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Abstract

There is general consensus that it is important for artificial
intelligence (AI) and machine learning systems to be ex-
plainable and/or interpretable. However, there is no general
consensus over what is meant by ‘explainable’ and ‘inter-
pretable’. In this paper, we argue that this lack of consen-
sus is due to there being several distinct stakeholder com-
munities. We note that, while the concerns of the individual
communities are broadly compatible, they are not identical,
which gives rise to different intents and requirements for ex-
plainability/interpretability. We use the software engineering
distinction between validation and verification, and the epis-
temological distinctions between knowns/unknowns, to tease
apart the concerns of the stakeholder communities and high-
light the areas where their foci overlap or diverge. It is not
the purpose of the authors of this paper to ‘take sides’ — we
count ourselves as members, to varying degrees, of multiple
communities — but rather to help disambiguate what stake-
holders mean when they ask ‘Why?’ of an AI.

Introduction
Explainability in artificial intelligence (AI) is not a new
problem, nor was it ever considered a solved problem. The
issue first came to prominence during the ‘knowledge en-
gineering era’ of the late 1970s and early 1980s, when the
focus was on building expert systems to emulate human rea-
soning in specialist high-value domains such as medicine,
engineering and geology (Buchanan and Shortliffe 1984). It
was soon realised that explanations were necessary for two
distinct reasons: system development, particularly testing,
and engendering end-user trust (Jackson 1999). Because the
systems were based on symbolic knowledge representations,
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it was relatively straightforward to generate symbolic traces
of their execution. However, these traces were often complex
and hard for developers to interpret, while also being largely
unintelligible to end-users because the reasoning mecha-
nisms of the system were unrecognisable to human subject-
matter experts. The latter problem led to approaches aimed
at re-engineering knowledge bases to make the elements of
the machine reasoning more recognisable, and to make the
generated explanations more trustworthy (Swartout, Paris,
and Moore 1991). These latter, ‘stronger’ approaches to ex-
plainable AI were arrived at only when the knowledge en-
gineering boom was effectively over, so they gained little
traction at the time.

The last decade has seen a number of significant break-
throughs in machine learning via deep neural network ap-
proaches that has reinvigorated the AI field (LeCun, Ben-
gio, and Hinton 2015). In this generation of AI development,
the issue of explainability has again come into focus, though
the term interpretability is nowadays more commonly used,
indicating an emphasis on humans being able to interpret
machine-learned models. As in the 1970s and 1980s, there
are differing motives between system developers and users
in seeking explanations from an AI system: the former want
to verify how the system is working (correctly or otherwise)
while the latter want assurance that the outputs of the sys-
tem can be trusted (Ribeiro, Singh, and Guestrin 2016). Un-
like classical expert systems, deep neural network models
are not symbolic so there is no prospect of generating in-
telligible ‘reasoning traces’ at the level of activation pat-
terns of artificial neurons. Consequently, a distinction has
been made between interpretability approaches that empha-
sise transparency and those that are post-hoc (Lipton 2016).
The former are explanations expressed in terms of the inner
workings of a model while the latter are explanations derived
‘after the fact’ from the workings of the model, such as an
explanation in terms of similar ‘known’ examples from the
training data.

However, terminology in relation to explainability in
modern AI is far from settled. A recent UK Government
report on the state of AI received substantial expert evi-
dence and noted, ‘The terminology used by our witnesses



varied widely. Many used the term transparency, while oth-
ers used interpretability or ‘explainability’, sometimes in-
terchangeably. For simplicity, we will use ‘intelligibility’ to
refer to the broader issue’ (UK House of Lords Select Com-
mittee on Artificial Intelligence 2017). Others have used
the term legibility (Kirsch 2017) while recent thinking once
again emphasises ‘strong’ notions of explainability in causal
terms (Pearl and Mackenzie 2018). Terminology is further
complicated by concerns over the accountability (Diakopou-
los 2016) and fairness (O’Neil 2016) of modern AI systems
which, while overlapping the issue of end-user trust, extend
into ethical and legal domains. These various perspectives
and distinct groups of stakeholders have led to the rapid
creation of a large and growing body of research, develop-
ment, and commentary. Recent work seeks to place the field
on a more rigorous scientific and engineering basis by, for
example, examining axiomatic approaches to model inter-
pretability (Leino et al. 2018; Sundararajan, Taly, and Yan
2017), exploring more sophisticated methods for revealing
the inner workings of deep networks (Olah et al. 2018), and
arguing for increased use of theoretical verification tech-
niques (Goodfellow, McDaniel, and Papernot 2018).

In summary, today there is a large community focused
on the problem of explainable AI, with some seeking to
advance the state of the art, others seeking to assess, cri-
tique, or control the technology, and still others seeking to
exploit and/or use AI in a wide variety of applications. In
our own recent work, we examined explainability and in-
terpretability from the perspective of explanation recipients,
of six kinds (Tomsett et al. 2018): system creators, system
operators, executors making a decision on the basis of sys-
tem outputs, decision subjects affected by an executor’s de-
cision, data subjects whose personal data is used to train a
system, and system examiners, e.g., auditors or ombudsmen.
We found this Interpretable to whom? framework useful in
thinking about what constitutes an acceptable explanation
or interpretation for each type of recipient. In this paper,
we take a slightly different tack, examining the stakeholder
communities around explainable AI, and arguing that there
are useful distinctions to be made between stakeholders’
motivations, which lead to further refinement of the classical
AI distinction between developers and end-users.

Four Stakeholder Communities
Developers: people concerned with building AI applica-
tions. Many members of this community are in industry
— large corporates and small/medium enterprises — or the
public sector, though some are academics or researchers
creating systems for a variety of reasons including to as-
sist them with their work. This community uses both terms
‘explainability’ and ‘interpretability’. Their primary motive
for seeking explainability/interpretability is quality assur-
ance, i.e., to aid system testing, debugging, and evaluation,
and to improve the robustness of their applications. They
may use open source libraries created for generating ex-
planations; some well-known and widely-used examples in-
clude LIME (Ribeiro, Singh, and Guestrin 2016), deep Tay-
lor decomposition (Montavon et al. 2016), influence func-
tions (Koh and Liang 2017) and Shapley Additive Expla-

nations (Lundberg and Lee 2016). Members of the devel-
oper community may have created their own explanation-
generating code, motivated by an aim to aid practical sys-
tem development rather than to advance AI theory. In terms
of our Interpretable to whom? framework, members of the
developer community are system creators.

Theorists: people concerned with understanding and ad-
vancing AI theory, particularly around deep neural net-
works. Members of this community tend to be in academic
or industrial research units. Many are also active practition-
ers, though the theorist community is distinguished from
developers by their chief motivation being to advance the
state of the art in AI rather than deliver practical applica-
tions. Members of the theorist community tend to use the
term ‘interpretability’ rather than ‘explainability’. The mo-
tive to better understand fundamental properties of deep neu-
ral networks has led to some interpretability research be-
ing labelled ‘artificial neuroscience’ (Voosen 2017). A well-
known early piece of work identified properties of activation
patterns, and also how deep neural networks are vulnerable
to adversarial attacks (Szegedy et al. 2014). Recent work in
this milieu has looked at feature visualisation to better in-
terpret properties of hidden layers in deep networks (Olah et
al. 2018). It has also been suggested that such interpretations
may provide new kinds of cognitive assistance to human un-
derstanding of complex problem spaces (Carter and Nielsen
2017). Membership of this community of course overlaps
with the developer community. For example, in the case of
an industry researcher who carries out theoretical work on
deep neural network technology (theorist) while also apply-
ing the technology to build systems (developer). In our ‘In-
terpretable to whom?’ framework, members of the theorist
community are considered system creators.

Ethicists: people concerned with fairness, accountability
and transparency1 of AI systems, including policy-makers,
commentators, and critics. While this community includes
many computer scientists and engineers, it is widely inter-
disciplinary, including social scientists, lawyers, journalists,
economists, and politicians. As well as using ‘explainability’
and ‘interpretability’, members of this community use ‘in-
telligibility’ and ‘legibility’ as noted in the introduction. A
subset of this community will also be members of the devel-
oper and/or theorist communities2 but their motives in seek-
ing explanations are different: for the ethicist community,
explanations need to go beyond technical software quality
to provide assurances of fairness, unbiased behaviour, and
intelligible transparency for purposes including accountabil-
ity and auditability — including legal compliance in cases
such as the European Union’s GDPR legislation (Goodman
and Flaxman 2016). Our Interpretable to whom? framework
considers members of ethicist community to be dispersed
across all six roles, though the distinct explanation-seeking

1‘Transparency’ in the common usage of the term rather than
the specific usage by (Lipton 2016) and others.

2Indeed, professional bodies including ACM, BCS and IEEE all
place significant emphasis on recognising ethical, legal and societal
issues in software development.



motive of the ethicist community aligns most closely with
system examiners, creators, data subjects and decision sub-
jects.

Users: people who use AI systems. The first three commu-
nities comprise the vast majority of people who contribute to
the growing literature on AI explainability/interpretability,
whereas our fourth generally does not. Members of the
user community need explanations to help them decide
whether/how to act given the outputs of the system, and/or
to help justify those actions. This community includes both
‘hands on’ end-users but also everyone involved in processes
that are impacted by an AI system. Consider an insurance
company that uses an AI tool to help decide whether and at
what cost to sell policies to clients. The end-users of the tool,
the director of the company, and the clients are all members
of the user community. Again, members of the user commu-
nity may also be in other stakeholder communities, some-
times in relation to the same AI system; for example, an
academic criminologist who has learned how to apply AI
technology to create a predictive analytics tool (developer)
to assist them in their research (user), while being aware of
societal impacts of their work (ethicist). The Interpretable
to whom? framework places system operators and decision
executors in the user community, along with decision sub-
jects.3

Engineering and Epistemological Perspectives
Explanation is closely linked to evaluation of AI systems.
As noted in the introduction, early AI explanation efforts
aimed to help system developers diagnose incorrect reason-
ing paths. Modern transparent interpretation methods are
akin to such ‘traces’, while post-hoc explanation techniques
can be regarded as ‘diagnostic messages’. Moreover, expla-
nations speak to issues of user trust and system impact, to
the user and ethicist communities. Colloquially, in software
engineering, verification is about ‘building the system right’
whereas validation is about ‘building the right system’. In
terms of explanation, verification is mainly associated with
transparent techniques; ‘glass box’ approaches are essential
because it matters greatly how the system is built. Validation
is more concerned with what the system does (and does not
do) and so post-hoc techniques are often useful here.

In line with this thinking, and at risk of overgeneralis-
ing, we assert that the developer and theorist communities
tend to focus more on verification: the former because they
want a system that is ‘built right’, and the latter because they
are interested understanding how the various kinds of deep
neural networks work, and what are their theoretical limits.
We suggest that the user and ethicist communities are more
focused on validation, being more concerned with what an
AI system does than about how it is built. This means that
the developer and theorist communities tend to focus on
transparency-based explanation techniques, while user and
ethicist communities value post-hoc techniques.

3Arguably, decision subjects will be aligned with the user or
ethicist communities, depending on how ‘empowered’ they per-
ceive themselves to be in relation to the effects of the system out-
puts.

From an epistemological perspective, we can consider the
familiar framing in terms of knowns and unknowns:

Known knowns: for an AI system based on machine
learning, these constitute the set of available training and test
data. The ability of the system to deal with known knowns
is verified by standard testing approaches (e.g., n-fold cross-
validation) and reported in terms of accuracy measures.
Within the bounds of the known knowns, transparency-
based explanation techniques such as deep Taylor decompo-
sition (Montavon et al. 2016) or feature visualisation (Olah
et al. 2018) can be used to ‘trace’ the relationships between
features (in input and hidden layers) and outputs. All four
stakeholder communities have a clear interest in understand-
ing the space of known knowns, though we would argue that
it tends to be the developer constituency that are most fo-
cused on this space: maximising system performance within
the space, defining the bounds of the space, and widening
those bounds as much as is feasible.

Known unknowns: these constitute the space of queries,
predictions, or behaviours that the AI system is intended to
perform. The accuracy measures produced in system testing
(verification) provide an estimate of the ability of the system
to deal well with the space of known unknowns. The value
of a system to members of the user community is in terms
of this ability (otherwise the system is nothing more than
a retrieval tool for known knowns). Feedback processes are
needed because system system outputs may prove to be in-
valid at run-time (e.g., the system recommends an action that
turns out to be inappropriate) leading to the generation of ad-
ditional data for the training (known knowns) space. Mem-
bers of the theorist community are interested in better under-
standing how AI systems process known unknowns (Olah et
al. 2018; Szegedy et al. 2014), and creating improved archi-
tectures for doing so.

Unknown knowns: from the perspective of the AI sys-
tem, these are things that are outside its scope, but known
more widely. Some biases of concern to the ethicist con-
stituency fall into this category: a narrowness or skew in the
training data results in a model that is ‘blind’ to particular
prejudices (Diakopoulos 2016; O’Neil 2016). Validation is
key to revealing such unknown knowns.

Unknown unknowns: these have recently been high-
lighted as a key concern in AI system robustness (Dietterich
2017), with a variety of methods being proposed to deal with
them, including employing a portfolio of models to mitigate
against weaknesses in individual models, and creating AI
systems that build causal models of the world (Lake et al.
2017) and/or or are aware of their own uncertainty (Kaplan
et al. 2018). Clearly, all four communities have reason to
be concerned with unknown unknowns: developers in terms
of system robustness, theorists in terms of seeking stronger
theories and architectures, ethicists in terms of ethical and
legal implications of AI system failings, and users in terms
of impacts on themselves and their livelihoods.

In software engineering, formal verification techniques
have been used to mathematically define the space of
knowns — in terms of a system specification — leaving
only the unknown unknowns fully excluded from that space.
The theorist community is beginning to think along these



Figure 1: Example saliency map for traffic congestion: the
red regions of the input image are most significant in classi-
fying the image as congested

lines (Goodfellow, McDaniel, and Papernot 2018), though
how to formally specify the intended behaviour of a deep
neural network-based AI system remains an open question.
This difficulty has been highlighted in recent years by re-
search into ‘adversarial examples’, which are designed to
fool machine learning models by minimally perturbing input
data to cause incorrect classifications (Goodfellow, Shlens,
and Szegedy 2014; Szegedy et al. 2014). Such examples
take advantage of the difficulty in learning correct classifi-
cation decision boundaries from limited, high-dimensional
data. While several methods to mitigate against such attacks
have been proposed (Papernot et al. 2015; Ross and Doshi-
Velez 2017), none amounts to a formal verification of the
model’s behaviour on adversarial inputs (though see (Dvi-
jotham et al. 2018)). Building uncertainty awareness into
models so that they can recognise and explicitly deal with
such unknown unknowns may be a reliable way of improv-
ing system robustness (Gal and Smith 2018), though with
unkown implications for human interpretability.

Explanation Types and Discussion
Transparency-based explanations: The definition of
transparency in (Lipton 2016) appears consistent with the
notion of ‘full technical transparency’ in (UK House of
Lords Select Committee on Artificial Intelligence 2017).
Both sources conclude that achieving full transparency is
not realistic for anything other than small models, e.g., shal-
low decision trees or rule bases. A more limited form of
transparency is exhibited by attribution techniques that visu-
alise activations in the input or hidden layers of a network
(e.g., deep Taylor decomposition (Montavon et al. 2017),
feature visualisation (Olah et al. 2018)) often as a saliency
map showing the features of the input that had most sig-
nificance in determining the output. While noting that the
visualisation element of these approaches is a post-hoc tech-
nique (Lipton 2016), we nevertheless consider these meth-
ods transparency-based, to distinguish them from ‘purely
post-hoc’ approaches that do not derive at all from inner
states of the model.

Figure 1 shows an example saliency map for a traffic con-
gestion monitoring system, from (Harborne et al. 2018)4.

4The example map was generated using the LIME soft-

Figure 2: Example explanation-by-example for a traffic con-
gestion classification: the input image is in the middle; the
left and right images are training examples with congestion
classification probabilities slightly lower and higher, respec-
tively, than the input

From a system verification perspective, such explanations
would seem of immediate value to the developer and the-
orist communities, though with the caveat that many attri-
bution methods are unstable (Sundararajan, Taly, and Yan
2017) and/or unreliable (Kindermans, Hooker, and Adebayo
2017). In addition to these technical concerns, attribution
visualisations can be hard to interpret by members of the
user and ethicist community where the explanation does not
clearly highlight meaningful features of the input. Therefore,
such explanations are in danger of making members of these
communities less inclined to trust the system because they
appear to reveal a system that operates in an unintelligible,
unstable, ‘inscrutable’ or ‘alien’ manner. Even when an ex-
planation seems ‘convincing’ because it highlights meaning-
ful and plausible features, there is a danger of confirmation
bias in the receiver unless counterfactual cases are also in-
cluded. Providing detailed transparency-based explanations
may also overwhelm the recipient — more information is
not necessarily better for user performance (Marusich et al.
2018).

Post-hoc explanations: A commonly-used type of post-
hoc explanation is approximation using a local model, e.g.,
visualised as a saliency map as in LIME (Ribeiro, Singh, and
Guestrin 2016), or in the form of a decision tree (Craven
and Shavlik 1996). Such techniques provide explanations
that appear similar to those generated by transparency-based
techniques and, if offered to users or ethicists, it is impor-
tant to communicate clearly that they are actually post-hoc
approximations. Explanations in terms of examples — see
Figure 2 — are a traditional approach favoured by subject-
matter experts (Lipton 2016) and therefore especially ap-
propriate for the user and ethicist communities. Approaches
here include identifying instances from the training set most
significant to a particular output (Koh and Liang 2017) and
employing case-based reasoning techniques to retrieve simi-
lar training examples (Caruana et al. 1999). Such approaches
have an advantage that counterfactual examples can also be
provided. Another common post-hoc technique targeted to-
wards users is to generate text explanations; the approach
in (Hendricks et al. 2016) uses background domain knowl-

ware (Ribeiro, Singh, and Guestrin 2016) which does not conform
to our definition as being transparency-based because it generates
a local approximation of the learned model; it is included here only
as an example of what a saliency map looks like in general.



edge to train the system to generate explanations that em-
phasise semantically-significant features of the input.

Layered explanations: From the above discussion, it may
seem that the sensible approach is to offer different explana-
tions tailored to the different stakeholders, but can we en-
visage instead a composite explanation object that packs to-
gether all the information needed to satisfy multiple stake-
holders, and can be unpacked (e.g., by accessor methods)
per a recipient’s particular requirements. Moreover, we can
view such an object being layered as follows:
Layer 1 — traceability: transparency-based bindings to in-
ternal states of the model so the explanation isn’t entirely a
post-hoc rationalisation and shows that the system ‘did the
thing right’ [main stakeholders: developers and theorists];
Layer 2 — justification: post-hoc representations (poten-
tially of multiple modalities) linked to layer 1, offering se-
mantic relationships between input and output features to
show that the system ‘did the right thing’ [main stakehold-
ers: developers and users];
Layer 3 — assurance: post-hoc representations (again, po-
tentially of multiple modalities) linked to layer 2, with ex-
plicit reference to policy/ontology elements required to give
recipients confidence that the system ‘does the right thing’
(in more global terms than Layer 2) [main stakeholders:
users and ethicists].
Example — wildlife monitoring system: Layer 1 (trace-
ability): saliency map visualisation of input layer features
for classification ‘gorilla’; Layer 2 (justification): ‘right for
the right reasons’ semantic annotation of salient gorilla fea-
tures; Layer 3 (assurance): counterfactual examples showing
that images of humans are not miss-classified as ‘gorilla’.

Conclusion
In this paper we have attempted to ‘tease apart’ some of the
issues in explainable AI by focusing on the various stake-
holder communities and arguing that their motives and re-
quirements for explainable AI are not the same. We re-
lated notions of transparent and post-hoc explanations to
software verification and validation, and consideration of
knowns/unknowns. We suggested that a ‘layered’ approach
to explanations that incorporates transparency with local and
global post-hoc representations may serve the needs of mul-
tiple stakeholders.

On a final note, the most influential of our four stake-
holder communities is the users — the one that’s barely rep-
resented in the literature — because, as in the 1980s, failure
to satisfy users of AI technology in the long run will be the
most likely cause of another ‘AI Winter’. Unfulfilled expec-
tations and/or a smaller-than-hoped-for market will lead to
investment drying up.
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