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ABSTRACT 

Delamination is a frequent cause of failure in laminated structures, particularly under 

compressive loads. The presence of delaminations in composite laminates reduces 

their overall stiffness. In addition, delaminations tend to grow rapidly under 

postbuckling loads, causing further reductions in the structural strength and leading 

ultimately to a sudden structural failure. Recently, many studies have been carried out 

to investigate the effects of delaminations on the buckling and vibration behaviour of 

composite structures. Finite element analysis is often used to perform these due to its 

ability to model complex geometries, loading and boundary conditions, but this comes 

at a high computational cost. The exact strip method provides an efficient alternative 

approach using an exact dynamic stiffness matrix based on a continuous distribution 

of stiffness and mass over the structure, so avoiding the discretization to nodal points 

that is implicit in finite element analysis. However due to its prismatic requirements, 

the exact strip method can model damaged plates directly only if the damaged region 

extends along the whole length of the plate. This thesis introduces a novel combination 

of exact strip and finite element analysis which can be used to model more complex 

cases of damaged plates. Comparisons with pure finite element analysis and a previous 

technique based on the exact strip method demonstrate the capability and efficiency of 

this hybrid method for a range of isotropic and composite plates. 
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1 Introduction  

The advantages of using lightweight structures in a number of industries have directed 

engineers to the use of new materials. Composite materials have been introduced as an 

example of new man-made lightweight materials, which can be tailored for specific 

applications [1]. The mechanical properties of these composite materials can be 

influenced by creating different combinations and geometries, for example high 

strength/stiffness fibres (such as glass, carbon etc) and matrices (including thermoset 

or thermoplastic resins) during the manufacturing stage [2].  Nowadays engineers are 

able to tailor-make advanced laminated composite materials, which are stiffer and 

lighter than any other structural materials [3]. However, composite materials require 

adequate testing in order to understand their complex behaviour.  

Composite material applications, damage types and mechanisms and the effect of this 

damage on the behaviour of a composite structure are briefly discussed in this chapter 

to introduce the thesis.   

1.1 Composites 

Structural materials can be divided to isotropic or anisotropic materials [4]. Composite 

materials, anisotropic materials, are formed by uniting two or more separate materials 

such that they have better engineering properties. Composite materials can be 

categorised into  [5, 6]: 

 Fibrous composites, fibers in a matrix, that can be short or continuous  

 Particulate composites, particles in a matrix  

 Laminated composites, layers of various materials  
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(a) 

 

(b) 

 

(c)  

 

(d) 

 

Figure 1-1 Composite materials (a) short random  fiber reinforced composites (b) 

continuous fiber reinforced composites (c) particulate composites (d) laminated 

composites [5]. 
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Figure 1-2 Composite laminate structure 

Fibrous composites can be short fiber (usually randomly orientated fibers) or long fiber 

(continuous fiber) reinforced composites as shown in Figure 1-1 (a & b). Figure 1-1 

(c) shows the use of particles as the reinforcement to create particulate composites. 

Figure 1-1 (d) illustrates the structure of a laminated composite material. In this type 

of composite the material, thickness, and the fiber orientations in each lamina play a 

key role in the mechanical properties of the composite. The sequence of various 

orientations of the plies in a laminated composite is called the stacking sequence, see 

Figure 1-2. Typical applications in a range of different industries and the advantages 

and disadvantages of a composite laminate and are summarized in Table 1-1 and 

Table 1-2 respectively. 
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Table 1-1 Applications of composite laminates in industry [7-9] 

Branch of industry Application 

Rocket construction Load-carrying structural elements, fuel tanks, aerial 

elements, rocket boosters 

Aircraft construction Tail assembly, stabilizers, inner lining of cabins, wing, 

fuselage, radomes, leading edges, ailerons, wings, etc (see 

Figure 1-3) 

Machine building Transmission cases, gear wheels, machine elements, fly 

wheels, pipes, robot arms, bearings, … 

Automotive industry Wheel rims, trunk covers, hoods, steering columns, inner 

lining of cabins, suspension arms, trailers, telecabins 

Medical equipment Implants, artificial joints 

Sports industry Surfing, skis, clubs, canoes, bicycles, bows and arrows, 

surf boards 

Telecommunication Parabolic aerials, insulation for electrical construction, 

antennas, radomes   

Oil production Elements of frames for offshore drilling rigs 

Civil engineering Facing materials, strengthening of building structures, 

concrete molds, swimming pools, doors, furniture, 

bathrooms, partitions  

Energetics Rotor blades of wind power stations 

Industrial engineering Reservoirs, pipelines 
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Table 1-2 Advantages and disadvantages of composite laminates [7, 10]. 

Advantages Disadvantages 

High specific strength  Loss of strength due to aging of 

adhesive joints 

Thermoinsulation High technological requirements for the 

accuracy of production 

Sound-proofing Necessity of modifying the methods of 

non-destructive testing of structures 

High fatigue characteristics High sensitivity to impact loads 

High corrosive resistance Brittleness and damage tolerance is 

resin-dominated properties 

Low tendency to loss stability Temperature has an effect on composite 

mechanical properties 

Decrease in the number of assembling 

operations due to the development of 

more complex components 

Susceptibility to impact damage and 

delamination 

 

Recently, composite laminates have been increasingly used in many fields such as 

civil, mechanical and aerospace applications because of their high strength and 

stiffness combined with low density when compared to some other materials such as 

isotropic materials. Using composite materials in an aircraft fuselage for example 
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therefore can provide much better specific strength’ than could be achieved using 

isotropic materials. Minimizing the mass of an aircraft's structure through the use of 

composites reduces the cost of materials and manufacturing, as well as fuel 

consumption and atmospheric emissions. Examples of the use of composite laminates 

in aircraft include the Airbus A-380.800 which is 25% composite, the Airbus 350-900 

which is 52% composite and the Boeing 787.800, see Figure 1-3, which is 50% 

composite [2]. 

 

Figure 1-3 Composite use in Boeing 787, figure reproduced from AERO Magazine 

[9]. 

1.2 Defects in composites 

Composite materials are prone to many different imperfections many of which can be 

introduced during the manufacturing process [11]. Composites can also be degraded 

due to a number of scenarios during their service life. All of these defects are known 

Streel (primarily landing gear) 

Titanium 

Aluminium 

Advanced Composites 

Other 
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to negatively affect the performance of a composite structure although to differing 

degrees. 

The following sections describe the types of defect which can be introduced: during 

the manufacturing process; during operation and during the service life of the 

component.  

1.2.1  Defects occuring during the manufacturing process  

Nowadays engineers use complicated techniques for manufacturing well-consolidated 

fiber and resin products such as hot pressing or autoclaving. In these kinds of 

manufacturing process, the quality of the finished material depends on proper 

compaction pressure being applied correctly at particular moments during the heating 

cycle and using proper techniques for efficiently bleeding off the excess resin without 

affecting the quality of the surface finish. During the manufacturing process, defects 

can be introduced with different sizes and frequencies of occurrence depending on the 

nature of the process cycle [12]. However, defects which are typically generated during 

these manufacturing processes, include:   

 Voids, which can be due to air not properly controlled during cure. 

 Foreign inclusions. 

 Fiber debonding due to incorrect cure conditions. 

 Fiber misalignment, which can cause local change in fibre volume fraction. 

 Ply misalignment because of mistakes made in lay-up of the component plies. 

 Wavy fibers, which can seriously affect laminate strength. 

 Cracks and holes in the matrix material. 

 Fibre breakage. 
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 During the manufacturing process, delaminations can be produced due to 

contamination during lay-up process or by machining, particularly when 

bonding stiffeners to panels. 

The presence of voids or the porosity are often cited as the most important 

manufacturing defect likely to arise. Porosity can occur in practice due to insufficient 

resin applied or the resin being incorrectly cured [11-13].    

1.2.2 In-service defects 

Degradation in composites during service can be due to a number of mechanisms 

depending on the environment and the sensitivity or the nature of the materials used. 

Examples of these mechanisms include static overload, overheating, lighting strike, 

impact and fatigue load. However, despite the varied mechanisms only a small number 

of different types of defect result. Smith [12] listed these defects in order of importance 

as the following: 

 Delaminations. 

 Bond failures. 

 Cracks 

 Ingress of moisture. 

 Fracture or buckling of fibers. 

 Failure of the interface between the fibers and matrix. 

Due to its importance as a failure mechanism the work carried out in this thesis is 

mainly focused on studying the effects of damage due to delamination on the 
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behaviour of laminated plates under vibration using a developed novel hybrid 

technique.   

1.3 Delamination 

Delamination is one of the most frequently encountered problems in composite 

materials, sometimes also known as an interface cracking which occurs between the 

laminae of a laminate. This cracking can be as a result of manufacturing defects such 

as air entrapment, incomplete wetting or trapped air bubbles between plies, or a 

debonding of two layers because of high stress concentrations (free edge effects). It 

can also be caused as a result of shrinkage cracks and adhesion failure. The 

transportation and installation stage can be another case where delaminations can 

originate, particularly since loads and actions during this stage differ in level and 

character from the ones used in design, for example, impacts upon the surfaces of a 

composite structure caused due to tool drop or low velocity impact of foreign objects. 

Finally during the operation stage, delaminations can occur because of inadequate 

design or off-design situations [14]. Other causes of delamination for example fatigue 

load or low-velocity impact [15, 16]  

It is known that delamination is one of the most frequent causes of failure in composite 

laminate structures, particularly those subjected to compressive loads [17, 18]. The 

presence of delaminations in composite structures can reduce their overall stiffness 

and strength and cause degradation. Delaminations can grow rapidly under 

postbuckling loads potentially leading to sudden structural failure [19]. They can also 

cause significant reductions in the associated natural frequencies or load-carrying 
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capacity of the structure. Delaminations are particularly important because they can be 

difficult to detect visually as they often do not cause any effect to the external surface. 

1.3.1 Types of delamination  

Delamination in composite laminates can be categorised based on which interlaminar 

fracture mode is developed. Figure 1-4 illustrates the three main delamination modes. 

Mode 1 is the peeling or opening mode, mode 2 is the sliding or in-plane shear mode 

and mode 3 is the twisting or out of plane shear mode [20].  

Bolotin [21] distinguished delaminations in composites based on their location through 

the thickness of the plate, the value of ℎ𝑑 in Figure 1-5,  into internal delaminations 

and near-surface delaminations. Internal delaminations were defined as those with 

delamination depths comparable to half the thickness of the composite laminate. With 

this kind of delamination the delaminated section usually deforms following the 

overall structure (i.e. it demonstrates global behaviour) as long as the delamination is 

small. The behaviour of near-surface delaminations can be more complicated due to 

the fact that deformation of the delaminated area does not always follow that of the 

overall structure, with localised effects often seen, see Figure 1-6.  
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Figure 1-4 Basic delamination modes [20]. 

Near-surface delaminations can be further categorised based on their geometric shape. 

Figure 1-6 illustrates different types of surface delamination categorised based on the 

geometry of the delaminated region. A continuous delamination, in which the 

delamination originates and grows when the plate is under a tensile load, is shown in 

Figure 1-6 (a). A continuous or closed compression-caused delamination is illustrated 

in Figure 1-6 (b). Figure 1-6 (c) or elliptic and continuous as Figure 1-6 (d) illustrates. 

At the edges of components pocket-like or pocket-like accompanied by transverse 

cracking surface delaminations can also occur as shown in Figure 1-6 (e) and (f) 
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respectively [14]. Circular, triangular and rectangular delamination shapes can also be 

added as types of near-surface delamination. 

 

Figure 1-5: A composite plate containing an embedded rectangular delamination at 

depth ℎ𝑑. 

 

 

 

 

 

 

 

 

 



Chapter 1: Introduction 

13 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Figure 1-6: Typical surface delaminations: (a) open in tension, (b) closed in 

compression, (c) open quasi-elliptic, (d) closed elliptic, (e) pocket-like, (f) pocket-like 

with a transverse crack [14]. 
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1.4 The effect of damage on composite structures 

As composite structures are increasingly replacing many currently used materials, 

mainly because of the weight reduction [22], intensive research, both numerical and 

experimental, has to be carried out to study the effect of different types of potential  

damage on the performance of laminated structures under various load cases. In 

section 1.2 different defects commonly found in composite structures were identified 

and this section briefly discusses the effect of each of these types of damage on the 

behaviour of the composite laminate.  

It is identified that the presence of damage in composite structure may affect its 

stiffness and strength negatively. Sreehari and Maiti [23] presented a numerical study 

on the buckling and post buckling of composite plates containing  internal flaws. The 

damage was assumed to consist of a centrally located rectangular patch. It was found 

that the decrease of the critical buckling load resulting from an increase in the size of 

this damage was sensitive to the kind of load applied, either uniaxial or biaxial, and 

the stacking sequence of the laminated plate. Santos et al. [24] detailed the effect of 

vertical and inclined holes on the impact strength of carbon-fibre reinforced 

composites. Plates incorporating damage were submitted to low impact tests and the 

results were compared with perfect plates. For the perfect plates (control samples), this 

impact load caused complex damage as a result of the interaction between 

delamination and matrix cracking. Higher levels of damage were detected in the area 

around the vertical hole with significant effect on the delamination shape, which was 

more noticeable in case of inclined hole. Li [25] studied delamination and transverse 

crack growth in laminated composite plates and shells under line distributed load. It 
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was found that aspects such as the material’s properties, the distance between the 

delamination and the transverse cracks, their sizes and locations and the nature of the 

load applied were all elements that affected the direction and rate of the growth of the 

damage. 

1.5 Conclusions 

It can be concluded that predicting the way in which damage affects the global 

performance of a composite structure or the level of reduction in its overall stiffness 

and strength depends on the following aspects: 

 The type of damage, whether the damage is a hole, delamination, crack, etc.  

 The size of the damage. 

 The location of the damage. 

 The material properties. 

 The nature of the load applied. 

 The boundary conditions of the damage. 

 Any combination of the above. 

1.6 Thesis outline 

The work contained in this PhD is based on using the exact strip method working in 

combination with finite element theory to improve its ability to model a wider variety 

of damaged plates, using the exact strip method to model the undamaged parts of the 

structure and finite element analysis to model the area surrounding the damage. The 

aims of this novel hybrid method, denoted VFM, are 



Chapter 1: Introduction 

16 

 

 To add a capability to the exact strip method for handling a wider range of 

more complicated damaged plate structures. 

 To achieve the simplicity and computational efficiency, possible with the exact 

strip method and the capability of finite element method to model complicated 

cases of damage.   

The VFM method will be used to understand the vibration behaviour, in particular the 

natural frequencies, of isotropic plates containing regions of reduced stiffness and 

delaminated composite plates. This is important not only at the design stage because 

it allows the effects of various types of damage to be determined, but also as the first 

step in the development of damage detection techniques, since an accurate prediction 

of these effects is the first stage in solving the inverse problem i.e. to determine the 

location and size of a defect based on changes in its natural frequencies.  

The aims will be achieved by completion of the following objectives:  

1) Understanding the theories and formulations used in VICONOPT and the 

Exact Strip Method and using them to study the effect of damage in 

composite plate structures.    

2) Introducing a novel hybrid method by combining Finite Element 

Analysis and the Exact Strip Method.  

3) Using this new method to model the effect of damage on the natural 

frequencies a series of plates and verifying the results by comparing them 

with pure finite element method results. 

The work is structured into seven chapters. Following the introduction, Chapter 2 

includes a literature review on analysing the behaviour of damaged composite plate 
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structures. Studies of different types of damage with various configurations, and the 

techniques used to model the damage, are summarized. The research gap is defined in 

this chapter to improve the ability of the exact strip method to model a wider variety 

of damaged plates. The aim of this thesis was to develop a novel hybrid method 

(VFM), combining the exact strip method and the finite element theory, which can be 

used to address damage problems in composite laminates which cannot be handled 

directly using the exact strip method. VFM combines the simplicity and efficiency of 

the exact strip method and the versatility of the finite element method. 

Chapter 3 reviews the theory and the formulations used in the exact strip method and 

introduces the computer program VICONOPT through which it is implemented and 

the theoretical basis of the two strands of the programme VIPASA (Vibration and 

Instability of Plate Assemblies including Shear and Anisotropy) and VICON 

(VIPASA with Constraints) analysis, highlighting the features that are essential in 

understanding the remainder of the work.  

Chapter 4 studies the effect of damage on the critical buckling of composite plates 

using VICONOPT. Work is outlined which investigates the effect of the ply 

orientation by considering different stacking sequences of the plies, on the critical 

buckling load and its mode shape including an analysis of both through-the-length and 

through-the-width single and multiple delaminations and the effect of delamination on 

the global buckling load. 

Chapter 5 introduces a novel technique combining the exact strip method with finite 

element theory (VFM) and details the theory and formulation used in this method. 

VFM is developed to enable the modelling of more complex geometries of damage 
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than the pure exact strip method whilst retaining much of the computational efficiency 

offered using exact strip.  

Chapter 6 VFM is used to study the effect of damage, including embedded and 

through-the-length delamination and regions of stiffness reduction, on the behaviour 

of vibrating composite laminates in undamped free vibration. Configurations such as 

the size of the damage, the plan location and through the thickness location of the 

damage, and the plate aspect ratios are considered. The results obtained are compared 

with VICON analysis, ABAQUS finite element analysis and a previous smeared 

method to prove the effectiveness of this method.   

Finally, Chapter 7 provides the overall conclusion of the results of the analyses 

undertaken and the methods used and discusses potential future work.  
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2 Literature review  

This chapter describes research carried out in previous studies to investigate the effect 

of delaminations on the buckling and vibration behaviour of composite structures and 

the techniques which have been used.  

2.1 The effect of delaminations and damage on the behaviour of composites 

Delaminations can reduce the overall stiffness of a structure and grow rapidly under 

postbuckling loads potentially leading to sudden structural failure. They can also cause 

significant reductions in the associated natural frequencies of the structure. Many 

researchers have investigated the effects of damage on the buckling or vibration 

behaviour of composite structures. 

 Lee and Park [19] investigated the buckling behaviour of delaminated composite 

structures using enhanced assumed strain (EAS), three-dimensional finite element 

formulations. Laminated composite plates containing through-the-width or embedded 

delaminations were studied with the effect of varying parameters including 

delamination locations, sizes, stacking sequences and aspect ratios investigated. 

Multiple delaminations in the embedded rectangular delamination region were also 

explored. The numerical results presented focused on the effects of these parameters 

on the local buckling. They found that the EAS formulations provide faster analysis 

and better accuracy when compared with conventional approaches based on finite 

element theory.  

Pekbey and Sayman [26] investigated numerically and experimentally the behaviour 

of rectangular laminated composite plates with centrally located through-the-thickness 
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strip delaminations. Variations in structural configuration were considered, including 

stacking sequence, delamination sizes and specimen geometry. Experimentally, 

compression tests were carried out, and numerically, finite element modelling, using 

ANSYS [27], was used for analysing the critical buckling load of composite plates 

with various configurations. Good agreement was found between the experimental 

measurements and the finite element predictions.  

Cappello and Tumino [28] presented a numerical analysis of the behaviour of 

composite plates with multiple delaminations subjected to uniaxial load. Both buckling 

and post-buckling behaviour of composite plates with multiple delaminations was 

studied using finite elements analyses (ANSYS). Interaction between local and global 

buckling and the location and size of delaminations was studied and the influence of 

delamination length and position as well as the stacking sequence of the plies on the 

critical buckling load of the plate was determined.   

The pre- and post-buckling behaviour of a composite laminate containing a strip 

delamination was examined numerically and experimentally by Karihaloo and Stang 

[29] who introduced guidelines for assessing the threat posed by interlaminar matrix 

delamination. The analytical solution of the problem was significantly simplified in 

order that the assessment procedure developed could be used by designers.  

Liu et al. [30] explored the effect of multiple through-the-width delaminations on the 

postbuckling properties of flat composite laminates under compressive load. They 

used a virtual crack closure technique (VCCT), combined with a finite element 

approach, to deal with delamination growth. It was found that the results from the 

VCCT were in relatively good agreement with the results obtained from existing 
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models and experiments. The work was extended by Liu and Zheng [31] in order to 

use the technique to study the buckling and postbuckling behaviours of symmetric and 

unsymmetric composite laminates containing through-the-width multiple 

delaminations.   

Nikrad et al. [32] introduced a layerwise theory to investigate the postbuckling 

behaviour of and delamination growth in geometrically imperfect composite plates. 

The theory adopted the Ritz method and assumed displacement fields, x, y and z, in 

order to reduce the computational cost. Different boundary conditions, delamination 

types and locations were considered. The technique was shown to be capable of 

predicting the local and global buckling of a delaminated composite plate following 

validation against finite element simulations.  

Yazdani et al. [33] presented a first-order shear deformation theory, based on the finite 

element method, for modelling multi-layered composite laminates. This method was 

used to investigate delamination in composite laminates with curvilinear fibres. It was 

concluded that the theory was effective when analysing laminates in which variations 

in stiffness within the surface of plies, is of concern.   

Szekrényes [34] studied the displacement and stress fields in symmetrically 

delaminated, layered composite plates subjected to bending by using a modified 

version of the third-order shear deformation theory by Reddy [5]. Results for simply-

supported delaminated plates were compared with a 3D finite element model. Whilst 

overall agreement was established, some differences were found in the case of normal 

and transverse shear stresses.  
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Wang et al [35] studied the effect of single and multiple embedded delaminations on 

the buckling behaviour and compressive failure load of glass fibre reinforced plastic 

specimens. Finite element analysis was used to develop a deep understanding of the 

mechanisms of compressive failure. Reasonable agreement was obtained between the 

finite element analysis results and experimental measurements for the range of 

specimens with different delamination geometries that were tested. 

Aslan and Şahin [36] conducted an investigation into the effect of the delaminations 

induced by low velocity impact on the critical buckling and compressive failure loads 

of E-glass/epoxy composite laminates. In their study, experimental measurements 

were compared with a numerical study using the finite element analysis, ANSYS 11.0 

package. A good agreement between the numerical and experimental results was 

obtained.   

Park et al [37] carried out a free vibration analysis of composite skew laminates 

containing delaminations around quadrilateral cutouts. A finite element formulation 

based on high-order shear deformation theory (HSDT) was used to model the 

delamination around the cutouts. The effect of  skew angle on a rectangular plate’s 

natural frequencies and mode shapes was explored. Various parameters such as 

delamination size, stacking sequence, length-to-thickness ratio and cutout size were 

considered.  

Jayatilake et al [38] studied the effect of delaminations on the free vibration behaviour 

of multilayer sandwich panels with interlayer delaminations. A series of parametric 

studies using a developed three dimensional finite element model were conducted 
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where each sandwich layer was modelled using first order shear deformation theory 

based plate elements.    

Devendiran et al [39] performed an experimental and theoretical free vibration analysis 

study of damaged and undamaged CFRP/GFRP laminate beams with rectangular 

notches. Damage was created in the laminates at varying distances along the transverse 

axis of the beam to help understand its influence on material and geometrical 

properties. The experimental measurements were compared and validated with the 

results obtained from the finite element model.   

Wang et al [40] used the perturbation method to study the behaviour of laminated 

composite plates containing local reductions in stiffness under vibration. This 

degradation in structural stiffness was considered to be representative of the effect of 

damage. Damage was characterised based on three parameters, namely damage 

severity, damage anisotropy, and damage location/area The results from the proposed 

method were compared with numerical finite element analyses and it was found that 

the proposed solution could be applied to the vibration analysis of orthotropic 

laminated plates containing small amounts of damage.  

In recent years, the majority of the research carried out in this field has used finite 

element analysis to model laminates incorporating one or more damaged regions. The 

FE method provides a versatile approach, capable of handling many combinations of 

load and boundary conditions for a range of damage shapes. However, even with 

today’s computer hardware, this type of analysis still often comes at a high 

computational cost. During an aircraft’s preliminary design stage when many 

alternative configurations and load cases need to be considered, fast and reliable 
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analysis tools are required. The exact strip method [41] provides an efficient 

alternative approach using an exact dynamic stiffness matrix based on a continuous 

distribution of stiffness and mass over the structure, so avoiding the discretization to 

nodal points that is implicit in FE analysis. In this method, the deflection is assumed 

to take the form of a number of half wavelengths in the axial direction.  

2.2 The exact strip method 

In 1974 W. H. Wittrick and F. W. Williams developed the computer program VIPASA 

[42] at the University of Birmingham . This program is based on exact flat plate theory 

in which the continuous distribution of stiffness over a structure is assumed [43]. After 

enhancement by the NASA-Langley research centre VIPASA was released in 1976 

[44]. In 1982 VICON (VIpasa with CONstraints) was developed at Cardiff University 

in collaboration with British Aerospace and NASA [45]. The key difference between 

the methods implemented in each of these programs is that VICON introduces 

Lagrangian multipliers to couple responses at different values of half-wavelength λ in 

order to satisfy constraints such as simply supported end conditions. This same 

collaboration later led to the release of  VICONOPT, VICON with Optimisation, in 

1990 [43].  

VICONOPT (VIpasa with CONstraints and OPTimization) is able to model plates 

which have different properties and even different thickness in the transverse direction 

(y) by modelling them as different plates as shown in  

Figure 2-1. However, all the plates need to be the same length in the axial direction 

(x). In this way VICONOPT is able to model damaged plates as long as the damaged 

region stretches along the whole length of the plate in the x direction. 
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In 1967 The finite strip method, the root of the exact strip method, was first presented 

by Cheung. This hybrid Ritz approach is an efficient analysis tool for structures with 

regular geometry and simple boundary conditions[46]. This limitation is solved by 

Cheung and Kong [47] where a new finite strip method is presented and it is applied 

to the vibration of rectangular plates with complicated boundary and internal support 

conditions to show its efficiency. Guo et al. [48] investigated various approaches for 

analyzing the vibration of plates with stepped thicknesses. Improving the classical 

finite strip method by replacing the static shape function of the strip element model by 

a dynamic function is presented in this paper. This work led to developing a dynamic 

finite strip method which improves solution accuracy. 

Damghani et al. [49] studied the critical buckling of composite plates with 

delaminations using exact stiffness analysis. They modelled the delamination as 

through the length in order to satisfy the prismatic requirements of VICONOPT. They 

highlighted the simplicity of modelling the damage and the competitive analysis time 

of this approach against the finite element method. This work was later extended 

(Damghani et al. [50]) to study the global buckling behaviour of a composite plate with 

a single rectangular delamination. This method was based on replacing the longitudinal 

portion of the plate containing the delamination, the delaminated strip, with an 

equivalent prismatic structure as shown in Figure 2-2. The delaminated strip is 

replaced with three strips each having the same length. Two of them, strips 1 and 2 in 

Figure 2-2, represent the top and bottom parts of the embedded rectangular 

delamination and the third strip represents the undamaged parts of the delaminated 

strip.   
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Figure 2-1: Modelling a plate with differing properties in the y direction using 

VICONOPT. 

 

Figure 2-2: Sketch of VICONOPT model for a laminate of length l, width B and 

thickness h, having an embedded rectangular delamination of length d (=µl) and width 

b, (Figure reproduced from Damghani et al. (2014)). 
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This approach, called the Smeared Method (SM), is capable of representing the global 

buckling behaviour. However, it predicts conservative local behaviour in some cases 

and cannot capture local effects in others due to the way in which the damage is 

modelled.  
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3 VICONOPT and Exact Strip Method  

VICONOPT (VIpasa with CONstraints and OPTimization) as outlined previously, is 

a computer program that incorporates the earlier programs VIPASA[42] and VICON 

[45]. Williams et al. [43] summarized the key features of  VICONOPT for both 

buckling and vibration analysis. It is designed for efficient, accurate buckling and 

vibration analysis and optimum design of prismatic plate assemblies. Typical 

applications are the metal and composite stiffened panels used in aircraft wing and 

fuselage panels. The program is based on the exact strip method, which assumes a 

continuous distribution of stiffness and mass over the structure.  

More details in relation to both the exact strip method and the program VICONOPT 

are given in the following sections. 

3.1 VICONOPT 

VICONOPT covers the buckling and vibration behaviour of any prismatic assembly 

of anisotropic plates with Figure 3-1 showing some typical cross sections. Each plate 

can be subjected to a uniform longitudinal compressive force NL, a transverse 

compressive force NT and an in-plane shear flow NS  (all defined as stress resultants, or 

force per unit width) as shown in Figure 3-2. For any combination of NL, NT and NS, 

critical buckling loads, undamped natural frequencies and the corresponding mode 

shapes can be found, more details are included in sections 3.2 and 5.2 . Due to using 

procedures based on the Wittrick–Williams algorithm these outputs come with 

certainty [51].   
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Figure 3-1 Some typical structures, which VICONOPT can analyse [42] 

 

Figure 3-2 Component plate with a combination of in-plane loading [43] 
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The analysis option of VICONOPT allows the assembly of laminated composite plates 

from any sequence of arbitrarily oriented orthotropic plies. Normally, the composite 

laminates are made of on-axis and off-axis plies. The data needed for the program to 

model such composite laminates are the material properties, orientations, thicknesses 

and properties of the plies. 

3.2 Exact Strip Method 

VIPASA is a powerful program for the accurate analysis of vibration and buckling of 

prismatic plate assemblies. VIPASA analysis uses the stiffness matrix method based 

on exact flat plate theory [42]. However, if the plate carries in-plane shear loading, the 

mode shapes will be skewed and the desired support conditions will not be satisfied. 

In fact, this imposes a limitation on the general applicability of VIPASA. Anderson, 

et al. [45] presented a solution to this problem, denoted VICON, by coupling the 

VIPASA stiffness matrices for different wavelength responses using the Lagrangian 

Multipliers Method. Supports at arbitrary locations, including simply supported ends 

and supports provided by an elastic supporting structure are included in this solution. 

The complete generality and capability of VIPASA were retained in the VICON 

program [45]. Like VIPASA, VICON uses exact strip analysis in which the continuous 

distribution of stiffness and mass over the structure is assumed. The way that the 

Lagrangian Multipliers are incorporated for finding exact natural frequencies or 

critical buckling loads is detailed by Williams and Anderson [52] and relevant parts 

are summarised in Section 5.2 below. However, Table 3-1 summarizes of the 

advantage and limitation of the exact strip method against the finite element method. 



Chapter 3: VICONOPT and Exact Strip Method 

31 

 

The use of exact strip theory in free vibration or critical buckling analysis yields 

transcendental eigenproblems which cannot be solved by the linear eigensolvers 

employed in finite element analysis. Instead, the Wittrick-Williams (W-W) algorithm 

[53-55] is used in VIPASA and VICON for finding all the required natural frequencies 

or critical load factors. In its simplest form, the W-W algorithm may be stated as [42] 

𝐽 =  𝐽0 + 𝑠{𝑲}                                                                                                                              (3.1) 

where  𝐽  is the number of eigenvalues which lie between 0 and a specified trial 

frequency or load factor. 𝑠{𝐊} is known as the sign count of the transcendental stiffness 

matrix K and is found by counting the number of negative elements on the leading 

diagonal of 𝐊∆, the matrix formed from K by performing Gauss elimination without 

scaling or row interchanges. 𝐽0 is the value  𝐽 would have if the components of the 

displacement vector were all clamped and can often be determined analytically.  

Table 3-1 Capability comparison of exact strip method against finite element method  

Exact strip method Finite element method 

No discretization of plates Each plate is discretized into many elements 

Internal displacements found exactly Internal displacements depend on shape functions 

Small, transcendental eigenproblem Large, linear eigenproblem 

Wittrick-Williams algorithm Standard methods of solution 

Restricted to prismatic geometry and 

loading 

Applicable to irregular geometries and loading 

Fast solution times Slower solution times 
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3.2.1 VIPASA analysis 

VIPASA is based on the assumption that all the components of displacement (i.e. u, v, 

w and   in Figure 3-2 vary sinusoidally along any longitudinal line with a half-

wavelength Simply supported end conditions are modelled by choosing values of  

which divide exactly into the panel length 𝑙. Figure 3-3 shows the perturbation edge 

forces and displacements, and the nodal lines, of a plate during buckling or vibration. 

 

Figure 3-3 Perturbation edge displacements, and nodal lines of a plate. 

 All edge forces and displacements are to be multiplied 

by exp ( 𝑖𝜋𝑥  𝜆 ) ∗ cos ( 2 𝜋𝑛𝑡⁄  ), where 𝑛 is the frequency and 𝑡 is time. Wittrick and 

Williams [42] split the sinusoidal forces and displacements acting at the edge of a 
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component plate structure into uncoupled out of plane and in plane deformations where 

the elastic properties of each one are defined by the following equations: 

[

𝑚 𝑥

𝑚 𝑦

𝑚 𝑥𝑦

]  =   − [
𝐷 11 𝐷 12 𝐷 13

𝐷 12 𝐷 22 𝐷 23

𝐷 13 𝐷 23 𝐷 33

]  [

𝜅 𝑥

𝜅 𝑦

2𝜅 𝑥𝑦

]                                                                                        (3.2)    

[

𝑛 𝑥

𝑛 𝑦

𝑛 𝑥𝑦

]  =  − [

𝐴 11 𝐴 12 0
𝐴 12 𝐴 22 0
0 0 𝐴 33

]  [

𝜀 𝑥

𝜀 𝑦

𝛾 𝑥𝑦

]                                                                                             (3.3) 

where 𝑚 𝑥 and 𝑚 𝑦 are the bending moments and  𝑚 𝑥𝑦 is the twisting moments. 𝜅 𝑥 

and 𝜅 𝑦 are the curvatures and 𝜅 𝑥𝑦 is the twist. 𝑛 𝑥, 𝑛 𝑦, 𝑛 𝑥𝑦 and 𝜀 𝑥, 𝜀 𝑦,  𝛾 𝑥𝑦 are the 

membrane force and the membrane strains respectively. A and D are elements of 

membrane and out-of-plane bending stiffness matrices. Figure 3-3 details the sign 

conventions for both bending moments and membrane forces. 

A total of four degrees of freedom for each nodal line are illustrated in Figure 3-3, 

where 𝑢 and 𝑣 are the in-plane displacements in the 𝑥 and 𝑦 directions respectively, 

while 𝑤 and Ψ are the out-of-plane displacement in the z direction and rotation about 

the x direction respectively. Vectors of perturbation displacements 𝐝𝑗, perturbation 

forces 𝐩𝑗  and stiffness matrices 𝐤 are defined by the equations [42] 

𝒑𝑗 = {𝑚𝑗    𝑝𝑧𝑗    𝑝𝑦𝑗    𝑝𝑥𝑗}   (𝑗 = 1,2)                                                                                           (3.4) 

𝒅𝑗 = {𝛹𝑗    𝑤𝑗    𝑣𝑗    𝑢𝑗  }   (𝑗 = 1,2)                                                                                               (3.5) 
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𝒑 = 𝒌 𝒅                                                                                                                                                                                                            (3.6)                    

where 

𝒑 = {𝒑 1    𝒑 2}
𝑇 ,        𝒅 = {𝒅 1    𝒅2}

𝑇 ,                                                                                                      (3.7) 

𝒌 =  [
𝒌 11 𝒌 12

𝒌 21 𝒌 22
]                                                                                                                                     (3.8)      

Although this analysis does not cover coupling between the in-plane and out-of-plane 

displacements, subsequent developments in VICONOPT can automatically handle 

coupled cases using a numerical procedure [56, 57], allowing completely general 

composites with fully populated A, B and D stiffness matrices to be considered.  

3.2.2  VICON analysis 

As mentioned the key difference between VICON and VIPASA is that VICON 

introduces Lagrangian multipliers to couple the responses at different values of half-

wavelength 𝜆. This approach expresses the deflection of the plate assembly as a Fourier 

series involving an appropriate set of 𝜆 [45].  The results given by VICON are for an 

infinitely long plate assembly, with supports which repeat at longitudinal intervals of 

the length l.  
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Figure 3-4: Illustration of the infinitely long structure [58].  

Figure 3-4 is an illustration of a plan view of a plate assembly for an infinitely long 

structure repeating at intervals of l. Crosses denote point supports and circles denote 

points of attachment to a transverse supporting structures. Mode shapes are assumed 

to repeat over a length 𝐿 =  2𝑙 𝜉⁄ , for some value of the parameter 𝜉 lying in the range 

0 ≤ 𝜉 ≤ 1. More details of the  equations used in VICON are given in section 5.2.    
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4 Modelling the effect of damage on the critical buckling of 

composite plates using VICONOPT  

VICONOPT, based on the exact strip method, is a powerful tool that performs 

buckling and vibration analysis and optimum design for any assembly of composite 

plates with prismatic properties [56]. Damghani [49] demonstrated the reliability of 

the exact strip method in studying the buckling behaviour of perfect composite plates 

and laminates with through-the-length delamination and the results are verified against 

results obtained from finite element method (ABAQUS). 

This chapter outlines work carried out to investigate the effect of the size, depth and 

ply orientation of through-the-length and through-the-width delamination and single 

and multiple through-the-length delaminations on the critical buckling load and mode 

shape of a plate structure. An investigation is made on the effect of in-depth 

delamination with respect to the ply orientations of the top and bottom parts of the 

delamination and the in-plane force system on the buckling behaviour of composite 

plates. No previous study has been found which investigates the effect of in-depth 

damage on buckling capability. VICONOPT is used to perform a series of parametric 

studies in which delaminated composite plates are modelled for the cases of single and 

multiple delaminations at the same and varying depth. A study examining the effect of 

through-the-width delaminations on the global buckling load is then presented. 
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4.1 The effect of ply orientation on the critical buckling load and buckling mode 

shape 

 Many factors can affect the critical buckling load and mode shape of laminated 

composite plates. For example, both the orientation and the layup sequence (symmetric 

or antisymmetric) of the plies can significantly influence the buckling load. 

Featherston and Watson [59] studied the effect of varying ply orientation on the 

buckling load of a series of flat plates, in order to determine the optimum design for a 

symmetrical, balanced lay-up, under shear and in-plane bending. Lee and Park [19] 

studied the effect of the stacking sequence on the buckling load of a laminated plates 

having different through-the-width delamination sizes using enhanced assumed strain 

(EAS) three-dimensional finite element (FE) formulation. Many other researchers 

have studied ply orientation and its effect on the critical buckling loads of both 

damaged and perfect composite plates using different techniques and tools [60-65].  

In this section, perfect and delaminated composite plates are analysed using 

VICONOPT. These plates are simply supported on all four sides (SSSS). Boundary 

conditions are satisfied exactly along the plate edges y = 0 and y = b. By coupling the 

sinusoidal buckling response using Lagrangian multipliers, the VICON analysis option 

of VICONOPT satisfies the boundary conditions at specified points along the ends x 

= 0 and x = l, see Figure 3.4. The plates considered are subjected to a longitudinal 

compressive force NL. By subjecting the plate to a longitudinal compressive force it is 

possible to determine how and in what way the ply orientation affects the buckling 

load and the buckling mode shape. This section starts by analysing the effect of the 

plate’s ply orientation in relation to the direction of the load applied on the critical 
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buckling load and the buckling mode shape of a perfect plate. The work is then 

extended to study the local buckling loads and mode shapes of plates containing 

through-the-length and through-the-width delaminations at various depths. The aim of 

analysing this kind of delamination is to investigate the relationship between the 

critical buckling load and mode shape and the ply orientations of the top and bottom 

parts of the delaminated plate.  

The more general case of embedded delaminations will be considered in chapter 5 

where the study will be extended to looking at the highly interrelated problem of 

predicting the natural frequencies of the plate and the effect of delamination damage 

on these frequencies.   

4.1.1 Perfect composite plate 

In this section, a symmetric 16 ply composite plate of length l = 100 mm, width b = 

100 mm, and thickness of h =  2 mm having a number of different stacking sequences 

is studied. The material properties of each ply are: Young’s modulus E1  = 130 kN 

mm-2 and  E2  =  10 kN mm-2, shear modulus G12  =  10 kN mm-2 and Poisson's ratio 

ν12 =  0.3. The plies have a thickness of 0.125 mm and symmetric stacking sequences. 

Table 4-1 details seven cases of plates with different ply orientations (with 0o 

corresponding to the longitudinal direction (x in Figure 4-1)). The plates are examined 

to study the effect of these stacking sequences on the critical buckling load and mode 

shape.   
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Table 4-1: Different cases of stacking sequences 

Case number Ply orientations 

1 [00 / 00 / 00 / 00 / 00 / 00 / 00 / 00]S 

2 [450 / 450 / 450 / 450 / 450 / 450 / 450 / 450]S 

3 [900 / 900 / 900 / 900 / 900 / 900 / 900 / 900]S 

4 [-450 / 450 / -450 / 450 / -450 / 450 / -450 / 450]-S 

5 [00 / 450 / -450 / 900 / 00 / 450 / -450 / 900]S 

6 [900 / 450 / -450 / 00 / 900 / 450 / -450 / 00]S 

7 [900 / 450 / -450 / 00 / 900 / 450 / -450 / 900]S 

 

In order to calculate the critical buckling load, the load factors for ten half-

wavelengths, i.e. values of λ, are checked. In the VIPASA option of VICONOPT the 

ten half-wavelengths would be λ = l/1, l/2, l/3 …. l/10. In the VICON option they would 

be for ten different ξ values, the first being ξ = 1, the second ξ = 0 and the remainder 

being equally spaced between 0 and 1. If the load factor is FC, the trial axial load is PA 

and the plate width is b, equation (4.1) can be used to calculate the critical buckling 

force intensity resultant.   

𝑁 𝑥𝑐  =   
𝐹𝐶  ×  𝑃𝐴

𝑏
 (𝑁𝑚𝑚−1)                                                                               (4.1) 



Chapter 4: Modelling the effect of damage on the critical buckling of composite 

plates using VICONOPT 

40 

 

The lowest load factor from the wavelengths checked is the one that is needed to 

calculate the critical buckling force intensity Nxc. The corresponding buckling half-

wavelength λ relates to the buckling mode shape.  

Table 4-2 presents the critical buckling force intensities and the contour plots of the 

associated critical buckling modes for unidirectional laminates with lay-ups as defined 

in cases 1, 2 and 3 in Table 4-1. The table shows that the ply orientations in case 2 

result in the largest critical buckling force intensity of 133.40 N/mm. The critical 

buckling force intensities for cases 1 and 3 in relation to those for case 2  are about 

18% and 51% lower respectively. The buckling half-wavelength λ refers to the 

buckling mode shape obtained from VIPASA analysis and ξ refers to the buckling 

mode shape obtained from using VICON analysis. The plate comprising all 00 plies 

(case 1) buckles at λ = l while, the plate of 900 plies (case 3) buckles at λ = l/2. Case 2, 

where the plies are orientated at 450, buckles at ξ  = 1 However, moving the orientation 

angle of the plies in case 3 toward 900 changes the buckling half-wavelength λ from λ 

= l  to  λ =  l/2. 

Table 4-3 illustrates the critical buckling force intensities and the buckling 

wavelengths of the ply orientations defined in cases 4, 5, 6 and 7. Due to the 

symmetrical, balanced nature of the ply orientations in these plates the table shows 

that all  four cases buckle with λ = l. The plate with plies orientated according to case 

4 has the highest critical buckling stress (182.46 Nmm-1) of all seven cases. cases 5, 6 

and 7 have almost the same critical buckling stress due to the minor differences in their 

ply orientations. 
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Table 4-2: Critical buckling stresses and buckling wavelengths for plate cases 1, 2 and 

3. 

VICONOPT Case 1 Case 2 Case 3 

Nxc (Nmm-1) 109.88 133.40 65.16 

 

 
 

 

  

  

 

λ = l 

  

ξ = 1 

 

λ  =  l/2 

 

Table 4-3: Critical buckling stresses and buckling wavelengths for plate cases 4, 5, 6 

and 7. 

VICONOPT Case 4 Case 5 Case 6 Case 7 

Nxc (Nmm-1) 182.46 145.00 145.32 145.36 

λ = l l l l 

4.1.2 Composite plates with through-the-length and through-the-width 

delaminations 

Plates with the same ply properties and plate dimensions as those used in the previous 

section were then used to explore the effect of through-the-length and through-the-

width delaminations. Again, the plates were assumed to be simply supported on all 

four edges and subjected to a longitudinal compressive force as shown in Figure 4-1 

x 

y 

z 

x 
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(a). They were assumed to have a single through-the-length and through-the-width 

delamination. The effect of introducing this delamination at different depths was 

studied, at locations of h/16, h/8, h/4, 3h/8 and h/2 below the top surface, i.e. between 

the 1st and 2nd, 2nd and 3rd…...8th and 9th plies of the laminate. Figure 4-1 (b) illustrates 

the case where the delamination is at a depth of h/8. 

In each case it was found that the upper plate only buckles, at all depths except when 

the delamination is located half way through the thickness of the plate (h/2). At this 

depth, both plates buckle at the same time but in opposite directions due to the 

symmetry of the layup about the mid-plane as shown in Figure 4-2.  

 

(a)  

x 

y 



Chapter 4: Modelling the effect of damage on the critical buckling of composite 

plates using VICONOPT 

43 

 

 

(b) 

Figure 4-1 Ply composite plate (a) the boundary conditions of the plate and the external 

load applied (NL)   (b) the plate with a single full width through-the-length 

delamination at a depth of 2h/16. 

 

Figure 4-2 First natural frequency mode shape of a plate with through-the-length and 

through-the-width delamination located at the mid thickness.  

l 
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Figure 4-3: Critical buckling force intensities for plates with ply orientation for plate 

cases 1 and 3 and different delamination depths. 

Figure 4-3 shows that the relationship between the depth of the delamination and the 

buckling load for plates with lay-ups according to cases 1 and 3. As well as the increase 

in buckling load which occurs with increased depth due to the increased stiffness of 

the locally buckling upper section, it can be seen that the difference in critical buckling 

force intensities between cases 1 and 3 increases as the delamination moves towards 

the mid-thickness of the plate. It can be concluded that, when the delaminationis close 

to the surface the buckling force intensity is actually the buckling load of the thinner 

laminate portion of the laminate, which is the lowest. However, the rest of the plate is 

much thicker and capable of carrying much higher load. When the delamination 

located at the mid thickness (8h/16), the thickness of the two parts of laminate is equal 

and larger, and so the buckling force intensity is higher than the other cases of 

delamination depths. In this work, no contact was modelled between the two parts of 

the laminate.   
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Figure 4-4 presents the same relationships for plates with the ply orientations defined 

for cases 4, 5, 6 and 7. Again it can be seen that the critical buckling load of the 

delaminated plates increases as the delamination is moved toward the mid-thickness 

of the plate. The increasing rate at which the critical buckling force intensity changes 

as the delamination moves deeper is also demonstrated. This is as expected since the 

flexural stiffness of the locally buckling upper plate is proportional to the cube of its 

thickness which effectively increases as the delamination moves towards the centre, 

directly affecting its critical buckling force intensity. Figure 4-4 also demonstrates the 

significant effect that the ply orientations of the delaminated part have on the value of 

the critical buckling load. For instance, the plate case 5 [00/450//-450/90/00/450/-

450/900]S has a critical buckling force intensity of 1.35 N/mm when the full width 

delamination is located at a depth of 2h/16. In this case, the delaminated part consists 

of the two plies 00 and 450. However, the plate case 6 [900/450//-450/00/90 /450/-

450/00]S has a critical buckling force intensity of 6.80 N/mm when the full width 

delamination is located at the same depth resulting in the delaminated part consisting 

of the two plies 900 and 450. The critical buckling force intensity of the delaminated 

plate case 6 is therefore five times the critical bulking force intensity of the 

delaminated plate case 5 under the same conditions. This is due to the fact that the 

proportion of the load carried by the outer two plies is significantly reduced since the 

00 ply which attracts a much higher load than the 900 ply is now moved to the lower 

plate. Noting that the two cases, 5 and 6, are similar in their ply orientations and the 

stacking sequences of the plies at 450 and -450, they differ only in the stacking 

sequence of the plies, 00 and 900, being swapped. This can have a significant effect 
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when the delaminated region contains only a small number of plies for instance the 

case here.  

In summary, in terms of the critical buckling load of a composite plate, it can be 

concluded that combining on-axis and off-axis plies enhances the stiffness of the whole 

plate. The optimum layup sequence depends on which of the in-plane force systems is 

applied.    

 

Figure 4-4 Critical buckling force intensities for plates with ply orientations for plate 

cases 4, 5, 6 and 7 and different delamination depths. 

4.1.3 The effect of the ply orientations on the critical buckling mode shape 

The effect of the ply orientation on the buckling mode shape is investigated for all 

seven plate cases. As mentioned previously, the buckling half-wavelength λ 

corresponding to the lowest load factor FC refers to the critical buckling mode shape. 
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The relationship between the critical buckling force intensity, the delamination depth 

and the buckling half-wavelength λ can be plotted using equation 4.1. For all cases the 

buckling half-wavelengths (λ) l/5, l/6, l/7, l/8, l/9, l/10 have been excluded from 

Figure 4-5to Figure 4-10 because they are far from being critical.  

From Figure 4-5 the plate [00 / 00 / 00 / 00 / 00 / 00 / 00 / 00]S  can be seen to buckle at λ = l 

for all delamination depths. The laminate [900 / 900 / 900 / 900 / 900 / 900 / 900 / 900]S on 

the other hand, buckles at  λ = l/3 for the majority of delamination depths with the 

exception of the case when the delamination occurs at the middle of the plate thickness 

at h/8 when the plate buckles at λ = l/2, see Figure 4-6.  

 

Figure 4-5: The relationship between critical buckling force intensities and 

delamination depth for different buckling half-wavelengths λ (and hence mode shapes) 

for plate case 1. 
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Figure 4-6: The relationship between critical buckling force intensities and 

delamination depth for different buckling half-wavelengths λ (and hence mode shapes) 

for plate case 3. 

Figure 4-7 shows that the plate case 4 [-450 / 450 / -45 0 / 450 / -45 0 / 450 / -450 / 450]S 

buckles with λ = l when the delamination is at  h/8 and at λ = l/2 when the delamination 

occurs anywhere else through the thickness. In Figure 4-8 , the laminate for plate case 

5 [00 / 450 / -450 / 900 / 00 / 450 / -450 / 900]S buckles with λ = l when the delamination is 

located at h/16, h/8, 3h/8 or h/2, while it buckles with λ = l/2 when the delamination is 

at a depth of 4h/16. From Figure 4-9 the [900/450/-450/00/90 /450/-450/00]S laminate 

(case 6) with a delamination depth of  h/16 buckles at λ = l/3, but with delamination 

depths of  h/8, h/4 or  6h/16 buckles at λ = l/2 and  with a delamination depth of  h/2 

buckles at λ = l. In Figure 4-10 the plate [900 /450 /-450 /900 /00 /450 /-450 /900]S buckles 

at  a wavelength of  l/3  when the delamination is located at a depth of h/16 or h/4, 

while it buckles at a wavelength of  l/2 if the delamination depth is h/8, 3h/8 or h/2.   
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Figure 4-7: The relationship between critical buckling force intensities and 

delamination depth for different buckling half-wavelengths λ (and hence mode shapes) 

for plate case 4. 

 

Figure 4-8: The relationship between critical buckling force intensities and 

delamination depth for different buckling half-wavelengths λ (and hence mode shapes) 

for plate case 5. 
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Figure 4-9: The relationship between critical buckling force intensities and 

delamination depth for different buckling half-wavelengths λ (and hence mode shapes) 

for plate case 6. 

 

Figure 4-10: The relationship between critical buckling force intensities and 

delamination depth for different buckling half-wavelengths λ (and hence mode shapes) 

for plate case 7. 
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It can be seen from these results that there are two factors which affect the way that a 

laminated plate buckles. The first of these is the ply orientation with respect to the in-

plane loads. The other is the boundary conditions of the delaminated layer. It can be 

seen that the boundary conditions at the edges of the delaminated layer change from 

being clamped to simply supported depending on the depth of the delamination and 

hence the thickness of the delaminated layer relative to the remaining plate. When the 

delaminated layer has a thickness less than the thickness of the remaining structure, 

the edges are effectively clamped. However, when the delamination occurs at the mid-

thickness of the plate the boundaries of the two identical plates are simply supported, 

see Figure 4-2. 

4.2 Modelling delaminated composite plates 

In this section several configurations of delaminated laminates have been considered, 

all consisting of 16 plies oriented at [00 / 450 / -450 / 900 / 00 / 450 / -450 / 900]S and having 

material properties as presented in section 4.1.1. The effect of through-the-length 

multi-delamination zones on the critical buckling load is studied. The first case 

considered is that of multiple delamination zones all located at the same depth, having 

equal delamination widths β and spaced equally. This case will be compared with a 

single mid-width delamination at the same depth and with the same delamination width 

for every delamination width studied. The second case looks at the effect of mid-width 

delamination zones which occur simultaneously at varying depths. The results will be 

compared with plates having single mid-width delaminations with the same 

delamination width for every delamination width studied.  
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4.2.1 Example 4.1: Single and multiple delaminations at the same depth  

The geometry of the plate analysed in this work had a thickness h = 2 mm, length  l = 

100 mm and width b = 100 mm. Figure 4-11 (a) shows the plate with a single mid-

width delamination of width β at a depth of h/4. In Figure 4-11 (b) the same plate is 

modelled with multiple delaminations at the same depth h/4 each having the same 

width β. 

The relationship between the delamination ratio β/b and the critical buckling force 

intensity is presented in Figure 4-12.  The plots show that the critical buckling force 

intensities are almost equal for both delamination cases (a) and (b) for β/b ≤ 0.3. In 

this interval of delamination sizes, plates with delamination case (a) buckle locally and 

plates with delamination case (b) show local buckling of all delaminated regions at the 

same load. For β/b > 0.33, case (b) changes from a plate having 3 delamination zones 

at depth h/4 to a plate having a single full-width delamination at depth h/4. This 

explains the sharp decrease in the critical buckling force intensity of case (b) when β/b 

> 0.33. 

(a) 
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(b) 

 

Figure 4-11: (a) Composite plate with single mid-delamination. (b) composite plate 

with multiple delaminations. 

 

Figure 4-12: Critical buckling stress versus the delamination ratio β/b 
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4.2.2 Example 4.2: Single and multiple-delaminations at varying depths 

The plate used in this example is identical to the one used in example 4.1. In this case 

however the plate is modelled with multiple delaminations at h/4, h/2 and 3h/4 as 

shown in Figure 4-13. The relationship between the critical buckling force intensity 

and the delamination ratio β/b is studied and compared with the case presented in 

Figure 4-11 (a). Figure 4-14 shows that there are slight differences, between 0-10%, 

in the critical buckling loads between plates with single and multiple delaminations 

distributed vertically through the thickness of the plate. From this example, it can be 

concluded that the presence of multiple delaminations located identically at varying 

depths  reduces the critical buckling force intensity between 0-10%  more than the 

reduction caused by a single delamination.   

 

Figure 4-13 Composite plate with delaminations at depths h/4, h/2 and 3h/4 
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Figure 4-14: Critical buckling force intensities for plates with different delamination 

ratios and single and multiple delaminations. 
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of β/b=0.4 using the first model the plate buckles locally at 48.1 N/mm but the same 

plate with the same β/b value needs a stress of over 110 N/mm to buckle globally. 

Referring to Figure 4-15, the global buckling force intensity of a delaminated plate can 

deduced as 

𝑃𝑔  =  𝑃𝑑2  +  [
 𝛽

𝑏
 ×  

𝑑 

ℎ
×  𝑃𝑑1 ]                                                                                          (4.2) 

where 𝑃𝑔  is the global buckling force intensity of the delaminated plate shown in 

Figure 4-15 (a), Pd1 is the critical buckling force intensity of the delaminated plate 

shown in Figure 4-15 (a). Pd2 is the critical buckling force intensity of the same plate 

but with the delaminated part removed as shown in Figure 4-15 (b) and d is the 

delamination depth. Using the equation 4.2, Figure 4-16 includes a curve for the  

predicted global buckling force intensity of a plate with a delamination at depth h/4.  

(a) 
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(b) 

 

Figure 4-15: (a) Mid-width delaminated plate. (b) cut-out model for a delaminated 

composite plate. 

 

Figure 4-16: Critical buckling force intensity for a plate with a mid-width delamination 

based on the cut out plate model and the predicted global buckling stress. 
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4.4 Summary 

This chapter has demonstrated the ability of VICONOPT to model the effect of 

different configurations where the delamination extends through the length and hence 

the problem is prismatic. It can be concluded that the critical buckling load and the 

critical mode shape of a delaminated composite plate are very sensitive to the ply 

orientations with respect to the nature and the direction of the load applied. It is also 

found that a delaminated composite plate buckling locally can carry much more load 

before a global buckling behaviour occurs.  

The remainder of the thesis will look at developing a solution which allows non 

prismatic problems to be solved whilst retaining the advantages (i.e. computational 

efficiency) of the exact strip method. 
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5 The VICONOPT and Finite element (VFM) hybrid model 

VFM is a novel combination of exact strip method and FE. Its purpose is to improve 

the ability of the exact strip method to model more complex cases of damaged plates. 

VFM uses FE analysis to model the longitudinal portion of the plate which contains 

the damage, as shown in Figure 5-1, and the exact strip method, i.e. VICON analysis, 

to more efficiently model the remainder of the plate.  

 

Figure 5-1: VICON and FE method (VFM) modelling a damaged plate. 

The theory and equations used in the exact strip method have already been detailed in 

chapter 3, The following sections will describe the theory and formulation used in the 

FE method and how VFM incorporates the two methods to model damaged structures.  
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5.1 Theory and formulation used in FE analysis  

FE is a stiffness matrix method based on discrete-element idealization, where the 

actual continuous plate structure is replaced by a mathematical model made up from 

elements of finite size having known properties that can be expressed in matrix form. 

For the purposes of the present free vibration analysis, the static stiffness matrix and 

equivalent mass matrix of a rectangular plate in bending are required. Przemieniecki 

[66] used matrix methods to derive and solve the basic equations in order to find the 

stiffness and equivalent mass properties of individual unassembled rectangular 

elements. These element properties are then assembled to create the global stiffness 

matrix and equivalent mass matrix for plate structures.   

5.1.1 Stiffness properties of rectangular plates in bending  

Bogner, et al. [67] introduced deflection functions which ensure the compatibility of 

both the deflection and slope between adjacent elements in order to create a stiffness 

matrix [66]. The sign conventions established in Figure 5-2 are considered in deriving 

the stiffness matrix of Eq. (5.1), where for convenience the submatrices 𝐤I,I, 𝐤II,I and  

𝐤II,II are presented separately in Tables 5-1, 5-2 and 5-3. The derivation is given in 

Appendix 1. 

𝒌 =  [
𝒌𝐼,𝐼             𝑺𝒚𝒎𝒎𝒆𝒕𝒓𝒊𝒄

𝒌𝐼𝐼,𝐼             𝒌𝐼𝐼,𝐼𝐼
]                                                                                     (5.1) 
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Figure 5-2 Rectangular plate element showing displacements and sign conventions 

[66]. 

5.1.2 Equivalent mass matrix for rectangular plate element 

An equivalent mass matrix for unassembled elements is calculated using the local 

coordinate system shown in Figure 5-2. Eq. (5.2) shows the mass matrix for an 

unassembled element and its derivation is given in Appendix 2. 
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Table 5-1 Stiffness matrix for rectangular plate in bending: submatrix kI,I based on compatible deflections [all coefficients to be multiplied 

by[E t3 / ( 12 (1-ν2) ab)] [66]. 

156

35
 (𝛽2 + 𝛽−2)  +  

72

25
 

 

[
22

35
𝛽2 + 

78

35
𝛽−2  

+  
6

25
(1 + 5𝜈)] 𝑏 

(
4

35
𝛽2  +  

52

35
𝛽−2  +  

8

25
) 𝑏2 

                                                                                     

−[
78

35
𝛽2 +

22

35
𝛽−2

+
6

25
(1 + 5𝜈)] 𝑎 

−[
11

35
(𝛽2 + 𝛽−2) +

1

50
(1

+ 60𝜈)] 𝑎𝑏 

(
52

35
𝛽2  +  

4

35
𝛽−2  +  

8

25
) 𝑎2 

                                                                         Symmetric 

54

35
𝛽2 − 

156

35
𝛽−2  −  

72

25
 (

13

35
𝛽2 − 

78

35
𝛽−2 − 

6

25
) 𝑏 [−

27

35
𝛽2  +  

22

35
𝛽−2  +  

6

25
(1

+ 5𝜈)]𝑎 

156

35
 (𝛽2  +  𝛽−2)  +  

72

25
 

 

(− 
13

35
𝛽2  +  

78

35
𝛽−2  +  

6

25
) 𝑏 (− 

3

35
𝛽2  +  

26

35
𝛽−2  −  

2

25
) 𝑏2 [

13

70
𝛽2 − 

11

35
𝛽−2 − 

1

50
(1

+ 5𝜈)] 𝑎𝑏 

−[
22

35
𝛽2 +

78

35
𝛽−2 +

6

25
(1 + 5𝜈)]𝑏 (

4

35
𝛽2  +  

52

35
𝛽−2  

+  
8

25
) 𝑏2 

 

[− 
27

35
𝛽2  +  

22

35
𝛽−2 +

6

25
(1

+ 5𝜈)]𝑎 

[− 
13

70
𝛽2 +

11

35
𝛽−2 +

1

50
(1

+ 5𝜈)]𝑎𝑏 

(
18

35
𝛽2 − 

4

35
𝛽−2  −  

8

25
] 𝑎2 −[

78

35
𝛽2 +

22

35
𝛽−2 +

6

25
(1 + 5𝜈)]𝑎 [

11

35
(𝛽2 + 𝛽−2) +

1

50
(1

+ 60𝜈)]𝑎𝑏 

(
52

35
𝛽2 +

4

35
𝛽−2

+
8

25
)𝑎2 
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Table 5-2: Stiffness matrix for rectangular plate in bending: submatrix kII,I based on compatible deflections [all coefficients to be multiplied 

by [E t3 / ( 12 (1-ν2) ab)]    [66]. 

− 
156

35
(𝛽2 + 𝛽−2)  

+  
72

25
 

(− 
 13

35
𝛽2  −  

27

35
𝛽−2  +  

6

25
) 𝑏 (

27

35
𝛽2  +

13

35
𝛽−2  −  

6

25
) 𝑎 − 

156

35
𝛽2  +  

54

35
𝛽−2  −  

72

25
 [

22

35
𝛽2  −  

27

35
𝛽−2  

+  
6

25
(1 + 5𝜈)] 𝑏 

(
78

35
𝛽2  −  

13

35
𝛽−2  +  

6

25
) 𝑎 

(
13

35
𝛽2 +

27

35
𝛽−2 −

6

25
)𝑏 (

3

35
𝛽2 +

9

35
𝛽−2 +

2

25
)𝑏2 [−

13

70
(𝛽2 + 𝛽−2) +

1

50
]𝑎𝑏 [

22

35
𝛽2 −

27

35
𝛽−2 +

6

25
(1

+ 5𝜈)]𝑏 

(−
4

35
𝛽2 +

18

35
𝛽−2 −

8

25
)𝑏2 [− 

11

35
𝛽2  +  

13

70
𝛽−2

− 
1

50
(1 +  5𝜈)] 𝑎𝑏 

(− 
27

35
𝛽2  −  

13

35
𝛽−2  

+  
6

25
) 𝑎 

[
13

70
(𝛽2  +  𝛽−2)  +  

1

50
(1 

+ 60𝜈)]𝑎𝑏 

(
9

35
𝛽2  +  

3

35
𝛽−2  +  

2

25
) 𝑎2 (− 

78

35
𝛽2  +  

13

35
𝛽−2  −  

6

25
) 𝑎  [

11

35
𝛽2  −  

13

70
𝛽−2  +  

1

50
(1

+  5𝜈)]𝑎𝑏 

(
26

35
𝛽2  −  

3

35
𝛽−2  −  

2

25
]𝑎2 

− 
156

35
𝛽2  −  

54

35
𝛽−2  

−  
72

25
 

[−
22

35
𝛽2  +  

27

35
𝛽−2  −  

6

25
(1

+ 5𝜈)]𝑏 

(
78

35
𝛽2  +  

13

35
𝛽−2  +  

6

25
) 𝑎 

54

35
 (𝛽2  +  𝛽−2)  +  

72

25
 (

13

35
𝛽2  +  

27

35
𝛽−2  −  

6

25
)𝑏 (

27

35
𝛽2  +  

13

35
𝛽−2  −  

6

25
)𝑎 

[− 
22

35
𝛽2  +  

27

35
𝛽−2

−
6

25
(1 + 5𝜈)]𝑏 

(− 
4

35
𝛽2  +  

18

35
𝛽−2  −  

8

25
) 𝑏2 [

11

35
𝛽2  −

13

70
𝛽−2 −

1

50
(1

+ 5𝜈)]𝑎𝑏 

(
13

35
𝛽2  +  

27

35
𝛽−2  +  

6

25
) 𝑏 (

3

35
𝛽2  +  

9

35
𝛽−2  +  

2

25
) 𝑏2 [

13

70
 (𝛽2  +  𝛽−2) − 

1

50
]𝑎𝑏 

(− 
78

35
𝛽2  +  

13

35
𝛽−2  

−  
6

25
)𝑎 

[−
11

35
𝛽2 +

13

70
𝛽−2 −

1

50
(1

+  5𝜈)]𝑎𝑏 

(
26

35
𝛽2 − 

3

35
𝛽−2 − 

2

25
) 𝑎2 (−

27

35
𝛽2  +  

13

35
𝛽−2  +  

6

25
)𝑎 [

13

70
(𝛽2  +  𝛽−2)  −  

1

50
]𝑎𝑏 (

9

35
𝛽2 + 

3

35
𝛽−2  +  

2

25
) 𝑎2 
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Table 5-3: Stiffness matrix for rectangular plate in bending: submatrix kII,II based on compatible deflections [all coefficients to be 

multiplied by [E t3 / ( 12 (1-ν2) ab)] [66]. 

156

35
 (𝛽2  +  𝛽−2)  +  

72

25
 

 

− [
22

35
𝛽2  +  

78

35
𝛽−2  +

6

25
(1

+ 5𝜈)]𝑏 

(
4

35
𝛽2  +  

52

35
𝛽−2  +  

8

25
) 𝑏2 

                                                                                                  

[
78

35
𝛽2  +  

22

35
𝛽−2  +  

6

25
(1 

+  5𝜈)]𝑎 

−[
11

35
(𝛽2 + 𝛽−2) +

1

50
(1

+  60𝜈)]𝑎𝑏 

(
52

35
𝛽2  +  

4

35
𝛽−2  +  

8

25
) 𝑎2 

                                                     Symmetric 

54 

35
𝛽2 −

 156

35
𝛽−2  −  

72

25
 (−

 13

35
𝛽2 + 

78

35
𝛽−2  +  

6

25
)𝑏 [

27

35
𝛽2  −  

22

35
𝛽−2 −

6

 25
(1 

+  5𝜈)]𝑎 

156

35
 (𝛽2  +  𝛽−2)  +  

72

25
 

 

(
13

35
𝛽2  −  

78

35
𝛽−2  −  

6

25
)𝑏 (− 

3

35
𝛽2  +  

26

35
𝛽−2  −  

2

25
)𝑏2 [

13

70
𝛽2  −  

11

35
𝛽−2  −  

1

50
(1 

+ 5𝜈)]𝑎𝑏 

[
22

35
𝛽2  +  

78

35
𝛽−2  +

6

25
(1 + 5𝜈)]𝑏 (

4

35
𝛽2  +  

52

35
𝛽−2  +  

8

25
) 𝑏2 

 

[
27

35
𝛽2  −  

22

35
𝛽−2

− 
6

25
(1 +  5𝜈)] 𝑎 

[
13

70
𝛽2  +  

11

35
𝛽−2  +  

1

50
(1

+ 5𝜈)]𝑎𝑏 

(
18

35
𝛽2 − 

4

35
𝛽−2 −

8

 25
] 𝑎2 [

78

35
𝛽2 + 

22

35
𝛽−2  +  

6

25
(1 + 5𝜈)]𝑎 [

11

35
(𝛽2 + 𝛽−2) +

1

50
(1

+ 60𝜈)]𝑎𝑏 

(
52

35
𝛽2 +

4

35
𝛽−2 +

8

25
)𝑎2 
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 24336  

3432 b 624 b2           

-3432 a -484 ab 624 a2     

Symmetric 

  

8482 2028 b -1188 a 24336     

-2028 b -468 b2 286 ab -3432 b 624 b2    

 

𝐦 =
𝜌 𝑎 𝑏 𝑡

176400
 

-1188 a -286 ab 216 a2 -3432 a 484 ab 624 a2       

2916 702 b -702 a 8424 -1188 b -2028 a 24336      

-702 b -162 b2 169 ab -1188 b 216 b2 286 ab -3432 b 624 b2     

 702 a 169 ab -162 a2 2028 a -286 ab -468 a2 3432 a -484 ab 624 a2    

8424 1188 b -2028 a 2916 -702 a -702 a 8424 -2028 b 1188 a 24336   

1188 b 216 b2 -286 ab 702 b -162 b2 -169 ab 2028 b -468 b2 286 ab 3432 b 624 b2  

2028 a 268 ab -468 a2 702 a -169 ab -162 a2 1188 a -286 ab 216 a2 3432 a 484 ab 624 a2 

                                                                                                                                                                                                               (5.2)
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5.2 Theory and formulation for VFM 

VICONOPT incorporates two earlier programs, VIPASA and VICON. VIPASA 

provides a powerful analysis for vibration and buckling of prismatic plate assemblies 

with simply supported ends. However, if the structure is under in-plane shear loading, 

the mode shapes will be skewed and the end conditions will not be satisfied. Thus, the 

applicability of VIPASA is limited. VICON [52] provides a solution to this problem 

by coupling the VIPASA stiffness matrices for different wavelength responses through 

the Lagrangian Multiplier Method [52]. The complete VIPASA generality and 

capability are thus retained in the VICON program, which satisfies the end conditions 

through point constraints and also permits attachments to a supporting structure [45]. 

Thus the VICON stiffness matrix comprises a series of VIPASA stiffness matrices 

which are coupled by the constraints. 

 

Figure 5-3: Damaged plate modelled by VFM. 
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VFM is based on using the FE method to model the longitudinal portion of the plate 

containing the damage as shown in Figure 5-3. However, the FE method has been 

merged with the VICONOPT process to model the whole plate. The Wittrick-Williams 

algorithm is used to find the critical buckling loads and natural frequencies for the 

damaged plates. Thus VICON is used to calculate the dynamic stiffness matrices for 

the undamaged regions, while the FE method is used to calculate the static stiffness 

and equivalent mass matrices for the damaged rectangular strip. Embedded damage is 

modelled by including elements with different stiffness properties within this strip, see 

Figure 5-3.  

VICON assumes that the deflections of a plate assembly of length 𝑙 can be expressed 

as a Fourier series, see Equation (3.9). 

𝑫𝑎  =  ∑ 𝑫𝑚 𝑒𝑥𝑝 ( 𝑖𝜋𝑥  𝜆𝑚 )     ⁄∞
𝑚 = −∞                                                                                              (5.3) 

where Da is the nodal displacement amplitude vector of the plate assembly, Dm are the 

displacement amplitude vectors from a series of VIPASA analyses with half-

wavelengths 

𝜆𝑚 =
𝑙

𝜉 + 2𝑚
 , (0 ≤ 𝜉 ≤ 1;   𝑚 = 0,±1,±2,… ,±𝑞)                                                                  (5.4) 

Here 𝜆−𝑚 represents the same contributions as the positive half-wavelength 𝜆𝑚 to the 

mode shape but having a 180o phase difference. The structure is modelled as infinitely 

long with a mode shape that repeats at intervals of 𝐿 =  2𝑙  𝜉⁄  .The perturbation force 

vectors 𝐏𝑎 are similarly defined as 
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𝑷𝑎  =  ∑  𝑲𝑚 𝑫𝑚 𝑒𝑥𝑝  ( 𝑖𝜋𝑥  𝜆𝑚 )⁄ ∞
 𝑚 = −∞                                                                                       (5.5) 

where 𝐊𝑚 is the VIPASA dynamic stiffness matrix corresponding to responses at half-

wavelength 𝜆𝑚. The VICON stiffness equations relating 𝐊𝑚, 𝐃𝑚, the perturbation 

forces 𝐏𝑚 and the Lagrangian multipliers 𝐏L are thus expressed as 

[
 
 
 
 
 
 
 
 
 
 
 
𝑙𝑲 0 𝟎 𝟎 𝟎 𝟎 …  𝟎 𝑬 0

𝐻

𝟎 𝑙𝑲 1 𝟎 𝟎 𝟎 …  𝟎 𝑬 1
𝐻

𝟎 𝟎 𝑙𝑲 −1 𝟎 𝟎 …  𝟎 𝑬−1
𝐻

𝟎 𝟎 𝟎 𝑙𝑲 2 𝟎 …  𝟎 𝑬 2
𝐻

𝟎 𝟎 𝟎 𝟎 𝑙𝑲 −2 …  𝟎 𝑬−2
𝐻

⋮ ⋮ ⋮ ⋮ ⋮ ⋱  ⋮ ⋮

𝟎 𝟎 𝟎 𝟎 𝟎 … 𝑙𝑲 𝑛 𝑬 𝑛
𝐻

𝑬 0 𝑬 1 𝑬 −1 𝑬 2 𝑬 −2 …  𝑬 𝑛 𝟎 ]
 
 
 
 
 
 
 
 
 
 
 

  

[
 
 
 
 
 
 
 
 
 
 
 
𝑫 0

𝑫 1

𝑫 −1

𝑫 2

𝑫 −2

⋮

𝑫 𝑛

𝑷 𝐿 ]
 
 
 
 
 
 
 
 
 
 
 

 =    

[
 
 
 
 
 
 
 
 
 
 
 
𝑷 0

𝑷 1

𝑷 −1

𝑷 2

𝑷 −2

⋮

𝑷 𝑛

𝟎 ]
 
 
 
 
 
 
 
 
 
 
 

               (5.6) 

The stiffness matrix in Eq. (5.6) may be partitioned as 

𝑲𝑉𝐼𝐶𝑂𝑁  =  [
𝑲 𝐺𝑙𝑜𝑏𝑎𝑙 𝑉𝐼𝑃𝐴𝑆𝐴          𝑪𝑯

 𝑪                 𝟎       

]                                                                       (5.7) 

where 
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𝑲  𝐺𝑙𝑜𝑏𝑎𝑙 𝑉𝐼𝑃𝐴𝑆𝐴  =  

[
 
 
 
 
 
 
 
 
 
𝑙𝑲 0 𝟎 𝟎 𝟎 𝟎 …  𝟎

𝟎 𝑙𝑲 1 𝟎 𝟎 𝟎 …  𝟎

𝟎 𝟎 𝑙𝑲 −1 𝟎 𝟎 …  𝟎

𝟎 𝟎 𝟎 𝑙𝑲 2 𝟎 …  𝟎

𝟎 𝟎 𝟎 𝟎 𝑙𝑲 −2 …  𝟎

⋮ ⋮ ⋮ ⋮ ⋮ ⋱  𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 …  𝑙𝑲 𝑛]
 
 
 
 
 
 
 
 
 

                            (5.8)  

𝑪 =  [𝑬 0 𝑬 1 𝑬 −1 𝑬 2 𝑬 −2 ⋯ 𝑬 𝑛]                                                                             (5.9) 

and superscript H denotes Hermitian transpose. 𝐊 𝐺𝑙𝑜𝑏𝑎𝑙 𝑉𝐼𝑃𝐴𝑆𝐴 is a series of VIPASA 

matrices 𝐊𝑚 at different values of 𝜆𝑚. The matrix 𝐊𝑚 can be partitioned as  

𝑲𝒎 = [
𝒌 11 𝒌 12

𝒌 21 𝒌 22
]                                                                                                                                      (5.10)      

where   

𝒌 11 = 

[
 
 
 
𝑠 𝑀𝑀 −𝑠 𝑀𝑄 0 0

−𝑠 𝑀𝑄 𝑠 𝑄𝑄 0 0

0 0 𝑠 𝑁𝑁 −𝑠 𝑁𝑇

0 0 −𝑠 𝑁𝑇 𝑠 𝑇𝑇 ]
 
 
 

                                                                                    (5.11)              

𝒌 22 = 

[
 
 
 
𝑠 𝑀𝑀 𝑠 𝑀𝑄 0 0

𝑠 𝑀𝑄 𝑠 𝑄𝑄 0 0

0 0 𝑠 𝑁𝑁 𝑠 𝑁𝑇

0 0 𝑠 𝑁𝑇 𝑠 𝑇𝑇 ]
 
 
 

                                                                                    (5.12)        
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𝒌12 = 𝒌
 𝑇

21  =  

[
 
 
 
𝑓 𝑀𝑀 𝑓 𝑀𝑄 0 0

−𝑓 𝑀𝑄 −𝑓 𝑄𝑄 0 0

0 0 −𝑓 𝑁𝑁 −𝑓 𝑁𝑇

0 0 𝑓 𝑁𝑇 𝑓 𝑇𝑇 ]
 
 
 

                                                                (5.13)            

Here,  𝑠 𝑀𝑀,  𝑠 𝑀𝑄, 𝑠 𝑄𝑄,  𝑓 𝑀𝑀, 𝑓 𝑀𝑄  and  𝑓 𝑄𝑄 are the out-of-plane stiffness coefficients 

while 𝑠 𝑁𝑁,  𝑠 𝑁𝑇, 𝑠 𝑇𝑇,  𝑓 𝑁𝑁, 𝑓 𝑁𝑇  and  𝑓 𝑇𝑇  are the in-plane stiffness coefficients. The 

derivation of these coefficients is illustrated in reference [42]. However, the current 

work considers only out-of-plane plate deformations, and thus the calculation 

procedure for finding the values of the out-of-plane stiffness coefficients is detailed in 

Appendix 3.  

C in Eq. (5.7) is the global constraint matrix comprising submatrices Em as in Eq. (5.9), 

where  𝐄𝑚 is the constraint matrix for responses corresponding to half-wavelength 𝜆𝑚 

in the bay 0 ≤  𝑥 <  𝑙  and contains terms of the form  𝑒( 𝑖𝜋𝑥 𝜆𝑚 )⁄ .  

The hybrid dynamic stiffness matrix of the plate is formed by using Lagrangian 

multipliers to couple the VICON and FE components, as follows. 

𝑲 𝐺𝑙𝑜𝑏𝑎𝑙  =  

[
 
 
 
 
 𝑲 𝐺𝑙𝑜𝑏𝑎𝑙 𝑉𝐼𝑃𝐴𝑆𝐴    𝟎       𝑪 1

𝐻

𝟎        𝑲 𝐹𝐸         𝑪 2
𝑇

𝑪 1    𝑪 2    𝟎

  

]
 
 
 
 

                                                       (5.14)               

Here,  𝐊 𝐺𝑙𝑜𝑏𝑎𝑙 𝑉𝐼𝑃𝐴𝑆𝐴 is given in Eq. (5.8). The constraint matrices 𝐂1 and 𝐂2 enforce 

equal displacements and rotations at the nodes connecting the undamaged and 

damaged strips. 𝐂1 also includes any support conditions in the undamaged regions. 𝐂2
T 
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is the transpose of  𝐂2.  𝐊𝐹𝐸 is the FE dynamic stiffness matrix for the damaged 

rectangular strip. In the case of vibration problems  𝐊𝐹𝐸  takes the form 

𝑲𝐹𝐸 = 𝒌 − 𝑛𝟐𝒎                                                                                                                  (5.15)  

where n is the frequency. k and m are the static stiffness matrix and equivalent mass 

matrix of the damaged rectangular strip, and they can be calculated based on the Eqs. 

(5.1) and (5.2) respectively. 

The Wittrick-Williams algorithm of Eq. (3.1) [46] has been extended to cover VICON 

analysis and takes the form 

𝐽 =  ∑ ( 𝐽0𝑚 +  𝑠{𝑲𝑚}  +  𝑠{𝑹} − 𝑟 𝑚              (5.16) 

where 𝐽0𝑚  is the number of eigenvalues which would be exceeded for  𝜆 =  𝜆𝑚  if all 

the degrees of freedom at the nodes of the plate assembly were to be clamped, 𝑟  is the 

number of constraints applied and 

𝑹 =  𝑹0  −   
1

𝐿
 ∑ 𝑬𝑚   𝑲𝑚

−1    𝑬𝑚
𝐻∞ 

−∞              (5.17) 

Here, R has an order equal to the number of constraints (r) and it replaces the null 

matrix at the bottom right of 𝐊𝐺𝑙𝑜𝑏𝑎𝑙 in Eq. (5.14) when Gauss elimination is applied. 

It will be obtained after all rows except those in R have been pivotal. 𝐑0 = 𝟎  when 

all the constraints are rigid [42, 45, 68-70]. 
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5.2.1 Example of plate assembly using VFM 

A simple example of a plate assembly is chosen to illustrate the theory and formulation 

used by VFM to model an assembled plate structure consisting of two or more plates. 

Figure 5-4 (a) includes two plates with the same length 𝑙 and widths 𝑏1 and 𝑏2. The 

exact strip method is used to model plate 1 as a single strip with nodes (numbered 1 

and 2) at the longitudinal edges of the plate. Only out-of-plane degrees of freedom, i.e. 

vertical displacements and rotations about the x axis, are considered. Finite element 

theory is applied to model plate 2. For the purpose of illustrating the concept of VFM 

and minimizing the size of the matrices in the following equations, it is modelled using 

only one element as shown in Figure 5-4 (a). The degrees of freedom at the nodes are 

vertical displacements and rotations about the x and y axes.  

(a) 
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(b) 

 

Figure 5-4 Assembling two plates using VFM. (a) exact strip and FE components. (b) 

the assembled structure. 

Plate 1 is modelled using the exact strip method and the first step is specifying the 

value of the response parameter 𝜉, which was introduced in section 3.2.2. Based on 

Eq. (5.4), when 𝜉 = 1 the half-wavelengths (𝜆𝑚) considered will be  𝜆0 = 𝑙 1⁄  ,  𝜆−1 =

− 𝑙 1⁄  , 𝜆1 = 𝑙 3⁄  , 𝜆−2 = −𝑙 3⁄  , 𝜆2 = 𝑙 5⁄  , … etc. In this example, only the first two 

of these values are included in the following equations, in order to keep the size of the 

matrices manageable. Using Eqs. (5.8) and (5.10)-(5.13), the stiffness matrix of plate 

1 can be obtained as follows: 

𝑲 𝐺𝑙𝑜𝑏𝑎𝑙 𝑉𝐼𝑃𝐴𝑆𝐴 = [
𝑙𝑲 0 0
0 𝑙𝑲 −1

]                                                                                          (5.18)  

where 
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𝑲 0 = 

[
 
 
 
 
 
𝑠 𝑀𝑀𝜆=𝑙

−𝑠 𝑀𝑄𝜆=𝑙
𝑓 𝑀𝑀𝜆=𝑙

𝑓 𝑀𝑄𝜆=𝑙

−𝑠 𝑀𝑄𝜆=𝑙
𝑠 𝑄𝑄𝜆=𝑙

−𝑓 𝑀𝑄𝜆=𝑙
−𝑓 𝑄𝑄𝜆=𝑙

𝑓
 𝑀𝑀𝜆=𝑙

−𝑓
 𝑀𝑄𝜆=𝑙

𝑠 𝑀𝑀𝜆=𝑙
𝑠 𝑀𝑄𝜆=𝑙

𝑓
 𝑀𝑄𝜆=𝑙

−𝑓
 𝑄𝑄𝜆=𝑙

𝑠 𝑀𝑄𝜆=𝑙
𝑠 𝑄𝑄𝜆=𝑙 ]

 
 
 
 
 

                                                    (5.19)              

𝑲 −1 = 

[
 
 
 
 
 
𝑠 𝑀𝑀𝜆=−𝑙

−𝑠 𝑀𝑄𝜆=−𝑙
𝑓 𝑀𝑀𝜆=−𝑙

𝑓 𝑀𝑄𝜆=−𝑙

−𝑠 𝑀𝑄𝜆=−𝑙
𝑠 𝑄𝑄𝜆=−𝑙

−𝑓 𝑀𝑄𝜆=−𝑙
−𝑓 𝑄𝑄𝜆=−𝑙

𝑓
 𝑀𝑀𝜆=−𝑙

−𝑓
 𝑀𝑄𝜆=−𝑙

𝑠 𝑀𝑀𝜆=−𝑙
𝑠 𝑀𝑄𝜆=−𝑙

𝑓
 𝑀𝑄𝜆=−𝑙

−𝑓
 𝑄𝑄𝜆=−𝑙

𝑠 𝑀𝑄𝜆=−𝑙
𝑠 𝑄𝑄𝜆=−𝑙 ]

 
 
 
 
 

                                         (5.20) 

Here, the coefficients in Eqs. (5.19) and (5.20) are calculated based on the values of λ. 

The stiffness matrix of plate 2 will be represented as  𝑲 𝐹𝐸 and can be calculated using 

Eqs. (5.1), (5.2) and (5.15) to form the following equation 

𝑲 𝐹𝐸 = 

[
 
 
 
 
𝒌𝟏𝟏 − 𝑛2𝒎𝟏𝟏 𝒌𝟏𝟐 − 𝑛2𝒎𝟏𝟐 𝒌𝟏𝟑 − 𝑛2𝒎𝟏𝟑 𝒌𝟏𝟒 − 𝑛2𝒎𝟏𝟒

𝒌𝟐𝟏 − 𝑛2𝒎𝟐𝟏 𝒌𝟐𝟐 − 𝑛2𝒎𝟐𝟐 𝒌𝟐𝟑 − 𝑛2𝒎𝟐𝟑 𝒌𝟐𝟒 − 𝑛2𝒎𝟐𝟒

𝒌𝟑𝟏 − 𝑛2𝒎𝟑𝟏 𝒌𝟑𝟐 − 𝑛2𝒎𝟑𝟐 𝒌𝟑𝟑 − 𝑛2𝒎𝟑𝟑 𝒌𝟑𝟒 − 𝑛2𝒎𝟑𝟒

𝒌𝟒𝟏 − 𝑛2𝒎𝟒𝟏 𝒌𝟒𝟐 − 𝑛2𝒎𝟒𝟐 𝒌𝟒𝟑 − 𝑛2𝒎𝟒𝟑 𝒌𝟒𝟒 − 𝑛2𝒎𝟒𝟒]
 
 
 
 

            (5.21) 

where the subscripts refer to node numbers and the size of each term in this matrix is 

3 × 3, based on the number of the degrees of freedom for each node. By applying Eq. 

(5.9), the constraint matrices 𝐂1 and  𝐂2 which represent the connections between 

plates 1 and 2 will take the following forms 

𝑪1 = [𝑪1𝜆=𝑙
𝑪1𝜆=−𝑙]                                                                                                      (5.22) 

where 
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𝑪1𝜆=𝑙
= [

0 0 1 0
0 0 0 1
0 0 𝑒𝑖𝜋 0
0 0 0 𝑒𝑖𝜋

]                                                                                               (5.23) 

𝑪1𝜆=−𝑙
= [

0 0 1 0
0 0 0 1
0 0 𝑒−𝑖𝜋 0
0 0 0 𝑒−𝑖𝜋

]                                                                                          (5.24) 

𝑪2 = [

0 −1 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 −1 0 0

]                                       (5.25) 

Since all the submatrices of the overall stiffness matrix are now defined, Eq. (5.14) is 

applied to form the assembled plate structure stiffness matrix as follows 

 

𝑲 𝐺𝑙𝑜𝑏𝑎𝑙  =  

[
 
 
 
 
 
 
𝑙𝑲0 𝟎   𝟎   𝑪1𝜆=𝑙

𝐻  

𝟎 𝑙𝑲−1 𝟎 𝑪1𝜆=−𝑙

𝐻

𝟎 0   𝑲 𝐹𝐸    𝑪𝟐
𝑇 

𝑪1𝜆=𝑙
𝑪1𝜆=−𝑙

   𝑪 2    𝟎

  

]
 
 
 
 
 
 

                                                  (5.26)        

It should be explained here that the calculated matrix 𝑲 𝐺𝑙𝑜𝑏𝑎𝑙  depends on frequency, 

so that the eigenvalues can be found by trying successive trial frequencies and using 

the Wittrick-Williams algorithm. However, for the present work we have simply 

searched for the lowest frequency where the determinant goes to zero, i.e. assuming 

that the  𝐽0𝑚 terms in the W-W algorithm are zero. 
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5.2.2 Solution time 

Due to dissimilarities in the programing language used in the methods presented where 

VFM is coded using MATLAB, VICON is coded in FORTRAN and ABAQUS is 

coded in C++, the solution times can be difficult to compare directly. Anderson et al 

[45] demonstrated the computational efficiency of the VICON analysis over finite 

element analysis. Williams and Anderson [71]  further demonstrated that the approach 

used in VICON shows significant computational savings for point symmetric 

structures and lateral cross-sections. Kennedy et al. [72] again detailed the 

computational efficiency of the exact strip theory, comparing the program 

VICONOPT with the finite element method (using the STAGS finite element code), 

using examples including a composite blade stiffened panel and a ring-stiffened 

laminated cylinder. This study numerically confirmed that for comparably converged 

solutions, VICONOPT is typically between 100 and 104 times faster. The conclusions 

from these papers apply to the standard VICON analysis, which can only be applied 

to damaged structures when the damage is through the length. However Damghani et 

al. [50] compared the computational efficiency of SM against FEA. A similar 

assessment will now be made for VFM. 

Based on the computational time requirements previously established for VICON 

analysis [71, 72] and considering only out-of-plane behaviour, the solution time 

required for one iteration of the Wittrick-Williams algorithm is proportional to 

 



Chapter 5: The VICONOPT and Finite element (VFM) hybrid model 

77 

 

𝑊𝐿 =
1

2
𝐶′𝜇𝑁 (𝐵2 × 23 + 𝐵𝑟 × 22 +

4

3
𝑟2)  + 

1

2
𝐶𝑁𝐹𝐸 (𝐵𝐹𝐸

2 + 𝐵𝐹𝐸𝑟 +
1

3
𝑟2)   +

 
1

6
𝐶𝑟3                                                                                                                                         (6.2) 

 

Figure 5-5: An example of a banded, symmetric VIPASA matrix 

𝐶 and 𝐶′ are time constants for real and complex arithmetic respectively, 𝜇 is the 

number of VIPASA matrices used in equation (5.6) and 𝑟 is the number of constraints 

applied. The nodes are assumed to be numbered to minimise the bandwidth of the 

VIPASA and FE matrices, as illustrated in Figure 5-5 where only the elements in the 

shaded region need to be stored and manipulated. 𝑁 and 𝐵 are the order and bandwidth 

of each VIPASA matrix, while 𝑁𝐹𝐸 and 𝐵𝐹𝐸 are the order and bandwidth of the FE 

matrix. 
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6 Modelling the effect of damage in natural frequencies using the 

VFM method 

In this chapter the results obtained using the VFM approach outlined in Chapter 5 to 

examine the behaviour of a series of damaged plates are compared with those from 

existing techniques in order to validate the method. Results of a study carried out to 

look at the natural frequencies of isotropic and composite plates containing through-

the-length and embedded damage, including delaminations and areas of reduced 

stiffness, for instance due to matrix cracking, of different sizes and severities are 

presented. A comparison is then made between those obtained using VFM, the 

Smeared Method (SM) [50], VICON analysis and the FE software ABAQUS [20] 

Figure 6-1 illustrates the types of damage modelled and Figure 6-2 details which 

techniques have been used to model which damage case. ABAQUS and VFM are used 

to model all cases of damage. Due to the prismatic requirements of VICON analysis, 

it is only used when the damage is through the length while the SM is used to model 

embedded rectangular damage. 

For the case of a plate containing centrally located through the length and embedded 

rectangular damage (shown in Figure 6-3), Chapter 5 detailed the mechanisms for 

modelling this in VFM. The way in which the same damage has been modelled using 

the other methods is described in the following sections. A series of numerical analyses 

and a study of the solution times for each method are then presented. 
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Figure 6-1 Types of damage studied. 

 

Figure 6-2 Methods used to model different types of damage.  
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(a) 

 

(b) 

 

Figure 6-3: Plate containing centrally located (a) through-the-length damage (b) 

embedded rectangular damage. 
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6.1 VICON model 

VICON analysis was used to model isotropic plates with through the length damage. 

For this case, VICON is able to model this kind of damage directly as shown in 

Figure 6-4. To do this, it is assumed that the damage reduces the stiffness of the area 

affected. In the VICON input data, the properties of each strip are used to represent 

whether the strip is perfect or damaged as well as  the severity of the damage.  

 

Figure 6-4: Isotropic plate with through the length damage modelled by VICON. 

6.2 ABAQUS models 

ABAQUS/Standard [20] was used in all cases to validate the results obtained from 

VFM. Models were constructed using a four noded shell element with reduced 

integration and using five degrees of freedom per node (S4R5) homogeneous 

continuum shell elements. A rectangular mesh was used with the same number and 

size of elements to model the strip containing the centrally located rectangular 

x 

y 

z 
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delamination as was used for the VFM model, in order to achieve the maximum 

possible equivalence between the two. The element size is specified based on the 

minimum mesh density needed for accurate results. Figure 6-5 (a) shows how VFM is 

used to model a plate with a centrally located embedded rectangular delamination. The 

nodes marked with circles (●) at the boundaries between the VICON and FE regions, 

and at the boundary of the delamination, are treated as master nodes. Those at the same 

locations and marked with stars (*) are treated as slave node whose displacements and 

rotations are constrained to match those of the master nodes., The blue line shows the 

regions where boundary conditions are applied. Figure 6-5 (b) is an example of the 

way ABAQUS is used to model a plate to include the same number and size of 

elements that VFM used to model the strip containing centrally located rectangular 

delamination. In both methods the displacements at the edges of the plates are 

constrained to apply the simply supported boundary condition of the plates, i.e. in-

plane displacements on the x and y axes and vertical out-of-plane displacement.  

6.3 Smeared method (SM) 

Damghani et al. [50] developed the Smeared Method to model plates with embedded 

damage. In the case of an isotropic plate with embedded rectangular damage, 

application of the SM results in the substitution of the strip containing the damage with 

an equivalent strip with averaged stiffness to satisfy the prismatic requirement of the 

exact strip method that the SM is based on, see Figure 6-6. The stiffness of the 

equivalent strip is assumed according to:  

𝑲𝑣  =  ( 𝒌𝑟  ×  
𝑑

𝑙
) + ( 𝒌𝑓  ×  

𝑙 − 𝑑

𝑙
)                                                                                (6.1) 
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(a) 

 

(b) 

 

Figure 6-5 Identical plates containing embedded delaminations modelled by (a) VFM 

(b) ABAQUS. 
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Figure 6-6 Smearing method for modelling embedded reduced stiffness damage. 

where 𝐊𝑣 is the averaged stiffness of the damaged strip. 𝐤𝑓 is the  stiffness of a perfect 

strip, calculated using the correct value of Young’s modulus (E) and  𝐤𝑟 is the reduced 

stiffness, calculated using a reduced value of Young’s modulus (fE) to represent the 

effect of damage (i.e. applying a stiffness reduction factor f). Since the stiffness of the 

strip including the embedded damage is averaged, VICON analysis can be used as 

described in section 6.1. 

For embedded delaminations, the strip containing the rectangular delamination is 

divided into four different regions as shown in Figure 6-7. Regions 1 and 2 represent 

the top and bottom portions of the delaminated area and 3a and 3b are the perfect areas 

of the same strip. By manipulating the properties of the sub-laminates, regions 1 and 

2 are re-modelled as strips 1 and 2 with length l instead of d to satisfy the prismatic 
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requirements of the method, while regions 3a and 3b are remodelled as strip 3 using 

Eq. (6.1) [50].   

 

Figure 6-7 Sketch of VICONOPT model for a laminate of length l, width B and 

thickness h, having an embedded rectangular delamination of length d (=µl) and width 

b, (Figure reproduced from Damghani et al. (2014)). 

6.4 Numerical study 

The VFM method was then  validated by comparing the natural frequencies of a range 

of isotropic and composite plates containing through the length and embedded damage 

obtained using VFM, SM, VICON analysis and ABAQUS as detailed in Figure 6-2. 

6.4.1 Reduced stiffness isotropic plates 

The first plates to be examined were isotropic plates with (i) through the length and 

(ii) embedded damage. Plates had length l = 100mm, width b = 100mm and thickness 

h = 1mm. Material properties were: Young’s modulus E =110 kN.mm-2, density ρ = 

2300 kg.mm-3 and Poisson's ratio ν = 0.3. Different values of stiffness reduction factor 

(f) were considered for the effect of damage: f = 0.25, f = 0.3, f = 0.67 and f = 0.75. 
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 Through the length damage (TTLSR) 

Figure 6-8 shows the first natural frequencies of isotopic plates containing different 

sizes of through the length damage (β/b) with different stiffness reduction factors 

(f=0.25, 0.75). Figure 6-8 (a) that there is a perfect match between the VICON and 

ABAQUS results for a range of different widths of through the length damage. For 0 

≤ β/b ≤ 0.4, VFM is also seen to match these results. However, as the damage width 

increases i.e. for β/b > 0.4, VFM predicts higher natural frequencies than both VICON 

and ABAQUS albeit with a maximum difference of only 1.55% at β/b = 1 and 𝑓 =

0.75 . This is due to the number of elements used in the finite element part of the VFM 

being slightly too small to accurately model the vibration mode shape leading to the 

model being over-constrained and as a result of this raising the natural frequencies. In 

Figure 6-8 (b), f=0.25, VFM results perfectly match VICON and ABAQUS results for 

0 ≤ β/b ≤ 0.8. For β/b > 0.8, VFM predicts higher natural frequencies than both VICON 

and ABAQUS with a maximum difference of 2.55% at β/b = 1. 

 Embedded rectangular damage (ERSR) 

Figure 6-9 presents the first natural frequencies of isotopic plates containing embedded 

rectangular damage (d=l/2)  with different stiffness reduction factors (f=0.67, 0.3), as 

calculated using VFM, ABAQUS and SM. Excellent agreement is demonstrated 

between the VFM and ABAQUS results demonstrating that VFM  is a significant 

improvement on the smeared method, which gives good results when the damaged 

plate vibrates globally, 0 ≤ β/b ≤ 0.3, but conservative results when the plate vibrates 

locally, β/b > 0.3, since this mode is not adequately represented, see Figure 6 6. 
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(a) 

 

(b) 

 

Figure 6-8: Lowest natural frequency for isotropic plates (ω1) against width β/b for 

centrally located damage using the three techniques, Smearing Method (SM), 

ABAQUS and VFM. (a) through-the-length damage and f = 0.75. (b) through-the-

length damage and f =0.25. 
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(a) 

 

(b) 

 

Figure 6-9: Lowest natural frequency of isotropic plates (ω1) against width β/b for 

centrally located damage using the three techniques, Smearing Method (SM), 

ABAQUS and VFM. (a)  embedded rectangular damage, d =  50mm and f  =  0.67. (b)  

embedded rectangular damage, d =  50mm and f  =  0.3. 
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6.4.2 Delaminated composite plates  

The VFM, ABAQUS, VICON and SM techniques were then used to study the first 

natural frequencies of through the length delaminated composite plates and composite 

plates containing embedded rectangular delaminations. The plates examined had 

length l = 100mm, width b = 100 mm, thickness h = 4mm, delaminations at two 

different depths (h/2 and h/4) and material properties: Young’s moduli E1 = 110 

kN.mm-2, E2 = 10 kN.mm-2, shear moduli G12 = G13 = G23 = 5 kN.mm-2, Poisson's ratio  

ν12 = 0.33 and density ρ = 4480 kg.mm-3. They each comprised of 32 unidirectional 

plies of thickness 0.125mm in the sequence [0/45/-45/90/90/-45/45/0/0/45/-45/90/90/-

45/45/0]S. 

 Through-the-length delaminations (TTLD) 

Figure 6-10 shows how the lowest natural frequencies of composite plates varies with 

delamination size. It can be seen that there is a very good match between VFM, 

VICON and ABAQUS in handling this kind of damage. The graphs show a decrease 

in the value of the first natural frequency when the width of the delamination is 

increased. However, moving the delamination towards the mid thickness of the plate 

causes more reduction in the value of the first natural frequency for the different 

delamination widths studied. The VICON results are slightly higher than the 

ABAQUS results, with maximum differences of 1.95% and 1.67% for delamination 

depths of h/4 and h/2 respectively. Due to the presence of constraint regions in VFM, 

the maximum differences between VFM and ABAQUS are 2.68% and 2.38% for 

delamination depths of h/4 and h/2 respectively.  
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 Embedded rectangular delamination (ERD) 

Variations in the lowest natural frequencies of composite plates against the size and 

depth of centrally located embedded rectangular delaminations were then examined. 

Figure 6-11 studies the reduction in the lowest natural frequency of a composite plate 

containing embedded rectangular delaminations of various sizes and through the 

thickness locations. Figure 6-11 (a) and (b) show the variations for a delamination of 

length 25mm, showing very good agreement between VFM and ABAQUS for both 

delamination depths with maximum differences between results of 1.88% and 3.4% 

for delamination depths of h/4 and h/2 respectively occurring when β/b = 1. In 

Figure 6-11 (c) and (d) where the delamination length is 50mm, the maximum 

difference between the two models is less than 3.3% when 0 ≤ β/b ≤ 0.7 for both cases 

of delamination depth. This reaches 3.8%, 5.6% and 6.3% when β/b = 0.8, 0.9 and 1.0 

respectively for plates with a delamination depth of h/4, with a slightly smaller 

difference when the delamination is at depth of h/2. Since VFM uses finite element 

theory based on a fixed number of elements to model the damaged part of the plate, as 

the size of the damage increases the mesh becomes coarser and hence the error is 

larger. 
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(a) 

 

(b) 

 

Figure 6-10: Lowest natural frequency of composite plates (ω1) against width β/b for 

centrally located through the length delamination using ABAQUS and VFM. (a)  

Delamination depth is at h/4 from the plate top surface (b) Delamination depth is at 

h/2 from the plate top surface. 
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(c)  

 

(d)  

 

Figure 6-11: Lowest natural frequencies of composite plates (ω1) against width β/b for 

centrally located embedded rectangular delaminations, using the Smearing Method 

(SM), ABAQUS and VFM. (a) delamination depth = h/4, d = 25mm. (b) delamination 

depth = h/2, d = 25mm. (c) delamination depth = h/4, d = 50mm. (d) delamination 

depth = h/2, d = 50mm. 
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In terms of the SM results, as explained in section 6.3, the embedded rectangular 

damage is modelled indirectly, see Figure 6-7. This leads to very good agreement with 

the other methods when the plate vibrates globally, (when 0 ≤ β/b ≤ 0.3 and 0 ≤ β/b ≤ 

0.6) as seen in Figure 6-11 (a) and (b) respectively, but with increasing differences 

between predicted natural frequencies when the panel vibrates locally as seen in 

Figure 6-11 (c). These more conservative results are due to the SM method predicting 

a conservative local behaviour, see Figure 6-12, not seen in the VFM and ABAQUS 

models for the reasons explained in section 4.1. 

As the delamination is moved to the mid-thickness (Figure 6-11 (b) and (d)), the SM 

only models global vibration modes for all delamination sizes and therefore agrees 

well with other techniques only for geometries where the global mode is dominant. 

 

Figure 6-12:  Mode shape corresponding to the lowest natural frequency of a 

composite plate having a centrally located embedded rectangular delamination with 

depth = h/4, d = 50mm and β/b=0.3 obtained using the Smearing Method (SM). 
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Figure 6-13 shows normalised mode shape plots, obtained from ABAQUS, VFM and 

SM, of the lowest natural frequency for two cases from Figure 6-11. For the mid-

thickness delamination in Figure 6-11 (a), the three methods give almost identical 

mode shapes. But in Figure 6-11 (b), where the delamination is closer to the top 

surface, ABAQUS and VFM show good agreement with a maximum difference of 3% 

in the magnitude of the out of plane displacement, while SM gives a fictitious through-

the-length local mode. 
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SM 

 

 

 

 

 

   

 (a) (b) 

Figure 6-13: ABAQUS, VFM and SM plots of the out-of-plane deflection in the normalised mode shape of the lowest natural frequency for a 

composite plate containing an embedded rectangular delamination. (a) Delamination length d=0.5l, depth 0.5h, width β=0.5b, see Figure 6-11(d). 

(b) Delamination length 𝑑 = 0.5𝑙, depth 0.25ℎ, width 𝛽 = 0.6𝑏, Figure 6-11 (c).
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 Effect of delamination location. 

Having validated the VFM method for modelling damage, the effects of 

widthwise/lengthwise position and the depth of a delamination on the first natural 

frequency of a damaged plate were studied using VFM and ABAQUS. Figure 6-14 

shows a plate containing embedded delaminations D1 (located at (ax, ay=b/2), and D2 

(located at (ax=l/2, ay)). However, it is aimed to investigate the effects of location of 

delamination, lengthwise (D1) and widthwise (D2) respectively.   

 

Figure 6-14 Plate containing embedded delaminations. 

Figure 6-15 (a) to (c) show the results of this analysis for composite plates containing 

embedded delaminations with length 25mm, 50mm and 75mm at depths of h/4 and h/2 

as their location varies widthwise (β/b). Figure 6-16 (a) to (d) demonstrate the effect 
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of changing the lengthwise position of delaminations of length d=25mm and 50mm, 

and width β=20mm and 40mm, at depths of h/4 and h/2. All cases clearly show a 

reduction in the first natural frequency as the delamination moves toward the centre of 

the plate. 
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(b) 

 

 

(c) 

 

Figure 6-15: Lowest natural frequency of composite plates (ω1) against widthwise 

position and depth of embedded rectangular delaminations. 
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(c)  

 

 

(d) 

 

Figure 6-16: Lowest natural frequency of composite plates (ω1) against lengthwise 

position and depth of embedded rectangular delaminations. 
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These analyses demonstrate the capability of VFM in handling all possible locations 

and depths of delamination, for through the length and embedded damage. Excellent 

agreement is seen between VFM and FE (ABAQUS) results for all cases of damage 

studied with the maximum difference found  being 2.67% for the case when the plate 

has a delamination with d=50 mm, b=40 mm, a delamination depth of h/2 and the 

delamination located at the centre of the plate. 

 Effect of aspect ratio  

Finally the relationship is studied between the aspect ratio (b/l) and the lowest natural 

frequencies of simply supported laminated plates with centrally located embedded 

delaminations of increasing size, length  d = 25mm  and 50mm located at depth h/4. 

Plates examined had length l = 100mm width b = 50 mm, 100 mm, 150 mm, 200 mm, 

250 mm and 300 mm, thickness h = 2mm and material properties: Young’s moduli E1 

= 110 kNmm2, E2 = 10 kNmm2, shear moduli G12 = G13 = G23 = 5 kN/mm2, Poisson's 

ratio ν12 = 0.33 and density ρ = 4480 kg/mm3. The plates comprised 32 plies of 

thickness 0.0625mm in the sequence [0/45/-45/90/90/-45/45/0/0/45/-45/90/90/-

45/45/0],S. Only results from VFM are presented in this analytical study, however 

graphs for the same study comparing results from VFM and ABAQUS are included in 

Appendix 4



Chapter 6: Modelling the effect of damage in natural frequencies using the VFM 

method 

105 

 

 

Figure 6-17: The effect of aspect ratio (b/l) on the lowest natural frequency for 

different delamination sizes, d = 50mm. 

Figure 6-17 illustrates the effect of changing the delamination size for plates with 

different aspect ratios 𝑏 𝑙⁄ , while Figure 6-18 plots the reductions in the lowest natural 

frequency against the aspect ratio. In these figures the natural frequencies have been 

normalized relative to those of undamaged plates, i.e. having  = 0. The maximum 

difference between VFM and ABAQUS results is just 2.84%, see Appendix 9.4. The 

figures show decreased natural frequencies with increased delamination size and for 

larger aspect ratios. The degradations in natural frequency tend to be smaller for square 

plates. 
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Figure 6-18 Plots of normalized first natural frequency against aspect ratios for 

different delamination width with d=50mm. 

6.5 Solution time application to VFM 

Figure 6-19 (a) shows a plate modelled using VFM. The central portion of the plate is 

modelled using a finite element mesh of 32 elements (4 × 8). The edge portions are 

modelled using the exact strip method. The form of the global dynamic stiffness matrix 

is shown in Figure 6-19 (b). Applying equation (6.2) shows that the VFM and pure FE 

analysis times are, respectively, 7.02 and 29.85 times longer than that of the pure 

VICON analysis. Thus for through-the-length damage there is a clear computational 

advantage in using VICON analysis over FE analysis. In the case of embedded 

damage, for which pure VICON analysis cannot be used, VFM provides an accurate 

alternative to pure FE and is about 4 times faster. 
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(a) 

 

(b) 

Figure 6-19 (a) Damaged plate modelled in VFM. (b) form of the global dynamic 

stiffness matrix. 
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7 Overall conclusions and future works  

7.1 Conclusions 

An extended hydrid model VFM has been developed by combining the exact strip 

method with the finite element method . This model can be applied to modelling a 

change of properties in a local region such as delamination of a composite laminate. 

This method is of the potential to deal with a plate of irregular shape and complex 

boundary conditions where the exact strip method is limited. 

In Chapter 4, aspects such as different stacking sequences of the plies, through-the-

length and through-the-width delaminations, single and multi-delamination zones at 

the same and varying depths and the delamination effect on the global buckling load 

are studied and the following conclusions are obtained: 

 The simplicity of the VICONOPT program allows the analysis of laminate 

plates with various ply arrangements in a seamless manner. Consequently, the 

effects of the size and location of delaminations on the critical buckling load 

and buckling mode shapes can be easily studied. 

 As delamination width increases, a reduction in the critical buckling load 

accompanied by a transition from a global mode to a local mode of the 

delaminated layer takes place. 

 The critical buckling load of a delaminated plate is very sensitive to the ply 

orientations of the delaminated layer with respect to the direction of the in-

plane force system. 
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 Composite plates with on-axis and off-axis plies which buckle at smaller half-

wavelengths witness higher critical buckling loads. 

 It is observed that a through-the-length and through-the-width delaminated 

portion has effectively clamped boundary conditions, so that the buckling half-

wavelength will be less than the plate length, for delamination at any depth 

except at mid-thickness. 

 The global buckling load for a delaminated composite plate is predicted for 

any delamination width. A relationship is established between the global 

buckling load and the delamination ratio, which can be considered in the 

design process when only global buckling is the concern.     

From chapter 6, it can be summarized that 

1. VFM has been shown to efficiently handle geometries of damage that the 

previous VICON models could not. 

2. A near perfect match is achieved between VICON and ABAQUS results when 

analysing isotropic plates containing through-the-length stiffness reduction. 

VFM is also seen to match these results. However, as the damage width 

increases VFM predicts higher natural frequencies than both VICON and 

ABAQUS albeit with a maximum difference of only 1.55% for damage 

extending over the whole plate. 

3. Excellent agreement between VFM and ABAQUS is demonstrated in 

modelling an embedded rectangular stiffness reduction. The smeared method 

gives good results for narrow delaminations when the plate vibrates globally, 
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but conservative results for wider delaminations when the damaged plate 

vibrates locally since this type of mode is not adequately represented.   

4. A very good match is observed between VFM, VICON and ABAQUS in 

handling through-the-length delaminations in a composite plate, with the 

maximum differences between VFM and ABAQUS being 1.95% and 1.67% 

for delaminations at 25% amd 50% of the plate thickness, respectively. 

5. There is very good agreement between VFM and ABAQUS results for 

composite plates containing an embedded rectangular delamination, with the 

maximum differences between VFM and ABAQUS being 1.88% and 3.4%, 

for  delaminations at 25% and 50% of the plate thickness, respectively. These 

errors increase slightly increase if the length of the damage is increased, 

because VFM uses finite element theory based on a fixed number of elements 

to model the damaged part of the plate, so that as the size of the damage 

increases the mesh becomes coarser. 

6. The smeared method models the embedded damage indirectly and this leads 

to good agreement with the other methods when the composite plate vibrates 

globally but with increasing differences when it vibrates locally. 

7. VFM is used to study the effects of widthwise and lengthwise position and 

depth of rectangular delamination on the first natural frequency of a composite 

plate, and the results are validated with ABAQUS.  

8.  VFM is used to illustrate the effect of aspect ratio on the lowest natural 

frequency of a simply supported laminated plate containing a rectangular 

delamination. It is noted that the degradation in natural frequency tends to be 

smaller for square plates and to increase with increasing width to length ratio.     
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9. Due to dissimilarity in the computer programing languages used in the 

methods presented, only an approximate assessment of the solution time could 

be carried out. It was found that VFM and finite element analysis times for a 

typical problem are, respectively, 7.02 and 29.85 times that of the exact strip 

method. 

10. It is concluded that VFM has extended the capability of the exact strip method 

by modelling embedded delaminations and other damage, while still having a 

computational advantage over finite element analysis. 

7.2 Future works 

Based on work executed in this thesis the following topics can be recommended for 

future study: 

1. Fully incorporating VFM into VICONOPT so it can be used on a wide range 

of plates and stiffened panels. The combined code will be able to handle all 

kinds of embedded damages, in contrast to the existing VICONOPT code 

which can only handle problems which satisfy the prismatic requirements of 

the exact strip method i.e. plates with through the length damage.   

2. The VFM approach will then be available for vibration, buckling and 

postbuckling analysis for a wide range of damaged plates and stiffened panels, 

and for making allowance for damage in optimum design. 

3. Using a more robust finite element model, so as to model other sorts of damage, 

e.g. cracks and various shapes of delamination, including circular, triangular 

and elliptical delaminations. 
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4. A current PhD student is already extending the novel hybrid approach 

presented in this thesis (VFM) to model plates containing cracks of arbitrary 

length and alignment, with a view to detecting the location and extent of 

damage in plate assemblies. 
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9 Appendices 

9.1 Appendix 1 

The following gives the derivations of the static stiffness matrix of Eq. (5.1) [66]. 

When a is the plate length on the y axis, b is the plate width on the x axis, t is the plate 

thickness, E denotes Young’s modulus,is the density and  is Poisson’s ratio, the 

displacement functions used to calculate the stiffness properties of an isotropic 

rectangular plate in bending are of the form 

𝑢𝑧  =  𝒂 ∗  𝒖                                                                                                                                           (9.1.1) 

where a is a function of the position coordinates and u is a displacement vector with a 

positive direction of  

𝒖 =  { 𝑢1    𝑢2  . . .  𝑢12 }                                                                                                                         (9.1.2) 

𝒆 =  𝒃  ∗  𝒖                                                                                                                                              (9.1.3) 

where 𝐞 is the strain vector and  𝐛  represents a matrix of the exact strains due to unit 

displacements 𝐮.  

Using the sign convention established in Figure 5-2 (a) chapter 5, the matrix a for 

compatible deflections and slopes can be given by 
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𝒂𝑇  =  

[
 
 
 
 
 
 
 
 
 
 
 
 
 
(1 +  2𝜉) (1 +  2𝜉)2 (1 +  2𝜂) (1 −  𝜂)2

(1 +  2𝜉) (1 −  2𝜉)2 𝜂(1 −  𝜂)2𝑏

−𝜉 (1  −   𝜉)2 (1  +   2𝜂) (1  −   𝜂) 2𝑎

−(1  +   2𝜉) (1  −   𝜉)2 (3  −   2𝜂)  𝜂2

−(1 +  2𝜉) (1 −  𝜉)2 (1 −  𝜂) 𝜂2𝑏

−𝜉 (1 −  𝜉)2 (3 −  2𝜂) 𝜂2𝑎

(3 −  2𝜉) 𝜉2 (3 −  2𝜂) 𝜂2

−(3 −  2𝜉)  𝜉2 (1 −  𝜂) 𝜂2 𝑏

(1 −  𝜉)  𝜉2  (3 −  2𝜂) 𝜂2 𝑎

(3 −  2𝜉)  𝜉2  (1 +  2𝜂) (1 −  𝜂)2

(3 −  2𝜉)  𝜉2  𝜂 (1 −  𝜂)2  𝑏

(1 −  𝜉)  𝜉2  (1 +  2𝜂) (1 −  𝜂)2  𝑎 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                              (9.1.4) 

Where 

𝜉 =  𝑥 𝑏⁄  and 𝜂 =  
𝑦

𝑎⁄                                                                                                                               (9.1.5) 

 

Based on the assumed deflection function, first introduced by Clough and Tocher [73], 

the strains are calculated from the flat-plate theory, using 

𝑒𝑥𝑥  =   −𝑧
 𝜕2 𝑢𝑧

𝜕 𝑥2
                                                                                                                                            (9.1.6) 

𝑒𝑦𝑦  =   −𝑧
 𝜕2 𝑢𝑧

𝜕 𝑦2                                                                                                                                            (9.1.7) 

𝑒𝑦𝑦  = −2𝑧 
𝜕2 𝑢𝑧

𝜕𝑥  𝜕𝑦
                                                                                                                                       (9.1.8) 
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Eqs. (9.1.6) to (9.1.8) and (9.1.4) can then be used to determine the matrix  𝒃  in Eq. 

(9.1.3) which expresses the total strains due to unit displacement and is given by 
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𝒃𝑇 =  

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (1 −  2𝜉) (1 +  2𝜂) (1  −  𝜂)2  6𝑧

𝑎2
 (1 +  2𝜉) (1 −  𝜉)2(1 −  2𝜂)  

6𝑧

𝑏2
−𝜉(1 −  𝜉)𝜂(1 −  𝜂) 

 72𝑧

𝑎𝑏
 

(1 −  2𝜉)𝜂(1 −  𝜂)2 6𝑏𝑧

𝑎2
(1 +  2𝜉) (1 −  𝜉)2(2 −  3𝜂) 

2𝑧

𝑏
              𝜉(1 − 𝜉)(1 − 𝜂)(1 − 3𝜂)

12𝑧

𝑎
 

−(2 −  3𝜉) (1 +  2𝜂) (1 −  𝜂)2 2𝑧

𝑎
−𝜉(1 −  𝜉)2(1 −  2𝜂)  

6𝑎𝑧

𝑏2
 −(1 −  𝜉) (1 + 3𝜉)𝜂(1 −  𝜂)

12𝑧

𝑏

(1 −  2𝜉)(3 − 2𝜂)𝜂2 6𝑧

𝑎2
           −(1 + 2𝜉) (1 − 𝜉)2 (1 − 2𝜂)

6𝑧

𝑏2
𝜉(1 − 𝜉)𝜂(1 − 𝜂)

72𝑧

𝑎𝑏
 

−(1 − 2𝜉)(1 − 𝜂)𝜂2 6𝑏𝑧

𝑎2
(1 + 2𝜉) (1 − 𝜉)2 (1 − 3𝜂)

2𝑧

𝑏
−𝜉(1 − 𝜉)𝜂(2 − 3𝜂)

12𝑧

𝑎

−(2 − 3𝜉)(3 − 2𝜂)𝜂2 2𝑧

𝑎
𝜉(1 − 𝜉)2(1 − 2𝜂) 

6𝑎𝑧

𝑏2
(1 − 𝜉) (1 + 3𝜉)𝜂(1 − 𝜂)

12𝑧

𝑏

−(1 − 2𝜉)(3 − 2𝜂)𝜂2 6𝑧

𝑎2
−(3 − 2𝜉) 𝜉2(1 − 2𝜂)

6𝑧

𝑏2
−𝜉(1 − 𝜉)𝜂(1 − 𝜂)

72𝑧

𝑎𝑏
 

(1 − 2𝜉)(1 − 𝜂)𝜂2 6𝑏𝑧

𝑎2
(3 − 2𝜉) 𝜉2(1 − 3𝜂)

2𝑧

𝑏
𝜉(1 − 𝜉)𝜂(2 − 3𝜂)

12𝑧

𝑎

−(1 − 3𝜉)(3 − 2𝜂)𝜂2 2𝑧

𝑎
−(1 − 𝜉) 𝜉2(1 − 2𝜂)

6𝑎𝑧

𝑏2
−𝜉(2 − 3𝜉)𝜂(1 − 𝜂)

12𝑧

𝑎

−(1 − 2𝜉) (1 + 2𝜂) (1 − 𝜂)2 6𝑧

𝑎2
 (3 − 2𝜉) 𝜉2(1 − 2𝜂)

6𝑧

𝑏2
𝜉(1 − 𝜉)𝜂(1 − 𝜂)

72𝑧

𝑎𝑏

−(1 − 2𝜉) (1 + 2𝜂) (1 − 𝜂)2 6𝑏𝑧

𝑎2
(3 − 2𝜉) 𝜉2(2 − 3𝜂)

2𝑧

𝑏
−(1 − 𝜉) (1 − 𝜉)𝜂(1 − 3𝜂)

12𝑧

𝑎

−(1 − 3𝜉) (1 + 2𝜂) (1 − 𝜂)2 2𝑧

𝑎
    (1 − 𝜉) 𝜉2(1 − 2𝜂)

6𝑎𝑧

𝑏2
𝜉(1 − 𝜉)𝜂(1 − 𝜂)

12𝑧

𝑏 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                            

(9.1.9)
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Substituting  𝒃  from Eq. (9.1.9) into Eq. (9.1.3) and performing the required 

integration, the stiffness matrix will be as follows 

𝒌 =  [
𝒌𝑰,𝑰             𝑺𝒚𝒎𝒎𝒆𝒕𝒓𝒊𝒄

𝒌𝑰𝑰,𝑰             𝒌𝑰𝑰,𝑰𝑰
]                                                                                     (9.1.10) 

where the submatrices 𝐤I,I, 𝐤II,I and  𝐤II,II are presented in Table 5-1 , 5-2 and 5-3. 
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9.2 Appendix 2 

The equivalent mass matrix is calculated from [66] 

𝒎 =  ∫  𝜌 𝒂𝑻 𝒂  𝑑𝑉
𝑉

                                                                                                          (9.2.1)                                                                                                                         

where ρ is the density and 𝐚 is the deflection matrix which refers to all nodal 

displacement in local coordinates system shown in Figure 5-2 in chapter 5. 

By substituting  𝐚 of Eq. (9.1.4) into Eq. (9.2.1) and performing integration over the 

whole rectangle, the mass matrix is obtained and is given by Eq. (5.2).  
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9.3 Appendix 3 

The calculation procedure for finding the values of the out-of-plane stiffness 

coefficients in Eq. (5.10) starts with calculating the values of the parameters T, S and 

L as follows [42]  

𝑇 =  𝛼12 + 2𝛼12 − 3𝛼23
2 − 

𝜆2𝑁𝑇

2𝜋2𝐷22
  

𝑆 =  
𝜆2𝑁𝑆

𝜋2𝐷22
+ 2(𝛼23𝑇 + 𝛼23

3 − 𝛼23)  

𝐿 =  
𝜆2

𝜋2𝐷22
+ (𝑁𝐿 + 4𝑚𝜆2𝑛2) − 2𝛼23𝑆 + (𝑇 + 𝛼23

2 )2 − 𝛼11  

where NL, NT , NS and n are the in-plane axial, transverse and shear loads, and the 

frequency of vibration, respectively, λ is the specified half-wavelength, m is the mass 

per unit area and α11 = D11 / D22, α12 = D12 / D22, α33 = D33 / D22, α13 = D13 / D22 and α23 

= D23 / D22. Here D11, D22, D12, D13 and D23 are the out-of-plane elastic properties of 

the plate. 

In unloaded vibration problems for isotropic or orthotropic plates S = 0 and the 

calculation path will depend on the value of L as follows 

Case (a).  S = 0, L > 0  

1. Calculate α and γ  from the equations 
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𝛼2 =  𝑇 + 𝐿
1

2, 

𝛾2 =  𝑇 − 𝐿
1
2 

2. Calculate s1. c1, s3 and c3 from 

𝑠1 = (1 𝛼⁄ ) 𝑠𝑖𝑛ℎ 𝜔𝛼 

𝑐1 = 𝑐𝑜𝑠ℎ 𝜔𝛼 

𝑠3 = (1 𝛾⁄ ) 𝑠𝑖𝑛ℎ 𝜔𝛾 

𝑐3 = 𝑐𝑜𝑠ℎ 𝜔𝛾 

where  𝜔 = 𝜋𝑏
𝜆⁄   and  𝑏 is the plate width.  

3. Then calculate  

𝑍 =  𝑇𝑠1𝑠3 − 𝑐1𝑐3 + 1 

𝑅1  =  𝐿
1
2 ( 𝑐1𝑠3 − 𝑐3𝑠1) 

𝑅2 = 𝐿
1
2 ( 𝛼2𝑐3𝑠1 − 𝛾2𝑐1𝑠3) 
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𝑅3  =  𝐿𝑠1𝑠3 

𝑅4 = 𝐿
1

2(𝑠1− 𝑠3) 

𝑅5 = (𝑠1+ 𝑠3) 

𝑅6 = 𝐿
1

2(𝑐1− 𝑐3) 

4. The out of plane stiffness coefficients then calculated as following 

𝑆𝑀𝑀 = (
 𝜋 𝐷22

𝜆⁄  ) 𝑍−1 𝑅1  

𝑆𝑄𝑄 = (
 𝜋3 𝐷22

𝜆3⁄  ) 𝑍−1 𝑅2  

𝑆𝑀𝑄 =  (
 𝜋2 𝐷22

𝜆2⁄  ) (𝑇 − 𝛼12 − 𝑍−1 𝑅3) 

𝑓𝑀𝑀 = (
 𝜋 𝐷22

𝜆⁄  ) 𝑍−1 𝑅4   

𝑓𝑄𝑄 = (
 𝜋3 𝐷22

𝜆3⁄  ) 𝑍−1(𝑇 𝑅4 + 𝐿𝑅5)  
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𝑓𝑀𝑄 = (
 𝜋2 𝐷22

𝜆2⁄  )  𝑍−1 𝑅6  

Case (b).  S = 0, L < 0  

1. Calculate α, γ and β from the equations 

𝛼 =  𝛾 =  {
1

2
[√(𝑇2 − 𝐿) + 𝑇]}

1
2
 

𝛽 =  {
1

2
[√(𝑇2 − 𝐿) − 𝑇]}

1
2
 

2. Calculate the same equations in case (a) stage 3 and 

𝑠2 = 𝑠𝑖𝑛 𝜔𝛽 

𝑐2 = 𝑐𝑜𝑠 𝜔𝛽 

3. Calculate  

𝐴 = 𝑇 + 2𝛽2  

𝐹 = 𝐿 + 8𝑇𝛽2 + 12𝛽4  
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4. Calculate  

𝑍 =  (𝐴 + 𝛽2)𝑠1𝑠3 − 𝑐1𝑐3 + 2𝑐2
2 − 1 

𝑅1  =  2𝛽2(𝑐1𝑠3 − 𝑐3𝑠1) − 4𝛽𝑐2𝑠2 

𝑅2  =  4 𝐴 𝛽 𝑐2 𝑠2 + ( 𝐹 − 2𝛽2𝐴) (𝑐1𝑠3 +  𝑐3𝑠1) 

𝑅3  =  𝐹 𝑠1 𝑠3 

𝑅4  =  2 𝛽𝑠2 ( 𝑐1 + 𝑐3) − 2𝛽2𝑐2( 𝑠3 + 𝑠1) 

𝑅5  = 𝑐2( 𝑠3 + 𝑠1) 

𝑅6  =  ( 𝑇 + 𝐴 + 2𝛽2)𝛽(𝑠2 + 𝑠3) 

5. Then the out-of-plane stiffness coefficients can be calculated using the same 

equations in case (a) stage 5. 

Case (b).  S = 0, L = 0 

1. Calculate 

𝑠4  =  
𝑠𝑖𝑛ℎ 𝜔 √𝑇

𝜔 √𝑇
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𝑐4  = 𝑐𝑜𝑠ℎ 𝜔 √𝑇  

𝑍 =  
1

2
 ( 𝑠4

2 − 1 ) 

2. The out-of-plane stiffness coefficients can be calculated using the following 

equations  

𝑆𝑀𝑀 = (
 𝐷22

𝑏⁄  ) 𝑍−1( 𝑠4 𝑐4 − 1)   

𝑆𝑄𝑄 = (
 𝐷22

𝑏3⁄  ) 𝜔2 𝑍−1𝑇 ( 𝑠4  𝑐4 +  1)  

𝑆𝑀𝑄 = − (
 𝐷22

𝑏2⁄  ) 𝜔2( 𝛼12 + 𝑇 + 𝑇 𝑍−1) 

𝑓𝑀𝑀 = (
  𝐷22

𝑏⁄  ) 𝑍−1 ( 𝑐4 − 𝑠4)  

𝑓𝑄𝑄 = (
𝐷22

𝑏3⁄ ) 𝑍−1 𝜔2 𝑇 (𝑐4 + 𝑠4) 

𝑓𝑀𝑄 = − (
 𝐷22

𝑏2⁄  ) 𝑍−1 𝜔2 𝑇𝑠4   
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9.4 Appendix 4 

Further analytical graphs related to the effect of aspect ratio on a simply supported 

composite plate containing an embedded delamination (section 6.4.2.4). 

(a)  
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(b)  

 

(c)  
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(d)  
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(f)  

 

Figure 9-1 Plots of lowest natural frequency against different delamination sizes, d = 

25mm and 50mm, of composite plate with various aspect ratios (b/l). 
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