

Knowledge representation, storage

and retrieval for BIM supported

building evacuation design

Calin Boje

March 2018

A thesis submitted to Cardiff University for the degree of Doctor of Philosophy

ii

iii

Summary

Safe evacuation design is a complex process, which relies on crowd simulation models

when assessing the performance of large or complicated building layouts. Current

simulation methods and tools lack automation and are limited to geometry when relying

on BIM interoperability. The use of semantic web linked data is seen as a step towards

integrating and leveraging current digital resources to facilitate intelligent and automatic

design capable of knowledge processing. An intelligent software system has been

developed which is capable of integrating multiple information sources and which can

facilitate fast automatic construction and analysis of crowd simulation models for design

decision support. The system includes several developed OWL ontologies and SWRL

rules which represent design knowledge from the fire evacuation field, thus being able

to process and store data about a multi-disciplinary design field. The work conducted

towards the development of the system involved investigation into crowd analysis tools,

evacuation and digital building models. The ontology and knowledge operators are

presented and discussed, providing insight into future exploration of such methods with

the aim of outlining their benefits and limitations. The system and knowledge engineered

have been tested using a case study, proving they are capable of fast processing and

correct interpretation of model data.

iv

v

Acknowledgements

I would like to thank my supervisors Dr. Haijiang Li and Prof. Yacine Rezgui for their

guidance and support.

Special thanks to the people from industry which have been involved with my research

project by providing invaluable insight into crowd simulation and their help towards

validating the system: Peter Debney and Rhys Lewis from Oasys; Frank Schuyer,

Victoria Manolova and Geert van Gorp from Xinaps.

Special thanks to the developers of and contributors to IfcOwl, on which I have relied to

conduct this work. I am grateful to Michael Dibley and Alex Bradley for the brainstorming

sessions and helping me learn about ontologies. Additionally, I would like to thank Adbul

Rahman Darras for his help on the case study.

A big thank you to all researchers, procrastinators, coffee addicts and philosophers in

the making that passed through the BRE Institute over the last years. I would not have

made it without their encouragement over the daily lunch and coffee breaks.

To my family for their support and encouragement even from far away, they will always

be my inspiration.

To my girlfriend Ioana, for her constant support, love and patience to see me through

this PhD.

vi

vii

DECLARATION

This work has not been submitted in substance for any other degree or award at this or any other
university or place of learning, nor is being submitted concurrently in candidature for any degree
or other award.

Signed ……………………………………………… (candidate) Date ………….….………

STATEMENT 1

This thesis is being submitted in partial fulfillment of the requirements for the degree of
…………..(insert MCh, MD, MPhil, PhD etc, as appropriate)

Signed ……………………………………………… (candidate) Date ………….….………

STATEMENT 2

This thesis is the result of my own independent work/investigation, except where otherwise stated,
and the thesis has not been edited by a third party beyond what is permitted by Cardiff University’s
Policy on the Use of Third Party Editors by Research Degree Students. Other sources are
acknowledged by explicit references. The views expressed are my own.

Signed ……………………………………………… (candidate) Date ………….….………

STATEMENT 3

I hereby give consent for my thesis, if accepted, to be available online in the University’s Open
Access repository and for inter-library loan, and for the title and summary to be made available to
outside organisations.

Signed ……………………………………………… (candidate) Date ………….….………

STATEMENT 4: PREVIOUSLY APPROVED BAR ON ACCESS

I hereby give consent for my thesis, if accepted, to be available online in the University’s Open
Access repository and for inter-library loans after expiry of a bar on access previously
approved by the Academic Standards & Quality Committee.

Signed ……………………………………………… (candidate) Date ………….….………

viii

ix

Table of Contents

List of Figures ... xiii

List of Tables .. xix

List of Abbreviations ... xxi

Chapter 1. Introduction ... 1

1.1. Problem statement ... 1

1.2. Research motivation .. 2

1.2.1. Designing for human safety .. 2

1.2.2. Achieving collaboration and integration through BIM 3

1.2.3. Designing buildings with knowledge in mind ... 4

1.3. Research hypothesis .. 5

1.4. Research questions ... 5

1.5. Research contribution .. 6

1.6. Structure of the thesis .. 6

Chapter 2. Literature Review .. 9

2.1. Designing safe building egress .. 9

2.1.1. Determining evacuation time .. 9

2.1.2. Crowd simulation models and tools for evacuation 14

2.2. Building Information Modelling for collaboration .. 17

2.2.1. BIM level interoperability ... 17

2.2.2. BIM-based evacuation design ... 19

2.3. The Semantic Web and Linked Data paradigm ... 22

2.3.1. Semantic web languages – RDF to OWL ... 22

2.3.2. Ontologies for building design ... 25

2.4. Summary of literature findings ... 28

Chapter 3. System design and methodology .. 31

Chapter 4. Requirement analysis ... 39

4.1. Design of crowd simulation tools .. 39

4.1.1. Features and capabilities .. 40

x

4.1.2. Taxonomy of model concepts ... 43

4.2. Scenario automation requirements ... 48

4.2.1. Creating valid models .. 48

4.2.2. Creating analysis feedback ... 52

4.3. Technologies and tools requirements ... 54

4.3.1. Crowd simulation model. MassMotion ... 54

4.3.2. Digital building model. IFC and IfcOwl .. 57

4.3.3. Knowledge modelling tool. Protégé ... 58

4.3.4. Knowledge management server. Stardog ... 59

4.4. Summary .. 60

Chapter 5. Knowledge base development .. 61

5.1. Ontology development .. 62

5.1.1. ONTOCS overall alignment configuration ... 63

5.1.2. Representing the crowd simulation model .. 65

5.1.3. Representing the analysis feedback process .. 72

5.1.4. Representing design codes ... 76

5.1.5. Representing a crowd simulation tool ... 81

5.2. Ontological alignment of concepts .. 83

5.2.1. Aligning digital building and crowd simulation models............................. 84

5.2.2. Aligning scenario and feedback analysis models 85

5.2.3. Aligning design codes and classification criteria 88

5.3. Ontology validation ... 90

5.4. Summary .. 91

Chapter 6. Storing and retrieving knowledge .. 93

6.1. Knowledge operator types .. 94

6.1.1. Reasoning rules. SWRL .. 95

6.1.2. Queries. SPARQL ... 98

6.2. Storing information and knowledge .. 100

6.2.1. Storing building model data and information ... 103

xi

6.2.2. Storing design process information and knowledge 108

6.3. Retrieving information and knowledge ... 110

6.3.1. Stage I – Scenario generation .. 112

6.3.2. Stage II – Analysis feedback ... 119

6.3.3. Linking models for future extensibility ... 127

6.3.4. Scenario vs element view ... 128

6.4. Summary .. 130

Chapter 7. System implementation, testing and validation ... 131

7.1. Introduction to the ONTOCS system .. 131

7.1.1. ONTOCS process workflow .. 132

7.1.2. ONTOCS architecture ... 135

7.2. ONTOCS Case study on Queen’s Buildings .. 137

7.2.1. Building description ... 138

7.2.2. Use cases – objectives, assumptions and rationale 139

7.2.3. Stage I – Scenario generation use case results 144

7.2.4. Stage II – Analysis feedback use case results 152

7.2.5. Discussion... 165

7.3. Summary .. 170

Chapter 8. Discussion and future work... 171

8.1. Revisiting the hypothesis ... 171

8.2. Research limitations ... 178

8.3. Future work .. 179

Chapter 9. Conclusion and contribution ... 181

Bibliography .. 185

Appendix A – Simulation tools concepts .. 197

Appendix B – Developed ontologies .. 212

Crowd Simulation Scenario (CSS) ontology ... 213

Feedback Analysis (FBA) ontology ... 216

UK Spaces Occupant Capacity (UKSOC) ontology .. 219

xii

MassMotion (MM) ontology ... 223

Alignment between UKSOC and Uniclass2015 ontologies 226

Appendix C – SPARQL queries .. 235

Appendix D – ONTOCS system interface ... 252

Appendix E – Case study data .. 262

xiii

List of Figures

Figure 2-1. Components in evaluating RSET and ASET (PD 7974 2004) 10

Figure 2-2. Example evacuation time distribution of people leaving the premises of a

building (adapted from PD 7974 2004)... 11

Figure 2-3. The computer modelling process for evacuation design, adapted from

Kuligowski (2016a) ... 16

Figure 2-4. Increasing levels of semantics for data on the Web 22

Figure 2-5. Example of an RDF triple following the SPO pattern 23

Figure 3-1. The envisaged processes for achieving knowledge mining using the

proposed ONTOCS system .. 32

Figure 3-2. Pursuit of knowledge in parallel to system design and testing 33

Figure 4-1. CST concepts by domain feature categories (plot data in Appendix A) 44

Figure 4-2. Crowd simulation scenario information requirements (categories which

contribute to context are in Figure 4-3)... 49

Figure 4-3. Information sources contributing to simulation scenario context 51

Figure 4-4. Example model with a plotted Fruin’s LOS map .. 54

Figure 4-5. MassMotion interface ... 56

Figure 4-6. Summary view of the IfcOwl ontology .. 57

Figure 4-7. Entities view tab of the FOAF ontology in the Protégé tool 58

Figure 4-8. Stardog web interface pages for schema and tree browsers 59

Figure 5-1. Alignment of ontologies for the ONTCS system and potential extensions to

nearby knowledge domains .. 64

Figure 5-2. The Crowd Simulation Scenario (CSS) ontology 65

Figure 5-3. Main CSS classes in direct relationship with the ‘Scenario’ class 66

Figure 5-4. CSS ontology ‘ModelObject’ class hierarchy ... 68

Figure 5-5. CSS ontology ‘ScenarioAssumption’ class hierarchy 69

Figure 5-6. CSS ontology ‘SimulationResult’ class hierarchy 70

Figure 5-7. CSS ontology ‘Agent’ class relationships ... 71

Figure 5-8. The Feedback Analysis (FBA) ontology ... 73

Figure 5-9. Main FBA classes in direct relationship with the ‘Scenario’ class 75

xiv

Figure 5-10. FBA ontology concepts capturing user objectives and requirements 76

Figure 5-11. The UK Spaces Occupant Capacities (UKSOC) ontology 77

Figure 5-12. UKSOC ontology ‘Space’ class and its relationships 78

Figure 5-13. UKSOC ontology SWRL rules .. 79

Figure 5-14. The MassMotion (MM) ontology ... 81

Figure 5-15. MM ontology “Object” class with important subclasses and properties 82

Figure 5-16. Alignment of classes between the CSS and IfcOwl ontologies 84

Figure 5-17. Alignment of main classes between the CSS with FBA ontology 86

Figure 5-18. Alignment of all concepts between the CSS and FBA ontologies 87

Figure 6-1. Pyramid with increasing levels of meaning ... 93

Figure 6-2. Conceptualisation of a property chain using SWRL 97

Figure 6-3. Example SPARQL query and results ... 99

Figure 6-4. Example of comparison between OOP instances and OWL individuals .. 101

Figure 6-5. ONTOCS ontologies using RDF graphs as resources 102

Figure 6-6. Example of a space instance which is represented by 3 equivalent ontology

individuals across several knowledge domains .. 103

Figure 6-7. Tree hierarchy of an IfcSpace individual in IfcOwl. 105

Figure 6-8. MassMotion and CSS storage of objects and data in RDF 108

Figure 6-9. Storing scenario assumptions (1.) and user objectives (2.) 110

Figure 6-10. ONTOCS system process workflow through its two main stages 111

Figure 6-11. SPARQL operators retrieving information from the IfcOwl model 113

Figure 6-12. SPARQL query Q-IFC-2 operating on the IfcOwl model, retrieving data

about instances with results shown below it ... 115

Figure 6-13. SPARQL query Q-IFC-1 reasoning IfcOwl individuals which are also

MassMotion ontology individuals according to ontology schema alignment 115

Figure 6-14. Example of contextual information being interpreted by rules from an IFC

domain to provide context to a crowd simulation model ... 116

Figure 6-15. SPARQL query (Q-RES-4) reasoning individuals which are classified as

‘InhabitedSpace’ within the scope of the CSS ontology .. 117

Figure 6-16. ONTOCS interface for objective input page ... 120

xv

Figure 6-17. Plotted egress progression results for several example scenarios and

objective set 3 from Table 6-3 .. 121

Figure 6-18. Static and dynamic information model progression considering changes in

design and context ... 127

Figure 6-19. Example of scenarios where a group of agents decide to change the

evacuation route ... 129

Figure 6-20. Example of objects and properties (contextual and geometric) influencing

the final analysis result ... 130

Figure 7-1. ONTOCS system components with numbered workflow steps 134

Figure 7-2. ONTOCS system package diagram across functional layers; packages in

green represent developed code; packages in grey represent imported code 135

Figure 7-3. Case study building layout, ground floor .. 138

Figure 7-4. Average query times for geometry retrieval ... 144

Figure 7-5. Average query times for context retrieval ... 145

Figure 7-6. Comparison of manual versus automatic model creation time 146

Figure 7-7. Merged manual and ONTOCS automatic models for object positions

comparison ... 147

Figure 7-8. Plotted agent numbers versus time for scenarios SC1 (blue) and SC2 (red)

 ... 148

Figure 7-9. Plotted agent population versus time for scenarios 1 and 2 (ONTOCS), 5 and

6 (manual) .. 149

Figure 7-10. Plotted agent population versus time for scenarios SC3 (blue) and SC4 (red)

 ... 150

Figure 7-11. Plotted maximum density experienced during scenario SC1 for ONTOCS

and manually constructed models .. 151

Figure 7-12. Plotted agent number versus final egress times for scenarios 1-36 152

Figure 7-13. Plotted agent numbers versus egress progression in time for scenarios 1 to

18 which use real building data stored in the IFC model.

UKSOC scenario 26 (blue) at 100% population capacity was added for comparison 154

Figure 7-14. Plotted agent numbers versus egress progression in time for scenarios 19

to 36, which use factors reasoned from UKSOC. IFC

scenario 8 (red) at 100% population capacity was added for comparison 155

Figure 7-15. Plotted query reasoning times for single objective input 158

xvi

Figure 7-16. Plotted query reasoning times for multi-objective input 159

Figure 7-17. Scalability for objective (a) – Total egress time 160

Figure 7-18. Scalability for objective (b) – Capacity egress time 161

Figure 7-19. Scalability for finding valid scenarios .. 162

Figure 7-20. Scalability for finding invalid scenarios ... 163

Figure 7-21. Scalability for finding fully valid scenarios .. 164

Figure B-1. CSS ontology classes and object properties connecting them 213

Figure B-2. CSS ontology metrics ... 214

Figure B-3. CSS ontology object properties .. 214

Figure B-4. CSS ontology data properties .. 215

Figure B-5. FBA ontology classes and object properties connecting them 216

Figure B-6. FBA ontology metrics ... 217

Figure B-7. FBA ontology object properties .. 217

Figure B-8. FBA ontology data properties ... 218

Figure B-9. UKSOC ontology with main classes and individuals 220

Figure B-10. UKSOC ontology classes and object properties connecting them 221

Figure B-11. UKSOC ontology metrics ... 222

Figure B-12. UKSOC ontology SWRL rules matching individuals of specific classes to

factors ... 222

Figure B-13. MM ontology with main upper classes and object properties connecting

them .. 223

Figure B-14. MM ontology object properties ... 224

Figure B-15. MM ontology data properties .. 225

Figure B-16. MM ontology metrics .. 225

Figure D-1. ONTOCS welcome page ... 253

Figure D-2. ONTOCS user log in page ... 254

Figure D-3. ONTOCS database selection and IFC model upload page 255

Figure D-4. ONTOCS geometry conversion report from IFC to MassMotion and ontology

upload page .. 256

Figure D-5. ONTOCS scenario creation page .. 257

xvii

Figure D-6. ONTOCS scenario generation, validation and selection for analysis page

 ... 258

Figure D-7. ONTOCS scenario level results and feedback page 259

Figure D-8. ONTOCS objects creation and reasoning results viewing page 260

Figure D-9. ONTOCS object level results page .. 261

Figure E-1. Case study building layout with numbered spaces 262

xviii

xix

List of Tables

Table 2-1. Route escape factors according to Shields and Silcock (1987) 13

Table 3-1. Knowledge mining components (Kaufman and Michalski 2005) 31

Table 4-1. List of CSTs investigated... 40

Table 4-2. List of main CST feature categories .. 41

Table 4-3. Taxonomy of common concepts for a crowd simulation analysis domain ... 47

Table 4-4. Identified PIs for building performance assessment during evacuation

scenarios .. 53

Table 5-1. Metrics for developed ontologies ... 63

Table 5-2. Spaces occupant capacities (adapted from The Building Regulations (2015)

Annex C3 – Methods of measurement) .. 80

Table 5-3. Example of aligned concepts between the UKSOC and Uniclass 88

Table 5-4. Example of UKSOC and Uniclass alignment rules (Appendix B) 89

Table 6-1. List with developed queries for Stage I. .. 114

Table 6-2. List of SWRL rules for the CSS ontology classifying space types 118

Table 6-3. Example of objective sets inputted by uses for the analysis stage 119

Table 6-4. Developed queries retrieving knowledge from the FBA model 123

Table 6-5. SWRL rules operating with the FBA ontology for classifying scenarios 125

Table 7-1. List of constructed and analysed scenarios .. 140

Table 7-2. Simulation scenarios created using the ONTOCS system for analysis 141

Table 7-3. Set of analysis objectives inputted into the system for evaluating the 36

simulation scenarios ... 141

Table 7-4. SPARQL queries and their respective SWRL rules operating within the FBA

ontology .. 143

Table 7-5. Input model size and ONTOCS conversion report 145

Table 7-6. Time for manual construction actions of the model using MassMotion 146

Table 7-7. Objective sets with ontology reasoning answers per query 153

Table 7-8. SPARQL query times measurements taken during the session with the 36

scenarios running on the ONTOCS system ... 157

Table A-1. MassMotion Concepts .. 197

xx

Table A-2. Pedestrian Dynamics concepts ... 200

Table A-3. STEPS concepts ... 203

Table A-4. BuildingEXODUS concepts ... 207

Table A-5. Simulex concepts .. 210

Table A-6. Summary of common CST concepts from previous tables 211

Table B-1. Spaces occupant capacities (adapted from The Building Regulations 2015

Appendix C3 – Methods of measurement) ... 219

Table B-2. Aligned common spaces between UKSOC categories and Uniclass

categories with comments .. 226

Table B-3. Alignment SWRL rules between the UKSOC and Uniclass2015 ontology.

Implements Table B-2 ... 229

Table C-1. SPARQL queries operating to IfcOwl .. 235

Table C-2. SPARQL queries operating on CSS and other resources 250

Table E-1. Building spaces data exported from Revit ... 263

Table E-2. STAGE I query times for the run of 36 scenarios in parallel...................... 266

Table E-3. STAGE II query times for increasing numbers of scenarios (part1/3) 267

Table E-4. STAGE II query times for increasing numbers of scenarios (part2/3) 268

Table E-5. STAGE II query times for increasing numbers of scenarios (part3/3) 269

xxi

List of Abbreviations

AEC = Architectural Engineering and Construction

ASET = Available Safe Escape Time

BIM = Building Information Model

BREEAM = Building Research Establishment Environmental Assessment Method

CA = Cellular Automata

CS = Crowd Simulation

CSM = Crowd Simulation Model

CSS = Crowd Simulation Scenario (ontology)

CST = Crowd Simulation Tool

DBM = Digital Building Models

DLs = Description Logics

FBA = Feedback Analysis (ontology)

FOAF = Friend of a Friend (ontology)

IFC = Industry Foundation Classes

IRI = Internationalized Resource Identifier

LD = Linked Data

MM = MassMotion

ONTOCS = Ontology Crowd Simulation

OOP = Object Oriented Programming

OWL = Web Ontology Language

PF = Path-Finding

PI = Performance Indicator

RDF = Resource Description Framework

RSET = Required Safe Escape Time

SF = Social Forces (model)

SPARQL = SPARQL Protocol and RDF Query Language

SPO = Subject -> Predicate -> Object

SQL = Structured Query Language

SW = Semantic Web

SWRL = Semantic Web Rule Language

UKSOC = UK Spaces Occupancy Capacities (ontology)

UML = Unified Modelling Language

IRI = Internationalized Resource Identifier

URI = Uniform Resource Identifier

W3C = WWWC = World Wide Web Consortium

WWW = World Wide Web

0

1

 Chapter 1. Introduction

1.1. Problem statement

The building design process is multi-disciplinary, complex and is faced with increasing

expectations for better building performance across all fields, most importantly energy

efficiency and human safety.

The rise in technologies over the past decades has made it possible for designers to

easily share data across design-disciplines. The use of Digital Building Models (DBM)

and Building Information Modelling (BIM) processes allows computer tools and

designers to exchange data and collaborate seamlessly. More recent developments

have focused on ways to integrate building data with other knowledge fields, making

design systems more intelligent and more comprehensive.

While significant strides have been made in applying the BIM paradigm to cost and

energy modelling where automation and interoperability is high, there is still a significant

gap when looking at the field of fire evacuation analysis. This is mainly due to the

complexity of fire safety design which has traditionally relied on various fields of

knowledge ranging from building design to psychology.

Global population growth and urbanisation put ever increasing pressure on engineers to

ensure high standards of safety. The use of Crowd Simulation Models (CSMs) to assess

building performance in various scenarios, especially evacuation design, is becoming

more prevalent when dealing with highly populated buildings such as airports. However,

these are niche tools requiring significant amount of time to invest in scenario

construction and analysis being reliant on many sources of information and often bringing

little added benefit.

2

1.2. Research motivation

1.2.1. Designing for human safety

“Buildings are designed and constructed to accommodate people and processes, among

other things. Consequently, the flow of people, materials, and products must be

incorporated in such a way to achieve a pre-determined level of fire safety. The minimum

level of fire safety to be achieved may be prescribed by building legislation or be

determined by insurance requirements or other influences.” (Shields and Silcock 1987)

The British published documents concerning fire regulations and guides in the UK, divide

the entire process into 7 independent sub-systems (PD 7974 2004), each of which need

to be assessed individually:

1) Fire growth – the way in which fire and heat spread depending on flammability of

materials, presence of oxygen, and how it can be modelled;

2) Smoke spread – the propagation of gas and fire emissions through spaces, its

potential effects on building materials and occupants and ways to minimise them;

3) Structural protection - the structure of the building, what designers should

consider to effectively increase the building’s resilience in case of fire;

4) Detection and suppression – considers ways in which fire can be detected early-

on so its effects can be minimised;

5) Intervention – concerning the fire action plan of isolating the incident,

extinguishing the source of fire and ensuring the safety of the structure and its

occupants;

6) Human factors – tackles the complexities of the nature of the occupants and their

behaviour during evacuation events, as well as ways of simulating them using

different computer models;

7) Risk assessment – ways to identify fire related risks and their impact.

Considering the above, designers must deal with a complex system of assessing the

performance of the building in different perspectives which are interdependent (Chitty

and Fraser-Mitchell 2003).

The 2017 Grenfell Tower disaster in London (Government Digital Service 2018) is only

one example of the sort of tragedies that can occur when the fire safety requirements

are neglected by authorities. According to the England statistics on fire incidents (Home

Office 2018), the magnitude of this incident alone gave rise to the percentage of

casualties by 37% compared to the previous year, even though the trend of casualties

has been on decline since 1981. In cases such as these, building designers and

managers have to ensure a strict adherence to fire safety regulations. Baiche et al.

3

(2006) found that building regulations are not always complied with, due to lack of

knowledge of those designing or checking. Alper and Karsh (2009) offer a

comprehensive review over regulation violations, suggesting similar causes. In the scope

of building design where designers cannot comply with regulations, they are required to

prove a certain degree of safety via modelling techniques.

The scope of this research is focused on assessing building performance with regards

to human factors. In practice this is evaluated using Crowd Simulation Tools (CSTs),

which are able to simulate in different levels of detail how people behave during an

evacuation event. This in turn allows designers to assess the performance of the building

in such scenarios (Thalmann et al. 2007, Ronchi et al. 2014). The entire process relies

on expert designers using CSTs to create, run and analyse scenarios using several

iterations, which is time consuming (Khan et al. 2014). Additionally, each building layout

is different and so is each scenario in terms of context (Nilsson and Fahy 2016). The

challenge lies in being able to assess the building performance in an efficient manner

and on a larger scale, thus being able to identify flaws in the building design in a speedy

manner.

Considering the aspect of fire safety design assessment within the BIM paradigm, the

level of integration and automation concerning Crowd Simulation (CS) analysis is

relatively low compared to other aspects of design, such as energy modelling. This will

become clearer in the literature review chapter. For now, it is worth mentioning that the

modelling process is complex in itself and has to catch-up with current BIM technologies.

1.2.2. Achieving collaboration and integration through BIM

In the last 20 years, the construction industry has seen major advances in digital

modelling, but this has also raised industry expectations in terms of fast project delivery.

A prime example is the UK Government’s initiative to impose level 2 BIM on public

projects (Cabinet Office 2011) , which came into effect in 2016. For BIM level 3 and

beyond, the most prevalent issues under investigation were related to standardisation

efforts for interoperability and collaboration of digital information. One of the main drivers

of this standardisation was the expanding use of common and interoperable formats,

mainly evolving around the Industry Foundation Classes (IFC). The use of the IFC

schema and format ensure the exchange of structured information for all the domains

included in the Architectural Engineering and Construction (AEC) industries. IFC is

especially useful in design and construction stages, being used to exchange data,

transfer model views, facilitate prescriptive rules checking and most importantly

import/export of models across many tools. Although there are a myriad of BIM tools and

platforms aimed at improving the multidisciplinary design flows for construction and

design offering IFC support, they are limited in many ways and are not always the best

4

way to collaborate across disciplines (Díaz et al. 2017). The use of IFC in its current state

cannot solve all problems related to integration and collaboration, but it represents a

foundation stone for structured data.

Attempting to predict the roadmap of future BIM developments, Succar (2009) introduced

a BIM ontology of intersecting knowledge domains and describes a network of integrated

models and services from BIM level 3 onwards, which can be used beyond just the

semantic properties of the building models. Thus, it is expected that BIM models will be

able to provide more than just data and information, but also knowledge (Bellinger et al.

2004) about the building environment.

1.2.3. Designing buildings with knowledge in mind

“What is the difference between knowledge and information and can computer

applications really deal with knowledge?” (Stenmark 2002)

Modern computing methods can be used to integrate databases, knowledge and

operators which can be used for decision making processes. The term ‘knowledge base’,

refers to the concept of formalising human knowledge in computer understandable

format (Kaufman and Michalski 2005). Knowledge in this context may refer to

professional experience, data from simulations and analyses, predictions or best

practices. It can be argued that knowledge should encompass all the mentioned factors

to truly facilitate a good design solution.

The Semantic Web (SW) and Linked Data (LD) paradigms have become increasingly

popular around the BIM domain (Abanda et al. 2013). SW and LD tools in construction

design extend interoperability by including web resources, while also giving data a higher

degree of meaning with the use of languages such as the Web Ontology Language

(OWL) (Schevers and Drogemuller 2006), while being able to conceptualise knowledge

models. With the development of IfcOwl (Beetz et al. 2009), the OWL representation of

the IFC schema, various knowledge fields can be included from a wide spectrum of

applications. Integration of information is the clear benefit on using BIM (Azhar 2011) on

construction projects, but whether the SW will be able to fill this need remains to be

seen. LD concepts work with large datasets across the web and rely heavily on open

data sources, but the AEC industry culture remains reluctant to sharing data openly

(Zanni et al. 2017). Apart from the linking of data, which is of great benefit to the AEC

industry, OWL ontologies are widely used today to represent knowledge in computer

understandable formats, and enable machine reasoning (Gibbins and Shadbolt 2009),

which can facilitate its storage and retrieval by intelligent web-based systems.

5

The use of LD could greatly benefit the better integration of information models between

BIM and CS domains not just on a structured data level, but also on a knowledge process

level, facilitating speedy design analysis and automation.

1.3. Research hypothesis

In light of the problems identified above, this research aims to tackle current limitations

concerning evacuation design by adopting the following overarching hypothesis:

A knowledge processing-based approach can allow a fast retrieval of information

and automatic construction of evacuation models by leveraging existing BIM data

and design knowledge to enhance the decision-making processes about building

performance by considering different simulation scenarios on a large scale.

1.4. Research questions

Aiming to contribute to knowledge in the process, the hypothesis is decomposed into the

following questions:

Q1: How are evacuation models and tools used for assessing design performance

while considering their scope and limitations?

Q2: What is the current level of interoperability between CS for evacuation and BIM?

Q3: What are the benefits of using ontologies for evacuation design, considering the

BIM paradigm?

Q4: What are the requirements for an intelligent system capable of integrating

resources relevant to the CS field within the context of automation and analysis

feedback, whilst considering practical deployment and future extensibility?

Q5: What are the challenges concerning information models and workflow processes

being represented in a knowledge base, considering the requirements for integration and

knowledge retrieval?

Q6: What needs to be considered for design knowledge storage and retrieval

concerning building egress performance using evacuation models?

Q7: How reliable is a knowledge-based system in understanding the building model

and other linked data resources in facilitating correct and efficient design support?

6

1.5. Research contribution

The work carried out during this research project has contributed with several practical

developments and with knowledge about the methodology adopted in delivering their

implementation and in testing.

The core contribution of this work is the implementation and development of an intelligent

knowledge-based system which can reason over linked data and knowledge resources

represented in web languages. This in turn allows semi-automatic creation of simulation

scenarios on a large scale which can be used in real design cases. Once these scenarios

are executed using conventional simulation tools, their results can be aggregated by the

system and feedback is provided to the users about the performance of building. The

methodology adopted in the development of the system and the definition of the

processes involved is also another core contribution, which can be replicated to other

fields, extended or optimised for future developments.

The system makes use of several ontologies and knowledge rules which represent

another core contribution of this research. These were developed based on reviewing of

current academic research and industry guidance from manuals, and discussions with

field experts. The representation of such knowledge in a machine-interpretable format

will be useful to extend the current use of BIM and semantic web technologies to the

fields of crowd simulation and evacuation design.

In parallel with the developments above, this work contributes to the overall pool of

knowledge concerning the interoperability levels between BIM and CS, from the review

conducted on academic research and practical assessment of several simulation

software tools used in practice. Additionally, the methodology adopted for this research

which was directed and applied to solving practical problems, brings insight into crowd

simulation concepts, their integration with BIM and IFC, the reliance on design guidance

resources and the benefits and limitations of using a knowledge-based system in this

context. All these contributions to knowledge can be used to replicate this work into

nearby design fields or to optimise current developments to become faster and more

reliable in the future.

1.6. Structure of the thesis

The thesis is divided into several chapters, each pursuing answers for the main research

questions.

Chapter 2 brings arguments against the gaps indicated and aims to answer the first three

research questions by investigating the broader field of knowledge in the domains which

7

are relevant to this research: evacuation design, crowd simulation tools, BIM and the use

ontology-based systems. Background reading was conducted concerning the essential

relevant concepts and where these fields overlap. The chapter is split into three sections,

each focusing on one question. The first section outlines the role of crowd simulation

models and tools in the field of fire safety. The second investigates the existing level of

interoperability between CS developments and BIM. Finally, the third section explores

the use of ontologies, indicating towards the benefits for the evacuation design field. The

main findings from the literature are used to propose a novel solution.

Chapter 3 presents the conceptual framework of ONTOCS, an intelligent ontology-based

system which is aimed at representing and retrieving new knowledge about design. The

methodology employed to prove the research hypothesis using the prototype system is

outlined.

Chapter 4 identifies the requirements for developing the ONTOCS platform and thus

aims to answer the fourth question. The requirements include establishing a common

CST taxonomy, identifying suitable tools for achieving functionality in practice, and

identifying available sources of information and knowledge which enable automation and

can provide relevant feedback for the design decision making process.

Chapter 5 aims to answer the fifth research question by presenting several developed

OWL ontologies. The framework proposed relies on defining the knowledge domains

using these ontologies for semantic web integration. The main concepts identified were

defined, categorised and connected semantically. Some of the created ontologies were

aligned with external ones to extend and test the benefits of shared information.

Chapter 6 addresses research question six and outlines the methods used to store and

retrieve knowledge about the various information models. It begins with an introduction

of knowledge operators, then presents ways and the challenges of working with

knowledge bases in the context of CSM performance assessment whilst considering

user input.

Chapter 7 is focused on the testing of the ONTOCS system and commenting on the

overall methodology of this research. The chapter firstly introduces the system design

and the workflow of the process it facilitates. Secondly, a case study on a real building

is presented, with specific use-case scenarios, aimed to test the system and thereby

validate the ontologies and knowledge operators developed in the previous chapters. A

discussion is provided based on the decomposition of the final research question.

Chapter 8 concludes the work presented in previous chapters by outlining the main

findings within the context of the research hypothesis. Research limitations and future

work are then presented.

8

9

 Chapter 2. Literature Review

This chapter reviews the status-quo of CSM and BIM technologies used to facilitate

design support. The contents are divided into three sections, each aimed at a research

question: The first section (3.1) investigates CSM in research and practice, the second

(3.2) identifies the level of interoperability of CS with BIM, and the final section (3.3)

outlines developments around knowledge processing tools and methods used for

building design. Each sub-section begins with introducing the three relevant fields for this

research: CS, BIM and OWL ontologies.

2.1. Designing safe building egress

2.1.1. Determining evacuation time

The entire fire safety design process is a complex multi-disciplinary process which spans

across different knowledge fields from structural fire resistance to human psychology.

Fire design employs many regulations which were improved over the years to enforce a

certain standard of safety. Regulations are usually set as a minimum requirement on the

building design and they are usually a compromise between optimal safety and economic

feasibility, with the purpose:

“1. To impose a level of fire safety such that it is unlikely that people occupying a

building would suffer hurt in the event of an unwanted fire, and

2. To protect the community at large from the consequences of fire in an individual

building.“ (Shields and Silcock 1987)

Fire safety engineering is governed by many sets of prescriptive rules concerning

different design aspects, which were developed and improved through empirical

methods. When certain design rules are not met, proving adequate building performance

is necessary. Performance design needs to specify the objectives which should be aimed

for. Meeting these requirements deems the safety is adequate.

10

To assess building performance objectively designers rely on balancing the Available

Safe Escape Time (ASET) with the Required Safe Escape Time (RSET). The basic

principle here is to always make sure ASET is greater than RSET, as shown in Figure 2-

1. “An appropriate margin of safety takes account of the risks associated with different

potential fire scenarios and the uncertainties in the prediction of ASET and RSET for

particular design scenarios.” (PD 7974 2004)

Figure 2-1. Components in evaluating RSET and ASET (PD 7974 2004)

Each of the components in the calculation of ASET and RSET are assumed individually:

a) ∆tdet = time from fire ignition to its detection; dependent on the method of

detection, usually an alarm system;

b) ∆ta = alarm time from detection to action being taken to evacuate;

c) ∆tevac = effective evacuation time, which consists of ∆tpre + ∆ttrav ;

d) ∆tpre = the pre-movement time, is influenced by the behaviour of occupants which

has two components: recognition – time taken for each individual to respond to

cues and begin taking action, and response – actions taken immediately after

recognising that a fire event is real and evacuation is necessary (dependent of

occupant roles);

e) ∆ttrav = the time for occupants to reach a safe refuge point;

Different combinations of assumptions can be made about the factors above, each

influencing the performance of the next, and consequently RSET as a whole. Detection

time (∆tdet) and alarm time (∆ta) depend highly on the fire strategy in place and

11

technological system incorporated within the final building design and are considered out

of scope for this research. The evacuation time (∆tevac) is the factor where human

behaviour plays an important role, and it can be estimated using a mixture of historical

data, live drills and CSMs. From its two main components, the first (∆tpre) is more reliant

on observation data from previous real or mock evacuation scenarios, with Figure 2-2

showing an example of a typical evacuation curve. The pre-evacuation time is

characterised by occupants initially seeking confirmation of a fire, with some occupants

reacting sooner than others, expressed as the pre-movement of the first occupants

∆tpre (first occupants). Once the first occupants begin to evacuate, more people become aware

of the event and the number of evacuees increases rapidly in a short period of time,

following the peak in Figure 2-2, defining a distribution of occupant times before they

begin travelling towards the exits ∆tpre (occupant distribution).

Figure 2-2. Example evacuation time distribution of people leaving the premises of a
building (adapted from PD 7974 2004)

Travel time (∆ttrav) is characterised by two components:

1) ∆ttrav (walking) = walking time for people to reach safety; dependent on the

walking speed of each occupant which can vary greatly; this factor can be

considered as an average or per each individual;

2) ∆ttrav (flow) = flow time of occupants through the building; determined by the

capacities of the doors and exits relative to the population number;

The evacuation time (∆tevac) is estimated by evaluating each of its sub-components

individually. The simulation and evaluation of ∆tpre using CSMs is not very common as it

involves many behavioural factors. This is usually a simplified assumption based on

empirical factors according to building type and the level of safety management to be

achieved. For example, a combination of good detection and alarm system can assume

that people will start evacuating sooner, therefore the pre-evacuation time will be

significantly shorter than in a case with poor safety management. “For evacuation times

to become a viable component of fire safety engineering, it is, therefore, vital that a

12

database of pre-movement times and pre-movement time distributions is obtained for a

variety of occupancy types and a variety of building design and fire safety management

strategies” (Purser and Bensilum 2001). While this can be very useful, in many situations,

due to the difference in building design, it can actually be of very little value for

comparisons (Kuligowski 2016b). A simple change of an exit can produce very different

results.

Travel time (∆ttrav) on the other hand, is a widely used factor which is measured during

live drills and used extensively by CS tools and models, as the prime indicator of building

performance. According to PD 7974 (2004), the two components which influence travel

time can be simulated using CSMs in two very specific cases:

1) Scenarios at less than 33% population design capacity – the evacuation time is

more dependent on the travel time of agents, ∆ttrav (walking) . The low concentration

of agents will not allow for bottlenecks to form, and is thus not influenced by the

flow time through doorways;

2) Scenario at 100% population design capacity – the evacuation time is more

dependent on the flow capacities of the exits, ∆ttrav (flow). This is because queuing

is expected to form relatively quickly, reaching the maximum capacities of the

exits.

When considering the estimation of evacuation time (∆tevac), designers need to also be

aware of the factors which influence it, as summarised in Table 2-1, from which two main

categories emerge:

• building factors – refer to factors about the building environment, such as layout

and position of objects; these are static in nature;

• human behaviour factors – refers occupant positions and distribution within the

building environment, their movement and reaction speeds.

These two categories are interconnected: the building design is influenced by occupant

needs and safety, while the occupant behaviour is influenced by the building layout

(Nilsson and Fahy 2016), shape and components which occupants interact with (doors,

stairs, lifts, furniture, alarm system, etc). While design regulations and standards

emerged to cover both of the categories mentioned, the human factors have always

proved difficult to account for. The fact that every building has in essence a unique design

and layout, makes this even harder to assess.

13

Table 2-1. Route escape factors according to Shields and Silcock (1987)

Building factors Human behaviour factors

Building type Population density

Building contents Population distribution

Evacuation time Population mobility

Travel distance Population reaction

Exits Population discipline

Escape route width

Enclosure of stairways

Lobby approach stairways

Doors in escape routes

Lighting of escape routes

Emergency lighting

Construction of and egress from
windows

Fire detection system

Alarm system

Fire control system

Smoke-control system

The actual real fire safety performance of a building would be assessed during live drills.

This however can only be done at the operation stage of the building lifecycle, where

building layouts become too costly to change and so designers will try to justify their

design decisions by strictly following rigid regulations (Gwynne et al. 1999). Purser and

Bensilum (2001) conclude that while simple approximations of escape time for small

buildings are acceptable, “for larger more complex buildings, more sophisticated

computer evacuation models may be required.”

Thus, during design stages, CS is now widely used in design decision-making. They are

expected to provide relevant information in building performance evaluation, which is

used by designers to assess feasibility or check against regulations.

14

2.1.2. Crowd simulation models and tools for evacuation

“Modelling amounts to finding an abstract representation of a real-world system that

simplifies and assumes as much as possible about the system, and, while retaining the

system’s essential relationships, omits unnecessary details.” (Druzdzel and Flynn 1999)

Crowd Simulation Models (CSMs) are intended to mimic realistic behaviour of people

within certain environments by representing each person as an individual agent. Each

agent is able to interact with the environment and other agents. CSMs are practically

applied within software tools, commonly referred to as Crowd Simulation Tools (CSTs).

The term CSM and CST is often used interchangeably. They are used in various

situations: virtual crowds for computer games or films, training purposes for emergency

situations, urban planning and for building evacuation design. Due to the rise in world

population, CS methods will become invaluable to future infrastructure modelling (Zhan

et al. 2008) (Khan et al. 2014).

There are several comprehensive reviews within the field of CS, which offer critical

analysis regarding methodologies used (Gwynne et al. 1999, Kuligowski 2005)

(Kuligowski 2016a), application domains (Kuligowski 2005), scale (Zhou et al. 2010),

degree of realism (Duives et al. 2013) and high-rise buildings focused (Ronchi and

Nilsson 2013). The afore-mentioned authors agree that there is no comprehensive model

which can simulate all the complexities of human behaviour. Such a model would not be

practical because as the complexity of the model grows, so does the computation time.

Kuligowski (2005) advises that each model should be used for very specific purposes

and users should be aware of each model's practical application and limitations. Ronchi

and Nilsson (2013) mention that for a more comprehensive view, several models can be

considered at the same time, as they might reveal more information from different

perspectives. Zhou et al. (2010) and Duives et al. (2013) agree that models can be

divided into microscopic models (small population) which have high precision, and

macroscopic (large population) models with lower precision. Investigations carried out

by Zheng et al. (2009) and Duives et al. (2013) suggest the Cellular Automata (CA),

Social Forces (SF) and the Nomad models are the best methods for replicating reality.

However, there is limited crowd heterogeneity route and destination choices when in the

context of larger models, as these models were not calibrated to work realistically under

large-scale conditions. The aforementioned authors confirm that one of the most used

applications of these models is for fire evacuation, and that a fast computation time is

not a critical issue as long as they are reliable and can accurately simulate route choices

and destinations. They also suggest that more comprehensive models should be chosen

over simpler ones, where possible.

15

An example of a limitation relates to the representation of the environment within the

model. Some models represent the environment by dividing the surfaces into 2D arrays

of cells (the CA approach), with agents being able to cross on cell at a time (Gwynne et

al. 2001, FSEG 2018). Another common representation is the use of a more continuous

surface, where agents have more freedom, thus effectively moving on very fine meshes

(Musse and Thalmann 2001, Oasys Limited 2018a). The difference between the two is

that the first one is faster to compute, while the second is able to represent more realistic

human movement. On the other hand, a simpler calculation could be better suited for

larger scale models. Regardless, this still does not guarantee that one tool or another is

representing reality more accurately.

When comparing simulation models with reality Duives et al. (2013) argue that current

models can be split into two categories: ones that mimic reality, and ones that try to be

reality, with the later ones currently not being practical from a technical perspective as

they would require significant computation capability, whilst still not guaranteeing better

results. One of the major breakthroughs in the crowd simulation field is the Social Forces

(SF) model (Helbing and Molnár 1995) which is widely used today to simulate the

complex interactions between computer agents. Based on this model, future research

has investigated several other factors, such as psychological factors, or simulating

personal space forces based on particle interactions (Hesham and Wainer 2016). Fang

et al. (2016) developed a model which simulates the concept of interpersonal

relationships and attachments, influencing the way in which groups of agents interact

during evacuations with regard to the decisions they make as a group. Other models

focus on setting out the differences between individual and group behaviours,

considering that when part of a group, individuals act differently (Raupp Musse et al.

2006, Li et al. 2015). Khan et al. (2014) present various methods for scene analysis of

crowd behaviours which can be used to test the realism of existing simulation models

and tools which rely on crowd data from real-life environments. This field has been of

increasing interest due to a rise in population (Zhan et al. 2008) and a need to deal with

emergency situations.

When comparing live drills with simulation results, it is hard to argue which is more

representative of the truth, mainly due to the human factors. “Repeated experiments on

evacuation will never give the same outcomes because of the human factor, even when

the same people are tested. Thus one experiment is never enough to prove a certain

factor. Usually a distribution of several simulations is required.” (Gwynne et al. 1999)

16

Figure 2-3. The computer modelling process for evacuation design, adapted from
Kuligowski (2016a)

The process of modelling a crowd simulation scenario is best described by Kuligowski

(2016a) and is shown in Figure 2-3. The entire process is heavily influenced by user

input and follows 3 well defined steps:

1) Project requirements – client needs to assess the scope and context of the

modelling process and what is expected to be gained from it;

2) Model selection – the tool which best meets the requirements should be chosen,

considering its benefits, limitations and costs;

3) Model scenarios – users need to define all the boundary conditions of each model

by considering:

a. building configuration – defining the geometry, layout, exits, etc.;

b. population configuration – defining agent numbers, positions, specified

behaviours, etc.; level of sophistication may vary greatly;

c. procedural configuration – defining routes of agents, flows and counter

flows of groups, etc.;

d. incident information – environmental conditions, such as the place of a

fire.

17

The third step above represent the main model inputs and assumptions made about

each scenario, which require several sources of information about the building

occupancy and expected behaviour. These are assumptions which provide a different

context to every scenario, influencing the final simulation results. An application (CST)

then runs the models and provides outputs which are processed and interpreted during

an analysis stage. It is not always clear how relevant the simulation output is, as it is

dependent on large number of parameters (Hopfe and Hensen 2011, Kuligowski 2016a).

To compensate for this limitation, it is often required to conduct several simulations, with

several different assumptions and scenarios. This quickly becomes overwhelming when

in the context of several design iterations, making it a highly inefficient process. This

suggests the need to integrate and automate the process with de-facto BIM processes

and standards.

2.2. Building Information Modelling for collaboration

2.2.1. BIM level interoperability

In the context of building design, industry currently relies on Building Information

Modelling (BIM) processes and technologies. BIM has undergone a number of changes

over the last decades, now encompassing multiple design domains and it is expected to

extend further. There are several definitions of the concept, with a more recent definition

of BIM being given by Crotty (2013) which sees the concept as an approach over several

steps:

“A reference model of the building is created using one or more parametric component-

based, 3D modelling systems. These systems exchange information about the building

in one or more agreed standard file formats, with each other and with other systems

which conform to the agreed formats. These exchanges are regulated by a set of

protocols which establish the particular types of information to be exchanged between

different members of the team, at different points in the project life-cycle.”

A more simplified but widely accepted definition is given by Hardin and McCool (2015):

“BIM is a digital representation of the building process to facilitate exchange and

interoperability of information in digital format.”

Due to being an attractive concept in research and industry, BIM has developed several

meanings and scopes, as the acronym ‘BIM’ can mean both ‘Building Information

Modelling’ and ‘Building Information Model’. This can generate confusion, associating

the concept to buildings alone, when in fact the term can refer to the act of ‘building’ as

18

a verb, extending the concept to infrastructure or other engineering structures or

activities. According to Bos (2012), a mix-up of the term in the industry sector arose due

to people confusing the concept of a ‘shared data model’, with the instance of a building

model. BIM as a concept has a different meaning than BIM as an instance of a specific

project model, but the two terms are used today interchangeably. For example: people

will talk about the BIM model, referring to the digital model being projected using software

tools, and they may also refer to the implementation of BIM processes, whereby project

stakeholders work collaboratively using BIM standards and practices.

According to Eastman et al. (2011) and Bos (2012), early industry initiatives regarded

central data models as an ideal means of storing and sharing data, where all project

stakeholders would be able to store the data into a single model, a single ‘point-of-truth’.

Eastman et al. (2011) tries to distinguish between different software tools depending on

the level of BIM implementation within an organisation, and the capabilities of such tools.

The 3 main categories described by the authors also reflect three distinct levels of

‘collaboration’ within an organisation: (1) BIM tools, (2) BIM platforms and (3) BIM

environments. The authors define the three concepts starting from the BIM tool as task-

specific application toward a BIM environment as “the data management of one or more

information pipelines that integrate the applications (tools and platforms) within an

organisation”. As the industry developed BIM processes further, the biggest barrier was

the cultural change of openly sharing information, which was regarded with suspicion,

as traditionally the construction industry works in separate information silos.

With time and along with technological advances, it was recognised that a common

information format needed to be established, in order to be able to collaborate all relevant

project model data consistently, without necessarily having to abandon the silo culture.

This led to the development of the Industry Foundation Classes (IFCs) in the early 2000’s

which has evolved a great deal since. The IFC’s soon became an international standard

and is now widely adopted by professionals.

The Industry Foundation Classes (IFC, ISO/PAS 16739) schema was initially developed

to ensure a standardisation of data transfers between different disciplines involved in the

construction industry (Zhang et al. 2013). The schema has expanded over the last

decades and has gone through several versions, being constantly adapted to industry

needs worldwide. It is capable of capturing data concerning any building element type,

and is a powerful tool in structuring building data and meeting industry interoperability

needs (Berlo et al. 2015). The IFC is based on the EXPRESS language which was

developed and standardised with the specific purpose of modelling product data

concepts; it is a language of high expressivity which has enabled optimal storage

capabilities. IFC offers a good degree of interoperability between design tools due to this,

19

but it is also rather unique as the EXPRESS language is not used outside engineering

domains.

Even though the industry is now technologically advanced, practitioners often feel

overwhelmed by the diversity of tools being included under BIM, thus complicating the

interoperability problem, as more and more design and knowledge domains are

described and used digitally. Collaboration processes are time consuming due to the

vast amount of information that needs to be created, analysed, checked for validation

and delivered down the supply chain. This suggests an increasing need for automation

of information processes and design protocols.

2.2.2. BIM-based evacuation design

Evacuation design using BIM has been a subject of significant attraction to the research

community over the last decade, as it brings more dynamism to the model view of the

data. Unlike static building elements, this extends the building context to human

behaviour, bringing new ways in which digital models can contribute to the evacuation

design problem. Several application domains for BIM-based evacuation were identified

from the literature: virtual reality, path-finding, regulations checking and interoperability.

Virtual Reality (VR)

Rüppel and Schatz (2011) began investigation into fire-fighting virtual games, which

imported and reconstructed a BIM within the gaming environment. A very similar

methodology is adopted by Wang et al. (2013) and Wang et al. (2014), which simulates

people using VR to evacuate the premises of a building and trying to track their

behaviour, and also by Motamedi et al. (2016) trying to identify the best places for

building sign placement within a design context. These developments however fail to

implement the inclusion of realistic crowds, being simulated with human actors alone.

The investigation of crowds and people’s movements using VR can be cheap to

implement and can provide enhanced 3D environments. However, the main limitation of

game environments is that they require validation to be accepted and used in realistic

design scenarios (Kinateder et al. 2014). Additionally, a game environment is

fundamentally different in how the model is computed. A CST will calculate the model

mathematically at different time steps and replay the calculations, without the need for

human interaction during the calculation process. By contrast, a computer-game will

evaluate calculations at each frame time, and human interaction/input is often required

as part of the process, which can also influence the progression of events in unknown

ways. The main benefit of game environments is the experience of ‘real-time’, but it can

be subjected to the engine capability and limits the environment to small-scale

simulations. In addition to the factors above, VR applications are more concerned with

20

visual and immersive experiences for the user side, often neglecting or being un-able to

represent realistic human behaviour interactions with as much fidelity as validated CSTs.

Path-Finding (PF)

Chen and Huang (2015) developed a method for creating evacuation routes out of a BIM

model. H. Lee et al. (2016) proposes an extension to the IFC schema with a ‘path’

concept for circulation purposes in a BIM design context. Chen and Chu (2016)

developed a graph method for aiding evacuation in buildings by calculating the most

efficient routes. Isikdag et al. (2013) presents a methodology to use BIM sematic level

data for indoor navigation models considering IFC as the source of information. The

calculation of the shortest path out of a building can be useful in design situations, but it

does not consider the complexity of human behaviour, so these approaches do not allow

for a realistic estimation of a travel time as defined in Section 2.1.1.

Regulations checking

Malsane et al. (2015) try to identify the requirements of integrating simulation safety tools

and regulations. The scope of the research is limited to regulation in England and Wales,

but it discusses in detail the level of knowledge formalisation and concludes that there is

no overall consistency on how fire sub-system rules are addressed. Fire design is a very

complex problem to solve due to the multitude of sub-systems that require audit and their

inter-dependencies. The authors further state that with the use of the IFC standard,

regulation formalisation should be more object-oriented, and thus more specific and

easier to assess. However, due to the complex nature of describing regulations, IFC

alone cannot encapsulate all the necessary information for valid performance and rules-

compliance audit. These sort of methodologies have existed for some time, although not

employing regulations from the UK. Lee (2010) created a framework for evaluating

circulation rules a specific building type, using IFC concepts. Choi et al. (2014) adapts a

model for high-rise regulation checking for prescriptive evacuation rules. Kannala (2005)

proposed a similar way to assess building regulations using Solibri Model Checker plug-

ins, based on IFC models. They use several algorithms to identify spaces and their

connectivity. The studies above present methodologies limited to prescriptive rules, not

incorporating CSTs.

Dimyadi et al. (2016) presents a system which relies on IFC model data and user input,

which is compared against a Regulatory Knowledge Model consisting of the design rules

applied to the process. The research checks output from multiple tools to assess fire

safety performance of building designs and is IFC focused. Although a good step in the

right direction, the process of integrating the information is not collaborative enough for

more holistic design views or across the BIM lifecycle stages. These limitations are also

mentioned by the same authors in another study (Dimyadi et al. 2015), where they

21

recommend using ontology languages to express regulatory knowledge, due to higher

expressivity and interoperability.

BIM interoperability

A number of studies are focused on integrating crowd simulation tools into various

systems: Jalali et al. (2011) integrate three different domain tools together for fire

evacuation management scenarios; Wang et al. (2015) use BIM platforms to provide

building environment information into a system that performs calculations of escape

routes and connects to a fire simulator; the authors present a sophisticated system using

several tools to compare results across different design perspectives. There is no

consensus on data exchange formats in these studies, but they regard BIM as the source

of information. However, no use of IFC is mentioned, and the BIM data imported is limited

to geometry.

With a clear focus on IFC, Wang and Wainer (2015) developed a cloud service

evacuation design tool which uses different algorithms to calculate movement of agents.

Marzouk and Al Daoor (2016) present a case study and analysis of using the MassMotion

CST which simulates the evacuation of workers on site during a construction stage. The

study also outlines a framework of using BIM information and tools in the process, mainly

through using the IFC format. However, the use of IFC is limited to geometric

components.

Many of the studies discussed above rely heavily on IFC, but still face difficulties when

expressing rules and regulations on top of building models when trying to evaluate the

performance of a design. Despite these attempts, a gap in the interoperability layer

between BIM tools and fire safety tools is evident, with no common methodology or

information transfer protocols, as is also pointed out by Wang and Wainer (2015). While

IFC is the best option for storing structured data, it is less likely to meet the needs for

inter-disciplinary design processes, when in the context of performance assessment for

fire evacuation. In addition to that, the studies have expressed less interest in

conceptualising and representing the factors which are the indicators of fire design

performance or how they can be used in the context of automation. Very few studies

have attempted to explore or extend the interoperability with commercial CSTs used in

industry, preferring to develop their own tools instead, due to cost related issues. On the

other hand, many CSTs used in practice offer very good IFC import, thus making them

BIM compatible. Finally, no study investigated the interoperability with BIM beyond

geometric information, which is insufficient for CS purposes, considering that valid

simulation models require input from various other sources (contextual information), as

was outlined in 2.1.2.

22

2.3. The Semantic Web and Linked Data paradigm

The term ‘Linked Data’ (LD) is a concept developed under the efforts of the World Wide

Web Consortium (W3C) which enables the use of data more intelligently across the

unstructured internet resources. With increased levels of semantics, LD represents a

powerful tool towards increased ‘meaning’ of data on the Semantic Web (SW), as is

shown in Figure 2-4.

“Semantics is a discipline dealing with the meaning of linguistics signs or symbols, that

is, the words, expressions, and sentences of a language. […] In semantics, the language

whose meaning is discussed is called the object language, while the language that is

used to talk about the object language is the metalanguage. For example, in the

sentence, ‘Snow is white’ is true, ‘Snow is white’ is in the object language, while the

whole sentence is in the metalanguage” (Bunnin and Jiyuan 2004). The vision behind

the semantic web is to create the next generation of the World Wide Web (WWW) where

information is automated with the use of intelligent systems and software agents able to

better interpret the data. LD is ‘machine interpretable’ and can be used by intelligent

software systems to perform various operations on it, greatly increasing the capability of

information retrieval. This can bring great benefit to design disciplines, with the primary

condition being to express AEC relevant data into a semantic web language.

Figure 2-4. Increasing levels of semantics for data on the Web

2.3.1. Semantic web languages – RDF to OWL

“The Resource Description Framework, or RDF, is a knowledge representation language

for the Semantic Web, and is used to express knowledge about things both on and off

the Web; RDF can be used to write metadata about web pages and to describe real-

world objects with equal facility.” (Gibbins and Shadbolt 2009)

Semantic Web = Linked 'Things'

Linked Data

World Wide Web = Linked documents

Internet = Linked computers

sem
an

tics

23

Information presented on the SW is represented as a graph of nodes and edges. Nodes

represent things or values, while edges are properties which link two other nodes

together. This represents the fundamental unit which is used for knowledge

representation, and it is commonly referred to as a ‘triple’, which follows a pattern

similarly to natural spoken languages: ‘Subject -> Predicate -> Object’ (SPO), as shown

in Figure 2-5. The SW uses Uniform Resource Identifiers (URIs) (Masinter et al. 2005)

to store and refer to ‘things’ and more specifically to RDF, Internationalized Resource

Identifiers (IRIs), which act as an extension to URIs when defining namespaces (Dürst

and Suignard 2004). This allows the definition of data concepts and knowledge on the

Web using a standardised address to make it accessible and avoid conflicts.

Figure 2-5. Example of an RDF triple following the SPO pattern

RDF acts as the foundation stone for representing SW data with other semantic

vocabularies being based on it, each with an increased level of semantic expressivity:

1) RDF Schema (RDFS)

2) Web Ontology Language (OWL)

3) Semantic rules: Sematic Web Rules Language (SWRL), Rule Interchange

Format (RIF), SPARQL Inferencing Notation (SPIN).

SPIN is essentially a formalisation of rules based on the SPARQL Protocol and RDF

Query Language (SPARQL) which is the preferred query language to access and

manipulate RDF graphs. Detailed specifications on these concepts are available online

at https://www.w3.org.

One of the most widely used ways to represent knowledge is through OWL ontologies,

which are based on RDF but include many other logical operators and axioms, enabling

https://www.w3.org/

24

very rich conceptualisation of data, information and knowledge alike. In this sense, an

OWL model is able to work with basic data types, such as integers and strings, which

are given more context when part of information models. These in turn can express

relationships between different concepts (as shown in Figure 2-5), which can also

achieve the conceptualisation of a knowledge field in an ontological sense. The term

‘ontology’ comes from ancient Greek philosophy and it “deals with the essential

characteristics of being itself (of Aristotle's being qua being), and asks questions such

as ‘What is or what exists?,’ ‘What kind of thing exist primarily?’ and ‘How are different

kinds of being related to one another?’” (Bunnin and Jiyuan 2004). In general terms,

ontologies define ‘things’ which exist, while semantics characterise the relationships

between these ‘things’ and or how to describe them.

The Oxford dictionary of Computer Science defines a programming ontology as “a

description of some concepts and their relationships, for the purpose of defining the ideas

sufficiently to allow a computer to represent them and reason about them. Thus an

agent’s ontology specifies the basic building blocks of knowledge that defines what it can

perceive and reason about. This is a kind of model and, as such, is very useful to define

what agents or learning programs can know and what they can communicate. Ontologies

are usually compiled for a particular ‘domain’, e.g. the domains of wind engineering,

medical diagnosis, or office interior navigation, but they are more formal than domain

knowledge.” (Butterfield and Ngondi 2016)

Once model concepts have been described, their inter-relationships need to be defined,

which give a comprehensive representation of the model, not just semantically, but also

ontologically. An “axiomatization process aims at enriching ontologies semantics by the

definition of axioms and rules between different entities. It is processed manually by

experts of the domain. The axiomatization can be applied between entities of the same

ontology, intra-ontology, or belonging to various ontologies, inter-ontology. Moreover,

axioms can be defined for concepts and properties. However, the axiomatization process

is performed through the high level expressiveness of OWL and the use of SWRL to

define formally more complex relationships” (Abdul-Ghafour et al. 2014). The

relationships expressed in OWL are on a higher level than those in RDF or RDFS, and

can define very specific terms which act as necessary requirements, restrictions over

model concepts due to the use of Description Logics (DLs) (Gibbins and Shadbolt 2009).

Because of DLs, OWL is widely applied for practical purposes in various knowledge

domains where data is categorised and analysed logically such as biology, medicine,

geography, astronomy, agriculture, computer science, etc. (Motik and Rosati 2010). The

applications usually deal with large datasets which require classification and

conceptualisation of knowledge. This is also valid for the AEC sector, where multiple

25

knowledge domains interact frequently. It does, however, pose challenges because

construction projects have multiple organisations involved, which tend to collaborate for

short periods of time (while the project lasts). When referring to large organisations, Hay

(2006) mentions that they have begun to see the value in the semantics of all their

systems and information, in that semantics allows people and software systems to better

communicate with each other.

When in the context of BIM models, semantics lie at the core of all its objects, and in fact

every object inside the model symbolises a real-life object, which eventually becomes a

building component. The simplest example of these semantics is the properties which

are attached to the programmatic objects: ‘Wall of 3000mm length’ or ‘Wall of concrete

material’. Unlike IFC which is at its core structured model data, an OWL format adds

more expressivity to the data. The use of ontologies in the AEC has gradually increased,

with application domains in cost estimation (Niknam and Karshenas 2014) and risks

analysis (Fidan et al. 2011) or energy performance (Tomašević et al. 2015).

2.3.2. Ontologies for building design

Succar (2009) introduced a BIM ontology of intersecting knowledge domains in an

attempt to define conceptually the main fields and lenses of the BIM paradigm. Abanda

et al. (2013) offer an overview of ontology and semantic web linked data trends in

research over the last decade. There is clear interest in the fields of risk analysis, project

management knowledge sharing and energy performance analysis. The authors mention

that SW and LD are seen as beneficial because they facilitate interoperability between

the large spectrums of application domains involved in the construction sector. However,

they point out that very few applications exist commercially which are using ontology

support. This is likely due to complex requirements for ontology-based collaboration in

the field of design and construction. The study also identifies several research

applications in energy performance analysis and building sustainability in general, but

there was no mention of fire design performance analysis. This suggests a low level of

research and development in the area.

From IFC to IfcOwl

Pauwels et al. (2011) is one of the pilot studies investigating the capabilities of semantic

web rule checking, applied to acoustic building design, closely tied to IFC concepts. They

state that the limitations in the IFC schema expressivity of concepts are overcome by an

ontology approach. Another pilot study on using ontology tools is by Scherer and

Schapke (2011), which describes a framework for using ontologies as a means of

integration on the project level, which can include multiple models and processes. Such

approaches enable the rule checking process to go beyond the schema scope, thus

26

allowing for more flexible model view definitions, which is crucial in including non-

traditional design analysis under the BIM umbrella. Long before these developments,

Rűppel et al. (2006) proposed an ontology model framework for fire safety design,

integrating different databases. This study was limited at the time due to insufficient

technologies in the AEC sector. However, many developments today rely on IFC, which

is seen as an underlying schema for structuring data, and IfcOwl (Beetz et al. 2009,

OpenBIMstandards 2017b), its ontology representation , which provides higher level

interoperability and reasoning capabilities. Schevers and Drogemuller (2006) pioneered

a mapping between IFC to OWL to extend its interoperability capabilities. As

developments around this topic grew, it became apparent that ontology representations

of the IFC schema allow for a flexible and more robust backbone for interoperability

requirements, as concluded by Venugopal et al. (2015). The computer-interpretable

features of ontologies allow for validation methods and easier extensibility of other

disciplines into the design process. However, this presents serious limitations when

querying geometry data due to the object-oriented nature of the IFC schema. Pauwels

et al. (2017) investigate the optimisation issues around its representation in terms of

geometry retrieval of the data. Farias et al. (2015) also mention that the IFC STEP file

was created for optimal information compression, but its object-oriented nature does not

really align the same way semantically when represented in an ontology. Terkaj and

Šojić (2015) also aim to improve the semantics of the IfcOwl, to make it more adaptable

and robust over different application domains. The IfcOwl is currently under the process

of becoming an international standard (BuildingSMART 2017), which would open the

way towards more Web reliant BIMs.

Building regulations checking

Some studies represent certain regulations into ontology concepts and logical rules in

order to facilitate a fast and automatic environment. Beach et al. (2015) is one of the

more recent studies which applies regulation checking using ontology representations

due to it being easier to manage and having a more interoperable environment compared

to traditional software tools. The study focuses on presenting a more viable way to

quickly convert textual rules and procedures into valid ontology representations and

checking. The study was applied in the context of BREAM assessment, which is a good

example of multi-disciplinary and multi-domain design decision making. The authors

mention that when the SWRL rules are executed, the rules check only for failure case,

thus suggesting to the users why it failed. This is a limitation of the Open World

Assumptions (OWA). The users also have to complement missing data with input in

many situations. A step further from this, Zhou and El-Gohary (2017) present a method

which semi-automatically extracts information from design codes in order to facilitate the

code-compliance schema against which models should be checked. However, this study

27

is limited to the energy analysis domain. This could really speed up the process of

interpreting design rules and regulations for automatic information retrieval.

Design applied research

Some good examples of developments using SW tools are presented by Lee et al. (2014)

and Niknam and Karshenas (2014) for cost estimation and management of data; the

latter uses SPARQL queries to integrate data over the web, such as industry suppliers

cost data. Zhang et al. (2015) developed an ontology for hazards and safety, also using

SWRL rules for more effective safety planning within the context of automation.

Another example is the development proposed by Grover and Froese (2016) to manage

knowledge about buildings via a social platform. Although this study does not mention

an integration with SW tools, it shows the direction of the industry towards smart homes

and cities, where managing and exploitation of data is a requirement to truly benefit from

it (Howell 2017).

Crowd simulation and human behaviour

The use of ontologies for human behaviour was explored by several studies in attempts

to conceptualise realistic behaviours and were used on virtual agents, rather than CSTs

(Vieira et al. 2005, Yoke et al. 2007). These studies, however, are not focused on design

or evacuation scenarios, and have quickly become replaced by improved artificial

intelligence agents within virtual game environments.

Kuligowski (2016b) aims to conceptualise the complexity of human behaviour and the

types of actions they may take in real cases. Although these cannot be fully represented

by any CSTs to date, they can be captured in ontology models. Trento et al. (2012)

present a methodology to incorporate human behaviour in assessing building

performance and usage by capturing this in an ontology. However, this is beyond the

rules and regulations for design compliance and does not address the requirements for

using BIMs in practice.

Onorati et al. (2014) is an example of using ontology methods for aiding the evacuation

process, whereby ontology and semantic web technologies are used in the building

operation stage. Damrongrat et al. (2013) proposes an ontological representation of the

building plans, according to different functionalities so that evacuation events can be

represented more comprehensively. Poveda et al. (2014) uses ontologies and ambient

intelligence to gather knowledge about how evacuations progress in a building. Kraus et

al. (2011) is an example of using building information defined in ontologies for an airport,

with sensors. Mustapha and Frayret (2016) developed a framework to simulate agents

paths in healthcare buildings for optimising building usage. Luo et al. (2016) present a

methodology of using ontologies to manage events during fire, creating and using a

28

knowledge base about the building in conjunction with BIM models. All the studies above

are heavily focused on the building operation stage monitoring and simulating human

activities, many seeing BIM as a source of geometry, but not applied in a BIM supported

design context which collaborate with CSMs or CSTs, or follow validated design

procedures.

2.4. Summary of literature findings

This chapter introduced the basic concepts used as part of the conducted work and

offered an overview of the status-quo of research into the fields of CS, BIM and

ontologies. The estimation of evacuation time is a complex process which relies on CS

models and tools in practice (Section 2.1). This brings forth the first findings:

1) Section 2.1.1. outlined that each CSM and CST is different and consequently

may output different results. Using multiple models and tools or selecting the

most appropriate for each situation is recommended in light of each tool’s

limitations.

2) One simulation is often not sufficient to evaluate the evacuation performance.

Creating relevant scenarios involves a lot of effort from safety engineers,

requiring multiple information sources about the environment and the population,

following validated procedures. This is a time-consuming process which requires

specialised expertise, as was mentioned in Sections 2.1.1 and 2.2.2.

There have been many attempts to speed up the process using BIM models on various

levels across multiple fire safety related fields. The level of interoperability between CS

applications and BIM has been summarised over several fields including virtual reality,

path-finding, regulations checking, and interoperability focused. However, this brings

forth the following findings, outlined in Section 2.2:

3) There is no consensus on the information exchange requirements from BIM to

the CS field. Most of the developments in research are limited to importing or re-

constructing geometry from BIM, with no consensus on a format.

4) Additionally, geometry is insufficient to provide all the necessary information

when creating a simulation model with regard to context (population capacities,

placements, incidents, etc.), which needs to be constructed manually by

designers, as was evident from section 2.2.2. This is also caused by the various

distributed sources of information which can contribute to the context of a CSM,

also outlined in Section 2.1.2.

More recent developments suggest the involvement of OWL ontologies to express

human behaviour and integrate various models. The more relevant research in this field

29

was presented, including the development of IfcOwl, which allows for extending digital

building model data to other design fields. Section 2.3. outlined that:

5) The Semantic Web and ontologies provide a robust environment for integrating

information from distributed sources, which has already seen significant

development around the BIM field, clearly showing their potential for improving

automation of design using intelligent systems and logical inferencing or

reasoning.

Some ontologies have been developed within the field of human behaviour in a BIM

setting. However, as outlined in Section 2.3.2:

6) No ontologies with a focus on CSM or following validated workflows or

procedures exist to date which can conceptualise simulation data and collaborate

with BIMs.

These would greatly benefit the automation of design procedures and allow intelligent

agents to find and reason over distributed resources on the web to facilitate fast and

accurate construction of models, and the evaluation of building performance when

considering larger data environments.

30

31

 Chapter 3. System design and methodology

Building upon the research findings from the literature review, a novel system is

proposed which enables the exploration of linked data and knowledge processing based

on a BIM approach. The conceptual system framework is outlined, along with the

adopted methodology for its development, coupled with the aim to pursue knowledge

during the entire process.

The proposed system framework is based on principles of knowledge representation and

mining. The proposed tools for representing knowledge are OWL ontologies, hence the

name ONTOCS which stands for Ontology Crowd Simulation. Knowledge Mining is

defined as “a derivation of human-like knowledge from data and prior knowledge”

(Kaufman and Michalski 2005), which includes Databases, Knowledge bases and

Operators, as outlined in Table 3-1.

Table 3-1. Knowledge mining components (Kaufman and Michalski 2005)

Component Description

Databases the raw data present across various sources of information

Knowledge bases the representation of existing knowledge

Operators logical expressions used to supplement additional knowledge

from existing knowledge bases

Having adopted the recipe for a knowledge mining system as described by Kaufman and

Michalski (2005), the conceptual framework components and workflow are shown in

Figure 3-1. The workflow ensures correct user input (i), correct interpretation of the

reasoning processes (ii) and that the users receive relevant feedback (iii). The scope of

32

ONTOCS is narrowed down to the field of crowd simulation evaluation in evacuation

scenarios, its main aim being to enhance the performance design processes which rely

on using evacuation models for decision-making. However, its extensibility to future

needs or inclusion of additional design disciplines was also considered throughout its

development.

Due to the complexity of fire safety design, the processes involved in CS construction

and analysis were considered independently from other sub-systems. “[…] to improve

the quality of decisions is to decompose a decision problem into simpler components

that are well defined and well understood. Studying a complex system built out of such

components can be subsequently aided by a formal, theoretically sound technique.”

(Druzdzel and Flynn 1999)

The decision-making process involved in CSM evaluation was investigated through

existing design guidance and literature, the functionality that CSTs provide, and

consultations with experts in the field on several occasions.

Figure 3-1. The envisaged processes for achieving knowledge mining using the
proposed ONTOCS system

To further define the research direction with a focus on solving applied design and

research problems, the ONTOCS system aims to achieve the following objectives:

1. The system must be able to interface with several tools and information sources,

without the risk of being locked into a particular CST.

33

2. The system must enable automatic creation of simulation models using available

data and information models, while also considering user input.

3. The system must enable feedback on design performance using simulation data

and subjecting them to knowledge operators, whilst also considering user input.

4. The system must be fully functional and deployed in a practical use-case scenario

for testing and validation.

The objectives for deploying a functional prototype for testing allows a parallel pursuit of

knowledge about the adopted research approach, and this intersection of interests is

outlined in Figure 3-2.

Figure 3-2. Pursuit of knowledge in parallel to system design and testing

The remainder of the research was split into four main sections, each focusing on a

research question (Q4, Q5, Q6 and Q7). A practical approach was adopted, where

existing tools and methods were investigated and tested in parallel with further literature

surveys, and consultations with field experts where necessary.

Q4: What are the requirements for an intelligent system capable of integrating

resources relevant to the CS field within the context of automation and analysis

feedback, whilst considering practical deployment and future extensibility?

The research methodology adopted for Chapter 4 is an extension of the literature whilst

considering the envisaged proposed solution. Setting specific objectives for the desired

functionality of the ONTOCS system also helped define the boundaries of the overall

34

research. The requirements investigation considered review of relevant literature around

design practice and industry tools for evacuation design. Understanding of practical

design problems and methods used to tackle them was crucial in developing a functional

system which follows well defined design protocols. A hands-on approach was taken in

testing several tools and exploring their capabilities and limitations before deciding on

which to incorporate into the prototype.

The methodology and rationale of this chapter breaks the research question in several

parts, by following ONTOCS system development objectives:

i. The main objective is to be able to interface with several tools and information

sources, without the risk of being locked into a particular CST. To ensure future

interoperability and extensibility, a common taxonomy of concepts across CSTs

was required. Several popular industry tools were chosen, their features and

structures investigated and compared. This step was also important for the

implementation of the CSS ontology in the next chapter;

ii. The second and third objectives of the ONTOCS system is to enable automatic

creation of models (1) and feedback on design performance (2). Official published

documentation from the UK was surveyed, in addition to academic papers and

consultation with experts. This resulted in the definition of several information

requirements for each stage. These factors were vital for the development of the

ontologies from Chapter 5, and for the definition of the case study presented in

Chapter 7.

iii. The final objective of the ONTOCS system is to allow its deployment in a practical

use-case scenario. This required the consideration of tools used in industry for:

crowd simulation modelling (MassMotion), using a digital building model as an

information provider (IFC), a knowledge modelling and testing tool (Protégé) and

hosting a knowledge management server (Stardog). These were initially

investigated from an academic background and their features and capabilities

tested to justify their inclusion into the system and into the research framework;

Q5: What are the challenges concerning information models and workflow

processes being represented in a knowledge base, considering the requirements

for integration and knowledge retrieval?

The research methodology adopted in Chapter 5 involved an iterative ontology

engineering approach, where the requirements for a knowledge-based system for CS

performance design are developed into a knowledge base.

35

“1) There is no one correct way to model a domain – there are always viable alternatives.

The best solution almost always depends on the application that you have in mind and

the extensions you anticipate

2) Ontology development is necessarily an iterative process.

3) Concepts in the ontology should be close to objects (physical or logical) and

relationships in your domain of interest. These are most likely to be nouns (objects) or

verbs (relationships) in sentences that describe your domain”

 Noy and McGuinness (2001)

Several main ontologies were developed which define the processes involved, and

additional secondary ontologies for integrating external resources which contribute to

model data. The ontology language chosen was OWL, working with the OWL2 version

schema, to be able to give as much expressivity as possible. Each ontology was

developed in parallel to the ONTOCS system and tested along the way. Adjustments

were made in an iterative manner while also considering feedback from discussions with

industry experts in the field on several occasions. The challenges for an integration in a

fully functional knowledge base are presented in an attempt to align multiple knowledge

domains. The alignment was done via widely accepted methods, such as matching

concepts on the basis of their similarities (Euzenat and Valtchev 2004), or in some cases

with the use of knowledge rules, where datasets were too large for manual methods.

Q6: What needs to be considered for design knowledge storage and retrieval

concerning building egress performance using evacuation models?

The research methodology adopted in Chapter 6 involved an iterative process of creating

and testing different knowledge operator types which were able to reason on top of the

already developed knowledge bases. Due to the nature of a knowledge base being

reliant on several distributed resources, this brings a certain degree of complexity. To

tackle this, a practical approach was adopted, which was discussed in pursuit of insight

on this topic. The main aim was to assess what resources are needed by the ONTOCS

system in order to perform useful logical operations on model data, while considering

user input, building geometry and scenario context. The nature of storage and retrieval

of knowledge base information are strictly linked. Operators needed to compute the

relevant data had to be defined in a very specific context to reason correctly. The SWRL

rules were developed in their relevant ontologies and initially tested in the Protégé

software. They were then implemented into the system which relied on the Stardog

server service to process them. SPARQL queries were chosen to check the validity of

the rules, by interrogating the knowledge base manually and later programmatically, with

36

all the necessary resources being provided on one local RDF store (database). All

operators were checked, tested and gradually improved, which were then employed for

a more realistic case study to identify further limitations.

Q7: How reliable is a knowledge-based system in understanding the building

model and other linked data resources in facilitating correct and efficient design

support?

The research methodology adopted in Chapter 7 employs several use case scenarios

where the developed system and knowledge base were tested, with the aim of validating

them. The case studies were developed on a digital model of a real building in its

operation stage. Data about the use and occupancy of the building was gathered, which

was used to create a realistic design scenario and then simulated using MassMotion.

The testing considered each stage independently:

i. Stage I, Scenario generation – the first use case compares the manually created

scenario to those generated automatically by the ONTOCS system, in an attempt

to assess if the system is able to correctly interpret the ontology resources using

the proposed workflow and knowledge operators defined in Chapter 6. The

differences between geometry and context creation were outlined concerning the

model structure and comparing simulation results across several scenarios.

Referring to methods on CST validations (Thalmann et al. 2007) states that

“Quantitative verification involves comparing model predictions with reliable data

generated from evacuation demonstrations. Galea’s work highlights (Galea

1998) two kinds of quantitative validation: historic and prediction-based

validation. In the first case, the user knows the results from previous simulations

and real exercises. The second case involves using the model to perform

predictive simulations prior to having experimental results.” It is important to

mention that the methodology here is not targeted at validating the CST, but at

validating that the models generated by ONTOCS, which are then executed by a

CST, resemble sufficient similarity to conventional ways of model creation. This

is done by looking at the inputs and output results by comparing and contrasting

their differences;

ii. Stage II, Analysis feedback – the second use-case tests the system on dealing

with a large-scale of scenario models. A session running 36 models was used to

validate that the rules and queries are able to correctly inform the designers about

building performance. The results provided by the queries were checked against

those present in the simulation files. The number of 36 scenarios was considered

sufficient for a real-case design situation, simulating the building in incremental

37

steps regarding its assumed population from 30% to 200% according to design

practice.

During the cases above, the execution speed of knowledge operators was measured for

both use cases by considering query time, thereby assessing the efficiency of the

system. Additional scalability tests were carried out to identify limitations of the

developed knowledge operators. Several dozens of measurements were taken to

account for oscillation of query times and averages were plotted and discussed.

To assess the reliability of the use of secondary linked data resources, for each use case

above, scenarios based on design guides capacities (using the UKSOC and

Uniclass2015 ontologies) were also included. These are contrasted and compared to

models which rely on real case data.

38

39

 Chapter 4. Requirement analysis

This chapter outlines the technological and information requirements for delivering a

functional system fit for practical deployment, following the vision of the proposed

conceptual framework. The chapter is divided into three distinct sections, following the

rationalised methodology, with the aim of answering Q4.

4.1. Design of crowd simulation tools

Crowd simulation models have been introduced in Section 2.1.2, along with their

capabilities and limitations. From a research perspective, the last decades saw the

development of mathematical models which can mimic human behaviour in various

circumstances. These models were gradually adopted by the industry for practical uses.

The most common use is in evacuation design, where scenarios are created to represent

the act of building egress. It is important to understand that while the basic underlying

mechanics of these models have changed in small proportion, the functions they perform

and the way they are implemented have evolved in order to satisfy industry needs. The

more recent AEC industry needs have been around a BIM-centric way of working, which

is in line with this research’ aim to include CSTs into the BIM paradigm. As such, tools

with high interoperability with BIM models were considered more valuable.

A number of CSTs are available in industry and research, with various features that they

provide to users. It was mentioned in Chapter 3 that in order to be able to interface

several CSTs to interact with the ONTOCS framework, a survey of their basic

functionality and features is required. This can then be used to establish a baseline of

common functionalities and concepts used in the field of CS. Several CSTs which are

widely used in industry were investigated and are these are shown in Table 4-1. All the

investigated tools have been in development and improvement for the last decade, each

receiving significant feedback from their users. Additionally, each tool was validated

using commonly accepted validation techniques (Thalmann et al. 2007, Duives et al.

2013), and have been used on real-life projects on many occasions. Experts consider

40

the validation process an ongoing one across the lifecycle of the software tool. Duives et

al. (2013) mention that calibration of the model to represent a scenario in detail has a

greater impact on the realism and behaviour than other methods of improving the tool,

second only to the mathematical calibration.

It has been observed, as will be made clearer in Section 4.1.2, that the underlying

topology of such models can be clearly distinguished across all of the investigated tools,

regardless of the mathematical model used.

Table 4-1. List of CSTs investigated

Tool Developer Reference

Exodus GUEL, University of Greenwich FSEG (2018)

STEPS Mott MacDonald Mott MacDonald (2018)

MassMotion Oasys, Arup Oasys Limited (2018a)

Pedestrian

Dynamics

INCONTROL Simulation

Solutions

INCONTROL Simulation

Solutions (2018)

Simulex IES Integrated Environmental

Solutions Limited (2018)

4.1.1. Features and capabilities

The overall purpose of CSMs is to accurately represent human movement and complex

behaviours. However, as these models becomes part of software tools, each tool comes

with several features which extend the functionality of their underlying models. By

investigating the CSTs in Table 4-1, several common features have been identified,

which are summarised in Table 4-2.

Kang et al. (1990) have undertaken a study which defines and categorises how a

software tool is able to incorporate features which can solve user problems. In this case,

they define a software feature as: “a prominent or distinctive user-visible aspect, quality,

or characteristic of a software system or systems”. In essence, a software program is

able to incorporate such features by applying code in very specific ways, used to solve

common problems or to achieve a specific task. When considering the program itself,

Batory (2005) cited in Apel and Kästner (2009) describes features as “an increment of

41

program functionality”, thus allowing one particular piece of software to achieve several

functions, as mentioned above.

Table 4-2. List of main CST feature categories

Feature domain Description

Geometry

Allows users to create geometric representations of the

environment using basic types (lines, points, etc) or place pre-

defined objects and edit them (floors, walls, etc). Various 3D or

2D model formats can be imported directly.

Agent
Allows users to define agents within the model, usually relating to

their physical or behavioural properties.

Event

Allows users to specify the location, time and number of agents

within the model. Additionally, users need to specify the routes or

other agent actions at specific times during a simulation. Events

govern the dynamics of a simulation by defining agent actions,

routes and behaviours, which need to be pre-inputted by users.

Analysis

Allows users to work with output data and perform analysis and

decisions on the performance of simulations. Includes several

ways in which agent movement in the environment is tracked and

presented, such as graphs, tables or density map overlays.

Visualisation

Includes several types of features which enhance the visual

components of objects but have no impact on the simulation

calculations. Common features also allow users to visualise the

simulation as an animation or video.

42

The importance of identifying CSTs features is owed to the fact that they were

deliberately created to achieve well defined functions. Apel et al. (2008), cited in Apel

and Kästner (2009) also defines features as “a structure that extends and modifies the

structure of a given program in order to satisfy a stakeholder’s requirement, to implement

and encapsulate a design decision, and to offer a configuration option”. Program features

implemented in these tools showcase the wider needs of the industry, and therefore

reflect the way the industry uses them. As an example, the addition of density maps to

CSTs is a feature which allows experts to analyse the flows of people through a building

with more objectivity. Thus, their implementation and inclusion as a feature showcases

its role in the design process.

Table 4-2 shows the common types of features encountered by testing and investigating

the manuals of the 5 tools mentioned in Table 4-1. These are sufficient to define any

situation within a built environment, with very specific types of populations, allowing a

realistic representation of real life events. Each CST offers different interpretations of the

same concept, in many cases under different names, but these can be objectively

categorised by defining their functionality into one of the 5 main groups.

It should be noted that although evacuation design is the most applied case, CTS have

various features to simulate other use-cases as well, such as a circulation mode. In

evacuation mode, agents are meant to immediately head for the exit. For a more

realistic scenario, some groups of agents can be programmed to delay this action, or

react differently when an evacuation event triggers. The software investigated also

provide a circulation mode, where agents are given certain routes or itineraries to follow.

Circulation modes are used to model an expected daily use of the building. This use-

case is considered out of scope for the current research.

Concerning interoperability, all tools can import geometric models from various formats,

making them BIM compatible. However, they present serious limitations, primarily due

to the differences between the BIM and CS domains and the concepts they use.

Characteristically, CSTs compute the events on 2D environments, but are presented in

2D and 3D for the users for better visualisation options. In the cases of Exodus and

Pedestrian Dynamics, any import from an IFC model for example would only require a

cross section plan view of the model. In this case all semantic information and inter-

relationships between the initial IFC model objects are lost, as they are effectively

converted into lines or points. In contrast, MassMotion and STEPS can maintain the 3D

representations of the models, but none of the semantics or relationships between these

objects is used or even required. Thus, they mostly fulfil a role for visualisation. This

makes any attempts for round-tripping through a CST tool impractical at the moment.

43

4.1.2. Taxonomy of model concepts

In order to understand what lies at the basis of the crowd simulation domain, a more in-

depth analysis was required. In the attempt to establish a base taxonomy of concepts

used by these tools in the CS domain, an investigation of the classes of objects that the

tools use was carried out, each belonging to one of the five generic features. A taxonomy

of things in the field is important to create a topology of the knowledge domain for crowd

simulation and analysis. This is the basis for a more comprehensive ontological

representation of the domain, presented the next chapter (Section 5.1.1).

“Taxonomy is the science of classification. Originally, it referred only to the classification

of organisms. Now, it is often used in a more general way, referring to the classification

of things or concepts, as well the schemes underlying such a classification. In addition,

taxonomy normally has some hierarchical relationship embedded in its classifications.”

(Yu 2014)

In relation to creating taxonomies in the field of CS, there are several studies which

categorise crowds and audiences types (Vieira et al. 2005, Durupinar 2010, Zhou et al.

2010), specific behaviours of crowds or groups of people within models (Duives et al.

2013, Trento and Fioravanti 2016), or for fire-fighting (Moreno et al. 2011). It is important

to bear in mind that these definitions are all heavily focused on the classification of agent

behaviour from a research perspective, rather than on a classification schema for a CS

model, with many concepts which define a CSM being omitted, but many overlaps exist

relating to agent concepts. Thus, an investigation into the implementation of software

tools applied in CS represents a good starting point to identify and defining these missing

concepts. Considering the main concepts around the CS knowledge domain, they are

usually presented in the form of features. From a programming perspective, these are

represented as objects, due to the object-oriented nature of the tools. Not all features

are represented in single objects. Also, it was impossible to establish whether the source

code implements these features as objects or not, due to the lack of access to it. Features

and objects were identified from software testing, reviewing the provided documentation,

and on some occasions through consolations with tool developers and vendors. Figure

4-1 below provides a summary of the common features present in the investigated tools

(full tables on these are provided in Appendix A). Some concepts apply functions in more

than one category, however only the primary one is shown in Figure 4-1.

Rahm and Bernstein (2001) and Abdul-Ghafour et al. (2014) present ways for schema

matching by finding similarities in software structures. “Similarity consists in computing

a distance between two entities by comparing their components, i.e. all the features

involved in their definition. These components reflect heterogeneities at different levels:

syntactic, structural and semantic” (Rahm and Bernstein 2001). As opposed to this

44

methodology, a more generic top-level view taxonomy is required for this research. This

is in line with the aim to provide large-scale simulation capability, where a number of

CSTs can be used to facilitate similar analysis needs in parallel. The reasoning behind

this is to compensate for the limitation of each CST being inherently different (Gwynne

et al. 1999, Ronchi et al. 2013), thus potentially outputting different results.

Figure 4-1. CST concepts by domain feature categories (plot data in Appendix A)

The Simulex tool stands out in Figure 4-1 with far less features than the rest. Being a

module in the Integrated Environmental Solutions toolkit rather than a standalone

application, Simulex offers limited range of features and objects, expressing only

essential objects within a model. Nevertheless, its components are clearly distinguished

within the categories, as expected.

All the tools have a consistent proportion of concepts, with exception of the Visualisation

category, which includes features designed to enhance the view of the model and can

therefore be more dependent on the level of tool development than other features. The

13

22

14

31

4

2

3

4

8

3

13

9

11

7

3

6

7

9

4

1

5

1

15

4

3
1

3

2

5

3

0

10

20

30

40

50

60

MassMotion Pedestrian
Dynamics

STEPS Exodus Simulex

N
U

M
B

ER
 O

F
C

O
N

C
EP

TS

Geometry Agent Event Analysis Visualisation Interface Mathematical

45

Analysis and Visualisation categories overlap in many cases (see Appendices A1-A5,

fifth columns), due to the fact that the act of analysing a model involves users being able

to visualise the output in various ways. The important factor which distinguishes the two

is that Analysis concepts make express use of output data, whereas Visualisation

concepts purely facilitate on geometric representation of model objects from all the other

categories.

In addition to the categories outlined initially in Table 4-2, two more were identified:

Interface and Mathematical. Interface features are like Visualisation, dependent on

level of tool development and having no impact on simulation output. The Mathematical

category refers to features which allow users to alter the behaviour of the model or

specify certain mathematical input which affect the simulation results. Not all tools give

users this option, and so can be considered out of bounds of the common baseline of

concepts. Additionally, these features are more concerned with the calibration of the

underlying simulation model.

Considering the categories of Visualisation, Interface and Mathematical as platform

specific, the remaining four categories of concepts can be used to form a taxonomy

around: Geometry, Agent, Event and Analysis.

Geometry

Geometry concepts are used to define the building environment. These usually

represent the surfaces on which people can walk, obstructions such as furniture or walls,

and connections between surfaces such as stairs or doors. As shown in Figure 4-1,

Exodus stands out with significantly more concepts from this category because it

includes basic geometric types like points and lines in addition to complex shapes. The

more complex object types have 3D representations able to define the environment very

accurately. However, 3D geometry has no role in simulation calculations, as these are

done on 2D surfaces, as mentioned previously. Geometry concepts can range from

static building objects to dynamic lifts and in some cases even vehicles, which are able

to move within the environment. Some concepts from the other categories also use

geometric representations, such as avatars for agents, or overlay density maps for

analysis objects. The most consistent types of concepts across all tools is the

representation of static building objects.

Agent

Agent concepts are used to represent people in a simulation. This includes the definition

of people’s physical properties such as: walking speeds, body size, bias towards turning

left or right, etc. Most tools have predefined agent profiles which are based on research

and are used to represent different types of people in real life. For example, some profiles

46

can represent disabled people, with larger radius and slower movement speeds. Each

profile needs to be calibrated to the specific tool so that it mimics reality to the fullest

extent.

Other common concepts include the definition of entire groups of agents with similar

characteristics, or the way in which to customise the population numbers using

mathematical functions. BuildingEXODUS has more Agent concepts than the other tools

and allows a more specific customisation of the population, possibly due to its extensive

academic background. This allows users to tweak the agent profiles in more detail, which

are otherwise pre-defined for its competitors.

It has been observed across the investigated tools that agents usually have various

levels of freedom in terms of their behaviour. Agents are able to ‘decide’ which exit is

best suited for them to take, depending on their familiarity with the layout or the level of

knowledge they are provided about the routes and exits. Thus, the question on which

exits are taken by agents becomes difficult to answer, as it may vary across multiple

scenarios. Agents are also able to simulate a ‘change of mind’ and can decide to take

an alternative route if the current one is blocked or too crowded. As such, a number of

complex situations may arise as a result of these behaviours, which need to be

considered for analysis purposes.

Event

The key characteristic about Event concepts is time. As they are dynamic actions which

take place only during simulation calculations, events are triggered at specified times.

These actions can be visualised using model animations. The most common event

concepts rely on creating agents, thus populating the model at certain points in time.

Events also describe the movement of people, such as moving from the origin point to

the nearest available exit. Others act as triggers for changing agent behaviours, such as

ticket gates, or dynamic obstructions for agents to avoid.

Analysis

Analysis concepts represent ways in which the model output data is compiled and

viewed by the user. They allow users to understand the output and make decisions on

the performance of the model. As shown in Figure 4-1, these concepts are quite similar

in number, but will mostly rely on three main basic types: table, map and graph. The

most common analysis objects are overlay maps, showing the density or congestion of

agents in various areas of the model. Other, more special analysis types may include

objects which keep track of certain events, such as the number of agents exiting via a

certain door. Output data is recorded and computed into an analysis object. Due to large

47

amount of data, not all of it can be outputted at the same time on screen, especially when

considering the time dimension.

Considering the categories discussed above, Table 4-3 below lists all the common

concepts across the investigated CSTs, allowing for the construction of a taxonomy of

‘things’ which are able to describe the Crowd Simulation knowledge domain.

Table 4-3. Taxonomy of common concepts for a crowd simulation analysis domain

Concept Definition Synonym

Geometry

Space Walkable surfaces for agents. Floor, Area

Barrier Surfaces which obstruct agent movement. Obstruction

Link
Connection between two walkable
surfaces.

Transfer

Portal
Entry and/or exit points for agents. Entry or

Exit Point

Agent

Agent Representation of a building inhabitant. Occupant

Group A collection of agents.

Profile A definition of agent characteristics.

Event

Journey
The act of describing agent movement
from A to B.

Route

Circulation
The act of agents following a route of
waypoints.

Itinerary

Evacuation
The act of agents exiting to nearest
available exit.

Egress

Analysis

Graph
Simulation data plotted on a graph for user
analysis.

Map
Simulation data plotted on a map, overlaid
on the model.

Table Simulation data in tabular format.

All of the concepts mentioned above represent some form of model input or assumption.

Geometry is modelled or imported from another tool. Agent numbers and profiles are

assumed. Analysis requires the designer to select which output is relevant for the

purposes of the investigation. These three categories require minimum user input. On

the other hand, Event concepts are more complicated because they require the

designers to define a specific context, requiring some form of ‘expected’ behaviour

input. For example, designers need to state that certain groups of people will move

towards a certain exit point, meaning that the event used to model the movement of

people from A to B needs to be explicitly defined by the user. Concepts with required

user input are highly dependent on circumstances, thus making each simulation scenario

48

unique. Some tools have predefined behaviours for quick event deployment, but these

usually require customisation from the users in order to increase the realism of scenarios.

For more information, column 6 from the tables in Appendix A marks the features and

objects which require customised user input related to their ‘expected’ behaviour.

4.2. Scenario automation requirements

In alignment with the requirements concerning automation, this section aims to bring

forward the necessary level of information for complete, functional and realistic

simulation scenarios and on how to deal with analysis output. Each of these stages is

outlined separately.

4.2.1. Creating valid models

When considering the creation of valid simulation scenarios, two main categories of

information input have been identified, as shown in Figure 4-2:

1) Geometric – information which defines the building environment within a

simulation; this is provided from the Geometry category of concepts identified in

Section 4.1;

2) Contextual – information which defines the circumstances of the simulated

environment, such as: numbers of inhabitants, exit choices, agent characteristics,

etc. This is provided from the categories of Agent and Event type categories

from Section 4.1.

Khan et al. (2014) state that CSTs require user input, and therefore significant time for

calibrating scenarios. For these to represent reality in an accurate way, contextual

information is required such as the numbers and positions of agents. Cassol et al. (2016)

developed a system consisting of configuration modules which specifically deal with:

1) creating the geometry/environment,

2) creating population and,

3) creating the events.

This methodology follows similar steps to the one described by Kuligowski (2016a),

already presented in Section 2.1.2. For the purposes of this research, the Agent and

Event concepts are considered part of the context. The reason for this is that agents and

events are usually defined together when a scenario is created. In addition to that, the

geometry of the model is static in nature, with little variation across several simulations.

49

From the literature it was concluded that CSTs are often used to import from or work with

BIM model data. In time this has also pushed most CST developers to facilitate various

digital model import capabilities. However, as was evident from the literature and from

the investigation outlined in the previous sections, this is mostly limited to geometry with

no methodologies to retrieve a context about the simulation. Building digital model data

is limited to geometry as most of the actual context information is not present explicitly.

As opposed to geometry, context information provides important assumptions about

each scenario and directly influences Agent and Event entities. Due to its various

sources, contextual information can be hard to retrieve automatically without intelligent

procedures in place. In practice, this information is usually provided by expert designers,

who manually construct scenarios in accordance design analysis needs or predicted

building use. This process is dependent on designer knowledge and experience and

available published documentation on design procedures or regulations, which offer

guidance on best practices, such as the UK PD 7974 (2004).

Figure 4-2. Crowd simulation scenario information requirements (categories which
contribute to context are in Figure 4-3)

50

The minimum requirements for a functional crowd simulation scenario have been

identified from consulting the literature, guides and first-hand experience with CSTs

(outlined in Figure 4-2). The primary requirement for each scenario is determining its

population capacity. Additionally, Nilsson and Fahy (2016) mention it is imperative for

designers to identify several factors which contribute to the context of a fire scenario:

circulation paths, main exits/entrances and important waypoints.

With the aim in identifying the sources of information which could be used in automation

of context generation, four principal domains which can provide information input

emerge, as shown in Figure 4-3:

A. User preferences – refers to the choices that the designer makes to generate

a variety of scenarios which are relevant to the situation. For example, the

designer should specify what type of scenario is chosen, what is the desired

simulated building capacity, or which data sources are imported or used;

B. IFC model data – provides relevant building data, from geometric to

contextual information. The data should be stated explicitly through specific

properties. There are no defined standards for crowd simulation purposes,

but the IFC schema allows the custom creation of properties at object level;

C. Design guides and documentation – when it comes to scenario

assumptions, a variety of documentation guides and published documents

can provide an overview of the factors to be considered. However, due to

their indicative nature, much of the information is highly interpretable and

circumstantial. The available information is spread across several

documents. For instance, the PD 7974 (2004) part 6 is one of 7 documents

published in the UK which were used to gather knowledge about the domain.

However, information concerning occupant densities was vague, so local

official regulation documents were required (The Building Regulations 2015);

D. Building data – live or historical data which refers to occupant traffic that

might be relevant to the simulated building environment, e.g. data recorded

from sensors, traffic cameras or exact numbers of occupants per space within

a facility.

51

Figure 4-3. Information sources contributing to simulation scenario context

52

4.2.2. Creating analysis feedback

The second part in representing the knowledge processes required an investigation into

what data and information are relevant to the analysis process. CSTs can generate a lot

of data from every simulation created. Designers make use of imbedded tool Analysis

and Visualisation features to be able to interpret the data and make decisions. To

assess design performance objectively, certain Performance Indicators (PIs) need to be

established. These need to allow not only human decision-makers, but also intelligent

systems to distinguish between different scenarios and assess which data is most

relevant to each situation, being a primary requirement for conceptualising machine-

interpretable knowledge processes. The most important identified PIs are listed in Table

4-4.

Nelson (2002) cited in PD 7974 (2004) modelled the effects of high traffic density on

agent walking speeds, estimating that where a density is greater than 3.8 agent/m2 the

movement is completely halted. The identification of areas with high traffic density is

therefore very important and is also coupled with the finding the occurrence in time of

such events.

These are conventionally identified using density maps and simulation animations. The

problem with relying on these is that it has to be evaluated by the engineer manually.

However, with the use of a grading system this could also be done automatically. The

evaluation of occupant densities can be done more automatically by adopting a scale

such as Fruin’s Level of Service (LOS) (Fruin 1992), which grades areas with different

densities experienced over time. Figure 4-4 shows an example of this scale created

using the MassMotion software.

Different PIs have been identified from the literature and from software capabilities.

However, as mentioned previously, most of these factors are expected to be checked

and analysed by humans.

When in the context of automation, certain logic rules and algorithms have to ensure the

correct retrieval and processing of such data. In addition to that, analysis output needs

to be considered in an object-oriented way, referring data to things like spaces, doors or

agent objects.

53

Table 4-4. Identified PIs for building performance assessment during evacuation scenarios

 PI Description Visual representation Source

1
Travel

time

the time for agents to

reach a destination

point from a specific

origin in the

environment.

BS7974,

Expert

advice

2
Exit flow

capacities

the flow capacity of a

corridor, door or exit

portal

3
Escape

time

the total time required

by agents to reach a

safe point

4
Population

density

density factor at a

specific point in time,

in a specific area of

the environment

5

Fruin’s

Levels of

Service

(LOS)

a way to quantify

traffic density,

describing the service

state of a specific

area in the

environment

Simulation

tools

6 Other PIs
situational or ad-hoc

factors
N/A N/A

54

Figure 4-4. Example model with a plotted Fruin’s LOS map

4.3. Technologies and tools requirements

This section was designed in mind with the practical deployment of the ONTOCS system

as a prototype for testing and validation of the research hypothesis. Therefore, the

inclusion of system components is justified here.

4.3.1. Crowd simulation model. MassMotion

Having analysed the underpinnings of CSTs and having taken into consideration their

features, functionality and levels of interoperability with BIM, working with one tool was

decided as the best choice for simplicity in delivering the system development in a

speedy manner. Out of the tools investigated, MassMotion was the most thoroughly

tested and was suited best for the purposes of this research. This was done mostly for

its very good IFC import capabilities and the early involvement of the tools’ developers

55

with this research. However, a future aim is to be able to include several other similar

tools within the large-scale simulation paradigm.

MassMotion is a crowd simulation tool developed by Oasys (Oasys Limited 2018a).

According to the developers, the tool is aimed at professionals for testing and analysing

the movement of people in a number of situations. The tool is used around the world by

professionals on real world projects for pedestrian modelling (Oasys Limited 2018b).

The methodology used by MassMotion is a hybrid CA model (for the environment and

movement) and represents Agents with full behavioural individuality. It is therefore able

to simulate very realistic human behaviour making good use of agent characteristics,

including the SF model (Helbing and Molnár 1995). Each agent within the simulation is

able to calculate its own path using a cost function in terms of time. The longer it takes

an agent to reach a destination the costlier it is. Each agent aims to achieve a low value

cost during a simulation. Agents are therefore able to calculate their movement cost at

each mathematical iteration and can decide to change their routes dynamically.

The software has been validated by Arup (Kinsey et al. 2015) as a professional tool and

has been investigated by several studies (Thalmann et al. 2007, Kuligowski 2016a,

Mashhadawi 2016). The latter study tests the software in several standard benchmarking

tests and concludes that the default pre-set settings of the MassMotion software can

deviate from real results by up to 60%. However, if the parameters are calibrated to fit

the real-life scenario more closely, this can be as low as 13%. Typical calibration

techniques involve the representation of reality as closely as possible, for example an

accurate definition of agent physical properties to each individual person in reality or

predicting exact starting locations of agents at simulation start. Kuligowski (2013)

mentions that no simulation software can perfectly simulate reality, and also when it

comes to real-life evacuations each is different due to human behavioural uncertainty

(Kobes et al. 2010).

MassMotion offers very good interoperability with the IFC format, correctly importing

complex geometric models, along with the ability to transform IFC objects into

corresponding MassMotion objects. This is due to MassMotion being natively expressed

in 3D, with every vertex having three coordinates. Another important aspect is the

relatively simple and logical hierarchy for its taxonomy of concepts and a very object-

oriented nature, as well as the XML format for simulation files, making MassMotion an

open tool from an interoperability point of view. Lastly, the tool interface is user friendly

and easy to learn (see Figure 4-5).

Due to these reasons, the MassMotion tool was chosen to be integrated with the

developed system for the research prototype (workflow and implementation in section

7.1).

56

Figure 4-5. MassMotion interface

57

4.3.2. Digital building model. IFC and IfcOwl

The role of the IFC schema and format within the BIM paradigm has been thoroughly

discussed in Chapter 2. IFC has been the debate of many academic papers since its

inception and continues to evolve and deliver vendor-free interoperability between the

AEC disciplines. Its sheer size of concepts and ability to represent any building model

comprehensively, while also including design project data, and more recently energy

modelling concepts make this the best candidate for a BIM data source. Due to its

popularity in academia and industry, many CSTs have developed IFC importers, with

some investigated in the previous chapter. Additionally, Section 4.2.1 already concluded

that its structure can provide not only geometry, but other contextual information

precisely because of its comprehensive nature.

Because the scope of this research and proposed system consider a knowledge level

representation and mining, the IFC is the only format with an existing OWL

representation, making it IfcOwl the only reasonable and reliable choice as a source of

design model with web representation capabilities. IfcOwl is large, with a summary of the

ontology in Figure 4-6; the one used for this research is based on the IFC2x3_TC1

release.

Figure 4-6. Summary view of the IfcOwl ontology

58

4.3.3. Knowledge modelling tool. Protégé

Although OWL ontologies can be written as code, knowledge engineers make use of

editor tools which allows for fast ontology creation. Protégé (Stanford University 2018)

is a very popular ontology editing tool, initially developed in academia (Noy et al. 2003),

which is free to use and with a large library of plug-ins developed by its community. The

interface in Figure 4-7 shows a graphical view of the classes, object and data properties

belonging to the popular Friend of a Friend (FOAF) ontology which is used to represent

data about people on the Web with the scope of linking them on social network platforms.

The software comes with embedded reasoners used to check the correctness (the

ontology concepts should be correctly defined or stated) and consistency (the ontology

should not contain conflicting information) of ontologies. Additionally, it allows the

creation of rules and queries, which can be used to test the reasoning capabilities of

ontologies. Finally, it offers ways to dynamically visualise ontologies in graphs.

Figure 4-7. Entities view tab of the FOAF ontology in the Protégé tool

59

4.3.4. Knowledge management server. Stardog

In the context of this research, a knowledge management server is required to storing

OWL schemas and RDF resources graphs, and retrieve embedded knowledge. This is

also termed a ‘triple store’, which is similar to a relational database, except that it stores

and manipulates data in RDF using SPO patterns, or ‘triples’.

Figure 4-8. Stardog web interface pages for schema and tree browsers

60

The chosen server tool for deployment was Stardog (Stardog Union 2018), a popular

RDF store used more commonly in industries (including NASA, Samsung, eBay and

others), but has also been used in academia in important related studies around BIM

(Pauwels et al. 2016, Farias et al. 2015, Pauwels and Terkaj 2016).

Stardog offers excellent OWL and OWL2 reasoning, also supporting the reasoning over

SWRL rules and efficient querying using SPARQL 1.1. The system was developed in

Java but integrates with several other programming languages via API packages and

libraries. It interfaces over HTTP and SNARL protocols over the web. Additionally, the

tool is very well suited for large scale triple databases, which can work from physical disk

or memory storage.

The most important factor was its capability to support different levels of reasoning levels,

as this research employs a combination of OWL2 syntax with many SWRL rules and

SPARQ 1.1.

The developers offer a free community version which is limited to 25 million edges and

nodes databases. Finally, its sophisticated browser interface (Figure 4-8) allows very

convenient ontology schema and instances browsing, as well as querying and database

management.

4.4. Summary

This chapter presented the requirements to enable a framework for an intelligent

knowledge-based system for automatic simulation scenario creation in a building

evacuation context, as was required by the methodology proposed in Chapter 3. The

section presented an in-depth view of typical CST concepts and established a taxonomy

to use for defining the CS domain conceptually. Then it presented the information

requirements for automatic model creation from various sources and PIs for facilitating

an objective feedback process for design decision-making. Finally it presented the tools

used throughout the development of this research: the MassMotion tool, the IfcOwl as a

BIM source, the Protégé tool for OWL ontologies creation and testing, Stardog RDF

server for deployment.

61

 Chapter 5. Knowledge base development

This chapter outlines one of the core contributions of this research, the development of

several ontologies within the CS knowledge domain. The conceptual system design

introduced in Chapter 3 defines several components required for knowledge

formalisation and mining processes to occur. In this chapter, the ontology

representations of the information models and the processes behind crowd simulation

analysis are introduced. The contents are divided into three main sections.

The first part (Section 5.1) outlines the overall ontology development efforts. The Crowd

Simulation Scenario (CSS) ontology defines the domain and semantics between the

concepts identified in Chapter 4. The CSS ontology describes the crowd simulation

model, but it lacks the concepts to be able to provide meaningful feedback to the design

process. Thus, a separate ontology was developed for this purpose, the Feedback

Analysis (FBA) ontology, presented in Section 5.1.2. The FBA ontology considers the

design process of analysing the performance of a crowd simulation model, based on the

requirements identified in Section 4.2.2. To showcase the integration of the design to

other information models, an ontology was developed which links design code

occupancy factors with space types, and was made to work together with an existing

Uniclass ontology dataset, presented in Section 5.1.3.

The second part of this chapter (Section 5.2) aims to provide clarity and cohesively align

the developments above with other important ontologies within this design context. The

most important is the alignment with the existing IFC ontology, which acts as the central

provider for geometry in a BIM-oriented fashion. The alignment between the IFC and

CSS ontologies provides a greater understanding about the interoperability between

these two knowledge domains (presented in Section 5.2.1). The alignment between the

CSS and FBA ontologies is introduced next, showing the common concepts and how

they work together in Section 5.2.2. The secondary ontologies mentioned above are also

aligned in Section 5.2.3.

62

The final part of this chapter outlines various validation and consistency checks which

were carried during the ontology engineering process.

5.1. Ontology development

Ontologies are introduced in Section 2.3.1 as a means to define knowledge domains

which are currently used in the semantic web. Unlike vocabularies and taxonomies,

ontologies offer a greater level of knowledge representation with more semantics and

syntax. This is due to their ability to represent relationships of all types between

concepts. Noy and McGuinness (2001) mention that there is no one correct way of

defining an ontology and that this is usually an iterative process which depends on the

knowledge domain and how the ontology is applied. The basic principle is to be able to

represent knowledge about the building design evaluation process, and to primarily work

with information models from these domains.

The ontologies developed during this research are listed below and their metrics are

summarised in Table 5-1. They have all undergone several iterations and have been

tested in various forms using the developed system. There are two main ontologies

developed for describing the crowd simulation analysis domain:

1) Crowd Simulation Scenario (CSS) ontology – describes a crowd simulation model

along with its output results;

2) Feedback Analysis (FBA) ontology – describes the use and generation of

knowledge from CSS instance data and analysis objectives.

Two secondary ontologies were also developed:

1) MassMotion ontology (MM) – describes the MassMotion software structure;

2) UK Spaces Occupant Capacities (UKSOC) ontology – describes categories of

spaces and their respective occupancy factors as per UK design guidance.

The developed ontologies are presented in the following sections, and their structure and

reasoning are discussed considering how they are applied in practice. Some of the

concepts are based on example competency questions which were used to help define

the scope and applicability of each ontology. Before this, however, an overall picture is

presented on the interactions of the developed ontologies, along with others which are

used in defining the ONTOCS framework and system.

63

Table 5-1. Metrics for developed ontologies

CSS FBA MM UKSOC

Axiom 311 163 974 219

Classes 56 32 247 75

Object properties 15 10 38 1

Data properties 22 8 4 1

Individuals 0 0 0 12

DL expressivity ALCHIF(D) ALCHF(D) ALCHF(D) ALF(D)

5.1.1. ONTOCS overall alignment configuration

Kaufman and Michalski (2005) identified several ways of retrieving data and knowledge,

depending on the origins of the data, its completeness, or whether its availability is

dependent on time. Within this context, considering the overall alignment of the

ontologies, the ONTOCS system falls in the category of “learning from distributed data”.

A top-level view of the linking between resources is provided here, based on the

developed workflow of the ONTOCS framework. Figure 5-1 shows the CSS ontology at

the centre of the system, being responsible conceptualising model objects, results data

and user assumptions, collaborating with several other ontologies for each of these

purposes. Under it are the CST ontologies, with the MM ontology in this particular case.

A CST ontology is responsible with representing and storing any tool specific information,

and it represents data in its own internal structure. This is in line with the aim to use the

CSS ontology as a generalised schema above individual CSTs, and therefore enabling

the inclusion of several tools in the knowledge mining processes.

The IfcOwl ontology on the left of Figure 5-1 conceptualises the digital building model,

under the BIM knowledge domain. The BIM is a source not just of geometry objects, but

also any other relevant data for design or analysis which can exist explicitly via object

properties. With additional resources in place, like given the examples of design codes

and standard classification system, BIM model data can be leveraged to provide

additional contextual information for the CSS ontology. Other Semantic Web Resources

can be considered, as suggested in Section 4.2.1. However, due to time constraints not

all could be investigated and implemented in practice during this research.

64

Finally, the FBA ontology conceptualises a design analysis knowledge domain, where

data from the CSS is used in conjunction with user objectives to validate and test

simulation results.

The main challenge was to correctly align the several knowledge domains without any

conflicts or redundancies. Secondly, the available resources must allow for convenient

access by the system working with as few knowledge domains as possible in order to

optimise its performance. Ideally, each ontology must be self-reliant and modular,

applying rules without depending on other external resources or other ontologies. The

FBA ontology is unable to function on its own because it relies on the representation of

the results in the CSS ontology.

Another challenge was to decide the best location of ontology rules, given that certain

rules depend on more than one specific ontology, when resources need to be connected

across multiple domains. This had an impact of where alignments had to take place in

the first place. More on rules construction is discussed in Chapter 6.

Figure 5-1. Alignment of ontologies for the ONTCS system and potential extensions
to nearby knowledge domains

65

5.1.2. Representing the crowd simulation model

Figure 5-2. The Crowd Simulation Scenario (CSS) ontology

66

After investigating several crowd simulation tools, common concepts were identified

across the knowledge domain. A generic ‘Crowd Simulation Scenario’ (CSS) ontology

was developed which describes the necessary concepts, actions and data in a simulation

environment, with a full view in Figure 5-2, and a full description on metrics and properties

in Appendix B. The CSS ontology builds upon the already identified taxonomy from

Section 4.1.2, adding additional relationships between concepts, as is presented in

Figure 5-3. The taxonomy alone represented a hierarchy of concepts. “All features of

taxonomies, thesauri and Topic Maps can be expressed in ontologies” (Ullrich 2003).

The ontology brings additional ‘meaning’ for ‘things’ using object and data properties,

equivalencies, instances and other logical relationships.

Figure 5-3. Main CSS classes in direct relationship with the ‘Scenario’ class

67

The core competency question relevant to the CSS ontology is:

➢ What types of ‘things’ does a simulation scenario have?

Figures 5-2 and 5-3 depict the Scenario class at the core of the ontology. In addition to

model objects, which mirror the already defined taxonomy, there are other concepts

which relate to the required user inputs identified in Section 4.2:

• Assumptions - conceptualising design choices via the main

ScenarioAssumption class, which are part of the required input, thus a subclass

of UserInput;

• Results – conceptualising results about each simulation run, via the

SimulationResult class. This is required for the analysis of the performance

stage.

The reason for including these additional classes is to allow the CSS ontology to

generalise model information on top a CST model or ontology, thus providing future

extensibility. This is in line with the vision of the ONTOCS framework.

Model objects - competency question:

➢ Which types of objects must exist within a simulation model?

The ModelObject class specifically includes concepts which are present within the

model. These closely resemble the features and objects present in a typical CST, with

its four distinct categories: GeometryObject, EventObject, AgentObject and

AnalysisObject, as shown in Figure 5-4. Some of the main differences to Table 4-3 is

the inclusion of a more generic Link class which is used to represent a connection

between multiple types of surfaces. Therefore, its subclasses deal with representing a

specific link type. For example, DoorLink is being used to model a doorway connection

between two spaces on the same level, whereas a StairLink models a connection

between two spaces which are on different levels. The geometry between a door and

staircase is very different, but in a CST model representation, they are still effectively

walkable surfaces which apply certain restrictions to alter agent movement.

The most characteristic object type for all CSTs is the one defining the walkable surfaces

- Space, which allows agents to effectively exist and act within the model. They are

represented virtually within a model as surfaces without a 3D component. The name was

chosen as they effectively refer to spaces in real buildings. Additionally, when

considering a design scenario, a building environment is split by levels and spaces, so

designers have an easier time identifying regions within a model. This conceptualisation

is also in alignment with IfcSpace, presented in Section 5.2.1. The functionality of a

space was required in order to refer to spaces in other specific circumstances, hence its

subclasses from Figure 5-4.

68

Figure 5-4. CSS ontology ‘ModelObject’ class hierarchy

➢ What are the types of spaces within a building when evaluating an evacuation

plan?

An InhabitedSpace for example refers to a Space which has agents assigned to it, and

it is considered inhabited in reality. A RefugeSpace designates the function for a space

to act as a destination point for agents in an evacuation scenario. These add context to

the model, as well as a means for automation allowing ontology reasoning to

‘understand’ the building environment.

Scenario assumptions – competency question:

➢ Which types of assumptions must a simulation have?

Figure 5-5 shows all the concepts classified as assumptions. These refer to concepts

which are supposed to keep track of the assumed scenario context and are usually in

relationship with EventObject or AgentObject classes. The ScenarioAssumption

class therefore conceptualises questions such as:

69

➢ What population data source is assumed?

➢ What population capacity is assumed?

➢ What agent profiles are assumed?

➢ What length of simulation time is assumed?

Each of these assumptions can yield different results and influences the behaviour of

agents and therefore the performance of the design. Within CSTs, as concluded in

Section 4.1, these are usually user input assumptions. Each CST has several pre-set

values for these inputs, such as different types of agent profiles.

Figure 5-5. CSS ontology ‘ScenarioAssumption’ class hierarchy

70

➢ Where is the population data coming from?

None of the CSTs to date offer any capability of automatically populating a model with

agents on a realistic premise. This is largely due to each building design being different

and assumed building occupancy factors changing with region. However, as pointed out

in Section 4.2.1, there are several viable resources where population data can be

retrieved, hence the subclasses for the PopulationDataOrigin keeping track of them.

Another important factor in the context of automation and feedback, is the ability to

represent where these assumptions are coming from, therefore differentiating between

scenarios on larger scale of simulations, or when mining the resources for data at a future

date, in different creative contexts.

Simulation results – competency question:

➢ What types of outputs can a simulation have?

It has been established in Section 4.1.2 that simulation outputs are usually presented to

users via several analysis features such as tables or overlay maps. These have already

been defined as AnalysisObjects in their own right. However, the data which they use

is recorded in memory or databases, which are retrieved on user demand. The

SimulationResult class (Figure 5-6) conceptualises the storage of relevant data which

is retrieved on demand by the user. Its two main subclasses aim to differentiate between

results at different points in time. Thus, EndResult encompasses definitive outputs,

which are retrieved at the end of the simulation. For example, the TotalEgressTime is

the time when all agents have safely evacuated the model, which is computed at the end

of a simulation run. The IntermediateResult is meant store data ad-hoc, according to

user objectives, and to provide data at certain times during a simulation. This is a special

requirement for crowd simulation data as events and agent movement relates to

SimulationTime. Additionally, the performance of the design is monitored over time,

thus being important for the analysis stage.

Figure 5-6. CSS ontology ‘SimulationResult’ class hierarchy

71

It is worth noting that this part of CSS ontology can be improved by conceptualising

several other result types, depending on use case. However, it is highly dependent on

the capabilities of the CST used, and the user requirements for analysing the results.

More investigation into the matter is required for future work.

Agent relationships

Apart from the hierarchies presented above, there are several explicit semantic

relationships between the defined classes. Full lists of data and object properties are

provided Appendix B, along with their domains, ranges and other syntax constructs

where necessary.

Within a simulation, the most dynamic objects are those describing agents. Figure 5-7

shows an example of the Agent class relationships to other sibling classes within the

CSS ontology.

➢ How are an agent’s attributes defined?

Figure 5-7. CSS ontology ‘Agent’ class relationships

72

An Agent individual has certain traits which are defined by AgentProfile class, where

its physical attributes such as movement speed and radius are stored.

➢ Where does an agent enter the simulation and where does it leave it?

Each agent has an entry and exit point within the model, which is done through Portal

objects. Each agent must have at least one Portal as and entry point within the

simulation, as described by hasEntryn (functional). The Agent can be allowed to use

multiple exit points, described through the hasExit property. It is not excluded for an

Agent to use the same Portal for both entering and exiting the model. Therefore, the

properties between the Agent relating to portal objects are generalised at the Portal

class level, as opposed to its two subtypes.

The properties shown in yellow in Figure 5-7 store agent specific data about its identity

and behaviour within a model. These qualify as results data, recorded after a simulation

execution, which are different from the assumed data already described by the

AgentProfile class. For example, the AgentProfile assumes a speed of 1.2 m/s for each

Agent at the start of a simulation, but the desiredSpeed stores 0.9 m/s; this is because

although the Agent individual was trying to achieve the upper threshold, it may have been

impeded by obstacles. Example competency questions on Agent data properties

include:

➢ Has an agent managed to exit the simulation safely?

➢ How much distance has an agent travelled until reaching the exit?

The level of expressivity developed within the CSS ontology considers a detailed

interaction between individuals which resemble programming objects, based on the

taxonomy previously identified. Assumptions and results exist explicitly and relate to

specific model objects, as well as to the overall scenario, through the use of property

definitions. These conceptualisations can be leveraged to perform different knowledge

mining techniques deployed in Chapter 6.

5.1.3. Representing the analysis feedback process

The previous chapter emphasised that CST outputs are provided in the form of a

playback animations, graphs, density maps or tables, for user convenience. These were

all conceptualised in the CSS ontology as individual types. However, to be able to find

new knowledge about the design, certain feedback processes regarding output data

needed to be defined. It was established in Section 4.2.2 that PIs are preferred when

assessing model performance. However not all PIs have well defined threshold which

objectively rank performance. Fruin’s LOS is one such a case, based on repeated

research and observations. This is not the case for evacuation times. Design guides

recommend certain evacuation values be decided by safety engineers (PD 7974 2004).

73

Figure 5-8. The Feedback Analysis (FBA) ontology

74

Ultimately, designers need to prove that the design is safe through accepted means

(Shields and Silcock 1987). The Feedback Analysis (FBA) ontology was developed with

these requirements in mind, with its main concepts shown in Figure 5-8. A full view of

the FBA ontology, along with its metrics, object and data properties is provided in

Appendix B.

The feedback process needs to be able to analyse results according to design objectives

requested by the user:

➢ How are user objectives and their requirements captured by the ontology?

The Objective class conceptualises user analysis objectives, with user inputted

threshold values for each instance stored by the ObjectiveRequirement class,

connected through the hasRequirement property (see Figure 5-9).

➢ What is the scope of one or multiple objectives in terms of scenarios to which it

is applied?

➢ How can objectives be applied to scenarios on a large scale?

The AnalysisObjectivesSet class (Figure 5-9) conceptualises a set of requirements

from the user side which are applied to several models at the same time.

AnalysisObjectivesSet can have multiple Objective individuals, each with its own

ObjectiveRequirement, allowing the definition of several PIs which can be

simultaneously refer to multiple Scenario individuals. Thus, both properties

hasObjective and appliesToScenario have ‘one-to-many’ relationship directed

outwards to its relatives.

➢ How are the results involved in the analysis process?

The feedback process must access the simulation data and apply reasoning within given

contexts. SimulationResult class conceptualises any generic results which belongs to

specific Scenario individuals. The generic conceptualisation of the dependency

relationships involved in the process are best described by the association of the two

sets of triples:

‘AnalysisObjectiveSet -> appliesToScenario -> Scenario’ (1) AND

‘Scenario -> hasResult -> SimulationResult’ (2).

75

Figure 5-9. Main FBA classes in direct relationship with the ‘Scenario’ class

➢ How can scenario models be classified and differentiated?

The final concepts shown in Figure 5-9 are the subclasses InvalidScenario and

ValidScenario for the Scenario class. These classes have been specifically

implemented to deal with the knowledge mining process, where user objectives and

scenario results are reasoned. The logical inferencing engine categorises each

Scenario individual according to the result of the rule. Due to the requirements of the

reasoning process, multiple subclasses for ValidScenario or InvalidScenario have

been implemented, each corresponding to the TRUE or FALSE rule results. Figure 5-10

shows the properties defining the objectives and their requirements for two use cases

which were developed and tested. The FindCapacityEgressStatus class for example,

is used to query the status at a certain time in a simulation when a certain specified

population percentage has been evacuated. The requirement is expressed via the

RequiredCapacity class in this context, with its relationships shown in Figure 5-10.

76

Figure 5-10. FBA ontology concepts capturing user objectives and requirements

Thus, the development of concepts relies on user objectives to be used. Only the use-

case which have been used in testing have been developed for the FBA ontology,

following the generic concepts described above. It is acknowledged that more

consultation with engineers and designers is required to establish a full list of objectives

and their requirements as they are used in practice.

5.1.4. Representing design codes

In Section 4.2.1 several required factors were identified in order to make a valid

simulation scenario. One vital factor relates to the number of occupants within the model.

This can be done several ways, as suggested in Figure 4-2. Design guidance

recommends the most representative way of reality to be used (PD 7974 2004). If

specific design data on occupancy is not available, such as in early design stages, there

are alternative means to estimate occupancy using design regulations. The UK Approved

Documents (The Building Regulations 2015) series provide means of measurement for

occupancy densities.

77

Figure 5-11. The UK Spaces Occupant Capacities (UKSOC) ontology

78

To showcase the capabilities of semantic web data integration as part of the overall

research goal, an ontology was developed which expresses UK Spaces Occupant

Capacities (UKSOC), with its full classes and individuals shown in Figure 5-11. A full

view of the ontology is provided in Appendix B, along with metrics, object and data

properties.

The ontology is a representation of design knowledge from Table 5-2, which refers to

spaces and regions within a facility. Although this represents a simple table for types of

spaces and their associated factors, the exact ontological representation of this was

required to correctly assume the density factors for each space type.

During its development, it was observed that certain elements were vague, or in some

cases redundant. Certain categories had the same factors, without any evident motive.

At the same time, some types from the same category were marked with certain

exceptions. Another serious remark is that the table itself is inconsistent as it fails to

distinguish between spaces, zones or regions. For example, a ‘dance floor’ space can

be very different from a ‘dance hall’. Additionally, a ‘dance hall’ can include a ‘dance floor’

space.

The finalised UKSOC ontology represents a more concise categorisation of the spaces,

based on the available information. Any ambiguity left is a result of the initial table’s

inconsistencies mentioned. From the 15 categories of spaces, 12 emerged in the

ontology, with each category being assigned a different factor for population density,

ranging from 0.5 to 30 m2/person.

Figure 5-12. UKSOC ontology ‘Space’ class and its relationships

79

The basic relationships present are shown in Figure 5-12, where each category of space

has a specific factor assigned. The factors were represented as ontology individuals for

double type numbers. For simplicity, instead of mapping each factor to each space type,

a set of SWRL rules were constructed (Figure 5-13), each rule attributing a certain factor

for each ontology individual from its respective category.

Figure 5-13. UKSOC ontology SWRL rules

The reliance of using design codes such as occupancy factors remains unclear, and is

investigated in Chapter 7, along with several test case studies measuring the efficiency

of the ontology and its rules above.

80

Table 5-2. Spaces occupant capacities (adapted from The Building Regulations (2015)
Annex C3 – Methods of measurement)

Table C1 Floor space factors (1)

Type of accommodation (2)(3) Factor (m2/pers)

1 Standing spectator areas, bar areas (within 2m of serving point)
similar refreshment areas

0.3

2 Amusement arcade, assembly hall (including a general purpose
place of assembly), bingo hall, club, crush hall, dance floor or hall,
venue for pop concert and similar events and bar areas without
fixed seating

0.5

3 Concourse, queuing area or shopping mall (4)(5) 0.7

4 Committee room, common room, conference room, dining room,
licensed betting office (public area), lounge or bar (other than in 1
above), meeting room, reading room, restaurant, staff room or
waiting room (6)

1

5 Exhibition hall or studio (film, radio, television, recording) 1.5

6 Skating rink 2

7 Shop sales area (7) 2

8 Art gallery, dormitory, factory production area, museum or
workshop

5

9 Office 6

10 Shop sales area (8) 7

11 Kitchen or library 7

12 Bedroom or study-bedroom 8

13 Bed-sitting room, billiards or snooker room or hall 10

14 Storage and warehousing 30

15 Car park 2/pers

N
o

te
s

1. As an alternative to using the values in the table, the floor space factor may be
determined by reference to actual data taken from similar premises. Where appropriate,
the data should reflect the average occupant density at a peak trading time of year.

2. Where accommodation is not directly covered by the descriptions given, a reasonable
value based on a similar use may be selected.

3. Where any part of the building is to be used for more than one type of
accommodation, the most onerous factor(s) should be applied. Where the building
contains different types of accommodation, the occupancy of each different area should
be calculated using the relevant space factor.

4. Refer to section 5 of BS 5588-10:1991 Code of practice for shopping complexes for
detailed guidance on the calculation of occupancy in common public areas in shopping
complexes.

5. For detailed guidance on appropriate floor space factors for concourses in sports
grounds refer to “Concourses” published by the Football. Licensing Authority (ISBN: 0
95462 932 9).

6. Alternatively the occupant capacity may be taken as the number of fixed seats
provided, if the occupants will normally be seated.

7. Shops excluding those under item 10, but including - supermarkets and department
stores (main sales areas), shops for personal services such as hairdressing and shops
for the delivery or collection of goods for cleaning, repair or other treatment or for
members of the public themselves carrying out such cleaning, repair or other treatment.

8. Shops (excluding those in covered shopping complexes but including department
stores) trading predominantly in furniture, floor coverings, cycles, prams, large domestic
appliances or other bulky goods, or trading on a wholesale self-selection basis (cash
and carry).

81

5.1.5. Representing a crowd simulation tool

Figure 5-14. The MassMotion (MM) ontology

82

The previous ontologies represent the crowd simulation domains and analysis workflows

around them for high-level knowledge storage and retrieval processes. However, in

practice, each model has to run on specific tools, thus it must be able to connect to other

semantic web resources. The MassMotion (MM) ontology was developed (Figure 5-14),

which represents MassMotion (Oasys Limited 2018a) concepts in a very object-oriented

nature, describing the structure of the tool. The concepts were developed over several

iterations from testing the software capabilities and are based on the structure of the

MassMotion simulation files. The XML format of the files have a clear hierarchy of

objects, with fully labelled properties. A full view of the MM ontology is provided in

Appendix B.

Figure 5-15. MM ontology “Object” class with important subclasses and properties

83

Due to the object-oriented nature of the software, the ontology expresses 247 classes,

many of which describe data and nested objects. It was observed that the common

concepts closely resemble the taxonomy hierarchy concluded in 4.1.2, and the CSS

ontology. This is also evident from the example in Figure 5-15. The Object class has

some generic properties related to identity data. Its main subclasses are:

1) Actor & Reference Geometry – all objects which have a 3D

representation within the model, hence the hasBody relationship toward

hasGeometry;

2) Event – the superclass for all event types, describing actions during

model execution

3) Profile – the object which contains agent properties

4) Query – the superclass in charge with defining analysis objects and their

associated properties

It was observed that the ontology of a CST can differ significantly from its outlined

features (Appendix A), as it is highly dependent of the design of the software itself, and

on how the data is structured internally.

5.2. Ontological alignment of concepts

“Ontologies can be large, with tens, hundreds, or even thousands of classes and

properties. Trying to take stock of such a complex framework of concepts can be

daunting. There is active research into techniques to automate the process, but at this

point, the task must ultimately be done by humans. While current tools can calculate

class name and graph similarity metrics to try to give suggestions, they cannot yet

consistently align ontologies automatically.” (Hebeler et al. 2011)

Dibley (2011) mentions that there are multiple ways in which ontologies can be aligned,

but one of the most reliable for the OWL language is to look at the similarities between

concepts, specifically at the terminology and structures. OWL ontologies can be

compared considering (Euzenat and Valtchev 2004):

• Terminology – comparing names of entities (including the use of a dictionary to

identify equivalence);

• Internal structure – ranges and cardinality of attributes;

• External structure – comparing the relationships between concepts, such as

hierarchies and their groupings.

84

5.2.1. Aligning digital building and crowd simulation models

Current engineering practice sees BIM at the core of the design process, being

considered the central point of truth for all related information. The aim of this research

is to maintain and extend this view to the CS knowledge domain. It was previously

established that the IFC model provides all the necessary data about the building

environment. The two schemas have been connected allowing the CS and IFC

knowledge domains to collaborate. Ontology representations of the schemas were

mapped across two very different hierarchies of classes. Nevertheless, several common

concepts were found, shown in Figure 5-16.

Figure 5-16. Alignment of classes between the CSS and IfcOwl ontologies

85

Despite the IfcOwl containing over a thousand classes, a relatively small number of

classes were directly aligned. These are mostly those describing objects with geometric

representations. The classes for IfcWall, IfcColumn, etc. are classified as a subClass

of Barrier. Even though in the IFC domain they are distinct entities, they all fulfil the

same role: blocking the movement of agents. The fact that there are multiple types of

Barrier, which are distinct in IfcOwl, means that the owl:sameAs axiom is not sufficient.

Yu (2014) states that the owl:sameAs “is often used to link one individual to another,

indicating the two URI references actually refer to the same resource in the world.” The

entities of IfcDoor, IfcStair and IfcSpace were identified as the only reasonable cases

of declaring equivalency, where there is very little ambiguity. This approach is also

confirmed in part by crowd simulation tools which import the IFC format.

The hierarchy of entities represented in IfcOwl is very complex as it reflects the IFC

schema which is object-oriented. This gives rise to some limitations when expressed in

ontology formats, as it can make rules and alignment of data and individuals challenging,

as well as slow for extraction. From practical experience whilst conducting the research,

this is especially true when referring to the geometry data. This issue was identified and

addressed by several studies in an attempt to improve query times and make the data

within IfcOwl more accessible (Farias et al. 2015, Pauwels et al. 2017).

While the common objects are related to geometry, there can be major differences in

how the geometry is represented. The most well-known crowd models, such as the CA

models, rely on mesh geometry objects. In its current state, IFC and IfcOwl store

geometry in a compact way, storing basic constructs which need to be extracted and

used to generate more complex shapes. This makes the alignment of geometry

constructs between IfcOwl and the CSS impossible via name matching, and impractical

via knowledge rules, thus a more direct approach is recommended as a way around this

limitation. The ONTOCS system was developed to simply retrieve geometry, convert it

in memory and explicitly store any relevant geometry in the other ontologies. Retrieving

contextual information using properties is outlined in more detail in Chapter 6, as this

process has to rely on knowledge operators.

5.2.2. Aligning scenario and feedback analysis models

The CSS ontology views the model through the prism of ‘what is?’ and ‘what is happening

when?’ by defining geometry, agents and events. On the other hand, the FBA ontology

views the same model from the prism of ‘why is?’ and ‘what is the cause of what is

happening?’ by working with the results data. The CSS ontology has the role of linking

information explicitly, while the FBA ontology focuses on finding information from explicit

and implicit relationships.

86

The Figure 5-17 shows an example of aligned classes and object properties. A full

mapping is provided in Figure 5-18. The Scenario class is present in both ontologies

referring to a specific simulation scenario of a model. In the CSS it has the role of

including all the model instances which define the environment, events and results data,

and any assumptions made for each particular case. In the FBA ontology, this the same

concept has the function of evaluating whether a Scenario meets different objectives,

which are evaluated over results. In this sense, the EndResult class is defined in both

ontologies in the same way, and therefore all relationships linked to it are equivalent in

both ontologies, as those marked in green or half-green in Figure 5-17.

Figure 5-17. Alignment of main classes between the CSS with FBA ontology

The creation of objectives and results classes is an interlinked process because each

objective depends on specific results. Therefore, these need to be created in each

context and then mapped for the integration of the two models.

87

Figure 5-18. Alignment of all concepts between the CSS and FBA ontologies

88

5.2.3. Aligning design codes and classification criteria

The UKSOC ontology has limited applicability by itself but was used in gathering

information about building models for testing. This was linked with the IfcOwl and an

Uniclass RDF dataset currently in development (Bradley 2017). The latter is an RDF

graph of the Uniclass 2015 classification tables, available at (NBS 2017). The scope of

the Uniclass ontology is much broader as it aims to categorise all types of building

elements, from which the UKSOC specifically aligns with spaces. The used Uniclass

RDF dataset ontology was developed as part of another research project at Cardiff

University and was only used for testing for the purposes of this research, but no

contribution to its development is claimed.

There are over 500 space types present in the Uniclass2015, but only 70 were

successfully identified and mapped directly to the UKSOC categories, with example of

the mappings done for the first two UKSOC categories in Table 5-3 (see full list in

Appendix B). Because design codes refer to spaces in a very generic manner, including

entire sub-type categories from Uniclass2015 into the UKSOC was required.

Table 5-3. Example of aligned concepts between the UKSOC and Uniclass

C
a
te

g
o
ry

N
o

UKSOC UNICLASS 2015

Type of space Uniclass equivalent Uniclass categories

Description Code Title Sub-group Title

1

1
Standing spectator areas SL_90_20_83 Spectator standing

areas

Common spaces

2
Bar areas (within 2m of

serving point)

SL_40_20_06 Bars Dining spaces

2

4 Amusement arcade SL_40_05_03 Amusement arcades Amusement spaces

5 Assembly hall SL_25_10_05 Assembly halls Educational spaces

6 Bingo hall SL_40_05_43 Indoor play spaces Amusement spaces

7
Club SL_40_60_21 Dance floors Performing arts

spaces

8 Crush hall SL_90_10_27 Entrance halls Circulation spaces

9
Dance floor SL_40_60_21 Dance floors Performing arts

spaces

10
Dance hall SL_40_60_21 Dance floors Performing arts

spaces

11
Venue for pop concert and

similar events

SL_90_20_05 Audience standing

areas

Common spaces

12
Bar areas without fixed

sitting

SL_40_20_06 Bars Dining spaces

89

Spaces in the Uniclass2015 and UKSOC are differentiated by the function they achieve.

In Uniclass, the spaces are categorised hierarchically, with semantics at the level of a

taxonomy. For example, an office sub-heading includes several specific office types:

postal office, admin office, etc. In the fire safety domain, and therefore in the UKSOC,

spaces are viewed by their number of inhabitants. For example, a dance hall and a bar

area, belong to the same category, because both types tend to have similar population

densities. This presented a lot of issues when mapping between the two different

domains, as is shown with the Bars types spaces in Table 5-3, where ambiguity exists.

During the mapping process it was concluded that the design codes would need to be

more concise and include several other types of spaces. However, as previously

mentioned, the most accurate population data about a building is encouraged to be used

(PD 7974 2004). As such, the most realistic source of information would be the specified

number of inhabitants for each space as inputted by safety engineers.

Due to the difference between the two ontologies, several alignment options were

considered. The first one considered including Uniclass2015 categories within UKSOC

classes. Due to the large number of categories present in Uniclass, this was considered

impractical. The second choice was to perform alignment at an instances level, using

rules. 56 rules were developed, each mapping specific Uniclass identifiers to category

factors, with 2 examples shown in Table 5-4. The rules are essentially the

implementation of the extended version of Table 5-3 (in Appendix B) which aligns spaces

based on their similarity in name and function.

Table 5-4. Example of UKSOC and Uniclass alignment rules (Appendix B)

NO Rule name SWRL code

24 CF-Category_4-13-BreakoutSpaces

uniclass2015:Space(?spaceClass) ^

smpo:identifier(?spaceClass, ?id) ^

swrlb:matches(?id, "SL_90_20_08") ->

uksoc:hasFactor(?spaceClass, uksoc:factor4)

25 CF-Category_5-01-ExhibitionHall

uniclass2015:Space(?spaceClass) ^

smpo:identifier(?spaceClass, ?id) ^

swrlb:containsIgnoreCase(?id, "SL_25_50") ->

uksoc:hasFactor(?spaceClass, uksoc:factor5)

The question remains on how reasonable it is to assume the context of a CSM based on

the UKSOC design factors, which is investigated through testing in Chapter 7.

90

5.3. Ontology validation

All developed ontologies were created using the Protégé tool, which includes several

built-in reasoners. Each ontology was checked for inconsistencies at several stages

throughout its development, using these reasoners. Any inconsistencies were corrected

before actual testing using the ONTOCS system and implicitly the Stardog RDF server.

All RDF stores which are created dynamically on Stardog during ONTOCS testing

sessions operate using SL reasoning capability (a combination of RDFS, QL, RL, and

EL axioms, plus SWRL rules). This is the most advanced reasoning type provided by the

server tool, allowing reasoning using SWRL rules, SWRL built-ins, and other axioms.

This provided a very good basis for testing the ontologies and their performance in

practice.

The previous sections outlined the ontology structures in parallel to the more relevant

competency questions, which the ontologies are able to answer. This is further proven

in Chapter 7, where all the ontologies function correctly within the boundaries of the

ONTOCS system and correctly provide answers to over 33 SPARQL queries many of

which operate in conjunction with SWRL rules. The SPARQL queries are the practical

implementations of competency questions which were also discussed with several

industry experts from the fields of crowd simulation modelling.

Although not familiar to the field of ontology engineering, the consulted experts provided

some valuable feedback and commented on the correctness of the approach. The

comments were not always related to the ontology’s structure, but more about the nature

of a crowd simulation model and how things are considered in design. Here are some

paraphrased example comments:

1) When analysing a layout, each room would have designated exits.

2) In preliminary design, it’s more common to look directly at occupancy factors;

3) Add ‘AcceptedScenario’ class, meaning that a designer is satisfied with its

performance;

Concerning the first comment, the object property hasDesignatedExit was added

between several subclasses of Space, which have the RefugeSpace class type as an

object; this now recognises that a RefugeSpace is not just an exit point for an Agent,

but also a desired exit appointed to a Space. A set of rules could be implemented to

force agents to follow this appointed exit; however, this was not implemented as it will

restrict the level of freedom for agents.

Although not related to the ontology correctness, a test-case was raised and investigated

in Chapter 7 concerning the second commend, aiming to identify how different design

codes taken from ontologies are, in comparison to data from reality.

91

The third comment was addressed by adding the AcceptedScenario class to the FBA

ontology, as a subclass of Scenario. However, in its current state, the FBA ontology is

unable to categorise any individual as this class, due to missing mechanisms to capture

this part of user input. This will be addressed in future work.

5.4. Summary

This chapter introduced the knowledge based developed using OWL ontologies. These

represent both the ‘information models’ and ‘processes’ as part of the overall system

framework described in Chapter 3. The chapter first outlined a high-level view of the

ontologies used by the ONTOCS system and how they relate, following an in-depth view

of each developed ontology. The CSS ontology sits at the centre of the models and

processes, fully conceptualising the CS domain, aided by the FBA ontology to formalise

analysis and feedback mechanisms. The MM ontology sits under the CSS to allow a

practical collaboration of information and data from tool level to SW level. The UKSOC

ontology was developed from existing design guidance to allow estimation of model

population on the fly. In the final section the alignment between several ontologies was

introduced presenting their challenges and limitations. The ontologies are used to

represent information and knowledge about the crowd simulation domain. These are the

means to facilitate automation, knowledge retrieval and storage using various methods

outlined in Chapter 6.

92

93

 Chapter 6. Storing and retrieving knowledge

This chapter outlines the development of several knowledge operators within the CS

knowledge domain which facilitate the retrieval of knowledge in two very specific

contexts: (1) for automatic CSM generation from available information models and

resources, by allowing the ONTOCS system to ‘understand’ them, and (2) for processing

simulation results analysis on a large scale taking into consideration user input

objectives. In parallel to this, this chapter aims to show the necessities for achieving

these processes using ontologies and knowledge rules, thereby answering research

question Q6. The chapter introduces the knowledge operators used (6.1), storage of

knowledge methods (6.2), and knowledge retrieval methods (6.3) developed for

automation of information within the CS domain.

Figure 6-1. Pyramid with increasing levels of meaning

Yao et al. (2007) citing Bellinger et al. (2004) states that there are several layers that

need to be considered when dealing with information and knowledge management

systems, as shown in Figure 6-1. This is similar to the concepts of the Semantic Web

Wisdom

Knowledge

Information

Data

is Applied

has Context

has Meaning

is Raw

94

and Linked Data defined in Section 2.3, where ‘meaning’ of data increases at each level.

It is important to understand however that with each layer computation time to process

the data also increases significantly.

Knowledge management systems have been neglected in the past in the AEC industry

due to unclear benefits towards construction data management (Grover and Froese

2016). This is now having the opposite effect as the loose structure of the product chain

in the AEC sector is breaking after every project and causing a lot of disruption when

compared to other industries like plane manufacturing (Hardin 2009). Historically, the

application of knowledge management tools has been limited on organisational level in

terms of enterprise management with little implementations in practice when it concerns

managing knowledge about a design process of a specific project. However, in light of

the BIM lifecycle paradigm and increasing need for smart cities (Bejay Jayan 2016,

Howell 2017), this may soon change, with a need to keep more knowledge about the

building and its design for future uses.

6.1. Knowledge operator types

The previous chapter showcases how knowledge and information models can be

expressed using ontology programming languages. The conceptualisation of knowledge

is a process which involves humans expressing it in a computer understandable format,

where semantic and logic rules are formalised and adhered to. This whole process of

knowledge engineering is done manually, and not all knowledge is stated explicitly, so

as to keep a focused scope of an ontology to a specific domain or use-case. However,

ontologies are meant to be re-used in other domains, and designer need to find creative

ways of retrieving knowledge models. To be able to formulate or retrieve more

knowledge out of a system of this nature, Ullrich (2003) explains that there is a need for

inferring and querying, acts which are able to exploit the rich expressivity of an ontology.

Kaufman and Michalski (2005) already make use of inferencing using logical rules, which

are considered operators over knowledge models. Logical rules are often referred to as

reasoning rules.

The next section (6.1.1) introduces the concepts of rules and their role in knowledge

engineering. It is worth mentioning that for the purpose of this research, rules are

regarded as operators for knowledge as introduced in Chapter 3. In addition to that, they

are also able to represent knowledge in similar ways to ontologies. Rules are an

attractive prospect in many applications since users find it easier to formulate knowledge,

rather than go through more extensive ontological axioms (Krötzsch 2010). However, in

the case of describing a complex system, such as ONTOCS, OWL ontologies alone are

insufficient (Motik and Rosati 2010, Abdul-Ghafour et al. 2014) because of relying of

95

distributed resources in many information formats. Additionally, Hebeler et al. (2011)

mention that ontologies are not as flexible when working with data as rules are, and that

they are most useful when there is a need to change the structure of the data from one

knowledge domain to another. As such, ontologies are complemented by reasoning rules

(Motik and Rosati 2010), and in this particular case they are used to imbed knowledge

which is later retrieved using processes operating on model data.

6.1.1. Reasoning rules. SWRL

“A rule could be any statement which says that a certain conclusion must be valid

whenever a certain premise is satisfied, i.e. any statement that could be read as a

sentence of the form “if…then…” […] it is worth noting that the term ‘rule’ as such refers

rather to a knowledge modelling paradigm than a particular formalism or language.”

 (Krötzsch 2010)

Many ways exist in which rules are defined in computer science. This is a field which has

emerged since early computers, but they are all based on a logical inference operation.

“…the general form of a decision (or classification) rule is:

CONSEQUENT ⇐ PREMISE |_ EXCEPTION

where CONSEQUENT is a statement indicating a decision, a class, or a concept name

to be assigned to an entity (an object or situation) that satisfies PREMISE, provided it

does not satisfy EXCEPTION” (Kaufman and Michalski 2005)

By looking closely at the two definitions above, slight variations in a rule form exist. The

second definition is different as it can express exceptions, whereas the first only

expresses the condition. This is due to several types of rules which are applied in

practice. Below are a few examples of different types of rules:

• Logical rules – example: “if (X) is true, then (Y) is also true”. Uses logic

implication, or inferencing, as described above; they act as an extension to a

knowledge base and they are usually restricted by Open World Assumptions

(OWA); they are declarative in nature;

• Procedural rules – example: “if (X), then do (Y); else do (Z)”. A very explicit type

of rules which makes them operational in nature as they are able to express the

consequences of both “true” and “false” conditions; they are operational

because they control the flow of action;

96

• Logic programming rules – example: “man(X) <- person(X), which is not a

woman(X)”. These approximate logical semantics with procedural aspects from

above types and are semi-declarative.

As it can be seen, there are many ways of creating rules, however each type has its own

limitations when it comes to practice, depending on several factors such as:

• Expressiveness – the degree to which it can express knowledge;

• Clarity of its semantics and syntax;

• Declarative vs operational in nature (as shown above);

• Performance in computation and reasoning;

• Level of support by software tools;

• Practical applicability;

• Ease of use, etc.

Ontologies were introduced in Section 2.3.1 as tools for a semantic web paradigm. It was

established that their level of expressivity is high and that they are widely used. Previous

chapters have also hinted to why ontologies are better suited for representing knowledge

in terms of information models for evacuation design. With these justifications in mind

and considering enumerated factors above the SWRL language was found the best

suited for the aims of this research.

The overarching research methodology for the ONTOCS framework follows the direction

employed by Kaufman and Michalski (2005) which was restricted at the time with

applying operators on raw data with aims of identifying patterns. The conceptualisation

of knowledge was implemented using inductive databases. It is worth mentioning that at

that time, semantic web tools were just on the verge to become more popular in practice.

Since then, a more common way to represent knowledge databases is with the use of

RDF graphs and OWL ontologies. On another note, Krötzsch (2010) mentions that a

large portion of knowledge modelling is strongly focused on using terminologies, thus

resulting in a schema type model, due to Description Logics (DLs) having become more

popular. This is possible in part because they can be used to describe things explicitly

as they are in the real world, with various applications ranging from medicine, software

engineering to language dictionaries. In contrast, rule languages are better suited for

working with large datasets, allowing more flexibility and expressivity to the data

(Krötzsch 2010).

SWRL stands for ‘Semantic Web Rule Language’ and was officially published by

Horrocks et al. (2004) under W3C. The initial SWRL included several built-in functions,

which can operate on datatypes, i.e. compare or add integers and strings. This gives it

the possibility to manipulate and analyse data in its basic form, while working on top of

97

OWL classes and individuals. The main limitation in expressing ontologies using the

early version of OWL is a good example on why rules are often required, as best

explained by Horrocks (2005):

“[…] while the language includes a relatively rich set of class constructors, the language

provided for talking about properties is much weaker. In particular, there is no

composition constructor, so it is impossible to capture relationships between a composite

property and another (possibly composite) property. The standard example here is the

obvious relationship between the composition of the “parent” and “brother” properties

and the “uncle” property.”

This example is shown in Figure 6-2, where the classes of Child, Father and Uncle are

all subclasses of the Person class, each with different object property relationships

between them. The arrows pointing left from Child, can be seen to go in sequence toward

Uncle. This represents a composite property and is summarised by the property

hasUncle, which allows a direct new relationship from Child to Uncle. This sort of

relationship is expressed in the box in Figure 6-2 in SWRL code. It would translate literally

into:

If c is Person AND c hasParent f AND f hasBrother u

-> THEN c hasUncle u, where:

 c, f and u are variables (ontology individuals), marked with ?

 ^, -> are AND, THEN respectively

Figure 6-2. Conceptualisation of a property chain using SWRL

98

In Figure 6-2 it can be observed that the rule can be split up in functional parts, which in

practice are called atoms. In this case, the body of the rule has three atoms, each

connected by the intersection operator (^). The head of the rule has one atom and can

only infer one individual as part of the reasoning process.

While problems such as the example have been addressed with the release of OWL2,

the importance of SWRL rules has not changed. However, with the assertion of such

types of axioms is expected to make the reasoning and querying process slower

(Krötzsch et al. 2011). At the same time, rules are better suited when working with large

datasets. Adapting an ontology with SWRL rules makes that ontology ‘undecidable’

meaning that it is impossible to draw all logical conclusions from a knowledge base, even

with unlimited time and resources. To account for this, DL-safe rules are SWRL rules

restricted to known individuals. DL-safe rules are very expressive and decidable at the

same time (Sikos 2015).

6.1.2. Queries. SPARQL

Several methods have been outlined by which knowledge can be represented and

inferred. However, in order to access it in practical applications, this knowledge needs to

be interrogated using programming queries.

A query language is “a computer programming language used to retrieve information

from a database” (Slamecka and Hosch 2008).

The most common queries used in practice are based on SQL which operate on

relational databases. Graph databases host RDF graphs and express data quite

differently from relational databases, as they store SPO triples. To deal with querying

graph databases, SPARQL was developed, which is a recursive acronym for “SPARQL

Protocol and RDF Query Language”.

“SPARQL is essentially a graph-matching query language. A SPARQL query is of the

form H ← B, where B, the body of the query, is a complex RDF graph pattern expression

that may include RDF triples with variables, conjunctions, disjunctions, optional parts,

and constraints over the values of the variables, and H, the head of the query, is an

expression that indicates how to construct the answer to the query.” (Perez et al. 2006)

“Most forms of SPARQL query contain a set of triple patterns called a basic graph

pattern. Triple patterns are like RDF triples except that each of the subject, predicate and

object may be a variable.” (Prud and Seaborne 2006)

99

Several types of queries exist in SPARQL:

1) SELECT queries - the most useful operator, used to retrieve data from graphs.

Returns a collection of query solutions;

2) CONSTRUCT queries – returns a new graph, as specified by the query triple

pattern;

3) DESCRIBE queries – is used to find out the structure of the graph in question. Is

useful when the format of various web resources is unknown to the user;

4) ASK queries – is used to answer a question with TRUE or FALSE;

Several operators within queries are used to limit or manipulate the results, such as:

a) FILTER – narrows down the search to specific values or classes in question; can

significantly improve performance;

b) OPTIONAL – sets certain parts of the query as optional; some results entries will

return null values in those cases;

c) UNION – effectively splits a question into two smaller ones which are run

independently and then the results are aggregated;

d) DISTINCT – forces a query to only return valid entries once, filtering repetition;

e) ORDER BY – orders the results by a specific variable;

f) LIMIT – limits the result sets to a specified number; beneficial with large datasets;

increases performance;

There are also other operators and syntax elements which can help customise a query

from a very generic to a very specific type of question. Nested queries are also possible,

if the engines running it support it. Full details on the SPARQL implementation has been

published and available online (Prud and Seaborne 2006).

Figure 6-3. Example SPARQL query and results

100

The structure of SPARQL mimics the SPO triple structure, since this is the pattern it has

to match and find. The difference is that an OWL statement will proclaim something

exists, or is valid, whereas a query asks if something exists with a specific SPO

composition. Figure 6-3 shows an example of a SPRAQL query where the FOAF

ontology is queried finding the first names of people which know each other. The graph

URL shortened to foaf for convenience using the PREFIX keyword. This graph is

expected to have some named individuals, hence the SELECT query is looking to find

the names of these individuals. These are all part of the head of the query, which

describe its scope via PREFIX, and its type from the keyword SELECT in this case. The

body of the query starts at line 3, specifying the condition of the query using the WHERE

operator. The pattern to match is in between the curly brackets and is made out of 3

triples: the first looks to find a certain ?person1 variable which has a first name,

described by the object property foaf:firstName; the second looks to find which other

person is known to ?person1 via the foaf:knows property, with the ?person2 variable

in the object position; the last is similar to the first triple, but the subject is now ?person2.

Finally, the query results would be restricted so that ?name1 complies with a specified

secondary condition. A query of this sort can be very close to natural languages, because

of the SPO pattern. SPARQL queries are often used to test an ontology, thereby

validating its competency questions posed during its development.

The most used types of queries throughout this research project were the INSERT and

SELECT type. The former was used for injecting data resources within information

models, whereas the latter was used for retrieving data, information and knowledge.

This section was concerned with the introduction of the two main types of knowledge

operators: rules and queries. Their basic functionalities were described with examples,

showing the basic principles on which knowledge is gained by the ONTOCS system. For

the rest of this chapter, various types of rules and queries will be introduced, specifically

concerned with crowd simulation analysis concepts.

6.2. Storing information and knowledge

The knowledge base developed and presented in Chapter 5 is a schema of concepts

which describe the various processes involved in an integrated multi-disciplinary system

- ONTOCS. The system is expected to dynamically work with data according to the

schemas it includes. There are several information requirements which have to be

provided from various inputs. These need to provide all the relevant instance data

involved in the design process in order for the system to function correctly.

Understanding how instances work with RDF graphs is important to help distinguish

between the schema model and the data model. In essence, a schema represents

101

hierarchies, workflow, processes and imbedded knowledge; the instances represent the

data and information used in processes and knowledge generation.

The Oxford Dictionary defines an instance as “an example or single occurrence of

something” (Stevenson 2011) and it is used in object-oriented programming to describe

concrete objects belonging to a specific class. In ontology terms, instances are termed

individuals, and they are the occurrences of one or multiple classes within an ontology

model. McGuinness and Van Harmelen (2004) in the OWL release report define that

individuals “are instances of classes, and properties may be used to relate one

individual to another”. Without instance data, knowledge operators would have nothing

to process. Figure 6-4 below outlines the differences and connection between an

instance (individual) and a concept (class) in programming and in ontologies.

Figure 6-4. Example of comparison between OOP instances and OWL individuals

The main difference between instances from the two domains is the way they behave.

An object-oriented programming instance usually belongs to a specific class, taking all

its attached variables and methods, and most importantly, it is a declared and initialised

as a valid instance. An ontology individual on the other hand, can be used anywhere

within the ontology without declaration being a requirement (Yu 2014). Although an open

way of using instances can be convenient, it can lead to problems on validating the

instance model data. To account for this limitation, the OWL2 syntax introduced the

entity declaration notion, where “each class, property, or individual is supposed to be

declared in an ontology, and then it can be used in that ontology and ontologies that

import that ontology” (Hitzler et al. 2009). This notion helps deal with ontology model

management data and allows for clear definition of individuals and concepts across

several ontologies. Figure 6-4 suggests that each instance must be defined as belonging

102

to a class, however when it comes to defining the properties of that instance, OWL allows

a much greater flexibility in defining individuals, allowing to express any relationship to

any other instance, without programming constrictions. Additionally, instances in OOP

are usually kept in memory as a program runs, whereas ontology individuals make use

of IRIs which can be accessed on the Web and can be used over several simulation

iterations and across several knowledge domains.

Instances can be created in several ways: using API to parse OOP objects into RDF

individuals, by using INSERT query types, or manually added in ontology editors. The

developments for the ONTOCS system mostly utilised API packages to programmatically

populate ontology information models.

Figure 6-5. ONTOCS ontologies using RDF graphs as resources

Figure 6-5 outlines the basic resources which add context to the ONTOCS knowledge

base. The OWL ontologies represent knowledge as schema concepts, while their

individuals are provided in separate RDF graphs with unique date stamped IRIs. The

mapping between the resources is governed by the ontology alignment, SWRL rules and

in some cases reasoning queries are used programmatically. The next section of this

chapter expands on the requirements, methods and benefits for storing these resources

by looking at the process from two perspectives:

1) resources about the building models and

2) resources about the design process.

103

6.2.1. Storing building model data and information

The instances which refer to the building environment can be stored across several

ontologies:

1) IFC model – instance model of the building to simulate and analyse;

2) CSS model – instance model of the scenario description, including all the relevant

model objects;

3) CST model – tools specific instance model, for MassMotion in this particular case;

The three models above refer essentially to the same building, but from three different

perspectives, each with a different structure of the data. Figure 6-6 shows an example

of a Space object and its three perspectives. Each has explicitly defined object and data

properties in its own domain, with some references to its other views denoted by the

sameAs axiom. The three individuals from Figure 6-6 are in a relationship of

equivalency, because they virtually refer to the same space in real life. Each individual

belongs to its own resource RDF graph, but when in the context of the aligned schemas

and rules, they are identified as the same logical instance. It can also be observed that

each individual has different semantics in its own domain, and that there are few cases

where the same data is present across all of them, and this is usually related to identity.

Using logical inference, data need not be repeated as it is accessible across all domains

and thus redundancies are avoided.

Figure 6-6. Example of a space instance which is represented by 3 equivalent ontology
individuals across several knowledge domains

In a study about expressing building models from one CAD tool to another, Abdul-

Ghafour et al. (2014) mention that “The ontology Y is yet described at the terminological

level having no instances. The aim is at creating instances in Y by finding for each

instance in X the corresponding concept in Y. An ad hoc ontology, called mapping

ontology, is created to store mapping axioms and rules between X and Y.” Ideally, this

104

means that a representation of an IfcOwl individual could be fully converted into its

equivalents in the neighbouring domains. This process however becomes increasingly

complex as the gap difference between the domains is greater. The fundamentally

different way in which geometry is expressed, means that performing this conversion

using ontologies alone becomes even more arduous, as was also mentioned in Section

5.2.1 in the case of aligning concepts between CSS and IfcOwl. Additionally, when

considering crowd models, it was established in Section 4.2.1 that even though all the

geometric information can be extracted from the IFC, the contextual information is

lacking.

For these reasons, a more in-depth look at the used tools and how they represent the

semantics is required.

The IFC model

IfcOwl is the ontology representation of the IFC schema and was developed in such a

way as to ensure it resembles its structure with great fidelity (Beetz et al. 2009). This has

proved to be a double-edged sword, as the scale and complex structure of the IFC

schema has made the ontology very large and the logical restrictions required by the

OWL language has resulted in many relationships and classes. At the same time, it

enables more creative ways in design and product data exchange or automation in the

construction field, has some studies have done so already (Scherer and Schapke 2011,

Pauwels et al. 2011, D.-Y. Lee et al. 2016). Since then, various tools have been

developed which work with IfcOwl and are able to parse an IFC STEP file into an RDF

graph.

Figure 6-7 shows an example of the structure of the ontology, with the names in bold

blue representing class individuals, while the other lines are data and object properties.

The IfcSpace_333 individual is the parent on this particular hierarchy tree, being related

to dozens of other individuals, each members of other classes which branches out

towards the primitive data types such as integers or strings. The OOP nature of the

schema is clearly reflected in its OWL representation as well, causing very deep trees

and thereby making the data hard to access using SPARQL. This reduces the

performance of retrieving data, but it also means that developments based on IfcOwl

require experts with a high understanding of its structure in the first place. This has been

a problem since its inception and has been discussed extensively (Pauwels et al. 2016),

with a more recent suggestion to simplify it (Terkaj and Šojić 2015), especially

concerning its geometry (Pauwels and Roxin 2016, Pauwels et al. 2016). It is important

to note however, that the IFC schema was developed for optimal storage and exchange

105

and not for performing more complex operations. Due to its compressed geometry, tools

have to reconstruct in memory from basic geometric concepts.

Figure 6-7. Tree hierarchy of an IfcSpace individual in IfcOwl.

This allows relatively evident mapping across to a crowd simulation model, as was done

in Section 5.2.1. However, this was done so at a generic class level, without taking into

106

account the complexities of geometric representation of elements, as it was considered

impractical. This means that geometry for the CS domain had to be converted from IFC

programmatically using mathematical implementations.

The main benefits of using IfcOwl is that it can contain all the necessary information

required for a CS simulation, ranging from geometry, identities of objects to contextual

information which can be present via object data properties. The problem lies in the fact

that certain properties need to exist in the model in the first place. These need to be

stored in the BIM platform at creation and explicitly exported to the IFC model.

The main limitation of using IfcOwl in the current context is its large schema, making it

hard to work with, nested properties which need to be known to retrieve easily, and finally

its geometric representation which needs to be extracted at every iteration and

manipulated in memory.

The MassMotion model

The geometric representation in a CST can differ a great deal from one tool to another.

In the case of MassMotion, geometry is represented by triangulation, meaning that each

plane or face of a 3D object is divided into several triangles. The creation of the geometry

is usually done manually or through various model import capabilities, which is then

corrected and adjusted. In the case of the developed system, the geometry is retrieved

from the IfcOwl model (Section 6.3.1), converted in memory and then the new

MassMotion geometric objects are used to populate the MassMotion RDF resources

graph. This was done for simplicity reasons, as it does very little to advance the concept

of knowledge mining if done using ontology rules.

When it comes to simulating the environment, additional objects are created (Events,

Agents, etc.) taking into account user input and several other resources. These are

created automatically in accordance to each scenario, as part of the first stage of the

knowledge mining process, Stage I – Scenario generation, which is presented below in

Section 6.3.1. Once the simulation is completed, a CST creates a large dataset which

records events in time and space about what has occurred within the model. For

example, it records every frame for an agent since its entry in the model until it has

reached the exit, keeping track of its speed and waypoints list, including which spaces it

traversed. MassMotion saves this data in a SQLite database.

Considering the vast amount of data and in particular its dependency on expressing it

according to time frames, it was considered best to keep simulation data in its native

format (SQL) and query these databases as required by the knowledge mining process.

Thus, certain data about RDF individuals for the MassMotion and CSS ontologies are

107

created ad-hoc, as shown in Figure 6-8. This is not true for Geometry data or identify

data related Events and Agents. This approach was found more convenient when

working with results data relevant to the analysis process. The initial Stage I data is

recorded in RDF graphs regardless if simulation results are not. This allows for the future

execution of the model should results data be lost.

The main benefit of using the MassMotion ontology is that it allows a model view of a

simulation and stores all the necessary data to re-generate a simulation execution.

The limitation lies in the fact that it may hold redundant data from the IFC model or CSS

models, as these are required by the program’s programmatic objects. The second

limitation is that although it can be used to store simulation data, it would be highly

inefficient. Thus, conceptualisations of the relevant data should be stored on a higher

level using the CSS model.

The Crowd Simulation Scenario (CSS) model

The CSS ontology model sits at the core of the knowledge mining process, as was

indicated in Section 5.2.4. It was outlined previously that the CSS model acts as an

integrator between BIMs and CSTs, as shown in Figure 6-8, where CSS individuals

reference MassMotion individuals and IfcOwl equivalencies. This means that from the

CSS perspective, only certain data is relevant, while particularities of the data is provided

in the other aligned domains.

Firstly, model elements, especially those of a static nature (i.e. geometry) are stored in

generic way recording identity data, certain properties used in the knowledge mining

process and most importantly the domain of each model object when used in a particular

scenario context. This presents a way in which to manage large data sets, where one

IfcOwl instance can have several equivalent simulation instances for each scenario.

Secondly, model results are stored as required by the knowledge mining process, as is

suggested in Figure 6-8. These are in line with the requirements inputted by the feedback

analysis process and the FBA, as outlined in the next section.

Considering the limitations of the IfcOwl and MM models, the CSS is better suited for

storing the context, which is what makes each simulation different. The IfcOwl is the

source of geometry and some implicit contextual data, but the CSS can store it explicitly

and it can account for user input. The CSS model should not be burdened with storing

geometric representations as it would defeat its purpose of being generic in nature.

Identity data of geometric objects and where these are in the other models is

recommended. Storing simulation results ad-hoc also benefits from keeping the model

relatively small in size and potentially improving processing speed for knowledge

108

retrieval operations in the future. However, this makes the CSS ontology highly

dependent on external resources.

Figure 6-8. MassMotion and CSS storage of objects and data in RDF

6.2.2. Storing design process information and knowledge

Design is by nature an iterative process which needs to consider constraints imposed on

the end-product. The collaborative processes required for achieving a building design

are immense, with many stakeholders involved and because of this it is a process of

compromise (Kvan 2000). This is because the decision-making process is complex and

needs to consider several views of the model not just for structural integrity or costs, but

also safety and environmental protection. Several studies have recognised the

importance of decision-making during design, and have proposed a myriad of solutions

on how to manage this process digitally (Plume and Mitchell 2007, Shafiq et al. 2012,

Fernando et al. 2013, Oh et al. 2015, Zhang et al. 2015). The main problem on a macro

level seems to stem from the fact that the industry is working in different silos of

information, and each of these is updated in technology at a different rate. The CSTs are

a good example for this, as their interoperability with BIM has emerged relatively late,

compared to those of other design disciplines, as was concluded in Chapter 2.

109

Kalay (1998) in Plume and Mitchell (2007) points out that “each specialist has their own

view and set of objectives, arguing that design collaboration works best where those

same specialists adopt what he called a ‘super-paradigm’, agreeing to a course of action

to achieve a common goal for the whole project, rather than narrowly considering their

own objectives in isolation.” Reaching a consensus on how to best manage the decision-

making process has always been an issue in design. Using an ontology approach to

keep track of the design-decision making process could bring the benefits of integration

using semantic web resources, as is suggested by the methodology of this research. In

addition to that “design intent should be captured and processed by intelligent systems”

(Abdul-Ghafour et al. 2014). The exact methods on how to do this differ based on the

systems proposed in industry and research.

Considering the above statements from the perspective on crowd simulation analysis,

there needs to be a clear understanding of what information needs to be captured and

how it should be stored for knowledge retrieval at a later stage. Due to the nature of how

CST work, two separate factors have been identified in this research:

1. Storing scenario assumptions – using the CSS ontology;

2. Storing design intent – using the FBA ontology;

These two main factors were also considered when developing the ontologies, through

asking the competency questions, as was discussed in Section 5.1. Apart from storing

model data about its elements, they were also intended to store designer input, which

participates in defining the context for each scenario. Section 5.1.1 emphasises that the

CSS ScenarioAssumption class and its subclasses are used to capture the user input

and try to retrieve the information required to construct the context of a scenario. This

implicitly fulfils the role of storing these assumptions for future use, while also

contextualising the knowledge retrieval process. For example, when searching for

answers, scenarios can be grouped depending on their assumptions, to allow for a

comparative analysis.

The large-scale simulation of building performance brings into consideration the way in

which knowledge storing is managed. For example, a set of objectives can be applied to

a multitude of simulation data models, and as such the relationships and rules must be

implemented during a knowledge mining process. Figure 6-9 shows an example of how

the data is linked in this context. The BIM produces many simulation models, each with

a different configuration being saved in as CSS resources. At creation, the CSS models

record the assumptions of the users.

During the analysis process, user objectives are also captured as FBA resource models

using the AnalysisObjectivesSet class, and these can be applied to a specific set of

scenarios allowing the definition of a scope when querying the knowledge models. This

110

is the method through which design intent and decision-making is stored explicitly as

knowledge about the design process, while also making it convenient to work with large

data sets.

The input of design intent must be made explicit, and new ontology individuals have to

be created programmatically for each design iteration. This method is therefore limited

to the extent of the ontology concepts defined for objectives and assumptions, and by

the software tool used to store this information from memory at the appropriate time.

Figure 6-9. Storing scenario assumptions (1.) and user objectives (2.)

6.3. Retrieving information and knowledge

With all the mechanisms in place to store data, information and knowledge, as shown in

the previous section, it is possible to carry out knowledge retrieval processes on available

resources by applying the types of operators introduced in Section 6.1. The mechanisms

developed and presented here follow the crowd simulation model construction and

111

analysis of the process, in line with the ONTOCS platform functionality developed, and

following the CSS and FBA ontologies during the process (workflow in Figure 6-10):

• Stage I, Scenario generation – is concerned with constructing a valid crowd

simulation model with a specific scenario context using various sources of

information (as identified in Section 4.2.1), while also considering user input along

the way, in order to tailor each scenario to design expectations. This stage uses

reasoning operators to gather resources across several models, and to identify

important concepts. More importantly, it attempts to ‘understand’ the building and

its circumstances and uses this knowledge to construct a realistic scenario.

• Stage II, Analysis feedback – is concerned with executing the scenarios

generated in Stage I on a large scale, then retrieving results and comparing them

to user design objectives. This stage uses reasoning operators to aggregate

results in conjunction with applied knowledge rules to find answers about the

performance of the scenario as a whole or the behaviour of certain model objects.

Figure 6-10. ONTOCS system process workflow through its two main stages

112

The two stages reflect the way in which humans conduct design starting with the creation

of the environment (which carried out by using IFC model resources), and then creating

the events which add context to each model. For the second stage, the analysis is

applied using similar factors which are used in practice, except that they are expressed

using operators which are then applied at the user’s discretion. The main benefits to this

process is the automation of the model creation and the ability to manage model data on

a larger scale, allowing the analysis of multiple models at the same time. The limitation

of this method is that designers conventionally rely on visualisation to understand the

building and crowd simulation event, which in this case are quantified using algorithms

and rules, thus eliminating the visualisation part of the process.

6.3.1. Stage I – Scenario generation

The knowledge mining process for the first stage of the process is about the system

being able to ‘understand’ the building model. This is also outlined in Figure 6-10, where

the 3 most important factors each answer a question about the assumed context of a

scenario:

1. Capacity – How many people inhabit the environment?

2. Exits – Where are they supposed to evacuate?

3. Agents – What sort of people are assumed?

Answering these questions requires multiple steps. 26 SPARQL queries have been

constructed and tested which are relevant to the first stage of the process, summarised

in Table 6-1. These operate in conjunction with many SWRL rules across different

ontologies (see Appendix C).

The first step resides in understanding the geometry of the model. This is different from

re-constructing geometry using schema specifications and algorithm in the sense that

the ontology is able to reason which types of geometric concepts are required from one

domain into the other, whilst also ‘understanding’ their purpose in these application

domains. This must be converted in a knowledge graph in the first place, which is to

express the IFC model into IfcOwl. Knowledge operators then process this model and

other resources and are used to identify the relevant objects and data which are used

generate the files required by the CST. Several SPARQL queries were constructed for

model conversion purposes to retrieve the geometry (Table 6-1). Figure 6-11 showcases

the main categories of queries, with Figure 6-12 showing an example of the query which

retrieves names and other identity data from the IfcOwl model (using query Q-IFC-2).

The geometry is defined from basic constructs such as lines, points and direction vectors.

The ONTOCS platform extracts the geometric data from IfcOwl, converts it in memory

and creates the equivalent MassMotion instances. The consequence the highly nested

113

nature of IFC and IfcOwl resulted in long queries which had be constructed in order to

get the most basic elements (such as coordinate points or lengths of rectangles). It was

observed during testing that this is slower in performance than importing a model from

IFC directly (tests and results are discussed in Chapter 7). This was addressed in several

papers, and some rules have been developed by Pauwels et al. (2016) to simplify the

structure. This sort of rules were used to allow faster identification of properties related

to items, or to wrap primitive data types, which can considerably improve the querying

times. They are expected to increase significantly with the size of the elements in the

model.

Figure 6-11. SPARQL operators retrieving information from the IfcOwl model

However, before retrieving the geometry, the scope of a CST and what geometric objects

it can use. This was established in the alignment between the CSS and IfcOwl ontologies

in Section 5.2.1. The conceptual alignment is then applied here in conjunction with the

reasoning query labelled Identify objects from Figure 6-11 (Q-FBA-1 in Table 6-1),

which is summarised in natural language. An example of the query running on a test

model is shown in Figure 6-13. This is the first step in filtering the vital objects which

needs to be exchanged from the BIM to the CST, thus enabling knowledge already

expressed in the ontologies to be applied and acting in a similar way to a Model View

Definition (MVD) protocol. The secondary effect of this is that it implicitly leaves out all

the information which is out of scope for a simulation scenario.

114

Table 6-1. List with developed queries for Stage I.

Query

code
Name Reasoning Category

Q-IFC-1 Find objects yes Identify objects

Q-IFC-3 Get IFC Storeys no Identify objects

Q-RES-4 Find inhabited spaces yes Identify objects

Q-RES-5 Find exit spaces yes Identify objects

Q-IFC-2 Get IFC Types no retrieve identity data

Q-IFC-5 Get IFC Placements no retrieve object positions

Q-IFC-6 Get IFC Placements (spaces) no retrieve object positions

Q-IFC-7 Get IFC Placements (mapped) no retrieve object positions

Q-IFC-19 Get IFC Orientations no retrieve object positions

Q-IFC-4 Get IFC Shapes no retrieve object geometry

Q-IFC-8 Get IFC Rectangle shapes no retrieve object geometry

Q-IFC-9 Get IFC Rectangle shapes (mapped) no retrieve object geometry

Q-IFC-10 Get IFC Arbitrary shapes no retrieve object geometry

Q-IFC-11 Get Arbitrary shapes (mapped) no retrieve object geometry

Q-IFC-14 Get IFC BREP shapes no retrieve object geometry

Q-IFC-15 Get IFC BREP shapes (mapped) no retrieve object geometry

Q-IFC-17 Get IFC Extrusions no retrieve object geometry

Q-IFC-18 Get IFC Extrusions (mapped) no retrieve object geometry

Q-IFC-20 Get descriptions no retrieve object properties

Q-IFC-21 Get areas no retrieve object properties

Q-RES-1 Get occupancy no retrieve object properties

Q-RES-2 Get classifications no retrieve object properties

Q-RES-3 Match occupancy factors yes retrieve other resources

Note: A full description of the queries is available in Appendix C.

115

Figure 6-12. SPARQL query Q-IFC-2 operating on the IfcOwl model, retrieving data about
instances with results shown below it

Figure 6-13. SPARQL query Q-IFC-1 reasoning IfcOwl individuals which are also
MassMotion ontology individuals according to ontology schema alignment

Once these objects are identified, they are stored, and further information is retrieved

using various other SELECT queries, which are always matched in memory through the

IfcIdentifier class to ensure the correct data is retrieved for each object. Due to the

structure the IFC schema and the long nature of SPARQL queries prevents the efficient

retrieval of all the data in one go. Filtering improves the performance of the queries, as

Pauwels et al. (2016) have concluded over several tests in querying building model data

in IfcOwl format, and it reduces the scope of the query to relevant data as well. Due to

reasoning flags and depending on query complexity, it can sometimes yield very large

116

datasets of results for generic queries, most of which are expected to be out of scope. If

the query is too specific, it can yield no results. To account for this, some queries

operating on IfcOwl FILTER down on specific class types. This resulted in some queries

being very similar in structure, especially at the beginning on the code, only to differ

slightly towards the end (see Appendix C for full query codes).

The second step involves understanding the context of the model. The information

requirements which can contribute to the context of a simulation model were identified in

Section 4.3.1. Not all of the identified sources are always required, and the process of

defining the context of a scenario needs to be dictated by the designer, thus user input

needs to be considered throughout the entire process. From consultations with industry

experts, out of the geometric concepts, the spaces were identified to be the most

important, as they can describe the building’s functionality and the layout of the spaces

has a significant impact on the behaviour of the inhabitants (Chitty and Fraser-Mitchell

2003, Kobes et al. 2010).

Figure 6-14. Example of contextual information being interpreted by rules from an IFC
domain to provide context to a crowd simulation model

117

From design experience imbedded in guides and documentations and from expert

consultations, two main categories of Space were identified as most relevant, which are

represented in the CSS ontology:

• InhabitedSpace – any space which has a value of inhabitants at the start of a

simulation which is not 0, thus a departure point for agents;

• RefugeSpace – any space which is a designated area for refuge from fire, thus

a destination point for agents.

Several ways in which spaces can provide context to a simulation have been explored.

Figure 6-14 shows an example of building data explicitly available in an IFC model, which

can be used to describe things which are relevant to how spaces are assumed in a crowd

simulation domain. These examples are possible answers to the previously asked

questions about the simulation context.

In order to extract this knowledge, the following operators have been developed:

1) SPARQL queries which retrieve the relevant properties about spaces from the

IfcOwl, such as areas (Q-IFC-21), or identity data related to names (Q-IFC-2) or

design codes (Q-RES-2, Q-RES-3); this data is then explicitly stored within the

scope of the CSS ontology as RDF resources for each specific scenario;

2) SWRL rules which operate on explicit resources from the CSS ontology and other

resources such as the Uniclass2015 or the UKSOC factors; They fulfil the role of

identifying which spaces are RefugeSpaces or InhabitedSpaces, and what their

capacities are; these are provided in Table 6-2 below.

3) SPARQL rules which operate on the CSS ontology used to retrieve the reasoned

knowledge by the SWRL rules mentioned above; thus the system is able to

interpret what the function is for every space object in a scenario context

(example query and results in Figure 6-15).

Figure 6-15. SPARQL query (Q-RES-4) reasoning individuals which are classified as
‘InhabitedSpace’ within the scope of the CSS ontology

118

The verification of the SPARQL queries and SWRL rules has been done by constant

testing throughout the development of the ONTCS system by ensuring the correct

information is retrieved from basic mock model data. Within the scope of the described

resources here and in previous chapters, they function correctly. Their efficiency was

tested, and a discussion is available in Section 7.2.

Table 6-2. List of SWRL rules for the CSS ontology classifying space types

SWRL CODE DESCRIPTION

R-CSS-1, InhabitedSpace

Space(?space) ^

occupants(?space, ?number)

-> InhabitedSpace(?space)

A space with occupants is

considered an occupied space

R-CSS-2, RefugeSpace

Space(?space) ^

uniclassCode(?space, ?code) ^

swrlb:stringEqualIgnoreCase(?code, "SL_20_90_30")

-> RefugeSpace(?space)

If a space has the specific Uniclass

code for Refuge Space

(SL_20_90_30), is considered a

RefugeSpace class in the CSS

ontology.

R-CSS-3, RefugeSpace

Space(?space) ^

name(?space, ?text) ^

swrlb:containsIgnoreCase(?text, "exit")

-> RefugeSpace(?space)

If a space has a name suggesting it

is a fire refuge area, it is classified as

RefugeSpace in the CSS ontology.

R-CSS-4, RefugeSpace

Space(?space) ^

name(?space, ?text) ^

swrlb:containsIgnoreCase(?text, "refuge")

-> RefugeSpace(?space)

If a space has a name suggesting it

is a fire refuge area, it is classified as

RefugeSpace in the CSS ontology.

R-CSS-5, RefugeSpace

Space(?space) ^

description(?space, ?text) ^

swrlb:containsIgnoreCase(?text, "refuge")

-> RefugeSpace(?space)

If a space has a description

suggesting it is a fire refuge area, it is

classified as RefugeSpace in the

CSS ontology.

R-CSS-6, RefugeSpace

Space(?space) ^

description(?space, ?text) ^

swrlb:containsIgnoreCase(?text, "exit")

-> RefugeSpace(?space)

If a space has a description

suggesting it is a fire refuge area, it is

classified as RefugeSpace in the

CSS ontology.

119

6.3.2. Stage II – Analysis feedback

The second stage of the knowledge mining process aims to correctly interpret simulation

results on a large scale and provide feedback to safety engineers. The analysis feedback

process is characterised by asking the system questions similar to those in natural

language, like:

‘Which scenario evacuates agents in less than 1 minute?’

Figure 6-10 shows the involvement of users in this process. The ONTOCS system allows

users to choose from a set of different predefined objectives, which query model data

according to identified PIs in Section 4.3.2. The use of objectives allows the ontology

reasoning to scope on specific tasks.

Table 6-3 shows examples of user objectives, and the operators they rely on. Each row

in the table represents an instance of FBA ontology ObjectiveAnalysisSet class (as

introduced in 5.1.2) A set includes two separate objectives, each answering specific

questions:

a. Total egress time – what is the total time for all the agents to travel to the exits?

b. Capacity egress – by what time can x% of the population be evacuated?

These objectives have to be inputted by users when evaluating scenarios, as shown in

Figure 6-16. By applying several rules, the system can provide answers for the sets of

objectives chosen. The process time increases with the complexity of the rules in place,

as well as with the number of tested scenarios, (see Chapter 7 detailed case study).

Table 6-3. Example of objective sets inputted by uses for the analysis stage

Objective

set

a. Total egress time (s) b. Capacity egress Valid
scenarios

population (%) time limit (s)

1 90 50 45 1 to 9

2 90 75 45 1 to 5

3 120 75 60 1 to 10

120

Figure 6-16. ONTOCS interface for objective input page

121

Figure 6-17. Plotted egress progression results for several example scenarios and
objective set 3 from Table 6-3

The system is able to query data across various databases from simulations, and

process the results with reasoning flags, categorising each scenario in accordance to

user objectives. Figure 6-17 shows an example of egress progression plotted data from

mock simulations in time vs agent percentages. The lines plotted represent agents

leaving the premises of the building, the higher a point on the line the more time it takes

to evacuate the more agents. Outlined in green, AnalysisObjectiveSet 3 shown the line

(3.a) and the area (3.b) under which the scenarios are meeting user requirements.

The basic functionality lies in categorising scenarios in accordance to each objective,

and thereby each rule overseeing it. The reasoning of the rules is retrieved by asking the

ontology questions posed by the SPARQL queries in Table 6-4. When these queries are

sent through, they effectively call their corresponding rules, listed in Table 6-5.

The inclusion of InvalidScenario class and its subclasses was required to assess which

scenarios do not meet objective requirements, as the nature of a SWRL rule only allows

20

30

40

50

60

70

80

90

100

110

120

130

10 20 30 40 50 60 70 80 90 100

ti
m

e
(s

)

evacuated agents (%)

valid results for objective 3.b

valid results below line for objective 3.a

122

one atom at the head of the rule, thus for every rule checking for ValidScenario, its

opposite exists for InvalidScenario. With the current rules in place, ValidScenario and

InvalidScenario classes are not mutually exclusive. This is because a scenario can

satisfy one objective, such as 3.a from Table 6-3, and if evaluated true, be classified as

a ValidTotalEgressTimeScenario, subclass of Valid Scenario, but fail another (like

3.b) and be classified as an InvalidCapacityEgressScenario, and consequently a

subclass of InvalidScenario. This means that a scenario can be valid for one objective,

but invalid for another objective and thus be categorised simultaneously as both valid

and invalid. To mitigate this limitation, another rule is put in place which checks that all

objectives are met at the same time, categorising it as a FullyValidScenario class within

the developed FBA ontology. This class is used by a SWRL rule which effectively

intersects the first two rules R-FBA-1 and R-FBA-2. The nature of SWRL rules reasoning

and combined with OWL expressivity causes the rules to be very specific in nature and

be applied on well-defined classes for them to process fast and correctly.

The knowledge mining process is undertaken by the intelligence imbedded within the

developed ontologies and SWRL rules by following the imposed processes at a scenario

level (using performance indicators such as egress/travel times). This method facilitates

the finding of new knowledge about the performance of each specific scenarios

stemming from a version of a building model (in IFC). The results are presented to users

for further analysis and decision-making. The level of new knowledge is dependent on

the expressed knowledge and developed processes to retrieve it.

123

Table 6-4. Developed queries retrieving knowledge from the FBA model

SPARQL QUERIES

Q-FBA-1, Find valid total egress scenarios

Question Which scenarios are a ValidTotalEgressScenario class?

Function Finds the valid scenarios which evaluate true by applying rule R-FBA-1.

Requires reasoning?
YES

Q-FBA-2, Find valid capacity egress scenarios

Question Which scenarios are a ValidCapacityEgressScenario class?

Function Finds the valid scenarios which evaluate true by applying rule R-FBA-2.

Requires reasoning?
YES

Q-FBA-3, Find valid scenarios

Question Which scenarios are a ValidScenario class?

Function Finds scenarios which are valid from any rule applied. Computes the
union valid subclasses (implicitly applies rules R-FBA-1 and R-FBA-2.

Requires reasoning?
YES

124

Q-FBA-4, Find fully valid scenarios

Question Which scenarios are a FullyValidScenario class?

Function Find the valid scenarios which evaluate true by applying rule R-FBA-3.

Requires reasoning?
YES

Q-FBA-5, Find invalid total egress scenarios

Question Which scenarios are an InvalidTotalEgresScenario class?

Function Find the invalid scenarios which evaluate true by applying rules
R-FBA-4 and R-FBA-5.

Requires reasoning?
YES

Q-FBA-6, Find invalid capacity egress scenarios

Question Which scenarios are an InvalidCapacityEgresScenario class?

Function Find the invalid scenarios which evaluate true by applying rule R-FBA-6.

Requires reasoning?
YES

Q-FBA-7, Find invalid scenarios

Question Which scenarios are an InvalidScenario class?

Function Finds scenarios which are invalid from any rule applied. Computes the
union of subclasses that are invalid (implicitly calls rules R-FBA-5 and 6)

Requires reasoning?
YES

125

Table 6-5. SWRL rules operating with the FBA ontology for classifying scenarios

SWRL RULES

SWRL CODE DESCRIPTION

R-FBA-1, ValidTotalEgressScenario

hasObjective(?objectivesSet, ?objective) ^
FindTotalEgressTime(?objective) ^
hasTimeLimit(?objective, ?requirement) ^
timeInSeconds(?requirement, ?timeLimit) ^
appliesToScenario(?objectivesSet, ?scenario) ^
hasEndResult(?scenario, ?result) ^
TotalEgressTime(?result) ^
timeInSeconds(?result, ?timeResult) ^
swrlb:lessThanOrEqual(?timeResult, ?timeLimit) ^
hasResult(?scenario, ?popResult) ^
PopulationResult(?popResult) ^
numberRemainingAgents(?popResult, ?remainingAgents) ^
swrlb:equal("0"^^xsd:integer, ?remainingAgents)
-> ValidTotalEgressScenario(?scenario)

If a simulation result is below
the required time specified in
the objectives AND there are
no remaining agents within the
simulation, then the scenario is
classified as a valid
ValidTotalEgressScenario in
the FBA ontology.
The opposite of rule R-FBA-4
and R-FBA-5

R-FBA-2, ValidCapacityEgressScenario

hasObjective(?objectivesSet, ?objective) ^
FindCapacityEgressStatus(?objective) ^
hasTimeLimit(?objective, ?timeRequirement) ^
timeInSeconds(?timeRequirement, ?timeValue) ^
hasPopulationCapacity(?objective,
?percentageRequirement) ^
percentageRequired(?percentageRequirement,
?percentageValue) ^ appliesToScenario(?objectivesSet,
?scenario) ^
hasIntermediateResult(?scenario, ?simulationTimeResult) ^
SimulationTime(?simulationTimeResult) ^
timeInSeconds(?simulationTimeResult, ?timeResult) ^
swrlb:lessThanOrEqual(?timeResult, ?timeValue) ^
percentageEvacuated(?simulationTimeResult,
?percentageResult) ^
swrlb:equal(?percentageResult, ?percentageValue)
-> ValidCapacityEgressScenario(?scenario)

If an intermediate result has a
certain capacity of the
population evacuated below a
certain time, it is a valid
scenario -
ValidCapacityEgressScenario
in the FBA ontology.
It is the opposite rule for
R-FBA-6

R-FBA-3, FullyValidScenario

ValidTotalEgressScenario(?scenario) ^
ValidCapacityEgressScenario(?scenario)
-> FullyValidScenario(?scenario)

A scenario satisfies multiple
criteria objectives at the same
time, it is a valid scenario –
FullyValidScenario in the FBA
ontology

R-FBA-4, InvalidTotalEgressScenario

hasObjective(?objectivesSet, ?objective) ^
FindTotalEgressTime(?objective) ^
hasTimeLimit(?objective, ?requirement) ^
timeInSeconds(?requirement, ?timeLimit) ^
appliesToScenario(?objectivesSet, ?scenario) ^
hasEndResult(?scenario, ?result) ^
TotalEgressTime(?result) ^

If a simulation result is above
the required time specified in
the objectives, then the
scenario is classified as invalid
- InvalidTotalEgressScenario
in the FBA ontology.
The opposite of rule R-FBA-1,
and will act in conjunction with
R-FBA-5 to check agent

126

timeInSeconds(?result, ?timeResult) ^
swrlb:greaterThan(?timeResult, ?timeLimit) ->
InvalidTotalEgressScenario(?scenario)

numbers remaining in the
simulation.

R-FBA-5, InvalidTotalEgressScenario

hasObjective(?objectuiveSet, ?objective) ^
FindTotalEgressTime(?objective) ^
appliesToScenario(?objectiveSet, ?scenario) ^
hasEndResult(?scenario, ?result) ^
PopulationResult(?result) ^
numberRemainingAgents(?result, ?remainingAgents) ^
swrlb:notEqual("0"^^xsd:integer, ?remainingAgents) ->
InvalidTotalEgressScenario(?scenario)

If a simulation still has
remaining agents which have
not evacuated in time, then the
scenario is classified as invalid
- InvalidTotalEgressScenario
in the FBA ontology.
The opposite of rule R-FBA-1,
and acts in conjunction with
rule R-FBA-4
which checks the required
evacuation time.

R-FBA-6, InvalidCapacityEgressScenario

hasObjective(?objectivesSet, ?objective) ^
FindCapacityEgressStatus(?objective) ^
hasTimeLimit(?objective, ?timeRequirement) ^
timeInSeconds(?timeRequirement, ?timeValue) ^
hasPopulationCapacity(?objective,
?percentageRequirement) ^
percentageRequired(?percentageRequirement,
?percentageValue) ^ appliesToScenario(?objectivesSet,
?scenario) ^ hasIntermediateResult(?scenario,
?simulationTimeResult) ^
SimulationTime(?simulationTimeResult) ^
timeInSeconds(?simulationTimeResult, ?timeResult) ^
swrlb:greaterThan(?timeResult, ?timeValue) ^
percentageEvacuated(?simulationTimeResult,
?percentageResult) ^ swrlb:equal(?percentageResult,
?percentageValue) ->
InvalidCapacityEgressScenario(?scenario)

If an intermediate result with a
specified capacity of the
population evacuated later
than the required time, it is an
invalid scenario -
InvalidCapacityEgressScenari
o in the FBA ontology.
It is the opposite rule for
R-FBA-2

R-FBA-7, ValidTimeInstantEgressScenario

hasObjective(?objectivesSet, ?objective) ^
hasTimeInstant(?objective, ?requirement) ^
timeInSeconds(?requirement, ?timeInstant) ^
appliesToScenario(?objectivesSet, ?scenario) ^
hasIntermediateResult(?scenario, ?popResult) ^
PopulationResult(?popResult) ^ atRuntime(?popResult,
?simulationTimeResult) ^
timeInSeconds(?simulationTimeResult, ?simulationTime) ^
swrlb:equal(?timeInstant, ?simulationTime) ^
numberRemainingAgents(?popResult, ?remainingAgents) ^
swrlb:equal("0"^^xsd:integer, ?remainingAgents) ->
ValidTimeInstantEgressScenario(?scenario)

If an intermediate result has
evacuated all agents at a
specific time, it is a valid
scenario –
ValidTimeInstantEgressScenar
io in the FBA ontology

127

6.3.3. Linking models for future extensibility

From the two previous sections, methods to store and retrieve information and

knowledge were presented in a specifically applied way, to meet system requirements.

As resources are stored and retrieved throughout the design process, it is necessary to

conceptualise the relationships between models over the BIM lifecycle and how CSS

and FBA models converge for future extensibility to other design problems.

Concerning the way in which the system deals with scenarios on a large-scale, Figure

6-18 conceptualises the relationships between information and knowledge models over

time. It is important to consider the progression of the BIM model over its lifecycle on the

Y axis, where changes in building design or layout are expected. This effectively brings

forth a new design problem with regard to the evacuation plan. On the X axis, the figure

shows the change in scenario context, with each scenario assuming different things, and

each performing differently. The scenario and feedback models are labelled as ‘dynamic’

because they refer to the ‘static’ models in different circumstances. The instances across

all models eventually refer to the same ‘things’ in reality. The feedback analysis process

is managed with the help of the feedback models, which link the scenarios their

assumptions, results and user input together with the BIM design model for collective

analysis.

Figure 6-18. Static and dynamic information model progression considering changes in
design and context

128

6.3.4. Scenario vs element view

The previous sections of this chapter introduced ways to reason about linked data on a

scenario level and on an object level. However, when it comes to Stage II, knowledge

operators were defined only for a scenario model level. The main cause of this is the lack

of formalised knowledge from design guidance.

From discussion with industry experts, it was noted that besides the spaces, doors and

stairs are the types of objects which can cause concerns at a design level. However,

there are very few ways in which these are effectively measured and assessed. The

most common way, as was also mentioned in Section 4.2.2 is to rely on travel time, which

can relate to an entire scenario, a space or even individual agents. Conventionally, travel

time and distances from spaces to nearest exits are assessed geometrically using layout

plans.

When it comes to assessing this using CSTs, safety engineers rely on visualising the

problem or on various tool features allowing them to track agents. Figure 6-19 shows an

example of measured travel time and distances of agents, reported as an average in

terms of the space of origin. This sort of information is aggregated together at an object

level by the ONTOCS system making use of simulation data and cross-scenario linking

of concepts, as shown in the previous section. From the room in question, over 90 agents

evacuate using available exits. The shortest exit is only 6m away, whereas the longest

is over 40m. A human observing these events in an animation can easily explain why

that is, certain agents will evacuate on a different route, as CST have the ability to

simulate such complex human behaviours. However, when attempting to imbed this sort

of awareness into a knowledge system, things are more challenging.

Although agent movement can be tracked through model calculations, it can be hard to

correctly interpret their behaviour. Due to the many assumptions present in each

scenario and the large data provided by simulation outputs, explaining ‘why something

is happening’ is the role adopted by the FBA ontology. Due to the complex interaction of

concepts, it can become very complex to represent in an ontology, or undecidable when

applying rules. A second example is conceptualised in Figure 6-20 showing that some

factors may not explain the cause of certain results and their behaviour. As such, it is

required to leverage the embedded knowledge and the relationships that exist between

the different assumptions. Let’s consider the example of a forming bottleneck in a certain

area in a building, like Space 3 shown in Figure 6-20. High traffic density in certain areas

is caused by the influx of agents provided by various origin points, i.e. Spaces 1 and 2.

However, determining which origin point has more impact in causing the bottleneck is a

complicated problem, as it is dependent on many factors such as agent characteristics,

geometry of the spaces, distribution of agents, etc.

129

Figure 6-19. Example of scenarios where a group of agents decide to change the
evacuation route

130

Complex rules need to be put in place which can represent this in formalised ontological

and semantical knowledge that could help determine the causes.

Figure 6-20. Example of objects and properties (contextual and geometric) influencing
the final analysis result

When considering such rules, careful consideration is required along with validation of

the rules. The retrieval of such knowledge is complex, and it is limited by the reasoning

types that ontologies and SWRL rules can provide. Additionally, due to the OWA which

governs ontology reasoning, where evaluation of rules can be TRUE or FALSE, but also

UNKNOWN.

The easier alternative is to make use of linked data to leverage its connections of objects

and present the results in an easy to interpret way by designers, as was shown in Figure

6-19.

6.4. Summary

This chapter presented ways in which knowledge about building design performance can

be stored and retrieved intelligently, and how to make use of explicit and implicit

knowledge which can be leverage by using semantic web ontologies, SWRL rules and

SPARQL queries. The chapter began by showing which data and knowledge is worth

storing throughout the process and how, while hinting at the limitations and challenges

of such a method. The second part outlines ways in which implicit and explicit knowledge

is mined using knowledge operators developed, discussing how they work and what the

concerns are when constructing them. The knowledge mining is facilitated by ontologies

reasoning in conjunction with rules, by categorising scenarios in accordance with design

objectives. The chapter finished by showcasing how knowledge models interact on a

higher level and mentioned the challenges and limitations of machine-interpretable rules

at an object level feedback concerning crowd simulation-based evacuation models.

131

 Chapter 7. System implementation, testing and

validation

This chapter presents the development of the ONTOCS (Ontology Crowd Simulation)

system and validation of the developed knowledge base from previous chapters. The

first part (Section 7.1) outlines the system design. The second part (Section 7.2) presents

a case study carried out on a real-life building. The tests are done following the overall

methodology presented in Section 3.2, and each use-case carried out aims to prove that

the system is functional and reliable when performing knowledge mining. The case study

objectives, use-cases and rationale are presented in detail before showing and

discussing the results.

7.1. Introduction to the ONTOCS system

ONTOCS follows the conceptual process of knowledge mining-based design iteration

loop, as previously introduced in Chapter 3. The basic principles of knowledge mining

and storage processes and their requirements have influenced the system architecture.

Although the overall framework makes use of several other third-party tools, from the

programming perspective, ONTOCS controls the processes and information exchange

to facilitate a semi-automatic process of multi-scenario construction and analysis on a

large scale.

The main independent tools which collaborate during the design process are:

1) ONTOCS – the main system packages developed in Java. It is responsible for

controlling the entire process, connecting the different tools and models together,

as well as providing the user interface. Its main class, SystemManager,

integrates all the packages;

2) Stardog – the RDF database server responsible for storing all the relevant

ontologies and to provide reasoning in the back-end;

3) MassMotion – the CST (introduced in Section 4.3.1) which is responsible with

running the scenarios on a large scale and provides raw data on the evacuation

events within the simulated building environment;

132

4) IFC to RDF converter – converts IFC EXPRESS format files to RDF models to

work within the schema of IfcOwl (OpenBIMstandards 2017a);

5) Jetty server (The Eclipse Foundation 2018) – provides the database support for

hosting the entire ONTOCS application to run as a web service. It is used to store

all simulation files and results databases in SQL, as part of each design session.

Although BIM tools were not envisaged as part of the system, they are expected to

provide the building digital models. To ensure openness and interoperability, the IFC

format was preferred. During testing and development, the building modelling was done

using Autodesk Revit 2016 and 2017. The possibility of embedding the ONTOCS

interface into a BIM tool was considered initially. However, this was omitted in order to

avoid relying too much on a single BIM platform.

7.1.1. ONTOCS process workflow

The high-level interaction between the system components is shown in Figure 7-1. The

components follow a specific workflow process which guide the users through the two

main stages of the knowledge mining process. The arrows in the figure indicate the flow

of information and the collaboration between the several tools and ontologies. The

process starts with the acquisition of all the necessary information via Stage I input,

which considers input from several sources: most importantly the IFC building models,

which are the focal point around which knowledge is stored, but also the user input which

is considered at each step. The ontologies developed and discussed in Chapter 5 are

hosted on Stardog graph databases. The ontology schema models and resources are

all part of the same graph store, where all the relevant data is linked, with no external

resources having been used at the current stage. The ontologies are constantly queried,

and data and knowledge resources are stored explicitly to facilitate a smooth flow of the

process. Stage I inputs and resources are used to generate simulation scenarios - which

effectively become Stage II inputs. Finally, simulation results and user objectives are

reasoned to provide performance analysis outputs back to the users via the interface.

The entire process is defined by eight main processes of controlled data flow, as

numbered in Figure 7-1:

1) Converting building from IFC to RDF - this is done automatically by the system

when uploading a chosen IFC model. Alternatively, direct upload of an IfcOwl

instance model is possible;

2) Uploading the IfcOwl digital building model on the RDF store - the IfcOwl

schema ontology is also uploaded during this process which gives context to

the model resources;

3) Processing of user input and additional resources – other schema ontologies,

like the CSS and FBA are uploaded to the same RDF session store (additional

133

ontologies can also be uploaded); User input concerning scenario context is

captured by the interface and processed by the ONTOCS packages, with

relevant scenario assumptions being parsed into CSS ontology individuals as

separate RDF resource graphs; all these resources are then used to carry out

step 4).

4) Generating MassMotion scenario files – the number of scenarios is inputted

by the user, with each scenario context being outputted into a separate file

which is then executed at step 5). The CSS ontology and other relevant linked

resources are queried to find the data required to create functional

MassMotion scenario files (queries and rules applied at this step were

described in Section 6.3.1);

5) Executing MassMotion scenario files – the ONTOCS SystemManager class

passes the generated files to the MassMotion tool via the console; each

scenario is executed by the tool which provides confirmation on the status of

each run back to the SystemManager;

6) Recording simulation results – MassMotion saves simulation results in SQLite

databases, which are then kept on the Jetty server in specific session folders.

These are accessed by the ONTOCS application ad-hoc for finding results

which are related to user objectives;

7) FBA ontology reasoning processes – the inputted user objectives and scenario

results are saved into the FBA resources graphs for rules processing

(knowledge operators for this stage were described in Section 6.3.2);

8) Retrieving knowledge about the design – reasoning results from step 7) are

retrieved by the system and outputted to the user interface in collections of

results, making use of the AnalysisObjectivesSet class from the FBA

ontology – essentially each set of objectives was reasoned and provided

results within the scope of the investigated scenarios.

The steps described above present an overview of the process workflows of information

and knowledge storage and retrieval, following the implementations from Chapter 6. As

discussed in previous chapters, due to the complex nature of crowd simulation model

and the input requirements, each step relies on the correct execution of previous ones.

Additionally, knowledge management processes are highly dependent on the context of

the information (Bates 2011). As such, formalising all the concepts need to be a prime

concern in order to for the output to be correct and relevant.

134

Figure 7-1. ONTOCS system components with numbered workflow steps

135

7.1.2. ONTOCS architecture

Figure 7-2. ONTOCS system package diagram across functional layers; packages in
green represent developed code; packages in grey represent imported code

The system architecture is presented in Figure 7-2 using Unified Modelling Language

(UML) diagrams (Pilone and Pitman 2005). The core package is ontocs, which includes

the SystemManager class. This class was designed according to different use case

scenarios to facilitate the workflow of the entire process. It saves all the data in memory

for each session and is the package which facilitates collaboration between different

applications. It makes use of secondary APIs and third-party developed programs to

communicate with the Stardog server, convert IFC to IfcOwl and to run MassMotion as

a background service when executing the simulations. The ontocs package is reliant on

136

4 other sub-modular packages which deal with data extraction and manipulation as

shown in Figure 7-2:

1) ontocs.ifcModel package – retrieves data from the IfcOwl RDF instance models

by running SPARQL queries. Once the relevant data about model objects is

retrieved, including identity data, geometry and properties, it is stored in memory

for future manipulations and conversions to other models and tools; this package

also includes methods to create the geometry from IFC schema concepts;

2) ontocs.mmModel package – its primary function is to facilitate programmatic

conversion from IFC objects in memory to MassMotion objects. Additionally, it

has methods for enabling communication with the external MassMotion

simulation tool;

3) ontocs.scenario package – manages information about scenario set-up and

user input assumptions; uses the CSS and other ontology resources to store

explicit data and knowledge or to retrieve implicit information about a scenario.

The package methods follow a specific workflow meant to facilitate correct

creation of simulation scenarios. For example, it begins with identifying the

geometry environment, then proceeds to create events according to ontology

resources and user input;

4) ontocs.feedback package – uses the FBA ontology to store simulation results

and user input, and to retrieve implicit information from the SWRL rules defined

for the analysis stage. This package collaborates with the previous one which

stores and manages the data about scenarios in memory.

Considering the prototype architecture of the ONTOCS system, several limitations were

observed throughout development and testing.

Firstly, regarding the IFC model, special classes have been created to tackle not only

the retrieval of basic IFC constructs from the IfcOwl ontology, but also the ability to

generate the geometry from scratch. This requires significant development and upkeep

for future implementations.

Secondly, the high-level generalisation of the CSS ontology is unable to provide all the

details for constructing complete object data at a CST level. Using multiple CSTs to be

part of the design loop might be beneficial when comparing different performance results,

but this requires specifically tailored packages to integrate each CST with the system.

Thirdly, the scenario and feedback packages include classes that query the knowledge

base, as well as classes that parse data from memory objects and populate the resource

graphs for different ontology domains. This requires extensive knowledge of the used

ontology structures and high upkeep costs to ensure data correctness.

137

Finally, the presentation layer of the system is required for processing user input and

guiding the users throughout the design workflow. Although the system provides a high

degree of automation concerning BIM data, the user input remains vital for constructing

scenarios and knowledge which is relevant to the situation at hand. This means that the

interface design must provide engineers with the necessary tools for correctly assessing

the information and design knowledge returned by the system. The interface

implemented for ONTOCS is provided in Appendix D.

7.2. ONTOCS Case study on Queen’s Buildings

The second part of this chapter focuses on testing the ONTOCS platform though a case

study carried out on a real-life building. The aim of the case study was to assess the

viability of using an ontology-based system in a design context. Several objectives were

defined to break down the research question Q7.

Firstly, the ability of the system to understand the building data and secondary resources

correctly was considered vital. Thus, during development, the imbedded code and

knowledge operators were constantly tested and improved. The case study is used to

validate this assumption.

Secondly, the efficiency of the system to work with large datasets was considered

important in showing the benefits of automation. This was assessed by comparing

manually constructed models to automatically constructed ones for one use case. Query

speed and scalability was tested by processing results on a set of 36 simulations for a

second use case.

Thirdly, the reliability on building design codes to provide population data was

investigated when other sources of data is not available. To assess this, simulation

results of real building occupancy data were compared with simulation results of design

codes’ data.

The next sections introduce the building and outline the case study objectives and

assumptions. The results are then provided in two separate sections, one for Stage I –

Scenario generation (Section 7.2.3) and one for Stage II – Analysis Feedback (Section

7.2.4), each of the sections using a different use case on the same building model.

Finally, the results are discussed in Section 7.2.5 following the defined objectives.

138

7.2.1. Building description

The building chosen for the case study is an academic environment building from Cardiff

University. The building has several floors, however only the ground floor level was taken

into consideration for simplicity and for a more in-depth analysis. The ground level has a

good mix of spaces such as laboratories, dining areas, common rooms, offices, lecture

rooms and many auxiliary spaces. The environment experiences a lot of traffic during

the day, depending on the academic courses.

Figure 7-3. Case study building layout, ground floor

A survey of the use of the building was carried out, with the aim to identify the level of

occupancy, available fire exits and routes. The layout shown in Figure 7-3 divides the

spaces in several categories for simplicity, with a full description of each space provided

in Appendix E. The ground floor has three main fire compartments, each with their

respective entrances outlined in red. These main entrances experience heavy traffic on

a daily basis. All available data regarding space occupancy and functionality was

attached to objects during the modelling stage, and therefore is present explicitly in the

IFC/IfcOwl models for fast processing by knowledge operators.

139

7.2.2. Use cases – objectives, assumptions and rationale

The following questions outline the objectives of the case study:

1) How fast is a scenario model generated, in terms of geometry and context?

2) How fast is the context created when relying on design guide resources?

3) What are the differences between a manually created simulations and those

created by the ONTOCS system?

4) How reliable are the simulation results originating from the automatic process for

future analysis consideration?

5) Is the system correctly interpreting the results according to user inputted design

objectives?

6) How reliable are design occupancy factors in comparison to real building

occupancy data?

7) How efficient is the reasoning process for evaluating user objectives on a large

scale?

8) How do query times scale with increasing number of simulations?

Use case for Stage I – Scenario Generation

The first use case aims to answer objectives 1) to 4), which are directly targeted at the

automatic scenario generation stage.

A number of scenarios were developed manually using the MassMotion simulation tool,

based in the data gathered about the building. The results of this process were then

compared to the results provided by scenarios created automatically by the ONTOCS

system. The manually constructed scenarios are presented in Table 7-1, following the

recommendations from the PD 7974 (2004) of simulating scenarios at 100% and 33%

building capacities with and without the main entrances being available as evacuation

exits. The different capacity percentages are expected to allow for the estimation of

different evacuation times as was introduced in Section 2.1.1.

A pre-set MassMotion agent profile was used across all scenarios, which is in

accordance to the PD7974 document. The agents were programmed to evacuate as

soon as the simulation starts and to head to the nearest exits available to them. In the

case of manually constructed models, agents were modelled to evacuate through the

nearest exits, according to the real building fire plan, not being allowed to choose fire

exits from other fire departments. On the other hand, the automatically generated

scenarios assume that all agents are aware of all the exits, thus MassMotion will aim to

optimise the flow of agents. The rationale behind this decision is that with assumptions

being the same, the MassMotion tool will give nearly identical results. This also allows to

140

assess if the available ontology information is enough to generate similar scenarios to

those done manually.

The appearance of the agents within the simulation was set to be instantaneous and

simultaneous, meaning that all agents assigned to a specific space appear at the start

of the simulation and all at the same time. This simulates the act of people being already

present in each inhabited space. This however creates high density areas in some parts

of the model at simulation start. To increase the level of realism, scenarios SC5 and SC6

from table 7-1 have been manually developed with more distributed agent entries across

larger rooms. For these two scenarios, several other portal objects were constructed for

7 out of the 17 inhabited spaces, allowing the generation of agents to be less dense at

the start of the simulation. All the walls and columns inside the building shell are present,

therefore simulating under applicable design conditions.

Table 7-1. List of constructed and analysed scenarios

Scenario Capacity Entrances Exits Agents Profile

SC1 100% available

available

373

PD7974

SC2 100% blocked 373

SC3 33% available 124

SC4 33% blocked 124

SC5* 100% available 373

SC6* 100% blocked 373

Note: Scenarios SC5 and SC6 were only constructed manually for arguing a more
realistic distribution of agents across larger rooms. These types cannot be created
by the ONTOCS system at this time.

Use case for Stage II – Analysis Feedback

The use case for the second stage was created to address questions 5) to 8), which are

set in the context of a larger scale of simulations. A number of 36 simulation scenarios

were inputted into ONTOCS.

These scenarios were divided in two categories depending on the population data source

(Table 7-2). Each scenario assumes a different population capacity, as is recommended

in PD 7974 (2004) when assessing the performance of a specific building layout. In a

first series of scenarios (1 to 18), data is taken from the IFC model data, which is present

141

explicitly within the constructed model via custom object properties (e.g. each space

object has an assigned number of occupants). The data present in the IFC model reflects

the surveyed maximum capacity of each space from the building in real life. The second

series of scenarios (19 to 36), the IFC model is missing data about the population, which

is reasoned by implicit means, where the type of space is identified from the Uniclass

classification, which is then given an occupancy factor based on the UKSOC codes. This

factor is then multiplied with the area of each space, giving an approximate number of

occupants per space.

Most scenario assumptions are identical to those used in the previous use case, apart

from the variation of the population capacity. Additionally, all scenarios in this use case

assume the main entrances of the building to be blocked.

Table 7-2. Simulation scenarios created using the ONTOCS system for analysis

Scenario Capacity Population data Entrances Exits Profile

1-18 30 – 200%

(increments

of 10%)

IFC model

blocked available PD7974

19-36 UKSOC

Simulation results from all the simulations were manually checked against results

returned by the system. Two sets of objectives (each with two sub-objectives) were

assumed (Table 7-3), aimed at evaluating which scenarios satisfy them.

Table 7-3. Set of analysis objectives inputted into the system for evaluating the 36
simulation scenarios

Objective

set

Objective Objective

Valid scenarios
(a) Total egress time (s)

(b) Capacity egress

population (%) time limit (s)

1 120 50 60 ?

2 120 95 90 ?

142

In order to assess the performance of the system on dealing with large data sets, a series

of measurements were carried out when the system was evaluating the above

objectives:

1) Single objective analysis – each objective from Table 7-3 was queried separately;

2) Multi-objective – both objectives from Table 7-3 were queried together.

To answer question 8) regarding system scalability, the steps above were repeated for

multiple sessions, each with a different number of simulation scenarios stored in

memory, from 1 to 36 in increments of 1 (e.g. one session ran 10 simulations, then a

new session was created with 11 simulations, then 12, etc.). Each query in every case

was tested 5 times to account for anomalies and average performance values were

plotted. This resulted in each query being tested 180 times in total, and consequently

some rules they depend on up to 720 times in total. The rationale behind querying

objectives separately or together was to evaluate how rule reasoning time performs in

each case, and thereby investigating if certain rules behave differently under multiple

circumstances. The queries used to retrieve reasoning results were previously outlined

in Chapter 6 and summarised in Table 7-4 below. Each query (with specific name and

code) relies on one or multiple developed SWRL rules which are triggered when the RDF

database is queried for new knowledge about the design. It is expected that each query

execution time will differ based on the amounts of recorded results data from simulations,

and on the number of inputted objectives from the user side. Thus, query times in these

cases were measured and contrasted in the following sections.

143

Table 7-4. SPARQL queries and their respective SWRL rules operating within the FBA
ontology

Query Dependent
rules

Objectives applied
Name Code

Find valid total egress
scenarios

Q-FBA-1 R-FBA-1
single (a)

multiple (a) & (b)

Find valid capacity
egress scenarios

Q-FBA-2 R-FBA-2
single (b)

multiple (a) & (b)

Find valid scenarios Q-FBA-3
R-FBA-1
R-FBA-2

single (a)

single (b)

multiple (a) & (b)

Find fully valid scenarios Q-FBA-4 R-FBA-3

single (a)

single (b)

multiple (a) & (b)

Find invalid total egress
scenarios

Q-FBA-5
R-FBA-4
R-FBA-5

single (a)

multiple (a) & (b)

Find invalid capacity
egress scenarios

Q-FBA-6 R-FBA-6
single (b)

multiple (a) & (b)

Find invalid scenarios Q-FBA-7
R-FBA-4
R-FBA-5
R-FBA-6

single (a)

single (b)

multiple (a) & (b)

The following section presents the results from the testing, which are then discussed

together at the end of this chapter.

144

7.2.3. Stage I – Scenario generation use case results

Figure 7-4. Average query times for geometry retrieval

Results on retrieving model information from IFC and additional resources are shown

here. The query times for retrieving geometry is shown in Figure 7-4, while the context

retrieval is shown in Figure 7-5.

The query times show an average retrieval time based on 10 measurements taken in

total for each query (see Table E-2, Appendix E for full data). The retrieval times depend

on the initial building model and the number of objects it contains.

The input model used is summarised in Table 7-5, showing its size in different formats,

and the relevant model objects being found and converted from IFC.

0,28

0,02

0,65

1,50

1,44

1,93

1,15

1,14

2,19

1,86

1,03

17,29

1,05

1,04

0,94

0 5 10 15 20 25 30 35

Time (s)

Querying geometry

145

Figure 7-5. Average query times for context retrieval

Table 7-5. Input model size and ONTOCS conversion report

Model size

Revit 2018 IFC IfcOwl (RDF)

11.6 MB 1.7 MB 11.3 MB

Model objects converted to MassMotion (and CSS) from IFC

Barriers/Walls Barriers/Columns Floors/Spaces Links/Doors

254/254 41/41 84/84 77/77

0,81

0,03

0,23

0,30 7,39

0,67

0,05

0 1 2 3 4 5 6 7 8 9 10

Time (s)

Querying context

146

Figure 7-6. Comparison of manual versus automatic model creation time

Results on comparing the manual model construction to automatic model construction

by ONTOCS is shown here. The first column in Figure 7-6 shows a scenario being

constructed solely from the queries working in IFC model data and properties and

additional context is constructed from using the UKSOC and Uniclass. The final column

shows the time for manual construction using the data in Table 7-6. The data in the table

assumes an expert level of MassMotion user.

Table 7-6. Time for manual construction actions of the model using MassMotion

 Action Quantity Time (s) Total time (s)

1 Import IFC model 1 8 8

2 Convert objects 1 2 2

3 Discard unused objects 1 1 1

5 Correct Links 3 10 30

6 Create Portals 32 15 480

7 Create Journeys 17 25 425

8 Evaluate for errors 1 120 120

Figure 7-7 shows two merged models showing their differences. Additional geometric

objects with no IFC equivalents (e.g. Portals) are constructed automatically based on

IFC centroids of spaces, which can differ from positioning done manually.

8

34

1058

9 146

0 100 200 300 400 500 600 700 800 900 1000 1100

Manual

ONTOCS

Time (s)

Manual vs Automatic

Geometry construction Context construction Context using design codes

147

Figure 7-7. Merged manual and ONTOCS automatic models for object positions
comparison

148

Figure 7-8. Plotted agent numbers versus time for scenarios SC1 (blue) and SC2 (red)

The results for the scenarios running at 100% population capacities is shown here,

according to the assumptions stated in Table 7-1.

Figure 7-8 plots manual and ONTOCS generated models for scenarios cases SC1 and

SC2, contrasting the two. Blue lines assume scenarios with main building entrances

available, while the red assumes entrances blocked.

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

ag
en

t
p

o
p

u
la

ti
o

n

time (s)

Egress progression from 100% population, part 1

SC1: Manual - 100% population (entrances available)

SC2: Manual - 100% population (entrances blocked)

SC1: ONTOCS - 100% population (entrances available)

SC2: ONTOCS - 100% population (entrances blocked)

149

Figure 7-9. Plotted agent population versus time for scenarios 1 and 2 (ONTOCS), 5 and 6
(manual)

Figure 7-9 plots ONTOCS generated models for scenarios SC1 and SC2 and contrasts

them with manually constructed models for scenarios SC5 and SC5. The last ones

assume a more spread out entry for agents over the larger spaces.

For both Figures 7-8 and 7-9 it can be observed that some lines have several dips down

the lines, especially for ONTOCS scenarios. The presence of those points suggest high

density around exits at certain points in time. The deeper the curve, the higher the traffic.

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

ag
en

t
p

o
p

u
la

ti
o

n

time (s)

Egress progression from 100% population, part 2

SC1: ONTOCS - 100% population (entrances available)

SC2: ONTOCS - 100% population (entrances blocked)

SC5: Manual - 100% population, spread entry (entrances available)

SC6: Manual - 100% population, spread entry (entrances blocked)

150

Figure 7-10. Plotted agent population versus time for scenarios SC3 (blue) and SC4 (red)

In a similar way to the previous one, this section shows plotted manual and automatic

models, but at a 33% population capacity in Figure 7-10. It can be observed that the

differences of the lines are much higher at a lower population case, than in Figures 7-8

and 7-9. This is because a lower population gives agents more freedom to move around

the model.

Figure 7-11 on the right shows plotted density maps for the maximum experienced

densities during simulations. Only scenario case SC1 was plotted as an example of the

differences that can occur in agent movement between a manual model and an

automatic model. This reflects the differences in model construction and assumptions.

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30 35 40 45 50 55 60

ag
en

t
p

o
p

u
la

ti
o

n

time (s)

Egress progression from 33% population

SC3: Manual - 33% population (entrances available)

SC4: Manual - 33% population (entrances blocked)

SC3: ONTOCS - 33% population (entrances available)

SC4: ONTOCS - 33% population (entrances blocked)

151

Figure 7-11. Plotted maximum density experienced during scenario SC1 for ONTOCS and
manually constructed models

152

7.2.4. Stage II – Analysis feedback use case results

Figure 7-12. Plotted agent number versus final egress times for scenarios 1-36

The figure above shows a plot of final egress time for all the 36 scenarios for the second

use case. The trend lines show the expected performance of the building with increasing

population. The IFC model data has a steeper trendline. This is because it assumes

some spaces to be much more populated than others (see Appendix Table E-1,

Appendix E), compared to design codes which allow a more uniform spread of the

population density per each space area value.

1

2

3

4
5

7 8 , full design capacity
(100%)

9
10

11

12

13

14
15

16
17

18

19

20

21

22

23

24

25

26, full design capacity
(100%) 27

28

29

30

31

32

33

34

35 36

100

200

300

400

500

600

700

800

900

1000

40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

ag
en

t
n

u
m

b
er

final egress time (s)

Egress time vs Design population

IFC population data
UKSOC ontology population data
Linear (IFC population data)
Linear (UKSOC ontology population data)

153

Table 7-7. Objective sets with ontology reasoning answers per query

Objective set Valid scenarios Invalid scenarios

1

 Q-FBA-1 Q-FBA-2 Q-FBA-3 Q-FBA-4 Q-FBA-5 Q-FBA-6 Q-FBA-7

objective (a) (b) (a) or (b) (a) and (b) (a) (b) (a) and (b)

IFC 1-13 1-18 1-18 1-13 14-18 1-14

UKSOC 19-27 20-30 19-30 20-27 28-36 31-36 28-36

2

 Q-FBA-1 Q-FBA-2 Q-FBA-3 Q-FBA-4 Q-FBA-5 Q-FBA-6 Q-FBA-7

objective (a) (b) (a) or (b) (a) and (b) (a) (b) (a) and (b)

IFC 1-13 1-13 1-13 1-13 14-18 14-18 14-18

UKSOC 19-27 19-26 19-27 19-26 28-36 27-36 27-36

Note: Cells in yellow highlight an error, where scenario 19 is missing from the answers

The table above shows a summary of the answers provided by the FBA ontology and

reasoning when objective sets were inputted. These can be checked against values

plotted in Figures 7-12, 7-13 and 7-14.

Figures 7-13 and 7-14 show the progression of the evacuation event, as opposed to the

final evacuation time vs population from Figure 7-12.

154

Figure 7-13. Plotted agent numbers versus egress progression in time for scenarios 1 to 18 which use real building data stored in the IFC model.
UKSOC scenario 26 (blue) at 100% population capacity was added for comparison

1

2

3

4

5

6

7 8, IFC scenario at 100% population capacity

9

10
11

12

13

14
15

16

17

18

26, UKSOC scenario at 100% populaton capacity

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120 140 160 180 200

ag
en

t
n

u
m

b
er

Time (s)

Egress progression based on real buildign data

155

Figure 7-14. Plotted agent numbers versus egress progression in time for scenarios 19 to 36, which use factors reasoned from UKSOC.
IFC scenario 8 (red) at 100% population capacity was added for comparison

8, IFC scenario at 100% population capacity

19

20

21

22

23

24

25

26, UKSOC scenario at 100% population capacity
27

28

29

30

31

32

33

34

36

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120 140 160 180 200

ag
en

t
n

u
m

b
er

Time (s)

Egress progression based on design guidance data

156

From this point onwards, the results show query times and assess the efficiency of reasoning, and later the scalability is shown.

Table 7-8 summarises the query times of FBA reasoning queries when retrieving knowledge about design performance over a set of 36 simulation

scenarios. An average of 10 measurements was taken for each query in every condition, with red cells being removed from the average calculations

as they are considered anomalies.

157

Table 7-8. SPARQL query times measurements taken during the session with the 36 scenarios running on the ONTOCS system

Query
Dependent

rules
Objectives applied

Time measurements (milliseconds)
AVG

1 2 3 4 5 6 7 8 9 10

Q-FBA-1 R-FBA-1
single (a) 1659 1230 1232 1275 1301 1307 1304 1286 1391 1349 1297

multiple (a & b) 2211 3111 3581 3387 3613 3653 3533 3594 3578 3572 3514

Q-FBA-2 R-FBA-2
single (b) 709 760 722 866 968 865 699 678 683 833 778

multiple (a & b) 1247 987 985 947 940 953 967 979 987 972 969

Q-FBA-3
R-FBA-1
R-FBA-2

single (a) 887 939 858 951 953 925 1063 939 1032 966 951

single (b) 302 311 339 345 363 356 298 305 301 332 325

multiple (a & b) 3741 3251 3306 3784 3655 3755 3673 3758 3720 3766 3641

Q-FBA-4 R-FBA-3

single (a) 11 7 8 10 7 8 8 6 9 12 9

single (b) 7 7 7 21 107 10 5 6 6 7 8

multiple (a & b) 33524 33320 33370 33722 33235 33259 33243 33296 33281 33191 33344

Q-FBA-5
R-FBA-4
R-FBA-5

single (a) 157 110 114 127 135 139 111 142 97 98 123

multiple (a & b) 202 174 172 161 185 166 161 180 185 178 176

Q-FBA-6 R-FBA-6
single (b) 327 316 300 464 344 350 311 282 321 382 340

multiple (a & b) 841 595 580 592 588 593 600 613 580 596 593

Q-FBA-7
R-FBA-4
R-FBA-5
R-FBA-6

single (a) 121 134 111 111 104 120 104 116 97 95 111

single (b) 300 308 286 327 359 354 315 292 296 414 325

multiple (a & b) 1073 719 850 723 746 742 738 738 751 736 749

Note: Cells in red were removed from average calculations. Each query was executed 10 times for each objective condition from Section 7.2.2

158

Figure 7-15. Plotted query reasoning times for single objective input

Taking data from Table 7-8, the figure above shows the results related to reasoning times

when only one objective is inputted at a time form the use end. It can be seen that for

each case, results are very different.

749

111

340

123

8

9

325

951

778

1297

0 200 400 600 800 1000 1200 1400

Time (ms)

Single objectives

Q-FBA-1 Q-FBA-2 Q-FBA-3 (a) Q-FBA-3 (b) Q-FBA-4 (a)

Q-FBA-4 (b) Q-FBA-5 Q-FBA-6 Q-FBA-7 (a) Q-FBA-7 (b)

159

Figure 7-16. Plotted query reasoning times for multi-objective input

Taking data from Table 7-8, the figure above shows the results related to reasoning times

when multiple objectives being inputted at the same time. This is in contrast with Figure

7-15.

749

593

176

33344

3641

969

3514

0 5000 10000 15000 20000 25000 30000 35000

Time (ms)

Multiple objectives

Q-FBA-1 Q-FBA-2 Q-FBA-3 Q-FBA-4 Q-FBA-5 Q-FBA-6 Q-FBA-7

160

The next charts show scalability results.

A list of full plot data is available in Table E-3, Appendix E.

Figure 7-17. Scalability for objective (a) – Total egress time

The figure above shows the trend lines for queries in single and multiple objective cases

for when rules which process objective (a) are applied.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 6 12 18 24 30 36

av
er

ag
e

q
u

er
y

ti
m

e
(m

s)

number of scenarios

Scalability: Objective (a) - Finding total egress time

Q-FBA-1 (single objective) Q-FBA-1 (multi-objective)

Q-FBA-5 (single objective) Q-FBA-5 (multi-objective)

Linear (Q-FBA-1 (single objective)) Linear (Q-FBA-1 (multi-objective))

161

Figure 7-18. Scalability for objective (b) – Capacity egress time

The figure above shows the trend lines for queries in single and multiple objective cases

for when rules which process objective (b) are applied.

200

300

400

500

600

700

800

900

1000

1100

1200

0 6 12 18 24 30 36

av
er

ag
e

q
u

er
y

ti
m

e
(m

s)

number of scenarios

Scalability: Objective (b) - Finding capacity egress time

Q-FBA-2 (single objective) Q-FBA-2 (multi-objective)

Q-FBA-6 (single objective) Q-FBA-6 (multi-objective)

Linear (Q-FBA-2 (single objective)) Linear (Q-FBA-2 (multi-objective))

Linear (Q-FBA-6 (single objective)) Linear (Q-FBA-6 (multi-objective))

162

Figure 7-19. Scalability for finding valid scenarios

The figure above shows the scalability of query Q-FBA-3 in single and multi-objective

cases when looking to find ValidScenario class individuals. The query performs a union

of valid scenarios from both objectives (a) and (b). It therefore implicitly uses the rules

which govern both objectives (R-FBA-1 and R-FBA-2)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 6 12 18 24 30 36

av
er

ag
e

q
u

er
y

ti
m

e
(m

s)

number of scenarios

Scalability: Finding valid scenarios

Q-FBA-3 (a) Q-FBA-3 (b) Q-FBA-3 (a) and (b)

Linear (Q-FBA-3 (a)) Linear (Q-FBA-3 (b)) Linear (Q-FBA-3 (a) and (b))

163

Figure 7-20. Scalability for finding invalid scenarios

The figure above shows the scalability of query Q-FBA-7 in single and multi-objective

cases when looking to find InvalidScenario class individuals. The query performs a

union of invalid scenarios from both objectives (a) and (b). It therefore implicitly uses the

rules which govern both objectives (R-FBA-4, R-FBA-5 and R-FBA-6)

0

100

200

300

400

500

600

700

800

900

1000

0 6 12 18 24 30 36

av
er

ag
e

q
u

er
y

ti
m

e
(m

s)

number of scenarios

Scalability: Finding invalid scenarios

Q-FBA-7 (a) Q-FBA-7 (b) Q-FBA-7 (a) and (b)

Linear (Q-FBA-7 (a)) Linear (Q-FBA-7 (b)) Linear (Q-FBA-7 (a) and (b))

164

Figure 7-21. Scalability for finding fully valid scenarios

The figure above shows the scalability of query Q-FBA-4 in single and multi-objective

cases when looking to find FullyValidScenario class individuals. The query performs an

intersection of valid scenarios from both objectives (a) and (b).

It explicitly uses rule R-FBA-3, which is implicitly calling both rules for (a) – R-FBA-1 and

(b) R-FBA-2. The intersection of nested rules results in a very high difference of query

times. The lower values are near zero by comparison, because they do not have access

to full data for reasoning, as R-FBA-3 needs to depend on both its implicit rules at the

same time to actually function.

0

5000

10000

15000

20000

25000

30000

35000

40000

0 6 12 18 24 30 36

av
er

ag
e

q
u

er
y

ti
m

e
()

m
s

number of scenarios

Scalability: Finding fully valid scenarios

Q-FBA-4 (a) Q-FBA-4 (b) Q-FBA-4 (a) and (b) Linear (Q-FBA-4 (a) and (b))

165

7.2.5. Discussion

Considering the assumptions presented in Section 7.2.2, the results for each use case

are discussed question-by-question to outline the findings and limitations from the case

study.

1) How fast is a scenario model generated, in terms of geometry and context?

The efficiency for geometry and context information retrieval using the SPARQL queries

is outlined in Figures 7-4 and 7-5 respectively. In terms of the geometry, querying from

the IfcOwl instance model was on average around 34 seconds. The structure of the

IfcOwl ontology needs long queries to retrieve basic measurement data types. Coupled

with nature of the SELECT SPARQL queries, which loop through the results matching

triple structures, the process becomes inefficient. Query time increases as the triple

pattern grows. This is evident in Figure 7-4, where the longest time is for the BREP

mapped shape query, which selects several loops of points for each complex geometric

object. This would cause models with complex geometry such as steel columns and

furniture to take a very long time to query using the current version of the IfcOwl. More

testing would be required to assess the scalability of the developed queries on larger

building models. In terms of context, the retrieval of explicit IFC object properties is

significantly faster than geometry components, averaging around 9 seconds (Figure 7-

5). It is worth noting that only a few properties are retrieved, but due to the shorter triple

chains, they perform significantly faster compared to geometry retrieval queries.

2) How fast is the context created when relying on design guides resources?

The context queries on explicit IFC model properties require no reasoning, making them

relatively fast. However, the query labelled Q-RES-2, Get classifications in Figure 7-5

is by far the longest to process. This query triggers the ontology alignment to match the

classification code attached to each space to its correspondent in the Uniclass2015

dataset graph. The reason for this delay is because the Uniclass2015 has thousands of

classification codes on various levels. Once these are retrieved, the design occupancy

factors for each space are reasoned. Figure 7-6 shows the query time required to retrieve

the occupancy factors to average at 146 seconds. This delay is caused because the

reasoning process has to evaluate the 56 SWRL rules which were used to correctly align

the UKSOC and Uniclass2015 ontologies. Thus, retrieving implicit context information

can take significantly longer than retrieving explicit data properties. However, as

suggested by Figure 7-6, the time required to retrieve the context in this case is 7 times

shorter than when constructing the model context manually. The figures show the

average times experienced during testing (see Table 7-6), with the building environment

166

being imported from the IFC model. Creating the building entirely within the software

without using a digital BIM was not considered efficient, as it would increase the time

significantly, along with the risk of representing the environment inaccurately in terms of

element sizes. The automatic process is in every case significantly more efficient.

Additionally, the process of knowledge mining building context needs to be done only

once, which is then used to create multiple scenarios. It is expected that the more

secondary resources are in use, the time to retrieve the context would increase and it

would be dependent on the optimisation of the ontology mappings in place.

3) What are the differences between a manually created simulations and those

created by the ONTOCS system?

Although automatic processes will always be for faster than manual model construction,

the automatic output needs to be correct. Figure 7-7 shows a merge between a manual

and an automatic model. The construction of the geometry is nearly identical, as both

processes imported and constructed the IFC model geometry correctly. However, the

additional geometric objects which are constructed for the scenario context are

positioned differently. Firstly, the placement of Portal objects within rooms is different.

ONTOCS places each portal on top of the Space centroid as extracted from IFC, with

each space having a corresponding portal. Spaces with a complex polygon shapes have

shifted centroids, thus the difference between Portal positioning. For very large areas

such as the Common Room or Restaurant in the building, a single portal is not

representative enough of reality as it places all agents clustered together when

simulations start. A more realistic scenario would have to distribute the agents across

the entire area. However, it is difficult to correctly construct additional portals across an

area, as it can easily end up outside it, or be obstructed by a barrier wall or furniture. The

alternative would be to use a CST which is able to distribute agents across spaces

without the use of Portal objects.

4) How reliable are the simulation results originating from the automatic

process for future analysis consideration?

Figures 7-8, 7-9 and 7-10 show plotted results of both manual and automatic scenario

results. The biggest difference is of 16 seconds evacuation time between the ONTOCS

and manual models at 33% with entrances available (Figure 7-10). In addition to this, the

two evacuation curves have very different trends in comparison to other pairs of

scenarios. By contrast, the closest results in terms of time between a manual and an

automatic simulation are those at 33% capacity with blocked entrances, at a difference

of 2 seconds. This suggest that regardless of the assumed exit routes or the difference

in portal placement, scenarios with fewer available exits and fewer flow restrictions on

doors will be the most similar. The same is true when considering the 100% capacities

167

scenarios, where the red lines in Figure 7-8 and Figure 7-9 follow a more similar trend

than the blue lines, although the final egress times differ by approximately 10 seconds in

both figures. Manually constructed scenarios 5 and 6 modelled a more distributed agent

entry yet resulted in very similar trendline and results to those assuming a single-entry

portal. Curiously, both scenarios 5 and 6 have achieved very similar egress times,

despite one having entrances blocked. This is explained by the fact that a more

distributed agent placement has less of an impact on forming queues at doors, thus

resulting in a faster evacuation.

Finally, Figure 7-11 outlines the maximum density measured for two different scenarios

(one manual, one automatic) and it can be observed that the agents in the automatic

model are using the closest exits, resulting in some areas experiencing higher traffic

densities. This simulation evacuated the agents 6 seconds sooner than the manual one,

aiming to maximise the evacuation regardless of the density at the exits, which might be

prone to other safety risks in real life cases.

5) Is the system correctly interpreting the results according to user inputted

design objectives?

Table 7-7 shows the answers provided by each reasoning query which were checked

against the plotted results in Figures 7-12,13 and 14. Most of the answers are correct,

with the exception of those involving queries Q-FBA-2 and Q-FBA-6, which check against

objective (b). Scenario 19 seems to be missing from the table of results, both for the valid

check rule (R-FBA-2 used by Q-FBA-2) and the invalid scenario check rule (R-FBA-6

used by Q-FBA-6). An investigation into the results revealed that the data required for

evaluating scenario 19 was missing from the ontology resources graph. This is because

the algorithm fetching the SQL data looks for a specific percentage of population within

a simulation and retrieves the simulation time. Due to its low population, scenario 19

does not record any data for percentages between 49-51%, as a larger group of agents

are leaving the simulation within a very short time, skipping the 50th percent. This is not

a limitation of the ontology reasoning, but rather one concerned with validation of the

data available from simulations which is provided to ontology reasoning.

6) How reliable are design occupancy factors in comparison to real building

occupancy data?

As a secondary objective to evaluating the reasoning processes, it was established early

on that other resources could be used to contribute to the context of the simulation. The

aligned UKSOC and Uniclass2015 ontologies provide population data correctly, similar

to the one present explicitly from the IFC model. However, in Figure 7-12 it can be

observed that the populations assumed from UKSOC was over-estimated by a range of

28% to 32% when compared to the corresponding scenarios using real data. This is

168

because a factor is multiplied by the area of a space and the number is rounded down

to a whole. While the initial evacuation times are similar at first, as the population

assumed increases the results start to vary. The final evacuation time of the UKSOC

population was 40% higher than the one from the IFC data. Overall, the results are

inconclusive, and more investigation would be required based on other building layouts.

7) How efficient is the reasoning process for evaluating user objectives on a

large scale?

Figures 7-15 and 7-16 plot the average query times for retrieving the validity of the

scenarios, with full measurements in Table 7-8. As expected, single objective query

times are shorter than the multi-objective case. In the latter, reasoning times increased

by varying factors from 1.24 to 4000 times longer. Due to their dependency on multiple

rules, they are discussed separately here:

• From queries operating on objectives (a) and (b), Q-FBA-2 performed the best

and increased by 24%, whilst Q-FBA-1 is the least performant and increased by

270%. Although both rely on similar rules (13+1 atoms), Q-FBA-2 performs

significantly better;

• From queries operating on multiple objectives implicitly, Q-FBA-3 performs least

well when working on rules for objective (a), but significantly faster when working

on rules from objective (b); this level of disparity does not exist for Q-FBA-7 which

looks for invalid scenarios;

• Overall it can be observed that queries which look for TRUE answers, trying to

identify valid scenarios for objectives, perform worse than their respective FALSE

check queries;

• Finally, Q-FBA-4 increases in query time by a factor of 4000; this is explained by

the fact that it relies on several rules, which are intersected implicitly by the R-

FBA-3 rule to check for fully valid scenarios (scenarios TRUE for (a) and (b) at

the same time). For single objective tests (Figure7-15), the query times are

extremely low, suggesting that the query is not applied for reasoning. This is

because the query graph domains (defined by the PREFIX keyword) restrict the

rule (R-FBA-3) from information to evaluate the other two implicit rules it calls.

The results above suggest a need to optimise the rules for better processing time by

improving query or ontology structure, and also a need to investigate how they perform

with an increasing number of scenarios.

169

8) How do query times scale with increasing number of simulations?

Considering the high increase in processing time from the previous question, it was

investigated whether the query times increase linearly with the number of scenarios.

Figures 7-17 to 7-21 show the relevant results for this question. Although several

measurements were taken for each average time, the overall performance seems to

oscillate between sessions. The session with 14 scenarios recorded anomaly

measurements across several queries. Several observations were made on the provided

data plots:

• Concerning queries which satisfy objective (a) – Figure 7-17, there is some

degree of linearity increase for the multi-objective case. This however is followed

by a sharp increase starting with the 15 scenarios session, after which it

stabilises. This appears to be connected to the low performance of query Q-FBA-

1, as discussed previously. However, when the query is applied in a single

objective context it has a very low gradient. Queries which check for invalid

scenarios appear to remain constant.

• Concerning queries which satisfy objective (b) - Figure 7-18, there is a low linear

gradient for the multi-objective case; this however is negated by the fact that they

begin to stabilise for the last scenarios, suggesting they tend towards a constant.

For the single objective case they remain constant throughout all measurements,

despite their oscillations.

• Concerning queries which rely on multiple rules for both valid (Figure 7-19) and

invalid scenarios (Figure 7-20) they show a very low gradient for the single-

objective cases, and appear to show a steep gradient for the multi-objective case.

However, as with the cases before, they stabilise towards the end points to

almost no significant increase; these show very similar trends to those

encountered at Q-FBA-1.

• Concerning query Q-FBA-4, which intersects multiple rules (Figure 7-21), the

trends are constant. Although it shows a dramatic increase in query time from

single to multiple objectives, it experiences no increase in terms of the number of

scenarios inputted.

It can be concluded that the developed knowledge operators under the current system

are able to scale well with increasing number of scenarios, showing no clear sign of a

steep increase in query time. It has been observed that the query times oscillate

frequently, and that there are certain steps of more significant increase after a certain

number of scenarios, the most evident one starting at 15. To be able to establish the

limits of this methodology for applying SPARQL and SWRL rules, a significantly higher

170

number of scenarios would need to be tested. However, it is debatable if this would be a

requirement in practice.

7.3. Summary

This chapter began with introducing the developed ONTOCS system, showing its

process workflow and underlying architecture. The system was tested on a case study

of a real building. Two use cases were defined for testing the developed ontologies and

knowledge operators, each case corresponding to different process stages. The results

were then presented and later discussed in an attempt to answer the 8 objectives posed

for the case study. Overall, the system functions correctly and the knowledge operators

are able to construct and interpret model data correctly, with some limitations, which

were outlined and discussed.

171

 Chapter 8. Discussion and future work

Reflecting on the observations and findings from previous sections, this chapter provides

a summary discussion of the research by revisiting the hypothesis and research

questions. The limitations of the work are outlined, followed by planned future work to

extend and improve the overall system and the developed ontologies.

8.1. Revisiting the hypothesis

The research hypothesis tested for this research was as follows:

A knowledge processing-based approach can allow a fast retrieval of information

and automatic construction of evacuation models by leveraging existing BIM data

and design knowledge to enhance the decision-making processes about building

performance by considering different simulation scenarios on a large scale.

The hypothesis was then decomposed into 7 research questions, which are discussed

below, based on findings from the previous chapters. Although it was initially envisaged

that each chapter would focus on certain research questions, the findings from all

chapters combined are used to evoke more comprehensive answers.

Q1) How are evacuation models and tools used for assessing design

performance while considering their scope and limitations?

Evacuation models have been developed with the purpose of mimicking reality as close

as possible in order to enable the prediction of human behaviour during fire evacuation

events. Many models have been developed based on several methodologies, each with

its own scope and limitations which need to be considered by safety engineers. CSTs

are widely used to create very specific evacuation scenarios which are assessed by

designers in attempts to prove a safe building layout for a building population. The

scenario creation process is complex and inefficient requiring significant user input and

configuration, as was concluded from the literature, but it also became evident in

assessing the features of CSTs in Chapter 4. Additionally, one simulation scenario is

172

insufficient to provide designers with enough insight into building performance, so

dealing with a large scale of scenarios is required.

Q2) What is the current level of interoperability between CS for

evacuation and BIM?

BIM is used across many disciplines to facilitate interoperability and collaboration

between design disciplines. The CS field is at a relatively low level of integration

compared to energy or cost analysis. There have been many attempts at CSTs and BIM

tools integration, but these are limited to geometry alignment, and do not account for the

complexity of information required to facilitate a complete and automatic way of

simulating realistic evacuation scenarios. Most CSTs in retail have many import

capabilities, including IFC, making them BIM compatible. However, this is still limited to

geometry, and many tools lose all semantics attached to IFC objects on imports, as was

outlined in Chapter 4.

Q3) What are the benefits of using ontologies for evacuation design,

considering the BIM paradigm?

The IFC format has been used as a tool for providing information exchange, but it still

presents many challenges. BIM is moving in the direction of knowledge processing, with

the development of IfcOwl, thus being able to leverage web linked data as a tool to

extend interoperability to other knowledge domains, which were not previously

considered. Ontologies excel at integrating data and resources from different knowledge

domains and design perspectives. Additionally, ontology reasoning capabilities offer new

creative ways to interpret data, information and knowledge and allow a more realistic

representation of human behaviour and design knowledge than conventional tools.

However, the practical application of ontology-based systems requires extensive

knowledge of the domains involved and their correct definition, often being an expensive

process to carry out.

In addition to that, it was shown in Chapters 5 and 6 that an ontology representation of

models allows a retrieval of contextual information for CS scenarios construction due to

a semantic rich environment.

Considering the research questions above (Q1, Q2 and Q3), a novel way was sought in

which an intelligent system would be able to account for the limitations mentioned above,

and to benefit from the use of semantic linked data. This methodology was proven in the

rest of the chapters, each viewing the problem from different lenses.

173

Q4) What are the requirements for an intelligent system capable of

integrating resources relevant to the CS field within the context of

automation and analysis feedback, whilst considering practical

deployment and future extensibility?

The primary requirement consists in an intelligent system being able to interface with

more than one CST. Section 4.1 presented a detailed analysis of several CSTs with

particular focus on their functionality and features from a software design perspective.

The common features used by these tools were identified and can be categorised into 4

major functional categories: geometry, agent, event and analysis concepts. A more in-

depth survey of the tools was conducted in order to identify a baseline of common

concepts, which was used to define a generalised taxonomy for CSTs. This was required

to allow the inclusion of multiple tools and models to account for the gaps identified when

Q1 was posed. The basic underlying concepts and principles from this taxonomy were

then used to define a fully functioning crowd simulation model in an ontology

representation which enabled the generalisation and therefore the interfacing of CSTs

with a knowledge base, as was demonstrated in Chapters 5 and 6.

The second requirement was to identify the information requirements that enable

automation. Section 4.2 investigated ways in which a crowd simulation model can be

made more automatic, by identifying what input is required for generating scenarios and

what is required for providing meaningful knowledge about the performance of the

design. These two requirements represented the two main stages through which an

intelligent system is able to retrieve imbedded knowledge. The scenario generation stage

(Section 4.2.1) outlines some basic concepts by which various sources of information

available from existing knowledge or other design models can be considered for

automatic scenario construction. A valid CSS requires not just geometric data, but also

additional inputs which define its context. The potential sources of information which

have an impact on scenario context definition were identified from various places

including information models, design guidance, real building data, but most importantly

user input, which is required to guide the process towards a realistic evacuation scenario.

The second stage (Section 4.2.2) concerns feedback of output data and outlines key

performance indicators used in practice to assess design performance, and what are the

concerns around them in an automation context. While most factors can be quantified,

the fact remains that CS analysis relies on user visualisation as well. These factors were

further explored in Chapter 6 for practical deployment and proven to be reliable ways to

retrieve information and knowledge about the design in Chapter 7.

In terms of extensibility for future needs, several sources of information were identified

which can be used throughout the entire building lifecycle and not just the design phase,

174

which was under the scope of this thesis. One of the primary sources which contribute

the most was perceived to be from design guidance, as it is not expected to change, thus

some were represented in ontology knowledge in Chapter 5. This is also coupled with

the fact that ontologies are able to store data for future design use, as explored in

Chapter 6.

Answers related to practical deployment and extensibility for the future could not be

outlined solely from Chapter 4 but had to be further explored in the next ones to give

more insight into the matter.

Q5) What are the challenges concerning information models and

workflow processes being represented in a knowledge base considering

the requirements for integration and knowledge retrieval?

Chapter 5 outlined the required information models as part of the overall system design.

One of the requirements for knowledge mining is to have a knowledge base in the first

place. The information models developed and introduced represent the knowledge base

for crowd simulation analysis and all its required resources, such as the digital building

model, or design codes.

The CSS ontology sits at the core of the developed system, being able to generically

conceptualise a crowd simulation model with its relevant results. The CSS ontology was

developed based on common object and feature concepts present in several CST tools

investigated in Chapter 4. To be able to retrieve knowledge in the first place, additional

concepts were added to conceptualise user assumptions and simulation results. The

FBA ontology was developed which is closely related to the CSS, as was seen in their

alignment. The scope of the CSS ontology is to represent simulation events and record

them, while the scope of the FBA ontology is to analyse the results across several CSS

resources as potential answers to design performance objectives. Creating objective

concepts in the FBA ontology is vital for supporting a performance design process, where

the decision ultimately lies with the designer. It was also pointed out that the way in which

an objective is defined is based on several factors such as the intent of the designers,

the types of performance indicators and the capabilities of the CST used for running

simulations. The important aspects of such a method was outlined, along with its

limitation when relying on user definitions of objectives, which requires extensive

knowledge of the process and ad-hoc re-definition of concepts. Several objectives and

results concepts were defined in more detail, as they were used and tested for the

developed prototype and fully deployed and tested in Chapters 6 and 7, however more

objective types need to be identified from industry practice for completeness.

The inclusion of a CST ontology was required on a generic level to interface with the

other models. However due to a complex structure of a program, focusing on the main

175

objects using a simple ontology is recommended with the role to transfer the necessary

information to the CSS ontology which sits above it. IfcOwl was used to conceptualise

the digital built environment, which is more than capable to provide all the necessary

geometric objects and other contextual information from its other semantics, such as

object properties, as pointed out in Section 5.2.1. It was concluded that aligning the

geometry of objects directly or using rules is impractical due to the format of the IFC

itself, and the fundamental differences between geometric representations, making such

a method highly inefficient for reasoning and querying, as was further confirmed through

testing in Chapter 7 for the first use case.

Other semantic resources were introduced which can contribute to the automation and

knowledge mining process, thus allowing an ontology-based system to ‘understand’ the

circumstances of each digital building environment to a higher extent. The prime example

given here was the inclusion of design occupancy factors present in UK approved

documents for fire safety. Although these codes could have been retrieved differently,

they were expressed in an ontology fashion in order to be able to distinguish between

different space types with the assistance of the Uniclass 2015 classification system,

which is used to classify model objects. The alignment of these resources had to rely on

SWRL rules due to the large sizes of individuals in the Uniclass RDF dataset. This shows

that the inclusion of future resources from the SW would require significant rework and

complex alignment methods would have to be employed to ensure the retrieved data is

correct. In the case of the UKSOC factors, this was proven to work in Chapter 7. Several

limitations were identified in the initial alignment however, especially the inconsistencies

in defining space types present in the design codes, as well as not accounting for every

space type, which meant that many types of space factors still need to be identified.

However, the best way is to use the most realistic data available, which makes design

occupancy factors unreliable in most situations.

Q6) What needs to be considered for design knowledge storage and

retrieval concerning building egress performance using evacuation

models?

The principal requirements to be able to process knowledge mining was to use operators,

as was introduced in the methodology section. Chapter 6 began by introducing the two

main types of operators used in this research: SWRL rules and SPARQL queries. These

are most commonly used in conjunction with OWL models. Many rules and queries were

developed to facilitate automation, intelligent system operation and relevant knowledge

retrieval for the performance assessment stage of simulation scenarios.

Firstly, the main need is to consider a robust structure of the ontology knowledge base

by separating the resources accordingly, as was shown in the initial alignment in Chapter

176

5 and in Section 6.2.1. This ensures model information is correctly linked, providing the

necessary context for the knowledge operation stages.

Secondly, the relevant user input needs to be saved in the knowledge base, providing

context to the analysis feedback stage and keeping track of design intent, as shown in

Section 6.2.2. This further accounts for future extensibility needs, as posed by Q4, but

also provides further context for knowledge retrieval processes.

The third need concerns the automation of scenario creation which needs to separate

the information retrieval process into geometry and context. Operators for geometry can

become very complex and should not rely on reasoning, but rather employ simpler

approaches, also confirmed by initial alignment attempts between the CSS and IfcOwl in

Chapter 5. They are required to provide the model with static elements, which only need

to be retrieved once. The knowledge retrieval after this stage consists in making the

computer system ‘understand’ the context correctly. A way to define contextual

information was shown using SWRL rules, which can be used quite creatively, depending

on available resources. The problem remains that the system is only as intelligent as the

rules it is provided with. Unfortunately, there is no way to guarantee that these rules will

always allow the system to ‘understand’ the model, unless the auxiliary resources are

provided in the first place, such as pre-defined properties in the IFC model or otherwise

specified by user input.

Finally, regarding the need concerning the analysis feedback stage of the process,

several rules were constructed to conceptualise some of the PIs for performance

assessment of CSM data. The knowledge embedded within these rules should be

retrieved ad-hoc from separate SQL simulation data, on par with user objectives, due to

the large datasets provided by each simulation scenario. The limitation here is that the

construction of objectives, simulation results and rules to process them are

interconnected. While only a few use cases were presented in Chapter 6, and deployed

for testing in Chapter 7, there is still a need to identify how to implement more

sophisticated analysis algorithms on various levels. The way to deal with knowledge

retrieval and management on a large scale was conceptualised in Section 6.3.2, where

the relationships between different knowledge models is shown considering change in

design context over the building lifecycle. This is another step implemented in ensuring

the future extensibility as posed by Q4. This paradigm can be applied for both a

macroscopic scenario level and a microscopic object level. Due to time constraints, only

the macroscopic level was implemented in practice and was proven to work efficiently in

Chapter 7. However, the exploration in practice of the object level feedback would be

beneficial in assessing more complex situations on a large scale, as was shown in

Section 6.3.4 using several examples. Unfortunately, even with high expressivity

177

provided by ontologies, the fact remains that such complex situations are hard to assess

even by human designers in real situations due to a lack of formalised knowledge and

agent behaviour un-predictability.

Q7) How reliable is a knowledge-based system in understanding the

building model and other linked data resources in facilitating correct and

efficient design support?

The tests carried on the case study building in Chapter 7 reveal certain limitations

concerning the methodology and others concerning the system itself. The ONTOCS

system was able to successfully create correct scenarios for Stage I. Certain limitations

in understanding the geometry were found, which make automatic models different from

the manually constructed ones. However, this is subjective and depends on the situation.

The context of each model was retrieved correctly, as they rely on the rules and queries

to function correctly. The knowledge retrieval process at Stage I relies on the quality and

correctness of the operators constructed. When comparing the scenarios from the first

use case, it was observed that when there are more agents and fewer exits, the

automatic scenarios are more reliable, regardless of the difference on the placement of

agent entry points. For the Stage II, all objectives inputted were correctly interpreted

except one case where data about a specific point was missing and thus the rule could

not return a result. Making use of secondary resources to create the context of simulation

models, specifically the use of design guide occupancy factors requires further

investigation. The vague nature of design factors may not be the preferred choice, and

it is highly dependent on building layout and its areas.

In terms of the efficiency of the queries for Stage I, it was observed that retrieving

geometry from a graph database can be time consuming, due to the complex structure

of the IfcOwl used as a source. Retrieving object properties is relatively more efficient by

contrast. Reasoning queries on model context was also computed in a relatively speedy

manner. These methods rely heavily on the quality of the operators and the expressed

knowledge. Where knowledge is available explicitly reasoning is done much faster than

in the case where reasoning uses other information resources such as the UKSOC

ontology included. For Stage II, retrieving the answers for each objective is relatively fast,

but it appears to grow significantly when multiple rules are intersected to find more

specific results. This was further investigated by running scalability tests for each query

in single and multi-objective cases. The results show that scalability would not be a

problem when several dozen scenarios are applied, and that many queries remain

constant, with some showing linearity. From the results it was apparent that the

reasoning times scaled in steps, with the first encountered at 15 simulations, with slightly

higher reasoning time than the simulation numbers before it. However, further tests

178

would be required with sessions running a significantly higher number of simulations to

identify the system and methodology limits. On the other hand, assuming an

unrealistically high number of scenarios in parallel would not be beneficial in practice,

defeating the purpose of making the process fast in the first place.

Finally, it is worth noting that other CSTs results will differ than those provided here by

MassMotion. However, the general findings seem to indicate that although simulations

created automatically are different from those constructed manually, the trends can be

similar enough to be used with enough confidence in decision-making process for design

evaluation.

It can be concluded that the hypothesis is true, semantic web data and model

representations allow a fast retrieval of all the information requirements for CS

construction and analysis. However, the implementations to do so require much

investment in representing and linking all the relevant data, and correctly conceptualising

the knowledge base with operators according to proven methods. This requires

extensive knowledge of the domains involved and will require expertise for upkeeping a

knowledge-based system up-to-date.

8.2. Research limitations

The limitations of this research and its developments are outlined here concerning the

methodology, the system or the tools used in implementation and testing.

ONTOCS system limitations:

1) Dependency on code – the system itself is heavily reliant on its code packages

to retrieve, transform and manipulate data from various resources including RDF

graphs, SQL database and the user interface. This means that future

developments need to integrate with its overall architecture. For example, the

system converts IFC geometry from IfcOwl in memory directly into a MassMotion

format. The inclusion of an additional CST would require a separate package

solely for geometric conversion, in addition to some working with ontologies.

2) Dependency on the MassMotion tool – the system can only collaborate with the

MassMotion CST at the moment. This was done for simplicity.

3) Interface restrictions – the system currently interfaces users over web pages

through internet browsers in a very simplistic way, in which users cannot really

interact directly with most of the model objects.

179

4) Code optimisation – the system was developed in an experimental context but

would need more optimisation from a programming point of view, thus making

the process faster overall. This however is not expected to improve reasoning

times.

Knowledge base and operators limitations:

1) Level of knowledge formalisation - retrieval of knowledge depends on the level of

the developed ontology and its operators. The developed ontologies do not

encompass all available resources identified in Section 4.2, due to time

constraints. This process requires extensive validation and testing.

2) The FBA ontology and its respective SWRL rules are currently limited to only a

few types of PIs assessment. These do not represent feedback analysis on an

object level but is set as an objective for future work.

3) SPARQL optimisation – over 32 queries were developed which work with the

system retrieving data and knowledge. Geometry related queries are long due to

the structure of the IfcOwl ontology. For the queries to become more efficient, a

re-structuring and re-definition of the IfcOwl is recommended for future

implementations.

4) Limits of imbedded knowledge – finding new knowledge about evacuation design

performance is limited to the power of the knowledge operators used. CS analysis

traditionally requires safety engineers to observe agent movement and thus relies

on visualisation.

8.3. Future work

Considering the limitations above, the following will be addressed in future work:

• Integration of a second CST with the ONTOCS system and its workflow. This

would allow a comparative analysis of simulation results.

• Further improvement of the ONTOCS interface to allow an object view of the

schema and more data results in the form of graphs, aiding the users in assessing

the evacuation progression if required.

• ONTOCS classes code optimisations will allow the system to work more

efficiently and account for future extensions.

• Investigation into PIs for object level performance assessment. In light of the

benefits provided by the object-oriented of the developed CSS schema, an

object-level view of the feedback process would be better suited for comparing

different results on a microscopic level. This would require an investigation from

literature and expert consultations on what methods are employed in practice.

180

These would then have to be implemented in the CSS and FBA ontologies, and

coded to work with the system.

• Investigation into methods to related scenarios and feedback models to changing

IFC source models. Currently, the system makes use of a single IFC model which

is the central ‘point of truth’ from which several simulations emerge, as was

shown in Section 6.3.2. Dealing with changing versions of the IFC model would

be a challenge to manage information and knowledge models correctly, whilst

allowing a comparative analysis between different design stages in terms of

model performance.

• Further testing is planned for identifying the apparent incremental steps for

reasoning times from a scalability perspective. Additionally, a newer Stardog

version has been released which promises better query and reasoning

performance. This would also be a good choice for improving reasoning times.

181

 Chapter 9. Conclusion and contribution

Taking into consideration the findings and developments presented in previous chapters,

several conclusions can be drawn.

Section 2.1 revealed that the evaluation of evacuation time using CS models and tools

is a complex and inefficient process which demands input of information from several

fields of knowledge, including designer input across several stages during the process,

as was also identified in Chapter 4.

Although multiple attempts to integrate BIM with CST have been carried out in the past

with the purpose to speed up the design process, these are mostly limited to geometry

and do not consider a more holistic view of the information requirements for creating and

analysing evacuation models. This was concluded from the literature in Section 2.2.

The use of OWL ontologies is beneficial in providing a comprehensive layer of

interoperability across multiple information models and knowledge domains available as

web resources for the semi-automatic construction and analysis of CS models on a large

scale, as was augmented in Section 2.3.

Based on the above conclusions from the literature, the proposed methodology and

system under investigation aimed to prove that a knowledge-based system was able to

provide automation and a greater degree of interoperability for the crowd simulation-

based evacuation performance evaluation.

The developed OWL ontologies introduced in Chapter 5 conceptualise the crowd

simulation analysis domain in detail, allowing intelligent computer agents to store and

retrieve knowledge about a building design from multiple contexts. These ontologies

were verified through testing (in Chapter 7) and validated by consulting field experts.

The developed knowledge operators and the workflow process provided by the ONTOCS

system allows fast, correct and realistic scenario construction and analysis of simulation

data on a large scale. This was evident from the results presented in Chapter 7. New

knowledge can be retrieved about the design in accordance to design PIs on a scenario

level, allowing a fast review of building performance in dozens of parallel contexts.

182

The developed OWL ontologies show great potential in storing and retrieving knowledge

about the entire process, which can be extended to merge with other design fields (costs,

energy, etc). Due to their holistic representation of information, they also show promise

in exploring creative ways to evaluate design performance by considering an object-level

view of model components (e.g. individual spaces, doors, assumptions, agents, etc.), as

was discussed in Chapter 6.

The ONTOCS system has been validated on a real-life building showing its potential to

operate of real data and to work efficiently with a large scale of scenarios. The findings

from the case study in Chapter 7 strengthen the arguments brought forward from

previous chapters, but also outlined several limitations and how to deal with them for

future research developments.

The work carried out during this research project has contributed with several practical

developments and with knowledge about the methodology adopted in delivering their

implementation and testing.

Practical research developments, in decreasing order of impact:

1- ONTOCS (Ontology Crowd Simulation) software system, represents the core

contribution of this research; an intelligent knowledge-based system capable of

aggregating important data and information models which are relevant to

evacuation design using CSTs. The intelligence imbedded within the system

allows it to perform automatic scenario creation and to provide feedback to

designers concerning building evacuation performance;

2- OWL ontologies in the field of crowd simulation:

i. Crowd Simulation Scenario (CSS) – represents a generic view of

a simulation model containing objects, assumptions and results,

suitable to interface with a plethora of other resources such as

IfcOwl, design codes and CSTs;

ii. Feeback Analysis (FBA) – conceptualises the mechanism to store

design objectives and retrieve knowledge about design

performance across multiple scenario models from the CSS

ontology data;

iii. UK Spaces Occupancy Capacities (UKSOC) – conceptualises

part of design codes from the UK approved documents regarding

occupancy of spaces based on their functionality and area. It has

been aligned with the IFC ontology and Uniclass classification

system to provide meaningful data in a conceptual design

scenario;

183

iv. MassMotion ontology – the simple representation of the

MassMotion crowd simulation tool, according to its objects’

relationships;

3- SWRL rules developed in conjunction with the ontologies above to provide logical

operations on data and facilitate the correct retrieval of knowledge from existing

resources; these represent imbedded knowledge about the construction of

simulation models and about the correct analysis of the simulation output;

4- Taxonomy of common CST concepts – represents a baseline of objects which

describe CS models and tools for them to be able to function. These concepts

were identified from the analysis of several CSTs used in industry.

Knowledge contribution from theoretical design, analysis and testing, in decreasing order

of impact:

1- By the sum of investigations carried to identify, represent and test the knowledge

bases and operators within the scope of the research aims has contributed to

knowledge about the limitations, benefits and challenges when employing such

methods. This is concerned mostly with the field of CS, but the steps outlined in

this thesis would also be easily replicated for other design disciplines, further

benefiting from linked data concepts.

2- The investigations into CS and BIM interoperability has contributed to knowledge

by looking at common concepts between the two fields while commenting on their

behaviours and challenges when aligning them in Chapter 5. Some concepts

within the BIM field behave differently because they meet different functions

within a model when compared to a CS model. The alignment of geometry

remains problematic within the context of full ontological alignment, while the BIM

domain lacks the definition of certain concepts and resources to facilitate CS

automation.

3- This study has relied heavily on using design regulations and guidance to

conceptualise a performance assessment method in a machine-interpretable

way. It has therefore contributed to knowledge by identifying the relevant sources

of information from design via the literature, official documentations and also from

field consultations with experts. Their reliability for automatic construction of

models and knowledge retrieval was assessed in Chapter 7, along with the

observations made during their testing.

4- Finally, this research has contributed to knowledge from the literature surveys in

the fields of CS, building evacuation, BIM and ontologies, commenting on recent

developments, limitations and potential benefits.

184

185

Bibliography

Abanda, F.H. Tah, J.H.M. and Keivani, R. 2013. Trends in built environment semantic
Web applications: Where are we today? Expert Systems with Applications 40(14), pp.
5563–5577. Available at: http://dx.doi.org/10.1016/j.eswa.2013.04.027.

Abdul-Ghafour, S. Ghodous, P. Shariat, B. Perna, E. and Khosrowshahi, F. 2014.
Semantic interoperability of knowledge in feature-based CAD models.
Computer-Aided Design 56, pp. 45–57. Available at:
http://linkinghub.elsevier.com/retrieve/pii/S0010448514001195 [Accessed: 21
November 2014].

Alper, S.J. and Karsh, B.T. 2009. A systematic review of safety violations in industry.
Accident Analysis & Prevention 41(4), pp. 739–754. Available at:
http://linkinghub.elsevier.com/retrieve/pii/S000145750900061X.

Apel, S. Lengauer, C. Möller, B. and Kästner, C. 2008. An algebra for features and
feature composition. In: International Conference on Algebraic Methodology and
Software Technology. Springer., pp. 36–50.

Apel, S. Lengauer, C. Möller, B. and Kästner, C. 2009. An overview of feature-oriented
software development. Journal of Object Technology 8(5), pp. 49–84.

Azhar, S. 2011. Building information modeling (BIM): Trends, benefits, risks, and
challenges for the AEC industry. Leadership and management in engineering 11(3),
pp. 241–252.

Baiche, B. Walliman, N. and Ogden, R. 2006. Compliance with building regulations in
England and Wales. Structural Survey 24(4), pp. 279–299. Available at:
http://www.emeraldinsight.com/doi/10.1108/02630800610704427.

Bates, M.J. 2011. Understanding information retrieval systems: management, types,
and standards. CRC Press.

Batory, D. 2005. Feature models, grammars, and propositional formulas. In:
International Conference on Software Product Lines. Springer., pp. 7–20.

Beach, T.H. Rezgui, Y. Li, H. and Kasim, T. 2015. A rule-based semantic approach for
automated regulatory compliance in the construction sector. Expert Systems with
Applications 42(12), pp. 5219–5231. Available at:
http://linkinghub.elsevier.com/retrieve/pii/S0957417415001360.

Beetz, J. van Leeuwen, J. and de Vries, B. 2009. IfcOWL: A case of transforming
EXPRESS schemas into ontologies. Artificial Intelligence for Engineering Design,
Analysis and Manufacturing 23(1), p. 89. Available at:
http://www.journals.cambridge.org/abstract_S0890060409000122.

Bejay Jayan 2016. Real-time Multi-scale Smart Energy Management and Optimisation
(REMO) for Buildingsand Their District. PhD Thesis, Cardiff University

Bellinger, G. Castro, D. and Mills, A. 2004. Data, information, knowledge, and wisdom.

van Berlo, L. Derks, G. Pennavaire, C. and Bos, P. 2015. Collaborative Engineering
with IFC: Common Practice in the Netherlands. Proc. of the 32nd CIB W78 Conference
2015, 27th-29th October 2015, Eindhoven, The Netherlands (Mvd), pp. 59–68.

186

Bos, P. 2012. Collaborative engineering with IFC : new insights and technology. eWork
and eBusiness in Architecture, Engineering and Construction, 9th ECPPM Conference
Proceedings , pp. 811–818.

Bradley, A. 2017. Uniclass2015 RDF dataset. Available at:
http://www.icompe.engin.cf.ac.uk/ontologies/uniclass2015.

BuildingSMART 2017. BuildingSMART Linked Data Working Group. Available at:
http://www.buildingsmart-tech.org/future/linked-data.

Bunnin, N. and Jiyuan, Y. 2004. The Blackwell Dictionary of Western Philosophy.
Blackwell. Blackwell Publishing. doi: 10.1111/b.9781405106795.2004.x.

Butterfield, A. and Ngondi, G.E. eds. 2016. A Dictionary of Computer Science. Oxford
University Press. Available at:
http://www.oxfordreference.com/view/10.1093/acref/9780199688975.001.0001/acref-
9780199688975.

Cabinet Office 2011. Government construction strategy, May 2011. Available at:
https://www.gov.uk/government/publications/government-construction-strategy.

Cassol, V. Oliveira, J. Musse, S.R. and Badler, N. 2016. Analyzing egress accuracy
through the study of virtual and real crowds. In: Virtual Humans and Crowds for
Immersive Environments (VHCIE), IEEE. IEEE., pp. 1–6.

Chen, A.Y. and Chu, J.C. 2016. TDVRP and BIM Integrated Approach for In-Building
Emergency Rescue Routing. Journal of Computing in Civil Engineering 30(5), p.
C4015003. Available at: http://ascelibrary.org/doi/10.1061/%28ASCE%29CP.1943-
5487.0000522.

Chen, A.Y. and Huang, T. 2015. Toward BIM-Enabled Decision Making for In-Building
Response Missions. IEEE Transactions on Intelligent Transportation Systems 16(5),
pp. 2765–2773. Available at: http://ieeexplore.ieee.org/document/7101252/.

Chitty, R. and Fraser-Mitchell, J. 2003. Fire safety engineering: a reference guide.
Available at:
https://www.thenbs.com/PublicationIndex/documents/details?Pub=BRE&DocID=26431
7.

Choi, Junsik Choi, Junho and Kim, Inhan 2014. Development of BIM-based evacuation
regulation checking system for high-rise and complex buildings. Automation in
Construction 46, pp. 38–49. Available at:
http://dx.doi.org/10.1016/j.autcon.2013.12.005.

Crotty, R. 2013. The impact of building information modelling: transforming
construction. Routledge.

Damrongrat, C. Kanai, H. and Ikeda, M. 2013. Increasing situational awareness of
indoor emergency simulation using multilayered ontology-based floor plan
representation. Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics) 8017 LNCS(PART 2), pp.
39–45. doi: 10.1007/978-3-642-39215-3_5.

Díaz, H. Alarcón, L.F. Mourgues, C. and García, S. 2017. Multidisciplinary Design
Optimization through process integration in the AEC industry: Strategies and
challenges. Automation in Construction 73, pp. 102–119. Available at:
http://dx.doi.org/10.1016/j.autcon.2016.09.007.

187

Dibley, M.J. 2011. An intelligent system for facility management. PhD Thesis, Cardiff
University

Dimyadi, J. Pauwels, P. Spearpoint, M. Clifton, C. and Amor, R. 2015. Querying a
Regulatory Model for Compliant Building Design Audit. Proc. of the 32nd CIB W78
Conference 2015, 27th-29th October 2015, Eindhoven, The Netherlands , pp. 139–
148. doi: 10.13140/RG.2.1.4022.6003.

Dimyadi, J. Clifton, C. Spearpoint, M. and Amor, R. 2016. Computerizing Regulatory
Knowledge for Building Engineering Design. Journal of Computing in Civil Engineering
30(5), p. C4016001. Available at:
http://ascelibrary.org/doi/10.1061/%28ASCE%29CP.1943-5487.0000572.

Druzdzel, M.J. and Flynn, R.R. 1999. Decision support systems. Encyclopedia of
library and information science. A. Kent. Marcel Dekker, Inc. Last Login 10(3), p. 2010.

Duives, D.C. Daamen, W. and Hoogendoorn, S.P. 2013. State-of-the-art crowd motion
simulation models. Transportation Research Part C: Emerging Technologies 37, pp.
193–209. Available at: http://dx.doi.org/10.1016/j.trc.2013.02.005.

Dürst, M. and Suignard, M. 2004. Internationalized resource identifiers (IRIs). W3C

Submission, No. RFC 3987

Durupinar, F. 2010. From Audiences to Mobs: Crowd Simulation with Psychological
Factors. PhD Thesis, Bilkent University

Eastman, C. Teicholz, P. Sacks, R. and Liston, K. 2011. BIM Handbook: A Guide to
Building Information Modeling for Owners, Managers, Designers, Engineers and
Contractors, 2nd Edition .Wiley. Available at:
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470541377.html.

Euzenat, J. and Valtchev, P. 2004. Similarity-based ontology alignment in OWL-lite. In:
Proceedings of the 16th European Conference of Artificial Intelligence, August 2004,
Valencia, pp.333

Fang, J. El-Tawil, S. and Aguirre, B. 2016. New Agent-Based Egress Model Allowing
for Social Relationships. Journal of Computing in Civil Engineering 30(4), p. 4015066.
Available at: 10.1061/(ASCE)CP.1943-5487.0000532.

Farias, T.M. Roxin, A.-M. and Nicolle, C. 2015. IfcWoD , Semantically Adapting IFC
Model Relations into OWL Properties. Proc. of the 32nd CIB W78 Conference 2015,
27th-29th October 2015, Eindhoven, The Netherlands , pp. 175–185.

Fernando, T.P. Wu, K.-C. and Bassanino, M.N. 2013. Designing a novel virtual
collaborative environment to support collaboration in design review meetings. Journal
of Information Technology in Construction 18(August), pp. 372–396.

Fidan, G. Dikmen, I. Tanyer, A.M. and Birgonul, M.T. 2011. Ontology for Relating Risk
and Vulnerability to Cost Overrun in International Projects. Journal of Computing in
Civil Engineering 25(4), pp. 302–315. Available at:
http://ascelibrary.org/doi/10.1061/(ASCE)CP.1943-5487.0000090.

Fruin, J. 1992. Designing for pedestrians. Public Transportation United States

FSEG, Uiversity of Greenwich 2018. Exodus. Available at:
https://fseg.gre.ac.uk/exodus/index.html [Accessed: 4 January 2018].

188

Gibbins, N. and Shadbolt, N. 2009. Resource Description Framework (RDF).
In, Encyclopedia of Library and Information Sciences. University of
Southampton Available at: https://eprints.soton.ac.uk/268264/1/gibbins-shadbolt-elis-
rdf-v3.pdf [Accessed: 25 March 2018]

Government Digital Service 2018. Grenfell Tower. Available at:
https://www.gov.uk/government/collections/grenfell-tower [Accessed: 28 February
2018].

Grover, R. and Froese, T.M. 2016. Knowledge Management in Construction Using a
SocioBIM Platform: A Case Study of AYO Smart Home Project. Procedia Engineering
145, pp. 1283–1290. Available at: http://dx.doi.org/10.1016/j.proeng.2016.04.165.

Gwynne, S. Galea, E.R. Owen, M. Lawrence, P.J. and Filippidis, L. 1999. A review of
the methodologies used in the computer simulation of evacuation from the built
environment. Building and Environment 34(6), pp. 741–749. Available at:
http://linkinghub.elsevier.com/retrieve/pii/S0360132398000572.

Gwynne, S. Galea, E.R Lawrence, P.J and Filippidis, L. 2001. Modelling occupant
interaction with fire conditions using the buildingEXODUS evacuation model. Fire
Safety Journal 36(4), pp. 327–357. Available at:
http://linkinghub.elsevier.com/retrieve/pii/S0379711200000606.

Hardin, B. 2009. BIM and Construction Management: Proven Tools, Methods, and
Workflows. Wiley. Available at: https://books.google.co.uk/books?id=pduhGycNlZMC.

Hardin, B. and McCool, D. 2015. BIM and construction management: proven tools,
methods, and workflows. John Wiley & Sons.

Hay, D. 2006. Data Modeling, RDF, & OWL – Part One: An Introduction To Ontologies.
Available at: http://tdan.com/data-modeling-rdf-owl-part-one-an-introduction-to-
ontologies/5025.

Hebeler, J. Fisher, M. Blace, R. and Perez-Lopez, A. 2011. Semantic web
programming. John Wiley & Sons.

Helbing, D. and Molnár, P. 1995. Social force model for pedestrian dynamics. Physical
Review E 51(5), pp. 4282–4286. Available at:
http://link.aps.org/doi/10.1103/PhysRevE.51.4282.

Hesham, O. and Wainer, G. 2016. Centroidal Particles for Interactive Crowd
Simulation. In Proceedings of the Summer Computer Simulation Conference. Society
for Computer Simulation International. pp.7

Hitzler, P. Krötzsch, M. Parsia, B. Patel-Schneider, P.F. and Rudolph, S. 2009. OWL 2
web ontology language primer. W3C recommendation 27(1), p. 123.

Home Office 2018. Fire and rescue incident statistics: England, year ending September
2017. Available at:
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachme
nt_data/file/679924/fire-and-rescue-incident-sep17-hosb0418.pdf [Accessed 23 March
2018]

Hopfe, C.J. and Hensen, J.L.M. 2011. Uncertainty analysis in building performance
simulation for design support. Energy and Buildings 43(10), pp. 2798–2805. Available
at: http://dx.doi.org/10.1016/j.enbuild.2011.06.034.

189

Horrocks, I. Patel-Schneider, P.F. and Van Harmelen, F. 2004. A semantic web rule
language combining OWL and RuleML. W3C submission

Horrocks, I. 2005. OWL Rules, OK? Rule Languages for Interoperability April 27(34),
pp. 1–5. Available at:
http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&type=pdf&doi=10.1.1.215.458
7.

Howell, S.K. 2017. Towards a semantic web of things for smart cities. PhD Thesis,
Cardiff University

INCONTROL Simulation Solutions 2018. Pedestrian Dynamics. Available at:
http://www.pedestrian-dynamics.com/pedestrian-dynamics/pedestrian-dynamics.html.

Integrated Environmental Solutions Limited 2018. Simulex. Available at:
https://www.iesve.com/software/ve-for-engineers/module/simulex/480.

Isikdag, U. Zlatanova, S. and Underwood, J. 2013. A BIM-Oriented Model for
supporting indoor navigation requirements. Computers, Environment and Urban
Systems 41, pp. 112–123. Available at:
http://dx.doi.org/10.1016/j.compenvurbsys.2013.05.001.

Jalali, L. Mehrotra, S. and Venkatasubramanian, N. 2011. Interoperability of Multiple
Autonomous Simulators in Integrated Simulation Environments. In: 2011 Spring
Simulation Interoperability Workshop. Available at:
http://www.ics.uci.edu/~dsm/pubs/SIW-final.pdf.

Kalay, Y.E. 1998. P3: Computational environment to support design collaboration.
Automation in construction 8(1), pp. 37–48.

Kang, K.C. Cohen, S.G. Hess, J.A. Novak, W.E. and Peterson, A.S. 1990. Feature-
oriented domain analysis (FODA) feasibility study. Carnegie-Mellon Univ Pittsburgh Pa
Software Engineering Inst.

Kannala, M. 2005. Escape Route Analysis Based on Building Information Models :
Design and Implementation. Msc Dissertation, Helsinki University of Technology

Kaufman, K.A. and Michalski, R.S. 2005. From Data Mining to Knowledge Mining. In:
Handbook of Statistics., pp. 47–75. Available at:
http://linkinghub.elsevier.com/retrieve/pii/S0169716104240020.

Khan, S.D. Crociani, L. Vizzari, G. 2014. Pedestrian and crowd studies: Towards the
integration of automated analysis and synthesis. SCS M&S Magazine 3(3)

Kinateder, M. Ronchi, E. Nilsson, D. Kobes, M. Müller, M. Pauli, P. and Mühlberger, A.
2014. Virtual Reality for Fire Evacuation Research. Computer Science and Information
Systems (FedCSIS), 2014 Federated Conference on 2, pp. 319–327. doi:
10.15439/2014F94.

Kinsey, M. Walker, G. Swailes, N. and Butterworth, N. 2015. The Verification and
Validation of MassMotion for Evacuation Modelling. Report, Ove Arup & Partners Ltd,
10th August 2015.

Kobes, M. Helsloot, I. de Vries, B. and Post, J.G. 2010. Building safety and human
behaviour in fire: A literature review. Fire Safety Journal 45(1), pp. 1–11. Available at:
http://dx.doi.org/10.1016/j.firesaf.2009.08.005.

190

Kraus, L. Stanojević, M. Tomašević, N. and Mijović, V. 2011. A decision support
system for building evacuation based on the EMILI SITE environment. Proceedings of
the 2011 20th IEEE International Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises, WETICE 2011 , pp. 334–336. doi:
10.1109/WETICE.2011.59.

Krötzsch, M. 2010. Description Logic Rules. IOS Press.

Krötzsch, M. Maier, F. Krisnadhi, A. and Hitzler, P. 2011. A better uncle for OWL:
Nominal schemas for integrating rules and ontologies. In: Proceedings of the 20th
international conference on World wide web. ACM., pp. 645–654.

Kuligowski, E. 2013. Predicting Human Behavior During Fires. Fire Technology 49(1),
pp. 101–120. doi: 10.1007/s10694-011-0245-6.

Kuligowski, E.D. 2005. A review of building evacuation models. Gaithersburg, MD.
Available at: http://nvlpubs.nist.gov/nistpubs/Legacy/TN/nbstechnicalnote1471.pdf.

Kuligowski, E.D. 2016a. Computer evacuation models for buildings. In: SFPE
Handbook of Fire Protection Engineering. Springer., pp. 2152–2180.

Kuligowski, E.D. 2016b. Human behavior in fire. In: SFPE Handbook of Fire Protection
Engineering. Springer., pp. 2070–2114.

Kvan, T. 2000. Collaborative design: What is it? Automation in Construction 9(4), pp.
409–415. doi: 10.1016/S0926-5805(99)00025-4.

Lee, D.-Y. Chi, H.-L. Wang, J. Wang, X. and Park, C.-S. 2016. A linked data system
framework for sharing construction defect information using ontologies and BIM
environments. Automation in Construction 68, pp. 102–113. Available at:
http://linkinghub.elsevier.com/retrieve/pii/S0926580516300838.

Lee, H. Shin, J. and Lee, J.-K. 2016. BIM-enabled Definition of a Path Object and its
Properties to Evaluate Building Circulation using Numerical Data. Journal of Asian
Architecture and Building Engineering 15(3), pp. 425–432. Available at:
https://www.jstage.jst.go.jp/article/jaabe/15/3/15_425/_article.

Lee, J.M. 2010. Automated Checking of Building Requirements on Circulation Over a
Range of Design Phases. Building , p. 172. Available at:
http://smartech.gatech.edu/bitstream/handle/1853/34802/lee_jae_m_201008_phd.pdf;j
sessionid=10FA65D2354A62739D238AB3B3A15577.smart2?sequence=1.

Lee, S. Kim, K. and Yu, J. 2014. BIM and ontology-based approach for building cost
estimation. Automation in Construction 41, pp. 96–105. Available at:
http://www.sciencedirect.com/science/article/pii/S092658051300188X [Accessed: 12
December 2014].

Li, T. Chang, H. Wang, M. Ni, B. Hong, R. and Yan, S. 2015. Crowded Scene Analysis:
A Survey. IEEE Transactions on Circuits and Systems for Video Technology 25(3), pp.
367–386. Available at: http://ieeexplore.ieee.org/document/6898845/.

Luo, H. Peng, X. and Zhong, B. 2016. Ontology-based Emergency Plan Management
of Metro Operation and its Application in Staff Training. In: Creative Construction
Conference 2016., pp. 59–64.

Malsane, S. Matthews, J. Lockley, S. Love, P.E.D. and Greenwood, D. 2015.
Development of an object model for automated compliance checking. Automation in

191

Construction 49(PA), pp. 51–58. Available at:
http://dx.doi.org/10.1016/j.autcon.2014.10.004.

Marzouk, M. and Al Daoor, I. 2016. Simulation of labor evacuation: The case of
housing construction projects. HBRC Journal , pp. 1–9. Available at:
http://dx.doi.org/10.1016/j.hbrcj.2016.07.001.

Mashhadawi, M. 2016. MassMotion Evacuation Model Validation. Report, Department
of Fire Safety Engineering, University of Lund.

Masinter, L. Berners-Lee, T. and Fielding, R.T. 2005. Uniform resource identifier (URI):
Generic syntax. RFC 3986, The Internet Society.

McGuinness, D.L. and Van Harmelen, F. 2004. OWL web ontology language overview.
W3C recommendation 10(10), p. 2004.

Moreno, A. Zlatanova, S. Bucher, B. Posada, J. Toro, C. and García-Alonso, A. 2011.
Semantic Enhancement of a Virtual Reality Simulation System for Fire Fighting. In:
Proceedings of the Joint ISPRS Workshop on 3D City Modelling & Applications and the
6th 3D GeoInfo Conference.

Motamedi, A. Wang, Z. Yabuki, N. Fukuda, T. and Michikawa, T. 2016. Signage
Visibility Analysis and Optimization System Using BIM-enabled VR Environments. In:
16th International Conference on Computing in Civil and Building Engineering
(ICCCBE2016)., pp. 1–20.

Motik, B. and Rosati, R. 2010. Reconciling description logics and rules. Journal of the
ACM 57(5), pp. 1–62. Available at:
http://portal.acm.org/citation.cfm?doid=1754399.1754403.

Mott MacDonald 2018. STEPS. Available at:
https://www.steps.mottmac.com/introducing-steps [Accessed: 4 January 2018].

Musse, S.R. and Thalmann, D. 2001. Hierarchical model for real time simulation of
virtual human crowds. IEEE Transactions on Visualization and Computer Graphics
7(2), pp. 152–164. Available at: http://ieeexplore.ieee.org/document/928167/.

Mustapha, K. and Frayret, J.-M. 2016. Agent-based Modeling and Simulation Software
Architecture for Health Care. In: Proceedings of the 6th International Conference on
Simulation and Modeling Methodologies, Technologies and Applications.
SCITEPRESS - Science and Technology Publications., pp. 89–100. Available at:
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0005972600890100.

NBS, R.E.L. 2017. Uniclass 2015. Available at:
https://toolkit.thenbs.com/articles/classification/ [Accessed: 30 May 2017].

Nelson, H.E. 2002. Emergency movement. The SFPE Handbook of Fire Protection
Engineering.

Niknam, M. and Karshenas, S. 2014. Integrating distributed sources of information for
construction cost estimating using Semantic Web and Semantic Web Service
technologies. Automation in Construction 57, pp. 222–238. Available at:
http://dx.doi.org/10.1016/j.autcon.2015.04.003.

Nilsson, D. and Fahy, R. 2016. Selecting scenarios for deterministic fire safety
engineering analysis: life safety for occupants. In: SFPE Handbook of Fire Protection
Engineering. Springer., pp. 2047–2069.

192

Noy, N.F. Crubézy, M. Fergerson, R.W. Knublauch, H. Tu, S.W. Vendetti, J. and
Musen, M.A. 2003. Protégé-2000: an open-source ontology-development and
knowledge-acquisition environment. In: AMIA... Annual Symposium proceedings. AMIA
Symposium. American Medical Informatics Association., p. 953.

Noy, N.F. and McGuinness, D.L. 2001. Ontology development 101: A guide to creating
your first ontology. Available at:
https://protege.stanford.edu/publications/ontology_development/ontology101-noy-
mcguinness.html.

Oasys Limited 2018a. MassMotion. Available at: http://www.oasys-
software.com/products/engineering/massmotion.html.

Oasys Limited 2018b. MassMotion case studies. Available at: https://www.oasys-
software.com/case-studies/ [Accessed: 1 March 2018].

Oh, M. Lee, J. Hong, S.W. and Jeong, Y. 2015. Integrated system for BIM-based
collaborative design. Automation in Construction 58, pp. 196–206. Available at:
http://dx.doi.org/10.1016/j.autcon.2015.07.015.

Onorati, T. Malizia, A. Diaz, P. and Aedo, I. 2014. Modeling an ontology on accessible
evacuation routes for emergencies. Expert Systems with Applications 41(16), pp.
7124–7134. Available at: http://dx.doi.org/10.1016/j.eswa.2014.05.039.

OpenBIMstandards 2017a. How is IfcOwl generated? Available at:
http://openbimstandards.org/standards/ifcowl/how-is-ifcowl-generated/.

OpenBIMstandards 2017b. Web Ontology Language representation of the Industry
Foundation Classes (IFC) schema. Available at:
http://openbimstandards.org/standards/ifcowl/.

Pauwels, P. Van Deursen, D. Verstraeten, R. De Roo, J. De Meyer, R. Van de Walle,
R. and Van Campenhout, J. 2011. A semantic rule checking environment for building
performance checking. Automation in Construction 20(5), pp. 506–518. Available at:
http://dx.doi.org/10.1016/j.autcon.2010.11.017.

Pauwels, P. de Farias, T.M. Zhang, C. Roxin, A. Beetz, J. and De Roo, J. 2016.
Querying and reasoning over large scale building data sets. In: Proceedings of the
International Workshop on Semantic Big Data - SBD ’16. New York, New York, USA:
ACM Press., pp. 1–6. Available at:
http://dl.acm.org/citation.cfm?doid=2928294.2928303.

Pauwels, P. Krijnen, T. Terkaj, W. and Beetz, J. 2017. Enhancing the ifcOWL ontology
with an alternative representation for geometric data. Automation in Construction 80,
pp. 77–94. Available at: http://dx.doi.org/10.1016/j.autcon.2017.03.001.

Pauwels, P. and Roxin, A. 2016. SimpleBIM : From full ifcOWL graphs to simplified
building graphs. In Proceedings of the 11th European Conference on Product and
Process Modelling (ECPPM) (pp. 11-18).

Pauwels, P. and Terkaj, W. 2016. EXPRESS to OWL for construction industry:
Towards a recommendable and usable ifcOWL ontology. Automation in Construction
63, pp. 100–133. Available at: http://dx.doi.org/10.1016/j.autcon.2015.12.003.

PD 7974 2004. The application of fire safety engineering principles to fire safety design
of buildings. Human factors. Life safety strategies. Occupant evacuation, behaviour
and condition (Sub-system 6). British Standards Institution Group London UK

193

Perez, J. Arenas, M. and Gutierrez, C. 2006. Semantics and Complexity of SPARQL.
34(3), pp. 1–45. Available at: http://arxiv.org/abs/cs/0605124.

Pilone, D. and Pitman, N. 2005. UML 2.0 in a Nutshell. O’Reilly Media, Inc.

Plume, J. and Mitchell, J. 2007. Collaborative design using a shared IFC building
model-Learning from experience. Automation in Construction 16(1), pp. 28–36. doi:
10.1016/j.autcon.2005.10.003.

Poveda, G. Serrano, E. and Garijo, M. 2014. Creating and Validating Emergency
Management Services by Social Simulation and Semantic Web Technologies. In:
International Conference on Ubiquitous Computing and Ambient Intelligence., pp. 460–
467. Available at: http://link.springer.com/10.1007/978-3-319-13102-3_74.

Prud, E. and Seaborne, A. 2006. SPARQL query language for RDF.W3C Submission.
Available at: https://www.w3.org/TR/rdf-sparql-query/ [Accessed 25 March 2018]

Purser, D. and Bensilum, M. 2001. Quantification of behaviour for engineering design
standards and escape time calculations. Safety Science 38(2), pp. 157–182. Available
at: http://linkinghub.elsevier.com/retrieve/pii/S0925753500000667.

Rahm, E. and Bernstein, P.A. 2001. A survey of approaches to automatic schema
matching. VLDB Journal 10(4), pp. 334–350. doi: 10.1007/s007780100057.

Raupp Musse, S. Ulicny, B. and Aubel, A. 2006. Groups and Crowd Simulation.
Handbook of Virtual Humans (Benesch 1995), pp. 323–352. doi:
10.1002/0470023198.ch14.

Ronchi, E. Gwynne, S.M.V. Purser, D. A. and Colonna, P. 2013. Representation of the
Impact of Smoke on Agent Walking Speeds in Evacuation Models. Fire Technology
49(2), pp. 411–431. doi: 10.1007/s10694-012-0280-y.

Ronchi, E. Kuligowski, E.D. Nilsson, D. Peacock, R.D. and Reneke, P.A. 2014.
Assessing the Verification and Validation of Building Fire Evacuation Models. Fire
Technology , pp. 197–219. Available at: http://dx.doi.org/10.1007/s10694-014-0432-3.

Ronchi, E. and Nilsson, D. 2013. Fire evacuation in high-rise buildings: a review of
human behaviour and modelling research. Fire Science Reviews 2(1), p. 7. Available
at: http://firesciencereviews.springeropen.com/articles/10.1186/2193-0414-2-7.

Rűppel, U. Lange, M and Wagenknecht, A 2006. Semantic integration of product model
data in fire protection engineering. In: eWork and eBusiness in Architecture,
Engineering and Construction. ECPPM 2006: European Conference on Product and
Process Modelling 2006 (ECPPM 2006), Valencia, Spain, 13-15 September 2006., p.
115.

Rüppel, U. and Schatz, K. 2011. Designing a BIM-based serious game for fire safety
evacuation simulations. Advanced Engineering Informatics 25(4), pp. 600–611. doi:
10.1016/j.aei.2011.08.001.

Scherer, R.J. and Schapke, S.-E. 2011. A distributed multi-model-based Management
Information System for simulation and decision-making on construction projects.
Advanced Engineering Informatics 25(4), pp. 582–599. Available at:
http://linkinghub.elsevier.com/retrieve/pii/S1474034611000644 [Accessed: 19 October
2014].

Schevers, H. and Drogemuller, R. 2006. Converting the industry foundation classes to
the web ontology language. Proceedings - First International Conference on

194

Semantics, Knowledge and Grid, SKG 2005 (Skg 2005), pp. 2005–2007. doi:
10.1109/SKG.2005.59.

Shafiq, M.T. Matthews, J. Lockley, and Stephen R. 2012. Requirements for Model
Server Enabled Collaborating on Building Information Models. International Journal of
3-D Information Modeling 1(4), pp. 8–17. Available at: http://services.igi-
global.com/resolvedoi/resolve.aspx?doi=10.4018/ij3dim.2012100102.

Shields, T. and Silcock, G.W. 1987. Buildings and Fire. Longman Group UK Limited
1987.

Sikos, L. 2015. Mastering Structured Data on the Semantic Web: . Apress. Available at:
https://www.dawsonera.com:443/abstract/9781484210499.

Slamecka, V. and Hosch, W.L. 2008. Query language. Britannica . Available at:
https://www.britannica.com/technology/query-language.

Stanford University 2018. Protégé. Available at: https://protege.stanford.edu/
[Accessed: 3 March 2018].

Stardog Union 2018. Stardog. Available at: http://stardog.com/.

Stenmark, D. 2002. Information vs. knowledge: The role of intranets in knowledge
management. In: System Sciences, 2002. HICSS. Proceedings of the 35th Annual
Hawaii International Conference on. IEEE., pp. 928–937.

Stevenson, A. 2011. Oxford dictionary of English. OUP Oxford. Available at:
https://books.google.co.uk/books?id=anecAQAAQBAJ.

Succar, B. 2009. Building information modelling framework: A research and delivery
foundation for industry stakeholders. Automation in Construction 18(3), pp. 357–375.
Available at: http://dx.doi.org/10.1016/j.autcon.2008.10.003.

Terkaj, W. and Šojić, A. 2015. Ontology-based representation of IFC EXPRESS rules:
An enhancement of the ifcOWL ontology. Automation in Construction 57, pp. 188–201.
Available at: http://linkinghub.elsevier.com/retrieve/pii/S0926580515000886.

Thalmann, D. Musse, S.R. and Braun, A. 2007. Crowd simulation. Available at:
http://link.springer.com/content/pdf/10.1007/978-3-319-08234-9_69-1.pdf.

The Building Regulations 2015. Approved Document B (Fire Safety). Available at:
http://gov.wales/topics/planning/buildingregs/approved-documents/part-b-fire/?lang=en.

The Eclipse Foundation 2018. Jetty Server. Available at: https://www.eclipse.org/jetty/
[Accessed: 12 February 2018].

Tomašević, N.M. Batić, M.Č. Blanes, L.M. Keane, M.M. and Vraneš, S. 2015.
Ontology-based facility data model for energy management. Advanced Engineering
Informatics 29(4), pp. 971–984. Available at:
http://linkinghub.elsevier.com/retrieve/pii/S1474034615000981.

Trento, A. Fioravanti, A. and Simeone, D. 2012. Building-Use Knowledge
Representation for Architectural Design. In: Proceedings of eCAADe 2012., pp. 683–
690.

Trento, A. and Fioravanti, A. 2016. Human Behaviour Simulation to Enhance
Workspace Wellbeing and Productivity A BIM and Ontologies implementation path.
Proceedings of eCAADe 2016 2, pp. 315–325.

195

Ullrich, M. 2003. SemanticMiner – Ontology-Based Knowledge Retrieval 1. Computer
9(7), pp. 682–696. doi: 10.3217/jucs-009-07-0682 M4 - Citavi.

Venugopal, M. Eastman, C.M. and Teizer, J. 2015. An ontology-based analysis of the
industry foundation class schema for building information model exchanges. Advanced
Engineering Informatics 29(4), pp. 940–957. Available at:
http://dx.doi.org/10.1016/j.aei.2015.09.006.

Vieira, R. de Paiva, D.C. and Musse, S.R. 2005. Ontology-based crowd simulation for
normal life situations. In: Computer Graphics International 2005. IEEE., pp. 221–226.

Wang, B. Li, H. and Rezgui, Y. 2013. Intelligent building emergency management using
building information modelling and game engine. ICIC Express Letters 7(3), pp. 1017–
1023. Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-
84875355141&partnerID=40&md5=5225bffc88541f11317c888e9466ff77.

Wang, B. Li, H. Rezgui, Y. Bradley, A. and Ong, H.N. 2014. BIM Based Virtual
Environment for Fire Emergency Evacuation. The Scientific World Journal 2014, pp. 1–
22. Available at: http://www.hindawi.com/journals/tswj/2014/589016/.

Wang, S.-H. Wang, W.-C. Wang, K.-C. and Shih, S.-Y. 2015. Applying building
information modeling to support fire safety management. Automation in Construction
59, pp. 158–167. Available at:
http://www.sciencedirect.com/science/article/pii/S0926580515000205%5Cnhttp://linkin
ghub.elsevier.com/retrieve/pii/S0926580515000205.

Wang, S. and Wainer, G. 2015. A simulation as a service methodology with application
for crowd modeling, simulation and visualization. SIMULATION 91(1), pp. 71–95.
Available at: http://sim.sagepub.com/cgi/doi/10.1177/0037549714562994.

Yao, Y. Zeng, Y. Zhong, N. and Huang, X. 2007. Knowledge Retrieval (KR).
Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence, WI
2007 , pp. 729–735. doi: 10.1109/WI.2007.4427181.

Yoke, M. Low, H. Cai, W. and Zhou, S. 2007. A federated agent-based crowd simulation

architecture. In The 2007 European Conference on Modelling and Simulation, Prague, Czech

Republic (pp. 188-194).

Yu, L. 2014. A Developer’s Guide to the Semantic Web. Berlin, Heidelberg: Springer
Berlin Heidelberg. Available at: http://link.springer.com/10.1007/978-3-662-43796-4.

Zanni, M.A. Soetanto, R. Ruikar, K. 2017. Towards a BIM-enabled sustainable building
design process: roles, responsibilities, and requirements. Architectural Engineering and
Design Management 13(2), pp. 101–129. doi: 10.1080/17452007.2016.1213153.

Zhan, B. Monekosso, D.N. Remagnino, P. Velastin, S.A. and Xu, L.-Q. 2008. Crowd
analysis: a survey. Machine Vision and Applications 19(5–6), pp. 345–357. Available
at: http://link.springer.com/10.1007/s00138-008-0132-4.

Zhang, C. Beetz, J. and de Vries, B. 2013. Towards Model View Definition on Semantic
Level : A State of the Art Review. In Proceedings of the 20th International Workshop:

Intelligent Computing in Engineering. (July 2015), pp. 1–10.

Zhang, S. Boukamp, F. and Teizer, J. 2015. Ontology-based semantic modeling of
construction safety knowledge: Towards automated safety planning for job hazard
analysis (JHA). Automation in Construction 52, pp. 29–41. Available at:
http://dx.doi.org/10.1016/j.autcon.2015.02.005.

196

Zheng, X. Zhong, T. and Liu, M. 2009. Modeling crowd evacuation of a building based
on seven methodological approaches. Building and Environment 44(3), pp. 437–445.
doi: 10.1016/j.buildenv.2008.04.002.

Zhou, P. and El-Gohary, N. 2017. Ontology-based automated information extraction
from building energy conservation codes. Automation in Construction 74, pp. 103–117.
Available at: http://dx.doi.org/10.1016/j.autcon.2016.09.004.

Zhou, S. Chen, D. Cai, W. Luo, L. Low, M.Y.H. Tian, F. Tay, V.-S.H Ong, D.W.S. and
Hamilton, B.D. 2010. Crowd modeling and simulation technologies. ACM Transactions
on Modeling and Computer Simulation 20(4), pp. 1–35. Available at:
http://eprints.bournemouth.ac.uk/13285/1/licence.txt%5Cnhttp://portal.acm.org/citation.
cfm?doid=1842722.1842725.

197

 Appendix A – Simulation tools concepts

For each CST, certain concepts require specific input from the user side which define

the behaviour of the object. E.g. An agent is programmed to evacuate a certain route, as

instructed by the user input. The concepts which require ‘Behaviour Input’ are marked

with an ‘x’ in the last column – BI.

Table A-1. MassMotion Concepts

No Concept Function Notes
Feature
category

BI

SCENE
OBJECTS

Features which define the building environment.

1 Bank

Contains connection objects
within the scene.

Links, Ramps,
Stairs are
connection objects.

Visualisation

Interface

2 Collection

Contains any type of scene
objects.

Cannot contain
other Collections.

Visualisation

Interface

3 Perimeter
Reduces the number of
available routes for agents in
the scene.

 Geometry
x

4 Zone

Define a conceptual area
within the simulation.

 Interface

Geometry

5 Transform

Contains multiple objects and
allows their geometry to be
altered collectively.

 Interface

Geometry

6 Barrier
Represents regions which
blocks agents' paths.

 Geometry

7 Cordon

Defines a surface which is
used to track agent
movement.

Does not impact
simulation
calculations.

Geometry

Analysis

8 Volume

Defines a volume which is
used to track agents.

Does not impact
simulation
calculations.

Geometry

Analysis

9 Escalator Model real-life escalators. Geometry

10 Floor
Models surfaces which
allows agents to walk on.

 Geometry

11 Link Connects two floors together. Geometry

12 Path
Guides agents on a well-
defined curve.

 Geometry
x

13 Portal
Allows agents to enter or exit
a simulation.

 Geometry

14 Ramp
Represents inclined
surfaces.

Add a vertical cost
to agent
movement.

Geometry

15 Stair
Connects two floors of
different elevations.

 Geometry

198

No Concept Function Notes
Feature
category

BI

16 Server
Model queuing behaviour of
agents in more complex
circumstances.

 Geometry
x

17 Dispatch
Distributes agents across
Server inputs.

 Geometry
x

18
Reference
Geometry

Includes geometry objects as
generic models, with no
specified purpose.

Does not impact
simulation
calculations.

Visualisation

Geometry

19 Visual

Enhances the appearance of
the environment.

Does not impact
simulation
calculations.

Visualisation

Geometry

ACTIVITIES Features which define events during a simulation.

20 Action

Operation to be taken by
agent.

 Event

Agent

x

21 Test

Operate a check on a single
agent.

 Event

Interface

Agent

22 Avatar

Models the 3D
representation of agents
within the simulation.

Does not impact
simulation
calculations.

Visualisation

Geometry

Agent

23 Circulate
Defines a specified route
over time for agents to follow.

Agents move from
one portal to
another.

Event
x

24 Evacuate
Triggers when agents should
begin evacuating the
simulation.

 Event
x

25 Broadcast
Applies a specified Action to
agents within the simulation.

 Event
x

26 Journey
Represent the act of people
moving from A to B.

A journey may
have multiple exits.

Event

27
Gate
Access

Opens of closes an access
point objects dynamically.

 Event
x

28 Profile
Defines the physical
characteristics of Agent.

 Agent

29
Server
Access

Controls ingress and egress
to/from Server objects.

 Event
x

30 Time
Reference to a specific point
in time while the simulation is
running.

 Interface

31 Timetable
Allows for more complex and
coordinated definition of
events.

Suitable for train,
bus, plane
schedules.

Event
x

32 Token
Allows access to agents for
certain entry points.

 Agent

33 Trigger
Fires in response to certain
conditions during the
simulation.

 Event
x

199

No Concept Function Notes
Feature
category

BI

34 Trip Matrix

Creates agents across
multiple portals and
distributes their exit through
others.

 Event

x

35 Vehicle
Simulates the controlled
arrival and departure of
agents at periodic intervals.

 Event

ANALYSIS Features which allow users to analyse the outputs.

36
Simulation
Run

Represents a single iteration
of a MassMotion simulation.

Start and end
times must be
specified.

Event

Visualisation

37 Agent Filter

Allows the selection of
specific agent groups for
analysis.

 Analysis

Visualisation

38 Trip

Defines a particular route
through the environment.

Consists of
multiple areas,
cordons, portals.

Analysis

Event

39 Graph

Queries and presents data
for user analysis.

 Analysis

Visualisation

40 Map

Adds colour coded contours
on the environment to
visualise events and
behaviour.

 Analysis

Visualisation

41 Tables
Queries and presents data in
tabular form from the
simulation ran.

 Analysis

42 Area

Conceptual surfaces which
can be used for analysis.

Can include
Volume,
Collection, Zone,
etc.

Analysis

Visualisation

200

Table A-2. Pedestrian Dynamics concepts

No Entity Function Notes Feature
category

BI

DRAW ELEMENTS Features which define the building environment.
1 Height Layer Defines a coplanar area

where agents can walk.
 Geometry

2 Obstacle Defines an area on
which agents cannot
walk.

It's usually placed
within a Height
Layer

Geometry

3 Walkable area Represents an area
within a Height Layer
where agents can walk.

Multiple areas
can overlap.

Geometry

4 Opening Walking area created on
top of an obstacle.

Allows agent to
pass through
otherwise un-
walkable
obstacles

Geometry

5 Transfer Connects two different
Height Layers.

 Geometry

6 Stair Models height between
levels, and allows agent
to cross them.

Automatically
acts as a
Transfer object.

Geometry

7 Spiral Stair Similar to Stair. Geometry

8 Escalator/Moving
Walk

Models a slow moving
conveyor belt which
transports agents.

Agents can stand
still on it. Acts as
a Transfer object.

Geometry

9 Passageway Models a walkable area
where agent flow
direction I controlled.

 Geometry

ACTIVITY
LOCATIONS

Features which define events at specific locations.

10 Entry/Exit Allows agents to enter or
exit the model.

A single object
can be both an
exit and an entry.

Geometry

11 Waiting Forces agent to wait for
specified/unspecified
time.

 Geometry x

12 Waypoint Acts as a destination
point for agents when
circulating.

 Geometry x

13 Commercial
Facility

Models agents
performing shopping
activities.

 Geometry x

14 Service Facility Models a location where
agents receive a certain
kind of service.

 Geometry x

15 Ticker Facility Models a location where
agent buy tickets for
another activity.

 Geometry x

16 Access Control Models an area which
agents have restricted
access to.

 Geometry x

ACTIONS Features which define events during a simulation.
17 Action Timer Triggers time based

actions during a
simulation run.

 Event x

18 Action Area Alters the behaviour or
properties of certain
agents.

 Event x

201

No Entity Function Notes Feature
category

BI

19 Flow Shifter Shifts the flow of an
area.

 Event x

20 Flow Splitter Splits certain flows of
agents.

 Event

Geometry

x

21 Indicative
Corridor

Forces agents to follow a
specified route or queue
for specific action.

 Event

22 Route Models agent behaviour
on moving from A to B

 Event x

23 Local Obstacle Influences agents on
which side to avoid an
obstacle.

 Geometry

Mathematical

SPECIAL
ELEMENTS

Other features, specific to this tool.

24 Stand Models the physical
infrastructure for a stand.

Stand Stairs and
Stand Portals can
be added to it.

Geometry

25 Stand Stair Make the rows on
Stands reachable to
agents.

 Geometry

26 Stand Portal Connects a Stand to a
Height Layer.

 Geometry

27 Stand Section Groups Stand seats
together.

 Interface

28 Stand Obstacle Makes areas within a
Stand which agents
cannot walk on.

 Geometry

29 Transport Non
Waiting Area

Defines an area where
agents are forbidden
from stopping.

 Geometry

30 Transport
Network

Defines stop locations for
transport elements.

Models rail
tracks, bus
stations, etc.

Event

AGENT INPUT Features which allow users to define agents.
31 Agent Profile Assigns a profile to a

group of agents with
similar characteristics.

 Agent

32 Route Defines the path agents
take through the model.

 Agent x

33 Agent 3D Model Represents each agent
with a 3D model.

 Visualisation

34 Agent Activities Defines which Activity
Locations an Agent can
visit over time.

 Agent x

35 Agent Generator Defines a number of
agents of specific types
when to appear.

Route can be
specified.

Event x

36 Arrival List Defines a creation
schedule of Agents.

Route can be
specified.

Event x

OUTPUT
ELEMENTS

Features which allow users to analyse the outputs.

37 Flow Counter A line which counts
agents passing over it.

 Analysis

38 Density Area An area which overlays
densities of agent traffic.

 Analysis

Visualisation

202

No Entity Function Notes Feature
category

BI

39 Output Layer A layer which contains
Output Elements.

 Analysis

40 Activity Route A list of activities which
were carried out by
agents.

 Analysis

41 Density Map Maps the density for the
environment or agents
over time.

 Analysis

Visualisation

42 Frequency Map Shows the number of
agents passing through
at certain times.

 Analysis

43 Travel Time Map Shows the travel time of
each agent using colour
codes.

 Analysis/

Visualisation

203

Table A-3. STEPS concepts

No Entity Function Notes Feature
category

BI

MAIN OBJECTS Features which create the most important objects on the model.

1 Distribution Distributes values within a
range.

 Mathematical

2 Curve Specifies a relationship
between two parameters.

 Mathematical

3 Colour
Distribution

Distributes values within a
range for colours.

 Mathematical

4 People Model Defines the appearance of
agents.

 Agent

5 People Type Defines the properties of
agents.

 Agent

6 People
Group

Defines a set of agents at
a given time or place.

 Agent

7 Family Represents a group of
agents which travel
together.

 Agent

8 Shape Represents a complex
geometric construct from
basic lines.

 Geometry

9 Mesh Represents surfaces
made from triangular
shapes.

Can represent 2D
and 3D objects.

Geometry

10 Plane Defines a surface which is
walkable to the agents.

 Geometry

11 Path Models stairs or
unidirectional flows.

Superseded by
Shaped Planes.

Geometry

12 Plane Exit Defines an exit point out
of a plane for agents to
use.

Links two planes. Geometry

13 Internal Door Limits or alters the flow of
people on one Plane.

Does not link
Planes.

Geometry

14 Checkpoint Defines a location which
agent can move towards.

Only functions in
operation modes.

Geometry

15 Route Restricts movement of
people via a defined path.

Only functions in
operation modes.

Event

Geometry

x

16 Matrix Specifies agent
destinations according to
their origins.

Superseded by
Route.

Event x

17 Access Specifies which agent can
use which exit point within
a plane.

 Event x

18 Blockage Defines surfaces on
Planes which agents
cannot walk on.

Can be represented
by points, lines,
shapes, meshes.

Geometry

19 Location Specifies a smaller region
on a Plane which is used
to create agents.

Can be used to plot
density maps.

Geometry

20 Junction Specifies the way in which
agents can split between
more Paths.

 Mathematical

21 Item Geometry object used to
enhance appearance.

Is not involved in
model calculations.

Visualisation

Geometry

204

No Entity Function Notes Feature
category

BI

22 Group Groups different types of
objects together.

Can be used for
statistical analysis
across objects.

Interface

VEHICLE
OBJECTS

Features which define moving vehicle objects during a
simulation.

23 Lift Carries agents from one
surface to another.

An object which
moves across the
environment.

Geometry x

24 Train Represents trains
geometrically.

Is not involved in
model calculations.
Superseded by
Vehicle

Geometry

25 Vehicle Dynamic surface which
can transport agents
across the environment.

Is made out of
several components.

Geometry x

26 Vehicle
Model

Represents vehicles
geometrically.

 Geometry

27 Vehicle
Element
Type

Represents a specific
element as part of a
Vehicle object.

Can be used to
resemble doors,
areas, etc.

Geometry

28 Trajectory Defines the path of a
vehicle.

 Event x

EVENT
OBJECTS

Features which define events during a simulation.

29 Simulation
Event

Specifies an interval of
time for events to occur.

 Event x

30 Emergency
Event

Triggers the act which
simulates an evacuation
at given times.

 Event x

31 People Event Creates groups of agents
within the model at given
times.

 Event x

32 Population
Event

Maintains a constant
number of population flow
on a given Plane.

 Event x

33 Exit Event Dynamically alters the
state of an Exit Plane as
opened or closed to
agents.

 Event x

34 Blockage
Event

Dynamically alters the
state of a surface to
walkable or un-walkable
by agents.

 Event x

35 Group Event Changes the colour of
grouped elements
depending on their states.

Is purely for
visualisation
purposes

Visualisation

36 Lift Event Specifies the behaviour of
Lift objects during a
simulation.

 Event

37 Viewpoint
Event

Moves the view of the
model to a specific points
at given times.

 Visualisation

38 Viewpath
Event

Triggers a Viewpath
object at a specified time
during a simulation.

 Visualisation

39 Snapshot
Event

Takes an image shot of
the view at a given time.

 Visualisation

205

No Entity Function Notes Feature
category

BI

40 Movie Event Triggers the recording of a
simulation between time
intervals.

 Visualisation

41 Clipping
Plane Event

Triggers Clipping Plane
objects at given times
during a simulation.

 Visualisation

42 Tracking
Event

Records the position of
agents over specified time
interval during simulation.

 Visualisation

SMOKE
OBJECTS

Features which model smoke from fire.

43 Surface Represents smoke
propagation visually.

Does not affect
model calculations.

Visualisation

44 Sample
Plane

Modifies walking speeds
of agents according to
smoke concentration data.

Uses imported data
from other software.

Mathematical

Geometry

45 Dose Keeps track of the level of
gas absorption by agents.

 Analysis

OUTPUT
OBJECTS

Features which allow users to analyse the outputs.

46 Basic
Variable

Expresses certain
statistical or raw data
values about the
simulation.

 Analysis

47 Expressions Uses several Basic
Variables to output
specific data.

 Analysis

48 Variable Monitors (saves or
outputs) specified Basic
Variables.

 Analysis

49 Condition Reports specified
condition status during a
running simulation.

 Analysis

50 Display Outputs data on screen
during a simulation.

 Analysis

Interface

51 Alert Displays on screen a
message when Conditon
is met.

 Analysis

Interface

52 Label Labels model objects on
view.

 Interface

53 Output Specifies which data to be
saved as output into
results files.

 Interface

54 Output Map Calculates and displays a
contour of the events for
analysis.

Can only output
once simulation has
finished.

Analysis

Visualisation

55 Scale Sets up the colour codes
to display over a range of
result values.

Used for colouring
Output Map.

Analysis

Interface

NAVIGATION
OBJECTS

Features used for visualising the simulation.

56 Viewpoint Saves a specific view of
the model.

 Visualisation

57 Viewpath Connects Viewpoint
objects in a sequence
over time.

 Visualisation

206

No Entity Function Notes Feature
category

BI

RENDERING
OBJECTS

Features used for improving the visual aspect of the simulation.

58 Clipping
Plane

Hides or shows parts of
the model.

 Visualisation

Interface

59 Light Adds lighting effects
across the model for more
realistic views.

 Visualisation

60 Material Adds a material effect to
model geometry.

 Visualisation

61 Texture Map Adds images to 3D
objects for more realistic
representations.

 Visualisation

207

Table A-4. BuildingEXODUS concepts

No Entity Function Notes Feature
category

BI

GEOMETRY Features which define the building environment.

1 Node Basic unit used for
constructing geometry in
Exodus.

 Geometry

2 Free Space Node Models free space. Geometry

3 Boundary Node Models free space but
alters on agent walking
speed.

I created for
nodes near
boundary
lines.

Geometry

4 Seat Node Models seats/chairs. Geometry

5 Stair Node Models one lane on one
riser of a staircase.

 Geometry

6 Discharge Node Manipulates agent's
movement near Internal
Exits.

Used in
conjunction
with Attractor
Node.

Geometry

7 Attractor Node Manipulates agent's
movement near Internal
Exits.

Used in
conjunction
with Discharge
Node.

Geometry

8 Landing Models free space on
staircase landings.

 Geometry

9 Census Region Enables extraction of
individual flow data.

Does not
impact agent
behaviour.

Geometry

Analysis

10 Internal Exit Models an exit location
within the environment.

Represents
doors within a
department

Geometry

11 Source Node Generates agents
throughout the simulation.

 Geometry

12 Redirection Node Models decision nodes for
circulating agents.

Is used for
agent
itineraries.

Geometry

13 Direction Node Controls the direction of an
agent's movement.

 Geometry x

14 External Exit Node Ultimate exit point out of
the simulation environment.

 Geometry

15 Transit Node Represents more
comprehensively lifts,
staircases, corridors, etc.

 Geometry

16 Stair Transit Node Models stairs. Geometry

17 Escalator Transit
Node

Models escalators, Geometry

18 Lift Shaft Opening
Transit Node

Models opening areas
around lift shafts.

 Geometry

19 Corridor Transit
Node

Models connection
between horizontal spaces.

Has no vertical
component.

Geometry

20 Travelator Transit
Node

Models a travelator with a
specified direction.

 Geometry

21 Metered Gate
Transit Node

Models metered barriers or
ticked machines.

 Geometry

208

No Entity Function Notes Feature
category

BI

22 Arc Links node together,
enabling agent movement.

Restricts flow
of agents.

Geometry

23 Line Represent linear geometry
objects, usually boundaries
around free space.

 Geometry

24 Census Line Monitors flow of agents
over a given point.

 Geometry

Analysis

25 Polygon Represents more complex
shapes formed from Lines.

 Geometry

26 Text Label Label objects over the
view.

 Interface

27 Sign Represents real-life
signage within the
environment, which guide
the agents.

Alters agent
behaviour.

Geometry x

28 Primary Link Used to link floors. Each Primary
is assigned a
Secondary
Link.

Geometry

29 Secondary Link Used to link floors. Each
Secondary is
assigned a
Primary Link.

Geometry

30 Ruler Used to measure model
geometry.

 Interface

31 Floor Represents a floor/level
within the environment.

Not clear if is
set up in
specific object.

Geometry

Interface

POPULATION Features which define the agents within the simulation.

32 Person/Occupant Collection of attribute used
to describe a person.

 Agent

33 Group Collection of
Persons/Occupants.

 Agent

34 Sub-Population Collection of Groups Agent

35 Population Collection of Sub-
Populations, making up all
the agents.

 Agent

36 Occupant Itinerary
List

Defines a pre-defined list of
tasks for Populations.

 Agent

Event

x

37 Occupant Exit
Knowledge

Defines how many exits
are known to agents.

 Agent x

38 Local Familiarity Defines an agent's level of
familiarity to the
environment.

 Agent

39 Attribute Defines specific values
which model agent
attributes.

Age, sex,
speed, etc.

Agent

40 Range Defines a range of values. Mathematical

41 Distribution
Curves

Distributes values within a
range.

 Mathematical

SCENARIO Features which describe a fire scenario.

42 Hazzard Models smoke, heat,
irritation and toxic gases.

 Event x

209

No Entity Function Notes Feature
category

BI

Geometry

43 Hazzard Evolution Models the evolution of
hazzards over time.

 Event x

44 Zone Represents specific areas
within the model made
from multiple nodes.

 Geometry

45 Fire Scenario Link Hazzards to Zones
over time.

 Event x

46 Response Zone A Zone which alters the
behaviour of agents.

Can be used
to delay or
trigger agent
evacuation.

Event

Geometry

x

47 Response Time Specifies the time when
agents evacuate for a
Response Zone.

 Event

48 Compartment
Zone

A collection of nodes which
acts as a separate
compartment.

 Geometry

Analysis

49 Obstacle Zone Dynamically alters the
walkable environment for
agents.

Is defined by
specific times.

Event

Geometry

x

50 Exit Attractiveness Models how likely an exit is
chosen by agents.

 Mathematical

SIMULATION Features which enable the animation and visualisation of a
simulation.

51 Simulation Models a specifically set
scenarios to run for
calculation.

 Event

Visualisation

52 Graph Plots simulation data for
user interpretation.

 Analysis

Visualisation

53 Contour Visualises in colour codes
simulation data, over
simulation geometry

 Analysis

Visualisation

54 Zone Contour Visualises in colour codes
smoke data.

 Analysis

Visualisation

55 Interrogation
Objects

Allows the users to retrieve
data in relation to
geometry, agents or other
events over simulation
time.

Not clear if is
set up in
specific
objects.

Analysis

210

Table A-5. Simulex concepts

No Entity Function Notes Feature
category

Behaviour
input

BUILDING Features which define the building environment.

1 Floor Represents the
walkable area over
which agents can
travel on.

It is defined by
the walls
surrounding it,
where the wall
lines represent
the limits.

Geometry

2 Staircase Allows agents to
travel across from
floor to floor.

 Geometry

3 Link Connects a Floor to
a Staircase

 Geometry

4 Exit Final exit point for
the building

 Geometry

5 DistMap Overlays a color-
coded mesh
showing the
distance from any
point to nearest
exit.

 Analysis

ROUTES Features which specify how agents should evacuate the
building.

6 Most Remote Agents take the
highest distance
route out of the
model.

 Event

7 Test Position Places an agent on
the specified
location and
simulates it walk
out to nearest exit.

 Event

8 Stop Testing Stops all routes
testing procedures.

 Event

PEOPLE Features which define the building population.

9 Person Represents an
individual agent
within the model.

 Agent

10 Group Defines a group of
agents, with a
number and a
concentration over
an area.

 Agent

11 Characteristics Defines the
physical properties
of agents.

 Agent

SIMULATE Features for running and visualising the simulation

12 Being Start the simulation
process.

 Visualisation

13 Playback Playback a
simulation process.

 Visualisation

211

No Entity Function Notes Feature
category

Behaviour
input

14 Playback 3D Playback a
simulation process
in 3D.

 Visualisation

15 Pause/Stop Stops a simulation
run.

 Visualisation

Table A-6. Summary of common CST concepts from previous tables

Tool Geometry Agent Event Analysis Visualisation Interface Mathematical

MassMotion 13 2 13 6 5 3 0

Pedestrian Dynamics 22 3 9 7 1 1 0

STEPS 14 4 11 9 15 3 5

Exodus 31 8 7 4 0 2 3

Simulex 4 3 3 1 4 0 0

212

 Appendix B – Developed ontologies

This section outlines the developed ontologies using diagrams and shows the ranges of

object and data properties as they appear in the Protégé software.

Additionally, is shows the alignment of concepts between certain ontologies, and other

resources which were used to define the ontologies as a reference.

213

Crowd Simulation Scenario (CSS) ontology

Figure B-1. CSS ontology classes and object properties connecting them

214

Figure B-2. CSS ontology metrics

Figure B-3. CSS ontology object properties

215

Figure B-4. CSS ontology data properties

216

Feedback Analysis (FBA) ontology

Figure B-5. FBA ontology classes and object properties connecting them

217

Figure B-6. FBA ontology metrics

Figure B-7. FBA ontology object properties

218

Figure B-8. FBA ontology data properties

219

UK Spaces Occupant Capacity (UKSOC) ontology

Table B-1. Spaces occupant capacities (adapted from The Building Regulations 2015
Appendix C3 – Methods of measurement)

Table C1 Floor space factors (1)

Type of accommodation (2)(3) Factor (m2/pers)

1 Standing spectator areas, bar areas (within 2m of serving point)
similar refreshment areas

0.3

2 Amusement arcade, assembly hall (including a general purpose
place of assembly), bingo hall, club, crush hall, dance floor or hall,
venue for pop concert and similar events and bar areas without
fixed seating

0.5

3 Concourse, queuing area or shopping mall (4)(5) 0.7

4 Committee room, common room, conference room, dining room,
licensed betting office (public area), lounge or bar (other than in 1
above), meeting room, reading room, restaurant, staff room or
waiting room (6)

1

5 Exhibition hall or studio (film, radio, television, recording) 1.5

6 Skating rink 2

7 Shop sales area (7) 2

8 Art gallery, dormitory, factory production area, museum or
workshop

5

9 Office 6

10 Shop sales area (8) 7

11 Kitchen or library 7

12 Bedroom or study-bedroom 8

13 Bed-sitting room, billiards or snooker room or hall 10

14 Storage and warehousing 30

15 Car park 2/pers

N
o

te
s

1. As an alternative to using the values in the table, the floor space factor may be
determined by reference to actual data taken from similar premises. Where appropriate,
the data should reflect the average occupant density at a peak trading time of year.

2. Where accommodation is not directly covered by the descriptions given, a reasonable
value based on a similar use may be selected.

3. Where any part of the building is to be used for more than one type of
accommodation, the most onerous factor(s) should be applied. Where the building
contains different types of accommodation, the occupancy of each different area should
be calculated using the relevant space factor.

4. Refer to section 5 of BS 5588-10:1991 Code of practice for shopping complexes for
detailed guidance on the calculation of occupancy in common public areas in shopping
complexes.

5. For detailed guidance on appropriate floor space factors for concourses in sports
grounds refer to “Concourses” published by the Football. Licensing Authority (ISBN: 0
95462 932 9).

6. Alternatively the occupant capacity may be taken as the number of fixed seats
provided, if the occupants will normally be seated.

7. Shops excluding those under item 10, but including - supermarkets and department
stores (main sales areas), shops for personal services such as hairdressing and shops
for the delivery or collection of goods for cleaning, repair or other treatment or for
members of the public themselves carrying out such cleaning, repair or other treatment.

8. Shops (excluding those in covered shopping complexes but including department
stores) trading predominantly in furniture, floor coverings, cycles, prams, large domestic
appliances or other bulky goods, or trading on a wholesale self-selection basis (cash
and carry).

220

Figure B-9. UKSOC ontology with main classes and individuals

221

Figure B-10. UKSOC ontology classes and object properties connecting them

222

Figure B-11. UKSOC ontology metrics

Figure B-12. UKSOC ontology SWRL rules matching individuals of specific classes to factors

223

MassMotion (MM) ontology

Figure B-13. MM ontology with main upper classes and object properties connecting them

224

Figure B-14. MM ontology object properties

225

Figure B-15. MM ontology data properties

Figure B-16. MM ontology metrics

226

Alignment between UKSOC and Uniclass2015 ontologies

The alignment between UKSOC and the Uniclass2015 classification system is based on

matching spaces with identical or similar names, as is shown in Table B-2 below. Some

comments were made outlining conflicts and/or relationship better suited for integration

(subclass or equivalency).

Table B-2. Aligned common spaces between UKSOC categories and Uniclass categories
with comments

C
a

te
g
o

ry

N
o

UKSOC UNICLASS 2015 Note

Type of space Uniclass equivalent Uniclass categories

Description Code Title Sub-group Title

1

1
Standing
spectator areas

SL_90_20_83 Spectator standing
areas

Common spaces equivalency

2
Bar areas
(within 2m of
serving point)

SL_40_20_06 Bars Dining spaces subclasses, but
ambiguous with
12 and 22

2

4
Amusement
arcade

SL_40_05_03 Amusement
arcades

Amusement spaces equivalency

5 Assembly hall SL_25_10_05 Assembly halls Educational spaces equivalency

6 Bingo hall SL_40_05_43 Indoor play spaces Amusement spaces subclass

7
Club SL_40_60_21 Dance floors Performing arts

spaces
subclass

8 Crush hall SL_90_10_27 Entrance halls Circulation spaces subclass

9
Dance floor SL_40_60_21 Dance floors Performing arts

spaces
equivalency

10
Dance hall SL_40_60_21 Dance floors Performing arts

spaces
subclass

11
Venue for pop
concert and
similar events

SL_90_20_05 Audience standing
areas

Common spaces equivalency

12
Bar areas
without fixed
sitting

SL_40_20_06 Bars Dining spaces subclasses, but
ambiguous with
2 and 22

3

13
Concourse SL_80_10_16 Concourses Loading and

embarkation
spaces

equivalency

14 Queuing area SL_90_20_69 Queuing areas Common spaces equivalency

15

Shopping mall
(4) (5)

 no direct
equivalent

SL_20_50_12 Checkout points Commercial spaces category about
queuing areas

4

16
Committee
room

SL_20_70_15 Court rooms Judicial spaces equivalency

17 Common room SL_25_10_15 Common rooms Educational spaces equivalency

18
Conference
room

SL_25_70_13 Conference rooms Information spaces equivalency

19

Dining room SL_40_20_27 Enclosed dining
areas

Dining spaces subclass,
equivalent to
Restaurant

SL_40_20_28 Food courts Dining spaces subclass

227

C
a

te
g
o

ry

N
o

UKSOC UNICLASS 2015 Note

Type of space Uniclass equivalent Uniclass categories

Description Code Title Sub-group Title

20
Licensed
betting office
(public area)

SL_90_20_89 Ticket offices Common spaces subclass

21 Lounge SL_90_20_96 Waiting rooms Common spaces equivalency

22
Bar (other than
in 1 above)

SL_40_20_06 Bars Dining spaces subclasses, but
ambiguous with
2 and 12

23
Meeting room SL_20_15_50 Meeting rooms Administrative

spaces
equivalency

24 Reading room SL_25_70_72 Reading rooms Information spaces equivalency

25

Restaurant SL_40_20_28 Food courts Dining spaces subclass,
equivalent to
Dining room

SL_40_20_27 Enclosed dining
areas

Dining spaces subclass

SL_40_20_59 Outdoor dining
areas

Dining spaces subclass

26 Staff room SL_90_20_08 Breakout spaces Common spaces equivalency

27
Waiting room SL_90_20_96 Waiting rooms Common spaces equivalency,

equivalent of
Lounge

5

28
Exhibition hall SL_25_50 Exhibition spaces Exhibition spaces subclass, but

ambiguity with
Museums

29

Studio (film,
radio,
television,
recording)

SL_75_10 Communications
spaces

Communications
spaces

subclass

SL_40_60_78 Sound recording
studios

Performing arts
spaces

equivalency

SL_75_10_73 Radio studios Communications
spaces

equivalency

SL_75_10_93 Television studios Communications
spaces

equivalency

6 30
Skating rink SL_42_95_40 Ice skating rinks Winter sports

spaces
equivalency

7 31

Shop sales
area (7)

SL_20_50_22 Department store
shop floors

Commercial spaces subclass

SL_20_50_85 Supermarket shop
floors

Commercial spaces subclass

SL_20_50_51 Market stalls Commercial spaces subclass

8

32 Art gallery SL_25_50_42 Internal galleries Exhibition spaces subclass

33 Dormitory SL_45_10_24 Dormitories Living spaces equivalency

34
Factory
production area

SL_30_50 Manufacturing
spaces

Manufacturing
spaces

equivalency

35 Museum SL_25_50 Exhibition spaces Exhibition spaces subclass

36
Workshop SL_30_60_50 Maintenance

workshops
Cleaning and
maintenance
spaces

subclass

9 37

Office SL_20_15_59 Offices Administrative
spaces

subclass

SL_20_55_45 Letter sorting
offices

Postal
communications
spaces

subclass

SL_20_55_60 Parcel sorting
offices

Postal
communications
spaces

subclass

228

C
a

te
g
o

ry

N
o

UKSOC UNICLASS 2015 Note

Type of space Uniclass equivalent Uniclass categories

Description Code Title Sub-group Title

SL_20_85_80 Security offices Security spaces subclass

SL_45_10_16 Concierge offices Living spaces subclass

SL_80_10_60 Passport control
offices

Loading and
embarkation
spaces

subclass

10 38

Shop sales
area (8)

SL_20_50_72 Retail kiosks Commercial spaces subclass

SL_20_50_36 Hair and beauty
salons

Commercial spaces subclass

SL_20_50_29 Financial and
professional
services outlets

Commercial spaces subclass

SL_20_50_32 Food and drink
outlets

Commercial spaces subclass

SL_20_50_87 Tattoo and
piercing parlours

Commercial spaces subclass

11
39

Kitchen SL_35_60_56 Non-domestic
kitchens

Food management
spaces

SL_45_10_23 Domestic kitchens Food management
spaces

SL_45_10_44 Kitchen-dining
rooms

Food management
spaces

40 Library SL_25_70_47 Library rooms Information spaces equivalency

12
41

Bedroom SL_45_10_09 Bedrooms Living spaces subclass

SL_45_10_57 Nursing home
bedrooms

Living spaces subclass

42 Study-bedroom SL_45_10_08 Bedroom-studies Living spaces subclass

13

43
Bed-sitting
room

SL_45_10_08 Bedroom-studies Living spaces subclass

44
Billiards room SL_42_40_79 Snooker, billiards

and pool halls
Indoor activity
spaces

subclass

45
Billiards hall SL_42_40_79 Snooker, billiards

and pool halls
Indoor activity
spaces

subclass

46
Snooker room SL_42_40_79 Snooker, billiards

and pool halls
Indoor activity
spaces

subclass

47
Snooker hall SL_42_40_79 Snooker, billiards

and pool halls
Indoor activity
spaces

subclass

14

48
Storage SL_90_50 Storage spaces Storage spaces Equivalency,

entire sub-
group

49
Warehousing SL_30_90 Warehousing and

distribution spaces
Warehousing and
distribution spaces

Equivalency,
entire sub-
group

15 50

Car park SL_80_45_40 Indoor vehicle
parking spaces

Highway storage
and maintenance
spaces

subclass

SL_80_45_59 Outdoor vehicle
parking spaces

Highway storage
and maintenance
spaces

subclass

229

Table B-3. Alignment SWRL rules between the UKSOC and Uniclass2015 ontology. Implements Table B-2

No Rule name SWRL code

1 CF-Category_1-01-SpectatorStandingAreas
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^

swrlb:matches(?id, "SL_90_20_83") -> uksoc:hasFactor(?spaceClass, uksoc:factor1)

2 CF-Category_1-02-BarsServingAreas
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^

swrlb:matches(?id, "SL_40_20_06") -> uksoc:hasFactor(?spaceClass, uksoc:factor1)

3 CF-Category_2-01-AmusementArcades
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^

swrlb:matches(?id, "SL_40_05_03") -> uksoc:hasFactor(?spaceClass, uksoc:factor2)

4 CF-Category_2-02-AssemblyHalls
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^

swrlb:matches(?id, "SL_25_10_05") -> uksoc:hasFactor(?spaceClass, uksoc:factor2)

5 CF-Category_2-03-IndoorPlaySpaces
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^

swrlb:matches(?id, "SL_40_05_43") -> uksoc:hasFactor(?spaceClass, uksoc:factor2)

6 CF-Category_2-04-DanceFloor
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^

swrlb:matches(?id, "SL_40_60_21") -> uksoc:hasFactor(?spaceClass, uksoc:factor2)

7 CF-Category_2-05-EntranceHalls
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^

swrlb:matches(?id, "SL_90_10_27") -> uksoc:hasFactor(?spaceClass, uksoc:factor2)

8 CF-Category_2-06-AudienceStandingAreas
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^

swrlb:matches(?id, "SL_90_20_05") -> uksoc:hasFactor(?spaceClass, uksoc:factor2)

9

CF-Category_3-01-Concourses

uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^

230

No Rule name SWRL code

swrlb:matches(?id, "SL_80_10_16") -> uksoc:hasFactor(?spaceClass, uksoc:factor3)

10 CF-Category_3-02-QueuingAreas
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^

swrlb:matches(?id, "SL_90_20_69") -> uksoc:hasFactor(?spaceClass, uksoc:factor3)

11 CF-Category_3-03-CheckoutPoints
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^

swrlb:matches(?id, "SL_20_50_12") -> uksoc:hasFactor(?spaceClass, uksoc:factor3)

12 CF-Category_4-01-CourtRooms
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^

swrlb:matches(?id, "SL_20_70_15") -> uksoc:hasFactor(?spaceClass, uksoc:factor4)

13 CF-Category_4-02-CommonRooms
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^

swrlb:matches(?id, "SL_25_10_15") -> uksoc:hasFactor(?spaceClass, uksoc:factor4)

14 CF-Category_4-03-ConferenceRoom
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^

swrlb:matches(?id, "SL_25_70_13") -> uksoc:hasFactor(?spaceClass, uksoc:factor4)

15 CF-Category_4-04-TicketOffices
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^

swrlb:matches(?id, "SL_90_20_89") -> uksoc:hasFactor(?spaceClass, uksoc:factor4)

16 CF-Category_4-05-WaitingRooms
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^

swrlb:matches(?id, "SL_90_20_96") -> uksoc:hasFactor(?spaceClass, uksoc:factor4)

17 CF-Category_4-06-UnfixedSeatingBarAreas
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^

 swrlb:matches(?id, "SL_40_20_06") -> uksoc:hasFactor(?spaceClass, uksoc:factor4)

18

CF-Category_4-07-MeetingRooms

uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^

swrlb:matches(?id, "SL_20_15_50") -> uksoc:hasFactor(?spaceClass, uksoc:factor4)

231

No Rule name SWRL code

19 CF-Category_4-08-ReadingRooms
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^

swrlb:matches(?id, "SL_25_70_72") -> uksoc:hasFactor(?spaceClass, uksoc:factor4)

20 CF-Category_4-09-EnclosedDiningAreas
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^

swrlb:matches(?id, "SL_40_20_27") -> uksoc:hasFactor(?spaceClass, uksoc:factor4)

21 CF-Category_4-10-FoodCourts
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^

swrlb:matches(?id, "SL_40_20_28") -> uksoc:hasFactor(?spaceClass, uksoc:factor4)

22 CF-Category_4-11-OutdoorDiningAreas
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^

swrlb:matches(?id, "SL_40_20_59") -> uksoc:hasFactor(?spaceClass, uksoc:factor4)

23 CF-Category_4-12-BreakoutSpaces
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^

swrlb:matches(?id, "SL_90_20_08") -> uksoc:hasFactor(?spaceClass, uksoc:factor4)

24 CF-Category_4-13-BreakoutSpaces
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^

swrlb:matches(?id, "SL_90_20_08") -> uksoc:hasFactor(?spaceClass, uksoc:factor4)

25 CF-Category_5-01-ExhibitionHall
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^
swrlb:containsIgnoreCase(?id, "SL_25_50") -> uksoc:hasFactor(?spaceClass, uksoc:factor5)

26 CF-Category_5-02-RadioStudios
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^

swrlb:matches(?id, "SL_75_10_73") -> uksoc:hasFactor(?spaceClass, uksoc:factor5)

27

CF-Category_5-03-RecordingStudios

uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^

swrlb:matches(?id, "SL_40_60_78") -> uksoc:hasFactor(?spaceClass, uksoc:factor5)

28 CF-Category_5-04-TelevisionStudios uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^

232

No Rule name SWRL code

swrlb:matches(?id, "SL_75_10_93") -> uksoc:hasFactor(?spaceClass, uksoc:factor5)

29 CF-Category_6-01-IceSkatingRinks
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^

swrlb:matches(?id, "SL_42_95_40") -> uksoc:hasFactor(?spaceClass, uksoc:factor6)

30 CF-Category_6-02-DepartmentStoreShopFloors
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^

swrlb:matches(?id, "SL_20_50_22") -> uksoc:hasFactor(?spaceClass, uksoc:factor6)

31 CF-Category_6-03-SupermarketShopFloors
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^

swrlb:matches(?id, "SL_20_50_85") -> uksoc:hasFactor(?spaceClass, uksoc:factor6)

32 CF-Category_6-04-MarketStalls
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^

swrlb:matches(?id, "SL_20_50_51") -> uksoc:hasFactor(?spaceClass, uksoc:factor6)

33 CF-Category_7-01-ExhibitionHalls
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^
swrlb:containsIgnoreCase(?id, "SL_25_50") -> uksoc:hasFactor(?spaceClass, uksoc:factor7)

34 CF-Category_7-02-InternalGalleries
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^

swrlb:matches(?id, "SL_25_50_42") -> uksoc:hasFactor(?spaceClass, uksoc:factor7)

35 CF-Category_7-03-Dormitories
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^

swrlb:matches(?id, "SL_42_10_24") -> uksoc:hasFactor(?spaceClass, uksoc:factor7)

36 CF-Category_7-04-ManufacturingSpaces
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^
swrlb:containsIgnoreCase(?id, "SL_30_50") -> uksoc:hasFactor(?spaceClass, uksoc:factor7)

37 CF-Category_7-05-MaintenanceWorkshops
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^

swrlb:matches(?id, "SL_30_60_50") -> uksoc:hasFactor(?spaceClass, uksoc:factor7)

38 CF-Category_8-01-Offices uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^

233

No Rule name SWRL code

swrlb:matches(?id, "SL_20_15_59") -> uksoc:hasFactor(?spaceClass, uksoc:factor8)

39 CF-Category_8-02-LetterSortingOffices
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^

swrlb:matches(?id, "SL_20_55_45") -> uksoc:hasFactor(?spaceClass, uksoc:factor8)

40 CF-Category_8-03-ParcelSortingOffices
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^ swrlb:matches(?id,
"SL_20_55_60") -> uksoc:hasFactor(?spaceClass, uksoc:factor8)

41 CF-Category_8-04-SecurityOffices
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^ swrlb:matches(?id,
"SL_20_85_80") -> uksoc:hasFactor(?spaceClass, uksoc:factor8)

42 CF-Category_8-05-ConciergeOffices
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^ swrlb:matches(?id,
"SL_45_10_16") -> uksoc:hasFactor(?spaceClass, uksoc:factor8)

43 CF-Category_8-06-PassportControlOffices
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^ swrlb:matches(?id,
"SL_80_10_60") -> uksoc:hasFactor(?spaceClass, uksoc:factor8)

44 CF-Category_9-01-FoodManagementSpaces
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^
swrlb:containsIgnoreCase(?id, "SL_35_60") -> uksoc:hasFactor(?spaceClass, uksoc:factor9)

45 CF-Category_9-02-LibraryRooms
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^ swrlb:matches(?id,
"SL_25_70_47") -> uksoc:hasFactor(?spaceClass, uksoc:factor9)

46 CF-Category_9-03-FinancialAndProfessionalServicesOutlets
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^ swrlb:matches(?id,
"SL_20_50_29") -> uksoc:hasFactor(?spaceClass, uksoc:factor9)

47 CF-Category_9-04-FoodAndDrinksOutlets
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^ swrlb:matches(?id,
"SL_20_50_32") -> uksoc:hasFactor(?spaceClass, uksoc:factor9)

48 CF-Category_9-05-HairAndBeautySalons
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^ swrlb:matches(?id,
"SL_20_50_36") -> uksoc:hasFactor(?spaceClass, uksoc:factor9)

49 CF-Category_9-06-RetailKiosks
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^ swrlb:matches(?id,
"SL_20_50_72") -> uksoc:hasFactor(?spaceClass, uksoc:factor9)

234

No Rule name SWRL code

50 CF-Category_9-07-TatooAndPiercingParlours
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^ swrlb:matches(?id,
"SL_20_50_87") -> uksoc:hasFactor(?spaceClass, uksoc:factor9)

51 CF-Category_10-01-Bedrooms
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^ swrlb:matches(?id,
"SL_45_10_09") -> uksoc:hasFactor(?spaceClass, uksoc:factor10)

52 CF-Category_10-02-NursingHomBedrooms
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^ swrlb:matches(?id,
"SL_45_10_57") -> uksoc:hasFactor(?spaceClass, uksoc:factor10)

53 CF-Category_10-03-BedroomStudies
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^ swrlb:matches(?id,
"SL_45_10_08") -> uksoc:hasFactor(?spaceClass, uksoc:factor10)

54 CF-Category_11-01-SnookerBilliardAndPoolHalls
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^ swrlb:matches(?id,
"SL_42_40_79") -> uksoc:hasFactor(?spaceClass, uksoc:factor11)

55 CF-Category_12-01-StorageSpaces
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^
swrlb:containsIgnoreCase(?id, "SL_90_50") -> uksoc:hasFactor(?spaceClass, uksoc:factor12)

56 CF-Category_12-02-WarehousingAndDistributionSpaces
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^
swrlb:containsIgnoreCase(?id, "SL_30_90") -> uksoc:hasFactor(?spaceClass, uksoc:factor12)

235

 Appendix C – SPARQL queries

Table C-1. SPARQL queries operating to IfcOwl

SPARQL QUERIES

Link for IFC schema concepts:
http://www.buildingsmart-tech.org/ifc/IFC2x3/TC1/html/
Documentation reference for geometry construction: BS ISO 10303-42:1994

Q-IFC-1, Find objects

Question Which are the instances with an IFC identifier which are also MassMotion
instances?

Function

Finds all IfcOwl individuals from the IFC model, which have a unique identifier.
Narrows the answers down using a filter, which limits those found to also be a
MassMotion class.

IFC concepts of interest:
IfcIdentifier

Requires
reasoning?
YES

Q-IFC-2, Get IFC Types

Question What are the IFC types of individuals with unique identifiers and any IFC name
labels?

Function Find the specific class of each object at the lowest level in the hierarchy tree which

is part of the IfcOwl graph and optionally finds their labels (names or long names)

IFC concepts of interest:
IfcIdentifier, IfcLabel

Requires
reasoning?
NO

http://www.buildingsmart-tech.org/ifc/IFC2x3/TC1/html/

236

Q-IFC-3, Get IFC Storeys

Question What is the elevation and identifier of each IfcBuildingStorey class instance?

Function Finds all storeys within the model and retrieves their elevations and its IFC

identifier to match it in memory.

IFC concepts of interest:
IfcIdentifier, IfcBuildingStorey

Requires
reasoning?
NO

Q-IFC-4, Find inhabited spaces

Question What are the shape definition types of each IFC object?

Function Finds those IFC objects which have a shape, or a geometric representation within

the model. Does not extract the shape, only the type of basic shape definition it is
constructed from, according to the IFC schema specification.

IFC concepts of interest:
IfcIdentifier, IfcProduct,
IfcProductDefinitionShape, IfcRepresentation, IfcSweptAreaSolid

Requires
reasoning?
NO

237

Q-IFC-5, Get IFC Placements

Question What are the relative coordinates of each geometric IFC object relative to its
parent?

Function Retrieves the coordinates in (x, y, z) of each IFC object with a geometric

representation within the model. These coordinates are relative to its parent object.
The parent of each object is also found in this query and then matched in memory
to find the absolute position.

IFC concepts of interest:
IfcIdentifier, IfcProduct,
IfcLocalPlacement, IfcObjectPlacement,
IfcAxis2Placement3D,
IfcCartesianPoint,
IfcDirection

Requires
reasoning?
NO

238

Q-IFC-6, Get IFC Placements (spaces)

Question What are the relative coordinates of IfcSpace instances relative to its parent?

Function Retrieves the coordinates in (x, y, z) of each IFC Space object with a geometric

representation within the model. These coordinates are relative to its parent object.
The query is similar to 5, and it accounts for some spaces having a different
definition of relative position coordinates, stored in the IfcExtrudedAreaSolid
concept.

IFC concepts of interest:
IfcIdentifier, IfcProduct,
IfcLocalPlacement, IfcObjectPlacement,
IfcAxis2Placement3D,
IfcCartesianPoint,
IfcSpace, IfcDirection

Requires
reasoning?
NO

239

Q-IFC-7, Get IFC Placements (mapped)

Question What are the relative coordinates of IFC Columns relative to its parent?

Function Retrieves the coordinates in (x, y, z) of each IFC Column object with a geometric

representation within the model. These coordinates are relative to its parent object.
The query is similar to 5 and 6, and it accounts for some columns having a different
definition of relative position coordinates, stored in the IfcRepresentationMap
concept.

IFC concepts of interest:
IfcIdentifier, IfcProduct,
IfcLocalPlacement, IfcObjectPlacement,
IfcAxis2Placement3D,
IfcRepresentationMap,
IfcCartesianPoint,
IfcColumn, IfcDirection

Requires
reasoning?
NO

240

Q-IFC-8, Get IFC Rectangle shapes

Question Which are the instances with unique identifiers which have a rectangular shape
definition?

Function Finds the elements which are defined as rectangular in nature and retrieve the

basic values to construct its shape.

IFC concepts of interest:
IfcIdentifier, IfcProduct,
IfcRepresentation, IfcProductRepresentation,
IfcSweptAreaSolid,
IfcRectangleProfileDefinition
IfcAxis2Placement2D,
IfcCartesianPoint,
IfcDirection

Requires
reasoning?
NO

241

Q-IFC-9, Get IFC Rectangle shapes (mapped)

Question Which are the instances with unique identifiers which are defined as rectangular
based on a mapped shape?

Function Finds the elements which are defined as rectangular in nature and retrieve the

basic values to construct its shape. Is nearly identical to 8, however a mapped
shapes in IFC belongs to one object which can be copied by other identical objects,
to save space.

IFC concepts of interest:
IfcIdentifier, IfcProduct,
IfcRepresentation, IfcProductRepresentation,
IfcSweptAreaSolid,
IfcRectangleProfileDefinition
IfcAxis2Placement2D,
IfcCartesianPoint,
IfcDirection,
IfcMappedItem

Requires
reasoning?
NO

242

Q-IFC-10, Get IFC Arbitrary shapes

Question Which are the instances with unique identifiers that have an arbitrary shaped
definition?

Function Identifies objects with an arbitrary shape definition and retrieves the first point and

its coordinates, which is part of a finite list of points used to define an arbitrary
perimeter.

IFC concepts of interest:
IfcIdentifier, IfcProduct,
IfcRepresentation, IfcProductRepresentation,
IfcSweptAreaSolid,
IfcArbitraryClosedProfileDefinition,
IfcPolyline,
IfcAxis2Placement3D,
IfcCartesianPoint,
IfcDirection,

Requires
reasoning?
NO

243

Q-IFC-1, Get Arbitrary shapes (mapped)

Question Which are the instances with unique identifiers which are defined by an arbitrary
shape, mapped to a source object?

Function Identifies objects with an arbitrary shape definition and retrieves the first point and

its coordinates, which is part of a finite list of points used to define an arbitrary
perimeter. This is nearly identical to 10, however the geometry is mapped to
another source object, for storage reasons.

IFC concepts of interest:
IfcIdentifier, IfcProduct,
IfcRepresentation, IfcProductRepresentation,
IfcSweptAreaSolid,
IfcArbitraryClosedProfileDefinition,
IfcPolyline,
IfcAxis2Placement3D,
IfcCartesianPoint,
IfcDirection,
IfcMappedItem

Requires
reasoning?
NO

244

Q-IFC-12, Get Polyline first point

Question What are the instances with unique identifiers which are defined with a polyline
shape?

Function Identifies objects represented by polylines and retrieves the first point from a list of

segments which define a curve made from n-1 linear segments.

IFC concepts of interest:
IfcIdentifier, IfcProduct,
IfcRepresentation, IfcProductRepresentation,
IfcPolyline

Requires
reasoning?
NO

Q-IFC-13, Get Polyline next points

Question What are the coordinate points of the next point on a polyline?

Function It is used in conjuction with 12 to retrieve polyline points from a nested list. It

iteratively goes through all the points and retrieves their coordinates in (x,y,z). A
variable “LIST_URI” has to be provided for each object defined by a polyline.

IFC concepts of interest:
IfcCartesianPoint

Requires
reasoning?
NO

245

Q-IFC-14, Get IFC BREP shapes

Question Which are the instances with unique identifiers that are represented by faceted
breps and polyloops?

Function Finds objects which have a geometry represented by breps faces and polylines.

Each face is composed of polyline, and the entire object is composed by several
faces. Retrieves the URI for the polyloops, which are queried at 16.

IFC concepts of interest:
IfcIdentifier, IfcProduct,
IfcRepresentation, IfcProductRepresentation,
IfcManifoldSolidBrep,
IfcFace, IfcPolyLoop

Requires
reasoning?
NO

Q-IFC-15, Get IFC BREP shapes (mapped)

Question Which are the instances with unique identifiers that have brep shapes mapped to
other source objects?

Function Finds objects which have a geometry represented by breps faces and polylines.

Similar to 14, however the brep shape belongs to a source object to which other
objects map to. Each face is composed of polyline, and the entire object is

246

composed by several faces. Retrieves the URI for the polyloops, which are queried
at 16.

IFC concepts of interest:
IfcIdentifier, IfcProduct,
IfcRepresentation, IfcProductRepresentation,
IfcManifoldSolidBrep,
IfcFace, IfcPolyLoop,
IfcMappedItem

Requires
reasoning?
NO

Q-IFC-16, Get Polyloop next points

Question What are the coordinates of the next point on the specified polyloop?

Function It is used in conjunction with 14 or 15 to retrieve polyloop points from a nested list.

It iteratively goes through all the points and retrieves their coordinates in (x,y,z). A
variable “LIST_URI” has to be provided for each object defined by a polyloop.

IFC concepts of interest:
IfcPolyLoop, IfcCartesianPoint

Requires
reasoning?
NO

Q-IFC-17, Get IFC Extrusions

Question Which are the instances with unique identifiers that have extrusions for their
defined geometry shape?

Function Finds objects which have a representation in 3D, usually described by an extrusion

length and direction from their original 2D shape.

247

IFC concepts of interest:
IfcIdentifier, IfcProduct,
IfcRepresentation, IfcProductRepresentation,
IfcSweptAreaSolid,
IfcExtrudedAreaSolid, IfcDirection,
IfcCartesianPoint

Requires
reasoning?
NO

Q-IFC-18, Get IFC Extrusions (mapped)

Question Which are the instances with unique identifiers that have extrusions for their
mapped geometry shape?

Function Finds objects which have a representation in 3D, usually described by an extrusion

length and direction from their original 2D shape. It is nearly identical to 16,
however these objects use a different source object to copy its shape.

IFC concepts of interest:
IfcIdentifier, IfcProduct,
IfcRepresentation, IfcProductRepresentation,
IfcSweptAreaSolid,
IfcExtrudedAreaSolid, IfcDirection,
IfcCartesianPoint,
IfcMappedItem

Requires
reasoning?
NO

248

Q-IFC-19, Get IFC Orientations

Question Which are the IfcOpeningElements with unique identifiers with a rectangular
shaped definition?

Function

Finds openings in walls and retrieves their shapes and basic points for geometry
construction. Openings are usually rectangular in nature, thus most of the door
and window openings are found.

IFC concepts of interest:
IfcIdentifier, IfcProduct,
IfcRepresentation, IfcProductRepresentation,
IfcSweptAreaSolid,
IfcAxis2Placement3D, IfcDirection,
IfcCartesianPoint

Requires
reasoning?
NO

249

Q-IFC-20, Get descriptions

Question Which instances with unique identifiers have textual descriptions attached to
them? And what is this description?

Function Looks for objects which have a specific description property, which is can be either

inputted by the users in a BIM tool or be available from the product factory
specifications.

IFC concepts of interest:
IfcIdentifier, IfcText

Requires
reasoning?
NO

Q-IFC-21, Get areas

Question Which are the IfcSpace type instances with unique identifiers that have a property
defined “Area” and what is its value?

Function Finds the spaces which have a specifically named property defined, which in this

case is labelled “Area”. This is an IfcPropertySingleValue which usually has a
name and a value defined. These types of properties differ from one BIM tool to
another and they are also frequently defined by users to attach specific information
about objects.

IFC concepts of interest:
IfcIdentifier, IfcPropertySet,
IfcRelDefinesByProperties,
IfcPropertySingleValue.

Requires
reasoning?
NO

250

Table C-2. SPARQL queries operating on CSS and other resources

SPARQL QUERIES

Q-RES-1, Get occupancy

Questio
n

Which are the instances with unique identifiers in the IFC model that have a
property named “SpaceOccupancy” and what is its value?

Function Finds the IfcSinglePropertyValue labelled “SpaceOccupancy” and the objects to

which it is attached. Retrieves this value which is used to save it in memory. This
value is an integer which represents the number of people that occupy a space,
which can be attached by designers to building spaces.

Requires reasoning?
NO

Q-RES-2, Get classifications

Questio
n

Which are the IfcSpace type instances with unique identifiers in the IFC model that
have a property which matches existing Uniclass2015 codes in available
resources?

Function Finds the IfcSinglePropertyValue which has identity data related to the

Uniclass2015 classification, saved in the variable “?identifier” and the IfcSpace
objects to which it is attached. Reasons if this value is present in the Uniclass2015
dataset ontology graphs and returns only those instances to which the classification
can be confirmed.

Requires reasoning?
YES

251

Q-RES-3, Match occupancy factors

Questio
n

What are the UK regulations spaces occupancy factors for Uniclass2015
classification codes?

Function Finds the values of the occupancy factors for each Uniclass2015 classification code

in the building model. Reasons in conjunction with the alignment rules from
Appendix B6.

Requires reasoning?
YES

Q-RES-4, Find inhabited spaces

Questio
n

Which are the instances from a specific scenario that are classified as a
InhabitedSpace class in the CSS ontology?

Function Finds the instance that are reasoned by rules in Appendix C, Table C3 as

“InhabitedSpace” class.

Requires reasoning?
YES

Q-RES-5, Find exit spaces

Questio
n

Which are the instances from a specific scenario that are classified as a
RefugeSpace class in the CSS ontology?

Function

Finds the instance that are reasoned by rules in Appendix C, Table C3 as
“RefugeSpace” class.

Requires reasoning?
YES

252

 Appendix D – ONTOCS system interface

This section showcases the workflow process which guides the designers through the developed web interface. The system provides the entire

experience as a service, running from an internet browser. The workflow process reflects the steps described in Section 7.1.1. Additionally, it includes

some steps where users can validate the models to ensure the system correctly reconstructs the IFC models, and that the scenarios are correctly

created.

Figures 7-3 to 7-10 show the separate navigation web pages which guide the user through the process of generating and analysing scenarios on a

large scale. The interface has an important role in the capabilities in which users can contribute to the context of each simulation, as can be seen in

Figure 7-6, or Figure 7-9. The input of the user assumptions and objectives are important in involving the designers as much as possible in the process,

to help the system configure more realistic scenarios, and more relevant to each situation under analysis.

The main limitation of the system lies in its ability to ensure the validity of the generated models, which was addressed by allowing users to download

each model file and manually check it. During testing, it was observed that if certain sources of data is missing, some scenarios can be incomplete,

thus these cannot be executed by simulation tools. This is a cause of the OWA of ontologies and rules implemented. In such situations, the interface

can be used demand correct user input. For example, a scenario cannot be created without specifying where to look for the population data (IFC model

or Design codes, etc); however, if the data is missing from the start, the scenario can still be generated, but with no population. This results in an empty

model, without any event objects, which will eventually provide no results for analysis.

The interface shows only some of the capability of an ontology-based system. The main benefit, which can be seen in Figures 7-9 and 7-10, is the

ability to aggregate the data across multiple scenarios on large scales, as was presented conceptually in Section 4.2.2. Because the data is connected,

the extent to which information and knowledge about the design can be generated is also dependent on the level of interface implementation.

253

Figure D-1. ONTOCS welcome page

254

Figure D-2. ONTOCS user log in page

255

Figure D-3. ONTOCS database selection and IFC model upload page

256

Figure D-4. ONTOCS geometry conversion report from IFC to MassMotion and ontology upload page

257

Figure D-5. ONTOCS scenario creation page

258

Figure D-6. ONTOCS scenario generation, validation and selection for analysis page

259

Figure D-7. ONTOCS scenario level results and feedback page

260

Figure D-8. ONTOCS objects creation and reasoning results viewing page

261

Figure D-9. ONTOCS object level results page

262

 Appendix E – Case study data

This section presents a summary of the data gathered about the real-life building which was

used for the case study and additional results from testing.

Each numbered room from the Table E1 is shown on a detailed floor plan from Figure E-1.

This data was inputted into the Revit model during the modelling stage and is also present in

the IFC and IfcOwl models throughout the testing.

Additional results gathered from case study use cases are provided in Tables E2 and E3

below. Their data was plotted in charts in Chapter 7 for visualisation. Table E3 shows average

times of query taken from 5 measurements across each objective case. The full data was not

made available in print due to its size.

Figure E-1. Case study building layout with numbered spaces

263

Table E-1. Building spaces data exported from Revit

No Name
Uniclass

description
Uniclass code Area

Space

Occupancy
Comments

1 Exit
Fire refuge

spaces
SL_20_90_30 2.18 m²

2 Staircase Stairways SL_90_10_87 19.34 m²

3 Plant Room Plant rooms SL_90_90_64 32.60 m²

4 Storage Storage rooms SL_90_50_84 15.92 m²

5 Exit
Fire refuge

spaces
SL_20_90_30 8.83 m²

6
Lecture

Theatre
Lecture theatres SL_25_10_47 80.25 m² 50

7 Office Offices SL_20_15_59 62.52 m² 11

8 Circulation Hallways SL_90_10_36 19.51 m²

9 Entrance
Fire refuge

spaces
SL_20_90_30 4.93 m² Fire Exit

10
Common

Room
Common rooms SL_25_10_15

120.26

m²
90

11 Exit
Fire refuge

spaces
SL_20_90_30 4.15 m²

12 Storage Storage rooms SL_90_50_84 7.29 m²

13 Shop
Food and drink

outlets
SL_20_50_32 33.58 m² 5

14 Circulation Hallways SL_90_10_36 39.82 m²

15 Services
Wall services

voids
SL_90_90_96 4.02 m²

16
Female

Toilet
Toilets SL_35_80_89 18.45 m²

17 Storage Storage rooms SL_90_50_84 3.20 m²

18
Disabled

Toilet
Toilets SL_35_80_89 2.40 m²

19 Storage Storage rooms SL_90_50_84 10.65 m²

20 Services
Wall services

voids
SL_90_90_96 2.66 m²

21 Circulation Hallways SL_90_10_36 2.20 m²

22 Circulation Hallways SL_90_10_36 9.15 m²

23 Entrance
Fire refuge

spaces
SL_20_90_30 8.07 m² is fire

refuge

24 Circulation Hallways SL_90_10_36 6.75 m²

25 Security Security offices SL_20_85_80 18.84 m² 3

26 Circulation Hallways SL_90_10_36
103.12

m²

27 Staircase Stairways SL_90_10_87 16.04 m²

28 Lift Lift shafts SL_90_60_50 3.67 m²

264

No Name
Uniclass

description
Uniclass code Area

Space

Occupancy
Comments

29 Services
Wall services

voids
SL_90_90_96 2.99 m²

30 Dining Area
Enclosed dining

areas
SL_40_20_27

305.93

m²
130

31 Exit
Fire refuge

spaces
SL_20_90_30 4.35 m²

32 Exit
Fire refuge

spaces
SL_20_90_30 3.78 m²

33 Staircase Stairways SL_90_10_87 25.06 m²

34 Exit
Fire refuge

spaces
SL_20_90_30 6.22 m²

35 Storage Storage rooms SL_90_50_84 9.96 m²

36 Storage Storage rooms SL_90_50_84 4.29 m²

37 Storage Storage rooms SL_90_50_84 2.94 m²

38 Circulation Hallways SL_90_10_36 3.76 m²

39 Entrance
Fire refuge

spaces
SL_20_90_30 6.75 m² Can act as

a fire exit

40 Kitchen Cooking spaces SL_35_60_16 86.19 m² 5

41 Storage Storage rooms SL_90_50_84 6.93 m²

42 Storage Storage rooms SL_90_50_84 2.82 m²

43 Storage Storage rooms SL_90_50_84 6.02 m²

44 Storage Storage rooms SL_90_50_84 13.65 m²

45 Male Toilet Toilets SL_35_80_89 40.43 m²

46 Circulation Hallways SL_90_10_36 2.41 m²

47 Storage Storage rooms SL_90_50_84 3.76 m²

48 Circulation Hallways SL_90_10_36 2.10 m²

49 Circulation Hallways SL_90_10_36 15.60 m²

50 Exit
Fire refuge

spaces
SL_20_90_30 4.94 m²

51
Meeting

Room
Meeting rooms SL_20_15_50 12.66 m² 9

52 Office Offices SL_20_15_59 13.34 m² 5

53 Office Offices SL_20_15_59 13.24 m² 5

54
Changing

Room
Changing rooms SL_90_20_13 7.33 m²

55 Storage Storage rooms SL_90_50_84 0.79 m²

56 Circulation Hallways SL_90_10_36 85.70 m²

57 Office Offices SL_20_15_59 7.30 m² 2

58
Disabled

Toilet
Toilets SL_35_80_89 3.78 m²

59
Female

Toilet
Toilets SL_35_80_89 1.58 m²

60
Disabled

Toilet
Toilets SL_35_80_89 3.65 m²

265

No Name
Uniclass

description
Uniclass code Area

Space

Occupancy
Comments

61 Male Toilet Toilets SL_35_80_89 1.78 m²

62
Shower

Room
Showers SL_35_80_80 1.97 m²

63 Male Toilet Toilets SL_35_80_89 2.64 m²

64 Circulation Hallways SL_90_10_36 2.41 m²

65 Storage Storage rooms SL_90_50_84 3.55 m²

66 Office Offices SL_20_15_59 35.18 m² 7

67 Exit
Fire refuge

spaces
SL_20_90_30 3.69 m²

68 Office Offices SL_20_15_59 28.82 m² 5

69 Office Offices SL_20_15_59 8.22 m²

70
Control

Room

Experiment

control rooms
SL_25_30_28 18.82 m² 5

71 Laboratory
Engineering

laboratories
SL_25_30_27 88.26 m² 5

72 Exit
Fire refuge

spaces
SL_20_90_30 4.68 m²

73 Laboratory
Engineering

laboratories
SL_25_30_27

105.58

m²
30

74 Laboratory
Engineering

laboratories
SL_25_30_27 98.55 m² 6

75 Exit
Fire refuge

spaces
SL_20_90_30 2.71 m²

76 Exit
Fire refuge

spaces
SL_20_90_30 2.82 m²

77 Staircase Stairways SL_90_10_87 20.89 m²

78 Exit
Fire refuge

spaces
SL_20_90_30 5.59 m²

79 Services
Wall services

voids
SL_90_90_96 0.39 m²

80 Services
Wall services

voids
SL_90_90_96 0.75 m²

81 Services
Wall services

voids
SL_90_90_96 1.12 m²

82 Services
Wall services

voids
SL_90_90_96 0.75 m²

83 Services
Wall services

voids
SL_90_90_96 0.40 m²

84 Services
Wall services

voids
SL_90_90_96 0.37 m²

266

Table E-2. STAGE I query times for the run of 36 scenarios in parallel

Query code Role Reasoning
Time measurements (milliseconds)

AVG
1 2 3 4 5 6 7 8 9 10

Q-IFC-2 geometry

no

733 264 284 177 354 182 145 234 237 201 281

Q-IFC-3 geometry 22 11 10 17 33 29 12 21 24 15 19

Q-IFC-4 geometry 651 652 736 693 683 677 631 572 632 564 649

Q-IFC-5 geometry 1680 1444 1466 1502 1480 1500 1567 1437 1482 1447 1501

Q-IFC-6 geometry 1479 1449 1456 1566 1448 1470 1401 1391 1389 1395 1444

Q-IFC-7 geometry 2007 1838 1868 2026 1999 2086 1866 1853 1887 1888 1932

Q-IFC-8 geometry 1173 1142 1136 1157 1146 1179 1134 1145 1138 1141 1149

Q-IFC-9 geometry 1154 1136 1131 1187 1139 1172 1124 1129 1126 1136 1143

Q-IFC-10 geometry 2264 2098 1885 2100 2181 2467 2166 2105 2251 2373 2189

Q-IFC-11 geometry 1764 1666 1686 1839 2122 2015 1965 1822 1802 1892 1857

Q-IFC-14 geometry 1029 1033 1030 1031 1040 1033 1039 1039 1036 1032 1034

Q-IFC-15 geometry 15753 12664 12784 16487 15979 18236 14322 18516 22781 25366 17289

Q-IFC-17 geometry 1058 1043 1055 1067 1054 1045 1052 1043 1051 1057 1053

Q-IFC-18 geometry 1040 1032 1036 1061 1045 1045 1051 1056 1038 1045 1045

Q-IFC-19 geometry 1236 822 826 1126 968 850 852 1003 819 911 941

Q-IFC-1 context yes 1235 933 795 767 851 753 741 636 673 669 805

Q-IFC-20 context

no

28 19 15 25 43 23 25 28 29 40 28

Q-IFC-21 context 220 201 198 223 332 250 194 241 192 249 230

Q-RES-1 context 450 316 251 254 222 191 318 423 235 382 304

Q-RES-2 context 7729 7323 7390 6982 7299 7385 8521 7241 6927 7062 7386

Q-RES-3 context

yes

165678 148797 151504 146634 142949 143510 140474 139552 140850 142746 146269

Q-RES-4 context 1493 806 872 638 494 509 492 404 384 648 674

Q-RES-5 context 43 66 52 35 32 23 56 21 16 109 45

267

Table E-3. STAGE II query times for increasing numbers of scenarios (part1/3)

Query
Objectives

applied

Scenarios

1 2 3 4 5 6 7 8 9 10 11 12

Average time (milliseconds)

Q-FBA-1
single (a) 731 1408 1211 1206 1077 1135 931 970 1016 1084 977 997

multiple (a & b) 1055 1413 1742 1712 1619 1540 2030 2211 2187 2191 2112 2196

Q-FBA-2
single (b) 571 705 623 645 669 708 717 703 824 762 717 675

multiple (a & b) 598 832 993 893 954 850 833 827 904 842 857 871

Q-FBA-3

single (a) 350 984 715 694 680 742 579 605 653 608 554 697

single (b) 173 242 229 217 230 220 206 212 227 218 228 241

multiple (a & b) 804 1495 1804 1657 1595 1636 1900 1957 2141 2100 1981 2049

Q-FBA-4

single (a) 6 6 10 10 10 8 10 11 9 9 10 9

single (b) 7 5 9 8 9 7 9 8 8 7 7 7

multiple (a & b) 33376 33317 33312 33321 33371 33309 33398 33341 33393 33290 33381 33274

Q-FBA-5
single (a) 62 106 100 103 92 112 92 105 87 108 100 112

multiple (a & b) 68 128 172 154 140 156 144 143 141 132 136 134

Q-FBA-6
single (b) 216 255 241 255 259 276 246 227 237 218 237 221

multiple (a & b) 217 463 530 450 381 451 419 394 399 386 377 401

Q-FBA-7

single (a) 60 94 97 90 97 94 83 88 82 90 86 93

single (b) 201 231 219 210 223 230 210 207 228 221 225 235

multiple (a & b) 277 589 663 593 501 582 530 516 551 530 551 533

268

Table E-4. STAGE II query times for increasing numbers of scenarios (part2/3)

Query
Objectives

applied

Scenarios

13 14 15 16 17 18 19 20 21 22 23 24

Average time (milliseconds)

Q-FBA-1
single (a) 1017 1021 1331 1382 1302 1360 1618 1365 1292 1376 1415 1459

multiple (a & b) 2182 598 3655 3766 3926 3905 3753 3710 3709 3979 3924 3866

Q-FBA-2
single (b) 797 1035 740 762 723 849 759 819 742 772 921 768

multiple (a & b) 858 750 1125 1165 1096 1077 1192 1063 1187 1098 1106 1123

Q-FBA-3

single (a) 628 635 941 1016 904 921 1061 962 928 962 968 968

single (b) 240 473 299 275 287 309 299 291 306 317 289 279

multiple (a & b) 2082 597 3713 3947 3981 4108 3986 3923 3939 4216 4063 4056

Q-FBA-4

single (a) 8 10 9 10 12 9 8 14 9 9 9 8

single (b) 7 7 7 7 7 7 12 7 6 7 11 7

multiple (a & b) 33354 24808 33244 33290 33277 33306 33304 33297 33243 33283 33244 33323

Q-FBA-5
single (a) 96 104 110 130 124 123 138 111 127 118 108 114

multiple (a & b) 144 65 174 198 177 185 178 166 165 189 180 168

Q-FBA-6
single (b) 229 509 293 292 316 331 298 283 308 303 301 285

multiple (a & b) 395 329 617 639 625 654 626 653 622 680 637 641

Q-FBA-7

single (a) 100 102 122 120 153 110 124 103 125 104 116 102

single (b) 229 548 290 291 282 310 300 288 288 313 286 273

multiple (a & b) 521 421 784 807 804 853 792 777 797 808 786 804

269

Table E-5. STAGE II query times for increasing numbers of scenarios (part3/3)

Query
Objectives

applied

Scenarios

25 26 27 28 29 30 31 32 33 34 35 36

Average time (milliseconds)

Q-FBA-1
single (a) 1438 1446 1308 1247 1213 1248 1288 1347 1204 1205 1270 1297

multiple (a & b) 3896 3896 3925 3686 3692 3656 3817 3856 3660 3672 3808 3514

Q-FBA-2
single (b) 719 741 775 646 675 672 662 661 657 651 650 778

multiple (a & b) 1116 1170 1037 961 994 981 1002 1018 974 1003 1012 969

Q-FBA-3

single (a) 999 962 950 816 919 933 904 928 863 905 876 951

single (b) 290 283 346 273 300 287 295 296 285 286 276 325

multiple (a & b) 4192 4148 4179 3891 3896 3852 4013 4076 3871 3833 3945 3641

Q-FBA-4

single (a) 10 8 10 11 12 11 8 11 8 10 9 9

single (b) 6 8 9 8 7 8 6 8 7 6 6 8

multiple (a & b) 33283 33299 33348 33451 33329 33394 33369 33360 33667 33403 33398 33344

Q-FBA-5
single (a) 122 113 102 117 142 106 133 119 122 117 111 123

multiple (a & b) 182 199 185 182 174 179 172 173 174 174 176 176

Q-FBA-6
single (b) 299 289 321 285 292 286 310 305 295 289 293 340

multiple (a & b) 651 641 638 569 611 618 627 639 624 606 631 593

Q-FBA-7

single (a) 115 110 107 108 109 115 110 106 120 261 103 111

single (b) 284 316 323 277 302 300 279 290 285 273 275 325

multiple (a & b) 826 789 821 751 759 818 814 791 781 747 795 749

270

