activation when no feedback is provided, and 

the respective pre-post changes in mood during the transfer session 3. POMS TMD pre-post 

difference scores were correlated with target region t-values across both groups at every session 

using Pearson’s correlation. Specifically, a family of tests was carried out for all neurofeedback 
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sessions (session 1, 2, 4, and 5), and a separate analysis was carried out for the transfer session 

(session 3). Although related, both hypotheses were qualitatively different and hence multiple 

testing was adjusted accordingly: For the case of significant test results for the first set of tests 

(for session 1, 2, 4 or 5) or for both the first and the second set of tests, p-values were adjusted 

based on all five tests that were carried out using FDR adjustment. For the case that only the 

second hypothesis test returned a significant result, Bonferroni correction was applied based 

on the number of tested sets of hypotheses (N = 2, adjusted alpha level = 0.025).  

 

5.2.9.6 Relationship between changes in insula activation, self-efficacy and HDRS-17 

Lastly, the relation between baseline measures and changes in activity in the insular cortex 

were also explored regarding their relationship with clinical response (HDRS-17) and changes 

in self-efficacy, respectively. The (left) anterior insular cortex has been identified as a key 

region that is involved in neurofeedback training across paradigms (Emmert et al., 2016) and 

involved in reward processing during the training experience (Sitaram et al., 2017). 

Furthermore, the right anterior insular cortex has shown promise as a biomarker to predict 

response to CBT and pharmacotherapy treatment (Dunlop and Mayberg, 2014). Hence, 

exploratory ROI analyses were carried out for the left [-27, 21, -3] and right [27, 21, -3] insula 

(using a sphere of 443 voxel, respectively, around the coordinates). Two-sided exploratory 

correlation analyses were carried out based on differences of t-values. First, it was tested 

whether changes in self-efficacy correlated with changes in insula activity. Second, insula 

activity during the first session was correlated with clinical change to test whether it could 

serve as a potential predictor for treatment response. All analyses were carried for both the left 

and right insula. In addition to frequentist correlation analyses, also Bayesian analyses with a 

default prior were carried out.  
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5.3 Results 

5.3.1 Target region size 

Data of target regions was first explored for potential differences between sessions or groups 

and submitted to mixed model ANOVA. No significant effect of session (F3,90 = 1.844, p = 

0.149), or group (F1,30 = 2.479, p = 0.126), or interaction of session and group (F3,90 = 1.539, p 

= 0.210) was found.  

 

Further, visual inspection of box plots (Figure 5.1) suggested that the number of voxels was 

similar overall between groups and sessions. However, a closer inspection suggested that 

between session 1 and 2 of the NFE group the number of voxels appeared to differ significantly, 

as indicated by no overlap of the indentation of the boxplot during session1 and the upper 

quartile at session 2 (Figure 5.1 A). Moreover, the interquartile range during the first session 

appeared to be larger for the NFE group compared to the following sessions, as well as 

compared to the data of the NFS group (Figure 5.1 B).  

 

 

Figure 5.1 Boxplots of number of voxels for A) NFE and B) NFS group. 

Regarding the spread of target region locations, Figure 5.2 shows a probability map of the main 

target region loci for the NFE and NFS group, respectively, collapsed across patients from both 

groups and all training sessions. A whole brain overview of target region selection is provided 

in Appendix B (Figure B1). Patients in the NFE group received fMRI-NF training mainly from 

anterior brain areas (e.g. insular cortex and striatum), which are in line with a set of regions 

that has been suggested as suitable target areas for interventions in depression (Linden, 2014). 

Patients in the NFS group received fMRI-NF training mainly from the PPA, which constituted 
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the primary target region of this group. Taken together, these results indicate that anatomical 

specificity of target region selection was largely maintained. Where patients in the NFE group 

trained mainly on areas related to processing emotions, patients in the NFS group mainly 

trained on higher areas of the visual system related to processing visual scenes. Further, these 

results indicate that target regions in the NFE group were more heterogenous compared to the 

NFS group.  

 

 

Figure 5.2 Probability map of target region placement centred around peak for NFE 

(left) and NFS (right) group. Adapted from (Mehler et al., 2018).  

5.3.2 Region of interest analyses 

As a first outcome variable the ability to up-regulate target regions (ROIs) during mental 

imagery compared to rest was assessed for both groups. T-tests indicated that patients up-

regulated ROIs during all neurofeedback sessions (session 1: t31 = 4.723; p FDR < 0.002, session 

2: t31= 2.772, p FDR = 0.011; session 4: t31 = 3.726, p FDR = 0.002; session 5: t31 = 3.809, p FDR = 

0.002; Figure 5.3), but not during the transfer session (session 3: t31 = 1.404; p FDR = 0.170). 

Further, the difference between the average up-regulation across neurofeedback sessions and 

the transfer session was significant (t31 = 2.397, p = 0.023), indicating that providing feedback 

increased brain activation. As a manipulation check, PSCs were also computed and found 

positive for all sessions (session 1: 0.131 ± 0.033 [mean ± SEM], t31 = 3.995, p = 0.001; session 

4: 0.199 ± 0.075, t31 = 2.647,  p = 0.013; session 5: 0.163 ± 0.047, t31 = 3.478, p = 0.002), except 
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for the second (0.075 ± 0.040, t31 = 1.87, p = 0.071) and the transfer session (0.056 ± 0.047, t31 

= 1.2,  p = 0.239). These group average PSC values are largely in line with previous work 

(Young et al., 2017) and are below the calibration value (PSC = 1) that was used calibrate/scale 

the feedback display, suggesting that performance ceiling had likely not occurred.  

 

 

 

Figure 5.3 ROI analysis. Average t-value of target ROIs for each session. Pooled mean 

shown, as well as means for each group with error bars showing standard error of the 

mean (SEM). *) p < 0.05. Adapted from (Mehler et al., 2018).  

To test for an effect of time, group or an interaction, ROI t-values were submitted to a mixed 

model ANOVA. Effects for session (F4, 120 = 1.965, p = 0.104), group (F1, 30 = 0.12, p = 0.73), 

and a group*session interaction (F4, 120 = 0.160, p = 0.958) were found insignificant. This 

suggested that patients did probably not learn to increase activation over sessions.  

 

5.3.3 Exploratory analyses 

5.3.3.1 Equivalence test of target region up-regulation 

ROI analyses suggested that both groups attained up-regulation to a similar degree. However, 

the lack of significance is an insufficient measure for the lack of an effect. Therefore, an 

equivalence test was performed to test if a smallest effect size of interest (SESOI) could be 

rejected as a group difference. Equivalence test results indicated that both groups indeed 

activated ROIs to a similar extent (t29.8 = 1.702, p = 0.049, raw score lower limit 90% CI = -

1.795 and upper limit 90% CI = 1.290).  
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5.3.3.2 Self-regulation success of target region and clinical improvement (HDRS-17) 

No relationship between the average up-regulation success and clinical improvement was 

found on the HDRS-17 (Spearman’s rho = - 0.08, p = 0.663). A positive correlation at trend 

level was found (Spearman’s rho = 0.29, p = 0.051) between the change in up-regulation 

success from S1 to S5 and clinical improvement (Figure 5.4). A follow-up analysis split by 

group suggested that this correlation was mainly driven by the NFE group (NFE group: 

Spearman’s rho = 0.58, p = 0.01; NFS group: Spearman’s rho = - 0.11, p = 0.661). This 

interpretation was supported by a significant difference between correlations (z = 1.97, p = 

0.024, one-tailed).  

 

 

Figure 5.4 Correlation analysis between change of up-regulation (t-value) and change 

in clinical scores (HDRS-17) between baseline and primary endpoint. Split by group, 

black dotted line shows sample average. * p < 0.05 

For comparison, analyses were also carried out using Pearson’s correlation. Results were 

largely comparable for pooled data (r = 0.289, p = 0.109) and for individual groups (NFE: r = 
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0.485, p = 0.057; NFS: r = -0.055, p = 0.839), although differences in correlations between 

groups were slightly smaller and only at trend level (z = 1.49, p = 0.068).  

 

Nevertheless, it was possible that correlations for the NFE group were driven by an overlap 

between target regions (Figure 5.2) and areas that are involved in self-regulation and reward 

processing such as prefrontal structures, parts of the basal ganglia and the insula (Emmert et 

al., 2016; Sitaram et al., 2017). Therefore, a post-hoc negative control analysis for the NFS was 

carried out using an ROI mask that was created based on the target regions of the NFE group. 

Specifically, it was tested whether a similar relationship between changes in activation and 

clinical scores could be reproduced in the NFS group. To do so, ROI analyses were carried out 

for the NFS group for sessions 1 and 5 and obtained t-values correlated with difference scores 

of the HDRS-17. Notably, this negative control analysis found no relationship (rho = -0.27, p 

= 0.312), supporting the specificity of the reported correlation for the NFE group. It is thus 

unlikely that the relationship reported for the NFE group stems mainly from the stimulation of 

positive feedback since both groups were largely matched for self-regulation success and thus 

reward.  

 

5.3.3.3 Other (registered) neuroimaging related outcome measures 

To limit the researcher’s degree of freedom and hence multiple testing correction, this analysis 

was partly contingent on the previous analysis. In a previous analysis, change in up-regulation 

success between sessions 1 and 5 was identified as a correlate of clinical improvement (Figure 

5.4). Thus, difference scores between these sessions for self-efficacy scale measures and 

neuroimaging data (differences of ROI t-values between session 1 and 5) were also used to 

explore potential relationships. To further limited multiple testing, a multiple linear regression 

model was used that allows for the inspection of loadings of individual regressor loadings. The 

regression model was not significant (F 5,31 = 0.722, p = 0.613, R2
adjusted = 0.0), and data 

suggested that none of the predictors was significant (Table 5.1).  

 

Model   Unstandardized  Standard Error  Standardized  t  p  

  (Intercept)   0.770   0.793     0.971   0.341   

  TCAQ   0.047   0.056   0.182   0.841   0.408   

  SES   0.038   0.059   0.129   0.632   0.533   
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Model   Unstandardized  Standard Error  Standardized  t  p  

  TCQ   -0.034   0.075   -0.089   -0.449   0.657   

  BAS   0.133   0.137   0.192   0.972   0.340   

  BIS   0.180   0.250   0.148   0.719   0.479   

Table 5.1 Regression coefficients for self-efficacy measures.  

5.3.3.4 Whole brain analyses 

Figure 5.5 shows brain regions involved in the NF training (i.e. task vs. rest). For the NFE 

group, limbic and subcortical regions (e.g. the insular cortex, caudate and hippocampus) were 

activated while the dorsolateral prefrontal cortex was deactivated (Figure 5.5 A; Appendix B 

Table B1). For the NFS group, mainly higher visual areas were activated including the bilateral 

PPA as the main target region of this group (Figure 5.5 B; Appendix B Table B1).  
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Figure 5.5 Whole Brain Analysis. A) Activity of intervention groups, shown separately 

for NF-Emotion and NF-Scene group. B) Group contrast. Key areas are labelled with 

numbers: 1) Insular cortex/ ventrolateral prefrontal cortex, 2) parahippocampal place 

area (PPA), 3) supplementary motor area, 4) lingual gyrus, 5) premotor cortex, 6) 

superior parietal lobule and 7) dorsolateral prefrontal cortex (DLPFC). Statistical maps 

cluster-threshold corrected (p < 0.001). Adapted from (Mehler et al., 2018).  

A direct group comparison suggested that the NFS group showed more activation of the PPA 

and frontal regions (Figure 5.5 B; Appendix B Table B2). Regions that were activated in both 

groups included the anterior insular cortex and dorsal cingulate gyrus Figure 5.5 (see also 

Appendix B Table B2).  

 

Lastly, a linear contrast of time indicated that participants across groups showed increased 

activation in prefrontal areas with a cluster extending into the dorsolateral prefrontal cortex, 

parts of the dorsal striatum (putamen and caudate body), and premotor cortices including the 

SMA (Appendix B Table B3).  

 

5.3.3.5 Relation between changes POMS score and up-regulation 

For neurofeedback sessions, no significant relationships were found, and correlation 

coefficients were rather small (session 1: r = 0.058, p = 0.375; session 2:  r = 0.057, p = 0.378; 

session 4: r = -0.172, p = 0.827; session 5: r = 0.167, p = 0.185). However, a significant 

correlation was found between pre-post POMS TMD difference scores and target region 

activation during session 3 (session 3: r = 0.358, p Bonferroni = 0.048). Likewise, a one-sided 

Bayesian correlation suggested moderate evidence for a positive relationship (BF+0 = 3.671, 

median posterior Pearson’s rho = 0.319). This result suggested that participants who activated 

target regions more during the transfer run also showed larger pre-post improvements on the 

POMDTMD.  

5.3.3.6 Relation between changes in insula activation self-efficacy and HDRS-17 

Similarly, no significant correlation was found between changes in left or right activity and 

changes in self-efficacy until the primary endpoint (left: r = 0.058, p = 0.751; right: r = 0.002, 

p = 0.989) and Bayesian hypothesis tests indicated moderate evidence for the absence of a 

correlation (left: BF01 = 4.348; right: BF01 = 4.545). Further, no significant correlation between 

left or right insula activity during the first session and clinical improvement until the primary 
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endpoint was found (left: r = 0.056, p = 0.762; right: r = 0.059 = p 0.750). Bayesian hypothesis 

tests indicated moderate evidence for the absence of such correlation (left: BF01 = 4.329; right: 

BF01 = 4.348).  
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5.4 Discussion 

The analysis of neuroimaging data from this RCT demonstrated that moderately to severely 

depressed medicated patients could activate target regions located in limbic and higher visual 

areas by imagining either positive emotions (NFE) or visual scenes (NFS), respectively. Data 

further suggested that both groups up-regulated target regions when feedback was provided, 

but that they did not up-regulate localised target regions by purely engaging in mental imagery 

without feedback. Further, no significant difference between groups in up-regulation was found 

and post-hoc equivalence tests suggested that both groups up-regulated to a similar extent with 

regards to the chosen SESOI (Lakens et al., 2018).  

 

Exploratory whole brain analyses further showed that brain activation was largely constrained 

to areas that are associated with the respective mental imagery instructions and target region 

selection. For instance, the NFE group mainly activated limbic regions including parts of the 

striatum, the insula, the retrosplenial cortex, and the hippocampus (Vann et al., 2009). These 

areas are involved in reward processing, as well as the recall of episodic memory. The NFS 

group mainly recruited higher visual regions, including the PPA as the main target region, as 

well as the lingual gyrus. These data thus suggested that participants in the NFE group engaged 

successfully in mentalising relaxing scenes. Further, a direct group contrast mainly identified 

regions that were more activated in the NFS group. These included higher visual regions such 

as the PPA and precuneus, as well dorsolateral prefrontal cortex (DLPFC). Hence, regions that 

were relatively more recruited in the NFS group mainly dominated a group contrast. One 

possible reason is that imagining natural scenes was a more salient and heterogenous form of 

visual mental imagery, which may have resulted in a more consistent set of neural correlates. 

In contrast, mental imagery of positive emotions may involve different aspects and modalities. 

As such, it may involve visual, haptic or acoustic aspects, and these may vary from patient to 

patient. Moreover, patients could imagine social as well as non-social situations, which 

probably recruited different brain structures in the context of emotion self-regulation. For 

instance, differences in neural correlates of emotion regulation have been reported for social 

vs. non-social contexts (Vrtička et al., 2011). Hence, the overlap of activated regions may have 

varied more between patients in the NFE compared to NFS group. To disentangle these 

potential interactions, patients’ strategies could be explored in more detail. Overall, whole brain 

analysis results largely replicated neural correlates that earlier studies have reported for mental 

imagery of emotions (Johnston et al., 2011; Linden et al., 2012), and visual scenes (Habes et 



Clinical Applications of fMRI neurofeedback training – David Marc Anton Mehler – November 2018 

     161 

W
o

rd
 T

e
m

p
la

te
 b

y
 F

ri
ed

m
an

 &
 M

o
rg

an
 2

0
1

4
 

al., 2016; O’Craven and Kanwisher, 2000), respectively. Moreover, neural correlates identified 

in the whole brain analysis are in line with key areas that have been reported for neurofeedback 

training and that are mainly involved in self-regulation, attention control and reward processing 

(Sitaram et al., 2017). For mental imagery of scenes, the PPA was recruited in particular, 

yielding larger activation for the NFS group compared to the NFE group (Figure 5.5). Notably, 

the PPA forms part of the medial temporal lobe together with other structures such as the 

hippocampus and entorhinal cortex that form the hippocampal formation and play an important 

role in declarative memory. Further, functional and structural disturbances within this network 

have been linked to depressive symptoms, which can be partly reversed with antidepressant 

treatment (Aminoff et al., 2013; Bar, 2009). The relationship between changes in mood and 

memory remains to an active research field, and it remains possible that training of the PPA 

may itself impact mood.  

 

It has been suggested that successful training of emotional areas could mediate clinical effects 

(Linden, 2014; Linden et al., 2012). The whole-brain analysis of the NFE group showed 

activation of the insula, the supplementary motor area, and the ventral striatum, indicating that 

patients engaged in emotion self-regulation. These areas have been linked to positive 

reappraisal of emotions (Buhle et al., 2014), as well as in emotion regulation, as suggested by 

an activation likelihood estimation (ALE) meta-analysis that included data from 479 healthy 

participants across 23 studies (Kohn et al., 2014). Taken together, these whole brain analysis 

findings are encouraging because both emotion reappraisal and emotion regulation constitute 

important elements in psychotherapeutic treatment for depression, but both processes can be 

impaired in depressed patients (Zilverstand et al., 2017). The data presented suggest that rt-

fMRI-NF training could indeed help patients in training this capacity. Of interest, activated 

voxels in the NFS and NFE partly overlapped, mainly in the anterior insula (see Figure 5B and 

Table S3). The (anterior) insula has been implicated in various cognitive tasks that may explain 

this overlap, including its involvement in the integration of visual information that is required 

for mental imagery of scenes (De Borst et al., 2012), self-regulation of affective as well as 

executive functions (Chang et al., 2013; Langner et al., 2018), and online monitoring of 

performance (Paulus and Stein, 2010), a factor for which groups were matched. Moreover, it 

is involved in allocating attentional resources and coordinating information processing between 

internal and external environments (Sitaram et al., 2017). Switching between these two modes 

is a central component of self-regulation training, which requires monitoring internal processes 

in the form of introspection during mental imagery, but also adapting strategies based on 
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external cues in the form of feedback signals. Without more fine-grained fMRI measurements, 

however, it cannot be determined if the overlapping clusters between groups reflect activation 

of the same neuronal populations. On a more general level, though, this overlap highlights the 

difficulty of selecting strictly separated target networks for different neurofeedback conditions.  

 

As outlined above, the (anterior) insular cortex is involved in various cognitive processes that 

are central to fMRI-NF self-regulation training, including self-regulation, error monitoring and 

allocating cognitive resources. It may thus not be surprising that is has been identified as a 

common neural correlate across fMRI-NF training across paradigms (Emmert et al., 2016). 

Furthermore, the right anterior insular cortex in particular has shown promise as a biomarker 

to predict treatment response to CBT and pharmacotherapy (Dunlop and Mayberg, 2014), as 

well as relapse after remission (Zaremba et al., 2018). Given the strong clinical improvements 

and their relation to changes in self-efficacy (Chapter 4.3.6.4), it was first explored whether 

there was a relationship between changes in self-regulation and self-efficacy. No significant 

correlations were found, and Bayesian hypothesis testing suggested moderate evidence for the 

absence of a relationship. Furthermore, it was explored whether the activity of the insula during 

the first session could predict clinical changes until the primary endpoint. No significant 

correlations were found for these exploratory tests and Bayesian results suggested moderate 

evidence for the absence of an effect. Taken together, despite remarkable changes in depression 

scores, self-efficacy and recruitment of the anterior insula across both groups, a relationship 

between neuroimaging and clinical/psychometric measures could not be established.  

 

The relationship between changes in self-regulation and clinical changes was explored and only 

the main intervention group (NFE) showed a significant relationship (Figure 5.4). The 

interpretation of this finding remains difficult, given that both groups showed similar clinical 

improvements. One possibility is that potential additional therapeutic effects resulting from the 

training of areas involved in emotional self-regulation were too small to be detected with the 

present sample size. Another possibility is that the correlation was driven by the overlap of 

limbic target regions in the NFE group that represent areas that are implicated in self-regulation 

and reward processing (Sitaram et al., 2017), including the basal ganglia and the insula (Figure 

5.2). To test whether the relationship identified for the NFE group could be reproduced in the 

NFS group for a similar set of brain regions, a negative control analysis was performed. This 

control analysis found no relationship between changes in activity levels of these brain regions 

and clinical changes for NFS group, supporting the specificity of the finding reported for the 
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NFE group. Taken together, these results may be indicative that the relation between a change 

in self-regulation and in clinical scores was rather specific to the training experience of the 

NFE group. However, it should be noted that the current sample was relatively small and may 

thus have overestimated this relationship (Algermissen and Mehler, 2018). Further, the 

interpretation of this finding remains difficult because no mean group differences for clinical 

changes were observed (Chapter 4.3.3). As surveyed earlier (Chapter 4.4) the overall strong 

clinical response in both groups is comparable to effects reported for augmentation therapy and 

superior to large unspecific effects reported for high-technology interventions and is likely to 

represent a genuine clinical effect in both groups. It remains possible that the NFE fMRI-NF 

intervention did indeed target the pathophysiology of depression in a more specific way as was 

hypothesised initially (Chapter 4.1), but that the current sample sizes were too small to detect 

group differences. Replication in larger samples and meta-analytic analyses using similar self-

regulation metrics will allow the exploration of the relation between these variables for fMRI-

NF training in depression, but also other psychiatric conditions.  

 

With regards to the strong clinical effects observed in the NFS group, the neuroimaging data 

provide further potential explanations: First, both groups up-regulated target ROIs to a similar 

extent, as also shown by equivalence tests, and participants in the NFS group experienced 

similar success rates of self-regulation and positive reinforcement. Hence, patients in both 

groups were probably successfully matched for the rewarding experience of veridical self-

regulation training. Both factors, success of self-regulation and positive reinforcement, could 

be critical for the clinical efficacy of neurofeedback training in depression. This view is 

supported by the positive relationship reported for changes in self-efficacy and clinical effects 

(Chapter 4.3.6.5). Moreover, it is also in line with data reported from a recent fMRI 

neurofeedback RCT that demonstrated the clinical superiority of targeting the affective brain 

compared to a sham condition (Young et al., 2017). The main group of their trial received 

feedback from the amygdala (a condition comparable to our NFS group) and their control group 

from an area (the intraparietal sulcus) that patients could not self-regulate as effectively. While 

their main group improved clinically to a similar degree as both groups did in this trial (Chapter 

4), Young et al’s control group did not show significant clinical improvement.  

 

One central design aspect in fMRI-NF interventions is the choice of target and control regions 

and the selection procedure employed to identify suitable voxels. The current study selected 

target regions based on subjects’ brain responses during the localiser run. Such an approach 
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has the advantage that it circumvents the danger of placing too much confidence in biomarker 

areas, which may be hard to determine at individual level. In particular functional biomarkers 

that have been suggested for depressive research have thus far shown little convergence 

between studies (Müller et al., 2017). Moreover, consistent selection of voxels within the same 

target region based on functional localiser scans may be challenging given the relatively low 

repeat reliability. For instance, putative fMRI biomarkers for emotional face processing show 

substantial between-session variability. Whereas average activation on a group level seems 

replicable, intraclass-class correlation for areas such as the amygdala and the subgenual 

anterior cingulate cortex are relatively low (Nord et al., 2017). Using anatomical masks to guide 

selection of target regions can help addressing this issue (Young et al., 2017). One advantage 

of using the same targets regions for all patients in one group and throughout all sessions is 

that such approach yields probably larger learning effects over time because patients receive 

feedback from a very similar set of voxels. In other words, the subject and session specific 

target region selection in the current trial may have slowed down potential learning effects and 

could partly explain why no significant effect of time for the up-regulation of target regions 

was observed. Another advantage of selecting very similar voxel sets for all participants within 

one group is that this approach facilitates the comparison of measures of real-time imaging 

quality control including the temporal signal-to-noise ratios (Heunis et al., 2018; Stoeckel et 

al., 2014). Moreover, it facilitates performing negative control analyses because ROIs can 

simply be performed across training conditions to test for potential dissociations (Young et al., 

2017). These considerations illustrate that the choice of target region and selection procedure 

remain subject to further refinement in light of control theory aspects, but also the condition 

that is being treated (Arns et al., 2017; Stoeckel et al., 2014; Young et al., 2018b).  

 

Apart from classical localiser scans based on affective visual stimulation, target region 

selection may also be informed by network dynamics of patients, for instance acquired during 

resting-state (Drysdale et al., 2016; Ramot et al., 2017). This approach has been successfully 

used to identify neurophysiological subtypes in depression that were predictive of treatment 

response to TMS (but see also Dinga et al., 2018). Moreover, network-based metrics provide 

an attractive alternative to target region-based training paradigms. Specifically, such 

approaches can be informed by cognitive models in depression and incorporate top-down 

control mechanisms that represent a relevant therapeutic neurocognitive pathway in the 

treatment of depression (Disner et al., 2011). The feasibility of connectivity based feedback 

has recently been successfully tested for emotion regulation during threat exposure (Zhao et 
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al., 2018). Specifically, the study used a within-subject sham feedback-controlled design where 

feedback was provided based on correlations between ventrolateral prefrontal cortex and the 

amygdala during the experimental condition. During the sham control runs feedback was 

provided based on correlations between areas that are not related to emotion regulation. The 

authors demonstrated PoC that correlation measures between target regions could be controlled 

with emotion regulation strategies for the experimental, but not the sham condition. Further, 

these changes lasted at follow-up sessions and in the absence of feedback and changes in self-

reported anxiety scores were observed, that partly related to changes in connectivity metrics. 

Importantly, participants did not notice the difference between sham and veridical feedback 

conditions and were thus not unblinded to the sham manipulation. Changes in network activity 

between the amygdala and prefrontal areas have also been reported for amygdala based fMRI-

NF in depressed patients (Young et al., 2018a). As explained in more detail earlier (Chapter 

2.1.3), their trial employed positive emotion self-regulation training of the amygdala based on 

the recall of positive autobiographical memory and incorporated a transfer task to test changes 

in autobiographical memory performance. Gains in positive recall were related to connectivity 

changes in particular in the experimental (amygdala training) group, but surprisingly also in 

the control (intraparietal sulcus training) group. These results suggest that besides self-

regulation success, mental imagery training itself may yield largely comparable changes in 

functional markers such as network connectivity. To model the relationship between clinical 

changes, self-regulation success and cognitive performance, the authors also performed a 

mediation analysis (Young et al., 2017), which suggested amygdala activity during a transfer 

run (when no feedback was provided) explained a significant amount of variance in the 

relationship between gains in memory performance and clinical outcome measures (but see 

criticism in Chapter 2.1.3). The trial presented in this thesis also explored the relation between 

self-efficacy measures and self-regulation success based on pre-post difference contrast. While 

this contrast established a relationship between self-efficacy and clinical effects, no relation 

between self-efficacy measures and self-regulation were found and thus a follow-up mediation 

analyses between these measures was not justified. Future designs of fMRI-NF RCTs may 

benefit from incorporating independent physiological or cognitive markers to underscore the 

generalisability of findings, explore therapeutic mechanisms and to test the specificity of 

certain training types.  

 

To conclude, neuroimaging data suggested that both groups recruited brain areas according to 

their mental imagery strategies. Moreover, both groups up-regulated training areas to a similar 
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extent, suggesting that patients were matched for success in self-regulation and reward 

experience. Taken together with the reported clinical findings (Chapter 4.3.3), this trial 

demonstrated that if moderately to severely depressed patients can up-regulate a brain area that 

is not immediately linked to affective processing (NFS group), they can experience similar 

clinical benefits compared to patients who completed emotion-focused neurofeedback training 

(NFE group). This suggests that the experience of brain control and the positive reinforcement 

of mental imagery may be necessary components for the therapeutic effects of neurofeedback 

and should therefore be considered for future designs. Potential neural markers for self-

regulation success and their relation to changes of self-efficacy measures and depression 

severity were explored but could only partly be confirmed. Further exploration in larger clinical 

trials, and possibly across fMRI-NF trials in different conditions is needed to further the 

understanding of therapeutic mechanisms.  
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6 MOTOR IMAGERY BASED 

NEUROFEEDBACK OF PRIMARY 

MOTOR CORTEX AND 

SUPPLEMENTARY MOTOR 

AREA 
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6.1 Introduction 

 

Real-time functional magnetic resonance imaging neurofeedback (fMRI-NF) is currently being 

explored as a non-invasive technique to improve motor rehabilitation outcome in neurological 

conditions including Parkinson’s disease (PD) (Subramanian et al., 2011) and stroke (Liew et 

al., 2016; Linden and Turner, 2016; Wang et al., 2017). Recently, the first randomized 

controlled trial for fMRI-NF in PD suggested that the technique may lead to clinically 

significant motor improvements when combined with physical exercise (Subramanian et al., 

2016). Regarding stroke, a recent systematic review concluded that fMRI-NF training can lead 

to learned modulation of brain signals and may be associated with beneficial behavioural 

changes (Mihara and Miyai, 2016; Wang et al., 2017). Hence, there is an increased interest in 

improving fMRI-NF protocols to maximize the potential of the associated clinical outcomes 

(Stoeckel et al., 2014).  

 

One central consideration when designing fMRI-NF interventions is the choice of suitable 

target brain region(s) from which feedback is provided during training. Although some 

techniques work with implicit feedback that does not require cognitive strategies (Watanabe et 

al., 2017), most fMRI-NF training protocols currently employ mental strategies such as visual 

imagery (Habes et al., 2016), affective imagery (Johnston et al., 2011; Linden et al., 2012; 

Young et al., 2017) or motor imagery tasks (Auer et al., 2016; Berman et al., 2012; Blefari et 

al., 2015; Chiew et al., 2012; Subramanian et al., 2011; Subramanian et al., 2016). Therefore, 

target regions are often selected based on their anticipated involvement in the respective mental 

imagery process.  

 

For fMRI-NF of motor areas, most protocols instruct participants to perform motor imagery 

(Blefari et al., 2015; Sepulveda et al., 2016; Sitaram et al., 2012; Subramanian et al., 2016). 

FMRI correlates of motor imagery have been well documented in healthy individuals (Guillot 

et al., 2009; Jeannerod, 2001; Munzert et al., 2009; Sharma and Baron, 2013; Solodkin et al., 

2004; Vingerhoets et al., 2002) and preliminary data from stroke survivors also showed robust 

neural correlates of motor imagery (Bajaj et al., 2015a, b; Kraft et al., 2015; Sharma et al., 

2009; Wong et al., 2013) in the ventral premotor cortex (vPMC), dorsal premotor cortex 

(dPMC), and the supplementary motor area (SMA; (Hétu et al., 2013)) This finding has been 

corroborated by recent motor imagery based fMRI-NF studies (Blefari et al., 2015; Sepulveda 
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et al., 2016; Subramanian et al., 2016). Further, neuroimaging studies of motor imagery and 

motor execution indicate that both tasks share overlapping motor networks, although 

differences have been identified (Hanakawa et al., 2008; for a review see Hetu et al., 2013). 

For the primary motor cortex (M1), the motor imagery literature consists of mixed findings, 

and it is not clear whether M1 can be robustly activated during motor imagery training. It thus 

remains an open question whether M1 represents an effective target region for motor imagery-

based fMRI-NF paradigms that entrain up-regulation.  

 

The first aim of this study was thus to compare self-regulation abilities for M1 and a higher 

motor region (SMA) in the same participants. Its second aim was to explore the feasibility of 

graded neurofeedback of motor regions. The rationale for graded neurofeedback protocols, 

where participants are not just trained to up-regulate activity in the target region but to up-

regulate it to different specified levels, is that they provide more degrees of freedom for 

adaptive neurorehabilitation programmes and for neural communication in a BCI framework. 

‘Gradual’ fMRI-NF has been introduced recently (Sorger et al., 2016) (referred to as ‘graded’ 

in this study). It offers increased scope for evaluating training success, for example by assessing 

how well participants can attain discrete magnitudes of BOLD signal changes through 

supervised mental imagery. Given that it is well established that certain motor regions, 

including the SMA, are activated during non-supervised motor imagery, significant BOLD 

activation of a motor region during supervised motor imagery training (e.g. fMRI-NF training) 

does not by itself provide sufficient evidence of volitional control success. Graded fMRI-NF 

training, in contrast, allows one to gauge the degree of control gained over the activation level 

of a target region.  

 

This study aimed to lay the foundation for the further development of motor-imagery based 

neurofeedback of areas in the motor network. The graded NF protocol separates the general 

effects of motor imagery from the more specific neurofeedback targeted effect of volitional 

self-control as reflected in the BOLD signal. Participants were required to target two discrete 

levels (low and high level), while feedback was provided from either the SMA or M1. This 

experimental design offers a distinct conceptual purpose, in that its factorial nature provides a 

degree of within subject control. Whenever a participant is provided with feedback from one 

region, signal changes in the other region are governed by the effects of motor imagery and 

attempted self-regulation, but crucially, lack the specific ‘active ingredient’ of feedback 

information from the target region. Thus, for each region of interest (ROI) two conditions were 
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included; one in which feedback information is provided (active condition), and one in which 

feedback from the other region is provided (passive condition). Essentially, the novelty of this 

design is that it allows this to be assessed, alongside the typical neurofeedback effect, within a 

single factorial framework by contrasting which of the two regions feedback information is 

derived from.  

 

The purpose of this study is to provide the foundation for future development of fMRI-NF 

protocols for neurorehabilitation such as stroke and PD. Given that the majority of published 

studies have targeted cortical motor regions (Wang et al., 2017), typically premotor areas or 

primary motor areas, the aim was to determine which region is most suitable for motor imagery 

based NF. The graded NF design allows to address two important questions; 

 

1) When combined with a kinaesthetic motor imagery strategy, are SMA and M1 robustly 

activated? This is a key prerequisite for further NF up-regulation training. 

2) Do subjects show better separation between discrete target levels for a given region 

when provided with feedback from than region? 

 

It was hypothesised that SMA based fMRI-NF training would show robust activation in the 

SMA, but no activation in M1. Given previous unsuccessful attempts of M1 fMRI-NF training 

(Berman et al., 2012; Blefari et al., 2015; Chiew et al., 2012), it was hypothesised that M1 

based fMRI-NF training would not yield M1 activation, whilst the SMA as a region involved 

in motor imagery would still show activation. Lastly, differences in SMA activation between 

target levels when feedback was provided from the SMA (active condition), but not when 

feedback was provided from M1 (passive condition) were hypothesised. The main findings 

were that SMA was robustly activated during motor imagery, whereas negative BOLD 

responses were found in M1. There was a significant effect of graded self-regulation in SMA, 

which was mostly driven by the active condition, but NF provided only minimal benefit. 

6.2 Methods 

6.2.1 Participants 

Twenty healthy participants were recruited from an internal experiment database. All 

participants gave written informed consent and the Cardiff University School of Psychology 

Ethics Committee approved the study. Data from three participants were excluded due to 
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technical difficulties with the feedback system during scanning. Data from the remaining 17 

participants (8 female; age 26.6 ± 5.5 [Mean ± SD] years) were included in the data analysis.  

6.2.2 Motor imagery questionnaire 

Motor imagery can be performed in two different modalities. It can be mainly visual or mainly 

kinaesthetic. Visual motor imagery focuses primarily on visual mental imagery (either from a 

first or a third person perspective), whereas kinaesthetic motor imagery usually involves taking 

a first-person perspective and imagining the feeling and experience of movements without 

overt movement (Hanakawa, 2016). Previous literature suggests that only a minority (27%) of 

studies had specified the modality that participants used during motor imagery training (Hetu 

et al., 2013), indicating that participants received inconsistent or unspecific instructions 

between or across studies. Kinaesthetic and visual motor imagery are associated with distinct 

neural activity patterns (Guillot et al., 2009; Kilintari et al., 2016; Solodkin et al., 2004) and 

this may partly explain the inconsistent findings reported for M1in the motor imagery literature. 

In the present study participants completed a standard motor imagery questionnaire before the 

scanning session, which included self-ratings for both visual and kinaesthetic motor imagery 

tasks on a scale from 1 to 7 (Gregg et al., 2010). The questionnaire was used (1) to make 

participants more aware of the distinction between the two different motor imagery forms and 

(2) to assess their self-rated baseline ability of motor imagery. After scan sessions, participants 

were asked to fill in a questionnaire about their experience. 

6.2.3 Instruction for localiser and neurofeedback training 

Among the few studies that have reported the modality of motor imagery instructions and M1 

activation, only kinaesthetic motor imagery activates M1 (Hetu et al., 2013; Solodkin et al., 

2004; Stinear et al., 2006) and therefore participants used only kinaesthetic motor imagery 

strategies (Guillot et al., 2009). Specifically, participants were instructed to imagine the body 

sensation and experience of moving both of their hands without moving them and while 

remaining relaxed. Participants could choose the precise movement they imagined but were 

told to imagine a movement that they regularly perform (e.g. playing an instrument, housework 

or typing).  

During the localiser run, participants were presented with an empty thermometer on the screen. 

Participants were instructed to perform a paced bimanual motor execution task (finger 

opposition) during task periods (as indicated by green arrows). Specifically, numbers from 1 

to 4 were presented at a frequency of 1.33Hz to pace the movement during task periods. During 
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rest periods (as indicated by red arrows) participants were instructed to rest and relax. 

Participants were reminded that no feedback was presented during the localiser run.  

For the neurofeedback runs, it was explained to participants that bars in the thermometer 

represented the activity level in the target region. Participants were instructed that their goal 

was to use kinaesthetic motor imagery to control the feedback by filling up the bars of the 

thermometer display. They were further instructed to attempt to maintain the activation at target 

levels by adjusting their motor imagery strategy (e.g. by changing the speed and/or intensity of 

the imagined movement). Besides these aspects, participants were not restricted in the content 

of motor imagery and could imagine any activity or sport that involved movements of both 

hands. Indeed, participants were encouraged to explore which motor imagery strategies were 

most effective in gaining control over the filling bars of the thermometer display. Participants 

were further explained that mental imagery strategy changes would not immediately affect the 

feedback because of the hemodynamic delay. Participants were also instructed and reminded 

between scans to remain still and relaxed and avoid muscle contractions during scanning. 

6.2.4 MRI data acquisition 

Imaging data were acquired using on 3T General Electric HDx with an eight-channel receiver 

head coil. Blood oxygenation level-dependent (BOLD) fMRI runs (see description below) were 

measured with a T2*-weighted gradient-echo echo-planar imaging (EPI) sequence. Each 

functional EPI volume contained 25 slices of 2.5-mm thickness, with 0.5-mm inter-slice 

spacing (in-plane resolution = 3 mm, matrix size = 64 × 64, FoV (field of view) = 192 mm, TR 

(repetition time) = 1550 ms, TE (echo time) = 30 ms, flip angle = 80°, 

orientation = transversal). High-resolution structural images were acquired before the first 

functional scan using a fast-spoiled gradient echo sequence (FSPGR) with 172 contiguous 

sagittal slices of 1-mm thickness (voxel size: 1 × 1 × 1 mm, TR = 7.9 s, TE = 3.0 ms, flip 

angle = 20°, FoV = 256 × 256 × 172 mm).  

6.2.5 fMRI-NF setup 

Reconstructed DICOM images were transmitted in real-time from the MR computer to a 

dedicated analysis computer. Turbo-BrainVoyager (TBV) software (BrainInnovation B.V., 

Maastricht, The Netherlands, version 3.2) was used for real-time online pre-processing and 

analysis of BOLD signals including motion correction (with respect to the first volume of the 

functional localiser) and spatial smoothing (4mm full width at half maximum; FWHM).  
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6.2.6 Physiological recordings 

As with any BOLD fMRI study, magnitude changes can be confounded by non-neural sources 

of variance, such as motion and physiological noise (Bright and Murphy, 2017). Whereas most 

motor imagery based paradigms target a PSC of 0.5 to 1.0, extensive breath holds may lead to 

PSC of up to a PSC of 6.0 (Thibault et al., 2018b). In the context of fMRI-NF, a recent critical 

systematic review has highlighted the importance of testing for the effect of physiological 

confounding factors of the BOLD signal (Thibault et al., 2018b).Physiological processes may 

be modulated by underlying mechanisms that also respond to the cognitive demands of a task, 

such as arousal or concentration, e.g. increased heart-rate during arousal or subconscious 

changes in breathing during increased mental activity. Specifically, partial pressure end-tidal 

carbon dioxide (PET CO2) acts as a strong vasodilator. Moreover, changes in the heart may also 

impact the BOLD signal (Murphy et al., 2013). Instead, physiological data were collected to 

test offline whether physiological parameters correlated with the task predictor. Recorded pulse 

waveforms were recorded using pulse oximetry, from which heart-rates (HR) were calculated.  

Also, the partial pressure end-tidal carbon dioxide (PET CO2) was recorded using a nasal canula 

from most participants. Data was recorded with Spike2 (version 5.21, Cambridge Electronics 

Design Limited, Cambridge, UK) for 10 (PET CO2) and 13 (pulse traces) participants, 

respectively.  

6.2.7 fMRI training session 

The sequence of scans is shown in Figure 6.1A. Subjects lay supine in the scanner with their 

heads fixed using foam cushions to minimise head motion and they were instructed to remain 

as still as possible during data acquisition. Scanning started with an anatomical scan, followed 

by a motor execution functional localiser run (LOC). The LOC run served to identify 

functionally relevant voxels and to calculate individual percent signal change (PSCLOC) to 

scale the visual feedback. The motor execution LOC run (272 volumes) consisted of four 

blocks of bilateral finger opposition, flanked by five rest blocks (each block consisted of 16 

volumes and lasted for 24.8 seconds). Once target regions (M1 and SMA) were identified, the 

session proceeded with five neurofeedback runs (NF) with one ROI, followed by five NF runs 

with the other ROI, using a counterbalanced order across participants.  
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Figure 6.1  Experimental Setup. A) shows sequence of scans during train session, b) 

shows target region with SMA in blue and M1 in magenta for an exemplary participant. 

C) shows an exemplary sequence of the thermometer display with low level and high-level 

training blocks, flanked by rest blocks. Adapted from (Mehler et al., 2019).  

If feedback information was provided from the SMA, it was labelled as the active condition for 

SMA and passive condition for M1, and vice versa. NF runs consisted of 180 volumes each, 

and contained two repetitions of two block types, a low and high neurofeedback level, which 

were flanked by rest blocks (each block consisted of 20 volumes and lasted for 31 seconds). 

Thus, the study had a factorial design, in which for each ROI there were two conditions (active 

and passive), each with two levels (high and low). Participants were instructed to use 

kinaesthetic motor imagery involving both hands during fMRI-NF and to avoid any movement 

or muscle contractions.  

6.2.8 Target region selection and feedback normalisation 

An incremental GLM was used for online analysis of both LOC and NF runs (Version 3.0, 

Brain innovation, Maastricht, The Netherlands); the model included a single task predictor for 

both LOC and NF. For LOC, a linear drift term was also included. The selection of voxels for 

the target regions was guided by use of t-statistic maps (with a variable t-threshold, but at least 

t = 5.0), as well as anatomical landmarks. For M1, this study aimed to restrict the ROI to the 
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hand knob area (Yousry et al., 1997). For the SMA ROI, anatomical selection aimed to target 

the proper SMA, and avoid selecting voxels in the pre-SMA. Local gyri and sulci have been 

shown to be rather variable between subjects and be less reliable, than for instance, white matter 

tracts (Behrens et al., 2006). To identify proper SMA, the vertical line traversing the anterior 

commissure was used, which is perpendicular to the anterior commissure/posterior commissure 

plane (Picard and Strick, 2001; Zilles et al., 1996). Voxels were selected in both hemispheres 

within 3 slices and with a similar number of voxels per hemisphere and per target region (in 

total 36 voxels with 18 voxels per hemisphere for M1 and SMA; 6 voxels per slice). Based on 

selected target regions, the percent signal change (PSC) during the motor execution localiser 

was calculated for both regions (M1 and SMA) separately. This allowed us to calibrate the 

feedback presentation based on PSC values from the respective target region and thereby to 

account for differences in the hemodynamic response (Obata et al., 2004).  

6.2.9 Online fMRI analysis, neurofeedback calculation and presentation 

For feedback presentation during NF runs, the mean raw signal value was extracted from the 

ROI at the analysis computer and transmitted to a stimulation computer at every TR via a direct 

TCP/IP network connection to minimise delays in data transmission. The percentage signal 

change (PSCNF) was provided as a feedback signal and was computed based on equation 1,  

Eq. (6.1):    𝑃𝑆𝐶𝑁𝐹 =
(𝑣𝑎𝑙−𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)∗100

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 

where val is the mean of last three consecutive ROI signal values, and baseline is the median 

ROI signal value during the second half (i.e. last 10 TRs) of the preceding rest period. PSCNF 

were then normalized by PSCLOC to map it on to the (15) segments of the thermometer display 

such that every segment represents 10% of the PSCLOC. Values below 0 were rounded up to 0, 

values above 15 were rounded down to 15. The calculation was carried out in an in house 

written Python script (Python 2.7.10). The Open Source Python library Expyriment was used 

for online feedback presentation (Krause & Lindemann, 2014). The visual feedback display 

consisted of a thermometer with 15 segments and indications for either rest (i.e. red arrows at 

the bottom) or the target levels (Figure 6.1C). Target levels were defined by 50% (low) and 

100% (high) of the PSCLOC and indicated by green arrows. Both the low and high-level 

conditions were repeated twice per run and were interleaved by rest periods. During rest 

periods, no feedback was presented, and the thermometer remained empty. The order of the 

condition (low and high target level) was counterbalanced across runs and subjects.  
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6.2.10 Post-training questionnaire 

After scan sessions participants were asked to fill in a questionnaire about their experience, 

that was designed to rate their perception of the following aspects of the experiment: (1) 

controllability of feedback for both ROIs, (2) the difficulty of filling up bars in the 

thermometer, and (3) the difficulty in maintaining the thermometer at a discrete level. For 

question 1, a score of 10 indicated high controllability, whereas for question (2) and (3), a score 

indicated high difficulty. Question (2) and (3) were added as exploratory items to the 

questionnaire after data collection had already started and were thus only recorded in 10 

participants.  

 

6.2.11 Offline fMRI analysis 

All subsequent results are based on an offline analysis of raw data that was performed in AFNI 

(version 16.2.18). Data were motion corrected and spatially smoothed (4mm FWHM) with pre-

processing parameters identical to the online analysis. Mean ROI time series were then 

extracted for all runs and subsequent analysis was restricted to these. Since ROI mean time 

series were extracted from both ROIs for each run, for each ROI there exists a condition in 

which it was the “active” target for NF training (active), as well as a condition in which NF 

training was performed on the other ROI (passive). Thus, for each ROI, the active condition 

contains the response to motor imagery when feedback was provided from that region, and the 

passive condition contains the response to motor imagery when feedback was provided from 

the other region. Thus, the passive condition served as a form of internal (offline) control 

condition for a given ROI, because it reflects the response to motor imagery in that ROI when 

NF training is based on the feedback signal from the other ROI.  

For LOC and NF runs a GLM analysis of the data was performed. For LOC runs, the model 

included a predictor for activation blocks and a linear drift term. For NF runs a predictor that 

modelled the NF response across both levels was included, as well as a parametric predictor 

that modelled the difference between levels. No linear drift term was included, but separate 

pre-onset baseline period predictors were included to match the online analysis baseline period 

(i.e. 10 volumes preceding stimulus onset). Thus, the offline analysis replicated the online 

analysis, except for the addition of pre-whitening to account for temporal auto-correlation of 

the BOLD signal (Woolrich et al., 2001).  

 

Offline PSC values were defined similarly to the online analysis, as a ratio between task 
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response and baseline estimation. In the offline analysis the LOC baseline period was simply 

represented by the intercept term in the model (as is the norm for standard analysis). For NF 

runs, PSC values were calculated for low and high levels separately, and the baseline period 

was represented by the intercept term plus the pre-onset baseline period that was used in the 

online analysis. In this way, the offline NF PSC values are representative of the average online 

NF PSC values.  

6.2.12 Power calculation 

No a priori power calculation was performed. It was aimed to include a number of participants 

(15-20) that were comparable to the average or participants included in most fMRI studies 

(Poldrack et al., 2017). Data analysis was not performed until the last participant was scanned.  

6.2.13 Planned statistical analyses 

For each subject, median PSC values were calculated across all runs for each ROI in both active 

and passive conditions, and for the low and high target level separately. For each ROI data 

were fit to a 2x2 ANOVA model (target level x feedback), with target level having low and 

high levels and feedback with active and passive conditions. Physiological traces (PET CO2 and 

HR) were convolved with respective hemodynamic response functions and correlated with the 

task predictor (Pearson’s r). Obtained correlation coefficients were Fisher-z-transformed for 

both measurements and ROIs, averaged across runs, and submitted to one-sample t-tests.  

All frequentist t-tests were carried out one-sided, unless stated otherwise. Bayesian paired t-

tests were conducted using JASP (version 0.8.5.1; Team, 2017) using informed half-normal 

priors. Priors that were used to test for M1 activity were scaled by 75% of the group M1 PSC 

value as measured during the functional localiser and priors to test for differences between low 

and high target level of SMA activity were scaled by 50% of the group SMA PSC as measured 

during the functional localiser, which reflects the scaling of target levels during online feedback 

(for more details on used prior distributions, see Results section).  

6.2.14 Exploratory analyses 

6.2.14.1 Training effect over time 

To test for an effect of time in level separation, PSC values for the low and high target level of 

each run and participant were submitted to a repeated measures ANOVA.  
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6.2.14.2 Comparison of other self-regulation experience ratings 

Graded feedback training requires of participants to reach and maintain target levels on the 

visual thermometer bar feedback display. Besides general controllability of the feedback, a 

subset of participants also rated how well they could 1) fill up and 2) maintain the filling level 

of bars in the visual thermometer feedback display. Data for both ratings were submitted to 

two-sided frequentist and Bayesian t-tests.  

6.2.14.3 Counterbalancing and potential order effects 

This study employed a repeated measures within-subject design in which the order of training 

ROIs was counterbalanced across participants. While such design has the advantage that they 

increase statistical power because they eliminate between subject error, is bears the risk of 

carry-over/order effects. In the current study, the starting condition (i.e. the choice of the first 

target region) could have biased results. Hence, post-training questionnaire and ROI data were 

tested for potential order effects. Given the differences in self-regulation experience between 

M1 and SMA training runs, it is possible that the starting condition affected participants 

performance. For instance, participants’ motivation may have differed such that individuals 

who started in the M1 condition may have been discouraged when they reached the SMA 

training session. Such carry over effects could confound results and for instance explain why 

no interaction between the feedback condition and target level was found for active SMA PSCs. 

While the current study did not operationalize a measure for participant’s motivation, 

hypothetical differences in motivation between participants of different starting conditions 

would likely yield differences in participants’ average evaluation of controllability. Average 

controllability ratings were split by starting condition and submitted to two-sided independent 

frequentist and Bayesian t-tests.  

 

Besides perceptual effects, another possible source for an order effect could relate to a transfer 

of learned separation between low and high target BOLD levels: participants who started with 

SMA training may have been able to apply successful motor imagery strategies learnt during 

SMA training during M1 training runs. Such transfer effect would be reflected in a larger 

separation of target levels during SMA passive training runs for some participants, rendering 

the detection of an interaction between feedback condition and target level more difficult. To 

test whether SMA passive PSC values differed between starting conditions, difference scores 

of participants’ median PSC values were split accordingly (by starting condition) and submitted 

to two-sided independent frequentist and Bayesian t-tests.   
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6.3 Results – planned analyses 

6.3.1 Motor imagery questionnaire 

Motor imagery questionnaire data were collected from 14 of 17 participants. Data suggested 

that participants reported competence in imagining movements visually (5.5 ± 0.2 points [Mean 

± SEM]) and kinaesthetically (5.4 ± 0.2 points), as indicated by the average ratings. The sum 

scores for visual (38.4 ± 1.7; range 24-48) and kinaesthetic (35 ± 1.6; range 28-44) motor 

imagery were also comparable. During administration of the questionnaires, all subjects 

reported that they understood the difference between the two forms of motor imagery and 

provided examples for illustration. Hence, it can be concluded that participants in this sample 

were able to engage in kinaesthetic (upper-limb) motor imagery.  

6.3.2 Percent signal changes in target ROIs 

Group mean PSC values during the motor execution (finger opposition) localiser task were 

1.48 ± 0.12 [SEM] for M1, and 1.10 ± 0.08 for SMA, respectively. The intra-class correlation 

between online and offline PSC values was high for both target ROIs, (SMA: r = 0.961, 95%CI 

[0.895, 0.986], p < 0.001); M1: r = 0.929, 95% CI [0.809, 0.974], p < 0.001), indicating an 

excellent test-retest reliability between online and offline analyses.  

Figure 6.2 shows the mean BOLD responses across subjects and runs for each ROI in both the 

active and passive neurofeedback conditions. A robust positive BOLD response during the task 

period can be seen in the SMA for both feedback conditions, whereas the M1 shows a clear 

negative response. Event related time courses indicated that the SMA showed sustained 

activation during the task period, while M1 was deactivated irrespective of whether feedback 

was provided from M1 or the SMA (Figure 6.2 A, B). M1 deactivation was confirmed by a t-

test based on participants’ M1 PSC values averaged across the low and high feedback level 

during the task period (M1 active: t16 = -2.196, p = 0.022; Cohen’s d = -0.533; M1 passive: t16 

= -3.552, p = 0.002; Cohen’s d = -0.862). This was supported by Bayesian t-tests (N(0, 1.11); 

M1 active:  BF-0 = 3.496; M1 passive: BF-0 = 44.241).  
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Figure 6.2  A) Bar plots for BOLD percent signal changes (PSC) in the target ROIs 

during the active and passive conditions (Mean ± within subject standard error). B). 

Event related BOLD activity in target ROIs during the active and passive conditions. 

Shown are group mean values and within-subject standard error around the mean 

(shaded). C) Violin plot showing the Controllability ratings for SMA and M1, *** 

significant difference p<0.001. Adapted from (Mehler et al., 2019).  

Next, data were tested for differences in SMA activation during the low and high 

neurofeedback condition. SMA PSCs values during SMA (active) and M1 (passive) training 

were submitted to a 2 (low and high target level) by 2 (active and passive condition) repeated 

measures ANOVA. An effect of target level (F1,16 = 7.334, p = 0.016, ω² = 0.26) was found. 

There was no effect for feedback condition (F1,16 = 0.231, p = 0.637, ω² = 0.0), nor an 

interaction between feedback condition and level (F1,16 = 0.005, p = 0.947, ω² = 0.0). Thus, 

only target level effects for SMA pooled across active and passive SMA PSCs were followed 

up. A significant difference of moderate strength was found (Mean difference: 0.087 ± 0.029 

PSC, t16 = 3.006, p bonf = 0.005, Cohen’s d = 0.729). Likewise, a Bayesian t-test suggested 

strong evidence for a greater PSC during the high compared to the low-level condition (N(0, 

0.55); BF+0 = 14.61). Yet, it should be noted that this effect was likely mainly driven by PSCs 

from the active SMA condition, as suggested by a descriptive comparisons of effect sizes 

(active: Cohen’s d = 0.818, 95% Confidence Interval [0.257 to 1.361]; passive: Cohen’s d = 
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0.393, 95% CI [-0.107 to 0.882]). Taken together, this study found evidence for M1 

deactivation irrespective of the feedback condition. Further, SMA PSC data suggested a main 

effect of the motor imagery level, which seemed largely driven by the active SMA 

neurofeedback condition.  

6.3.3 Physiological measurements 

As with any BOLD fMRI study, magnitude changes can be confounded by non-neural sources 

of variance, such as motion and physiological noise. Further, physiological processes may be 

modulated by underlying mechanisms that also respond to the cognitive demands of a task, 

such as arousal or concentration, e.g. increased heart-rate during arousal or subconscious 

changes in breathing during increased mental activity. Specifically, partial pressure end-tidal 

carbon dioxide (PET CO2) acts as a strong vasodilator, and heart-rate (HR) impacts the BOLD 

signal (Murphy et al., 2013). To account for potential physiological confounds (Thibault et al., 

2018b), collected PET CO2 and HR traces were recorded, pre-processed (see methods) and 

correlated with the task predictor. In general, small negative relationships were found, except 

for HR in M1 (Table 6.1), although these were not significant after multiple comparison 

correction. Also, the Bayes Factor remained inconclusive for all measurements and ROIs, 

suggesting that correlations between physiological confounds and the task were rather 

negligible.  

 z (Mean ± SEM) t df p pFDR Cohen’s d [95% CI] BF10 

HR SMA       -0.06 ± 0.04 -1.359  9  0.207  0.277  -0.43 [-1.07 to 0.23] 1.022  

C02 SMA  -0.08 ± 0.03 -2.351  12  0.037  0.148  -0.65 [-1.24 to -0.04] 2.915  

HR M1   0.02 ± 0.05 0.336  10  0.744  0.774   0.10 [-0.49 to 0.69] 0.540  

C02 M1  -0.07 ± 0.04 -1.920  13  0.077  0.154  -0.51 [-1.06 to 0.05] 1.765  

Table 6.1  Correlations between physiological parameters and motor imagery task 

predictor for heart-rate (HR) and pressure end-tidal carbon dioxide (PET CO2) for both 

training ROIs. Descriptive and inferential statistics (one-sample t-test) of z-transformed 

correlation coefficients. Bayesian t-test were conducted with an informed prior N(0, 0.5). 

Shown are Mean and Standard Error of Mean (SEM) values and p-values before and 

after (FDR) correction. 95% CI = 95% Confidence Interval, BF = Bayes Factor. Adapted 

from (Mehler et al., 2019).  
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6.3.4 Post-training questionnaire 

Post-training questionnaire data (question 1) was analysed to test whether differences between 

ROIs (SMA and M1) in up-regulation were reflected in reported experiences in general (based 

on ratings averaged across target levels for both target regions, respectively) and for level 

separation (based on rating differences between the low and high target level for both target 

regions, respectively). Specifically, it was assessed how participants rated the controllability of 

the feedback during M1 and SMA training in general. Ratings scores for the low and high target 

level were averaged and submitted to a paired t-test, which revealed that the controllability for 

the SMA was rated as higher compared to M1 (t16 = 4.28, p < 0.001, 5.8 ± 0.6 vs. 3.2 ± 0.5, 

Cohen’s d = 1.0; Figure 6.2 C). The Bayes Factor suggested strong evidence (N(0, 0.5); BF10 

= 53.5) for this effect. In contrast, difference scores or ratings for the high and low target level 

suggested no effect of target region (t16 = 0.108, p < 0.915, 0.12 ± 0.37 vs. 0.06 ± 0.40, Cohen’s 

d = 0.026). A Bayes t-test suggested slightly more evidence for a null effect, but remained 

inconclusive (N(0, 0.5); BF01 = 2.28). Taken together, average ratings of controllability showed 

that participants perceived being more in control during the SMA neurofeedback training 

compared to M1 training. The data further suggested that differences between the low and high 

target level did not differ between target regions.  

6.4 Results – exploratory analyses 

6.4.1.1 Training effect over time 

To test for an effect of time in level separation, low level and high-level PSC values of the 

SMA were submitted to a repeated measures ANOVA for each active and passive SMA run. 

A Mauchly’s test indicated violation of sphericity for the run level (W = 0.183, p = 0.024) and 

hence Greenhouse-Geisster correction was applied. No main effect of time was found (F2.21, 

28.72 = 2.281, p = 0.116, ω² = 0.082), while a main effect of target level was preserved (F1,13 = 

14.612, p = 0.002, ω² = 0.476), which also survived correction for multiple comparison after 

follow-up (t16 = 2.540, pbonf = 0.012, Cohen’s d = 0.679, mean difference high vs. low 0.066 ± 

0.026 PSC). Importantly, the interaction of interest (run ✻ target level ✻ feedback condition) 

was not significant (F2.32, 30.15 = 0.491, p = 0.644, ω² = 0.0).  

6.4.1.2 Comparison of other self-regulation experience ratings 

In line with ratings regarding overall controllability, the SMA was rated as the better region 

with regards to the perceived ability to fill up the thermometer bars (t9 = 6.89, p < 0.001, 3.5 ± 
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0.7, vs. 8.7 ± 0.4, Cohen’s d = 2.2), and to maintain bars at target levels (t9 = 5.16, p < 0.001, 

5.2 ± 0.6, vs. 8.6 ± 0.4, Cohen’s d = 1.6). For both effects Bayesian t-tests suggested strong 

evidence (N(0, 0.5); BF10 = 52.08 and BF10 = 24.29, respectively). Hence, also these additional 

measures of self-regulation experience confirmed that participants overall felt in high control 

of the feedback display when the SMA was the target ROI, which widely exceeded the 

perceived level of control during M1 training.  

6.4.1.3 Counterbalancing and potential order effects 

Random assignment yielded a similar number of participants (N = 9 vs. N = 8) in each starting 

condition (defined by the training ROI M1 or SMA, respectively, from which feedback was 

provided during the first training 5 training runs).  

 

Next, average controllability ratings were split by starting condition and submitted to post-hoc 

independent two-sided t-tests, which were not significant for the SMA (t15 = -0.076, p = 0.940; 

M1 start: 5.78 ± 0.88 vs. SMA start: 5.88 ± 0.93) or M1 (t15 = -1.185, p = 0.254; M1 start: 2.61 

± 0.41 vs. SMA start: 3.88 ± 1.04). Bayesian t-tests suggested slightly more evidence for a null 

effect, but remained inconclusive for SMA (N(0, 0.5); BF01 = 2.377) and M1 (N(0, 0.5); BF01 

= 1.489) ratings.  

 

To test whether SMA passive PSC values differed between starting conditions, difference 

scores of participants’ median PSC values were split accordingly (by starting condition) and 

submitted to an independent t-test, which remained inconclusive (t = -0.552, p = 0.589, Cohen’s 

d = - 0.268; BF-0 = 0.991).  

 

Taken together, no systematic differences between for self-regulation experience or level 

separation were detected between participants with different starting conditions and Bayesian 

tests remained inconclusive. Hence, relevant systematic biases due to an order effect could be 

ruled out.  
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6.5 Discussion 

The main finding was that kinaesthetic motor imagery did not elicit a positive BOLD response 

in the M1 region of motor cortex, irrespective of whether of feedback information was 

provided. In fact, a significant negative BOLD signal change was observed for both conditions. 

This result has considerable implications for motor imagery-based fMRI-NF because it 

suggests that up-regulation of the M1 BOLD signal is precluded by a negative activation during 

motor imagery. The inability of participants to up-regulate M1 BOLD is also reflected in 

subjective ratings of controllability, which were low. This observation has wider implications 

for any fMRI-NF paradigms that employ specific cognitive strategies, because it highlights the 

critical importance of selecting regulation objectives that are achievable with a given choice of 

target region and cognitive strategy.  

 

A second target area, the SMA, was also trained in separate runs, and consistent with previous 

reports (Subramanian et al., 2016, 2011), participants did show activation during motor 

imagery. However, this finding is not sufficient to demonstrate volitional control, because it is 

established that the SMA is activated during motor imagery in general, without feedback being 

necessary. The proposed benefit of neurofeedback as a therapeutic tool is based on the rationale 

that participants can self-regulate their own brain activity, and that this volitional control can 

be used to modulate brain states that can lead to a clinical benefit. This requires demonstrating 

genuine neurofeedback effects that extend beyond mere motor imagery training effects, and 

mere psychosocial effects (Thibault et al., 2018b). The strength of the present study lies in the 

use of a graded NF paradigm, because the targeting of discrete BOLD response magnitudes 

presumably requires some degree of self-regulation that would benefit from a feedback loop. 

A main effect of feedback level on SMA PSC values was found, which demonstrated 

significantly higher BOLD responses during in high compared to low levels, but no interaction 

between target level and feedback condition. Moreover, this study addressed the concern of 

potential physiological confounding factors (Thibault et al., 2018b) and showed that PET CO2 

and HR did not correlate significantly, and numerically only to a small degree with self-

regulation blocks (Table 6.1). Furthermore, besides reported effect sizes, the present study 

examined the shape of the activity profiles for all tested ROI. Thus, this approach does not only 

go beyond mere reporting of statistical results, which has been criticized with regards to fMRI 

work in general (Chen et al., 2017). Although not explored in this analysis, this approach allows 

for the evaluation of BOLD dynamics during the training period, which may for instance reveal 
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further information about training success and can be explored with regards to their relationship 

with reported mental imagery strategies.  

 

The role of M1 in motor imagery is likely complex and context dependent and subject of an 

active debate (for a review, see Hétu et al., 2013; Munzert et al., 2009). For instance, an 

Activation Likelihood Estimation (ALE) meta-analysis based on 73 published fMRI motor 

imagery studies found no conclusive results for M1 activation and noted that only 22 out of 

122 neuroimaging studies (fMRI and PET) reported M1 activation (Hétu et al., 2013). The 

authors concluded that imprecise motor imagery instructions may explain some of the 

inconsistency of M1 findings reported in the motor imagery literature, and it further been 

suggested that only kinaesthetic motor imagery may elicit M1 activation (Blefari et al., 2015; 

Solodkin et al., 2004). This study controlled more rigorously for both these factors by providing 

clear instructions and instructing participants to exclusively use kinaesthetic motor imagery of 

actions that involved both hands. The use of SMA as a separate ROI, and the demonstration of 

a robust positive BOLD response in this area, also served as a control condition, and strongly 

negates any notion that participants were simply unable to engage in motor imagery. It has 

been shown that M1 (hand knob) could not be activated despite reinforcing feedback, a finding 

that is in line with previous unsuccessful M1 fMRI-NF attempts (Berman et al., 2012; Blefari 

et al., 2015; Chiew et al., 2012). However, the present study only included a single session and 

it thus remains possible that participants can activate M1 and gain volitional self-regulation 

with more training experience, for instance after multiple sessions of M1 up-regulation fMRI-

NF.  

 

One potential confounding factor of motor imagery paradigms are movements or subtle muscle 

contractions, which could lead to spurious activations within regions of interest (Thibault et 

al., 2018b). The few studies that have reported M1 activation during motor imagery mostly did 

not control (Lotze et al., 1999; Perronnet et al., 2017; Sharma et al., 2008) for overt movements 

and muscle contractions, for which Electromyography [EMG] recordings are required, that 

remain technically challenging in the MR environment. Likewise, this study did not record 

EMG to rule out muscle activity and this limitation should be addressed in future studies. 

Noteworthy, the within subject design and comparison of separate ROIs limits the likelihood 

that participant motion (either voluntary or involuntary) contributes in any systematic way. 

Importantly, the main finding of M1 deactivation during motor imagery periods strongly 

suggests that the presented results were likely not confounded by participants’ overt movement 
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production, because these would result in a positive BOLD response in the M1 target region 

whose voxels were selected based on a motor execution localiser.  

 

One potential mechanistic explanation for the observed M1 deactivation during motor imagery 

could relate to the suppression of overt movements. Invasive electrophysiological stimulation 

studies have shown that M1 can have suppressive effects on muscular activity in motor control 

(Ebbesen and Brecht, 2017). In the current motor imagery paradigm participants were required 

to avoid muscular activity, and it is plausible that inhibition of movement is realised in the 

primary motor cortex, which acts as the final station where motor commands converge before 

being executed. Previous fMRI motor imagery studies have reported inhibitory projections 

from the SMA to M1 in healthy participants (Kasess et al., 2008; Solodkin et al., 2004) and 

stroke survivors (Bajaj et al., 2015), which could explain the M1 BOLD deactivation reported 

here. Moreover, one motor imagery study conducted in stroke survivors reported an inverse 

relation between (self-reported) motor imagery and activity of M1, indicating that individuals 

with higher motor imagery capacity showed more suppression of M1 activation (Confalonieri 

et al., 2012).  

 

Electrophysiological studies suggest that M1 is involved in motor imagery and can provide 

further insight into the neural origin of M1 BOLD deactivation. For instance, one 

magnetoencephalography study reported activity in the hand area of M1 during motor imagery 

(Schnitzler et al., 1997). More direct evidence for the involvement of M1 in motor imagery 

stems from a electrocorticography (ECoG) study that reported decrease of power (K. J. Miller 

et al., 2010) within lower frequencies reported for motor imagery (Pfurtscheller and Aranibar, 

1979; Pfurtscheller and Neuper, 1997), including the Mu-rhythm (8-13 Hz). Similar findings 

have been reported in BCI that could demonstrate training effects in motor imagery paradigms 

(for a review, see Cervera et al., 2017). A power decrease of the Mu-rhythm during unilateral 

hand motor imagery has further been associated with increased spinal motor neuron excitability 

(Takemi et al., 2015), as well as increased excitability of the corticospinal tract (CST) and 

intracortical GABAergic inhibition (Takemi et al., 2013). Simultaneous EEG-fMRI recordings 

have linked the Mu-rhythm to a decrease in BOLD deactivation (Mullinger et al., 2014). Taken 

together, some electrophysiological correlates of motor imagery anti-correlate with BOLD and 

may hence partly explain the presented M1 findings.  
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The second aim of this study was to test if participants could exert volitional control over the 

BOLD signal, in either SMA or M1 during kinaesthetic motor imagery, to target two discrete 

BOLD signal change magnitudes. A significant main effect of target level for SMA PSCs was 

found, but no interaction between target level and feedback condition (active vs. passive). Thus, 

although there was a significant difference between SMA PSC in high vs. low target level 

conditions, this effect was not significantly modulated by the feedback condition. However, a 

comparison of effect sizes suggested that the level effect was mainly driven by the active 

condition. It remains possible that the present sample size was too small to detect a rather small 

difference. Overall, it appears that graded fMRI-NF does aid participants in achieving discrete 

levels, but the specific neurofeedback effect of volitional control of BOLD signals was 

relatively small compared with the general motor imagery effect. Besides a larger sample, more 

neurofeedback training sessions may be required to demonstrate that participants benefit from 

feedback by utilizing this information to achieve self-regulation of discrete BOLD target levels. 

With regards to mere up-regulation training of the SMA (Sepulveda et al., 2016) or 

sensorimotor areas in general (Auer et al., 2016), previous work suggest that multiple training 

sessions of motor imagery based fMRI-NF are necessary to achieve pre-post differences for 

motor imagery transfer runs. Future work may compare the efficiency of such paradigms and 

graded fMRI-NF training regarding their efficiency in demonstrating superiority of training 

over control conditions.  

 

Noteworthy, a previous study that investigated (3-level) graded fMRI-NF for different mental 

imagery tasks reported superior self-regulation effects within a single training session when 

comparing fMRI-NF to a pure mental imagery session (Sorger et al., 2016). However, one main 

difference between the study designs lies in the selection of target regions: whereas the present 

study used a motor execution task as a localiser, Sorger et al (2016) used a mental imagery task 

to identify target regions and maximum PSC to scale the feedback, and thus possibly targeted 

voxels that are more specifically involved in the respective mental imagery task. Further, LOC 

PSC values were on average larger than in the present study. Although it remains speculative, 

participants may in consequence have had more dynamic range to exploit of the BOLD signal. 

This notion seems supported by a recent BCI study that used a graded feedback approach and 

found a positive relationship between accuracy of self-regulation and maximal localiser PSC 

values that were used to scale the individual feedback (Krause et al., 2017).  
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This study has provided new insights into neural correlates of (supervised) motor imagery, 

which can inform future attempts of translating fMRI-NF to clinical applications. In particular 

for stroke rehabilitation, fMRI-NF may provide new means to enhance neuroplasticity (Wang 

et al., 2017). One possible target region could be M1, which has been intensively studied in 

brain stimulation based stroke rehabilitation (McDonnell and Stinear, 2017). Considering the 

presented findings, however, M1 is likely a suboptimal target region for motor imagery-based 

fMRI-NF up-regulation training, although it remains possible that M1 activation can be 

achieved with longer training. We note that our results are largely in line with findings from 

Hanakawa and colleagues who had compared motor networks during motor planning, motor 

imagery and motor execution (Hanakawa, 2016). The authors had classified brain areas as 

“movement-predominant”, which included the M1 and SMA, and as “imagery-predominant”, 

which included the SMA but not M1. Further, a direct comparison between tasks suggested 

that associated motor networks largely overlapped, but also that voxels that were more 

responsive to motor execution were located more anterior within the SMA and the precentral 

gyrus. In contrast, voxels that were more responsive to motor imagery were located more 

posterior within these areas. This observation may be of relevance for the interpretation of the 

presented findings, because training voxels were identified using a motor execution localiser. 

To achieve optimal voxel selection future studies may benefit from employing a motor 

imagery-based localiser scan. One alternative approach to test if M1 activation can be learned 

could be realised in a design that does not use explicit motor imagery strategies whilst 

controlling for movements. Another set of techniques that could yield control over M1 is 

multivariate decoded fMRI-NF (DecNef). This technique combines statistically more sensitive 

multivariate decoders and implicit fMRI-NF, allowing to decode and train brain without 

participants’ conscious awareness (Koizumi et al., 2016; Watanabe et al., 2017). Such 

approaches may circumvent possible interferences due to a dual task situation and may allow 

attaining self-regulation of M1 activity. Studies that have employed multivariate decoding 

techniques to pure motor imagery tasks could decode different imagined actions from M1 (Park 

et al., 2015; Pilgramm et al., 2016; Zabicki et al., 2017). Apart from motor imagery-based 

paradigms, M1 remains a promising target region for motor execution-based fMRI-NF training 

for patients who possess sufficient residual ability to execute motor tasks. The literature on 

motor execution-based fMRI-NF training is currently very limited, but first evidence in healthy 

participants suggests that the M1 hand knob may provide a suitable target for such paradigms 

(Neyedli et al., 2017).  
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The presented findings are confined to young healthy participants and may not generalize to 

patient populations. For instance, stroke survivors show altered motor networks (Rehme et al., 

2011b; Rehme and Grefkes, 2013), implying that motor areas in the contralesional hemisphere 

can partly compensate for motor impairment. Furthermore, inter- and intrahemispheric network 

activity alters over time, hence optimal target regions may also depend on the time after stroke, 

in addition to other factors such as the lesion location (e.g. hemisphere), and involvement of 

the CST (Stinear et al., 2007). For instance, individuals with right-hemispheric stroke seem to 

show more frequently impairment of motor imagery than individuals with left-hemispheric 

stroke (Kemlin et al., 2016).  

 

With regards to the SMA as a target region, besides its role in motor control, it is involved in 

vigilance more generally (Cunnington et al., 2002; Hinds et al., 2013), as well as attention to 

timing (Coull, 2004; Macar et al., 2006). Both cognitive processes are likely recruited during 

the attempt to self-regulate brain activity. For instance, participants likely monitored their self-

regulation performance and attended to the temporal delay of the visual feedback display. Of 

interest, a previous real-time fMRI study used activation in the SMA to trigger the presentation 

of stimuli that required subjects to respond with a button press (Hinds et al., 2013). The authors 

found that that stimuli preceded by SMA activation were associated with shorter reaction times 

compared stimuli that were triggered by a control target in the default mode network, 

underscoring the role of SMA in controlling vigilance. Besides these cognitive processes that 

may have occurred during self-regulation attempts, also cognitive strategies of some 

participants during rest periods may have engaged the SMA as an area that is generally 

involved in mental imagery. One recent study for instance found that the SMA could be up-

regulated (albeit to a smaller extent, compare PSC 0.4 to 0.7 in the present study to on average 

only 0.1 to 0.15 in the GF  condition of Sepulveda et al., 2016) when no explicit imagery 

instructions were provided and participants used mental strategies comparable to those 

commonly used during rest blocks (Sepulveda et al., 2016), including relaxation and recall of 

autobiographical information. Taken together, although the current design controlled for 

general mental imagery effects during training blocks by comparing PSCs obtained from the 

SMA active and the SMA passive condition, other cognitive processes that involved the SMA 

and occurred either during the training or rest blocks may have interfered with training success. 

It thus remains to be tested whether self-regulation success in motor imagery based graded 

fMRI-NF could be increased by targeting other premotor areas (e.g. vPMC), using different a 

form (e.g. intermittent, Hellrung et al., 2018) or modality (e.g. auditory) of feedback 
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presentation, or employing a different feedback type (e.g. connectivity based feedback, Liew 

et al., 2015).   

 

To conclude, this study has demonstrated that M1 shows a robust negative BOLD response 

during kinaesthetic motor imagery in the context of NF. This finding may explain previous 

unsuccessful attempts of M1 fMRI-NF, suggesting that it represents a suboptimal target region 

for up-regulation paradigms in which participants use explicit kinaesthetic motor imagery. 

Conversely, premotor cortical regions such as SMA are more suitable target regions because 

of their more active role in motor imagery in general. However, the robust reactivity of 

premotor areas like SMA to different forms of motor imagery also presents a confound in NF 

studies that aim to develop volitional self-regulation of neuronal activation, as additional 

evidence beyond simple positive BOLD responses is required to demonstrate volitional self-

regulation.  
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7 GRADED FMRI-NF TRAINING 

OF MOTOR IMAGERY IN 

MIDDLE CEREBRAL ARTERY 

STROKE PATIENTS – A 

PREREGISTERED PROOF-OF-

CONCEPT STUDY  



Clinical Applications of fMRI neurofeedback training – David Marc Anton Mehler – November 2018 

     192 

W
o

rd
 T

e
m

p
la

te
 b

y
 F

ri
ed

m
an

 &
 M

o
rg

an
 2

0
1

4
 

7.1 Introduction (preregistered)  

Ischemic stroke of the middle cerebral artery (MCA) is one of the most common forms of 

stroke (Aouad et al., 2013; Leys et al., 1992). The MCA is the main blood supply to the primary 

motor cortex, including the hand knob area, as well as the premotor cortex. Hence, MCA stroke 

often leads to severe upper limb impairment and compromises patients’ quality of life 

(Langhorne et al., 2011; Miller et al., 2010). The efficacy of current rehabilitative strategies is 

limited and most patients remain impaired such that more than 70% of stroke survivors show 

residual upper limb dysfunction, and in many cases to a moderate-to-severe degree and despite 

intensive rehabilitation (Lawrence et al., 2001). Further,  it is estimated that only 5-20% of 

patients regain full upper limb function, whereas 33-60% have not showed any recovery six 

months after stroke (Kwakkel and Kollen, 2013). This remaining limb dysfunction presents a 

major impediment to rehabilitation, activities of daily living and occupational prospects of 

stroke survivors, and has a considerable, negative effect on their wellbeing (Langhorne et al., 

2011; Pollock et al., 2014). Therefore, there is a need for new non-invasive therapies to promote 

recovery of motor function in general and in particular for the upper limb after MCA stroke.  

Several motor imagery-based interventions have been suggested (Ietswaart et al., 2011; Sharma 

et al., 2009b), which may enhance neuroplasticity and thus potentially facilitate recovery 

(García Carrasco and Aboitiz Cantalapiedra, 2016; Sakurada et al., 2017). Indeed, feasibility 

studies suggest that stroke patients can still engage in motor imagery and that regular motor 

imagery training combined with physical therapy is associated with improved outcome (García 

Carrasco and Aboitiz Cantalapiedra, 2016). Motor imagery strategies can be primarily visual 

or kinaesthetic, and it is possible that the type of motor imagery influences the degree of 

improvement in motor impairment (Jackson et al., 2001; Sharma et al., 2009b). Whereas visual 

motor imagery focuses primarily on visual mental imagery, either from a first or a third person 

perspective, kinaesthetic motor imagery is defined as motor imagery from the first-person 

perspective and involves imagining the feeling and experience of movements without overt 

movement. Studies conducted with Transcranial magnetic stimulation (TMS) (Stinear et al., 

2006) and functional Magnetic Resonance Imaging (fMRI) (Guillot et al., 2009; Sharma and 

Baron, 2013; Solodkin et al., 2004) suggests that kinaesthetic motor imagery recruits motor 

areas including the supplementary motor area (SMA), and that this type of imagery is thus of 

interest for motor rehabilitation. Moreover, robust involvement of the SMA in kinaesthetic 

imagery was confirmed by a meta-analysis using activity likelihood estimation (Hétu et al., 

2013). The same meta-analysis also found that in majority of the 75 included motor imagery 
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studies did not specific the motor imagery type and that instructions were reported 

inconsistently between studies (Hétu et al., 2013). This renders comparability and 

interpretation of outcome measures for rehabilitation motivated motor imagery interventions 

difficult. Further, for the study of neural correlates during motor imagery after stroke, 

knowledge of the location is important to assist in the interpretation of activation patterns 

observed in individual patients. Most motor imagery studies conducted in stroke have included 

patients with a variety of lesion sites (Ietswaart et al., 2011; Kraft et al., 2015; Sharma et al., 

2009b).  

 

Besides type (e.g. visual and kinaesthetic), motor imagery may also be distinguished in terms 

of supervision (i.e. unsupervised vs. supervised motor imagery paradigms). For unsupervised 

motor imagery participants usually receive imagery instructions only, whereas for supervised 

motor imagery, participants are also provided with feedback on their performance. Brain 

computer interfaces (BCIs) including real-time (rt-) fMRI neurofeedback (-NF) training have 

been suggested to support motor imagery and mental imagery ability in general. For motor 

rehabilitation, feasibility of rt-fMRI-NF has been demonstrated for Parkinson’s disease (PD), 

and case studies suggest that stroke patients can also learn to self-regulate motor areas using 

motor imagery (Liew et al., 2015; Sitaram et al., 2012; Subramanian et al., 2016, 2011).  

 

In this proof-of-concept (PoC) study, we aim to address some of the limitations identified in 

the literature and aim to show that motor imagery-based rt-fMRI-NF training is feasible in 

MCA stroke patients. First, we will test if stroke patients with an MCA lesion can achieve 

sustained SMA activation using supervised kinaesthetic motor imagery (using rt-fMRI-NF). 

The SMA is an attractive target region of interest (ROI) in MCA stroke patients, because it is 

supplied by the anterior cerebral artery (ACA) (Brugger et al., 2015), and thus is not expected 

to have (substantially) compromised haemodynamic function following MCA stroke. We 

therefore expect that MCA stroke patients can activate the SMA. Second, we will test if MCA 

stroke patients can self-regulate the feedback signal to two discrete target levels. Such ‘gradual’ 

neurofeedback training (referred to as ‘graded’ in this study) has recently been demonstrated 

in healthy participants for various mental instructions including mental rehearsal (Sorger et al., 

2016), mental arithmetic (Krause et al., 2017) and kinaesthetic motor imagery (Mehler et al., 

2017c).  
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7.2 Methods (preregistered) 

7.2.1 Design and materials 

7.2.1.1 Participants 

This will be a PoC study to ascertain if unilateral MCA ischemic stroke patients, with moderate 

to severe upper limb impairment, are able to 1) achieve sustained SMA activation during motor 

imagery and 2) demonstrate control over the feedback (by self-regulating the activation to 

different target levels), which we see as prerequisites for the use of graded neurofeedback 

training as motor rehabilitation therapy. Stroke severity will be determined by the local 

clinician and based on the Modified Rankin Scale Questionnaire Score of 3 to 4 (Bonita and 

Beaglehole, 1988). Potentially suitable participants, within 6 months of stroke, will be 

identified by clinical staff at Cardiff and Vale University Health Board. The inclusion criteria 

for patients are:  

1) infarct of the middle cerebral artery territory  

2) persisting hemiplegia/hemiparesis 

3) patients will have either a) have been discharged from the acute stroke unit and received 

ambulatory physiotherapy (so called early supported discharge), b) are still undergoing 

or c) have already completed an inpatient rehabilitation programme 

4) no receptive aphasia to ensure that task instructions will be properly followed 

Exclusion criteria are any MRI contraindications. Patients will provide informed consent. 

[Amendment to original preregistration protocol: The study has been approved by local 

research ethics committee (Wales REC3, reference number 16/WA/0167) operated by Health 

and Care Research Wales.] For a detailed list of exclusion criteria that affect the data 

acquisition and/or quality, please see Data exclusion section below. Although exclusions have 

been anticipated, any further expulsions and reasons will be reported.  

 

7.2.1.2 Data exclusion 

Neurofeedback runs that contain too much head movement, defined by >30% volumes with a 

framewise displacement (FD) > 0.5mm (Power et al., 2014). If debriefing suggests that patients 

have misunderstood instructions, data of affected runs will be excluded. Further, if patients do 

not attend the second neurofeedback session and do not withdraw their consent, acquired data 

from the first neurofeedback session that meets the quality criteria as specified above will still 

be included in the Sequential Bayes Factor sampling and all other planned analyses.   
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If technical problems occur that either disrupt or delay the feedback presentation, data from 

affected runs will be excluded. Incomplete neurofeedback runs are excluded. 

If patients interrupt a scan session but consent is not withdrawn, acquired data of this session 

will be included. However, in the debriefing it will be established when a patient stopped 

complying with the task and affected runs will be excluded. Other unanticipated circumstances 

effecting data quality can result in exclusions. In such circumstances, all exclusions and reasons 

will be reported.  

 

7.2.1.3 Dependent variables and hypotheses 

The first dependent variable of interest is the median percent signal change (PSC) of the SMA-

ROI during motor imagery (taking an average across the low and high neurofeedback 

condition) > rest (details for calculation see Analysis plan below). The second dependent 

variable of interest is the difference in SMA-ROI PSC between the low and high neurofeedback 

condition (details for calculation see Analysis plan below).  

 

H0_A: MCA stroke patients show no sustained SMA-ROI activation  

H1_A: MCA stroke patients will show sustained SMA-ROI activation as measured by a 

positive PSC.  

 

Such a finding would provide a basis for future motor imagery based rt-fMRI-NF training in 

MCA stroke patients.  

 

H0_B: MCA stroke patients show no difference in SMA-ROI activation (measured by PSC) 

between low and high neurofeedback conditions.  

H1_B: MCA stroke patients show a difference in SMA-ROI activation between low and high 

neurofeedback conditions.  

Such a finding would suggest that rt-fMRI neurofeedback training enables MCA stroke patients 

to self-regulate the BOLD signal of the SMA activity to two discrete target levels using 

kinaesthetic motor imagery.  
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7.2.1.4 Sample size and sampling plan  

Owing to feasibility and PoC, we intend following a Bayesian sampling strategy with a 

minimum of N = 5 patients and continue recruiting either until the Bayes factor for both 

hypotheses (A and B) is conclusive - i.e. either for the alternative with BF10 > 10 (indicating 

strong evidence for a positive effect) or for the null with BF01 > 10 (indicating strong evidence 

for a null effect) - or until the end of the data collection period (September 30, 2017) is reached.  

 

Effect size Power  

0.6 0.30 

0.8 0.44 

1.0 0.58 

1.2 0.71 

1.4 0.82 

Table 7.1: Power calculation based on sample size of N = 5 and alpha level of 0.05, one-

tailed.  

 

Although there is risk for inflated type-II error rates with the present small sample and min N 

= 5 (Table 7.1), we believe that preregistering the protocol of this PoC study outweight 

concerns about power. Importantly, preregistration of this stepwise Bayesian approach 

effectively addresses several concerns of standard null hypothesis testing by (1) reducing the 

risk of inflated type-II errors associated with small sample size, (2) eliminating publication 

bias, and (3) ensuring that only a priori hypotheses are declared as confirmatory. 

Moreover, a preregistered PoC study, if successful, provides a solid basis for future replication 

in larger clinical trials. Lastly, we note that this is to our knowledge the first preregistered report 

of a rt-fMRI-NF study that is not a formal randomized controlled trial.  

 

7.2.2 Procedure 

7.2.2.1 Familiarization 

Patients will be invited to two rt-fMRI-NF training sessions. Sessions will be conducted at the 

patient’s convenience but within six months after their stroke. If necessary, patients will be 

made familiar with the MR scanner environment using a mock scanner before their scanning 

session.  
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Mental imagery performance has been shown repeatedly to be modulated by hand orientation 

(Jongsma et al., 2013) as well as body posture (de Lange et al., 2006; Ionta et al., 2012). Thus, 

patients will be asked to identify a kinaesthetic motor imagery strategy that involves both hands 

(see Chapter 7.2.2.6). Patients will be reminded to avoid any movements and muscle 

contractions. During the scanning, patients will be asked to use this motor imagery strategy 

during the localiser run. The localiser run is used to identify voxels activated during the task 

within an atlas-based ROI of the SMA (see Chapter 7.2.2.3).  

7.2.2.2 MRI acquisition and online processing 

Imaging data will be acquired using a 3 Tesla Siemens Prisma scanner at the Cardiff University 

Brain Research Imaging Centre (CUBRIC). Blood-oxygenation-level-dependent (BOLD) 

signals during localiser and neurofeedback runs (see Procedure) are measured with a T2*-

weighted gradient echo planar imaging (EPI) sequence that is synchronised to the onset of the 

stimulus presentation. Functional EPI volumes of 24 slices of 2.5-mm thickness, with 0.5-mm 

inter-slice spacing will be used (in-plane resolution = 3 mm, TR = 1500 ms, TE = 30 ms, flip 

angle = 80°). High-resolution structural images will be acquired before the first functional scan 

using a magnetization-prepared rapid gradient-echo sequence (MPRAGE) T1 weighted image 

with 172 contiguous sagittal slices of 1-mm thickness (voxel size: 1 × 1 × 1 mm, TR = 7.9 s, 

TE = 3.0 ms, flip angle = 20°, FoV = 256 × 256 × 172 mm). Turbo BrainVoyager (TBV) 

software (BrainInnovation, Maastricht, The Netherlands, version 3.2) will be used for online 

analysis of BOLD signals including motion correction with respect to the first volume of the 

functional localiser and spatial smoothing (4mm full width at half maximum; FWHM). The 

functional EPI data will be co-registered with the T1-weighted anatomical scan and 

transformed to Talairach space to allow for standardised ROI selection during the localiser. 

The functional localiser run (180 volumes) will consist of 4 blocks (30sec) kinaesthetic motor 

imagery, flanked by rest blocks (30sec).  

 

7.2.2.3 Functional localiser 

For the localiser, an incremental GLM will be used including a task predictor and linear drift 

term (Version 3.0, Brain innovation, Maastricht, The Netherlands). The localiser run serves to 

identify most active voxels and to calculate the individual percent signal change (PSCLOC) that 

is used to scale the visual feedback.  
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Previous real-time neurofeedback studies that were conducted with neurological patients have 

either used motor execution (Subramanian et al., 2016, 2011) or action observation (Sitaram et 

al., 2012) task during localisers runs. However, given that motor execution is impaired in stroke 

patients in general and to different degrees across patients, a motor execution localiser would 

be difficult to implement and most likely provide unreliable estimates for PSCLOC. We 

therefore decided to use a motor imagery localiser, which further allows to identify voxels that 

are most activated during the task of interest (i.e. motor imagery). The voxel selection will be 

constrained to an anatomical ROI of the SMA (see details in Anatomical SMA-ROI). To do so, 

statistically significant voxels are selected using a t-contrast of motor imagery > rest with a 

variable t-threshold to ensure that a sufficient a number of voxels are available within the SMA 

for the following selection. The 40 most active neighbouring voxels (determined by their t-

value) in four neighbouring slices will be identified based on this t-contrast using a custom-

made plugin (Best Voxel Tool with settings 4-4-1-0-40; plugin will be available on OSF). To 

give participants time to disengage from motor imagery during the rest and allow time for the 

BOLD to recover to baseline, only the second half of each rest period will be considered for 

the calculation using a custom-made PSC plugin too (PSC calculation Tool).  

We will use 80% of the maximum PSCLOC. However, because it is possible that patients 

initially struggle to engage in motor imagery when no feedback is provided yet, a lower bound 

PSCLOC = 0.7 will be used to avoid underestimating an appropriate PSCLOC that will scale the 

feedback. Further, because the maximum PSC value could be biased by outliers or spikes in 

the time series, an upper bound PSCLOC = 1.4 will also be used. These values are comparable 

to PSCLOC default values of 1% that have previously been used in neurological patients 

(Subramanian et al., 2016, 2011).  

 

The PSCLOC value will determine the 100% level of the thermometer feedback and the rest of 

the thermometer is linearly scaled accordingly (see Neurofeedback calculation and 

presentation). In the event that the functional localiser run fails (e.g. due to technical reasons 

or because the patient is not able to perform the task initially without any visual feedback), we 

will select 40 adjacent voxels within the anatomically defined SMA as a default option and set 

the PSCLOC = 1.  

7.2.2.4 Anatomical SMA-ROI  

To guide voxel selection and standardize the SMA-ROI across participants, we decided to use 

an anatomical ROI template, which requires a custom-built workflow. An atlas template 
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(Automated Anatomical labelling; AAL) (Tzourio-Mazoyer et al., 2002) will be extracted from 

the PickAtlas tool (Maldjian et al., 2004, 2003). Further, the corresponding T1-weighted image 

(i.e. collin27) that these structures have been co-registered to will be extracted from the SPM 

Anatomy toolbox (Eickhoff et al., 2005). The resulting NIfTI images require conversion into a 

data format that is readable by TBV. Because the conversion via the Brainvoyager NIfTI-1 

converter plugin (v1.09) requires identical image dimensions (i.e. bounding boxes), the SMA-

ROI will first be sampled to the T1-weighted image using Nilearn (version 0.3.0; 

resample_to_img function) (Abraham et al., 2014) and then converted to BrainVoyager 

anatomical format. Next, images are transformed from MNI to Talairach space using 

BrainVoyager (BrainInnovation, Maastricht, The Netherlands, version 20.4). Lastly, the 

obtained anatomical file is transformed into an SMA-ROI and thresholded (at minimum value 

range = 50) using Brainvoyager for use in TBV.  

 

7.2.2.5 Neurofeedback calculation and presentation 

The localiser run is followed by 5 neurofeedback runs (180 volumes) which contain two 

repetitions of two block types, a low and high neurofeedback level which are interleaved by 

rest (30 sec). For feedback presentation, the mean raw BOLD value will be extracted from 

the SMA-ROI (BOLDSMA-ROI). The feedback will be computed based on equation 1,  

Eq. (7.1):    𝑃𝑆𝐶_𝑁𝐹 =
(𝑣𝑎𝑙−𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)∗100

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 

where val is the mean of three consecutive BOLDSMA-ROI values, baseline is the median 

BOLDSMA-ROI during the second half (i.e. last 10 TRs) of the preceding rest period and PSC_NF 

is the resulting percent signal change. PSC_NF is then normalised by PSCLOC to map it on to 

the (15) segments of the thermometer display such that every segment represents 10% of the 

PSCLOC. Values below 0 are rounded up to 0, values above 15 will be rounded down to 15. 

[Amendment to original preregistration protocol: Given the relatively small number of data 

points (N=10), the median was considered more robust than a mean to protect against potential 

outliers due to signal variations (e.g. in consequence of abrupt head motion)]. The calculation 

is carried out in an in house written python script (Python 2.7.10). The Open Source Python 

library Expyriment will be used for online feedback presentation (Krause and Lindemann, 

2014). Figure 7.1 shows the visual feedback display which consists of a thermometer with 15 

segments and indications for either rest (i.e. red arrows at the bottom) or the target levels. 

Target levels are defined by 50% (low) and 100% (high) of the localiser SMA-ROI PSC and 
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indicated by green arrows. Both the low and high-level conditions are repeated twice per run 

and are interleaved by rest periods. During feedback periods activation of the SMA-ROI 

compared to rest results in filling of the bars. During rest periods, no feedback is presented, 

and the thermometer remains empty. The order of the condition (low and high target level) will 

be counterbalanced across runs and subjects (determined by subject number and run number).  

 

 
Figure 7.1 Example sequence of conditions. Rest indicated by red arrows, target levels 

during neurofeedback indicated by green arrows. Empty fields fill with grey bars (not 

shown here) when Feedback (Eq. 7.1) is a positive value.  

 

7.2.2.6 Instructions 

Before the scan, patients will be asked to identify a kinaesthetic motor imagery strategy that 

involves both hands and that they can comfortably, vividly and consistently perform for about 

30 seconds (e.g. an activity of daily living) while lying in a supine position comparable to the 

actual scan session. Patients are further instructed to avoid any movements and muscle 

contractions.  

 

During the localiser run, patients will be asked to use this motor imagery strategy. Patients will 

be presented with an empty thermometer on the screen which contains coloured arrows at both 

sites (Figure 7.1). Patients are instructed to remain still in the scanner and rest while shown 

arrows are red and to perform vivid kinaesthetic mental imagery of an action that involves both 

of their hands during indicated task periods. Patients are reminded that no feedback will be 

presented yet.  
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For both the localiser and neurofeedback runs, patients are further instructed that during scans 

they should 1) remain still and relaxed, 2) avoid movements and muscle contractions and 3) 

use only kinaesthetic motor imagery that involves both hands. Besides these aspects, patients 

are not restricted in the content of motor imagery (e.g. a particular type of activity or sport).  

For the neurofeedback runs, it is explained to patients that bars in the thermometer will 

represent the activity level in the target region and that their goal is to use kinaesthetic motor 

imagery to control the feedback by filling up the bars contained in the thermometer display. 

They are also instructed to maintain the activation at target levels by adjusting their mental 

strategy (e.g. changing speed and/or intensity of the imagined movement).    

7.2.3 Analysis plan  

7.2.3.1 offline fMRI analysis 

The present study is a repeated measure within-subject design. The dependent variable of 

interest is the PSC of the SMA-ROI in the contrast task - i.e. supervised kinaesthetic motor 

imagery based on rt-fMRI-NF from the SMA-ROI > rest. The open source software AFNI 

(version 16.2.18) will be used for offline fMRI ROI analyses using the same pre-processing 

parameters (motion correction, 4mm spatial smoothing) as used for the online feedback. Based 

on existing in-house scripts, AFNI functions 3dDeconvolve and 3dREMLfit function will be 

used. 3dDeconvolve will be used to calculate task and baseline predictors (see below) and pre-

processed BOLD time series and design matrices will be submitted 3dREMLfit to compute 

SMA-ROI PSCs. This approach will largely replicate the analysis carried out online and 

additionally correct for temporal auto-correlation (AR1) of the BOLD time series. For the 

functional localiser, the intercept, drift and task are modelled, and the PSC is defined as the 

ratio between task and intercept parameter estimates. For the neurofeedback runs, analyses will 

be carried out on a concatenated time series for both the low and high target level with their 

respective preceding rest periods such that five coefficient estimates are returned for: the 1) 

intercept, 2) low level task block, 3) high level task blocks, 4) baseline blocks preceding low 

level task blocks and 5) baseline blocks preceding high level task blocks (with order of 2-5 

depending on randomization). Based on these coefficient estimates, PSCs are calculated using 

equation 6.2  

 

Eq. (7.2):     𝑃𝑆𝐶 = 𝑡𝑎𝑠𝑘 ∗
100

𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡+𝑟𝑒𝑠𝑡
 

for the low and high neurofeedback level, respectively.  
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Returned values from the neurofeedback runs will be normalized by the offline calculated 

PSCLOC. Hence, for instance a value of 0.5 would indicate that 50% of the PSCLOC have been 

achieved during neurofeedback, the desirable target level for the low neurofeedback condition.  

Both SMA activation (H1_A) and difference between target levels (H1_B) will be tested on 

the group level as well as in individual patients. Group analyses will be carried out based on 

patients’ median PSC values calculated across all runs from both neurofeedback sessions. 

[Amendment to original preregistration protocol: The use of the median (rather than the mean) 

as a measure of centrality was motivated by the relatively small number of runs (N = 5) since 

the median is more robust against potential outliers.] To test for H1_A, the grand median is 

calculated from PSC (grand mdPSC) values across the low and high target level conditions.  

To test for H1_B, the median PSC is calculated separately for the low and high target level 

condition (mdPSC). In addition to the group analyses, both H1_A and H1_B will be tested 

within subjects based on all PSC values available for a patient.  

7.2.3.2 Sequential Bayesian Sampling 

Sampling will be stopped either when the period of the study is exceeded (30 September 2017) 

or when conclusive Bayes factors are reached for both hypotheses (A and B), i.e. either for the 

alternative with BF10 > 10 (indicating strong evidence for a positive effect), or the null with 

BF01 > 10 (indicating strong evidence for a moderate null effect).  

For both, H1_A and H1_B, Bayes Factor calculations will be performed using a uniform prior 

(Baguley, 2010; Dienes, 2014) with the lower bound set to zero. For H1_A, we will test for 

activation vs. no activation and thus conduct a one-sided one-sample Bayesian t-test with the 

upper bound being determined by the group median of the PSCLOC. For H1_B, we will test for 

a difference between the low and high neurofeedback level and thus conduct a one-sided paired 

Bayesian t-test. In the optimal case the difference would be 0.5 (see paragraph above), hence 

to test for H1_B the upper bound of the uniform prior will be set to 0.5.  

  

Besides these Bayesian t-tests that will be used for the stopping rule, we will also report 

respective Bayesian t-tests on group level with a default Jeffreys-Zellner-Siow (JZS) prior 

(Cauchy r = 0.707) (Rouder et al., 2009). These will be reported together with the median of 

the posterior and its 95% credible interval. Given that Bayes factors are sensitive to priors, a 

prior robustness check (with r = 0.5, r = 1 and r = 1.4142) will be conducted to assess the 

robustness of the outcome (Rouder et al., 2016; Schönbrodt and Wagenmakers, 2016).  
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7.2.3.3 Frequentist statistical analysis 

Besides Bayesian hypothesis testing, frequentist hypothesis testing will also be conducted. 

H1_A will be tested with a one-sided one-sample t-test and H1_B with a one-sided paired t-

test for both the group analysis and individual subject analyses. Because we have directed 

hypotheses in the cases of H1_A and H_1B (i.e. positive differences), all tests will be carried 

out one-tailed. Both hypotheses will be tested on the group level as well as in individual 

patients. Tests conducted on group level will be carried out at a significance level of 0.05. Tests 

at subject level will be Bonferroni corrected for multiple comparisons and carried out at a 

significance level of 0.05/number of tested patients. For all measures, effects sizes (Cohen’s 

dz) will be reported.  

7.3 Changes applied to preregistered methodology 

To address challenges in the data acquisition and analysis that were not anticipated when this 

study was preregistered (Mehler et al., 2017a), the following changes to the preregistered 

methodology were applied:  

7.3.1.1 Participants and sessions 

The patient recruitment was slower than expected. Therefore, the recruitment phase was 

extended from the end of September 2017 until the end of February 2018 with approval from 

the ethics and research governance committees. Further, inspection of real-time motion 

parameters during data acquisition suggested substantial head motion. Therefore, two patients 

completed one additional scan session to compensate for expected data loss, which was an 

option included in the study protocol.  

7.3.1.2 Co-registration and functional localiser  

Brain lesions and head motion corrupted data quality and anatomical landmarks (Appendix C 

Figures C1 and C2). In consequence, co-registration attempts failed. Hence, all but 

neurofeedback runs were performed in native space. Therefore, the created anatomical SMA 

mask in Talairach could not be applied and instead target voxel selection was guided by visual 

inspection of functional brain slices in a similar way as described earlier (Chapter 5.2.8). Target 

regions were mostly constrained to the 40 most active adjacent voxels as described in 6.2.2.3, 

however, this approach failed for two scanning sessions due to technical problems and a larger 

set of voxels was selected.  



Clinical Applications of fMRI neurofeedback training – David Marc Anton Mehler – November 2018 

     204 

W
o

rd
 T

e
m

p
la

te
 b

y
 F

ri
ed

m
an

 &
 M

o
rg

an
 2

0
1

4
 

7.3.1.3 Co-registration and functional localiser 

When this study was preregistered, data from Chapter 5 was used to inform decisions about 

the choice of prior distributions. Specifically, custom-written MATLAB (Mathworks Inc) 

scripts (Dienes, 2014) were used that included priors based on a uniform and normal 

distribution. These prior distributions were not yet implemented in earlier software versions 

of JASP during the piloting phase. However, more recent JASP software versions included 

user set normal priors and thus allowed comparing results between custom-made scripts and 

results obtained with the JASP software. Comparison between results based on normal prior 

distributions deviated and with respect to the Bayes Factor. Hence, to ensure reproducibility 

it was decided to switch to JASP (version 0.8.4.0; Team, 2017) and use normal priors. These 

were scaled based on localiser PSC values as described in the preregistered methods. Given 

that the scaling was maintained, the switch from uniform to normal priors likely results only 

in marginal differences  (Rouder et al., 2009). This assumption was further tested for reported 

analyses using sensitivity analyses with JZS priors and a range of scaling factors (Chapter 

3.4.2.2).  

7.3.1.4 Supplementary information about head motion quantification 

Head motion was quantified using framewise displacement (FD), with  

 

Eq. (7.3):  FDi = ∣Δdix∣ + ∣Δdiy∣ + ∣Δdiz∣ + ∣Δαi∣ + ∣Δβi∣ + ∣Δγi∣,  

 

where i indicates the volume, Δdix = d(i−1)x − dix for translation rigid body motion parameters, 

and [αi βi γi] are the three head rotation parameters (roll, pitch, yaw) that were converted to 

millimetres using a projection onto a sphere with a radius of 50mm (Power et al., 2014).  
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7.4 Results 

7.4.1 Recruitment 

The present study was a PoC study and thus one main outcome is the feasibility and efficiency 

of MCA stroke patient recruitment. The recruitment started in December 2016 and was initially 

planned to be completed by August 2017 to allow completion of the study by September 2017. 

The first data collection began in late May after the preregistration was completed and uploaded 

to the Open Science Framework. Due to slow recruitment rates we extended the study end date 

until February 2018, when the last patient completed the study. During the period December 

2016 – February 2018, 44 patients were screened for their eligibility (Figure 7.2). In total, 37 

patients (84%) had to be excluded because they did not meet inclusion criteria. Leading reasons 

were overall poor health conditions (13 patients, 30%), either as a complication of the stroke, 

or due to pre-existing co-morbidities, as well as cognitive impairment (12 patients, 27%). 

Another five patients (11%) declined to participate for personal reasons. In total, seven patients 

(16%) provided consent to be included in the study, of which five patients completed the study 

(11%). One consented patient withdrew consent later due to personal reasons and one patient 

deceased before starting the study.  
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Figure 7.2 CONSORT flow diagram.  

7.4.2 Patient demographics 

The patients that completed the study mainly suffered from right hemispheric MCA stroke, 

resulting in left-sided hemiparesis (Table 7.2). Overall, patients were relatively young, with a 

median age of 49 years (range 38 to 68 years), broadly gender balanced (three female and two 

male patients) and mostly identified themselves as right-handed (four right handed, one left 

handed). Patients further mostly suffered from right-hemispheric MCA stroke (four right 

hemispheric stroke, one left-hemispheric stroke).  
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Subject Fugl Meyer  

(max 66) 

Median ± interquartile 

range/ 

Median percentage of  

excluded scan volumes  

P1 42  

(moderate) 

0.26 ± 0.13 mm/ 

14.5% 

P2 13  

(very severe) 

1.19 ± 0.03 mm/ 

97.8% 

P3 43  

(moderate)  

0.27 ± 0.08 mm/ 

6.7% 

P4 66  

(recovered) 

0.32 ± 0.11 mm/  

14.5% 

P5 52  

(mild) 

0.167 ± 0.02/ 

1.1%  

Table 7.2 Patients’ motor impairment and head motion.  

7.4.3 Preregistered analyses 

FMRI data pre-processing and motion correction were applied as described in 7.2.3.1 and data 

exclusion criteria based on patient’s head motion.  

 

All data acquired from patient 2 (P2), as well as two runs from patient 1 (P1), were excluded 

because of severe head motion. For P2, general discomfort due to joint pain and obesity 

prevented closure of the acquisition coil. Hence, head padding was suboptimal, which likely 

resulted in larger head motion. The remaining data were processed as described in 7.2.3.2 and 

7.2.3.3. In total, about 33% of all acquired volumes contained head motion above the set 

threshold of 0.5mm. The exclusion of entire runs when more than 30% of volumes passed this 

threshold resulted in discarding 15 of 50 (30%) acquired functional imaging runs. For the 

remaining PSC data, subject’s median PSC values across runs were calculated to conduct 

further analyses as described in Chapters 7.2.3.2 and 7.2.3.3.  
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The groups’ median localiser PSC value was 1.12 However, in three sessions the lower 

boundary value of 0.7 was used because the PSC estimation procedure yielded a value that was 

too low. This indicated that patients overall struggled to activate the SMA during the 

kinaesthetic motor imagery localiser run.  

 

To test H1_A (net activation of the SMA), data were submitted to a right-tailed one-sample 

Bayesian t-test. The results indicated only anecdotal evidence for SMA activation during fMRI-

NF blocks compared to rest (N(0, 1.12), BF₊₀ = 2.316, median posterior Cohen’s d = 0.794, 

95% Credibility Interval (95% CrI) [0.074, 1.819], Figure 7.3A). The prior sensitivity analysis 

that was carried out with JZS priors and a range of scaling factors were overall comparable and 

suggested anecdotal evidence for SMA activation (Figure 7.3B). This convergence between 

analyses indicated that the results were relatively invariant to the prior distribution being used 

(Rouder et al., 2016).   

 

Figure 7.3 A) Bayesian t-test and B) Prior sensitivity analysis for H1_A (net activation 

of the SMA).  

Data was also tested with a right-tailed one-sample frequentist t-test, which remained 

inconclusive (t3 = 1.789, p = 0.086, mean difference to zero: 0.142, 95% CrI [-0.045, ∞], 

Cohen’s d = 0.895, 95% CrI [-0.161, ∞]). Given the small sample, assumptions of normality 

of the data were tested. A Shapiro-Wilk test indicated that these were fulfilled (W = 0.808, p = 

0.118).  

 

To test H1_B (more SMA activation for high vs. low target level condition), data were 

submitted to a right-tailed paired Bayesian t-test. The results indicated anecdotal evidence for 

the absence of a level effect (N(0, 0.5), BF₀₊ = 1.829, median posterior Cohen’s d = -0.198, 
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95% CrI [-0.009, -0.715], Figure 7.4A). The prior sensitivity analysis suggested moderate 

evidence for SMA activation for various scaling factors and the evidence for the null increased 

monotonically with increasing prior width (Figure 7.4B). A frequentist right-tailed t-test 

remained inconclusive (t3 = -0.483, p = 0.669, mean difference = -0.014, 95% CI [-0.083, ∞], 

Cohen’s d = -0.242, 95% CI [-1.06, ∞]).  

 

 

Figure 7.4 A) Bayesian t-test and B) Prior sensitivity analysis for H1_B (more SMA 

activation for high vs. low target level condition).  

Next, H1_A and H1_B were tested on subject level using frequentist t-tests. First, a test for 

non-normality indicated no deviation for any patient with regards to their average PSC values 

(collapsed across the low and high level; Table 7.3).  

   W  p  

P1   0.904   0.435   

P3   0.917   0.513   

P4   0.907   0.452   

P5   0.909   0.463   

Note.  Significant results suggest a deviation from normality.  

Table 7.3 Test of Normality (Shapiro-Wilk) for H1_A on subject level.  

When split by target level (H1_B), no deviation from normality was detected (Table 7.4).  

   W  p  

P1 high - low   0.973   0.892   

P3 high - low   0.886   0.337   

P4 high - low   0.883   0.322   
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   W  p  

P5 high - low   0.981   0.940   

Note.  Significant results suggest a deviation from normality.  

Table 7.4 Test of Normality (Shapiro-Wilk) for H1_B on subject level. 

To test for net SMA activation, one-sided one-sample t-tests for patients individually. Tests for 

P1 and P3 remained inconclusive, and for P1 there was a trend opposite to the expected 

direction (SMA deactivation). Tests for P4 and P5 reached significance when uncorrected, 

however, when corrected for multiple testing using Bonferroni, only the effect for P5 remained 

significant (Table 7.5).  

 
95% CI for Location 

Parameter  
 

95% CI for 

Effect Size  

   t  df  p  
Location 

Parameter  
Lower  

Upp

er  

Effect 

Size  
Lower  Upper  

P1    -0.42   4   0.653   -0.03   -0.191   ∞   -0.189   -0.921   ∞   

P3    1.34   4   0.126   0.04   -0.024   ∞   0.599   -0.241   ∞   

P4    2.598   4   0.030   0.153   0.028   ∞   1.162   0.130   ∞   

P5    5.488   4   0.003 * 0.401   -0.116   ∞   2.454   0.827   ∞   

Table 7.5 Frequentist one sample t-tests (H1_A) on subject level. *) significant at 

Bonferroni corrected alpha = 0.0125.  

Bayesian one-sample t-tests that were informed by patients’ individual activation during the 

motor imagery localiser scan indicated moderate evidence for P4 and P5 (Table 7.6).  

  BF₊₀   

P1   0.525     

P3   1.759     

P4   3.579     

P5   6.906     

Table 7.6 Bayesian one-sample t-tests (H1_A) on subject level.  

Paired t-tests for high vs. low target level remained inconclusive for P1, P3 and P4, with mean 

differences indicating a trend opposite to the expected direction (i.e. PSC low > PSC high). Tests 

were only significant for P5 before, but not after correction for multiple testing (Table 7.7).  
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95% CI for 

Cohen's d  

         t  p  
Mean 

Difference  

SE 

Difference  

Cohen's 

d  
Lower  Upper  

P1 high  -   low   -0.75    0.753   -0.047   0.062   -0.336  -1.076   ∞   

P3 high   -   low   -0.92    0.794   -0.066   0.072   -0.409   -0.156   ∞   

P4 high   -   low   -2.22    0.949   -0.060   0.029   -0.946   -1.809   ∞   

P5 high    -   low    2.53    0.032    0.057   0.022    1.132    0.122   ∞   

Table 7.7 Frequentist paired sample t-tests (H1_B) on subject level.  

Bayesian t-tests suggested anecdotal to moderate evidence for an absence of a level effect for 

P1, P3 and P4, and moderate evidence for the presence of a target level effect for P5 (Table 

7.8).  

 

         BF₀₊   

P1 high   -   low   2.201     

P3 high   -   low   2.337     

P4 high   -   low   3.009     

P5 high   -   low   0.288     

Table 7.8 Bayesian paired samples t-tests (H1_B) on subject level.  

 

Taken together, data suggested anecdotal or moderate evidence for SMA activation in two 

patients, respectively. With regards to level effects, one patient showed moderate evidence for 

an effect, whereas the remaining patients showed anecdotal to moderate evidence for the 

absence of an effect.   

7.4.4 Exploratory analyses 

The following analyses were not predeclared in the pre-registration protocol and served to 

explore hypotheses that were declared post-hoc.  
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7.4.4.1 Head motion and qualitative observations 

Head motion-based data exclusion criteria indicated that about one third (33.02%) of the 

acquired volumes contained head motion beyond the threshold. This data exclusion 

compromises significantly the power of the current study, in particular in combination with a 

second threshold that discards entire runs if more than 30% of volumes are affected.  

In comparison, when applying the same threshold to head motion data acquired from a similar 

paradigm in healthy participants (Chapter 6), only about 3.4% of volumes showed too large 

motion. Head motion in stroke may result from different factors, including joint pain and 

general discomfort (reported by P2, who showed consistently large head motion and was 

excluded from the analysis), compromised ability to focus on a task (observed in P3), and in 

general a lack of or compromised somatosensory afference. Median head motion ranged from 

0.167mm to 1.19mm between patients, with a group median of 0.32mm. With regards to 

excluded volumes, the variability for the stroke patients in this sample was even more drastic, 

ranging from 1.1% to 97.8%. In comparison, when the same threshold was applied to data 

acquired in young healthy participants in a largely similar fMRI-NF paradigm, median head 

motion ranged from 0.10 mm to 0.25mm between participants, with a group median of 

0.15mm, less than 50% found in the patient sample.  

 

7.4.4.2 Evidence for negative over positive level effect 

One unexpected outcome of the present study was the trend towards level differences opposite 

to the expected direction. For the following analysis Bayes factor’s transitivity was exploited 

(Chapter 3.4.2.2) to calculate the evidence for a negative over a positive level effect BF-+.  

Specifically, a new BF-+ by was calculated as the ratio between Bayes factors resulting from 

two one-sided Bayesian t-tests of opposite direction (i.e. tests for a negative and a positive 

effect, respectively). A test for a positive level effect (H1_B) yielded BF₊₀ = 0.547, a test for a 

negative level effect yielded BF-₀ = 0.726, their ratio resulted in BF-₊ = 1.327. Hence, data 

indicated anecdotal evidence for a level effect that was reversed to the expected direction.  

7.4.4.3 Relation between lesion site and motor imagery ratings  

Patients evaluated their motor imagery capacity through a standardised motor imagery 

questionnaire, the Kinaesthetic and Visual Imagery Questionnaire (KVIQ). The KVIQ  

includes test items for visual and kinaesthetic motor imagery for the left and right upper limb, 

respectively, which are rated on a scale from 1 to 5 (Francine Malouin et al., 2007). The 
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questionnaire was used to familiarise patients with motor imagery, as well as to evaluate 

patient’s self-ratings. For this study, only items 3 to 5 of the upper limb section were assessed, 

which included motor imagery tasks concerning the shoulder, elbow and fingers. Scores for 

each body side and modality were calculated, such that a maximum of 15 points could be 

scored. To evaluate differences in self-rated motor imagery, scores obtained of the affected 

side were subtracted from the scores of the non-affected side. Positive scores thus reflect a 

higher rating for the non-affected bodyside, an outcome that one may expect based on reports 

of motor imagery in stroke patients (Malouin et al., 2007; McInnes et al., 2016). However, 

results suggested that patients either mainly rated higher scores for the affected side or rated 

sides indifferently, as indicated by zero and negative difference scores (Table 7.9). Likewise, 

no clear relationship with respect to patients’ handedness was evident.  

 

Subject Dominant 

body side 

Affected  

body side 

VI left   VI 

right 

VI 

Diff 

KI 

left 

KI right KI  

Diff 

P1 L L 
5 4 

-1 
7 7 

0 

P2 R L 
10 9 

-1 
12 9 

-3 

P3 R L 
12 8 

-4 
15 15 

0 

P4 R L 
6 7 

1 
10 10 

0 

P5 R R 
9 9 

0 
13 9 

4 

Table 7.9 Side of dominance and stroke, alongside self-rated motor imagery sum 

scores for visual imagery (VI) and kinaesthetic imagery (KI) for the left and right upper 

limb. Difference scores are calculated with respect to the non-affected side. Positive 

difference scores reflect larger ratings for the non-affected side, negative difference scores 

reflect larger ratings for the affected side.   
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7.5 Discussion 

This chapter presented data from a preregistered PoC study of kinaesthetic motor-imagery 

based real-time fMRI-NF training in first-time MCA stroke patients. On group level, data 

suggested only anecdotal evidence for the two main preregistered hypotheses. Analyses on 

subject level indicated that most patients did not activate the SMA when multiple testing 

correction was applied. Similarly, results suggested that only one patient separated target levels 

significantly, but for three patients, PSC values were marginally larger during the low 

compared to the high-level condition. This reversed level effect was supported by Bayesian 

hypothesis tests that indicated anecdotal to moderate evidence for the absence of the 

hypothesised positive level effect in three out of four patients.  

 

The marginal evidence for SMA activation during motor imagery may  be surprising in light 

of earlier reports of SMA activation during motor imagery in chronic stroke patients 

(Confalonieri et al., 2012; Sharma et al., 2009b, 2009a; Sharma and Baron, 2013). Besides 

larger sample sizes of earlier reports, differences in patient selection procedures likely play a 

role. First, previous studies mostly included well recovered patients, whose lesion was often 

limited to small subcortical structures (Confalonieri et al., 2012; Sharma et al., 2009b, 2009a). 

Further, Sharma and colleagues used a rigorous screening procedure to assess motor imagery 

abilities at baseline (Sharma et al., 2009b, 2009a). Thereby, these studies ascertained that 

included patients were skilled in performing motor imagery. However, this form of rigorous 

screening also excluded 30-50% of patients (Sharma et al., 2009b, 2009a; Simmons et al., 

2008). Screening for baseline motor imagery capacity may also be one main reason why 

samples of previous motor imagery studies featured mainly, or even exclusively left 

hemispheric stroke patients (Sharma et al., 2009a) Compared to right hemispheric stroke, 

which most patients had suffered in the present sample, left hemispheric stroke patients show 

less deficits in motor imagery tasks. For instance Malouin and colleagues found that right-sided 

parietal stroke was associated with slower motor imagery performance (Malouin et al., 2012). 

Another study found that right hemispheric stroke patients did not exhibit congruence between 

executed and imagined hand movements (Kemlin et al., 2016). Damage to the fronto-parietal 

network has been hypothesised as a potential pathophysiological mechanism underlying these 

deficits (Buch et al., 2012; Dettmers et al., 2015), For instance, the network is involved in 

cognitive processes that involve spatial attention and body-environment interactions (Ptak, 

2012), functions that are likely involved in different forms of motor imagery (Hanakawa, 
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2016). Of interest, one electrophysiological study that paired motor imagery with TMS pulses 

over the motor cortex found motor facilitation effects in stroke patients with lesions in the left, 

but not in patients with lesions in the right hemisphere (Stinear et al., 2007). While the present 

study used a motor imagery questionnaire that has been validated in stroke patients to assess 

self-rated motor imagery capacities (Francine Malouin et al., 2007), it was not used to select 

patients based on their ratings. Noteworthy, data from questionnaires did not match with the 

side of the stroke and hence did not reflect the pathophysiology (i.e. the affected side was rated 

as equally high or even higher compared to the non-affected side). The aim of this PoC study 

was to test the technique within the constraints of an established health care setting to provide 

a measure of feasibility with an ecologically meaningful sample. Also given the limited 

recruitment success, further restriction on patients would have additionally decreased the 

statistical power and biased the sample towards patients with above average motor imagery 

capacities. Taken together, the presented imaging findings are limited given the small sample 

size that has likely compromised the statistical power, but also lesion locations that may have 

impaired patients’ motor imagery abilities.  

 

The choice of the SMA as the target region and the design of motor imagery based graded 

fMRI-NF were informed by an experiment previously conducted in young healthy participants 

(Chapter 6). However, a few modifications were introduced to meet anticipated requirements 

for stroke patients with motor impairment: for instance, a motor imagery localiser was used to 

target voxels that responded to the task of interest, and to obtain an estimate for baseline PSC 

voxels within the SMA during the task of interest: motor imagery. In the event that patients did 

not achieve stable SMA activation during the localiser scan, preregistered lower and upper 

bounds (Chapter 7.3.2.3) were used similar to an approach used in studies with neurological 

patients (Subramanian et al., 2016, 2011). The choice of the target region (SMA) as a target 

region for fMRI-NF training in MCA stroke patients was informed by the outcome of a 

previous study (Chapter 5), but also based on neurovascular criteria: Cortical MCA stroke 

affects motor regions including M1 and the dPMC. In contrast, the SMA is supplied by the 

anterior cerebral artery (ACA) (Brugger et al., 2015). Hence, grey matter around the SMA was 

expected to be largely preserved, providing a more reliable basis for target voxel selection. 

Further, it was expected that the neurovascular coupling and perfusion were less affected 

compared to regions supplied by the MCA. Moreover, the length of training blocks was adapted 

for stroke patients such that the block length lasted 50-100% longer (30 seconds vs. 15-20 

seconds) compared to previous motor imagery based fMRI-NF studies (Berman et al., 2012; 
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Chiew et al., 2012; Sitaram et al., 2012; Subramanian et al., 2016, 2011) in order to account 

for potential hemodynamic delays. Global and local hemodynamic BOLD delays, in particular 

around the lesion territory but also relative to the non-lesioned hemisphere, have been reported 

for patients suffering from cerebral micro- or macroangiopathy. Such vessel pathologies may 

manifest in reduced vascular reactivity, which regulates hemodynamic responses to changes in 

pCO2/pH of brain tissue, as well as reduced neurovascular coupling, which adapts perfusion 

based on changes in metabolic demands (Wolf, 2015). Hence, future fMRI-NF studies may 

benefit from estimating hemodynamic delays in individuals to optimise their setup.  

 

In fact, hemodynamic delays in resting-state fMRI data can be used to localise perfusion 

deficits (Lv et al., 2013) and this information can be either used to inform target voxel selection, 

or to adapt training block lengths. Furthermore, given that the BOLD contrast depends on 

coupling relationships between the metabolic rate of oxygen, cerebral blood flow (CBF), and 

volume (CBV), changes in the metabolic rate of oxygen (e.g. due to inflammation) may 

attenuate BOLD responses. Besides hemodynamic delays, reductions in BOLD amplitudes 

have been observed in stroke patients, which may result from reduced neurovascular coupling 

(Lin et al., 2011; Schroeter et al., 2007), or an inability of the neurovascular system to increase 

local perfusion (Siegel et al., 2017). Both aspects are of particular relevance for fMRI-NF in 

stroke patients, because neurovascular coupling likely represents a key physiological 

mechanism in learning self-regulation of the BOLD signal (Birbaumer et al., 2013). 

Pathological changes of BOLD dynamics in stroke patients render the interpretation of the 

present findings, i.e. only marginal evidence found for SMA activation, difficult, and can 

challenge for successful implementation of fMRI-NF as well as functional near-infrared 

spectroscopy (fNIRS-NF) training for certain stroke patients. Hence, future attempts of BOLD 

based neurofeedback training should include vascular measurements such as breath-hold 

functional scans that allow assessing vascular reactivity in stroke patients (Geranmayeh et al., 

2015; Murphy et al., 2011), as well as CBF and CBV weighted data that can help understanding 

null findings related to BOLD (Blicher et al., 2012). These measures allow assessing 

intracerebral vascular reactivity and can thereby help to dissociate factors that could contribute 

to reduced or absent BOLD responses as reported here for the SMA. Moreover, they may allow 

to identify patients whose brain vessels are still largely intact, and who may show most training 

success. Lastly, looking at the role of neurovascular coupling though the lenses of 

rehabilitation, retraining this capacity after cerebral stroke may represent a promising outcome 

variable in its own right.  
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Another main challenge related to the imaging is related to patients’ head motion. In the present 

study head motion severely compromised data quality such that MRI co-registration failed at 

setup, mainly because anatomical image quality was insufficient (for illustration, see Appendix 

C, Figure C1). Therefore, co-registration during fMRI-NF sessions was not feasible. Besides 

head motion, other factors such as deformations and large lesions likely also contributed to 

failed co-registrations. These issues remain a challenge for offline data analysis pipelines 

(Siegel et al., 2017). As a result, fMRI-NF training was performed in native space and SMA 

target voxels were selected manually as described in 6.2.8. Head motion also corrupted the 

quality of functional data. During offline analyses, this was accounted for by quantifying 

framewise displacement (FD) and excluding entire runs that contained too much head motion 

as assessed by predefined criteria (>30% of volumes containing >0.5mm head motion). These 

criteria resulted in the exclusion of an entire patient and two runs of another patient (25% of 

total data). Whether the applied criteria may have been too conservative remains an open 

question for stroke research. For comparisons, FD > 0.5mm is considered a lenient threshold 

in resting-state fMRI for healthy participants (Power et al., 2014, 2012). In the context of 

stroke, this threshold likely represents a reasonable compromise in the trade-off between 

sufficient statistical power and rigorous quality control. Another study that applied a threshold 

of FD >0.5mm to resting-state data acquired in acute stroke patients (in scans of similar run 

length, and excluding entire runs if >50% of volumes were affected) discarded similar amount 

of data as the presented study (30% of data exclusion, 14% of patients entirely excluded; Siegel 

et al., 2017)). Likewise, their reported estimates of head motion (0.4 – 0.5mm) were 

comparable to the median head motion reported here (0.36mm). Taken together, head motion 

and required data exclusion severely compromised statistical power in the current sample. 

Effective thresholds for data exclusion criteria and alternatives remain to be explored. 

 

Factors that may complicate adequate data exclusion criteria include potential interactions 

between severity of head motion, severity of motor impairment, and patient’s cognitive 

capacities. Although this has not been systematically evaluated yet for stroke patients, this 

notion is supported by one fMRI study that used an N-back task in patients suffering from 

multiple sclerosis (Wylie et al., 2014). The authors reported larger head motion in patients 

compared to healthy controls, and this difference scaled with difficulty of the task, and was 

inversely related to cognitive capacities. Hence, more challenging conditions resulted in more 

head motion, which affected data from individuals with lower cognitive capacities in particular 
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(Wylie et al., 2014). With regards to real-time fMRI studies including fMRI-NF training, such 

interaction should be considered when selecting patients and formulating data exclusion 

criteria. Moreover, besides data discarding, alternative techniques such as prospective motion 

correction may provide more effective solutions to maintain statistical power and prevent 

sampling biases. With regards to the role of head motion in published motor imagery studies 

conducted in stroke patients, quality control measures for head motion have not been 

documented (Liew et al., 2015; Sharma et al., 2009b; Sharma and Baron, 2013). This suggests 

that besides the reported realignment of acquired volumes, imaging data were not adequately 

controlled for head motion. Therefore, it is likely that reported clusters may partly have resulted 

from spurious correlations due to head motion, in particular with regards to reported changes 

in functional connectivity (Liew et al., 2015; Sharma et al., 2009a). Confounding through head 

motion may also explain the counterintuitive findings reported by Liew et al, who applied 

fMRI-NF training based on connectivity estimates between the thalamus and primary motor 

cortex (measured by Pearson’s correlation between times series of these two target regions). 

The authors reported that connectivity estimates increased over a two-hour scan session mainly 

for more severely impaired stroke patients, who presumably showed most head motion. 

Spurious correlations in connectivity estimates due to head motion have been well documented 

for healthy participants (Power et al., 2014, 2012) and stroke patients (Siegel et al., 2017). 

Further while data in the present study were controlled for head motion in offline analyses, the 

real-time fMRI BOLD signal was still subjected to significant head motion. Hence, feedback 

shown to patients likely captured spurious activity that was not related to the task of interest 

(Appendix C FigureC2). Taken together, future neurofeedback studies will likely benefit from 

a systematic evaluation of head motion in stroke, comparing acute, chronic and recovered 

stroke patients with age-matched healthy control subjects, as well as sufficient online control 

for head motion, which will be discussed in the general discussion (Chapter 9).  

 

One main challenge that this study encountered was the rather sluggish recruitment of MCA 

stroke patients that fit inclusion criteria and did not have to be excluded due reasons such as 

general health problems or cognitive impairment. The present sample of five patients was 

recruited out of 44 screened patients, the main reason to exclude patients was impaired 

cognitive capacity and lack of general well-being (Chapter 7.5.1). In consequence, the trial 

period was extended by 5 months (100% of the originally planned period) to reach the 

minimum target of 5 patients. Further, due to excessive head motion a large proportion of data 

(including all data from one patient) was discarded. Thus, the statistical power of the present 
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study was likely compromised and below the anticipated 30-40% (Table 7.1). However, it 

should be noted that even though the present sample was relatively small, its size is comparable 

with previous PoC studies of fMRI-NF in neurological populations (Liew et al., 2015; Sitaram 

et al., 2012; Subramanian et al., 2011). Notably, for stroke research, these small sample sizes 

may reflect overall recruitment challenges for a relatively complex intervention in a patient 

group that suffers from multiple medical and neurological complications following ischemic 

stroke (Johnston et al., 1998). For comparison, one registered trial at a leading centre of 

biomedical research (National Institutes of Health) reported a recruitment of seven patients out 

of an anticipated sample size of up to 50 patients over a four year period and also required 

extending the trial termination date (https://clinicaltrials.gov/ct2/history/NCT02089776). 

Besides low statistical power, the recruitment history further suggested that the present sample 

was biased towards stroke patients that showed above average cognitive capacities and general 

health. These factors are also reflected in the relatively young median age of 49 years, an age 

group among which the incidence of stroke only represents only a fraction compared to the 

incidence found for higher age groups (Feigin et al., 2003). As noted earlier, the sample mainly 

consisted of patients suffering from right hemispheric stroke, which may be surprising from an 

epidemiological perspective given that strokes across hemispheres occur at similar rates, if not 

that left hemispheric stroke is more common (Hedna et al., 2013). Although it remains 

speculative, one reason for this unfavourable sampling bias may be that left hemispheric stroke 

has also been implicated with more severe clinical outcome and higher mortality (Hedna et al., 

2013). Moreover, left hemispheric stroke is more often associated with forms of aphasia. 

Hence, left hemispheric stroke patients may have been more likely excluded because they did 

not meet all inclusion criteria, resulting in a sampling bias of right hemispheric stroke patients.  

 

Besides being the first fully preregistered fMRI-NF study, the presented work also introduced 

Bayesian Sequential Sampling (BSS) as an innovative sampling method to the field of 

neurofeedback training. BSS allows to accumulate data until a desired threshold of evidence 

either for the alternative or the null hypothesis is reached (Schönbrodt et al., 2015). As such, 

BSS employs a stopping rule that is not affected by type-I and type-II error rates (Chapter 

3.4.2.2), although false positive and false negative rates need to be considered for parameter 

choices to yield optimal designs (Schönbrodt and Wagenmakers, 2016). The preregistration 

protocol contained all relevant parameters that were relevant for data pre-processing and 

analysis, including prior distributions that were informed by subject’s localiser scan as 

described in a predefined procedure, as well as criteria for stopping based on a measure of 

https://clinicaltrials.gov/ct2/history/NCT02089776
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evidence. This rigorous approach increased the validity of presented results. For instance, the 

criterion for the alternative hypothesis was set as BF10 >10 (indicating strong evidence for a 

positive effect) and for the null hypothesis it was set as BF01 > 10 (indicating strong evidence 

for a null effect). These criteria were likely too conservative and mainly implemented to assure 

that the trial did not stop too early. Bayes Factors that are based on prior distributions whose 

effect sizes for the alternative deviate considerably from the empirical effect size may 

overestimate the evidence against the alternative, resulting in relatively large Bayes Factors in 

favour of the null hypothesis. In particular small samples tend to initially overestimate null 

effects (Schönbrodt et al., 2015). To improve the generalisability of presented results and assess 

their robustness, sensitivity analyses were included based on a set of default JZS prior 

distributions with different scaling parameters. Given the slow recruitment rate, the potential 

of BSS could not be exploited in the current trial. However, the design may serve as a template 

for future larger (multi-arm) trials. Lastly, with regards to the preregistered secondary 

frequentist tests that were carried out, it should be noted that the Bonferroni adjustment of the 

alpha level for ROI analysis findings across participants may have been too conservative. 

However, uncorrected p-values were reported, allowing to interpret the results without multiple 

comparison correction.  

 

To summarise, the present study tested the feasibility of motor imagery based graded fMRI-

NF neurofeedback training in a small sample of MCA stroke patients. Results suggested only 

anecdotal evidence for preregistered hypotheses and replication in larger samples is required. 

Various potential factors were discussed, including the relatively small sample size, a sampling 

bias for right hemispheric stroke, which is associated with motor imagery impairment, and 

pathophysiological changes underlying the BOLD signal that may have attenuated responses 

in the target region. These measures may inform future attempts to stratify and screen patients 

in a way that can improve patients’ learning ability in self-regulating the BOLD signal using 

motor imagery. The study was the first fully preregistered fMRI-NF study deposited at the 

Open Science Framework platform that included pre-specified hypotheses and analysis plans. 

As such, it ensured transparent reporting and documentation of unanticipated challenges and 

null findings, that may have remained unreported as often observed with traditional closed 

science practices. In contrast, the reported work can inform future improvements and 

replication attempts. Further, the study documented details of recruitment, helping to assess 

the feasibility of fMRI-NF within a conventional stroke health care setting. The importance of 

control for head motion in neurological populations has been highlighted and trade-offs 
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between rigorous and more lenient approaches discussed. Altogether, this PoC study thus 

represents an experiment in an experiment: experience with preregistration for translational 

clinical studies remains scarce, recommendations for future attempts will form part of the 

general discussion in Chapter 9.  
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8 EEG-NF FOR PARKINSON’S 

DISEASE – A TRANSLATIONAL 

CHAPTER 
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Electrophysiological correlates of motor symptoms and treatment response in Parkinson’s 

disease (PD) have been intensively studied over the last three decades. In particular DBS 

treatment in PD has provided insights into the relationship between neural oscillations of 

different frequency bands and motor symptoms in patients (Chapter 1.3.3.1). Pharmacological 

studies and lesion studies in PD animal models have yielded further mechanistic insights, 

probing the relationship between dopamine depletion and behavioural deficits typically 

observed in PD patients. Brain circuit-based models help understanding the pathophysiology 

underlying PD motor symptoms and provide promising targets for non-invasive interventions 

that aim to stimulate or entrain neural oscillations at particular frequencies (Chapter 1.3.3.2.3). 

EEG-NF training provides a non-invasive method to entrain neural oscillations at desired 

frequencies by the means of self-regulation training. This chapter reviews potential markers 

for EEG-NF training to improve motor symptoms in PD patients.   

8.1.1 EEG-NF in PD and potential EEG target markers  

This review focuses on three potential markers that have been considered for the design of an 

EEG-NF study protocol that aims to facilitate initiation of voluntary movement in early-stage 

PD patients. Previous fMRI-NF conducted in early-stage (HY stage I-II) PD provided feedback 

from the SMA (Buyukturkoglu et al., 2013; Subramanian et al., 2016, 2011), a premotor region 

that forms a key structure in the hyperdirect pathway (Nambu et al., 2002) between motor 

cortex and STN (Chapter 1.2.3.1). This indicates that SMA activity can potentially modulate 

STN activity, and vice versa. Given their initial promising clinical findings, Subramanian and 

colleagues hypothesised that activation of the SMA results in activation of the associated 

network, including the STN, which may have acted as a compensatory mechanism 

(Subramanian et al., 2011). The authors indeed found bilateral STN activation in their 

subsequent larger RCT (Subramanian et al., 2016). Although their study did not test for a 

relationship between changes in the network and the clinical effects reported for the trial, data 

from another study can complement these findings in form of correlations between 

improvements in upper limb bradykinesia and rigidity and the tract integrity between the STN 

and the SMA after STN DBS treatment (Akram et al., 2017). Taken together, these findings 

indicate that the hyperdirect pathway between the SMA and STN (Chapter 1.3.3.1) is likely 

involved in motor imagery training and that it may mediate therapeutic effects.  

 

With regards to potential EEG signatures that could be trained to facilitate movement initiation 

in PD patients, various electrophysiological correlates of motor symptoms and treatment 
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success have been documented in the literature. However, to date only a small numbers of 

motor rehabilitation EEG-NF studies have been conducted in PD patients (reviewed in Esmail 

and Linden, 2014). With regards to activity of the STN during motor imagery, invasive 

electrophysiological studies have provided additional insights. For instance, it has been shown 

that motor imagery (but not mere visual mental imagery) could reduce beta oscillations in the 

STN (Kühn et al., 2006). These early findings were replicated and extended more recently in a 

paradigm that studied changes of STN activity in response to different levels of imagined 

movements. Specifically, beta amplitude in the STN could be modulated by participants when 

they imagined different insensitivity levels of imagined grip force (Fischer et al., 2017). 

Although the study did not involve neurofeedback, this finding suggests that graded 

neurofeedback could also be implemented in a parametric suppression of oscillations in the 

STN within the beta frequency band.  

 

Beta band oscillations (13-30Hz) have received particular interest in PD research and have 

been linked to symptom severity and treatment effects. In healthy and PD patients, beta 

oscillation measured over central electrodes (C3/C4) show a desynchronisation during motor 

execution, which is reflected in a power/amplitude decrease. However, the reduction in beta 

amplitude is less observed in PD patients compared to healthy individuals, resulting in 

exaggerated beta synchronisation (Jenkinson and Brown, 2011). Beta synchronisation 

facilitates stopping behaviour via hyperdirect and indirect pathway (Chambers et al., 2009; 

Jahfari et al., 2011) and may hence explain PD symptoms of bradykinesia and rigidity (Engel 

and Fries, 2010; Jenkinson and Brown, 2011). Animal models and electrophysiological 

recordings in PD patients have linked dopamine depletion to excessive synchronisation in the 

beta band within the basal ganglia and thalamocortical circuits (Engel and Fries, 2010; Little 

and Brown, 2014). In nonhuman primates (Wichmann and DeLong, 2003) and mice (Jackson-

Lewis and Przedborski, 2007), dopamine depletion and Parkinson like symptoms can be 

induced via MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) injections. Excessive beta 

synchrony after MPTP injection has been repeatedly reported for the motor cortex and parts of 

the basal ganglia including the STN and pallidum (Bergman et al., 1994; Moran et al., 2012). 

Non-invasive brain stimulation studies in healthy participants have provided further causal 

evidence for the relationship between increased beta oscillations and slowing of movements 

(Pogosyan et al. 2009; Joundi et al. 2012; Moisa et al. 2016). Altogether, data from lesion and 

entrainment studies suggest that dopamine depletion results in increased beta synchronisation, 

which is associated with slowed movements as one key symptom observed in PD patients. 
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Moreover, clinical studies have repeatedly reported that PD patients show higher amplitudes 

of beta frequencies at rest in particular within the STN, compared to healthy controls (Brown 

et al., 2001; Kühn et al., 2009; Marsden et al., 2001; Pollok et al., 2012). Higher amplitudes in 

beta frequency, as well as the spatial extent of exaggerated beta synchronisation, have been 

related to the severity of symptoms, in particular with bradykinesia and rigidity (Gatev et al., 

2006; Hammond et al., 2007; Pogosyan et al., 2010; Zaidel et al., 2009). While these studies 

remain observational and thus largely correlational, intervention studies in PD patients can 

provide more direct evidence for the involvement of exaggerated beta oscillations in the 

manifestation of motor symptoms in PD patients. First, recognized treatment options used to 

manage motor symptoms including STN DBS and dopamine replacement (L-Dopa) therapy 

result in a suppression of beta activity that is proportional to observed clinical improvements 

(Little and Brown, 2014). Specifically, motor  improvements for rigidity and bradykinesia 

correlate with observed decreases in beta amplitudes across DBS treatment techniques 

(Hammond et al., 2007; Kühn et al., 2009; Santaniello et al., 2015; van Wijk, 2017; Wang et 

al., 2018). Moreover, treatment response to STN DBS has been predicted by the spatial extent 

of beta oscillatory activity within the STN (Zaidel et al., 2010). Likewise, treatment with L-

Dopa reduces beta oscillations (Brown et al., 2001), and the extent of clinical improvements 

has been found correlated with the change in beta oscillatory activity (Weinberger et al., 2006). 

Besides changes in amplitude, also correlations between activity of different brain areas within 

specific frequency bands (i.e. coherence) have been investigated. For instance, two studies 

reported that levodopa treatment reduced coherence in beta frequencies between the GPi and 

STN, and between the STN and SMA during rest and during motor tasks, while increasing 

coherence in gamma frequencies between these structures (Brown et al., 2001; Cassidy et al., 

2002). Hence, changes in coherence may provide new markers to understand the disturbed 

communication between parts of the involved circuitry (Fig 1.3), and how these relate to 

clinical changes observed after PD treatment. In light of these findings it has been speculated 

whether beta oscillations maintain a status quo of the motor system by inhibiting movement 

(Engel et al., 2005; Engel and Fries, 2010). Attenuating the amplitude in beta rhythms may 

thus represent a potential target for EEG-NF in PD patients. Of interest, one early single patient 

case study (Thompson and Thompson, 2002) trained a PD patient in increasing lower beta band 

oscillations (12-15 Hz) while inhibiting higher beta band activity (25-32Hz) over motor 

cortices. This training was combined with biofeedback of physiological recordings from the 

respiratory and heart rate. The authors reported that the patient showed subjective 

improvements in rigidity and quality of life, however, no standardised measures were reported.  
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Whereas corticostriatal beta oscillations have been implicated in the suppression of movement, 

gamma oscillations have been linked to promoting movement. For instance, non-invasive brain 

stimulation studies reported increased movement speeds after the entrainment of motor cortices 

in the gamma frequency band (60-90Hz) for healthy participants (Joundi et al., 2012; Moisa et 

al., 2016). In PD patients, dopaminergic treatment has been found to increase the amplitude of 

gamma oscillations measured over central electrodes proportional to the degree that 

movements were facilitated (Jenkinson et al., 2013). Other recent work suggests that the 

interplay between beta and gamma oscillations may represent a key coupling mechanism that 

sub-serves maintaining motor programmes and mediates treatment effects. For instance, 

exaggerated coupling between low frequency beta band (13-22 Hz) phase-and-amplitude of 

high frequency gamma (300 Hz) band amplitude within the STN correlated with bradykinesia 

and rigidity (van Wijk et al., 2016). Moreover, STN DBS treatment reduces phase-and-

amplitude remarkably, and this measure has been shown to correlate with rigidity scores before 

and after DBS (De Hemptinne et al., 2015). In order to use gamma oscillations as a target 

signature for EEG-NF training, participants would need to be able to modulate its amplitude 

(e.g. via motor imagery). Indeed, similar to beta band frequencies, also gamma band 

frequencies (55-85Hz) can be modulated using motor imagery as revealed by invasive 

recordings from STN of DBS treated PD patients (Fischer et al., 2017). Specifically, these data 

showed increased amplitudes (in contrast to decreased amplitude in the beta band) that patients 

could modulate via motor imagery tasks of different intensity. Overall, the presented literature 

suggests that gamma rhythms likely promote movement in PD. However, beyond physiological 

movements, exaggerated gamma oscillations have been linked to pathological movements such 

as dyskinesia, which represents one common motor complication following long-term 

treatment with L-Dopa. Although the neural mechanisms of dyskinesia are still poorly 

understood, gamma oscillations likely contribute (see for review Esmail and Linden 2014). For 

instance, gamma oscillations [60-90 Hz] in the motor cortex have been linked to dyskinetic 

symptoms, as reported for the 6-OHDA PD model in rodents (Halje et al., 2012), and more 

recently also in PD patients (Swann et al., 2016). Therefore, although EEG-NF training of 

gamma frequencies may promote movement, it may also promote dyskinetic brain states and 

thus be contraindicated.   

 

Another target for EEG-NF motor rehabilitation in PD may be reducing power in the alpha 

frequency band (8-12 Hz). Event Related De-synchronisation (ERD) in the alpha bands over 
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central (C3, C4, Cz, Fz) electrodes precedes voluntary self-paced movements for a short period 

(~2 seconds) (Pfurtscheller and Aranibar, 1979). The onset of ERD during voluntary movement 

is delayed in PD patients compared to healthy controls (Defebvre et al., 1994), which may 

result from a later initiation of motor programming due to sustained movement inhibition in 

consequence to elevated beta rhythms. L-Dopa replacement therapy reduces delayed ERD in 

PD patients, as reported for different motor tasks including self-paced button press (Magnani 

et al., 2002) and wrist flexion movements (Devos et al., 2003). Further, studies have reported 

correlations between ERD delay and PD severity (Devos et al., 2003), as well as between 

differences in ERD delays “ON” vs. “OFF” medication and changes in movement speed “ON” 

vs. “OFF”, including self-paced elbow flexions and hand squeezes (Wang et al., 1999). Further 

evidence for the relationship between successful treatment for PD symptoms and increases in 

alpha ERD latencies stems from DBS studies. For instance, STN DBS in combination with L-

Dopa was associated with an increase in alpha ERD latency during movement preparation over 

the contralateral central region, as well as an increase in alpha ERD during movement 

execution over central electrodes (Devos and Defebvre, 2006). The same study also reported 

that more advanced PD patients showed a larger decrease in alpha ERD latency. Of interest, 

the same study could not find such relationships for pallidal DBS. This dissociation may 

indicate that  ERD latency modulation during movement preparation (and motor imagery) is 

mainly influenced by the hyperdirect pathway (Nambu et al., 2002). A more recent STN DBS 

study extended the focus on lower frequencies, investigating amplitude changes within the 

alpha band (mu rhythm) and lower beta band frequencies over sensorimotor cortices. The 

authors reported similar reductions in amplitude for both frequency bands after unilateral STN 

DBS (Abbasi et al., 2018). Noteworthy, high synchronisations between motor cortices in the 

lower and higher alpha band have previously been reported for early-stage (mostly HY stage 

I-II) PD patients compared to controls (Stoffers et al., 2008). Further, decreases in alpha 

amplitude during STN DBS were correlated with improvements of patient’s UPDRS rigidity 

scores (Airaksinen et al., 2012). Taken together, these observational and interventional studies 

suggest that the ERD degenerates with disease progression, and it may indicate that PD 

treatment enhances movement speed by normalising pre-movement alpha ERD. Further, these 

findings are in line with the notion that the basal ganglia promote alpha ERD by releasing the 

motor regions from an idling state, thereby permitting effective motor response selection and 

programming (Brinkman et al., 2016). With regards to motor imagery-based EEG-NF training 

in PD patients, alpha rhythms may thus provide a promising target to facilitate voluntary 

movement initiation. Importantly, previous EEG studies suggest alpha rhythms decrease during 
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motor imagery in healthy participants (Broetz et al., 2010; Llanos et al., 2013). Further, BCI 

and EEG-NF studies in healthy participants have shown that reduction of premovement alpha 

desynchronisation (11-13 Hz) is trainable (Mcfarland et al., 2015; Ring et al., 2015). Ring and 

colleagues demonstrated in a sham (yoked) controlled EEG-NF study that healthy participants 

could learn to decrease amplitudes in central (Fz) alpha (together with theta amplitude) over 

three 1-hour long training sessions with recreational golfers (Ring et al., 2015). The study found 

that participants assigned to the neurofeedback group reduced premovement high-alpha power 

more compared to the control group that received yoked sham feedback. Pre-post comparisons 

of behavioural performance (number of golf putts) showed no group difference, however, 

indicating that although EEG-NF training resulted in a specific modulation of alpha power, it 

was not associated with behavioural benefits. Yet, it should be noted that the study featured a 

relatively small sample size (N = 12) and contained only three sessions of EEG-NF training. 

Moreover, the performance measure focused on kinematic precision. Although this measure 

represents an important aspect of movement preparation, it may not have been sufficiently 

sensitive to detect subtle behavioural changes that have resulted from the EEG-NF training. 

Other transfer tasks that relate to PD symptoms that have been linked to delayed ERD latencies 

(e.g. slowing of movement) may provide more suitable alternatives. These limitations could be 

addressed in future trial designs that are modified to test for improvement of motor symptoms 

and performance in PD patients following alpha ERD EEG-NF training. Of interest, data from 

a recent preliminary single patient BCI case study reported that a PD patient was able to control 

their alpha rhythms using simple motor imagery strategies “ON” as well as “OFF” medication 

(Kasahara et al., 2018). Altogether, besides beta oscillations, alpha ERD in particular remains 

a promising target for EEG-NF training early-stage PD patients.  

8.1.2 Conclusion and trial design 

To summarise, electrophysiological correlates reported for PD motor symptoms and treatment 

effects highlight three EEG markers that may provide suitable targets for EEG-NF training 

protocol in PD patients: 1) reinforcing beta-band ERD (13-30Hz) to counteract exaggerated 

beta synchronisation, 2) increasing the amplitude of pro-kinetic gamma-band (30-80Hz) 

frequencies, and 3) reinforcing pre-movement alpha ERD (8-12Hz) to improve movement 

voluntary initiation. Of interest, these three frequency bands have also been identified as being 

most informative with regards to variations in the BOLD signal (Magri et al., 2012). For the 

case that one of these training frequencies should be successfully piloted in PoC studies, future 

combined EEG-fMRI studies that aim to develop more effective fMRI-informed EEG markers 
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(Keynan et al., 2016) of subcortical structures (e.g. the STN) may benefit from this relationship. 

Entrainment of a frequency band that shares information with the BOLD signal will likely 

increase the signal to noise ratio within informative frequency bands (i.e. the EEG-NF target) 

and increase mutual information present in fMRI and EEG time courses. This translational 

chapter set out to review the evidence for potential EEG markers that may promote movement 

initiation in medicated PD patients. Based on Ring et al., 2015 and the considerations 

summarised in this chapter, a PoC study protocol has been developed and registered 

(https://doi.org/10.1186/ISRCTN16783092). Briefly, the PoC study aims to train 30 people 

with PD to reduce pre-movement alpha power over three EEG-NF sessions. Patients will not 

be provided with explicit mental imagery instructions. A within-subjects design with six 

sessions will be employed (one pre-test “ON” medication at session 1, a pre-test “OFF” 

medication at session 2, three one-hour EEG-NF sessions during sessions 3 to 5, and one post-

test “OFF” medication during session 6). to train reduction of pre-movement EEG alpha power. 

Such design will allow comparing the effects of PD medication (contrast pre-tests 1 and 2) and 

the effects of EEG-NF training (contrast pre-test 2 and post-test). The study’s primary outcome 

measures will be motor function (measured with a grip force accuracy task, a reaction time 

task, and the UDPRS-III motor examination). Changes in cortical activity and self-reported 

measures of acceptability of the EEG-NF intervention, motor function, and quality of life are 

used as secondary outcome measures.  

https://doi.org/10.1186/ISRCTN16783092
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9 GENERAL DISCUSSION 
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The research presented in this thesis has identified and addressed challenges and research gaps 

in the development of clinical fMRI-NF training. It has demonstrated that fMRI-NF training 

can yield substantial clinical effects under controlled conditions in a patient population for 

which standard treatment options did not yield remission. Clinical improvement was related to 

changes in a validated measure of self-efficacy, which may represent a promising outcome 

measure for future RCTs. Graded feedback was introduced for motor imagery-based fMRI-NF 

training, providing a measure to test for self-regulation success. First piloted with healthy 

participants, self-regulation ability between two motor areas was compared. This protocol was 

subsequently translated to a preregistered PoC study in stroke survivors. Challenges related to 

recruitment and quality assurance were encountered, but not anticipated for the preregistration 

protocol. They thus required post hoc adjustments in the preregistered study design and 

analysis, highlighting the need for more flexible RR formats that can accommodate the needs 

of translational research. Besides fMRI-NF, EEG-NF remains a viable alternative, in particular 

for patients with limited mobility and where fMRI image quality can be compromised due to 

brain lesions and/or excessive head motion. Moreover, recent PoC studies have explored the 

potential of electrocorticography based neurofeedback training of beta oscillations in DBS 

transplanted PD patients, showing general feasibility and simulation voltage while therapeutic 

efficacy was maintained (Khanna et al., 2017). This work underscores the relevance and 

broader interested of the research community in identifying suitable electrophysiological 

targets for neurofeedback interventions in PD. Potential EEG markers for future translation to 

EEG-NF interventions in Parkinson’s disease patients were identified and have informed the 

design of an ongoing registered trial (https://doi.org/10.1186/ISRCTN16783092).  

 

Treatment resistant depression represents a major challenge for psychiatric care. The 

development of circuit-based interventions such as neurofeedback training represents a 

promising avenue to address treatment needs in patients who do not respond to standard care. 

Based on clinical and neuroimaging data collected in one of the first fMRI-NF RCTs conducted 

in long-term depressed and medicated patients, this thesis has provided evidence for the clinical 

efficacy of this technique (Chapter 4). Both groups were matched for clinical factors such as 

depression severity and medication status. Further, both groups engaged in veridical 

neurofeedback training in paradigms that have been successfully implemented in earlier 

studies. Both groups were thus matched for the rewarding experience of successful self-

regulation training as a major motivational factor. Specifically, training areas were localised 

for each patient individually and at each session. This approach allowed to target voxels that 

https://doi.org/10.1186/ISRCTN16783092
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were most responsive within networks of interest (i.e. within the limbic system of the NFE and 

the scene processing network in the NFS group). Self-regulation based on mental imagery of 

positive emotions was hypothesised to yield larger clinical improvement, however, no group 

mean difference was found on the primary outcome measure. In contrast, both groups showed 

relatively large clinical improvements to a similar extent with over 40% reduction on the 

HDRS-17 and about 40% remission rate. A detailed survey of reported clinical findings for 

treatment and placebo groups in pharmacological studies and interventions that involve high-

technology revealed that the overall clinical findings were within the range, if not superior to 

treatment responses that can be expected with accepted augmentation therapies. Moreover, the 

clinical improvement exceeded even large placebo responses that have been reported in 

previous literature. Hence, these findings suggest that the experience of successful self-

regulation training in combination with effective mental imagery strategies (imagery of 

positive affect and relaxing scenes, respectively) may engage cognitive processes in depressed 

individuals that yield therapeutic effects. Furthermore, immediate improvements in depressive 

symptoms and mood in general were documented with the POMS. Exploratory analyses 

suggested that POMS changes were partly related the role of feedback provision. Specifically, 

a relationship between pre and post changes was found for the third training session during 

which no neurofeedback was provided (i.e. the transfer session). Notably, during this session a 

relatively large improvement on the POMS Depression subscale was achieved. These findings are 

limited because no direct measures of depression severity were measured during the third 

session to assess clinical effects directly and because these results remain largely descriptive. 

Yet, they may suggest that intermittent feedback presentation could improve clinical effects. 

Within-session intermittent feedback has been studied with the aim to increase self-regulation 

learning rates (Emmert et al., 2017; Hellrung et al., 2018; Johnson et al., 2012) and are a 

promising feature to improve training designs. Regarding clinical effects, these may occur at a 

slower cycle and hence may benefit from “between-session” intermittent feedback. This notion 

remains speculative, however, and requires further testing in larger samples with more repeated 

measurement that allow studying the time course of clinical effects (Rance et al., 2018). As a 

measure that can be applied immediately before and after an intervention, POMS data further 

provided insight into the time course of mood states over sessions. In contrast to clinical scales 

such as the HDRS-17, which are usually validated for re-assessments after a one or two-week 

period, implicit mood measures such as the POMS hence allow detecting potential effects at a 

higher temporal rate and inform the design of future trials with regards to when and how often 

clinical assessments should be conducted during an intervention.  
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This thesis has contributed to the exploration of self-efficacy measures and their relationship 

to clinical outcome and self-regulation success. In particular the reported correlation between 

residualised changes in depression and changes in self-efficacy represents a promising 

exploratory finding. Changes in self-efficacy have been recently reported for robot-assisted 

motor rehabilitation with stroke survivors (Rowe et al., 2017) as well as a physical self-activity 

programme in individuals with Huntington’s disease (HD; Busse et al., 2017). In the context 

of depression, longitudinal data from a population-based study has shown that self-efficacy 

mediates the effects of stressful life events and the development of depressive symptoms 

(Maciejewski et al., 2000). Hence, besides relatively fast occurring clinical effects, entrainment 

of self-efficacy may yield long-term improvements in patients. Indeed, improvement of 

depression scores remained, if not slightly continued at follow-up in the presented trial. It is 

thus possible that successful self-regulation training may yield lasting cognitive changes that 

promote individuals’ self-beliefs. Of interest, a recent review documented the temporal 

structure of clinical effects reported for two sham-controlled fMRI-NF trials (obsessive 

compulsive disorder and Tourette Syndrome). The authors reported gradual clinical 

improvement over time for the treatment, but not the placebo controlled sham-groups for up to 

5 months post intervention completion (Rance et al., 2018). This finding seems surprising, 

given that the included trials trained different target regions in different clinical conditions. 

Unfortunately, these trials did not report measures of self-efficacy, however, successful self-

regulation of target areas represents one main common denominator between their 

experimental groups as well as both groups of the RCT presented in this thesis. Therefore, it 

seems advisable for future trials to include longer follow-up periods that allow detecting 

delayed treatment effects (Rance et al., 2018). Moreover, exploring changes in self-efficacy 

may yield a better understanding of psychophysiological processes involved in successful 

rehabilitation. However, neural correlates of changes in self-efficacy remain to be identified.  

 

Besides measures of self-efficacy, personality traits likely mediate treatment responses and 

constitute predisposing factors to develop depression (Mulder, 2002). For instance, one study 

investigated treatment effects associated with pharmacotherapy and CBT, and how these may 

interact with domains of the five-factor model of personality (neuroticism, extraversion, 

openness, agreeableness and conscientiousness) and their respective facts (e.g. trust as a facet 

of agreeableness) at baseline for moderately depressed patients (Bagby et al., 2008). The study 

reported a main effect on both treatment modalities such that the personality trait openness 
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predicted larger clinical improvements. The authors further identified an interaction between 

the personality trait of neuroticism and treatment response such that highly neurotic individuals 

seemed to benefit in particular from psychotherapy compared to pharmacotherapy. In contrast, 

individuals with lower trust scores seemed to benefit in particular from pharmacotherapy. For 

fMRI-NF training, it is possible that openness to the treatment facilitates clinical effects. The 

studies presented in this thesis implemented fMRI-NF in form of supervised mental imagery 

training and thus represent an interaction of several co-occurring processes including individual 

mental strategies (thoughts), a biologically informed reinforcement signal and a self-regulation 

task. As such, other psychometric facets that relate to self-regulation ability will likely 

influence participant’s success and thus their experience during training. Of interest, one recent 

neurofeedback study reported higher neurofeedback performance for individuals with regular 

spiritual practice compared to a control group (Kober et al., 2017). Further, high performers 

showed differences in grey matter of areas that have been implicated to self-regulation training, 

including the insula and inferior frontal gyrus (Emmert et al., 2016). Another study that 

investigated whether participants could learn to regulate bi-directional fMRI-NF of the 

amygdala without any prior instructions reported a negative relationship between participants 

who showed higher scores for the personality traits agreeableness, and their self-regulation 

ability in the absence of feedback presentation during a transfer run (Marxen et al., 2016). 

Taken together, these findings motivate further exploration of the role of personality traits and 

measures of self-efficacy. Apart from psychiatric conditions, they may also play an important 

role in motor rehabilitation, e.g. with regards to the use of the affected limb or patients’ 

engagement (Busse et al., 2017; Rowe et al., 2017).  

 

fMRI-NF training represents a new clinical treatment and, besides EEG-NF, the first 

therapeutic use of neuroimaging data. Assuring sufficient fMRI data quality, which may be 

compromised by various sources of artefacts and noise, forms a prerequisite to provide valid 

feedback (Thibault et al., 2017). One main source of confounding lies at the fMRI data level 

and includes confounding variables such as physiological sources of structured noise related to 

breathing (and heart rate) that may inflate statistical estimates. According to a recent review 

that included 99 published fMRI-NF studies, only one third explicitly reported to account for 

respiration (Heunis et al., 2018; Thibault et al., 2017). The concern of physiological noise was 

addressed in the analysis of imaging data presented in this thesis (Chapters 5 and 6). However, 

additional online correction for physiological confounding remains desirable. In particular 

(long) block designs during which participants engage in challenging tasks may yield to 
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substantial fluctuations in physiological responses (Brookings et al., 1996; Pattyn et al., 2008) 

that may confound the BOLD signal used for online feedback presentation. Iterative online 

correction of physiological fluctuations requires specialised equipment and extensive 

computing power and has to-date been only realised in one published methodological study 

(Misaki et al., 2015), but not in fMRI-NF experiments ( Thibault et al., 2017).  

 

Another source of confounding is subject head motion. Given the complications encountered 

in the translational PoC stroke study that resulted from patients’ excessive head motion, a 

detailed discussion about potential solutions seems warranted. All presented online analyses 

were intra-session aligned (Chapter 3.3.1) to assure that feedback was provided from the same 

set of voxels. Further, offline analyses included head motion nuisance regressors to correct for 

fluctuations in the BOLD signal due to head motion. Online feedback in the studies reported 

in this thesis presented feedback as a ratio (i.e. form of percent signal change) between task 

and rest periods (Chapter 7.2.2.2). As such, signals were corrected for sporadic head motion 

that occurred during rest and task period, but not for potential task correlated head motion, 

which would have required model-based feedback presentation such as an iterative GLM. 

Similar to offline GLM analyses, online iterative GLM analysis allows including head motion 

parameters as nuisance regressors, and thereby corrects model estimates that are being used for 

feedback presentation. An alternative approach to control for global effects on imaging data, 

including head motion, are reference regions, where their BOLD signal is subtracted from the 

BOLD signal of the target region, yielding a more robust feedback signal (Sitaram et al., 2012). 

However, this approach was not considered during the planning phase and hence not 

preregistered. One question is where reference voxels are best positioned to capture global 

signal variance, including head motion, but also physiological noise (Murphy et al., 2013). 

Based on fMRI studies that have characterised head motion and its effects on spurious activity, 

voxels close to ventricles may be suitable (Power et al., 2014, 2012). A similar approach was 

used by a previous fMRI-NF study in stroke patients, although measures of effectiveness were 

not reported (Sitaram et al., 2012). Anecdotal evidence from real-time recordings, however, 

suggests that voxels adjacent to ventricles may not always sufficiently capture signal 

fluctuations that result from head motion (Appendix C Figure C2). Future studies may benefit 

from a systematic evaluation of the effectiveness of this approach on online feedback 

presentation. Taken together, real-time analysis pipelines can partly correct for head motion 

either in a model-based approach, or by subtracting global signal variations. Besides 

approaches that correct for spurious signal activity in the data, another set of techniques allows 
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correcting for head motion before data is being acquired. Prospective motion correction (PMC) 

uses optical or mechanical (e.g. bite bar) markers that register head motion. This information 

is used to adjust data recordings in real-time by updating the position of the acquisition box 

before the next radiofrequency pulse (RF) is sent (Maclaren et al., 2013). Thereby, PMC can 

prevent distortions in structural data as well as spurious correlations in functional data. A PMC 

setup was not available during the data acquisition period. Different implementations of PMC 

have been tested in the last decade and the trade-off between patient convenience and high 

measurement precision represents on main challenge. Another real-time technique that can help 

reducing the effective proportion of motion corrupted volumes is the Framewise Integrated 

Real-time MRI Monitoring (FIRMM) software (Dosenbach et al., 2017). The software uses 

real-time motion parameters to estimate at acquisition the expected loss for a given data 

exclusion criteria. In a second step, scan sequences are prolonged to achieve a desired 

proportion of data that contains head motion that is still tolerable. Thereby, FIRMM can largely 

maintain statistical power for a scan session. Another advantage is that run lengths can be 

flexibly prolonged, for instance by repeated affected blocks and conditions. Data within a run 

for which head motion does not exceed a threshold can still be used for analysis. This real-time 

technology was not available for the present study, however, future patient studies that 

anticipate excessive head motion may benefit from using these approaches. Besides high-

technology real-time approaches, one low-technology solution that aims to reduce head motion 

at the source is surgical tape attached to the forehead and receiver coil. This approach has been 

explored in previous fMRI work where head motion had posed a particular challenge, for 

instance in studies of speech production (Gracco et al., 2005; Shuster and Lemieux, 2005). 

Movement of the head results in friction and resistance at the forehead where the tape is 

attached, which can serve as a feedback for the participant to reduce head motion. No 

systematic evaluation has been published to-date to quantify its effectiveness in reducing head 

motion, however, its effectiveness has been tested in an unpublished study by Krause and 

colleagues. The authors used a single-blind study design and tested the effects of surgical tape 

on head motion for passive viewing, motor imagery and speeded responses. Their results found 

reduced translation and rotation short-term (volume-to-volume) as well as long-term (drift) 

head motion to a similar extent for all tasks. Further, these effects scaled with severity of head 

motion when no tape was applied, such that participants with large head motion without the 

tape showed the largest reduction when the tape was applied (Dr. Florian Krause, Donders 

Institute for Brain, Cognition and Behaviour, personal communication, 14/04/2018). To 

summarise, different online and offline methods exist to control for head motion or reduce the 
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proportion of data that is affected by head motion. Compared to data discarding techniques that 

were used in Chapter 7, methods that control online for movement can largely preserve 

statistical power. While none of these techniques will solve the problem entirely, a combination 

of techniques – for instance of surgical tape, reference voxels, and if available PMC – will 

likely maximise their positive effect on data quality, feedback presentation and statistical 

inference. Moreover, online motion correction methods likely prevent a sampling bias 

compared to data discarding techniques. For instance, patients with more severe motor 

symptoms tend to show more head motion and if this data is being discarded, the 

generalisability of results is compromised (Wylie et al., 2014). Furthermore, assuring sufficient 

control of head motion becomes especially important for advanced neurofeedback metrics that 

exploit information about neural variability, including DecNef and connectivity based 

neurofeedback training (Koush et al., 2017; Liew et al., 2015; Watanabe et al., 2017).  

 

One major concern among neurofeedback sceptics refers to the lack of adequate control 

conditions that allow disentangling unspecific (e.g. placebo) from specific therapeutic effects 

(Thibault et al., 2017; Thibault and Raz, 2016). To demonstrate specific relationships between 

self-regulation training and behavioural changes well controlled measures of self-regulation 

success are desirable. Co-occurring cognitive tasks that are processed by regions that feedback 

is being provided from are one potential confound, in particular when self-regulation success 

is inferred from mere target region activation. For instance, previous motor imagery based 

fMRI-NF studies conducted in individuals suffering from PD or HD have trained participants 

based on feedback from activity of the SMA (Buyukturkoglu et al., 2013; Papoutsi et al., 2018; 

Subramanian et al., 2016, 2011). However, besides motor imagery, participant’s intention-to-

control feedback may already yield activation of the SMA, as well as other potentially relevant 

training areas including the basal ganglia (Ninaus et al., 2013). Graded fMRI-NF (Krause et 

al., 2017; Sorger et al., 2016) as employed in Chapter 5 aims to addresses this confound. By 

calibrating subject specific target levels, it represents a within-subject control that allows 

testing to which extent the response of a brain area results from true self-regulation, opposed 

to mere activation due to general co-occurring cognitive processes. A comparison between up-

regulation training of M1 and SMA revealed that M1 up-regulation training was associated 

with M1 deactivation irrespective of the target level, indicating that motor imagery based M1 

up-regulation training is likely impractical. Further, SMA activation showed some graded 

responses, however, this effect was not larger when feedback was provided from the SMA 

compared to when feedback was provided from M1. Hence, a single session of graded fMRI-



Clinical Applications of fMRI neurofeedback training – David Marc Anton Mehler – November 2018 

     238 

W
o

rd
 T

e
m

p
la

te
 b

y
 F

ri
ed

m
an

 &
 M

o
rg

an
 2

0
1

4
 

NF training of the SMA may be insufficient to demonstrate true self-regulation effects. 

Although it remains speculative, this finding may also apply to other areas, for instance the 

basal ganglia, which are associated with the intention to control or related cognitive aspects co-

occurring during fMRI-NF training (Emmert et al., 2016).  

 

Indeed, neurofeedback interventions are complex interventions with many potential confounds, 

rendering the design of efficient and well controlled RCT challenging (Thibault et al., 2017; 

Thibault et al., 2016). Moreover, given that active patient engagement (i.e. learning to self-

regulate brain activity) forms part of the intervention, the choice of control conditions limits 

the level of blinding that can be employed (single vs. double-blinded). The RCT presented in 

this thesis employed an active control group which engaged in veridical neurofeedback training 

from areas of a distinct brain network and thus did not allow to blind patients to their assigned 

condition. Specifically, patients received feedback from higher visual areas whilst imaging 

relaxing scenes. Both groups were thereby matched for a similar experience of successful self-

regulation, as well as for a potentially therapeutic form of mental imagery that is also being 

used in CBT. Such active control condition is relatively conservative compared to other types 

of control groups that have been suggested for fMRI-NF trials (Thibault et al., 2016). Another 

type of control aims to match groups for motivation levels and the belief of self-control by 

providing contingent sham feedback from an area that is not related to pathophysiological 

model of interest. The trial design by Young et al. 2017 used such an approach in a double-

blinded RCT. However, one limitation of contingent sham feedback based on a different brain 

area is that patients likely don’t achieve comparable levels of self-regulation, and groups are 

thus not matched for the rewarding experience. Indeed, the results reported by Young and 

colleagues indicated that the experimental group achieved up-regulation of the target region 

(the left amygdala), while patients in the control group did not attain self-control over their 

target area (the intraparietal sulcus). Both groups were thus not matched for the rewarding 

experience associated with successful self-regulation training. This approach may be 

suboptimal in patients suffering from moderate to severe depression, who will likely show 

negative cognitive biases (Disner et al., 2011; Geddes et al., 2012). Another approach to control 

for unspecific clinical effects involves matching the experimental and control group for 

received feedback (yoked feedback). Specifically, participants in the control condition are 

provided with non-contingent sham feedback based on recorded brain activity from participants 

of the experimental group. Yoked feedback conditions hence usually build on blinding of 

participants and thereby allow double-blind trials. Of interest, this form of control can 
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theoretically also be conducted in a sham scanner environment that simulates the experience 

of an MRI machine, but at lower cost. However, yoked feedback conditions bear two risks and 

thus require careful piloting: 1) patients may notice that no veridical feedback is provided when 

the presented feedback correlates poorly with their subjective mental imagery experience, in 

particular when combined with mental imagery tasks where participants already have insight 

to effective strategies (Marchesotti et al., 2016). Yoked feedback is thus in particular suitable 

for study designs in which participants are not given a starting strategy (e.g. explicit motor 

imagery). 2) When yoked feedback closely matches the time course of an area or network of 

interest, it provides a weaker, albeit potentially still effective reinforcing signal with similar 

clinical effects. Hence, future trials that employ yoked feedback should report correlations 

between yoked and veridical feedback time courses as a manipulation check. An alternative 

way to provide evidence for the specificity of neurofeedback training is inverse sham feedback. 

In this setup, participants engage in neurofeedback training for which opposite effects are 

expected, for instance up-regulation and down-regulation motor imagery-based fMRI-NF 

training of the motor area. This form of bi-directional training can test for specific relationships 

between self-regulation parameters and behavioural changes. Specifically, the technique builds 

up on the assumption that directional changes of self-regulation (e.g. up-regulation or down-

regulation of a motor area) are associated with behavioural changes in the corresponding 

direction (e.g. increased and decreased reaction times during a motor transfer task). Successful 

implementation of bi-directional feedback training ideally controls for a similar success rate 

between different self-regulation conditions to balance motivation levels and learning success 

between conditions. Further, bi-directional self-regulation training allows modelling statistical 

dependencies of brain networks despite the presence of latent confounders (Grosse-Wentrup et 

al., 2016). It therefore provides an elegant (blinded) design to demonstrate specificity in 

behavioural changes as well as to identify robust statistical (causal) interactions of involved 

brain networks. However, given that pathophysiological models usually desire uni-directional 

changes in behaviour (e.g. an increase in reaction times or a decrease of depression severity), 

bi-directional fMRI-NF likely does not provide a viable option for most clinical settings. Taken 

together, bi-directional fMRI-NF training remains a promising paradigm to identify specific 

neural target signatures in healthy participants. Subsequent translation into a clinical setting, 

however, likely requires switching to a different control form, which may be informed by 

neural models generated from bi-directional fMRI-NF training.  
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While these control conditions include fMRI acquisition or exposure to an fMRI environment 

other control types exclude this element. For instance, mental imagery training only control 

groups engage in comparable mental imagery training programmes but do not receive fMRI-

NF. However, mental imagery only groups do not control sufficiently for unspecific placebo 

effects that may result from engaging with an fMRI research setting or fMRI-NF training 

environment. Placebo effects are subject to participant’s beliefs and thus exposure to high-

technology interventions can result in relatively large placebo effects, which have been 

reported for psychiatric (Janssen et al., 2016) and neurological patients (Chou et al., 2015). 

Another, control condition more commonly used in CBT research involves a waiting list or 

treatment as usual control (Johnsen and Friborg, 2015; Watts et al., 2015). However, also these 

controls groups do not capture potential placebo effects and may thus overestimate group 

differences. Moreover, the lack of neural data in such control groups prohibits testing for neural 

mechanisms that can be compared between groups. Although controlling for multiple possible 

confounding factors is desirable, implementing sufficiently powered multi arm RCT will likely 

have to be balanced against practical constraints such as limited resources and access to 

patients. In particular early phase fMRI-NF trials with limited sample sizes may thus benefit 

from focusing on one or two control groups, aiming to provide evidence for clinical effects that 

are within the range or beyond those reported for established therapies. To yield reliable 

estimates of long-term remission, relapse rates and hospitalisations, longer follow-up periods 

are recommended. This information will further allow performing cost-effectiveness 

calculations and thus additional measures to compare the clinical efficacy of fMRI-NF against 

other established treatment techniques for specific patient groups, for instance patients who are 

more likely to relapse, or treatment resistant depression (Berto et al., 2000; Scott et al., 2003).  

 

Another major concern of neurofeedback sceptics is the transferability of learned tasks 

(Thibault et al., 2017; Thibault et al., 2018b; Thibault and Raz, 2016). A similar critique has 

been raised with regards to studies that use computer-assisted training of cognitive capacities 

(“brain training”), and where training effects either did not transfer to other related, non-trained 

tasks, or where such transfer was not superior to placebo training groups (Kable et al., 2017; 

van de Ven et al., 2017). Indeed, the goal of neurofeedback interventions should be to support 

improving ecologically relevant behavioural outcomes that allow patients to cope better with 

everyday activities and challenges. In the case of psychiatric conditions such as depression, 

standardised assessments such as the reported HDRS-17 allow evaluating global treatment 

effects, as well as domain specific effect using item-level based analyses (Chapter 4.3.6.5). 
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Future designs of neurofeedback trials in depression could additionally include cognitive tasks 

that allow assessing whether training effects (e.g. reinforced supervised mental imagery 

training of autobiographic memory) is associated with transferrable capacities (e.g. improved 

memory performance), and how these relate to clinical changes and measures of self-regulation 

success (Young et al., 2017). With regards to motor rehabilitation, previous studies included 

reaction time and balance tasks in trials working with PD patients (Subramanian et al., 2016, 

2011), or grip force tasks for studies that aim to reduce motor impairment in stroke survivors 

(Blefari et al., 2015). Future PoC studies of motor rehabilitation should thus incorporate such 

tasks in addition to standardised clinical motor assessments (Chapter 8.1.2).  

 

Besides behavioural makers of treatment success, exploring (neuro) physiological markers may 

be indicative of treatment response, underlying mechanisms, and could thus ultimately help 

optimising clinical neurofeedback protocols. One impressive example has recently been 

published in the context of TMS treatment in depressed patients (Drysdale et al., 2016), where 

the authors used a multivariate classification algorithm to identify neurophysiological subtypes 

of depression based on resting resting-state fMRI data to predict response rates to TMS. In a 

next step, such knowledge can be used to stratify patients prospectively based on their 

neurophysiological subtype to assign them to TMS protocols that seem most suitable. Notably, 

however, a recent replication attempt in a more heterogenous (but also smaller) sample of 

depressed patients failed to corroborate the reported biotypes (Dinga et al., 2018). With regards 

to optimising fMRI-NF training protocols based on resting-state fMRI data, a promising 

framework has been recently introduced that allows fine-tuning parameters offline (Ramot and 

Gonzalez-castillo, 2018). Another marker that has received interest to predict treatment 

responses in depression is brain glucose metabolism, which can be measured with positron 

emission tomography (PET). PET contrasts in certain brain areas (e.g. the insula) have been 

found indicative of subsequent treatment response to CBT or pharmacotherapy (McGrath et 

al., 2013). Notably, the authors reported that in particular response in the right anterior insula 

could dissociate between responders and non-responders for both treatments. This structure has 

also been implicated with self-regulation and is a common neural correlate across fMRI-NF 

paradigms (Emmert et al., 2016). Hence, similar markers may be used to stratify patients or to 

optimise training paradigm. An exploratory analysis in this thesis did not find a significant 

relation between treatment response and insula activity, but further exploration is needed. 

Besides functional markers, structural markers remain promising. Recent DBS treatment 

protocols for instance integrate information from tractography to identify optimal placement 



Clinical Applications of fMRI neurofeedback training – David Marc Anton Mehler – November 2018 

     242 

W
o

rd
 T

e
m

p
la

te
 b

y
 F

ri
ed

m
an

 &
 M

o
rg

an
 2

0
1

4
 

of stimulation electrodes (Riva-Posse et al., 2017). A similar approach may be promising for 

motor rehabilitation protocols in stroke patients, given the relevance of the CST in predicting 

motor impairment (Rondina et al., 2017). Indeed, algorithms for TMS stimulation in stroke 

survivors have been developed that are informed by the remaining integrity of the CST (Stinear, 

2010). For motor imagery-based training, such information may be of particular value because 

the ability to mentally simulate movements is likely modulated by afferent signals of limb 

positions. Indeed, performance on a motor imagery based BCI has been related to measures of 

structural integrity and myelination of structures such as the corpus callosum and cingulum 

(Halder et al., 2013). Neural markers also provide valuable markers to detect neuroplastic 

changes during skill learning (Dayan and Cohen, 2011; Zatorre et al., 2012) such as  

neurofeedback training. TMS measurements for instance could detect changes in intracortical 

inhibition and excitability in motor imagery fMRI-NF paradigm (Sitaram et al., 2012). Besides 

electrophysiological markers of neuroplasticity, changes in white and grey matter may result 

from neurofeedback training, especially in the context of motor rehabilitation (Sampaio-

baptista et al., 2018; Sampaio-Baptista et al., 2014). Structural plasticity is maintained to a 

substantial degree in adulthood and may serve to stratify patients and assess rehabilitation 

outcome in neurological and psychiatric rehabilitation. For motor imagery-based paradigms, 

preliminary evidence in neurological patients suggests that fMRI-NF training can result in 

structural changes. One PoC study conducted in individuals suffering from HD suggested that 

clinical improvement after several sessions of fMRI-NF training of the SMA was related to 

increased grey matter volume of the pre-SMA (Papoutsi et al., 2018). Hence, plastic changes 

may occur in connected areas of an extended network that is being trained during a specific 

task (e.g. motor imagery). Further, a case study with three patients that completed home-based 

motor imagery guided EEG-NF training reported white matter changes in the CST for the 

patient that showed the largest training effect (Zich et al., 2017). Although no reports have been 

documented yet, it is possible that similar structural plasticity can also be detected for 

neurofeedback interventions conducted in depression. For instance, reduced myelination on 

whole brain level has been reported for depressed patients compared to (age, gender and 

handedness matched) healthy control subjects (Sacchet and Gotlib, 2017). Moreover, the same 

study found that decreased myelination was related to the number of depressive episodes 

patients had experienced. Further, reduced myelination was reported for patients suffering from 

treatment resistant depression relative to patients without treatment resistant depression (Jia et 

al., 2017). Integrating structural imaging in long-term follow-up assessments of fMRI-NF 

protocols may allow to detect remyelination after remission. Apart from markers of brain 
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plasticity, measures of neurovascular reactivity may provide additional insight into 

mechanisms of action and recovery potential of fMRI-NF training. Such measures may of be 

of particular interest for applications of BOLD based neurofeedback training in stroke, where 

the health of brain vessels is compromised. For instance, breath-hold BOLD imaging can assess 

vascular reactivity in stroke patients (Geranmayeh et al., 2015; Murphy et al., 2011) and would 

allow testing for neurovascular coupling entrainment. Furthermore, for patients where no or 

very attenuated BOLD responses are observed, alternative fMRI measures such as cerebral 

blood flow weighted (CBFw) and cerebral blood volume weighted (CBVw) provide additional 

measures that can help understanding null findings related to BOLD (Blicher et al., 2012). 

Taken together, (neuro) physiological makers may be used to predict treatment response, 

helping to stratify patients and optimise treatment protocols. Moreover, they may support 

behavioural and clinical effects, thereby providing additional independent measures of 

evidence to quantify therapeutic effects. Some markers, e.g. electrophysiological signatures, 

may further allow transferring from relatively resource intensive fMRI-NF to more affordable 

and portable modalities such as EEG-NF.  

 

Keynan and colleagues achieved the first successful translation from fMRI-NF to EEG-NF for 

relaxation based neurofeedback training for post-traumatic stress disorder (Keynan et al., 

2016). In an initial study, the authors recorded simultaneous EEG-fMRI while participants 

engaged in relaxation biofeedback training (alpha/theta EEG-NF) based on which an EEG 

regression model was created that reliably predicted the time course amygdala (Meir-Hasson 

et al., 2014). In subsequent transfer experiments, this fMRI-informed EEG fingerprint marker 

(EFP) was successfully used to provide feedback to patients. Comparing EFG-NF vs. sham 

EFP-NF, the authors demonstrated that EFP-NF allowed participants to down-regulate the 

amygdala. Further, this group showed a significant decrease in reaction times in an emotion 

adaptation test, indicating improved implicit emotion regulation (Keynan et al., 2016). A 

similar approach could be applied to depression, where EEG-NF markers are currently limited 

mainly to training based on frontal lateralization differences in the alpha frequency domain. 

Currently available evidence for therapeutic effects of EEG-NF training in depression is limited 

to a small number of studies (Linden, 2014). For instance, one randomized single-blind EEG-

NF observed improvements similar to those as reported here (7.25 points improvement on the 

HDRS) after five weeks EEG-NF training (Choi et al., 2010), although it should be noted that 

patients in this trial were less severely depressed and partly already remitted at baseline. An 

even larger improvement (from 21.38 to 6.23 on the HDRS-17) was reported in a more recent 
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8-week open-label (i.e. unblinded) study of EEG-NF (Cheon et al., 2016). However, both 

studies lacked active self-regulation control groups and thus do not allow estimating the 

expected placebo effect of EEG-NF in depression. By combining EEG and fMRI, new EEG-

NF markers for brain regions of the limbic system (e.g. the amygdala) that are currently only 

accessible with fMRI may be developed. Also, with regards to motor rehabilitation, EEG-based 

training remains a viable option. For motor rehabilitation in stroke, a recent literature review 

of EEG-based BCI training suggested that the technique is feasible and shows moderate clinical 

effects compared to control conditions (Cervera et al., 2017). In particular stroke patients with 

very limited mobility and potentially excessive head motion, EEG-NF setups that address 

patient comfort are worth exploring. Alternatively, fNIRS-NF may represent a promising 

option, for which proof-of-concept has been shown with regards to motor rehabilitation in 

stroke patients (Mihara et al., 2013). One main advantage of neurofeedback setups that are 

relatively portable (and more affordable) is that they allow earlier training, potentially already 

on specialised stroke wards, as well as more training sessions. The factors time after stroke and 

training insensitivity are both crucial for the restoration of impaired motor function after stroke 

and should thus be considered for future developments. With regards to motor rehabilitation in 

PD, this thesis has provided a detailed review of potential EEG-NF target signatures that may 

reduce motor symptoms in patients (Chapter 8). This work has contributed to developing a PoC 

EEG-NF training study that is currently being conducted in PD patients. Taken together, 

transfer technologies address aspects of treatment cost, as well as scalability of an intervention. 

They hence increase the feasibility of larger clinical trials.  

 

Patient recruitment remains one main challenge in the development of large clinical trials. The 

recruitment data presented in this thesis suggested differences between conditions with regards 

to eligibility screening. Whereas nearly 50% of screened depression patients were in principle 

eligible to enrol in the study, about 70% of screened stroke patients did not meet all inclusion 

criteria. Among patients that were eligible, nearly 50% in the depression trial were randomised 

and 5/12 stroke survivors (42%) completed neurofeedback training. Among depressed patients, 

the attrition rate was about 25% among randomised patients, which is largely comparable to 

attrition rates for other interventions for depression that involved high-technology (Janssen et 

al., 2016). None of the stroke patients interrupted the intervention, however, a substantial 

among of data (30%) had to be discarded due to head motion. Comparisons of recruitment 

flows between the stroke and depression trial, however, are limited given the differences in 

sample sizes (e.g. about four times as many patients were screened for the depression compared 
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to the stroke study) and number of sessions patients were required to attend (five vs. two 

sessions). Recruitment data from trials of established therapies for stroke motor rehabilitation 

indicate, however, that substantial screening is required to reach acceptable sample sizes. For 

instance, one study that compared the effectiveness of two different forms of physiotherapy 

randomised 288 out of more than 5,000 individuals (about 5%) and reported 15% attrition 

(Hunter et al., 2018). Taken together, recruitment data provides an indication for the proportion 

of patients that may be eligible for fMRI-NF training. Future trials are advised to comply with 

CONSORT reporting standards and document their recruitment in all detail to allow evaluating 

the scalability of neurofeedback training (Chapter 3.4.4).  

 

Besides scalability and compliance rate of an intervention, recruitment rates also inform 

adequate power calculations. Early phase clinical trials (Chapter 3.4.3) often face a statistical 

power dilemma such that they are often limited to a relatively small sample, resulting in 

relatively low precision estimates (Fig 1.1). This circumstance tends to be overlooked when 

subsequent larger trials are powered based on estimates from small pilot studies. For depression 

research, meta-analyses have revealed that superiority of medication increases with depression 

severity at baseline (Fournier et al., 2010; Kirsch et al., 2008; Sugarman et al., 2014). However, 

depression severity may be inversely related to compliance. Hence, although the expected 

margin of therapeutic effects compared to placebo can be increased by including more severely 

depressed individuals, attrition likely increases, too (Delgadillo et al., 2014; Issakidis and 

Andrews, 2004). Interactions between baseline severity and attrition may cause sampling 

biases and should thus be invested using intention-to-treat analyses (Chapters 3.4.6 and 4.3.3). 

Future trials will likely benefit from more frequent clinical assessments, which does not only 

allow detecting clinical changes with a higher temporal precision, but also providing more 

informative intention-to-treat analyses.  

 

Multi-centre clinical trials can accelerate recruitment and may provide sufficient statistical 

power to study multi-arm designs that pivot various control conditions against each other. 

Economical sampling plans such as cross-over designs can increase the statistical power of 

clinical trials to detect smaller effects. However, cross-over designs for fMRI-NF RCTs may 

be confounded by delayed treatment effects that have been documented in this thesis (Chapter 

4.3.4) as well as for fMRI-NF RCTs in other conditions (Rance et al., 2018). Research 

presented in this thesis introduced an alternative sampling plan: Bayesian Sequential Sampling 

(BSS). BSS allows stopping to allocate patients to a particular treatment arms once a 
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prespecified level of evidence for or against an effect has been reached, rendering BSS 

particularly attractive for multi-arm trial designs. Moreover, if power calculations are based on 

SESOIs, the absence of an effect can be more likely demonstrated using frequentist equivalence 

tests (Lakens et al., 2018). SESOIs for clinical trials are ideally informed by minimal clinically 

important differences (MCIDs) that allow assessing whether a detected change is likely of 

clinical relevance (Algermissen and Mehler, 2018). However, given the complex nature of 

fMRI-NF experiments, standardisation of intervention protocols between participating centres 

will be required. This process involves standardising neuroimaging protocols to ensure similar 

levels of signal to noise and thus comparable self-regulation conditions (Stoeckel et al., 2014). 

It will also require standardising decisions related to the online analysis, including the 

localisation procedure used to target voxels and areas. The TIDierR (Template for Intervention 

and Replication) checklist may provide a suitable frame work to guide this process. A first 

modified version of the TIDierR checklist has been recently published and can be used as a 

tool to assess and promote convergence of research practices among independent groups to 

increase replicability of clinical fMRI-NF protocols (Randell et al., 2018). As a next step, the 

translation of neurofeedback training from an idea to clinical practice will likely benefit from 

the introduction of a framework that guides the stages of innovation, development, exploration, 

assessment and long-term studies (IDEAL). Originally introduced for complex surgical 

interventions (McCulloch et al., 2009) and recently adapted for the purpose of physiotherapy 

(Beard et al., 2017), the development of an IDEAL for neurofeedback training (and brain 

stimulation more generally) in combination with a public repository where protocols are stored 

in a standardised way will likely help establishing quality standards for different phases in the 

translation and increase comparability between approaches. Moreover, it will allow researchers 

to plan new studies in a way to confirms with ongoing adaptations that may not be evident yet 

in the published literature. These factors seem crucial in the successful translation of 

neurofeedback as a complex non-invasive intervention into clinical practice in specialised 

health care settings.  

 

The research presented in this thesis has been conducted in line with recent recommendations 

for replicable and reproducible research (Munafò et al., 2017). For instance, the RCT presented 

in Chapters 4 and 5 was registered and exploratory analyses were explicitly declared as such 

throughout the thesis. Further, the lack of a group effect was followed up by statistical methods 

that allow testing for the absence of an effect (Dienes, 2014; Lakens et al., 2018). Chapter 6 is 

based on a preregistration protocol, which has been logged as the first preregistered fMRI-NF 
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study on the Open Science Framework (Foster and Deardorff, 2017). As such, the 

preregistration of a translational neuroimaging technique and its associated challenges and 

unknowns constitutes an experiment in its own right, documenting unanticipated challenges of 

a translational PoC study. As documented in detail in Chapter 7, the translation to stroke 

patients required deviations from the preregistered analysis plans. Importantly, however, these 

aspects remain documented and publicly available, following open science principles. In 

contrast to non-preregistered (i.e. closed) science, where this information may have remained 

unreported, this documentation can thus inform future attempts of fMRI-NF in stroke 

survivors. Furthermore, the trial protocol introduced a BSS plan that was adapted to 

neurofeedback training, employing prior distributions that were informed by data of 

participant’s localiser scans. Thereby, feedback presentation, offline analysis and the sampling 

plan were calibrated based on individual brain responses. This approach is a novel use and 

integration of patient specific information obtained during the localiser, which may allow 

optimising sampling plans, potentially yielding more economic trial designs. Future 

neurofeedback trials may benefit from such approach and modify the preregistered BSS to their 

needs.  

 

With regards to challenges that were not sufficiently addressed in the preregistration protocol, 

in particular subject head motion affected data quality. It may serve as an example for the 

advantage of RRs over preregistration. While this aspect was addressed during internal peer 

review by formulating data exclusion criteria, more effective strategies may have resulted from 

external stage 1 peer review (Figure 3.6). Hence, if the project time plan allows, RRs are likely 

favourable. Although stage 1 peer review may not result in an acceptance in principle, the 

external peer review may still provide valuable feedback that can be incorporated in a 

preregistration protocol, improving the quality of the study’s design. However, in particular for 

translation work but also other complex experiments, it is possible that challenges remain 

unknown to researchers and reviewers during stage 1. Hence, to make RRs more accessible to 

potentially risky translational work, some modifications of the publishing format may be 

desirable. For instance, RRs for translational science may offer to provide additional flexibility 

for researchers in the form of fast ad-hoc review. This additional review would allow 

incorporating changes that are necessitated by the clinical setting. To promote preregistration 

and RRs among researchers, current incentive structures need to reflect the increased costs and 

efforts to implement open science practices. The current research system still largely rewards 

positive results, biasing the literature (Munafò et al., 2017; Ramsey and Scoggins, 2008). To 
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meet conservative statistical power requirements, pooling resources and expertise in form of 

large-scale collaborative science becomes increasingly important. In imaging genetics, for 

instance, large consortia have formed to achieve this goal (Guglielmi, 2018). However, with 

ever larger groups of researchers contributing to projects, the dilution of authorship may be a 

concern, in particular for early career researchers (ECRs). Hence, the successful promotion of 

more robust translational work will likely require new authorship formats to acknowledge 

research that is increasingly carried out by large teams, rather than individuals (Fontanarosa et 

al., 2017). Taken together, preregistration and RRs allow documenting publicly the 

development of translational research projects at a level of details that exceeds conventional 

research practices. Besides insights to graded fMRI-NF in MCA stroke survivors, the work 

documented in Chapter 7 has informed suggestions for future adaptions of the format.   

 

As outlined in the introduction (Chapter 1.2.2), transparent reporting practices are a key 

element of robust science and it seems that the fMRI-NF field can learn from mistakes of earlier 

translational attempts in other neuroscience areas. For instance, the credibility of published 

literature of EEG-NF training in ADHD has been questioned due to small sample sizes of trials, 

insufficient trial registration, opaque reporting practices and poor trial designs that largely lack 

adequate blinding and control conditions (Cortese et al., 2016; Sonuga-Barke et al., 2013; 

Thibault et al., 2018a)Moreover, financial interests may partly conflict with trial reporting 

practices of EEG-NF interventions (Thibault et al., 2018a). Although these issues are certainly 

not representative for the whole field of EEG-NF (Arns et al., 2014; Arns and Strehl, 2013), 

they indicate the importance of introducing counter measures early in the development. Real-

time imaging pre-specifies by default substantial aspects of data pre-processing and analysis as 

well as main hypotheses (Chapter 1.2.2). Hence, amending these protocols to comprehensive 

analysis plans for submission as preregistration protocols, RRs, or trial protocol pre-publication 

(Cox et al., 2016) likely require less additional effort compared to other complex experiments 

(Chapter 1.2.1). Further, although analysis plans are not required yet for trial registrations, 

current open science developments in clinical medicine indicate that they become required in 

the near future (Gamble et al., 2017; Kiley et al., 2017). Taken together, real-time analysis 

neuroimaging trials seem particularly well suited to lead translational research into this new 

era of science, aiming to increase valid inferences and maximise chances for successful 

translation (Lorenz et al., 2017; Poldrack et al., 2017; Steward and Balice-Gordon, 2014).  
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In conclusion, neurofeedback is one of only a few clinical neuroimaging applications that are 

being developed into protocols for RCTs. The presented research suggests that clinical fMRI-

NF training shows promise as an augmentation therapy in depression. Moreover, this thesis has 

incorporated recent meta-research developments and recommendations (Bosch, 2018; Nosek 

et al., 2018; Picciotto, 2018) of good scientific practice and thus contributed to their translation 

in fMRI-NF. To establish fMRI-NF as an augmentation treatment, replications in larger RCTs 

with additional control conditions are needed. Multi-arm RCTs may benefit from innovative 

sampling techniques such as BSS that are informed by MCIDs, as well as from longer follow-

up periods to assess delayed treatment responses and potential relapses. A detailed review of 

different types of fMRI-NF control conditions provided an overview for future trial designs. 

The rationale behind individual feedback training is largely in line with the goals of precision 

medicine which aims to exploit biological markers to tailor treatments towards the individual 

(Insel and Cuthbert, 2015). Multimodal profiling of patients including psychometric measures 

and the discovery of (neuro-) physiological markers will help to evaluate training success, 

optimise paradigms and unfold further potential of clinical neurofeedback. However, real-time 

imaging data control remains a challenge, in particular for more advanced metrics that exploit 

signal variability for feedback presentation and are thus in particular susceptible to artefacts 

induced by physiological noise and head motion. From a public health care perspective, the 

cost-effectiveness of fMRI-NF training for individual conditions and patient groups remains to 

be assessed to allow evaluating its scalability. For certain conditions such as stroke, where 

many training sessions are required, and patients’ mobility is often impaired, more affordable 

and mobile alternatives such EEG-NF may provide alternatives. Adopting transparent 

reporting practices early will increase the robustness of reported findings and the credibility of 

the field. Sitting at the forefront of scientific progress, the neurofeedback field draws upon 

principles from cognitive neuroscience, bioengineering and translational medicine to optimise 

their designs. Neurofeedback research thereby also drives methodological innovation that will 

contribute translating brain imaging from the “bench to the bedside”.   
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10 APPENDIX A-C 

10.1 Appendix A  

 

 

Figure A1 CONSORT checklist of publication submission for (Mehler et al., 2018), 

which was based on excerpts of Chapters 4 and 5.   

CONSORT 2010 checklist of information to include when reporting a randomised trial* 
 

Section/Topic 
Item 
No Checklist item 

Reported 
on page No 

Title and abstract 

 1a Identification as a randomised trial in the title 1 

1b Structured summary of trial design, methods, results, and conclusions (for specific guidance see CONSORT for abstracts) 3 

Introduction 

Background and 

objectives 

2a Scientific background and explanation of rationale 4-5 

2b Specific objectives or hypotheses 5 

Methods 

Trial design 3a Description of trial design (such as parallel, factorial) including allocation ratio 6-7 

3b Important changes to methods after trial commencement (such as eligibility criteria), with reasons N/A 

Participants 4a Eligibility criteria for participants 5 

4b Settings and locations where the data were collected 5, 7 

Interventions 5 The interventions for each group with sufficient details to allow replication, including how and when they were 

actually administered 

6-10; in SM: 

1-3 

Outcomes 6a Completely defined pre-specified primary and secondary outcome measures, including how and when they 

were assessed 

7-8 

6b Any changes to trial outcomes after the trial commenced, with reasons N/A 

Sample size 7a How sample size was determined 8 

7b When applicable, explanation of any interim analyses and stopping guidelines N/A 

Randomisation:    

 Sequence 

generation 

8a Method used to generate the random allocation sequence 6 

8b Type of randomisation; details of any restriction (such as blocking and block size) 6 

 Allocation 

concealment 

mechanism 

9 Mechanism used to implement the random allocation sequence (such as sequentially numbered containers), 

describing any steps taken to conceal the sequence until interventions were assigned 

6 

 Implementation 10 Who generated the random allocation sequence, who enrolled participants, and who assigned participants to 

interventions 

6 

Blinding 11a If done, who was blinded after assignment to interventions (for example, participants, care providers, those 7 
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Outcome 

Measures 

Change from baseline to follow-up (18 weeks)  

for NFE / NFS 

 

 M 95% CI % -age Hedge’s g 95% CI 

HDRS-17 -9.65/ -11.53 
-6.25 to -13.06/  

-8.61 to -14.45 
-48/-59 -1.57 / -2.06 

-2.14 to -1.04/  

-3.72 to -0.96 

HADS (A) -3.54/ -5.07 
-0.82 to -6.25/  

-3.19 to -6.94 
-30/ -39 -0.72 / -1.40 

-1.19 to -0.03/  

-1.84 to -1.03 

HADS (D) -4.38/ -4.33 
-1.41 to -7.36/  

-2.21 to -6.46 
-35/-34 -0.82 / -1.06 

-1.35 to -0.37/  

-1.43 to -0.71 

BIS 1.62/ 1.33 
-0.82 to 4.05/  

-0.43 to 3.1 
12/9 0.37 / 0.38 

-0.17 to 0.82/  

-0.11 to 0.88 

BAS -2.00/ 2.67 
-5.65 to 1.65/  

-2.27 to 7.61 
-6/7 -0.30 / 0.27 

-1.19 to 0.33/  

-0.25 to 0.67 

QoL 13.31/ 17.47 
7.47 to 19.15/ 

10.48 to 24.45 
24/32 1.26 / 1.30 

0.68 to 2.00/ 

0.68 to 2.00 

TCQ 2.77/ -0.20 
-3.70 to 9.24/  

-5.38 to 4.98 
5/0 0.24 / -0.02 

-0.39 to 0.70/  

-0.56 to 0.50 

TCAQ 9.15/ 10.73 
1.52 to 16.79/  

4.1 to 17.37 
16/20 0.66 / 0.84 

0.11 to 1.15/ 

0.34 to 1.35 

SES (G) 4.15/ 8.93 
-1 to 9.31/  

4.27 to 13.60 
9/18 0.45 / 1.00 

-0.12 to 1.06/ 

0.42 to 1.46 

SES (S) 0.69/ 4.93 
-1.74 to 3.12/  

2.39 to 7.48 
4/36 0.16 / 1.01 

-0.46 to 0.63/ 

0.55 to 1.56 

EQ-5D-5L -1.73/ -1.85 
-0.57 to -2.88/  

-0.89 to -2.81 
-15/-18 -0.88 / -1.06 

-1.44 to -0.50/  

-1.83 to -0.49 

Table A1 Changes over time in raw mean scores and standardised effect sizes both 

including 95% Confidence interval estimates at FU assessment. Change in percentage 

(%-age). Adapted from (Mehler et al., 2018). 
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10.2 Appendix B 

 

 

Figure B1 Whole brain probability map of target region selection for both treatment 

groups. Adapted from (Mehler et al., 2018). 
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Anatomical label  

 

Mean ± SD coordinates 

[X/Y/Z] 

Mean t-value Mean p-value Cluster size 

[mm3] 

NFE Activation 

Cerebellum, Uvula 17±15/-68±5/-23±3 4.666 0.0004 2251 

Caudate nucleus 

(body) 

15±3/25±2/11±3 5.189 0.0002 630 

Insula/ IFG -29±14/20±6/7±9 5.209 0.0002 7584 

Thalamus (VAN) 13±5/-5±5/-5±5 4.387 0.0006 1008 

Brainstem/midbrain 2±7/-22±4/-11±2 4.588 0.0004 1834 

Posterior Cingulate/ 

Retrosplenial Cortex  

-8±3/-54±9/7±5 4.707 0.0004 3765 

SMA -5±3/6±6/51±8 4.684 0.0004 2137 

Thalamus (VLN) -18±3/-9±7/11±4 4.825 0.0003 2194 

Hippocampus -25±4/-12±7/-13±4 4.615 0.0004 2004 

Entorhinal cortex -26±4/8±4/-10±3 4.570 0.0005 726 

Extrastriate cortex  -35±2/-57±3/12±5 4.516 0.0005 1177 

NFE Deactivation     

IPL  49±6/-52±10/39±5 -4.422 0.0006 2165 

DLPFC 44±3/31±5/26±5 -4.483 0.0005 1365 

Superior frontal 

gyrus 

30±5/18±4/50± -4.510 0.0005 1891 

NFS Activation     

PPA  29±4/-39±5/-14±5 4.592 0.0005 2518 

Posterior Cingulate 15±4/-45±3/10±3 4.393 0.0006 783 
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Lingual Gyrus 13±3/-73±5/-10±4 4.456 0.0005 1613 

Posterior Cingulate -3±5/-49±4/5±6 4.580 0.0005 2519 

PPA  -29±4/-35±5/-16±5 4.518 0.0005 3219 

Insula/ IFG -37±3/22±3/-1±2 4.373 0.0006 493 

Premotor Cortex -41±3/2±1/46±4 4.356 0.0006 529 

 NFS Deactivation     

Temporoparietal 

Junction 

54±2/-49±3/28±4 -4.371 0.0006 672 

Table B1 Whole brain analysis. Brain activity during neurofeedback blocks 

compared to rest for NFE and NFS group (positive x-coordinates denote right side of the 

brain); Monte Carlo simulation cluster threshold corrected at p < 0.001. Adapted from 

(Mehler et al., 2018).  

 

Anatomical label  

 

Mean ± SD coordinates  

[X/Y/Z] 

Mean t-value Mean p-value Cluster size 

[mm3] 

NFS > NFE 

DLPFC 51±2/31±2/12±2 -3.545 0.0006 362 

MTG  43±5/-71±4/25±4 -4.239 0.0002 2254 

Premotor Cortex 27±9/0±6/49±4 -3.871 0.0003 4180 

SPL 21±8/-61±6/49±6 -3.739 0.0004 4757 

Precentral Gyrus 36±2/4±4/22±2 -3.820 0.0003 629  

PPA, right 26±3/-36±2/-14±3 -3.957 0.0003 731 

Lingual Gyrus  13±3/-73±5/-7±4 -3.789 0.0004 1224 

Cingulate 15±3/-52±4/10±5 -3.683 0.0004 1191 

Precuneus -16±7/-64±4/47±7 -3.833 0.0004 3427 
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MTG  -40±9/-75±6/24±7 -3.832 0.0003 3069 

PPA, left -26±3/-39±4/-13±4 -3.762 0.0004 1340 

MFG (BA46), 

extending into 

DLPFC 

-44±4/34±5/16±5 -4.141 0.0002 3500 

MFG (BA9) -52±3/14±4/30±4 -3.975 0.0003 607 

IFG  -61±3/38±3/-12±2 -3.803 0.0003 412 

NFE > NFS 

MTG 60±3/-14±2/-10±3 3.988 0.0003 703 

Insula -29±3/-40±6/20±7 3.613 0.0005 1160 

ITG -52±3/-5±2/-28±3 3.371 0.0004 412 

Table B2 Whole brain analysis. Activity during neurofeedback blocks for group 

contrast (group difference NFE>NFS; positive x-coordinates denote right side of the 

brain); Monte Carlo simulation cluster threshold corrected at p < 0.001. Adapted from 

(Mehler et al., 2018). 

 

Anatomical label Mean ± SD 

coordinates [X/Y/Z] 

Mean t-value Mean p-

value 

Cluster size 

[mm3] 

IFG, extending 

into DLPFC 

47±6/4±5/33±8 3.011 0.0044 4997 

Premotor Cortex 35±3/3±4/57±2 3.056 0.0039 661 

Putamen 25±4/-10±4/11±3 2.966 0.0048 942 

SMA -2±3/-16±4/57±5 3.051 0.0038 1493 

Caudate Body -21±3/-7±8/18±3 2.865 0.0055 811 

Table B3 Whole brain analysis. Within Factor (session); Monte Carlo simulation 

cluster threshold corrected at p < 0.01.  
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Anatomical label abbreviations in order of appearance. IFG: Inferior Frontal Gyrus; VAN: 

Ventral Anterior Nucleus of the Thalamus; SMA: Supplementary Motor Area; IPL: Inferior 

Parietal Lobe; VLN: Ventral Lateral Nucleus of the Thalamus; DLPFC: Dorsolateral Prefrontal 

Cortex; SFG: Superior Frontal Gyrus; MTG: Middle Temporal Gyrus; SPL: Superior Parietal 

Lobe; MFG: Middle Frontal Gyrus; ITG: Inferior Temporal Gyrus; BA: Brodmann area.   
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10.3 Appendix C 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C1 Example anatomical (T1) image in Talairach space. Artefact due to head 

motion, deformation due to lesion (left).  
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Figure C2 View of control interface of Turbo-BrainVoyager (TBV) (Version 3.0, 

Brain innovation, Maastricht, The Netherlands). Red rectangular on the left indicates 

target region selection, respective time course shown in the top right. Green background 

indicates task period, bar graph (green) percent signal change. Underneath display of six 

rigid body motion parameters. Example of excessive head motion that resulted in 

spurious activation within target area, but not in post-hoc chosen control area (blue 

circle) close to ventricles.  
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