
Provisioning Robust and Interpretable AI/ML-based
Service Bundles

Alun Preece, Dan Harborne
Crime and Security Research Institute

Cardiff University
Cardiff, UK

{preecead,harborned}@cardiff.ac.uk

Ramya Raghavendra
Thomas J. Watson Research Center

IBM US
Yorktown Heights, USA

rraghav@us.ibm.com

Richard Tomsett, Dave Braines
Emerging Technology

IBM UK
Hursley, UK

{rtomsett,dave braines}@uk.ibm.com

Abstract—Coalition operations environments are characterised
by the need to share intelligence, surveillance and reconnaissance
services. Increasingly, such services are based on artificial intel-
ligence (AI) and machine learning (ML) technologies. Two key
issues in the exploitation of AI/ML services are robustness and
interpretability. Employing a diverse portfolio of services can
make a system robust to ‘unknown unknowns’. Interpretability
— the need for services to offer explanation facilities to engender
user trust — can be addressed by a variety of methods to
generate either transparent or post hoc explanations according to
users’ requirements. This paper shows how a service-provisioning
framework for coalition operations can be extended to address
specific requirements for robustness and interpretability, allowing
automatic selection of service bundles for intelligence, surveil-
lance and reconnaissance tasks. The approach is demonstrated
in a case study on traffic monitoring featuring a diverse set of
AI/ML services based on deep neural networks and heuristic
reasoning approaches.

Index Terms—intelligence, surveillance and reconnaissance;
robustness; interpretability; reasoning; machine learning

I. INTRODUCTION

A coalition is an alliance of partners with a common goal. In
a military context, partners will typically need to share assets
for intelligence, surveillance and reconnaissance tasks, e.g.,
sensing and information processing services [1]. Operational
efficiency can be improved via agile approaches to sharing of
services near the edge of the network [2], [3].

Recent years have seen a resurgence in the effectiveness
of artificial intelligence (AI) and machine learning (ML)
approaches for tasks including processing of imagery and
text data, particularly approaches based on deep neural net-
works [4] and deep question-answering techniques [5]. Such
methods are highly applicable to intelligence, surveillance and
reconnaissance tasks, where there is commonly a need to
process multiple data modalities and distinguish features at
multiple semantic scales [6]. Robustness is a key issue in
deploying AI/ML-based services, with ‘unknown unknowns’

This research was sponsored by the U.S. Army Research Laboratory and
the UK Ministry of Defence under Agreement Number W911NF-16-3-0001.
The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies,
either expressed or implied, of the U.S. Army Research Laboratory, the U.S.
Government, the UK Ministry of Defence or the UK Government. The U.S.
and UK Governments are authorised to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation hereon.

being a matter of particular concern: the ability of a system
to appropriately handle inputs on which it was not trained
or which fall outside of its knowledge model [7]. A well-
established method for addressing this issue is the use of
portfolio methods where a diversity of approaches/models is
employed. To some extent, the coalition context benefits this
approach: multiple partners are more likely than a single
partner to provide such a diversity of services.

A second key issue in deploying AI/ML-based services for
intelligence, surveillance and reconnaissance tasks is service
interpretability: the ability to offer an appropriate explanation
for an output [8]. Unlike ‘classical’ symbolic AI approaches
where it was possible for a system to explicate its chain of
reasoning, ML services based on deep neural networks lack
easily-communicable internal representations. This makes the
generation of useful explanations or justifications for an output
difficult, especially in terms appropriate for an end-user (e.g.,
an intelligence analyst). While such systems can be trained to
provide effective classifications with intelligible explanations,
there is a performance trade-off in doing so [9].

The focus of this paper is to examine the problem of agile
service provisioning in a coalition context, with a particular fo-
cus on meeting requirements for robustness through diversity,
and interpretability of various kinds appropriate for end-users.
In part this builds on previous work in dynamic assignment of
intelligence, surveillance and reconnaissance assets to mission
tasks though, to the best of our knowledge, no previous work
has considered both interpretability and robustness conditions
for AI/ML-based services in this context. It should be borne in
mind that the coalition context imposes a variety of constraints,
including ones concerned with security, policy, and resources
(network and physical), which will impact on robustness, accu-
racy and interpretability. These coalition constraints are not the
primary focus of this paper but their impact is acknowledged.

The paper is organised as follows: Section II outlines
previous work in dynamic asset provisioning for coalition
intelligence, surveillance and reconnaissance tasks; Section III
introduces a case study in the domain of traffic monitoring fea-
turing multiple services based on ML and heuristic reasoning
approaches; Section IV extends previous asset provisioning
with features to handle interpretability and robustness require-
ments; Section V hows how the extended provisioning model

is applied in the case study; finally, Section VI reflects on the
approach and identifies future work.

II. BACKGROUND AND RELATED WORK

Dynamic service provisioning for coalition operations is a
well-studied problem [1]. A key approach is to model the ca-
pabilities of available intelligence, surveillance and reconnais-
sance assets, e.g., sensors, and use these models — commonly
in the form of ontologies [10] — to determine which assets
are appropriate for given mission tasks. This process can be
automated and optimised [11]. Commonly, a single asset is
insufficient to meet the needs of a task, so assets are grouped
into bundles during the process of asset-task matching [12].
Figure 1 shows the asset-task matching model used in [11].
Here, sensors are the only kind of asset considered. Bundles
are computed by an algorithm that optimises the assignment of
sensors to bundles, and bundles to tasks, in order to maximise
the aggregate priority of the set of satisfied tasks, such that
the utility demand of each satisfied task is met or exceeded
by the joint utility of the bundle assigned to that task.

p = task priority
d = utility demand
e = joint utility

S4S3S2S1

B2B1

Sensors

Bundles

T2T1Tasks
(p1, d1)

e11

e12

(p2, d2)

Fig. 1. Task-Bundle-Sensor model from [11]

The purpose of the asset ontology is to define the search
space for the optimisation problem by classifying assets in
terms of the capabilities they provide, and tasks in terms of the
capabilities they require. An asset is a candidate for inclusion
in a bundle to satisfy a task if it provides a capability required
by the task. The model in Figure 1 can be generalised from
sensors to all intelligence, surveillance and reconnaissance
assets — including services — and will be referred to as the
task-bundle-asset (TBA) model in subsequent discussion.

The TBA model is agnostic to the kind of asset employed,
including AI or ML-based services. As discussed in the
introduction, two key issues with these kinds of service asset
are robustness and interpretability. The most significant aspect
of the former is robustness to ‘unknown unknowns’ [7]:
phenomena outside the AI/ML system’s models. These occur
because models are always incomplete; there will be aspects
of the world that fall outside any given model. One of the main
approaches to addressing this robustness problem is to employ
a portfolio of diverse models so that weaknesses in one model
are compensated for by strengths of another. The diversity
property is important and can be implemented via training ML-
based models on different sets of data and/or features, or by

employing a combination of AI/ML techniques, for example
reasoning and learning-based services.

On the one hand, the portfolio approach is facilitated by the
coalition context with asset sharing at the network edge [3]:
the coalition collectively will tend to have a greater diversity of
assets than each individual partner. However, while the bundle
approach used for asset provisioning is compatible in principle
with having multiple ways to accomplish a task, previous work
has not considered the requirement for diversity explicitly.
Moreover, optimal asset allocation algorithms would disfavour
bundles that appear to have over-provision of ‘redundant’
assets that ‘do the same thing’. Therefore, previous work needs
to be extended with (a) explicit requirements for asset diversity
and (b) algorithms that favour diverse bundles where required.

Turning now to the requirement for interpretability, it has
been acknowledged that there are varying definitions of this,
partly arising due to there being multiple intents behind
making AI/ML systems interpretable [8], [13]. There is as yet
no formal ontology of interpretability types, though it has been
argued [8] that these can generally be categorised as either
transparency or post hoc explanation. The former provides
direct evidence from internal working of how the AI/ML
system arrived at an output. In a ‘classical’ AI system this
would include a trace of the symbolic reasoning steps executed
by a theorem prover or rule-based system. In a deep neural
network, a transparent interpretation needs to be based on the
firings of artificial neurons and it is far less clear how to make
this process usefully intelligible to humans [14]. The dominant
post hoc interpretability approach for deep neural networks
is to use saliency mapping methods that visualise features
of the input that have the most significant positive/negative
effect on an output decision; e.g., regions of an image that
were most significant in determining a classification for that
image, visualised as a ‘heatmap’ [15], [16]. Another common
post hoc interpretability techniques include explanations by
example (e.g., using a case-based reasoning approach to select
an appropriately-similar example from training set [17]) and
natural language explanations (e.g., automatic generation of
image captions [18]).

To ground the subsequent discussion of how to provision
service bundles that meet both robustness (diversity) and inter-
pretability (transparency and post hoc) requirements, the next
section introduces a sensor-based system for traffic monitoring
featuring services based on ML and reasoning approaches.

III. MOTIVATING EXAMPLE

The system described in this section was created as a
testbed for situational understanding technologies in a coali-
tion context [19]. The main requirements for the system were:
(i) to address a plausible situational understanding problem
(traffic monitoring) for which datasets of multiple modalities
were readily available; (ii) to feature both AI-based (heuristic
reasoning) and ML-based services; and (iii) to exemplify coali-
tion constraints (service ownership, information flow). Traffic
monitoring, with a specific focus on congestion detection,

was chosen for (i) because congestion can be viewed as a
higher-level situational element with relationships to lower-
level elements such as vehicles (e.g., cars, buses, bicycles) and
road system objects (e.g., traffic lights, pedestrian crossings).
Moreover, data is readily available: in the UK, Transport
for London (TfL) provides an application programming in-
terface (API) to obtain still imagery and video from their
traffic camera network around London1, while Open Street
Maps (OSM) provides information about the road network,
e.g., speed limit2.

Fig. 2. Architecture for traffic monitoring case study from [19]

The example traffic monitoring system illustrated in Fig-
ure 2 was engineered to feature multiple heterogeneous meth-
ods to detect congestion. There are two main ‘paths’ through
the system, discussed in more detail below. The first path,
shown in the top part of the figure, feeds still traffic camera
images to a service incorporating a convolutional neural net-
work (CNN) trained to classify images as either congested or
uncongested. The second path, shown in the bottom part of
the figure, feeds video imagery to a reasoner that (after pre-
processing the video to detect ‘blobs in motion’, and verifying
that the ‘blobs’ are vehicles) uses heuristic-based rules to
conclude whether traffic is flowing (therefore uncongested)
or congested. Each path and set of services is capable of
generating distinct kinds of explanation.

1http://www.trafficdelays.co.uk/london-traffic-cameras/
2http://www.openstreetmap.org/

As previously noted, coalition constraints are not the focus
of this paper but the traffic monitoring problem exemplifies a
multi-service environment where, plausibly, different services
may be operated and controlled by different agencies (e.g.,
local authorities, police and other emergency services) that
must share information and work in cooperation to keep the
transport network running smoothly and safely.

The most important services in the architecture shown in
Figure 2 are described below.3

Fig. 3. Examples of congested (top) and uncongested (bottom) images with
corresponding saliency maps; the lower image is misclassified as congested
and the positive (red) regions of the map are falsely-positive in this case

Congestion classifier: This service comprises two CNNs.
The first uses the GoogLeNet Inception network [21], pre-
trained on ImageNet data, for feature extraction. The feature
vector output from this network is input to a five-layer fully-
connected network trained from a dataset consisting of 4,117
images labelled as congested, uncongested or unknown by
human annotators. Example images are given on the left of
Figure 3. The output from this second CNN (congestion rating)
is the class conditional probability for the congested class.
Recorded precision and recall are 0.98 and 0.96 respectively.

Explanation by example (EBE) service: This service
implements the post hoc explanation-by-example technique by
retrieving similar previous cases from the training set (note
the training set as input to the classifier service that ‘feeds’
the EBE service). When an explanation is required for a
runtime output, the service retrieves training examples with
similar classifications (congestion ratings) and presents these
alongside the runtime case. These examples indicate what the
congestion classifier considers to be similar instances of the
output class. (Similar in terms of class conditional probability,
not in terms of visual features.)

3The description here is intended to be reasonably self-contained, but fuller
details are provided in [19] and [20]. System code and data is available at:
https://osf.io/wm3t9

LIME service: This service is based on the LIME (Lo-
cal Interpretable Model-agnostic Explanations) [16] package
which generates a saliency map (post hoc explanation) in the
form of highlighted regions of the original input that were
important in the input model’s assessment of the likelihood
of an output class (i.e., strong evidence for or against the
class). Here, the LIME service works in conjunction with the
congestion classifier to generate saliency maps for the outputs
(congestion ratings) of that classifier. Examples are shown
on the right of Figure 3: red regions show evidence towards
congested, green regions show evidence towards uncongested.
Both images are classified as congested but the lower one is
misclassified; the saliency map confirms that the red regions
here do not in fact provide evidence for congested.

Car detector: This is a ‘utility’ object detection service
implemented as a retrained instance of the VGG-16 regional-
convolutional neural network (R-CNN) model [22], able to
identify cars in still image frames. This service is used by
both the congestion reasoner and the SSO service (below).

Congestion reasoner: This service uses rules to infer the
level of congestion based on traffic flow rates. Video clips from
the TfL API are passed to an optical flow algorithm which
produces data on ‘blobs in motion’. The car detector service
is then used to verify that the ‘blobs’ are cars. Heuristics are
used to compare the pixel velocities of the car objects with the
likely speed limit of the location (from the OSM API), giving
a ‘traffic flow ratio’, and another heuristic determines at what
point the flow ratio indicates low and high levels of traffic
flow, allowing the level of congestion to be inferred. For this
we use the rule: if flow ratio ≤ 0.4 then congestion, where
the constant 0.4 was derived from observation of a range of
London inner-city locations. The rule-based approach makes it
easy to use different flow ratio thresholds for different regions
of the city and, because the decision is rule-based, the service
can provide an explicit trace of its reasoning as transparent
explanation. Recorded precision and recall are 0.79 and 0.87
respectively.

Salient semantic object (SSO) service: A salient semantic
object is an object that is detected within the highlighted
positive region of a saliency map for a target class and
which has a close semantic relationship to the target classIn
the example, the target class is congestion (i.e., the positive
class label for the saliency maps generated by the LIME
service for the congestion classifier) and the semantically-
related object is car. An example is shown in Figure 4.
Such semantic relationships can be provided by a custom
ontology or from an open knowledge base such as ConceptNet
(http://conceptnet.io).

The services are integrated using the Node-RED programming
environment4 which allows them to be connected dynamically
to support agile service provisioning; however, the original
version of the system was composed statically [19]. The
next section proposes extensions of the TBA service bundle
model and associated task-bundle matching algorithm to allow

4http://nodered.org

Fig. 4. A LIME saliency map (left) with an SSO (car) identified in the salient
(red) region via the car detector service (right)

dynamic selection of services that meet interpretation and
robustness criteria.

IV. EXTENDED TBA MODEL

Details of the original matching procedure associated with
the TBA model appear in [12]. Here, the TBA model is
extended as follows:
• A task originally had a type (e.g., detect) and a target

(e.g., congestion), as well as an area of interest and
temporal interval; here, we extend task to also require an
accuracy (e.g., expressed as precision/recall constraints)
and specified kinds of interpretability and robustness (see
Section V).

• An asset was originally defined in terms of its type and a
set of capabilities that it provides, and any constraints on
its deployment with other assets (e.g., dependencies, com-
patibilities, and coalition constraints); here, we extend
the capability types to include kinds of interpretability
(Section V); the asset type facilitates choosing bundles
that address robustness via diversity (selecting assets that
satisfy the same capability but being of different types)
discussed in Section V.

• A bundle for a given task is a set of assets that meets all
task requirements, satisfies constraints on asset deploy-
ment, and is minimal; here, the additional task require-
ments in terms of accuracy, interpretability and robustness
must also be met in bundle provisioning.

The main procedure of the matching algorithm is given as
a logic program below:5

matches(T,B′) ←
requiresCapabilities(T,C) ∧
serviceBundle(B) ∧
providesCapabilities(B,C) ∧
isMinimal(B,C) ∧
satisfiesDependencies(B,B′) ∧
isConfigurable(B′).

T is a task object with associated requirements. B and
B′ are bundles (sets of assets). Given a task instance T , the
matches procedure produces a matching bundle B′; via back-
tracking, the procedure produces all matching bundles. The
predicate requiresCapabilities identifies the set of capabilities
C associated with T . The predicate serviceBundle generates
a valid bundle B (taking account only of constraints between

5A full Prolog implementation is provided at https://osf.io/wm3t9

assets, e.g., deployment compatibilities, not the requirements
of T).6 The predicate providesCapabilities returns true if
the generated bundle B provides all capabilities of T . The
predicate isMinimal returns true if B contains no assets that
are redundant in providing the set of required capabilities
C. The predicate satisfiesDependencies generates an extended
version of B, B′ that satisfies any dependencies of its assets
on supporting assets. Finally, isConfigurable returns true if B′

satisfies all constraints between its constituent assets.
The next section presents a worked example, applying

the above model and procedure to the system described in
Section III.

V. WORKED EXAMPLE

To apply the TBA model and matching procedure to the
example traffic monitoring system, it is first necessary to define
the requirements of a task. These include capabilities that a
bundle must provide — including task type, accuracy and
interpretability — and robustness. The task type is no different
from previous work: the example focuses on the detect task
with target congestion (a secondary task provided by the
example system is detect car). We can add requirements for
specific threshold levels of accuracy (e.g., precision and recall)
but these do not significantly add to the previous work. More
significantly, interpretability capabilities need to be defined.
Based on the discussion in Section II these are:
• transparent explanation (a super-type)
• post hoc explanation (a super-type)
• reasoning trace (a sub-type of transparent explanation)
• saliency map (a sub-type of post hoc explanation)
• explanation by example (a sub-type of post hoc explana-

tion)
• SSO explanation (a sub-type of post hoc explanation)
Relationships between assets and capabilities are defined

by the providesCapability predicate used internally by the
requiresCapabilities predicate in the matching procedure. For
the example system these are:

providesCapability(‘congestion classifier’, ‘detect congestion’).
providesCapability(‘EBE service’, ‘explanation by example’).
providesCapability(‘LIME service’, ‘saliency map’).
providesCapability(‘car detector’, ‘detect car’).
providesCapability(‘congestion reasoner’, ‘detect congestion’).
providesCapability(‘congestion reasoner’, ‘reasoning trace’).
providesCapability(‘SSO service’, ‘SSO explanation’).

Sub-type/super-type relationships between capabilities are
handled in the matching procedure by means of an en-
tailsCapability predicate:

entailsCapability(‘saliency map’, ‘post hoc explanation’).
entailsCapability(‘reasoning trace’, ‘transparent explanation’).
entailsCapability(‘explanation by example’,

‘post hoc explanation’).
entailsCapability(‘SSO explanation’, ‘post hoc explanation’).

These definitions allow the matching procedure to infer:

6Note that this formulation of the matching procedure is not intended to
be efficient, merely descriptive.

providesCapability(A,C) ←
providesCapability(A,C′) ∧
entailsCapability(C′, C).

Thus, for example, providesCapability(‘LIME service’, ‘post
hoc explanation’) and providesCapability(‘SSO service’, ‘post
hoc explanation’) are inferred facts.

The satisfiesDependencies predicate in the matching proce-
dure uses the following dependencies for the example system:

dependsOn(‘EBE service’, ‘congestion classifier’).
dependsOn(‘LIME service’, ‘congestion classifier’).
dependsOn(‘SSO service’, ‘LIME service’).
dependsOn(‘SSO service’, ‘car detector’).
dependsOn(‘congestion reasoner’, ‘car detector’).

With these declarations, the matching procedure is now able
to provide bundles for a variety of task requirements, as
illustrated by the examples in Table I. Note that the require-
ments do not include accuracy for the detect congestion task
since requiring particular thresholds for precision and/or recall
would simply maintain or reduce the available congestion
classifier or congestion reasoner service options.

The requirement for robustness in terms of service diversity
needs to be handled above the level of bundle generation since
it requires multiple bundles to be assigned to a task such
that diversity constraints are satisfied by the combination of
bundles. Service diversity for a task T with a given type and
target (e.g., detect congestion) requires that there be at least
two bundles such that the member services that provide the
capability for the type and target of T are based on different
models. For this, it is necessary to provide a categorisation of
the asset type for AI/ML-based services, for example:

subClassOf(‘congestion classifier’, ‘CNN-based service’).
subClassOf(‘congestion reasoner’, ‘rule-based service’).

The original implementation of the matching system described
in [11] computed bundles for all task type/target permutations
and showed how, for a reasonably-comprehensive intelligence,
surveillance and reconnaissance domain, a complete set of
task-bundle combinations could be stored in a lookup table on
a standard mobile device. Therefore, the problem of selecting
multiple bundles for the same task type/target to satisfy a
diversity requirement is a relatively straightforward extension.

VI. DISCUSSION AND CONCLUSION

The main contribution of this paper has been to consider the
problem of service bundle provision with additional require-
ments for interpretability and robustness pertinent to AI/ML-
based services. For this, it was necessary to also propose
an initial typology of interpretability requirements based on
[8].The approach was implemented by extending a previous
model and procedure for task-asset provisioning with the
additional requirements for interpretability and robustness. A
pre-existing system for traffic monitoring was taken as a case
study to illustrate the approach.

There is significantly more work to be done to extend the
typology of interpretability types and, indeed, development

Requirements Bundle
{ ‘detect congestion’, ‘saliency map’ } { ‘congestion classifier’, ‘LIME service’ }
{ ‘detect congestion’, ‘explanation by example’ } { ‘congestion classifier’, ‘EBE service’ }
{ ‘detect congestion’, ‘sso explanation’ } { ‘congestion classifier’, ‘SSO service’, ‘LIME service’, ‘car detector’ }
{ ‘detect congestion’, ‘transparent explanation’ } { ‘congestion reasoner’, ‘car detector’ }

TABLE I
BUNDLES GENERATED BY THE matches PROCEDURE FOR SAMPLE TASK REQUIREMENTS

of standard terminology in this area is a key requirement
going forward. However, our immediate focus is to exam-
ine the relationship between interpretability types and user
roles [23]. To support experimentation in this area we are
creating an open source testbed of interpretability services and
ML classifiers trained on multiple datasets. The testbed will
allow us to explore trade-offs in ML service performance and
interpretability types, and also enable benchmarking of the
computational resource utilisation of interpretability services.
Ultimately, it might be feasible to optimise the selection of ML
and interpretability services in terms of utility functions taking
account of service performance and computational resource
utilisation.

Extension of the above approach to handling robustness
criteria is also desirable. The service type could be extended to
indicate the scope, modality, and provenance of training data,
for example, or model parameters. While task requirements
could be made arbitrarily specific in this way, it is debatable
how fine-grained this needs to be since such requirements —
like precision/recall — will tend to reduce the set of available
services and therefore restrict the amount of information
available to a task. Arguably it is better to collect more
information where available, and employ a ‘reasoning layer’ to
handle uncertainty where multiple services disagree in cases of
diversity; for some initial ideas and discussion in this direction,
see [24].

The approach to asset description using an ontology in-
volves effort in knowledge representation. It was argued in
previous work that the amount effort required is low because
the range of physical asset types is relatively static; new kinds
of sensing system are rarely introduced and persist for many
mission runs. However, software assets, being virtual entities,
may be introduced far more dynamically, especially for ML-
based services. Therefore, future work will address using ML
to learn asset descriptions (i.e., TBA model instances).

REFERENCES

[1] T. Pham, G. Cirincione, D. Verma, and G. Pearson, “Intelligence,
surveillance, and reconnaisance fusion for coalition operations,” in Proc
11th International Conference on Information Fusion, 2008.

[2] D. S. Alberts and R. E. Hayes, Power to the Edge: Command and
Control in the Information Age. CCRP, 2003.

[3] D. S. Alberts, R. K. Huber, and J. Moffat, NATO NEC C2 Maturity
Model. CCRP, 2010.

[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 5 2015.

[5] D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. A.
Kalyanpur, A. Lally, J. W. Murdock, E. Nyberg, J. Prager, N. Schlaefer,
and C. Welty, “Building watson: An overview of the deepqa project,”
AI Magazine, vol. 31, no. 1, pp. 59–79, 2010.

[6] A. Preece, F. Cerutti, D. Braines, S. Chakraborty, and M. Srivastava,
“Cognitive computing for coalition situational understanding,” in First
International Workshop on Distributed Analytics InfraStructure and
Algorithms for Multi-Organization Federations, 2017.

[7] T. G. Dietterich, “Steps toward robust artificial intelligence,” AI Maga-
zine, vol. 38, no. 3, pp. 3–24, 2017.

[8] Z. C. Lipton, “The mythos of model interpretability,” in 2016 ICML
Workshop on Human Interpretability in Machine Learning (WHI 2016),
2017, pp. 96–100.

[9] A. S. Ross, M. C. Hughes, and F. Doshi-Velez, “Right for the right rea-
sons: Training differentiable models by constraining their explanations,”
arXiv preprint arXiv:1703.03717, 2017.

[10] W3C, “Semantic sensor network ontology,” World Wide Web Consor-
tium, Oct. 2017. [Online]. Available: https://www.w3.org/TR/vocab-ssn/

[11] D. Pizzocaro, A. Preece, F. Chen, T. L. Porta, and A. Bar-Noy, “A
distributed architecture for heterogeneous multi sensor-task allocation,”
in Proc 7th IEEE International Conference on Distributed Computing
in Sensor Systems (DCOSS’11), 2011.

[12] A. Preece, T. Norman, G. de Mel, D. Pizzocaro, M. Sensoy, and T. Pham,
“Agilely assigning sensing assets to mission tasks in a coalition context,”
IEEE Intelligent Systems, vol. Jan/Feb, pp. 57–63, 2013.

[13] F. Doshi-Velez and B. Kim, “Towards a rigorous science of interpretable
machine learning,” arXiv preprint arXiv:1702.08608, 2017.

[14] C. Olah, A. Satyanarayan, I. Johnson, S. Carter, L. Schubert, K. Ye, and
A. Mordvintsev, “The building blocks of interpretability,” Distill, 2018,
10.23915/distill.00010.

[15] G. Montavon, S. Lapuschkin, A. Binder, W. Samek, and K.-R. Müller,
“Explaining nonlinear classification decisions with deep taylor decom-
position,” Pattern Recognition, vol. 65, pp. 211–222, 2016.

[16] M. T. Ribeiro, S. Singh, and C. Guestrin, ““Why should i trust you?”:
Explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD’16). ACM, 2016, pp. 1135–1144.

[17] R. Caruana, H. Kangarloo, J. Dionisio, U. Sinha, and D. Johnson, “Case-
based explanation of non-case-based learning methods,” in Proceedings
of the AMIA Symposium, 1999, pp. 212–215.

[18] L. A. Hendricks, Z. Akata, M. Rohrbach, J. Donahue, B. Schiele, and
T. Darrell, “Generating visual explanations,” in European Conference
on Computer Vision (ECCV 2016). Springer, 2016, pp. 3–19.

[19] D. Harborne, C. Willis, R. Tomsett, and A. Preece, “Integrating learning
and reasoning services for explainable information fusion,” in First In-
ternational Conference on Pattern Recognition and Artificial Intelligence
(ICPRAI 2018), 2018.

[20] C. Willis, D. Harborne, R. Tomsett, and M. Alzantot, “A deep con-
volutional network for traffic congestion classification,” in Proc NATO
IST-158/RSM-010 Specialists’ Meeting on Content Based Real-Time
Analytics of Multi-Media Streams. NATO, 2017.

[21] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Computer Vision and Pattern Recognition (CVPR), 2015.

[22] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

[23] R. Tomsett, D. Braines, D. Harborne, A. Preece, and S. Chakraborty,
“Interpretable to whom? A role-based model for analyzing interpretable
machine learning systems,” in 2018 ICML Workshop on Human Inter-
pretability in Machine Learning (WHI 2018), 2018.

[24] F. Cerutti, M. Alzantot, T. Xing, D. Harborne, J. Z. Bakdash, D. Braines,
S. Chakraborty, L. Kaplan, A. Kimmig, A. Preece, R. Raghavendra,
M. Şensoy, and M. Srivastava, “Learning and reasoning in complex
coalition information environments: a critical analysis,” in 21st IEEE
International Conference on Information Fusion, 2018.

