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Summary 

 

Safe evacuation design is a complex process, which relies on crowd simulation models 

when assessing the performance of large or complicated building layouts. Current 

simulation methods and tools lack automation and are limited to geometry when relying 

on BIM interoperability. The use of semantic web linked data is seen as a step towards 

integrating and leveraging current digital resources to facilitate intelligent and automatic 

design capable of knowledge processing. An intelligent software system has been 

developed which is capable of integrating multiple information sources and which can 

facilitate fast automatic construction and analysis of crowd simulation models for design 

decision support. The system includes several developed OWL ontologies and SWRL 

rules which represent design knowledge from the fire evacuation field, thus being able 

to process and store data about a multi-disciplinary design field. The work conducted 

towards the development of the system involved investigation into crowd analysis tools, 

evacuation and digital building models. The ontology and knowledge operators are 

presented and discussed, providing insight into future exploration of such methods with 

the aim of outlining their benefits and limitations. The system and knowledge engineered 

have been tested using a case study, proving they are capable of fast processing and 

correct interpretation of model data. 
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 Chapter 1. Introduction 

 

 

1.1. Problem statement 

The building design process is multi-disciplinary, complex and is faced with increasing 

expectations for better building performance across all fields, most importantly energy 

efficiency and human safety.  

The rise in technologies over the past decades has made it possible for designers to 

easily share data across design-disciplines. The use of Digital Building Models (DBM) 

and Building Information Modelling (BIM) processes allows computer tools and 

designers to exchange data and collaborate seamlessly. More recent developments 

have focused on ways to integrate building data with other knowledge fields, making 

design systems more intelligent and more comprehensive. 

While significant strides have been made in applying the BIM paradigm to cost and 

energy modelling where automation and interoperability is high, there is still a significant 

gap when looking at the field of fire evacuation analysis. This is mainly due to the 

complexity of fire safety design which has traditionally relied on various fields of 

knowledge ranging from building design to psychology. 

Global population growth and urbanisation put ever increasing pressure on engineers to 

ensure high standards of safety. The use of Crowd Simulation Models (CSMs) to assess 

building performance in various scenarios, especially evacuation design, is becoming 

more prevalent when dealing with highly populated buildings such as airports. However, 

these are niche tools requiring significant amount of time to invest in scenario 

construction and analysis being reliant on many sources of information and often bringing 

little added benefit.   
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1.2. Research motivation 

1.2.1. Designing for human safety 

“Buildings are designed and constructed to accommodate people and processes, among 

other things. Consequently, the flow of people, materials, and products must be 

incorporated in such a way to achieve a pre-determined level of fire safety. The minimum 

level of fire safety to be achieved may be prescribed by building legislation or be 

determined by insurance requirements or other influences.” (Shields and Silcock 1987) 

The British published documents concerning fire regulations and guides in the UK, divide 

the entire process into 7 independent sub-systems (PD 7974 2004), each of which need 

to be assessed individually: 

1) Fire growth – the way in which fire and heat spread depending on flammability of 

materials, presence of oxygen, and how it can be modelled; 

2) Smoke spread – the propagation of gas and fire emissions through spaces, its 

potential effects on building materials and occupants and ways to minimise them; 

3) Structural protection - the structure of the building, what designers should 

consider to effectively increase the building’s resilience in case of fire; 

4) Detection and suppression – considers ways in which fire can be detected early-

on so its effects can be minimised; 

5) Intervention – concerning the fire action plan of isolating the incident, 

extinguishing the source of fire and ensuring the safety of the structure and its 

occupants; 

6) Human factors – tackles the complexities of the nature of the occupants and their 

behaviour during evacuation events, as well as ways of simulating them using 

different computer models; 

7) Risk assessment – ways to identify fire related risks and their impact.  

Considering the above, designers must deal with a complex system of assessing the 

performance of the building in different perspectives which are interdependent (Chitty 

and Fraser-Mitchell 2003).  

The 2017 Grenfell Tower disaster in London (Government Digital Service 2018) is only 

one example of the sort of tragedies that can occur when the fire safety requirements 

are neglected by authorities. According to the England statistics on fire incidents (Home 

Office 2018), the magnitude of this incident alone gave rise to the percentage of 

casualties by 37% compared to the previous year, even though the trend of casualties 

has been on decline since 1981. In cases such as these, building designers and 

managers have to ensure a strict adherence to fire safety regulations. Baiche et al. 
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(2006) found that building regulations are not always complied with, due to lack of 

knowledge of those designing or checking. Alper and Karsh (2009) offer a 

comprehensive review over regulation violations, suggesting similar causes. In the scope 

of building design where designers cannot comply with regulations, they are required to 

prove a certain degree of safety via modelling techniques.  

The scope of this research is focused on assessing building performance with regards 

to human factors. In practice this is evaluated using Crowd Simulation Tools (CSTs), 

which are able to simulate in different levels of detail how people behave during an 

evacuation event. This in turn allows designers to assess the performance of the building 

in such scenarios (Thalmann et al. 2007, Ronchi et al. 2014). The entire process relies 

on expert designers using CSTs to create, run and analyse scenarios using several 

iterations, which is time consuming (Khan et al. 2014). Additionally, each building layout 

is different and so is each scenario in terms of context (Nilsson and Fahy 2016). The 

challenge lies in being able to assess the building performance in an efficient manner 

and on a larger scale, thus being able to identify flaws in the building design in a speedy 

manner. 

Considering the aspect of fire safety design assessment within the BIM paradigm, the 

level of integration and automation concerning Crowd Simulation (CS) analysis is 

relatively low compared to other aspects of design, such as energy modelling. This will 

become clearer in the literature review chapter. For now, it is worth mentioning that the 

modelling process is complex in itself and has to catch-up with current BIM technologies. 

1.2.2. Achieving collaboration and integration through BIM 

In the last 20 years, the construction industry has seen major advances in digital 

modelling, but this has also raised industry expectations in terms of fast project delivery. 

A prime example is the UK Government’s initiative to impose level 2 BIM on public 

projects (Cabinet Office 2011) , which came into effect in 2016. For BIM level 3 and 

beyond, the most prevalent issues under investigation were related to standardisation 

efforts for interoperability and collaboration of digital information. One of the main drivers 

of this standardisation was the expanding use of common and interoperable formats, 

mainly evolving around the Industry Foundation Classes (IFC). The use of the IFC 

schema and format ensure the exchange of structured information for all the domains 

included in the Architectural Engineering and Construction (AEC) industries. IFC is 

especially useful in design and construction stages, being used to exchange data, 

transfer model views, facilitate prescriptive rules checking and most importantly 

import/export of models across many tools. Although there are a myriad of BIM tools and 

platforms aimed at improving the multidisciplinary design flows for construction and 

design offering IFC support, they are limited in many ways and are not always the best 
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way to collaborate across disciplines (Díaz et al. 2017). The use of IFC in its current state 

cannot solve all problems related to integration and collaboration, but it represents a 

foundation stone for structured data. 

Attempting to predict the roadmap of future BIM developments, Succar (2009) introduced 

a BIM ontology of intersecting knowledge domains and describes a network of integrated 

models and services from BIM level 3 onwards, which can be used beyond just the 

semantic properties of the building models. Thus, it is expected that BIM models will be 

able to provide more than just data and information, but also knowledge (Bellinger et al. 

2004) about the building environment.  

1.2.3. Designing buildings with knowledge in mind 

“What is the difference between knowledge and information and can computer 

applications really deal with knowledge?” (Stenmark 2002) 

Modern computing methods can be used to integrate databases, knowledge and 

operators which can be used for decision making processes. The term ‘knowledge base’, 

refers to the concept of formalising human knowledge in computer understandable 

format (Kaufman and Michalski 2005). Knowledge in this context may refer to 

professional experience, data from simulations and analyses, predictions or best 

practices. It can be argued that knowledge should encompass all the mentioned factors 

to truly facilitate a good design solution. 

The Semantic Web (SW) and Linked Data (LD) paradigms have become increasingly 

popular around the BIM domain (Abanda et al. 2013). SW and LD tools in construction 

design extend interoperability by including web resources, while also giving data a higher 

degree of meaning with the use of languages such as the Web Ontology Language 

(OWL) (Schevers and Drogemuller 2006), while being able to conceptualise knowledge 

models. With the development of IfcOwl (Beetz et al. 2009), the OWL representation of 

the IFC schema, various knowledge fields can be included from a wide spectrum of 

applications. Integration of information is the clear benefit on using BIM (Azhar 2011) on 

construction projects, but whether the SW  will be able to fill this need remains to be 

seen. LD concepts work with large datasets across the web and rely heavily on open 

data sources, but the AEC industry culture remains reluctant to sharing data openly 

(Zanni et al. 2017). Apart from the linking of data, which is of great benefit to the AEC 

industry, OWL ontologies are widely used today to represent knowledge in computer 

understandable formats, and enable machine reasoning (Gibbins and Shadbolt 2009), 

which can facilitate its storage and retrieval by intelligent web-based systems. 
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The use of LD could greatly benefit the better integration of information models between 

BIM and CS domains not just on a structured data level, but also on a knowledge process 

level, facilitating speedy design analysis and automation. 

1.3. Research hypothesis 

In light of the problems identified above, this research aims to tackle current limitations 

concerning evacuation design by adopting the following overarching hypothesis: 

A knowledge processing-based approach can allow a fast retrieval of information 

and automatic construction of evacuation models by leveraging existing BIM data 

and design knowledge to enhance the decision-making processes about building 

performance by considering different simulation scenarios on a large scale. 

1.4. Research questions 

Aiming to contribute to knowledge in the process, the hypothesis is decomposed into the 

following questions: 

Q1: How are evacuation models and tools used for assessing design performance 

while considering their scope and limitations? 

Q2: What is the current level of interoperability between CS for evacuation and BIM? 

Q3: What are the benefits of using ontologies for evacuation design, considering the 

BIM paradigm? 

Q4: What are the requirements for an intelligent system capable of integrating 

resources relevant to the CS field within the context of automation and analysis 

feedback, whilst considering practical deployment and future extensibility? 

Q5: What are the challenges concerning information models and workflow processes 

being represented in a knowledge base, considering the requirements for integration and 

knowledge retrieval? 

Q6: What needs to be considered for design knowledge storage and retrieval 

concerning   building egress performance using evacuation models? 

Q7: How reliable is a knowledge-based system in understanding the building model 

and other linked data resources in facilitating correct and efficient design support? 
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1.5. Research contribution 

The work carried out during this research project has contributed with several practical 

developments and with knowledge about the methodology adopted in delivering their 

implementation and in testing. 

The core contribution of this work is the implementation and development of an intelligent 

knowledge-based system which can reason over linked data and knowledge resources 

represented in web languages. This in turn allows semi-automatic creation of simulation 

scenarios on a large scale which can be used in real design cases. Once these scenarios 

are executed using conventional simulation tools, their results can be aggregated by the 

system and feedback is provided to the users about the performance of building. The 

methodology adopted in the development of the system and the definition of the 

processes involved is also another core contribution, which can be replicated to other 

fields, extended or optimised for future developments. 

The system makes use of several ontologies and knowledge rules which represent 

another core contribution of this research. These were developed based on reviewing of 

current academic research and industry guidance from manuals, and discussions with 

field experts. The representation of such knowledge in a machine-interpretable format 

will be useful to extend the current use of BIM and semantic web technologies to the 

fields of crowd simulation and evacuation design. 

In parallel with the developments above, this work contributes to the overall pool of 

knowledge concerning the interoperability levels between BIM and CS, from the review 

conducted on academic research and practical assessment of several simulation 

software tools used in practice. Additionally, the methodology adopted for this research 

which was directed and applied to solving practical problems, brings insight into crowd 

simulation concepts, their integration with BIM and IFC, the reliance on design guidance 

resources and the benefits and limitations of using a knowledge-based system in this 

context. All these contributions to knowledge can be used to replicate this work into 

nearby design fields or to optimise current developments to become faster and more 

reliable in the future. 

1.6. Structure of the thesis 

The thesis is divided into several chapters, each pursuing answers for the main research 

questions.  

Chapter 2 brings arguments against the gaps indicated and aims to answer the first three 

research questions by investigating the broader field of knowledge in the domains which 
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are relevant to this research: evacuation design, crowd simulation tools, BIM and the use 

ontology-based systems. Background reading was conducted concerning the essential 

relevant concepts and where these fields overlap. The chapter is split into three sections, 

each focusing on one question. The first section outlines the role of crowd simulation 

models and tools in the field of fire safety. The second investigates the existing level of 

interoperability between CS developments and BIM. Finally, the third section explores 

the use of ontologies, indicating towards the benefits for the evacuation design field.  The 

main findings from the literature are used to propose a novel solution. 

Chapter 3 presents the conceptual framework of ONTOCS, an intelligent ontology-based 

system which is aimed at representing and retrieving new knowledge about design. The 

methodology employed to prove the research hypothesis using the prototype system is 

outlined. 

Chapter 4 identifies the requirements for developing the ONTOCS platform and thus 

aims to answer the fourth question. The requirements include establishing a common 

CST taxonomy, identifying suitable tools for achieving functionality in practice, and 

identifying available sources of information and knowledge which enable automation and 

can provide relevant feedback for the design decision making process. 

Chapter 5 aims to answer the fifth research question by presenting several developed 

OWL ontologies. The framework proposed relies on defining the knowledge domains 

using these ontologies for semantic web integration. The main concepts identified were 

defined, categorised and connected semantically. Some of the created ontologies were 

aligned with external ones to extend and test the benefits of shared information. 

Chapter 6 addresses research question six and outlines the methods used to store and 

retrieve knowledge about the various information models. It begins with an introduction 

of knowledge operators, then presents ways and the challenges of working with 

knowledge bases in the context of CSM performance assessment whilst considering 

user input.   

Chapter 7 is focused on the testing of the ONTOCS system and commenting on the 

overall methodology of this research. The chapter firstly introduces the system design 

and the workflow of the process it facilitates. Secondly, a case study on a real building 

is presented, with specific use-case scenarios, aimed to test the system and thereby 

validate the ontologies and knowledge operators developed in the previous chapters. A 

discussion is provided based on the decomposition of the final research question. 

Chapter 8 concludes the work presented in previous chapters by outlining the main 

findings within the context of the research hypothesis. Research limitations and future 

work are then presented.  
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 Chapter 2. Literature Review 

 

 

This chapter reviews the status-quo of CSM and BIM technologies used to facilitate 

design support. The contents are divided into three sections, each aimed at a research 

question: The first section (3.1) investigates CSM in research and practice, the second 

(3.2) identifies the level of interoperability of CS with BIM, and the final section (3.3) 

outlines developments around knowledge processing tools and methods used for 

building design. Each sub-section begins with introducing the three relevant fields for this 

research: CS, BIM and OWL ontologies. 

2.1. Designing safe building egress 

2.1.1. Determining evacuation time 

The entire fire safety design process is a complex multi-disciplinary process which spans 

across different knowledge fields from structural fire resistance to human psychology. 

Fire design employs many regulations which were improved over the years to enforce a 

certain standard of safety. Regulations are usually set as a minimum requirement on the 

building design and they are usually a compromise between optimal safety and economic 

feasibility, with the purpose: 

“1. To impose a level of fire safety such that it is unlikely that people occupying a 

building would suffer hurt in the event of an unwanted fire, and 

2. To protect the community at large from the consequences of fire in an individual 

building.“ (Shields and Silcock 1987) 

Fire safety engineering is governed by many sets of prescriptive rules concerning 

different design aspects, which were developed and improved through empirical 

methods. When certain design rules are not met, proving adequate building performance 

is necessary. Performance design needs to specify the objectives which should be aimed 

for. Meeting these requirements deems the safety is adequate.  
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To assess building performance objectively designers rely on balancing the Available 

Safe Escape Time (ASET) with the Required Safe Escape Time (RSET). The basic 

principle here is to always make sure ASET is greater than RSET, as shown in Figure 2-

1. “An appropriate margin of safety takes account of the risks associated with different 

potential fire scenarios and the uncertainties in the prediction of ASET and RSET for 

particular design scenarios.” (PD 7974 2004)  

 

Figure 2-1. Components in evaluating RSET and ASET (PD 7974 2004) 

Each of the components in the calculation of ASET and RSET are assumed individually: 

a) ∆tdet = time from fire ignition to its detection; dependent on the method of 

detection, usually an alarm system; 

b) ∆ta = alarm time from detection to action being taken to evacuate;  

c) ∆tevac = effective evacuation time, which consists of ∆tpre + ∆ttrav ; 

d) ∆tpre = the pre-movement time, is influenced by the behaviour of occupants which 

has two components: recognition – time taken for each individual to respond to 

cues and begin taking action, and response – actions taken immediately after 

recognising that a fire event is real and evacuation is necessary (dependent of 

occupant roles); 

e) ∆ttrav = the time for occupants to reach a safe refuge point; 

Different combinations of assumptions can be made about the factors above, each 

influencing the performance of the next, and consequently RSET as a whole. Detection 

time (∆tdet) and alarm time (∆ta) depend highly on the fire strategy in place and 
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technological system incorporated within the final building design and are considered out 

of scope for this research. The evacuation time (∆tevac) is the factor where human 

behaviour plays an important role, and it can be estimated using a mixture of historical 

data, live drills and CSMs. From its two main components, the first (∆tpre) is more reliant 

on observation data from previous real or mock evacuation scenarios, with Figure 2-2 

showing an example of a typical evacuation curve. The pre-evacuation time is 

characterised by occupants initially seeking confirmation of a fire, with some occupants 

reacting sooner than others, expressed as the pre-movement of the first occupants      

∆tpre (first occupants). Once the first occupants begin to evacuate, more people become aware 

of the event and the number of evacuees increases rapidly in a short period of time, 

following the peak in Figure 2-2, defining a distribution of occupant times before they 

begin travelling towards the exits ∆tpre (occupant distribution).  

 

Figure 2-2. Example evacuation time distribution of people leaving the premises of a 
building (adapted from PD 7974 2004) 

Travel time (∆ttrav) is characterised by two components: 

1) ∆ttrav (walking) = walking time for people to reach safety; dependent on the 

walking speed of each occupant which can vary greatly; this factor can be 

considered as an average or per each individual; 

2) ∆ttrav (flow) = flow time of occupants through the building; determined by the 

capacities of the doors and exits relative to the population number;  

The evacuation time (∆tevac) is estimated by evaluating each of its sub-components 

individually. The simulation and evaluation of ∆tpre using CSMs is not very common as it 

involves many behavioural factors. This is usually a simplified assumption based on 

empirical factors according to building type and the level of safety management to be 

achieved. For example, a combination of good detection and alarm system can assume 

that people will start evacuating sooner, therefore the pre-evacuation time will be 

significantly shorter than in a case with poor safety management. “For evacuation times 

to become a viable component of fire safety engineering, it is, therefore, vital that a 
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database of pre-movement times and pre-movement time distributions is obtained for a 

variety of occupancy types and a variety of building design and fire safety management 

strategies” (Purser and Bensilum 2001). While this can be very useful, in many situations, 

due to the difference in building design, it can actually be of very little value for 

comparisons (Kuligowski 2016b). A simple change of an exit can produce very different 

results. 

Travel time (∆ttrav) on the other hand, is a widely used factor which is measured during 

live drills and used extensively by CS tools and models, as the prime indicator of building 

performance. According to PD 7974 (2004), the two components which influence travel 

time can be simulated using CSMs in two very specific cases: 

1) Scenarios at less than 33% population design capacity – the evacuation time is 

more dependent on the travel time of agents, ∆ttrav (walking) . The low concentration 

of agents will not allow for bottlenecks to form, and is thus not influenced by the 

flow time through doorways; 

2) Scenario at 100% population design capacity – the evacuation time is more 

dependent on the flow capacities of the exits, ∆ttrav (flow). This is because queuing 

is expected to form relatively quickly, reaching the maximum capacities of the 

exits. 

When considering the estimation of evacuation time (∆tevac), designers need to also be 

aware of the factors which influence it, as summarised in Table 2-1, from which two main 

categories emerge: 

• building factors – refer to factors about the building environment, such as layout 

and position of objects; these are static in nature; 

• human behaviour factors – refers occupant positions and distribution within the 

building environment, their movement and reaction speeds. 

These two categories are interconnected: the building design is influenced by occupant 

needs and safety, while the occupant behaviour is influenced by the building layout 

(Nilsson and Fahy 2016), shape and components which occupants interact with (doors, 

stairs, lifts, furniture, alarm system, etc). While design regulations and standards 

emerged to cover both of the categories mentioned, the human factors have always 

proved difficult to account for. The fact that every building has in essence a unique design 

and layout, makes this even harder to assess. 
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Table 2-1. Route escape factors according to Shields and Silcock (1987) 

Building factors Human behaviour factors 

Building type Population density 

Building contents Population distribution 

Evacuation time Population mobility 

Travel distance Population reaction 

Exits Population discipline 

Escape route width 

 

Enclosure of stairways 

 

Lobby approach stairways 

 

Doors in escape routes 

 

Lighting of escape routes 

 

Emergency lighting 

 

Construction of and egress from 
windows 

 

Fire detection system 

 

Alarm system 

 

Fire control system 

 

Smoke-control system 

 

 

The actual real fire safety performance of a building would be assessed during live drills. 

This however can only be done at the operation stage of the building lifecycle, where 

building layouts become too costly to change and so designers will try to justify their 

design decisions by strictly following rigid regulations (Gwynne et al. 1999). Purser and 

Bensilum (2001) conclude that while simple approximations of escape time for small 

buildings are acceptable, “for larger more complex buildings, more sophisticated 

computer evacuation models may be required.”  

Thus, during design stages, CS is now widely used in design decision-making. They are 

expected to provide relevant information in building performance evaluation, which is 

used by designers to assess feasibility or check against regulations.  
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2.1.2. Crowd simulation models and tools for evacuation 

“Modelling amounts to finding an abstract representation of a real-world system that 

simplifies and assumes as much as possible about the system, and, while retaining the 

system’s essential relationships, omits unnecessary details.” (Druzdzel and Flynn 1999) 

Crowd Simulation Models (CSMs) are intended to mimic realistic behaviour of people 

within certain environments by representing each person as an individual agent. Each 

agent is able to interact with the environment and other agents. CSMs are practically 

applied within software tools, commonly referred to as Crowd Simulation Tools (CSTs). 

The term CSM and CST is often used interchangeably. They are used in various 

situations: virtual crowds for computer games or films, training purposes for emergency 

situations, urban planning and for building evacuation design. Due to the rise in world 

population, CS methods will become invaluable to future infrastructure modelling (Zhan 

et al. 2008) (Khan et al. 2014). 

There are several comprehensive reviews within the field of CS, which offer critical 

analysis regarding methodologies used (Gwynne et al. 1999, Kuligowski 2005) 

(Kuligowski 2016a), application domains (Kuligowski 2005), scale (Zhou et al. 2010), 

degree of realism (Duives et al. 2013) and high-rise buildings focused (Ronchi and 

Nilsson 2013). The afore-mentioned authors agree that there is no comprehensive model 

which can simulate all the complexities of human behaviour. Such a model would not be 

practical because as the complexity of the model grows, so does the computation time. 

Kuligowski (2005) advises that each model should be used for very specific purposes 

and users should be aware of each model's practical application and limitations. Ronchi 

and Nilsson (2013) mention that for a more comprehensive view, several models can be 

considered at the same time, as they might reveal more information from different 

perspectives. Zhou et al. (2010) and Duives et al. (2013) agree that models can be 

divided into microscopic models (small population) which have high precision, and 

macroscopic (large population) models with lower precision. Investigations carried out 

by Zheng et al. (2009) and Duives et al. (2013) suggest the Cellular Automata (CA), 

Social Forces (SF) and the Nomad models are the best methods for replicating reality. 

However, there is limited crowd heterogeneity route and destination choices when in the 

context of larger models, as these models were not calibrated to work realistically under 

large-scale conditions. The aforementioned authors confirm that one of the most used 

applications of these models is for fire evacuation, and that a fast computation time is 

not a critical issue as long as they are reliable and can accurately simulate route choices 

and destinations. They also suggest that more comprehensive models should be chosen 

over simpler ones, where possible.  
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An example of a limitation relates to the representation of the environment within the 

model. Some models represent the environment by dividing the surfaces into 2D arrays 

of cells (the CA approach), with agents being able to cross on cell at a time (Gwynne et 

al. 2001, FSEG 2018). Another common representation is the use of a more continuous 

surface, where agents have more freedom, thus effectively moving on very fine meshes 

(Musse and Thalmann 2001, Oasys Limited 2018a). The difference between the two is 

that the first one is faster to compute, while the second is able to represent more realistic 

human movement. On the other hand, a simpler calculation could be better suited for 

larger scale models. Regardless, this still does not guarantee that one tool or another is 

representing reality more accurately. 

When comparing simulation models with reality Duives et al. (2013) argue that current 

models can be split into two categories: ones that mimic reality, and ones that try to be 

reality, with the later ones currently not being practical from a technical perspective as 

they would require significant computation capability, whilst still not guaranteeing better 

results. One of the major breakthroughs in the crowd simulation field is the Social Forces 

(SF) model (Helbing and Molnár 1995) which is widely used today to simulate the 

complex interactions between computer agents. Based on this model, future research 

has investigated several other factors, such as psychological factors, or simulating 

personal space forces based on particle interactions (Hesham and Wainer 2016). Fang 

et al. (2016) developed a model which simulates the concept of interpersonal 

relationships and attachments, influencing the way in which groups of agents interact 

during evacuations with regard to the decisions they make as a group. Other models 

focus on setting out the differences between individual and group behaviours, 

considering that when part of a group, individuals act differently (Raupp Musse et al. 

2006, Li et al. 2015). Khan et al. (2014) present various methods for scene analysis of 

crowd behaviours which can be used to test the realism of existing simulation models 

and tools which rely on crowd data from real-life environments. This field has been of 

increasing interest due to a rise in population (Zhan et al. 2008) and a need to deal with 

emergency situations.  

When comparing live drills with simulation results, it is hard to argue which is more 

representative of the truth, mainly due to the human factors. “Repeated experiments on 

evacuation will never give the same outcomes because of the human factor, even when 

the same people are tested. Thus one experiment is never enough to prove a certain 

factor. Usually a distribution of several simulations is required.” (Gwynne et al. 1999) 
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Figure 2-3. The computer modelling process for evacuation design, adapted from 
Kuligowski (2016a) 

The process of modelling a crowd simulation scenario is best described by Kuligowski 

(2016a) and is shown in Figure 2-3. The entire process is heavily influenced by user 

input and follows 3 well defined steps: 

1) Project requirements – client needs to assess the scope and context of the 

modelling process and what is expected to be gained from it; 

2) Model selection – the tool which best meets the requirements should be chosen, 

considering its benefits, limitations and costs; 

3) Model scenarios – users need to define all the boundary conditions of each model 

by considering:  

a. building configuration – defining the geometry, layout, exits, etc.; 

b. population configuration – defining agent numbers, positions, specified 

behaviours, etc.; level of sophistication may vary greatly; 

c. procedural configuration – defining routes of agents, flows and counter 

flows of groups, etc.; 

d. incident information – environmental conditions, such as the place of a 

fire. 
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The third step above represent the main model inputs and assumptions made about 

each scenario, which require several sources of information about the building 

occupancy and expected behaviour. These are assumptions which provide a different 

context to every scenario, influencing the final simulation results. An application (CST) 

then runs the models and provides outputs which are processed and interpreted during 

an analysis stage. It is not always clear how relevant the simulation output is, as it is 

dependent on large number of parameters (Hopfe and Hensen 2011, Kuligowski 2016a). 

To compensate for this limitation, it is often required to conduct several simulations, with 

several different assumptions and scenarios. This quickly becomes overwhelming when 

in the context of several design iterations, making it a highly inefficient process. This 

suggests the need to integrate and automate the process with de-facto BIM processes 

and standards. 

2.2. Building Information Modelling for collaboration 

2.2.1. BIM level interoperability 

In the context of building design, industry currently relies on Building Information 

Modelling (BIM) processes and technologies. BIM has undergone a number of changes 

over the last decades, now encompassing multiple design domains and it is expected to 

extend further. There are several definitions of the concept, with a more recent definition 

of BIM being given by Crotty (2013) which sees the concept as an approach over several 

steps: 

“A reference model of the building is created using one or more parametric component-

based, 3D modelling systems. These systems exchange information about the building 

in one or more agreed standard file formats, with each other and with other systems 

which conform to the agreed formats. These exchanges are regulated by a set of 

protocols which establish the particular types of information to be exchanged between 

different members of the team, at different points in the project life-cycle.” 

A more simplified but widely accepted definition is given by Hardin and McCool (2015): 

“BIM is a digital representation of the building process to facilitate exchange and 

interoperability of information in digital format.” 

Due to being an attractive concept in research and industry, BIM has developed several 

meanings and scopes, as the acronym ‘BIM’ can mean both ‘Building Information 

Modelling’ and ‘Building Information Model’. This can generate confusion, associating 

the concept to buildings alone, when in fact the term can refer to the act of ‘building’ as 
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a verb, extending the concept to infrastructure or other engineering structures or 

activities. According to Bos (2012), a mix-up of the term in the industry sector arose due 

to people confusing the concept of a ‘shared data model’, with the instance of a building 

model. BIM as a concept has a different meaning than BIM as an instance of a specific 

project model, but the two terms are used today interchangeably. For example: people 

will talk about the BIM model, referring to the digital model being projected using software 

tools, and they may also refer to the implementation of BIM processes, whereby project 

stakeholders work collaboratively using BIM standards and practices. 

According to Eastman et al. (2011) and Bos (2012), early industry initiatives regarded  

central data models as an ideal means of storing and sharing data, where all project 

stakeholders would be able to store the data into a single model, a single ‘point-of-truth’. 

Eastman et al. (2011) tries to distinguish between different software tools depending on 

the level of BIM implementation within an organisation, and the capabilities of such tools. 

The 3 main categories described by the authors also reflect three distinct levels of 

‘collaboration’ within an organisation: (1) BIM tools, (2) BIM platforms and (3) BIM 

environments. The authors define the three concepts starting from the BIM tool as task-

specific application toward a BIM environment as “the data management of one or more 

information pipelines that integrate the applications (tools and platforms) within an 

organisation”. As the industry developed BIM processes further, the biggest barrier was 

the cultural change of openly sharing information, which was regarded with suspicion, 

as traditionally the construction industry works in separate information silos.  

With time and along with technological advances, it was recognised that a common 

information format needed to be established, in order to be able to collaborate all relevant 

project model data consistently, without necessarily having to abandon the silo culture. 

This led to the development of the Industry Foundation Classes (IFCs) in the early 2000’s 

which has evolved a great deal since. The IFC’s soon became an international standard 

and is now widely adopted by professionals.  

The Industry Foundation Classes (IFC, ISO/PAS 16739) schema was initially developed 

to ensure a standardisation of data transfers between different disciplines involved in the 

construction industry (Zhang et al. 2013). The schema has expanded over the last 

decades and has gone through several versions, being constantly adapted to industry 

needs worldwide. It is capable of capturing data concerning any building element type, 

and is a powerful tool in structuring building data and meeting industry interoperability 

needs (Berlo et al. 2015). The IFC is based on the EXPRESS language which was 

developed and standardised with the specific purpose of modelling product data 

concepts; it is a language of high expressivity which has enabled optimal storage 

capabilities. IFC offers a good degree of interoperability between design tools due to this, 
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but it is also rather unique as the EXPRESS language is not used outside engineering 

domains.  

Even though the industry is now technologically advanced, practitioners often feel 

overwhelmed by the diversity of tools being included under BIM, thus complicating the 

interoperability problem, as more and more design and knowledge domains are 

described and used digitally. Collaboration processes are time consuming due to the 

vast amount of information that needs to be created, analysed, checked for validation 

and delivered down the supply chain. This suggests an increasing need for automation 

of information processes and design protocols. 

2.2.2. BIM-based evacuation design 

Evacuation design using BIM has been a subject of significant attraction to the research 

community over the last decade, as it brings more dynamism to the model view of the 

data. Unlike static building elements, this extends the building context to human 

behaviour, bringing new ways in which digital models can contribute to the evacuation 

design problem. Several application domains for BIM-based evacuation were identified 

from the literature: virtual reality, path-finding, regulations checking and interoperability. 

Virtual Reality (VR) 

Rüppel and Schatz (2011) began investigation into fire-fighting virtual games, which 

imported and reconstructed a BIM within the gaming environment. A very similar 

methodology is adopted by  Wang et al. (2013) and Wang et al. (2014), which simulates 

people using VR to evacuate the premises of a building and trying to track their 

behaviour, and also by Motamedi et al. (2016) trying to identify the best places for 

building sign placement within a design context. These developments however fail to 

implement the inclusion of realistic crowds, being simulated with human actors alone. 

The investigation of crowds and people’s movements using VR can be cheap to 

implement and can provide enhanced 3D environments. However, the main limitation of 

game environments is that they require validation  to be accepted and used in realistic 

design scenarios (Kinateder et al. 2014). Additionally, a game environment is 

fundamentally different in how the model is computed. A CST will calculate the model 

mathematically at different time steps and replay the calculations, without the need for 

human interaction during the calculation process. By contrast, a computer-game will 

evaluate calculations at each frame time, and human interaction/input is often required 

as part of the process, which can also influence the progression of events in unknown 

ways. The main benefit of game environments is the experience of ‘real-time’, but it can 

be subjected to the engine capability and limits the environment to small-scale 

simulations. In addition to the factors above, VR applications are more concerned with 
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visual and immersive experiences for the user side, often neglecting or being un-able to 

represent realistic human behaviour interactions with as much fidelity as validated CSTs. 

Path-Finding (PF) 

Chen and Huang (2015) developed a method for creating evacuation routes out of a BIM 

model. H. Lee et al. (2016) proposes an extension to the IFC schema with a ‘path’ 

concept for circulation purposes in a BIM design context. Chen and Chu (2016) 

developed a graph method for aiding evacuation in buildings by calculating the most 

efficient routes. Isikdag et al. (2013) presents a methodology to use BIM sematic level 

data for indoor navigation models considering IFC as the source of information. The 

calculation of the shortest path out of a building can be useful in design situations, but it 

does not consider the complexity of human behaviour, so these approaches do not allow 

for a realistic estimation of a travel time as defined in Section 2.1.1. 

Regulations checking 

Malsane et al. (2015) try to identify the requirements of integrating simulation safety tools 

and regulations. The scope of the research is limited to regulation in England and Wales, 

but it discusses in detail the level of knowledge formalisation and concludes that there is 

no overall consistency on how fire sub-system rules are addressed. Fire design is a very 

complex problem to solve due to the multitude of sub-systems that require audit and their 

inter-dependencies. The authors further state that with the use of the IFC standard, 

regulation formalisation should be more object-oriented, and thus more specific and 

easier to assess. However, due to the complex nature of describing regulations, IFC 

alone cannot encapsulate all the necessary information for valid performance and rules-

compliance audit. These sort of methodologies have existed for some time, although not 

employing regulations from the UK. Lee (2010) created a framework for evaluating 

circulation rules a specific building type, using IFC concepts. Choi et al. (2014) adapts a 

model for high-rise regulation checking for prescriptive evacuation rules. Kannala (2005) 

proposed a similar way to assess building regulations using Solibri Model Checker plug-

ins, based on IFC models. They use several algorithms to identify spaces and their 

connectivity. The studies above present methodologies limited to prescriptive rules, not 

incorporating CSTs. 

Dimyadi et al. (2016) presents a system which relies on IFC model data and user input, 

which is compared against a Regulatory Knowledge Model consisting of the design rules 

applied to the process. The research checks output from multiple tools to assess fire 

safety performance of building designs and is IFC focused. Although a good step in the 

right direction, the process of integrating the information is not collaborative enough for 

more holistic design views or across the BIM lifecycle stages. These limitations are also 

mentioned by the same authors in another study (Dimyadi et al. 2015), where they 
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recommend using ontology languages to express regulatory knowledge, due to higher 

expressivity and interoperability. 

BIM interoperability  

A number of studies are focused on integrating crowd simulation tools into various 

systems:  Jalali et al. (2011) integrate three different domain tools together for fire 

evacuation management scenarios; Wang et al. (2015) use BIM platforms to provide 

building environment information into a system that performs calculations of escape 

routes and connects to a fire simulator; the authors present a sophisticated system using 

several tools to compare results across different design perspectives. There is no 

consensus on data exchange formats in these studies, but they regard BIM as the source 

of information. However, no use of IFC is mentioned, and the BIM data imported is limited 

to geometry.  

With a clear focus on IFC, Wang and Wainer (2015) developed a cloud service 

evacuation design tool which uses different algorithms to calculate movement of agents. 

Marzouk and Al Daoor (2016) present a case study and analysis of using the MassMotion 

CST which simulates the evacuation of workers on site during a construction stage. The 

study also outlines a framework of using BIM information and tools in the process, mainly 

through using the IFC format. However, the use of IFC is limited to geometric 

components. 

Many of the studies discussed above rely heavily on IFC, but still face difficulties when 

expressing rules and regulations on top of building models when trying to evaluate the 

performance of a design. Despite these attempts, a gap in the interoperability layer 

between BIM tools and fire safety tools is evident, with no common methodology or 

information transfer protocols, as is also pointed out by Wang and Wainer (2015). While 

IFC is the best option for storing structured data, it is less likely to meet the needs for 

inter-disciplinary design processes, when in the context of performance assessment for 

fire evacuation. In addition to that, the studies have expressed less interest in 

conceptualising and representing the factors which are the indicators of fire design 

performance or how they can be used in the context of automation. Very few studies 

have attempted to explore or extend the interoperability with commercial CSTs used in 

industry, preferring to develop their own tools instead, due to cost related issues. On the 

other hand, many CSTs used in practice offer very good IFC import, thus making them 

BIM compatible. Finally, no study investigated the interoperability with BIM beyond 

geometric information, which is insufficient for CS purposes, considering that valid 

simulation models require input from various other sources (contextual information), as 

was outlined in 2.1.2. 
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2.3. The Semantic Web and Linked Data paradigm 

The term ‘Linked Data’ (LD) is a concept developed under the efforts of the World Wide 

Web Consortium (W3C) which enables the use of data more intelligently across the 

unstructured internet resources. With increased levels of semantics, LD represents a 

powerful tool towards increased ‘meaning’ of data on the Semantic Web (SW), as is 

shown in Figure 2-4.  

“Semantics is a discipline dealing with the meaning of linguistics signs or symbols, that 

is, the words, expressions, and sentences of a language. […]  In semantics, the language 

whose meaning is discussed is called the object language, while the language that is 

used to talk about the object language is the metalanguage. For example, in the 

sentence, ‘Snow is white’ is true, ‘Snow is white’ is in the object language, while the 

whole sentence is in the metalanguage” (Bunnin and Jiyuan 2004). The vision behind 

the semantic web is to create the next generation of the World Wide Web (WWW) where 

information is automated with the use of intelligent systems and software agents able to 

better interpret the data. LD is ‘machine interpretable’ and can be used by intelligent 

software systems to perform various operations on it, greatly increasing the capability of 

information retrieval. This can bring great benefit to design disciplines, with the primary 

condition being to express AEC relevant data into a semantic web language. 

     

Figure 2-4. Increasing levels of semantics for data on the Web 

2.3.1. Semantic web languages – RDF to OWL 

“The Resource Description Framework, or RDF, is a knowledge representation language 

for the Semantic Web, and is used to express knowledge about things both on and off 

the Web; RDF can be used to write metadata about web pages and to describe real-

world objects with equal facility.” (Gibbins and Shadbolt 2009) 

Semantic Web = Linked 'Things'

Linked Data 

World Wide Web = Linked documents 

Internet =  Linked computers

sem
an

tics
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Information presented on the SW is represented as a graph of nodes and edges. Nodes 

represent things or values, while edges are properties which link two other nodes 

together. This represents the fundamental unit which is used for knowledge 

representation, and it is commonly referred to as a ‘triple’, which follows a pattern 

similarly to natural spoken languages: ‘Subject -> Predicate -> Object’ (SPO), as shown 

in Figure 2-5. The SW uses Uniform Resource Identifiers (URIs) (Masinter et al. 2005) 

to store and refer to ‘things’ and more specifically to RDF, Internationalized Resource 

Identifiers (IRIs), which act as an extension to URIs when defining namespaces (Dürst 

and Suignard 2004). This allows the definition of data concepts and knowledge on the 

Web using a standardised address to make it accessible and avoid conflicts.  

 

 

Figure 2-5. Example of an RDF triple following the SPO pattern 

RDF acts as the foundation stone for representing SW data with other semantic 

vocabularies being based on it, each with an increased level of semantic expressivity: 

1) RDF Schema (RDFS) 

2) Web Ontology Language (OWL) 

3) Semantic rules: Sematic Web Rules Language (SWRL), Rule Interchange 

Format (RIF), SPARQL Inferencing Notation (SPIN). 

SPIN is essentially a formalisation of rules based on the SPARQL Protocol and RDF 

Query Language (SPARQL) which is the preferred query language to access and 

manipulate RDF graphs. Detailed specifications on these concepts are available online 

at  https://www.w3.org. 

One of the most widely used ways to represent knowledge is through OWL ontologies, 

which are based on RDF but include many other logical operators and axioms, enabling 

https://www.w3.org/
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very rich conceptualisation of data, information and knowledge alike. In this sense, an 

OWL model is able to work with basic data types, such as integers and strings, which 

are given more context when part of information models. These in turn can express 

relationships between different concepts (as shown in Figure 2-5), which can also 

achieve the conceptualisation of a knowledge field in an ontological sense. The term 

‘ontology’ comes from ancient Greek philosophy and it “deals with the essential 

characteristics of being itself (of Aristotle's being qua being), and asks questions such 

as ‘What is or what exists?,’ ‘What kind of thing exist primarily?’ and ‘How are different 

kinds of being related to one another?’” (Bunnin and Jiyuan 2004). In general terms, 

ontologies define ‘things’ which exist, while semantics characterise the relationships 

between these ‘things’ and or how to describe them.  

The Oxford dictionary of Computer Science defines a programming ontology as “a 

description of some concepts and their relationships, for the purpose of defining the ideas 

sufficiently to allow a computer to represent them and reason about them. Thus an 

agent’s ontology specifies the basic building blocks of knowledge that defines what it can 

perceive and reason about. This is a kind of model and, as such, is very useful to define 

what agents or learning programs can know and what they can communicate. Ontologies 

are usually compiled for a particular ‘domain’, e.g. the domains of wind engineering, 

medical diagnosis, or office interior navigation, but they are more formal than domain 

knowledge.” (Butterfield and Ngondi 2016) 

Once model concepts have been described, their inter-relationships need to be defined, 

which give a comprehensive representation of the model, not just semantically, but also 

ontologically. An “axiomatization process aims at enriching ontologies semantics by the 

definition of axioms and rules between different entities. It is processed manually by 

experts of the domain. The axiomatization can be applied between entities of the same 

ontology, intra-ontology, or belonging to various ontologies, inter-ontology. Moreover, 

axioms can be defined for concepts and properties. However, the axiomatization process 

is performed through the high level expressiveness of OWL and the use of SWRL to 

define formally more complex relationships” (Abdul-Ghafour et al. 2014). The 

relationships expressed in OWL are on a higher level than those in RDF or RDFS, and 

can define very specific terms which act as necessary requirements, restrictions over 

model concepts due to the use of Description Logics (DLs) (Gibbins and Shadbolt 2009). 

Because of DLs, OWL is widely applied for practical purposes in various knowledge 

domains where data is categorised and analysed logically such as biology, medicine, 

geography, astronomy, agriculture, computer science, etc. (Motik and Rosati 2010). The 

applications usually deal with large datasets which require classification and 

conceptualisation of knowledge. This is also valid for the AEC sector, where multiple 
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knowledge domains interact frequently. It does, however, pose challenges because 

construction projects have multiple organisations involved, which tend to collaborate for 

short periods of time (while the project lasts). When referring to large organisations, Hay 

(2006) mentions that they have begun to see the value in the semantics of all their 

systems and information, in that semantics allows people and software systems to better 

communicate with each other.  

When in the context of BIM models, semantics lie at the core of all its objects, and in fact 

every object inside the model symbolises a real-life object, which eventually becomes a 

building component. The simplest example of these semantics is the properties which 

are attached to the programmatic objects: ‘Wall of 3000mm length’ or ‘Wall of concrete 

material’. Unlike IFC which is at its core structured model data, an OWL format adds 

more expressivity to the data. The use of ontologies in the AEC has gradually increased, 

with application domains in cost estimation (Niknam and Karshenas 2014) and risks 

analysis (Fidan et al. 2011) or energy performance (Tomašević et al. 2015). 

2.3.2. Ontologies for building design 

Succar (2009) introduced a BIM ontology of intersecting knowledge domains in an 

attempt to define conceptually the main fields and lenses of the BIM paradigm. Abanda 

et al. (2013) offer an overview of ontology and semantic web linked data trends in 

research over the last decade. There is clear interest in the fields of risk analysis, project 

management knowledge sharing and energy performance analysis. The authors mention 

that SW and LD are seen as beneficial because they facilitate interoperability between 

the large spectrums of application domains involved in the construction sector. However, 

they point out that very few applications exist commercially which are using ontology 

support. This is likely due to complex requirements for ontology-based collaboration in 

the field of design and construction. The study also identifies several research 

applications in energy performance analysis and building sustainability in general, but 

there was no mention of fire design performance analysis. This suggests a low level of 

research and development in the area.  

From IFC to IfcOwl 

Pauwels et al. (2011) is one of the pilot studies investigating the capabilities of semantic 

web rule checking, applied to acoustic building design, closely tied to IFC concepts. They 

state that the limitations in the IFC schema expressivity of concepts are overcome by an 

ontology approach. Another pilot study on using ontology tools is by Scherer and 

Schapke (2011), which describes a framework for using ontologies as a means of 

integration on the project level, which can include multiple models and processes. Such 

approaches enable the rule checking process to go beyond the schema scope, thus 
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allowing for more flexible model view definitions, which is crucial in including non-

traditional design analysis under the BIM umbrella. Long before these developments, 

Rűppel et al. (2006) proposed an ontology model framework for fire safety design, 

integrating different databases. This study was limited at the time due to insufficient 

technologies in the AEC sector. However, many developments today rely on IFC, which 

is seen as an underlying schema for structuring data, and IfcOwl (Beetz et al. 2009, 

OpenBIMstandards 2017b), its ontology representation , which provides higher level 

interoperability and reasoning capabilities. Schevers and Drogemuller (2006) pioneered 

a mapping between IFC to OWL to extend its interoperability capabilities. As 

developments around this topic grew, it became apparent that ontology representations 

of the IFC schema allow for a flexible and more robust backbone for interoperability 

requirements, as concluded by Venugopal et al. (2015). The computer-interpretable 

features of ontologies allow for validation methods and easier extensibility of other 

disciplines into the design process. However, this presents serious limitations when 

querying geometry data due to the object-oriented nature of the IFC schema. Pauwels 

et al. (2017) investigate the optimisation issues around its representation in terms of 

geometry retrieval of the data.  Farias et al. (2015) also mention that the IFC STEP file 

was created for optimal information compression, but its object-oriented nature does not 

really align the same way semantically when represented in an ontology. Terkaj and 

Šojić (2015) also aim to improve the semantics of the IfcOwl, to make it more adaptable 

and robust over different application domains. The IfcOwl is currently under the process 

of becoming an international standard (BuildingSMART 2017), which would open the 

way towards more Web reliant BIMs. 

Building regulations checking 

Some studies represent certain regulations into ontology concepts and logical rules in 

order to facilitate a fast and automatic environment. Beach et al. (2015) is one of the 

more recent studies which applies regulation checking using ontology representations 

due to it being easier to manage and having a more interoperable environment compared 

to traditional software tools. The study focuses on presenting a more viable way to 

quickly convert textual rules and procedures into valid ontology representations and 

checking. The study was applied in the context of BREAM assessment, which is a good 

example of multi-disciplinary and multi-domain design decision making. The authors 

mention that when the SWRL rules are executed, the rules check only for failure case, 

thus suggesting to the users why it failed. This is a limitation of the Open World 

Assumptions (OWA). The users also have to complement missing data with input in 

many situations. A step further from this, Zhou and El-Gohary (2017) present a method 

which semi-automatically extracts information from design codes in order to facilitate the 

code-compliance schema against which models should be checked. However, this study 
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is limited to the energy analysis domain. This could really speed up the process of 

interpreting design rules and regulations for automatic information retrieval.  

Design applied research 

Some good examples of developments using SW tools are presented by Lee et al. (2014) 

and Niknam and Karshenas (2014) for cost estimation and management of data; the 

latter uses SPARQL queries to integrate data over the web, such as industry suppliers 

cost data. Zhang et al. (2015) developed an ontology for hazards and safety, also using 

SWRL rules for more effective safety planning within the context of automation.  

Another example is the development proposed by Grover and Froese (2016) to manage 

knowledge about buildings via a social platform. Although this study does not mention 

an integration with SW tools, it shows the direction of the industry towards smart homes 

and cities, where managing and exploitation of data is a requirement to truly benefit from 

it (Howell 2017).  

Crowd simulation and human behaviour  

The use of ontologies for human behaviour was explored by several studies in attempts 

to conceptualise realistic behaviours and were used on virtual agents, rather than CSTs 

(Vieira et al. 2005, Yoke et al. 2007). These studies, however, are not focused on design 

or evacuation scenarios, and have quickly become replaced by improved artificial 

intelligence agents within virtual game environments. 

Kuligowski (2016b) aims to conceptualise the complexity of human behaviour and the 

types of actions they may take in real cases. Although these cannot be fully represented 

by any CSTs to date, they can be captured in ontology models. Trento et al. (2012) 

present a methodology to incorporate human behaviour in assessing building 

performance and usage by capturing this in an ontology. However, this is beyond the 

rules and regulations for design compliance and does not address the requirements for 

using BIMs in practice. 

Onorati et al. (2014) is an example of using ontology methods for aiding the evacuation 

process, whereby ontology and semantic web technologies are used in the building 

operation stage. Damrongrat et al. (2013) proposes an ontological representation of the 

building plans, according to different functionalities so that evacuation events can be 

represented more comprehensively. Poveda et al. (2014) uses ontologies and ambient 

intelligence to gather knowledge about how evacuations progress in a building. Kraus et 

al. (2011) is an example of using building information defined in ontologies for an airport, 

with sensors. Mustapha and Frayret (2016) developed a framework to simulate agents 

paths in healthcare buildings for optimising building usage. Luo et al. (2016) present a 

methodology of using ontologies to manage events during fire, creating and using a 
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knowledge base about the building in conjunction with BIM models. All the studies above 

are heavily focused on the building operation stage monitoring and simulating human 

activities, many seeing BIM as a source of geometry, but not applied in a BIM supported 

design context which collaborate with CSMs or CSTs, or follow validated design 

procedures. 

2.4. Summary of literature findings 

This chapter introduced the basic concepts used as part of the conducted work and 

offered an overview of the status-quo of research into the fields of CS, BIM and 

ontologies. The estimation of evacuation time is a complex process which relies on CS 

models and tools in practice (Section 2.1). This brings forth the first findings: 

1) Section 2.1.1. outlined that each CSM and CST is different and consequently 

may output different results. Using multiple models and tools or selecting the 

most appropriate for each situation is recommended in light of each tool’s 

limitations.  

2) One simulation is often not sufficient to evaluate the evacuation performance. 

Creating relevant scenarios involves a lot of effort from safety engineers, 

requiring multiple information sources about the environment and the population, 

following validated procedures. This is a time-consuming process which requires 

specialised expertise, as was mentioned in Sections 2.1.1 and 2.2.2. 

There have been many attempts to speed up the process using BIM models on various 

levels across multiple fire safety related fields. The level of interoperability between CS 

applications and BIM has been summarised over several fields including virtual reality, 

path-finding, regulations checking, and interoperability focused. However, this brings 

forth the following findings, outlined in Section 2.2: 

3) There is no consensus on the information exchange requirements from BIM to 

the CS field. Most of the developments in research are limited to importing or re-

constructing geometry from BIM, with no consensus on a format.  

4) Additionally, geometry is insufficient to provide all the necessary information 

when creating a simulation model with regard to context (population capacities, 

placements, incidents, etc.), which needs to be constructed manually by 

designers, as was evident from section 2.2.2. This is also caused by the various 

distributed sources of information which can contribute to the context of a CSM, 

also outlined in Section 2.1.2. 

More recent developments suggest the involvement of OWL ontologies to express 

human behaviour and integrate various models. The more relevant research in this field 
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was presented, including the development of IfcOwl, which allows for extending digital 

building model data to other design fields. Section 2.3. outlined that: 

5) The Semantic Web and ontologies provide a robust environment for integrating 

information from distributed sources, which has already seen significant 

development around the BIM field, clearly showing their potential for improving 

automation of design using intelligent systems and logical inferencing or 

reasoning.  

Some ontologies have been developed within the field of human behaviour in a BIM 

setting. However, as outlined in Section 2.3.2: 

6) No ontologies with a focus on CSM or following validated workflows or 

procedures exist to date which can conceptualise simulation data and collaborate 

with BIMs.  

These would greatly benefit the automation of design procedures and allow intelligent 

agents to find and reason over distributed resources on the web to facilitate fast and 

accurate construction of models, and the evaluation of building performance when 

considering larger data environments. 
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 Chapter 3. System design and methodology 

 

 

Building upon the research findings from the literature review, a novel system is 

proposed which enables the exploration of linked data and knowledge processing based 

on a BIM approach. The conceptual system framework is outlined, along with the 

adopted methodology for its development, coupled with the aim to pursue knowledge 

during the entire process. 

The proposed system framework is based on principles of knowledge representation and 

mining. The proposed tools for representing knowledge are OWL ontologies, hence the 

name ONTOCS which stands for Ontology Crowd Simulation. Knowledge Mining is 

defined as “a derivation of human-like knowledge from data and prior knowledge”  

(Kaufman and Michalski 2005),  which includes Databases, Knowledge bases and 

Operators, as outlined in Table 3-1.  

Table 3-1. Knowledge mining components (Kaufman and Michalski 2005) 

Component Description 

Databases the raw data present across various sources of information 

Knowledge bases the representation of existing knowledge  

Operators logical expressions used to supplement additional knowledge 

from existing knowledge bases 

 

Having adopted the recipe for a knowledge mining system as described by Kaufman and 

Michalski (2005), the conceptual framework components and workflow are shown in 

Figure 3-1. The workflow ensures correct user input (i), correct interpretation of the 

reasoning processes (ii) and that the users receive relevant feedback (iii). The scope of 
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ONTOCS is narrowed down to the field of crowd simulation evaluation in evacuation 

scenarios, its main aim being to enhance the performance design processes which rely 

on using evacuation models for decision-making. However, its extensibility to future 

needs or inclusion of additional design disciplines was also considered throughout its 

development. 

Due to the complexity of fire safety design, the processes involved in CS construction 

and analysis were considered independently from other sub-systems. “[…] to improve 

the quality of decisions is to decompose a decision problem into simpler components 

that are well defined and well understood. Studying a complex system built out of such 

components can be subsequently aided by a formal, theoretically sound technique.”  

(Druzdzel and Flynn 1999) 

The decision-making process involved in CSM evaluation was investigated through 

existing design guidance and literature, the functionality that CSTs provide, and 

consultations with experts in the field on several occasions.  

 

Figure 3-1. The envisaged processes for achieving knowledge mining using the 
proposed ONTOCS system 

To further define the research direction with a focus on solving applied design and 

research problems, the ONTOCS system aims to achieve the following objectives: 

1. The system must be able to interface with several tools and information sources, 

without the risk of being locked into a particular CST.  
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2. The system must enable automatic creation of simulation models using available 

data and information models, while also considering user input. 

3. The system must enable feedback on design performance using simulation data 

and subjecting them to knowledge operators, whilst also considering user input. 

4. The system must be fully functional and deployed in a practical use-case scenario 

for testing and validation. 

The objectives for deploying a functional prototype for testing allows a parallel pursuit of 

knowledge about the adopted research approach, and this intersection of interests is 

outlined in Figure 3-2. 

 

Figure 3-2. Pursuit of knowledge in parallel to system design and testing 

The remainder of the research was split into four main sections, each focusing on a 

research question (Q4, Q5, Q6 and Q7). A practical approach was adopted, where 

existing tools and methods were investigated and tested in parallel with further literature 

surveys, and consultations with field experts where necessary.  

Q4: What are the requirements for an intelligent system capable of integrating 

resources relevant to the CS field within the context of automation and analysis 

feedback, whilst considering practical deployment and future extensibility? 

The research methodology adopted for Chapter 4 is an extension of the literature whilst 

considering the envisaged proposed solution. Setting specific objectives for the desired 

functionality of the ONTOCS system also helped define the boundaries of the overall 
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research. The requirements investigation considered review of relevant literature around 

design practice and industry tools for evacuation design. Understanding of practical 

design problems and methods used to tackle them was crucial in developing a functional 

system which follows well defined design protocols. A hands-on approach was taken in 

testing several tools and exploring their capabilities and limitations before deciding on 

which to incorporate into the prototype.  

The methodology and rationale of this chapter breaks the research question in several 

parts, by following ONTOCS system development objectives: 

i. The main objective is to be able to interface with several tools and information 

sources, without the risk of being locked into a particular CST. To ensure future 

interoperability and extensibility, a common taxonomy of concepts across CSTs 

was required. Several popular industry tools were chosen, their features and 

structures investigated and compared. This step was also important for the 

implementation of the CSS ontology in the next chapter; 

ii. The second and third objectives of the ONTOCS system is to enable automatic 

creation of models (1) and feedback on design performance (2). Official published 

documentation from the UK was surveyed, in addition to academic papers and 

consultation with experts. This resulted in the definition of several information 

requirements for each stage. These factors were vital for the development of the 

ontologies from Chapter 5, and for the definition of the case study presented in 

Chapter 7.  

iii. The final objective of the ONTOCS system is to allow its deployment in a practical 

use-case scenario. This required the consideration of tools used in industry for:  

crowd simulation modelling (MassMotion), using a digital building model as an 

information provider (IFC), a knowledge modelling and testing tool (Protégé) and 

hosting a knowledge management server (Stardog). These were initially 

investigated from an academic background and their features and capabilities 

tested to justify their inclusion into the system and into the research framework; 

Q5: What are the challenges concerning information models and workflow 

processes being represented in a knowledge base, considering the requirements 

for integration and knowledge retrieval? 

The research methodology adopted in Chapter 5 involved an iterative ontology 

engineering approach, where the requirements for a knowledge-based system for CS 

performance design are developed into a knowledge base.  
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“1) There is no one correct way to model a domain – there are always viable alternatives. 

The best solution almost always depends on the application that you have in mind and 

the extensions you anticipate 

2) Ontology development is necessarily an iterative process.  

3) Concepts in the ontology should be close to objects (physical or logical) and 

relationships in your domain of interest. These are most likely to be nouns (objects) or 

verbs (relationships) in sentences that describe your domain”  

                      Noy and McGuinness (2001) 

Several main ontologies were developed which define the processes involved, and 

additional secondary ontologies for integrating external resources which contribute to 

model data. The ontology language chosen was OWL, working with the OWL2 version 

schema, to be able to give as much expressivity as possible. Each ontology was 

developed in parallel to the ONTOCS system and tested along the way. Adjustments 

were made in an iterative manner while also considering feedback from discussions with 

industry experts in the field on several occasions. The challenges for an integration in a 

fully functional knowledge base are presented in an attempt to align multiple knowledge 

domains. The alignment was done via widely accepted methods, such as matching 

concepts on the basis of their similarities (Euzenat and Valtchev 2004), or in some cases 

with the use of knowledge rules, where datasets were too large for manual methods.  

Q6: What needs to be considered for design knowledge storage and retrieval 

concerning   building egress performance using evacuation models? 

The research methodology adopted in Chapter 6 involved an iterative process of creating 

and testing different knowledge operator types which were able to reason on top of the 

already developed knowledge bases. Due to the nature of a knowledge base being 

reliant on several distributed resources, this brings a certain degree of complexity. To 

tackle this, a practical approach was adopted, which was discussed in pursuit of insight 

on this topic. The main aim was to assess what resources are needed by the ONTOCS 

system in order to perform useful logical operations on model data, while considering 

user input, building geometry and scenario context. The nature of storage and retrieval 

of knowledge base information are strictly linked. Operators needed to compute the 

relevant data had to be defined in a very specific context to reason correctly. The SWRL 

rules were developed in their relevant ontologies and initially tested in the Protégé 

software. They were then implemented into the system which relied on the Stardog 

server service to process them. SPARQL queries were chosen to check the validity of 

the rules, by interrogating the knowledge base manually and later programmatically, with 
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all the necessary resources being provided on one local RDF store (database). All 

operators were checked, tested and gradually improved, which were then employed for 

a more realistic case study to identify further limitations. 

Q7: How reliable is a knowledge-based system in understanding the building 

model and other linked data resources in facilitating correct and efficient design 

support? 

The research methodology adopted in Chapter 7 employs several use case scenarios 

where the developed system and knowledge base were tested, with the aim of validating 

them. The case studies were developed on a digital model of a real building in its 

operation stage. Data about the use and occupancy of the building was gathered, which 

was used to create a realistic design scenario and then simulated using MassMotion. 

The testing considered each stage independently: 

i. Stage I, Scenario generation – the first use case compares the manually created 

scenario to those generated automatically by the ONTOCS system, in an attempt 

to assess if the system is able to correctly interpret the ontology resources using 

the proposed workflow and knowledge operators defined in Chapter 6. The 

differences between geometry and context creation were outlined concerning the 

model structure and comparing simulation results across several scenarios. 

Referring to methods on CST validations (Thalmann et al. 2007) states that 

“Quantitative verification involves comparing model predictions with reliable data 

generated from evacuation demonstrations. Galea’s work highlights (Galea 

1998) two kinds of quantitative validation: historic and prediction-based 

validation. In the first case, the user knows the results from previous simulations 

and real exercises. The second case involves using the model to perform 

predictive simulations prior to having experimental results.”  It is important to 

mention that the methodology here is not targeted at validating the CST, but at 

validating that the models generated by ONTOCS, which are then executed by a 

CST, resemble sufficient similarity to conventional ways of model creation. This 

is done by looking at the inputs and output results by comparing and contrasting 

their differences; 

ii. Stage II, Analysis feedback – the second use-case tests the system on dealing 

with a large-scale of scenario models.  A session running 36 models was used to 

validate that the rules and queries are able to correctly inform the designers about 

building performance. The results provided by the queries were checked against 

those present in the simulation files. The number of 36 scenarios was considered 

sufficient for a real-case design situation, simulating the building in incremental 
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steps regarding its assumed population from 30% to 200% according to design 

practice. 

During the cases above, the execution speed of knowledge operators was measured for 

both use cases by considering query time, thereby assessing the efficiency of the 

system. Additional scalability tests were carried out to identify limitations of the 

developed knowledge operators. Several dozens of measurements were taken to 

account for oscillation of query times and averages were plotted and discussed. 

To assess the reliability of the use of secondary linked data resources, for each use case 

above, scenarios based on design guides capacities (using the UKSOC and 

Uniclass2015 ontologies) were also included. These are contrasted and compared to 

models which rely on real case data. 
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 Chapter 4. Requirement analysis 

 

 

This chapter outlines the technological and information requirements for delivering a 

functional system fit for practical deployment, following the vision of the proposed 

conceptual framework. The chapter is divided into three distinct sections, following the 

rationalised methodology, with the aim of answering Q4.  

4.1. Design of crowd simulation tools 

Crowd simulation models have been introduced in Section 2.1.2, along with their 

capabilities and limitations. From a research perspective, the last decades saw the 

development of mathematical models which can mimic human behaviour in various 

circumstances. These models were gradually adopted by the industry for practical uses. 

The most common use is in evacuation design, where scenarios are created to represent 

the act of building egress. It is important to understand that while the basic underlying 

mechanics of these models have changed in small proportion, the functions they perform 

and the way they are implemented have evolved in order to satisfy industry needs. The 

more recent AEC industry needs have been around a BIM-centric way of working, which 

is in line with this research’ aim to include CSTs into the BIM paradigm. As such, tools 

with high interoperability with BIM models were considered more valuable. 

A number of CSTs are available in industry and research, with various features that they 

provide to users. It was mentioned in Chapter 3 that in order to be able to interface 

several CSTs to interact with the ONTOCS framework, a survey of their basic 

functionality and features is required. This can then be used to establish a baseline of 

common functionalities and concepts used in the field of CS. Several CSTs which are 

widely used in industry were investigated and are these are shown in Table 4-1. All the 

investigated tools have been in development and improvement for the last decade, each 

receiving significant feedback from their users. Additionally, each tool was validated 

using commonly accepted validation techniques (Thalmann et al. 2007, Duives et al. 

2013), and have been used on real-life projects on many occasions. Experts consider 



40 

the validation process an ongoing one across the lifecycle of the software tool. Duives et 

al. (2013) mention that calibration of the model to represent a scenario in detail has a 

greater impact on the realism and behaviour than other methods of improving the tool, 

second only to the mathematical calibration. 

It has been observed, as will be made clearer in Section 4.1.2, that the underlying 

topology of such models can be clearly distinguished across all of the investigated tools, 

regardless of the mathematical model used. 

Table 4-1. List of CSTs investigated 

Tool Developer Reference 

Exodus GUEL, University of Greenwich FSEG (2018) 

STEPS Mott MacDonald Mott MacDonald (2018) 

MassMotion Oasys, Arup Oasys Limited (2018a) 

Pedestrian 

Dynamics 

INCONTROL Simulation 

Solutions 

INCONTROL Simulation 

Solutions (2018) 

Simulex IES Integrated Environmental 

Solutions Limited (2018) 

 

4.1.1. Features and capabilities 

The overall purpose of CSMs is to accurately represent human movement and complex 

behaviours. However, as these models becomes part of software tools, each tool comes 

with several features which extend the functionality of their underlying models. By 

investigating the CSTs in Table 4-1, several common features have been identified, 

which are summarised in Table 4-2.  

Kang et al. (1990) have undertaken a study which defines and categorises how a 

software tool is able to incorporate features which can solve user problems. In this case, 

they define a software feature as: “a prominent or distinctive user-visible aspect, quality, 

or characteristic of a software system or systems”. In essence, a software program is 

able to incorporate such features by applying code in very specific ways, used to solve 

common problems or to achieve a specific task. When considering the program itself, 

Batory (2005) cited in Apel and Kästner (2009) describes features as “an increment of 
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program functionality”, thus allowing one particular piece of software to achieve several 

functions, as mentioned above. 

Table 4-2. List of main CST feature categories 

Feature domain Description 

Geometry 

Allows users to create geometric representations of the 

environment using basic types (lines, points, etc) or place pre-

defined objects and edit them (floors, walls, etc). Various 3D or 

2D model formats can be imported directly. 

Agent 
Allows users to define agents within the model, usually relating to 

their physical or behavioural properties. 

Event 

Allows users to specify the location, time and number of agents 

within the model. Additionally, users need to specify the routes or 

other agent actions at specific times during a simulation. Events 

govern the dynamics of a simulation by defining agent actions, 

routes and behaviours, which need to be pre-inputted by users. 

Analysis 

Allows users to work with output data and perform analysis and 

decisions on the performance of simulations. Includes several 

ways in which agent movement in the environment is tracked and 

presented, such as graphs, tables or density map overlays. 

Visualisation 

Includes several types of features which enhance the visual 

components of objects but have no impact on the simulation 

calculations. Common features also allow users to visualise the 

simulation as an animation or video. 
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The importance of identifying CSTs features is owed to the fact that they were 

deliberately created to achieve well defined functions. Apel et al. (2008), cited in Apel 

and Kästner (2009) also defines features as “a structure that extends and modifies the 

structure of a given program in order to satisfy a stakeholder’s requirement, to implement 

and encapsulate a design decision, and to offer a configuration option”. Program features 

implemented in these tools showcase the wider needs of the industry, and therefore 

reflect the way the industry uses them. As an example, the addition of density maps to 

CSTs is a feature which allows experts to analyse the flows of people through a building 

with more objectivity. Thus, their implementation and inclusion as a feature showcases 

its role in the design process.  

Table 4-2 shows the common types of features encountered by testing and investigating 

the manuals of the 5 tools mentioned in Table 4-1. These are sufficient to define any 

situation within a built environment, with very specific types of populations, allowing a 

realistic representation of real life events. Each CST offers different interpretations of the 

same concept, in many cases under different names, but these can be objectively 

categorised by defining their functionality into one of the 5 main groups.  

It should be noted that although evacuation design is the most applied case, CTS have 

various features to simulate other use-cases as well, such as a circulation mode. In 

evacuation mode, agents are meant to immediately head for the exit. For a more 

realistic scenario, some groups of agents can be programmed to delay this action, or 

react differently when an evacuation event triggers. The software investigated also 

provide a circulation mode, where agents are given certain routes or itineraries to follow. 

Circulation modes are used to model an expected daily use of the building. This use-

case is considered out of scope for the current research. 

Concerning interoperability, all tools can import geometric models from various formats, 

making them BIM compatible. However, they present serious limitations, primarily due 

to the differences between the BIM and CS domains and the concepts they use. 

Characteristically, CSTs compute the events on 2D environments, but are presented in 

2D and 3D for the users for better visualisation options. In the cases of Exodus and 

Pedestrian Dynamics, any import from an IFC model for example would only require a 

cross section plan view of the model. In this case all semantic information and inter-

relationships between the initial IFC model objects are lost, as they are effectively 

converted into lines or points. In contrast, MassMotion and STEPS can maintain the 3D 

representations of the models, but none of the semantics or relationships between these 

objects is used or even required. Thus, they mostly fulfil a role for visualisation. This 

makes any attempts for round-tripping through a CST tool impractical at the moment. 
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4.1.2. Taxonomy of model concepts 

In order to understand what lies at the basis of the crowd simulation domain, a more in-

depth analysis was required. In the attempt to establish a base taxonomy of concepts 

used by these tools in the CS domain, an investigation of the classes of objects that the 

tools use was carried out, each belonging to one of the five generic features. A taxonomy 

of things in the field is important to create a topology of the knowledge domain for crowd 

simulation and analysis. This is the basis for a more comprehensive ontological 

representation of the domain, presented the next chapter (Section 5.1.1).  

“Taxonomy is the science of classification. Originally, it referred only to the classification 

of organisms. Now, it is often used in a more general way, referring to the classification 

of things or concepts, as well the schemes underlying such a classification. In addition, 

taxonomy normally has some hierarchical relationship embedded in its classifications.” 

(Yu 2014) 

In relation to creating taxonomies in the field of CS, there are several studies which 

categorise crowds and audiences types (Vieira et al. 2005, Durupinar 2010, Zhou et al. 

2010), specific behaviours of crowds or groups of people within models (Duives et al. 

2013, Trento and Fioravanti 2016), or for fire-fighting (Moreno et al. 2011). It is important 

to bear in mind that these definitions are all heavily focused on the classification of agent 

behaviour from a research perspective, rather than on a classification schema for a CS 

model, with many concepts which define a CSM being omitted, but many overlaps exist 

relating to agent concepts. Thus, an investigation into the implementation of software 

tools applied in CS represents a good starting point to identify and defining these missing 

concepts. Considering the main concepts around the CS knowledge domain, they are 

usually presented in the form of features. From a programming perspective, these are 

represented as objects, due to the object-oriented nature of the tools. Not all features 

are represented in single objects. Also, it was impossible to establish whether the source 

code implements these features as objects or not, due to the lack of access to it. Features 

and objects were identified from software testing, reviewing the provided documentation, 

and on some occasions through consolations with tool developers and vendors. Figure 

4-1 below provides a summary of the common features present in the investigated tools 

(full tables on these are provided in Appendix A). Some concepts apply functions in more 

than one category, however only the primary one is shown in Figure 4-1.  

Rahm and Bernstein (2001) and Abdul-Ghafour et al. (2014) present ways for schema 

matching by finding similarities in software structures. “Similarity consists in computing 

a distance between two entities by comparing their components, i.e. all the features 

involved in their definition. These components reflect heterogeneities at different levels: 

syntactic, structural and semantic” (Rahm and Bernstein 2001). As opposed to this 
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methodology, a more generic top-level view taxonomy is required for this research. This 

is in line with the aim to provide large-scale simulation capability, where a number of 

CSTs can be used to facilitate similar analysis needs in parallel. The reasoning behind 

this is to compensate for the limitation of each CST being inherently different (Gwynne 

et al. 1999, Ronchi et al. 2013), thus potentially outputting different results. 

 

Figure 4-1. CST concepts by domain feature categories (plot data in Appendix A) 

The Simulex tool stands out in Figure 4-1 with far less features than the rest. Being a 

module in the Integrated Environmental Solutions toolkit rather than a standalone 

application, Simulex offers limited range of features and objects, expressing only 

essential objects within a model. Nevertheless, its components are clearly distinguished 

within the categories, as expected.  

All the tools have a consistent proportion of concepts, with exception of the Visualisation 

category, which includes features designed to enhance the view of the model and can 

therefore be more dependent on the level of tool development than other features. The 
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Analysis and Visualisation categories overlap in many cases (see Appendices A1-A5, 

fifth columns), due to the fact that the act of analysing a model involves users being able 

to visualise the output in various ways. The important factor which distinguishes the two 

is that Analysis concepts make express use of output data, whereas Visualisation 

concepts purely facilitate on geometric representation of model objects from all the other 

categories.  

In addition to the categories outlined initially in Table 4-2, two more were identified: 

Interface and Mathematical. Interface features are like Visualisation, dependent on 

level of tool development and having no impact on simulation output. The Mathematical 

category refers to features which allow users to alter the behaviour of the model or 

specify certain mathematical input which affect the simulation results. Not all tools give 

users this option, and so can be considered out of bounds of the common baseline of 

concepts. Additionally, these features are more concerned with the calibration of the 

underlying simulation model. 

Considering the categories of Visualisation, Interface and Mathematical as platform 

specific, the remaining four categories of concepts can be used to form a taxonomy 

around: Geometry, Agent, Event and Analysis.  

Geometry 

Geometry concepts are used to define the building environment. These usually 

represent the surfaces on which people can walk, obstructions such as furniture or walls, 

and connections between surfaces such as stairs or doors. As shown in Figure 4-1, 

Exodus stands out with significantly more concepts from this category because it 

includes basic geometric types like points and lines in addition to complex shapes. The 

more complex object types have 3D representations able to define the environment very 

accurately. However, 3D geometry has no role in simulation calculations, as these are 

done on 2D surfaces, as mentioned previously. Geometry concepts can range from 

static building objects to dynamic lifts and in some cases even vehicles, which are able 

to move within the environment. Some concepts from the other categories also use 

geometric representations, such as avatars for agents, or overlay density maps for 

analysis objects. The most consistent types of concepts across all tools is the 

representation of static building objects. 

Agent 

Agent concepts are used to represent people in a simulation. This includes the definition 

of people’s physical properties such as: walking speeds, body size, bias towards turning 

left or right, etc. Most tools have predefined agent profiles which are based on research 

and are used to represent different types of people in real life. For example, some profiles 
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can represent disabled people, with larger radius and slower movement speeds. Each 

profile needs to be calibrated to the specific tool so that it mimics reality to the fullest 

extent.  

Other common concepts include the definition of entire groups of agents with similar 

characteristics, or the way in which to customise the population numbers using 

mathematical functions. BuildingEXODUS has more Agent concepts than the other tools 

and allows a more specific customisation of the population, possibly due to its extensive 

academic background. This allows users to tweak the agent profiles in more detail, which 

are otherwise pre-defined for its competitors.  

It has been observed across the investigated tools that agents usually have various 

levels of freedom in terms of their behaviour. Agents are able to ‘decide’ which exit is 

best suited for them to take, depending on their familiarity with the layout or the level of 

knowledge they are provided about the routes and exits. Thus, the question on which 

exits are taken by agents becomes difficult to answer, as it may vary across multiple 

scenarios. Agents are also able to simulate a ‘change of mind’ and can decide to take 

an alternative route if the current one is blocked or too crowded. As such, a number of 

complex situations may arise as a result of these behaviours, which need to be 

considered for analysis purposes.  

Event 

The key characteristic about Event concepts is time. As they are dynamic actions which 

take place only during simulation calculations, events are triggered at specified times. 

These actions can be visualised using model animations. The most common event 

concepts rely on creating agents, thus populating the model at certain points in time. 

Events also describe the movement of people, such as moving from the origin point to 

the nearest available exit. Others act as triggers for changing agent behaviours, such as 

ticket gates, or dynamic obstructions for agents to avoid.  

Analysis 

Analysis concepts represent ways in which the model output data is compiled and 

viewed by the user. They allow users to understand the output and make decisions on 

the performance of the model. As shown in Figure 4-1, these concepts are quite similar 

in number, but will mostly rely on three main basic types: table, map and graph. The 

most common analysis objects are overlay maps, showing the density or congestion of 

agents in various areas of the model. Other, more special analysis types may include 

objects which keep track of certain events, such as the number of agents exiting via a 

certain door. Output data is recorded and computed into an analysis object. Due to large 
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amount of data, not all of it can be outputted at the same time on screen, especially when 

considering the time dimension.  

Considering the categories discussed above, Table 4-3 below lists all the common 

concepts across the investigated CSTs, allowing for the construction of a taxonomy of 

‘things’ which are able to describe the Crowd Simulation knowledge domain.  

Table 4-3. Taxonomy of common concepts for a crowd simulation analysis domain 

Concept Definition Synonym 

Geometry 

Space Walkable surfaces for agents. Floor, Area 

Barrier Surfaces which obstruct agent movement. Obstruction 

Link 
Connection between two walkable 
surfaces. 

Transfer 

Portal 
Entry and/or exit points for agents. Entry or 

Exit Point 

Agent 

Agent Representation of a building inhabitant. Occupant 

Group A collection of agents. 
 

Profile A definition of agent characteristics. 
 

Event 

Journey 
The act of describing agent movement 
from A to B. 

Route 

Circulation 
The act of agents following a route of 
waypoints. 

Itinerary 

Evacuation 
The act of agents exiting to nearest 
available exit. 

Egress 

Analysis 

Graph 
Simulation data plotted on a graph for user 
analysis. 

 

Map 
Simulation data plotted on a map, overlaid 
on the model. 

 

Table Simulation data in tabular format. 

 

 

All of the concepts mentioned above represent some form of model input or assumption. 

Geometry is modelled or imported from another tool. Agent numbers and profiles are 

assumed. Analysis requires the designer to select which output is relevant for the 

purposes of the investigation. These three categories require minimum user input. On 

the other hand, Event concepts are more complicated because they require the 

designers to define a specific context, requiring some form of ‘expected’ behaviour 

input. For example, designers need to state that certain groups of people will move 

towards a certain exit point, meaning that the event used to model the movement of 

people from A to B needs to be explicitly defined by the user. Concepts with required 

user input are highly dependent on circumstances, thus making each simulation scenario 



48 

unique. Some tools have predefined behaviours for quick event deployment, but these 

usually require customisation from the users in order to increase the realism of scenarios. 

For more information, column 6 from the tables in Appendix A marks the features and 

objects which require customised user input related to their ‘expected’ behaviour.  

4.2. Scenario automation requirements 

In alignment with the requirements concerning automation, this section aims to bring 

forward the necessary level of information for complete, functional and realistic 

simulation scenarios and on how to deal with analysis output. Each of these stages is 

outlined separately. 

4.2.1. Creating valid models 

When considering the creation of valid simulation scenarios, two main categories of 

information input have been identified, as shown in Figure 4-2: 

1) Geometric – information which defines the building environment within a 

simulation; this is provided from the Geometry category of concepts identified in 

Section 4.1; 

2) Contextual – information which defines the circumstances of the simulated 

environment, such as: numbers of inhabitants, exit choices, agent characteristics, 

etc. This is provided from the categories of Agent and Event type categories 

from Section 4.1. 

Khan et al. (2014) state that CSTs require user input, and therefore significant time for 

calibrating scenarios. For these to represent reality in an accurate way, contextual 

information is required such as the numbers and positions of agents. Cassol et al. (2016) 

developed a system consisting of configuration modules which specifically deal with:  

1) creating the geometry/environment, 

2) creating population and, 

3) creating the events.  

This methodology follows similar steps to the one described by Kuligowski (2016a), 

already presented in Section 2.1.2. For the purposes of this research, the Agent and 

Event concepts are considered part of the context. The reason for this is that agents and 

events are usually defined together when a scenario is created. In addition to that, the 

geometry of the model is static in nature, with little variation across several simulations. 
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From the literature it was concluded that CSTs are often used to import from or work with 

BIM model data. In time this has also pushed most CST developers to facilitate various 

digital model import capabilities. However, as was evident from the literature and from 

the investigation outlined in the previous sections, this is mostly limited to geometry with 

no methodologies to retrieve a context about the simulation. Building digital model data 

is limited to geometry as most of the actual context information is not present explicitly. 

As opposed to geometry, context information provides important assumptions about 

each scenario and directly influences Agent and Event entities. Due to its various 

sources, contextual information can be hard to retrieve automatically without intelligent 

procedures in place. In practice, this information is usually provided by expert designers, 

who manually construct scenarios in accordance design analysis needs or predicted 

building use. This process is dependent on designer knowledge and experience and 

available published documentation on design procedures or regulations, which offer 

guidance on best practices, such as the UK PD 7974 (2004).  

 

 

Figure 4-2. Crowd simulation scenario information requirements (categories which 
contribute to context are in Figure 4-3) 
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The minimum requirements for a functional crowd simulation scenario have been 

identified from consulting the literature, guides and first-hand experience with CSTs 

(outlined in Figure 4-2). The primary requirement for each scenario is determining its 

population capacity. Additionally, Nilsson and Fahy (2016) mention it is imperative for 

designers to identify several factors which contribute to the context of a fire scenario: 

circulation paths, main exits/entrances and important waypoints.  

With the aim in identifying the sources of information which could be used in automation 

of context generation, four principal domains which can provide information input 

emerge, as shown in Figure 4-3: 

A. User preferences – refers to the choices that the designer makes to generate 

a variety of scenarios which are relevant to the situation. For example, the 

designer should specify what type of scenario is chosen, what is the desired 

simulated building capacity, or which data sources are imported or used; 

B. IFC model data – provides relevant building data, from geometric to 

contextual information. The data should be stated explicitly through specific 

properties. There are no defined standards for crowd simulation purposes, 

but the IFC schema allows the custom creation of properties at object level; 

C. Design guides and documentation – when it comes to scenario 

assumptions, a variety of documentation guides and published documents 

can provide an overview of the factors to be considered. However, due to 

their indicative nature, much of the information is highly interpretable and 

circumstantial. The available information is spread across several 

documents. For instance, the PD 7974 (2004) part 6 is one of 7 documents 

published in the UK which were used to gather knowledge about the domain. 

However, information concerning occupant densities was vague, so local 

official regulation documents were required (The Building Regulations 2015); 

D. Building data – live or historical data which refers to occupant traffic that 

might be relevant to the simulated building environment, e.g. data recorded 

from sensors, traffic cameras or exact numbers of occupants per space within 

a facility. 
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Figure 4-3. Information sources contributing to simulation scenario context 
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4.2.2. Creating analysis feedback 

 

The second part in representing the knowledge processes required an investigation into 

what data and information are relevant to the analysis process. CSTs can generate a lot 

of data from every simulation created. Designers make use of imbedded tool Analysis 

and Visualisation features to be able to interpret the data and make decisions. To 

assess design performance objectively, certain Performance Indicators (PIs) need to be 

established. These need to allow not only human decision-makers, but also intelligent 

systems to distinguish between different scenarios and assess which data is most 

relevant to each situation, being a primary requirement for conceptualising machine-

interpretable knowledge processes. The most important identified PIs are listed in Table 

4-4. 

Nelson (2002) cited in PD 7974 (2004) modelled the effects of high traffic density on 

agent walking speeds, estimating that where a density is greater than 3.8 agent/m2 the 

movement is completely halted. The identification of areas with high traffic density is 

therefore very important and is also coupled with the finding the occurrence in time of 

such events.  

These are conventionally identified using density maps and simulation animations. The 

problem with relying on these is that it has to be evaluated by the engineer manually. 

However, with the use of a grading system this could also be done automatically. The 

evaluation of occupant densities can be done more automatically by adopting a scale 

such as Fruin’s Level of Service (LOS) (Fruin 1992), which grades areas with different 

densities experienced over time. Figure 4-4 shows an example of this scale created 

using the MassMotion software.  

Different PIs have been identified from the literature and from software capabilities. 

However, as mentioned previously, most of these factors are expected to be checked 

and analysed by humans.  

When in the context of automation, certain logic rules and algorithms have to ensure the 

correct retrieval and processing of such data. In addition to that, analysis output needs 

to be considered in an object-oriented way, referring data to things like spaces, doors or 

agent objects. 
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Table 4-4. Identified PIs for building performance assessment during evacuation scenarios 

 PI Description Visual representation Source 

1 
Travel 

time 

the time for agents to 

reach a destination 

point from a specific 

origin in the 

environment. 
 

BS7974, 

Expert 

advice 

 

2 
Exit flow 

capacities 

the flow capacity of a 

corridor, door or exit 

portal 

 

3 
Escape 

time 

the total time required 

by agents to reach a 

safe point 
 

4 
Population 

density 

density factor at a 

specific point in time, 

in a specific area of 

the environment 
 

5 

Fruin’s 

Levels of 

Service 

(LOS) 

a way to quantify 

traffic density, 

describing the service 

state of a specific 

area in the 

environment 

 

Simulation 

tools 

6 Other PIs 
situational or ad-hoc 

factors 
N/A N/A 
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Figure 4-4. Example model with a plotted Fruin’s LOS map 

4.3. Technologies and tools requirements 

This section was designed in mind with the practical deployment of the ONTOCS system 

as a prototype for testing and validation of the research hypothesis. Therefore, the 

inclusion of system components is justified here. 

4.3.1. Crowd simulation model. MassMotion 

Having analysed the underpinnings of CSTs and having taken into consideration their 

features, functionality and levels of interoperability with BIM, working with one tool was 

decided as the best choice for simplicity in delivering the system development in a 

speedy manner. Out of the tools investigated, MassMotion was the most thoroughly 

tested and was suited best for the purposes of this research. This was done mostly for 

its very good IFC import capabilities and the early involvement of the tools’ developers 
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with this research. However, a future aim is to be able to include several other similar 

tools within the large-scale simulation paradigm. 

MassMotion is a crowd simulation tool developed by Oasys (Oasys Limited 2018a). 

According to the developers, the tool is aimed at professionals for testing and analysing 

the movement of people in a number of situations. The tool is used around the world by 

professionals on real world projects for pedestrian modelling (Oasys Limited 2018b).  

The methodology used by MassMotion is a hybrid CA model (for the environment and 

movement) and represents Agents with full behavioural individuality. It is therefore able 

to simulate very realistic human behaviour making good use of agent characteristics, 

including the SF model (Helbing and Molnár 1995). Each agent within the simulation is 

able to calculate its own path using a cost function in terms of time. The longer it takes 

an agent to reach a destination the costlier it is. Each agent aims to achieve a low value 

cost during a simulation. Agents are therefore able to calculate their movement cost at 

each mathematical iteration and can decide to change their routes dynamically. 

The software has been validated by Arup (Kinsey et al. 2015) as a professional tool and 

has been investigated by several studies (Thalmann et al. 2007, Kuligowski 2016a, 

Mashhadawi 2016). The latter study tests the software in several standard benchmarking 

tests and concludes that the default pre-set settings of the MassMotion software can 

deviate from real results by up to 60%. However, if the parameters are calibrated to fit 

the real-life scenario more closely, this can be as low as 13%. Typical calibration 

techniques involve the representation of reality as closely as possible, for example an 

accurate definition of agent physical properties to each individual person in reality or 

predicting exact starting locations of agents at simulation start. Kuligowski (2013) 

mentions that no simulation software can perfectly simulate reality, and also when it 

comes to real-life evacuations each is different due to human behavioural uncertainty 

(Kobes et al. 2010). 

MassMotion offers very good interoperability with the IFC format, correctly importing 

complex geometric models, along with the ability to transform IFC objects into 

corresponding MassMotion objects. This is due to MassMotion being natively expressed 

in 3D, with every vertex having three coordinates. Another important aspect is the 

relatively simple and logical hierarchy for its taxonomy of concepts and a very object-

oriented nature, as well as the XML format for simulation files, making MassMotion an 

open tool from an interoperability point of view. Lastly, the tool interface is user friendly 

and easy to learn (see Figure 4-5).  

Due to these reasons, the MassMotion tool was chosen to be integrated with the 

developed system for the research prototype (workflow and implementation in section 

7.1).  
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Figure 4-5. MassMotion interface  
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4.3.2. Digital building model. IFC and IfcOwl 

The role of the IFC schema and format within the BIM paradigm has been thoroughly 

discussed in Chapter 2. IFC has been the debate of many academic papers since its 

inception and continues to evolve and deliver vendor-free interoperability between the 

AEC disciplines. Its sheer size of concepts and ability to represent any building model 

comprehensively, while also including design project data, and more recently energy 

modelling concepts make this the best candidate for a BIM data source. Due to its 

popularity in academia and industry, many CSTs have developed IFC importers, with 

some investigated in the previous chapter. Additionally, Section 4.2.1 already concluded 

that its structure can provide not only geometry, but other contextual information 

precisely because of its comprehensive nature. 

Because the scope of this research and proposed system consider a knowledge level 

representation and mining, the IFC is the only format with an existing OWL 

representation, making it IfcOwl the only reasonable and reliable choice as a source of 

design model with web representation capabilities. IfcOwl is large, with a summary of the 

ontology in Figure 4-6; the one used for this research is based on the IFC2x3_TC1 

release.  

 

 

Figure 4-6. Summary view of the IfcOwl ontology 
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4.3.3. Knowledge modelling tool. Protégé 

Although OWL ontologies can be written as code, knowledge engineers make use of 

editor tools which allows for fast ontology creation. Protégé  (Stanford University 2018) 

is a very popular ontology editing tool, initially developed in academia  (Noy et al. 2003), 

which is free to use and with a large library of plug-ins developed by its community. The 

interface in Figure 4-7 shows a graphical view of the classes, object and data properties 

belonging to the popular Friend of a Friend (FOAF) ontology which is used to represent 

data about people on the Web with the scope of linking them on social network platforms. 

The software comes with embedded reasoners used to check the correctness (the 

ontology concepts should be correctly defined or stated) and consistency (the ontology 

should not contain conflicting information) of ontologies. Additionally, it allows the 

creation of rules and queries, which can be used to test the reasoning capabilities of 

ontologies. Finally, it offers ways to dynamically visualise ontologies in graphs. 

 

Figure 4-7. Entities view tab of the FOAF ontology in the Protégé tool 
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4.3.4. Knowledge management server. Stardog 

In the context of this research, a knowledge management server is required to storing 

OWL schemas and RDF resources graphs, and retrieve embedded knowledge. This is 

also termed a ‘triple store’, which is similar to a relational database, except that it stores 

and manipulates data in RDF using SPO patterns, or ‘triples’. 

 

Figure 4-8. Stardog web interface pages for schema and tree browsers 
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The chosen server tool for deployment was Stardog (Stardog Union 2018), a popular 

RDF store used more commonly in industries (including NASA, Samsung, eBay and 

others), but has also been used in academia in important related studies around BIM 

(Pauwels et al. 2016, Farias et al. 2015, Pauwels and Terkaj 2016).  

Stardog offers excellent OWL and OWL2 reasoning, also supporting the reasoning over 

SWRL rules and efficient querying using SPARQL 1.1. The system was developed in 

Java but integrates with several other programming languages via API packages and 

libraries. It interfaces over HTTP and SNARL protocols over the web. Additionally, the 

tool is very well suited for large scale triple databases, which can work from physical disk 

or memory storage.  

The most important factor was its capability to support different levels of reasoning levels, 

as this research employs a combination of OWL2 syntax with many SWRL rules and 

SPARQ 1.1. 

The developers offer a free community version which is limited to 25 million edges and 

nodes databases.  Finally, its sophisticated browser interface (Figure 4-8) allows very 

convenient ontology schema and instances browsing, as well as querying and database 

management. 

4.4. Summary 

This chapter presented the requirements to enable a framework for an intelligent 

knowledge-based system for automatic simulation scenario creation in a building 

evacuation context, as was required by the methodology proposed in Chapter 3. The 

section presented an in-depth view of typical CST concepts and established a taxonomy 

to use for defining the CS domain conceptually. Then it presented the information  

requirements for automatic model creation from various sources and PIs for facilitating 

an objective feedback process for design decision-making. Finally it presented the tools 

used throughout the development of this research: the MassMotion tool, the IfcOwl as a 

BIM source, the Protégé tool for OWL ontologies creation and testing, Stardog RDF 

server for deployment. 
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 Chapter 5. Knowledge base development 

 

 

This chapter outlines one of the core contributions of this research, the development of 

several ontologies within the CS knowledge domain. The conceptual system design 

introduced in Chapter 3 defines several components required for knowledge 

formalisation and mining processes to occur. In this chapter, the ontology 

representations of the information models and the processes behind crowd simulation 

analysis are introduced. The contents are divided into three main sections.  

The first part (Section 5.1) outlines the overall ontology development efforts. The Crowd 

Simulation Scenario (CSS) ontology defines the domain and semantics between the 

concepts identified in Chapter 4. The CSS ontology describes the crowd simulation 

model, but it lacks the concepts to be able to provide meaningful feedback to the design 

process. Thus, a separate ontology was developed for this purpose, the Feedback 

Analysis (FBA) ontology, presented in Section 5.1.2. The FBA ontology considers the 

design process of analysing the performance of a crowd simulation model, based on the 

requirements identified in Section 4.2.2. To showcase the integration of the design to 

other information models, an ontology was developed which links design code 

occupancy factors with space types, and was made to work together with an existing 

Uniclass ontology dataset, presented in Section 5.1.3. 

The second part of this chapter (Section 5.2) aims to provide clarity and cohesively align 

the developments above with other important ontologies within this design context. The 

most important is the alignment with the existing IFC ontology, which acts as the central 

provider for geometry in a BIM-oriented fashion. The alignment between the IFC and 

CSS ontologies provides a greater understanding about the interoperability between 

these two knowledge domains (presented in Section 5.2.1). The alignment between the 

CSS and FBA ontologies is introduced next, showing the common concepts and how 

they work together in Section 5.2.2. The secondary ontologies mentioned above are also 

aligned in Section 5.2.3.  
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The final part of this chapter outlines various validation and consistency checks which 

were carried during the ontology engineering process.  

5.1. Ontology development 

Ontologies are introduced in Section 2.3.1 as a means to define knowledge domains 

which are currently used in the semantic web. Unlike vocabularies and taxonomies, 

ontologies offer a greater level of knowledge representation with more semantics and 

syntax. This is due to their ability to represent relationships of all types between 

concepts. Noy and McGuinness (2001) mention that there is no one correct way of 

defining an ontology and that this is usually an iterative process which depends on the 

knowledge domain and how the ontology is applied. The basic principle is to be able to 

represent knowledge about the building design evaluation process, and to primarily work 

with information models from these domains.  

The ontologies developed during this research are listed below and their metrics are 

summarised in Table 5-1. They have all undergone several iterations and have been 

tested in various forms using the developed system. There are two main ontologies 

developed for describing the crowd simulation analysis domain: 

1) Crowd Simulation Scenario (CSS) ontology – describes a crowd simulation model 

along with its output results; 

2) Feedback Analysis (FBA) ontology – describes the use and generation of 

knowledge from CSS instance data and analysis objectives. 

Two secondary ontologies were also developed:  

1) MassMotion ontology (MM) – describes the MassMotion software structure; 

2) UK Spaces Occupant Capacities (UKSOC) ontology – describes categories of 

spaces and their respective occupancy factors as per UK design guidance. 

The developed ontologies are presented in the following sections, and their structure and 

reasoning are discussed considering how they are applied in practice. Some of the 

concepts are based on example competency questions which were used to help define 

the scope and applicability of each ontology. Before this, however, an overall picture is 

presented on the interactions of the developed ontologies, along with others which are 

used in defining the ONTOCS framework and system. 
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Table 5-1. Metrics for developed ontologies 

 

CSS FBA MM UKSOC 

Axiom 311 163 974 219 

Classes 56 32 247 75 

Object properties 15 10 38 1 

Data properties 22 8 4 1 

Individuals 0 0 0 12 

DL expressivity ALCHIF(D) ALCHF(D) ALCHF(D) ALF(D) 

 

5.1.1. ONTOCS overall alignment configuration 

Kaufman and Michalski (2005) identified several ways of retrieving data and knowledge, 

depending on the origins of the data, its completeness, or whether its availability is 

dependent on time. Within this context, considering the overall alignment of the 

ontologies, the ONTOCS system falls in the category of “learning from distributed data”. 

A top-level view of the linking between resources is provided here, based on the 

developed workflow of the ONTOCS framework. Figure 5-1 shows the CSS ontology at 

the centre of the system, being responsible conceptualising model objects, results data 

and user assumptions, collaborating with several other ontologies for each of these 

purposes. Under it are the CST ontologies, with the MM ontology in this particular case. 

A CST ontology is responsible with representing and storing any tool specific information, 

and it represents data in its own internal structure. This is in line with the aim to use the 

CSS ontology as a generalised schema above individual CSTs, and therefore enabling 

the inclusion of several tools in the knowledge mining processes. 

The IfcOwl ontology on the left of Figure 5-1 conceptualises the digital building model, 

under the BIM knowledge domain. The BIM is a source not just of geometry objects, but 

also any other relevant data for design or analysis which can exist explicitly via object 

properties. With additional resources in place, like given the examples of design codes 

and standard classification system, BIM model data can be leveraged to provide 

additional contextual information for the CSS ontology. Other Semantic Web Resources 

can be considered, as suggested in Section 4.2.1. However, due to time constraints not 

all could be investigated and implemented in practice during this research. 
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Finally, the FBA ontology conceptualises a design analysis knowledge domain, where 

data from the CSS is used in conjunction with user objectives to validate and test 

simulation results.  

The main challenge was to correctly align the several knowledge domains without any 

conflicts or redundancies. Secondly, the available resources must allow for convenient 

access by the system working with as few knowledge domains as possible in order to 

optimise its performance. Ideally, each ontology must be self-reliant and modular, 

applying rules without depending on other external resources or other ontologies. The 

FBA ontology is unable to function on its own because it relies on the representation of 

the results in the CSS ontology. 

Another challenge was to decide the best location of ontology rules, given that certain 

rules depend on more than one specific ontology, when resources need to be connected 

across multiple domains. This had an impact of where alignments had to take place in 

the first place. More on rules construction is discussed in Chapter 6. 

 

 

Figure 5-1. Alignment of ontologies for the ONTCS system and potential extensions 
to nearby knowledge domains 
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5.1.2. Representing the crowd simulation model 

 

Figure 5-2. The Crowd Simulation Scenario (CSS) ontology 
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After investigating several crowd simulation tools, common concepts were identified 

across the knowledge domain. A generic ‘Crowd Simulation Scenario’ (CSS) ontology 

was developed which describes the necessary concepts, actions and data in a simulation 

environment, with a full view in Figure 5-2, and a full description on metrics and properties 

in Appendix B. The CSS ontology builds upon the already identified taxonomy from 

Section 4.1.2, adding additional relationships between concepts, as is presented in 

Figure 5-3. The taxonomy alone represented a hierarchy of concepts. “All features of 

taxonomies, thesauri and Topic Maps can be expressed in ontologies” (Ullrich 2003). 

The ontology brings additional ‘meaning’ for ‘things’ using object and data properties, 

equivalencies, instances and other logical relationships.  

 

 

Figure 5-3. Main CSS classes in direct relationship with the ‘Scenario’ class 
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The core competency question relevant to the CSS ontology is: 

➢ What types of ‘things’ does a simulation scenario have? 

Figures 5-2 and 5-3 depict the Scenario class at the core of the ontology. In addition to 

model objects, which mirror the already defined taxonomy, there are other concepts 

which relate to the required user inputs identified in Section 4.2: 

• Assumptions - conceptualising design choices via the main 

ScenarioAssumption class, which are part of the required input, thus a subclass 

of UserInput; 

• Results – conceptualising results about each simulation run, via the 

SimulationResult class. This is required for the analysis of the performance 

stage. 

The reason for including these additional classes is to allow the CSS ontology to 

generalise model information on top a CST model or ontology, thus providing future 

extensibility. This is in line with the vision of the ONTOCS framework. 

Model objects - competency question:  

➢ Which types of objects must exist within a simulation model? 

The ModelObject class specifically includes concepts which are present within the 

model. These closely resemble the features and objects present in a typical CST, with 

its four distinct categories: GeometryObject, EventObject, AgentObject and 

AnalysisObject, as shown in Figure 5-4. Some of the main differences to Table 4-3 is 

the inclusion of a more generic Link class which is used to represent a connection 

between multiple types of surfaces. Therefore, its subclasses deal with representing a 

specific link type. For example, DoorLink is being used to model a doorway connection 

between two spaces on the same level, whereas a StairLink models a connection 

between two spaces which are on different levels. The geometry between a door and 

staircase is very different, but in a CST model representation, they are still effectively 

walkable surfaces which apply certain restrictions to alter agent movement. 

The most characteristic object type for all CSTs is the one defining the walkable surfaces 

- Space, which allows agents to effectively exist and act within the model. They are 

represented virtually within a model as surfaces without a 3D component. The name was 

chosen as they effectively refer to spaces in real buildings. Additionally, when 

considering a design scenario, a building environment is split by levels and spaces, so 

designers have an easier time identifying regions within a model. This conceptualisation 

is also in alignment with IfcSpace, presented in Section 5.2.1. The functionality of a 

space was required in order to refer to spaces in other specific circumstances, hence its 

subclasses from Figure 5-4.  
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Figure 5-4. CSS ontology ‘ModelObject’ class hierarchy 

➢ What are the types of spaces within a building when evaluating an evacuation 

plan? 

An InhabitedSpace for example refers to a Space which has agents assigned to it, and 

it is considered inhabited in reality. A RefugeSpace designates the function for a space 

to act as a destination point for agents in an evacuation scenario. These add context to 

the model, as well as a means for automation allowing ontology reasoning to 

‘understand’ the building environment. 

Scenario assumptions – competency question: 

➢ Which types of assumptions must a simulation have? 

Figure 5-5 shows all the concepts classified as assumptions. These refer to concepts 

which are supposed to keep track of the assumed scenario context and are usually in 

relationship with EventObject or AgentObject classes. The ScenarioAssumption 

class therefore conceptualises questions such as: 
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➢ What population data source is assumed? 

➢ What population capacity is assumed? 

➢ What agent profiles are assumed? 

➢ What length of simulation time is assumed? 

Each of these assumptions can yield different results and influences the behaviour of 

agents and therefore the performance of the design. Within CSTs, as concluded in 

Section 4.1, these are usually user input assumptions. Each CST has several pre-set 

values for these inputs, such as different types of agent profiles.  

 

Figure 5-5. CSS ontology ‘ScenarioAssumption’ class hierarchy 
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➢ Where is the population data coming from? 

None of the CSTs to date offer any capability of automatically populating a model with 

agents on a realistic premise. This is largely due to each building design being different 

and assumed building occupancy factors changing with region. However, as pointed out 

in Section 4.2.1, there are several viable resources where population data can be 

retrieved, hence the subclasses for the PopulationDataOrigin keeping track of them. 

Another important factor in the context of automation and feedback, is the ability to 

represent where these assumptions are coming from, therefore differentiating between 

scenarios on larger scale of simulations, or when mining the resources for data at a future 

date, in different creative contexts.  

Simulation results – competency question: 

➢ What types of outputs can a simulation have? 

It has been established in Section 4.1.2 that simulation outputs are usually presented to 

users via several analysis features such as tables or overlay maps. These have already 

been defined as AnalysisObjects in their own right. However, the data which they use 

is recorded in memory or databases, which are retrieved on user demand. The 

SimulationResult class (Figure 5-6) conceptualises the storage of relevant data which 

is retrieved on demand by the user. Its two main subclasses aim to differentiate between 

results at different points in time. Thus, EndResult encompasses definitive outputs, 

which are retrieved at the end of the simulation. For example, the TotalEgressTime is 

the time when all agents have safely evacuated the model, which is computed at the end 

of a simulation run. The IntermediateResult is meant store data ad-hoc, according to 

user objectives, and to provide data at certain times during a simulation. This is a special 

requirement for crowd simulation data as events and agent movement relates to 

SimulationTime. Additionally, the performance of the design is monitored over time, 

thus being important for the analysis stage. 

 

Figure 5-6. CSS ontology ‘SimulationResult’ class hierarchy 
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It is worth noting that this part of CSS ontology can be improved by conceptualising 

several other result types, depending on use case. However, it is highly dependent on 

the capabilities of the CST used, and the user requirements for analysing the results. 

More investigation into the matter is required for future work. 

Agent relationships 

Apart from the hierarchies presented above, there are several explicit semantic 

relationships between the defined classes. Full lists of data and object properties are 

provided Appendix B, along with their domains, ranges and other syntax constructs 

where necessary.  

Within a simulation, the most dynamic objects are those describing agents. Figure 5-7 

shows an example of the Agent class relationships to other sibling classes within the 

CSS ontology.  

➢ How are an agent’s attributes defined? 

 

Figure 5-7. CSS ontology ‘Agent’ class relationships 
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An Agent individual has certain traits which are defined by AgentProfile class, where 

its physical attributes such as movement speed and radius are stored.  

➢ Where does an agent enter the simulation and where does it leave it? 

Each agent has an entry and exit point within the model, which is done through Portal 

objects. Each agent must have at least one Portal as and entry point within the 

simulation, as described by hasEntryn (functional). The Agent can be allowed to use 

multiple exit points, described through the hasExit property. It is not excluded for an 

Agent to use the same Portal for both entering and exiting the model. Therefore, the 

properties between the Agent relating to portal objects are generalised at the Portal 

class level, as opposed to its two subtypes. 

The properties shown in yellow in Figure 5-7 store agent specific data about its identity 

and behaviour within a model. These qualify as results data, recorded after a simulation 

execution, which are different from the assumed data already described by the 

AgentProfile class. For example, the AgentProfile assumes a speed of 1.2 m/s for each 

Agent at the start of a simulation, but the desiredSpeed stores 0.9 m/s; this is because 

although the Agent individual was trying to achieve the upper threshold, it may have been 

impeded by obstacles. Example competency questions on Agent data properties 

include: 

➢ Has an agent managed to exit the simulation safely? 

➢ How much distance has an agent travelled until reaching the exit? 

The level of expressivity developed within the CSS ontology considers a detailed 

interaction between individuals which resemble programming objects, based on the 

taxonomy previously identified. Assumptions and results exist explicitly and relate to 

specific model objects, as well as to the overall scenario, through the use of property 

definitions. These conceptualisations can be leveraged to perform different knowledge 

mining techniques deployed in Chapter 6. 

5.1.3. Representing the analysis feedback process 

The previous chapter emphasised that CST outputs are provided in the form of a 

playback animations, graphs, density maps or tables, for user convenience. These were 

all conceptualised in the CSS ontology as individual types. However, to be able to find 

new knowledge about the design, certain feedback processes regarding output data 

needed to be defined. It was established in Section 4.2.2 that PIs are preferred when 

assessing model performance. However not all PIs have well defined threshold which 

objectively rank performance. Fruin’s LOS is one such a case, based on repeated 

research and observations. This is not the case for evacuation times. Design guides 

recommend certain evacuation values be decided by safety engineers (PD 7974 2004). 
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Figure 5-8. The Feedback Analysis (FBA) ontology 
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Ultimately, designers need to prove that the design is safe through accepted means 

(Shields and Silcock 1987). The Feedback Analysis (FBA) ontology was developed with 

these requirements in mind, with its main concepts shown in Figure 5-8. A full view of 

the FBA ontology, along with its metrics, object and data properties is provided in 

Appendix B. 

The feedback process needs to be able to analyse results according to design objectives 

requested by the user: 

➢ How are user objectives and their requirements captured by the ontology? 

The Objective class conceptualises user analysis objectives, with user inputted 

threshold values for each instance stored by the ObjectiveRequirement class, 

connected through the hasRequirement property (see Figure 5-9). 

➢ What is the scope of one or multiple objectives in terms of scenarios to which it 

is applied? 

➢ How can objectives be applied to scenarios on a large scale? 

The AnalysisObjectivesSet class (Figure 5-9) conceptualises a set of requirements 

from the user side which are applied to several models at the same time. 

AnalysisObjectivesSet can have multiple Objective individuals, each with its own 

ObjectiveRequirement, allowing the definition of several PIs which can be 

simultaneously refer to multiple Scenario individuals. Thus, both properties 

hasObjective and appliesToScenario have ‘one-to-many’ relationship directed 

outwards to its relatives. 

➢ How are the results involved in the analysis process? 

The feedback process must access the simulation data and apply reasoning within given 

contexts. SimulationResult class conceptualises any generic results which belongs to 

specific Scenario individuals. The generic conceptualisation of the dependency 

relationships involved in the process are best described by the association of the two 

sets of triples: 

 

‘AnalysisObjectiveSet -> appliesToScenario -> Scenario’ (1)  AND 

‘Scenario -> hasResult -> SimulationResult’ (2).  
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Figure 5-9. Main FBA classes in direct relationship with the ‘Scenario’ class 

➢ How can scenario models be classified and differentiated?  

The final concepts shown in Figure 5-9 are the subclasses InvalidScenario and 

ValidScenario for the Scenario class. These classes have been specifically 

implemented to deal with the knowledge mining process, where user objectives and 

scenario results are reasoned. The logical inferencing engine categorises each 

Scenario individual according to the result of the rule. Due to the requirements of the 

reasoning process, multiple subclasses for ValidScenario or InvalidScenario have 

been implemented, each corresponding to the TRUE or FALSE rule results. Figure 5-10 

shows the properties defining the objectives and their requirements for two use cases 

which were developed and tested. The FindCapacityEgressStatus class for example, 

is used to query the status at a certain time in a simulation when a certain specified 

population percentage has been evacuated. The requirement is expressed via the 

RequiredCapacity class in this context, with its relationships shown in Figure 5-10.  



76 

 

Figure 5-10. FBA ontology concepts capturing user objectives and requirements  

Thus, the development of concepts relies on user objectives to be used. Only the use-

case which have been used in testing have been developed for the FBA ontology, 

following the generic concepts described above. It is acknowledged that more 

consultation with engineers and designers is required to establish a full list of objectives 

and their requirements as they are used in practice. 

5.1.4. Representing design codes 

In Section 4.2.1 several required factors were identified in order to make a valid 

simulation scenario. One vital factor relates to the number of occupants within the model. 

This can be done several ways, as suggested in Figure 4-2. Design guidance 

recommends the most representative way of reality to be used (PD 7974 2004). If 

specific design data on occupancy is not available, such as in early design stages, there 

are alternative means to estimate occupancy using design regulations. The UK Approved 

Documents (The Building Regulations 2015) series provide means of measurement for 

occupancy densities.  
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Figure 5-11. The UK Spaces Occupant Capacities (UKSOC) ontology 
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To showcase the capabilities of semantic web data integration as part of the overall 

research goal, an ontology was developed which expresses UK Spaces Occupant 

Capacities (UKSOC), with its full classes and individuals shown in Figure 5-11. A full 

view of the ontology is provided in Appendix B, along with metrics, object and data 

properties.  

The ontology is a representation of design knowledge from Table 5-2, which refers to 

spaces and regions within a facility. Although this represents a simple table for types of 

spaces and their associated factors, the exact ontological representation of this was 

required to correctly assume the density factors for each space type.  

During its development, it was observed that certain elements were vague, or in some 

cases redundant. Certain categories had the same factors, without any evident motive. 

At the same time, some types from the same category were marked with certain 

exceptions. Another serious remark is that the table itself is inconsistent as it fails to 

distinguish between spaces, zones or regions. For example, a ‘dance floor’ space can 

be very different from a ‘dance hall’. Additionally, a ‘dance hall’ can include a ‘dance floor’ 

space. 

The finalised UKSOC ontology represents a more concise categorisation of the spaces, 

based on the available information. Any ambiguity left is a result of the initial table’s 

inconsistencies mentioned. From the 15 categories of spaces, 12 emerged in the 

ontology, with each category being assigned a different factor for population density, 

ranging from 0.5 to 30 m2/person. 

 

Figure 5-12. UKSOC ontology ‘Space’ class and its relationships 
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The basic relationships present are shown in Figure 5-12, where each category of space 

has a specific factor assigned. The factors were represented as ontology individuals for 

double type numbers. For simplicity, instead of mapping each factor to each space type, 

a set of SWRL rules were constructed (Figure 5-13), each rule attributing a certain factor 

for each ontology individual from its respective category.  

 

Figure 5-13. UKSOC ontology SWRL rules 

The reliance of using design codes such as occupancy factors remains unclear, and is 

investigated in Chapter 7, along with several test case studies measuring the efficiency 

of the ontology and its rules above. 
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Table 5-2. Spaces occupant capacities (adapted from The Building Regulations (2015) 
Annex C3 – Methods of measurement) 

Table C1 Floor space factors (1) 

Type of accommodation (2)(3) Factor (m2/pers) 

1 Standing spectator areas, bar areas (within 2m of serving point) 
similar refreshment areas 

0.3 

2 Amusement arcade, assembly hall (including a general purpose 
place of assembly), bingo hall, club, crush hall, dance floor or hall, 
venue for pop concert and similar events and bar areas without 
fixed seating 

0.5 

3 Concourse, queuing area or shopping mall (4)(5) 0.7 

4 Committee room, common room, conference room, dining room, 
licensed betting office (public area), lounge or bar (other than in 1 
above), meeting room, reading room, restaurant, staff room or 
waiting room (6) 

1 

5 Exhibition hall or studio (film, radio, television, recording) 1.5 

6 Skating rink 2 

7 Shop sales area (7) 2 

8 Art gallery, dormitory, factory production area, museum or 
workshop 

5 

9 Office 6 

10 Shop sales area (8) 7 

11 Kitchen or library 7 

12 Bedroom or study-bedroom 8 

13 Bed-sitting room, billiards or snooker room or hall 10 

14 Storage and warehousing 30 

15 Car park 2/pers 

N
o

te
s
 

1.  As an alternative to using the values in the table, the floor space factor may be 
determined by reference to actual data taken from similar premises. Where appropriate, 
the data should reflect the average occupant density at a peak trading time of year. 

2. Where accommodation is not directly covered by the descriptions given, a reasonable 
value based on a similar use may be selected. 

3. Where any part of the building is to be used for more than one type of 
accommodation, the most onerous factor(s) should be applied. Where the building 
contains different types of accommodation, the occupancy of each different area should 
be calculated using the relevant space factor. 

4. Refer to section 5 of BS 5588-10:1991 Code of practice for shopping complexes for 
detailed guidance on the calculation of occupancy in common public areas in shopping 
complexes. 

5. For detailed guidance on appropriate floor space factors for concourses in sports 
grounds refer to “Concourses” published by the Football. Licensing Authority (ISBN: 0 
95462 932 9). 

6. Alternatively the occupant capacity may be taken as the number of fixed seats 
provided, if the occupants will normally be seated. 

7. Shops excluding those under item 10, but including - supermarkets and department 
stores (main sales areas), shops for personal services such as hairdressing and shops 
for the delivery or collection of goods for cleaning, repair or other treatment or for 
members of the public themselves carrying out such cleaning, repair or other treatment. 

8. Shops (excluding those in covered shopping complexes but including department 
stores) trading predominantly in furniture, floor coverings, cycles, prams, large domestic 
appliances or other bulky goods, or trading on a wholesale self-selection basis (cash 
and carry). 
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5.1.5. Representing a crowd simulation tool 

 

Figure 5-14. The MassMotion (MM) ontology 
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The previous ontologies represent the crowd simulation domains and analysis workflows 

around them for high-level knowledge storage and retrieval processes. However, in 

practice, each model has to run on specific tools, thus it must be able to connect to other 

semantic web resources. The MassMotion (MM) ontology was developed (Figure 5-14), 

which represents MassMotion (Oasys Limited 2018a) concepts in a very object-oriented 

nature, describing the structure of the tool. The concepts were developed over several 

iterations from testing the software capabilities and are based on the structure of the 

MassMotion simulation files. The XML format of the files have a clear hierarchy of 

objects, with fully labelled properties. A full view of the MM ontology is provided in 

Appendix B.  

 

Figure 5-15. MM ontology “Object” class with important subclasses and properties 
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Due to the object-oriented nature of the software, the ontology expresses 247 classes, 

many of which describe data and nested objects. It was observed that the common 

concepts closely resemble the taxonomy hierarchy concluded in 4.1.2, and the CSS 

ontology. This is also evident from the example in Figure 5-15. The Object class has 

some generic properties related to identity data. Its main subclasses are: 

1) Actor & Reference Geometry – all objects which have a 3D 

representation within the model, hence the hasBody relationship toward 

hasGeometry; 

2) Event – the superclass for all event types, describing actions during 

model execution 

3) Profile – the object which contains agent properties 

4) Query – the superclass in charge with defining analysis objects and their 

associated properties 

It was observed that the ontology of a CST can differ significantly from its outlined 

features (Appendix A), as it is highly dependent of the design of the software itself, and 

on how the data is structured internally.  

5.2. Ontological alignment of concepts  

“Ontologies can be large, with tens, hundreds, or even thousands of classes and 

properties. Trying to take stock of such a complex framework of concepts can be 

daunting. There is active research into techniques to automate the process, but at this 

point, the task must ultimately be done by humans. While current tools can calculate 

class name and graph similarity metrics to try to give suggestions, they cannot yet 

consistently align ontologies automatically.” (Hebeler et al. 2011) 

Dibley (2011) mentions that there are multiple ways in which ontologies can be aligned, 

but one of the most reliable for the OWL language is to look at the similarities between 

concepts, specifically at the terminology and structures. OWL ontologies can be 

compared considering (Euzenat and Valtchev 2004): 

• Terminology – comparing names of entities (including the use of a dictionary to 

identify equivalence); 

• Internal structure – ranges and cardinality of attributes; 

• External structure – comparing the relationships between concepts, such as 

hierarchies and their groupings.  
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5.2.1. Aligning digital building and crowd simulation models 

Current engineering practice sees BIM at the core of the design process, being 

considered the central point of truth for all related information. The aim of this research 

is to maintain and extend this view to the CS knowledge domain. It was previously 

established that the IFC model provides all the necessary data about the building 

environment. The two schemas have been connected allowing the CS and IFC 

knowledge domains to collaborate. Ontology representations of the schemas were 

mapped across two very different hierarchies of classes. Nevertheless, several common 

concepts were found, shown in Figure 5-16.  

 

Figure 5-16. Alignment of classes between the CSS and IfcOwl ontologies 
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Despite the IfcOwl containing over a thousand classes, a relatively small number of 

classes were directly aligned. These are mostly those describing objects with geometric 

representations. The classes for IfcWall, IfcColumn, etc. are classified as a subClass 

of Barrier. Even though in the IFC domain they are distinct entities, they all fulfil the 

same role: blocking the movement of agents. The fact that there are multiple types of 

Barrier, which are distinct in IfcOwl, means that the owl:sameAs axiom is not sufficient. 

Yu (2014) states that the owl:sameAs “is often used to link one individual to another, 

indicating the two URI references actually refer to the same resource in the world.” The 

entities of IfcDoor, IfcStair and IfcSpace were identified as the only reasonable cases 

of declaring equivalency, where there is very little ambiguity. This approach is also 

confirmed in part by crowd simulation tools which import the IFC format. 

The hierarchy of entities represented in IfcOwl is very complex as it reflects the IFC 

schema which is object-oriented. This gives rise to some limitations when expressed in 

ontology formats, as it can make rules and alignment of data and individuals challenging, 

as well as slow for extraction. From practical experience whilst conducting the research, 

this is especially true when referring to the geometry data. This issue was identified and 

addressed by several studies in an attempt to improve query times and make the data 

within IfcOwl more accessible (Farias et al. 2015, Pauwels et al. 2017). 

While the common objects are related to geometry, there can be major differences in 

how the geometry is represented. The most well-known crowd models, such as the CA 

models, rely on mesh geometry objects. In its current state, IFC and IfcOwl store 

geometry in a compact way, storing basic constructs which need to be extracted and 

used to generate more complex shapes. This makes the alignment of geometry 

constructs between IfcOwl and the CSS impossible via name matching, and impractical 

via knowledge rules, thus a more direct approach is recommended as a way around this 

limitation. The ONTOCS system was developed to simply retrieve geometry, convert it 

in memory and explicitly store any relevant geometry in the other ontologies. Retrieving 

contextual information using properties is outlined in more detail in Chapter 6, as this 

process has to rely on knowledge operators. 

5.2.2. Aligning scenario and feedback analysis models 

The CSS ontology views the model through the prism of ‘what is?’ and ‘what is happening 

when?’ by defining geometry, agents and events. On the other hand, the FBA ontology 

views the same model from the prism of ‘why is?’ and ‘what is the cause of what is 

happening?’ by working with the results data. The CSS ontology has the role of linking 

information explicitly, while the FBA ontology focuses on finding information from explicit 

and implicit relationships.  
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The Figure 5-17 shows an example of aligned classes and object properties. A full 

mapping is provided in Figure 5-18. The Scenario class is present in both ontologies 

referring to a specific simulation scenario of a model. In the CSS it has the role of 

including all the model instances which define the environment, events and results data, 

and any assumptions made for each particular case. In the FBA ontology, this the same 

concept has the function of evaluating whether a Scenario meets different objectives, 

which are evaluated over results. In this sense, the EndResult class is defined in both 

ontologies in the same way, and therefore all relationships linked to it are equivalent in 

both ontologies, as those marked in green or half-green in Figure 5-17.  

 

Figure 5-17. Alignment of main classes between the CSS with FBA ontology 

The creation of objectives and results classes is an interlinked process because each 

objective depends on specific results. Therefore, these need to be created in each 

context and then mapped for the integration of the two models.  
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Figure 5-18. Alignment of all concepts between the CSS and FBA ontologies 
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5.2.3. Aligning design codes and classification criteria 

The UKSOC ontology has limited applicability by itself but was used in gathering 

information about building models for testing. This was linked with the IfcOwl and an 

Uniclass RDF dataset currently in development (Bradley 2017). The latter is an RDF 

graph of the Uniclass 2015 classification tables, available at (NBS 2017). The scope of 

the Uniclass ontology is much broader as it aims to categorise all types of building 

elements, from which the UKSOC specifically aligns with spaces. The used Uniclass 

RDF dataset ontology was developed as part of another research project at Cardiff 

University and was only used for testing for the purposes of this research, but no 

contribution to its development is claimed. 

There are over 500 space types present in the Uniclass2015, but only 70 were 

successfully identified and mapped directly to the UKSOC categories, with example of 

the mappings done for the first two UKSOC categories in Table 5-3 (see full list in 

Appendix B). Because design codes refer to spaces in a very generic manner, including 

entire sub-type categories from Uniclass2015 into the UKSOC was required.  

Table 5-3. Example of aligned concepts between the UKSOC and Uniclass 

C
a
te

g
o
ry

 

N
o
 

UKSOC UNICLASS 2015 

Type of space Uniclass equivalent Uniclass categories 

Description Code Title Sub-group Title 

1 

1 
Standing spectator areas SL_90_20_83 Spectator standing 

areas 

Common spaces 

2 
Bar areas (within 2m of 

serving point) 

SL_40_20_06 Bars Dining spaces 

2 

4 Amusement arcade SL_40_05_03 Amusement arcades Amusement spaces 

5 Assembly hall  SL_25_10_05 Assembly halls Educational spaces 

6 Bingo hall SL_40_05_43 Indoor play spaces Amusement spaces 

7 
Club SL_40_60_21 Dance floors Performing arts 

spaces 

8 Crush hall SL_90_10_27 Entrance halls Circulation spaces 

9 
Dance floor SL_40_60_21 Dance floors Performing arts 

spaces 

10 
Dance hall SL_40_60_21 Dance floors Performing arts 

spaces 

11 
Venue for pop concert and 

similar events 

SL_90_20_05 Audience standing 

areas 

Common spaces 

12 
Bar areas without fixed 

sitting 

SL_40_20_06 Bars Dining spaces 
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Spaces in the Uniclass2015 and UKSOC are differentiated by the function they achieve. 

In Uniclass, the spaces are categorised hierarchically, with semantics at the level of a 

taxonomy. For example, an office sub-heading includes several specific office types: 

postal office, admin office, etc. In the fire safety domain, and therefore in the UKSOC, 

spaces are viewed by their number of inhabitants. For example, a dance hall and a bar 

area, belong to the same category, because both types tend to have similar population 

densities. This presented a lot of issues when mapping between the two different 

domains, as is shown with the Bars types spaces in Table 5-3, where ambiguity exists. 

During the mapping process it was concluded that the design codes would need to be 

more concise and include several other types of spaces. However, as previously 

mentioned, the most accurate population data about a building is encouraged to be used 

(PD 7974 2004). As such, the most realistic source of information would be the specified 

number of inhabitants for each space as inputted by safety engineers.  

Due to the difference between the two ontologies, several alignment options were 

considered. The first one considered including Uniclass2015 categories within UKSOC 

classes. Due to the large number of categories present in Uniclass, this was considered 

impractical. The second choice was to perform alignment at an instances level, using 

rules. 56 rules were developed, each mapping specific Uniclass identifiers to category 

factors, with 2 examples shown in Table 5-4. The rules are essentially the 

implementation of the extended version of Table 5-3 (in Appendix B) which aligns spaces 

based on their similarity in name and function.  

Table 5-4. Example of UKSOC and Uniclass alignment rules (Appendix B) 

NO Rule name SWRL code 

24 CF-Category_4-13-BreakoutSpaces 

uniclass2015:Space(?spaceClass) ^ 

smpo:identifier(?spaceClass, ?id) ^  

swrlb:matches(?id, "SL_90_20_08") -> 

uksoc:hasFactor(?spaceClass, uksoc:factor4) 

25 CF-Category_5-01-ExhibitionHall 

uniclass2015:Space(?spaceClass) ^ 

smpo:identifier(?spaceClass, ?id) ^ 

swrlb:containsIgnoreCase(?id, "SL_25_50") -> 

uksoc:hasFactor(?spaceClass, uksoc:factor5) 

 

The question remains on how reasonable it is to assume the context of a CSM based on 

the UKSOC design factors, which is investigated through testing in Chapter 7. 
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5.3. Ontology validation 

All developed ontologies were created using the Protégé tool, which includes several 

built-in reasoners. Each ontology was checked for inconsistencies at several stages 

throughout its development, using these reasoners. Any inconsistencies were corrected 

before actual testing using the ONTOCS system and implicitly the Stardog RDF server. 

All RDF stores which are created dynamically on Stardog during ONTOCS testing 

sessions operate using SL reasoning capability (a combination of RDFS, QL, RL, and 

EL axioms, plus SWRL rules). This is the most advanced reasoning type provided by the 

server tool, allowing reasoning using SWRL rules, SWRL built-ins, and other axioms. 

This provided a very good basis for testing the ontologies and their performance in 

practice. 

The previous sections outlined the ontology structures in parallel to the more relevant 

competency questions, which the ontologies are able to answer. This is further proven 

in Chapter 7, where all the ontologies function correctly within the boundaries of the 

ONTOCS system and correctly provide answers to over 33 SPARQL queries many of 

which operate in conjunction with SWRL rules. The SPARQL queries are the practical 

implementations of competency questions which were also discussed with several 

industry experts from the fields of crowd simulation modelling.  

Although not familiar to the field of ontology engineering, the consulted experts provided 

some valuable feedback and commented on the correctness of the approach. The 

comments were not always related to the ontology’s structure, but more about the nature 

of a crowd simulation model and how things are considered in design. Here are some 

paraphrased example comments: 

1) When analysing a layout, each room would have designated exits. 

2) In preliminary design, it’s more common to look directly at occupancy factors; 

3) Add ‘AcceptedScenario’ class, meaning that a designer is satisfied with its 

performance; 

Concerning the first comment, the object property hasDesignatedExit was added 

between several subclasses of Space, which have the RefugeSpace class type as an 

object; this now recognises that a RefugeSpace is not just an exit point for an Agent, 

but also a desired exit appointed to a Space. A set of rules could be implemented to 

force agents to follow this appointed exit; however, this was not implemented as it will 

restrict the level of freedom for agents.  

Although not related to the ontology correctness, a test-case was raised and investigated 

in Chapter 7 concerning the second commend, aiming to identify how different design 

codes taken from ontologies are, in comparison to data from reality.  
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The third comment was addressed by adding the AcceptedScenario class to the FBA 

ontology, as a subclass of Scenario. However, in its current state, the FBA ontology is 

unable to categorise any individual as this class, due to missing mechanisms to capture 

this part of user input. This will be addressed in future work. 

5.4. Summary 

This chapter introduced the knowledge based developed using OWL ontologies. These 

represent both the ‘information models’ and ‘processes’ as part of the overall system 

framework described in Chapter 3. The chapter first outlined a high-level view of the 

ontologies used by the ONTOCS system and how they relate, following an in-depth view 

of each developed ontology. The CSS ontology sits at the centre of the models and 

processes, fully conceptualising the CS domain, aided by the FBA ontology to formalise 

analysis and feedback mechanisms. The MM ontology sits under the CSS to allow a 

practical collaboration of information and data from tool level to SW level. The UKSOC 

ontology was developed from existing design guidance to allow estimation of model 

population on the fly. In the final section the alignment between several ontologies was 

introduced presenting their challenges and limitations. The ontologies are used to 

represent information and knowledge about the crowd simulation domain. These are the 

means to facilitate automation, knowledge retrieval and storage using various methods 

outlined in Chapter 6. 
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 Chapter 6. Storing and retrieving knowledge 

 

 

This chapter outlines the development of several knowledge operators within the CS 

knowledge domain which facilitate the retrieval of knowledge in two very specific 

contexts: (1) for automatic CSM generation from available information models and 

resources, by allowing the ONTOCS system to ‘understand’ them, and (2) for processing 

simulation results analysis on a large scale taking into consideration user input 

objectives. In parallel to this, this chapter aims to show the necessities for achieving 

these processes using ontologies and knowledge rules, thereby answering research 

question Q6. The chapter introduces the knowledge operators used (6.1), storage of 

knowledge methods (6.2), and knowledge retrieval methods (6.3) developed for 

automation of information within the CS domain. 

        

 

Figure 6-1. Pyramid with increasing levels of meaning 

Yao et al. (2007) citing Bellinger et al. (2004) states that there are  several layers that 

need to be considered when dealing with information and knowledge management 

systems, as shown in Figure 6-1. This is similar to the concepts of the Semantic Web 

Wisdom

Knowledge

Information

Data

is Applied

has Context

has Meaning

is Raw
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and Linked Data defined in Section 2.3, where ‘meaning’ of data increases at each level. 

It is important to understand however that with each layer computation time to process 

the data also increases significantly. 

Knowledge management systems have been neglected in the past  in the AEC industry  

due to unclear benefits towards construction data management (Grover and Froese 

2016). This is now having the opposite effect as the loose structure of the product chain 

in the AEC sector is breaking after every project and causing a lot of disruption when 

compared to other industries like plane manufacturing (Hardin 2009). Historically, the 

application of knowledge management tools has been limited on organisational level in 

terms of enterprise management with little implementations in practice when it concerns 

managing knowledge about a design process of a specific project. However, in light of 

the BIM lifecycle paradigm and increasing need for smart cities (Bejay Jayan 2016, 

Howell 2017), this may soon change, with a need to keep more knowledge about the 

building and its design for future uses.  

6.1. Knowledge operator types 

The previous chapter showcases how knowledge and information models can be 

expressed using ontology programming languages. The conceptualisation of knowledge 

is a process which involves humans expressing it in a computer understandable format, 

where semantic and logic rules are formalised and adhered to. This whole process of 

knowledge engineering is done manually, and not all knowledge is stated explicitly, so 

as to keep a focused scope of an ontology to a specific domain or use-case. However, 

ontologies are meant to be re-used in other domains, and designer need to find creative 

ways of retrieving knowledge models. To be able to formulate or retrieve more 

knowledge out of a system of this nature, Ullrich (2003) explains that there is a need for 

inferring and querying, acts which are able to exploit the rich expressivity of an ontology. 

Kaufman and Michalski (2005) already make use of inferencing using logical rules, which 

are considered operators over knowledge models. Logical rules are often referred to as 

reasoning rules.  

The next section (6.1.1) introduces the concepts of rules and their role in knowledge 

engineering. It is worth mentioning that for the purpose of this research, rules are 

regarded as operators for knowledge as introduced in Chapter 3. In addition to that, they 

are also able to represent knowledge in similar ways to ontologies. Rules are an 

attractive prospect in many applications since users find it easier to formulate knowledge, 

rather than go through more extensive ontological axioms (Krötzsch 2010). However, in 

the case of describing a complex system, such as ONTOCS, OWL ontologies alone are 

insufficient (Motik and Rosati 2010, Abdul-Ghafour et al. 2014) because of relying of 
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distributed resources in many information formats. Additionally, Hebeler et al. (2011) 

mention that ontologies are not as flexible when working with data as rules are, and that 

they are most useful when there is a need to change the structure of the data from one 

knowledge domain to another. As such, ontologies are complemented by reasoning rules 

(Motik and Rosati 2010), and in this particular case they are used to imbed knowledge 

which is later retrieved using processes operating on model data. 

6.1.1. Reasoning rules. SWRL 

“A rule could be any statement which says that a certain conclusion must be valid 

whenever a certain premise is satisfied, i.e. any statement that could be read as a 

sentence of the form “if…then…” […] it is worth noting that the term ‘rule’ as such refers 

rather to a knowledge modelling paradigm than a particular formalism or language.”  

         (Krötzsch 2010) 

Many ways exist in which rules are defined in computer science. This is a field which has 

emerged since early computers, but they are all based on a logical inference operation.  

“…the general form of a decision (or classification) rule is: 

CONSEQUENT ⇐ PREMISE |_ EXCEPTION 

where CONSEQUENT is a statement indicating a decision, a class, or a concept name 

to be assigned to an entity (an object or situation) that satisfies PREMISE, provided it 

does not satisfy EXCEPTION”    (Kaufman and Michalski 2005) 

By looking closely at the two definitions above, slight variations in a rule form exist. The 

second definition is different as it can express exceptions, whereas the first only 

expresses the condition. This is due to several types of rules which are applied in 

practice. Below are a few examples of different types of rules: 

• Logical rules – example: “if (X) is true, then (Y) is also true”. Uses logic 

implication, or inferencing, as described above; they act as an extension to a 

knowledge base and they are usually restricted by Open World Assumptions 

(OWA); they are declarative in nature; 

• Procedural rules – example: “if (X), then do (Y); else do (Z)”. A very explicit type 

of rules which makes them operational in nature as they are able to express the 

consequences of both “true” and “false” conditions; they are operational 

because they control the flow of action;  
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• Logic programming rules – example: “man(X) <- person(X), which is not a 

woman(X)”. These approximate logical semantics with procedural aspects from 

above types and are semi-declarative. 

As it can be seen, there are many ways of creating rules, however each type has its own 

limitations when it comes to practice, depending on several factors such as: 

• Expressiveness – the degree to which it can express knowledge; 

• Clarity of its semantics and syntax; 

• Declarative vs operational in nature (as shown above); 

• Performance in computation and reasoning; 

• Level of support by software tools; 

• Practical applicability; 

• Ease of use, etc. 

Ontologies were introduced in Section 2.3.1 as tools for a semantic web paradigm. It was 

established that their level of expressivity is high and that they are widely used. Previous 

chapters have also hinted to why ontologies are better suited for representing knowledge 

in terms of information models for evacuation design. With these justifications in mind 

and considering enumerated factors above the SWRL language was found the best 

suited for the aims of this research. 

The overarching research methodology for the ONTOCS framework follows the direction 

employed by Kaufman and Michalski (2005) which was restricted at the time with 

applying operators on raw data with aims of identifying patterns. The conceptualisation 

of knowledge was implemented using inductive databases. It is worth mentioning that at 

that time, semantic web tools were just on the verge to become more popular in practice. 

Since then, a more common way to represent knowledge databases is with the use of 

RDF graphs and OWL ontologies. On another note, Krötzsch (2010) mentions that a 

large portion of knowledge modelling is strongly focused on using terminologies, thus 

resulting in a schema type model, due to Description Logics (DLs) having become more 

popular. This is possible in part because they can be used to describe things explicitly 

as they are in the real world, with various applications ranging from medicine, software 

engineering to language dictionaries. In contrast, rule languages are better suited for 

working with large datasets, allowing more flexibility and expressivity to the data 

(Krötzsch 2010). 

SWRL stands for ‘Semantic Web Rule Language’ and was officially published  by 

Horrocks et al. (2004) under W3C. The initial SWRL included several built-in functions, 

which can operate on datatypes, i.e. compare or add integers and strings. This gives it 

the possibility to manipulate and analyse data in its basic form, while working on top of 
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OWL classes and individuals. The main limitation in expressing ontologies using the 

early version of OWL is a good example on why rules are often required, as best 

explained by Horrocks (2005): 

“[…] while the language includes a relatively rich set of class constructors, the language 

provided for talking about properties is much weaker. In particular, there is no 

composition constructor, so it is impossible to capture relationships between a composite 

property and another (possibly composite) property. The standard example here is the 

obvious relationship between the composition of the “parent” and “brother” properties 

and the “uncle” property.” 

This example is shown in Figure 6-2, where the classes of Child, Father and Uncle are 

all subclasses of the Person class, each with different object property relationships 

between them. The arrows pointing left from Child, can be seen to go in sequence toward 

Uncle. This represents a composite property and is summarised by the property 

hasUncle, which allows a direct new relationship from Child to Uncle. This sort of 

relationship is expressed in the box in Figure 6-2 in SWRL code. It would translate literally 

into:  

If c is Person AND c hasParent f AND f hasBrother u 

-> THEN c hasUncle u, where: 

 c, f and u are variables (ontology individuals), marked with ? 

 ^, -> are AND, THEN respectively 

 

Figure 6-2. Conceptualisation of a property chain using SWRL 
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In Figure 6-2 it can be observed that the rule can be split up in functional parts, which in 

practice are called atoms. In this case, the body of the rule has three atoms, each 

connected by the intersection operator (^). The head of the rule has one atom and can 

only infer one individual as part of the reasoning process. 

While problems such as the example have been addressed with the release of OWL2, 

the importance of SWRL rules has not changed. However, with the assertion of such 

types of axioms is expected to make the reasoning and querying process slower 

(Krötzsch et al. 2011). At the same time, rules are better suited when working with large 

datasets. Adapting an ontology with SWRL rules makes that ontology ‘undecidable’ 

meaning that it is impossible to draw all logical conclusions from a knowledge base, even 

with unlimited time and resources. To account for this, DL-safe rules are SWRL rules 

restricted to known individuals. DL-safe rules are very expressive and decidable at the 

same time (Sikos 2015). 

 

6.1.2. Queries. SPARQL 

Several methods have been outlined by which knowledge can be represented and 

inferred. However, in order to access it in practical applications, this knowledge needs to 

be interrogated using programming queries. 

A query language is “a computer programming language used to retrieve information 

from a database” (Slamecka and Hosch 2008). 

The most common queries used in practice are based on SQL which operate on 

relational databases. Graph databases host RDF graphs and express data quite 

differently from relational databases, as they store SPO triples. To deal with querying 

graph databases, SPARQL was developed, which is a recursive acronym for “SPARQL 

Protocol and RDF Query Language”. 

“SPARQL is essentially a graph-matching query language. A SPARQL query is of the 

form H ← B, where B, the body of the query, is a complex RDF graph pattern expression 

that may include RDF triples with variables, conjunctions, disjunctions, optional parts, 

and constraints over the values of the variables, and H, the head of the query, is an 

expression that indicates how to construct the answer to the query.” (Perez et al. 2006) 

“Most forms of SPARQL query contain a set of triple patterns called a basic graph 

pattern. Triple patterns are like RDF triples except that each of the subject, predicate and 

object may be a variable.” (Prud and Seaborne 2006) 
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Several types of queries exist in SPARQL: 

1) SELECT queries - the most useful operator, used to retrieve data from graphs. 

Returns a collection of query solutions; 

2) CONSTRUCT queries – returns a new graph, as specified by the query triple 

pattern; 

3) DESCRIBE queries – is used to find out the structure of the graph in question. Is 

useful when the format of various web resources is unknown to the user; 

4) ASK queries – is used to answer a question with TRUE or FALSE; 

 

Several operators within queries are used to limit or manipulate the results, such as: 

a) FILTER – narrows down the search to specific values or classes in question; can 

significantly improve performance; 

b) OPTIONAL – sets certain parts of the query as optional; some results entries will 

return null values in those cases; 

c) UNION – effectively splits a question into two smaller ones which are run 

independently and then the results are aggregated;  

d) DISTINCT – forces a query to only return valid entries once, filtering repetition;  

e) ORDER BY – orders the results by a specific variable; 

f) LIMIT – limits the result sets to a specified number; beneficial with large datasets; 

increases performance; 

There are also other operators and syntax elements which can help customise a query 

from a very generic to a very specific type of question. Nested queries are also possible, 

if the engines running it support it. Full details on the SPARQL implementation has been 

published and available online (Prud and Seaborne 2006). 

 

Figure 6-3. Example SPARQL query and results 
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The structure of SPARQL mimics the SPO triple structure, since this is the pattern it has 

to match and find. The difference is that an OWL statement will proclaim something 

exists, or is valid, whereas a query asks if something exists with a specific SPO 

composition. Figure 6-3 shows an example of a SPRAQL query where the FOAF 

ontology is queried finding the first names of people which know each other. The graph 

URL shortened to foaf for convenience using the PREFIX keyword. This graph is 

expected to have some named individuals, hence the SELECT query is looking to find 

the names of these individuals. These are all part of the head of the query, which 

describe its scope via PREFIX, and its type from the keyword SELECT in this case. The 

body of the query starts at line 3, specifying the condition of the query using the WHERE 

operator. The pattern to match is in between the curly brackets and is made out of 3 

triples: the first looks to find a certain ?person1 variable which has a first name, 

described by the object property foaf:firstName; the second looks to find which other 

person is known to ?person1 via the foaf:knows property, with the ?person2 variable 

in the object position; the last is similar to the first triple, but the subject is now ?person2.  

Finally, the query results would be restricted so that ?name1 complies with a specified 

secondary condition. A query of this sort can be very close to natural languages, because 

of the SPO pattern. SPARQL queries are often used to test an ontology, thereby 

validating its competency questions posed during its development.  

The most used types of queries throughout this research project were the INSERT and 

SELECT type. The former was used for injecting data resources within information 

models, whereas the latter was used for retrieving data, information and knowledge. 

This section was concerned with the introduction of the two main types of knowledge 

operators: rules and queries. Their basic functionalities were described with examples, 

showing the basic principles on which knowledge is gained by the ONTOCS system. For 

the rest of this chapter, various types of rules and queries will be introduced, specifically 

concerned with crowd simulation analysis concepts. 

6.2. Storing information and knowledge 

The knowledge base developed and presented in Chapter 5 is a schema of concepts 

which describe the various processes involved in an integrated multi-disciplinary system 

- ONTOCS. The system is expected to dynamically work with data according to the 

schemas it includes. There are several information requirements which have to be 

provided from various inputs. These need to provide all the relevant instance data 

involved in the design process in order for the system to function correctly. 

Understanding how instances work with RDF graphs is important to help distinguish 

between the schema model and the data model. In essence, a schema represents 
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hierarchies, workflow, processes and imbedded knowledge; the instances represent the 

data and information used in processes and knowledge generation. 

The Oxford Dictionary defines an instance as “an example or single occurrence of 

something” (Stevenson 2011) and it is used in object-oriented programming to describe 

concrete objects belonging to a specific class. In ontology terms, instances are termed 

individuals, and they are the occurrences of one or multiple classes within an ontology 

model. McGuinness and Van Harmelen (2004) in the OWL release report define that 

individuals “are instances of classes, and properties may be used to relate one 

individual to another”.  Without instance data, knowledge operators would have nothing 

to process. Figure 6-4 below outlines the differences and connection between an 

instance (individual) and a concept (class) in programming and in ontologies.  

 

Figure 6-4. Example of comparison between OOP instances and OWL individuals 

The main difference between instances from the two domains is the way they behave. 

An object-oriented programming instance usually belongs to a specific class, taking all 

its attached variables and methods, and most importantly, it is a declared and initialised 

as a valid instance. An ontology individual on the other hand, can be used anywhere 

within the ontology without declaration being a requirement (Yu 2014). Although an open 

way of using instances can be convenient, it can lead to problems on validating the 

instance model data. To account for this limitation, the OWL2 syntax introduced the 

entity declaration notion, where “each class, property, or individual is supposed to be 

declared in an ontology, and then it can be used in that ontology and ontologies that 

import that ontology” (Hitzler et al. 2009). This notion helps deal with ontology model 

management data and allows for clear definition of individuals and concepts across 

several ontologies. Figure 6-4 suggests that each instance must be defined as belonging 
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to a class, however when it comes to defining the properties of that instance, OWL allows 

a much greater flexibility in defining individuals, allowing to express any relationship to 

any other instance, without programming constrictions. Additionally, instances in OOP 

are usually kept in memory as a program runs, whereas ontology individuals make use 

of IRIs which can be accessed on the Web and can be used over several simulation 

iterations and across several knowledge domains. 

Instances can be created in several ways: using API to parse OOP objects into RDF 

individuals, by using INSERT query types, or manually added in ontology editors. The 

developments for the ONTOCS system mostly utilised API packages to programmatically 

populate ontology information models.  

 

Figure 6-5. ONTOCS ontologies using RDF graphs as resources 

Figure 6-5 outlines the basic resources which add context to the ONTOCS knowledge 

base. The OWL ontologies represent knowledge as schema concepts, while their 

individuals are provided in separate RDF graphs with unique date stamped IRIs. The 

mapping between the resources is governed by the ontology alignment, SWRL rules and 

in some cases reasoning queries are used programmatically. The next section of this 

chapter expands on the requirements, methods and benefits for storing these resources 

by looking at the process from two perspectives:  

1) resources about the building models and 

2) resources about the design process. 
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6.2.1. Storing building model data and information 

The instances which refer to the building environment can be stored across several 

ontologies: 

1) IFC model – instance model of the building to simulate and analyse;  

2) CSS model – instance model of the scenario description, including all the relevant 

model objects; 

3) CST model – tools specific instance model, for MassMotion in this particular case; 

The three models above refer essentially to the same building, but from three different 

perspectives, each with a different structure of the data. Figure 6-6 shows an example 

of a Space object and its three perspectives. Each has explicitly defined object and data 

properties in its own domain, with some references to its other views denoted by the 

sameAs axiom. The three individuals from Figure 6-6 are in a relationship of 

equivalency, because they virtually refer to the same space in real life. Each individual 

belongs to its own resource RDF graph, but when in the context of the aligned schemas 

and rules, they are identified as the same logical instance. It can also be observed that 

each individual has different semantics in its own domain, and that there are few cases 

where the same data is present across all of them, and this is usually related to identity. 

Using logical inference, data need not be repeated as it is accessible across all domains 

and thus redundancies are avoided. 

 

Figure 6-6. Example of a space instance which is represented by 3 equivalent ontology 
individuals across several knowledge domains 

In a study about expressing building models from one CAD tool to another, Abdul-

Ghafour et al. (2014) mention that “The ontology Y is yet described at the terminological 

level having no instances. The aim is at creating instances in Y by finding for each 

instance in X the corresponding concept in Y. An ad hoc ontology, called mapping 

ontology, is created to store mapping axioms and rules between X and Y.” Ideally, this 
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means that a representation of an IfcOwl individual could be fully converted into its 

equivalents in the neighbouring domains. This process however becomes increasingly 

complex as the gap difference between the domains is greater. The fundamentally 

different way in which geometry is expressed, means that performing this conversion 

using ontologies alone becomes even more arduous, as was also mentioned in Section 

5.2.1 in the case of aligning concepts between CSS and IfcOwl. Additionally, when 

considering crowd models, it was established in Section 4.2.1 that even though all the 

geometric information can be extracted from the IFC, the contextual information is 

lacking.  

For these reasons, a more in-depth look at the used tools and how they represent the 

semantics is required.  

 

The IFC model 

IfcOwl  is the ontology representation of the IFC schema and was developed in such a 

way as to ensure it resembles its structure with great fidelity (Beetz et al. 2009). This has 

proved to be a double-edged sword, as the scale and complex structure of the IFC 

schema has made the ontology very large and the logical restrictions required by the 

OWL language has resulted in many relationships and classes. At the same time, it 

enables more creative ways in design and product data exchange or automation in the 

construction field, has some studies have done so already (Scherer and Schapke 2011,   

Pauwels et al. 2011, D.-Y. Lee et al. 2016). Since then, various tools have been 

developed which work with IfcOwl and are able to parse an IFC STEP file into an RDF 

graph.  

Figure 6-7 shows an example of the structure of the ontology, with the names in bold 

blue representing class individuals, while the other lines are data and object properties. 

The IfcSpace_333 individual is the parent on this particular hierarchy tree, being related 

to dozens of other individuals, each members of other classes which branches out 

towards the primitive data types such as integers or strings. The OOP nature of the 

schema is clearly reflected in its OWL representation as well, causing very deep trees 

and thereby making the data hard to access using SPARQL. This reduces the 

performance of retrieving data, but it also means that developments based on IfcOwl 

require experts with a high understanding of its structure in the first place. This has been 

a problem since its inception and has been discussed extensively (Pauwels et al. 2016), 

with a more recent suggestion to simplify it (Terkaj and Šojić 2015), especially 

concerning its geometry (Pauwels and Roxin 2016, Pauwels et al. 2016). It is important 

to note however, that the IFC schema was developed for optimal storage and exchange 
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and not for performing more complex operations. Due to its compressed geometry, tools 

have to reconstruct in memory from basic geometric concepts. 

 

 

Figure 6-7. Tree hierarchy of an IfcSpace individual in IfcOwl. 

This allows relatively evident mapping across to a crowd simulation model, as was done 

in Section 5.2.1. However, this was done so at a generic class level, without taking into 
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account the complexities of geometric representation of elements, as it was considered 

impractical. This means that geometry for the CS domain had to be converted from IFC 

programmatically using mathematical implementations.  

The main benefits of using IfcOwl is that it can contain all the necessary information 

required for a CS simulation, ranging from geometry, identities of objects to contextual 

information which can be present via object data properties. The problem lies in the fact 

that certain properties need to exist in the model in the first place. These need to be 

stored in the BIM platform at creation and explicitly exported to the IFC model. 

The main limitation of using IfcOwl in the current context is its large schema, making it 

hard to work with, nested properties which need to be known to retrieve easily, and finally 

its geometric representation which needs to be extracted at every iteration and 

manipulated in memory. 

 

The MassMotion model 

The geometric representation in a CST can differ a great deal from one tool to another. 

In the case of MassMotion, geometry is represented by triangulation, meaning that each 

plane or face of a 3D object is divided into several triangles. The creation of the geometry 

is usually done manually or through various model import capabilities, which is then 

corrected and adjusted. In the case of the developed system, the geometry is retrieved 

from the IfcOwl model (Section 6.3.1), converted in memory and then the new 

MassMotion geometric objects are used to populate the MassMotion RDF resources 

graph. This was done for simplicity reasons, as it does very little to advance the concept 

of knowledge mining if done using ontology rules. 

When it comes to simulating the environment, additional objects are created (Events, 

Agents, etc.) taking into account user input and several other resources. These are 

created automatically in accordance to each scenario, as part of the first stage of the 

knowledge mining process, Stage I – Scenario generation, which is presented below in 

Section 6.3.1. Once the simulation is completed, a CST creates a large dataset which 

records events in time and space about what has occurred within the model. For 

example, it records every frame for an agent since its entry in the model until it has 

reached the exit, keeping track of its speed and waypoints list, including which spaces it 

traversed. MassMotion saves this data in a SQLite database. 

Considering the vast amount of data and in particular its dependency on expressing it 

according to time frames, it was considered best to keep simulation data in its native 

format (SQL) and query these databases as required by the knowledge mining process. 

Thus, certain data about RDF individuals for the MassMotion and CSS ontologies are 
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created ad-hoc, as shown in Figure 6-8. This is not true for Geometry data or identify 

data related Events and Agents. This approach was found more convenient when 

working with results data relevant to the analysis process. The initial Stage I data is 

recorded in RDF graphs regardless if simulation results are not. This allows for the future 

execution of the model should results data be lost. 

The main benefit of using the MassMotion ontology is that it allows a model view of a 

simulation and stores all the necessary data to re-generate a simulation execution.  

The limitation lies in the fact that it may hold redundant data from the IFC model or CSS 

models, as these are required by the program’s programmatic objects. The second 

limitation is that although it can be used to store simulation data, it would be highly 

inefficient. Thus, conceptualisations of the relevant data should be stored on a higher 

level using the CSS model. 

 

The Crowd Simulation Scenario (CSS) model 

The CSS ontology model sits at the core of the knowledge mining process, as was 

indicated in Section 5.2.4. It was outlined previously that the CSS model acts as an 

integrator between BIMs and CSTs, as shown in Figure 6-8, where CSS individuals 

reference MassMotion individuals and IfcOwl equivalencies. This means that from the 

CSS perspective, only certain data is relevant, while particularities of the data is provided 

in the other aligned domains.  

Firstly, model elements, especially those of a static nature (i.e. geometry) are stored in 

generic way recording identity data, certain properties used in the knowledge mining 

process and most importantly the domain of each model object when used in a particular 

scenario context. This presents a way in which to manage large data sets, where one 

IfcOwl instance can have several equivalent simulation instances for each scenario. 

Secondly, model results are stored as required by the knowledge mining process, as is 

suggested in Figure 6-8. These are in line with the requirements inputted by the feedback 

analysis process and the FBA, as outlined in the next section. 

Considering the limitations of the IfcOwl and MM models, the CSS is better suited for 

storing the context, which is what makes each simulation different. The IfcOwl is the 

source of geometry and some implicit contextual data, but the CSS can store it explicitly 

and it can account for user input. The CSS model should not be burdened with storing 

geometric representations as it would defeat its purpose of being generic in nature. 

Identity data of geometric objects and where these are in the other models is 

recommended. Storing simulation results ad-hoc also benefits from keeping the model 

relatively small in size and potentially improving processing speed for knowledge 
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retrieval operations in the future. However, this makes the CSS ontology highly 

dependent on external resources. 

 

Figure 6-8. MassMotion and CSS storage of objects and data in RDF 

 

6.2.2. Storing design process information and knowledge 

Design is by nature an iterative process which needs to consider constraints imposed on 

the end-product. The collaborative processes required for achieving a building design 

are immense, with many stakeholders involved and because of this it is a process of 

compromise (Kvan 2000). This is because the decision-making process is complex and 

needs to consider several views of the model not just for structural integrity or costs, but 

also safety and environmental protection. Several studies have recognised the 

importance of decision-making during design, and have proposed a myriad of solutions 

on how to manage this process digitally (Plume and Mitchell 2007, Shafiq et al. 2012, 

Fernando et al. 2013, Oh et al. 2015, Zhang et al. 2015). The main problem on a macro 

level seems to stem from the fact that the industry is working in different silos of 

information, and each of these is updated in technology at a different rate. The CSTs are 

a good example for this, as their interoperability with BIM has emerged relatively late, 

compared to those of other design disciplines, as was concluded in Chapter 2. 
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Kalay (1998) in Plume and Mitchell (2007) points out that “each specialist has their own 

view and set of objectives, arguing that design collaboration works best where those 

same specialists adopt what he called a ‘super-paradigm’, agreeing to a course of action 

to achieve a common goal for the whole project, rather than narrowly considering their 

own objectives in isolation.” Reaching a consensus on how to best manage the decision-

making process has always been an issue in design. Using an ontology approach to 

keep track of the design-decision making process could bring the benefits of integration 

using semantic web resources, as is suggested by the methodology of this research. In 

addition to that “design intent should be captured and processed by intelligent systems” 

(Abdul-Ghafour et al. 2014). The exact methods on how to do this differ based on the 

systems proposed in industry and research.  

Considering the above statements from the perspective on crowd simulation analysis, 

there needs to be a clear understanding of what information needs to be captured and 

how it should be stored for knowledge retrieval at a later stage. Due to the nature of how 

CST work, two separate factors have been identified in this research: 

1. Storing scenario assumptions – using the CSS ontology; 

2. Storing design intent – using the FBA ontology; 

These two main factors were also considered when developing the ontologies, through 

asking the competency questions, as was discussed in Section 5.1. Apart from storing 

model data about its elements, they were also intended to store designer input, which 

participates in defining the context for each scenario. Section 5.1.1 emphasises that the 

CSS ScenarioAssumption class and its subclasses are used to capture the user input 

and try to retrieve the information required to construct the context of a scenario. This 

implicitly fulfils the role of storing these assumptions for future use, while also 

contextualising the knowledge retrieval process. For example, when searching for 

answers, scenarios can be grouped depending on their assumptions, to allow for a 

comparative analysis.  

The large-scale simulation of building performance brings into consideration the way in 

which knowledge storing is managed. For example, a set of objectives can be applied to 

a multitude of simulation data models, and as such the relationships and rules must be 

implemented during a knowledge mining process. Figure 6-9 shows an example of how 

the data is linked in this context. The BIM produces many simulation models, each with 

a different configuration being saved in as CSS resources. At creation, the CSS models 

record the assumptions of the users.  

During the analysis process, user objectives are also captured as FBA resource models 

using the AnalysisObjectivesSet class, and these can be applied to a specific set of 

scenarios allowing the definition of a scope when querying the knowledge models. This 
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is the method through which design intent and decision-making is stored explicitly as 

knowledge about the design process, while also making it convenient to work with large 

data sets. 

The input of design intent must be made explicit, and new ontology individuals have to 

be created programmatically for each design iteration. This method is therefore limited 

to the extent of the ontology concepts defined for objectives and assumptions, and by 

the software tool used to store this information from memory at the appropriate time.  

 

Figure 6-9. Storing scenario assumptions (1.) and user objectives (2.) 

6.3. Retrieving information and knowledge 

With all the mechanisms in place to store data, information and knowledge, as shown in 

the previous section, it is possible to carry out knowledge retrieval processes on available 

resources by applying the types of operators introduced in Section 6.1. The mechanisms 

developed and presented here follow the crowd simulation model construction and 
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analysis of the process, in line with the ONTOCS platform functionality developed, and 

following the CSS and FBA ontologies during the process (workflow in Figure 6-10): 

• Stage I, Scenario generation – is concerned with constructing a valid crowd 

simulation model with a specific scenario context using various sources of 

information (as identified in Section 4.2.1), while also considering user input along 

the way, in order to tailor each scenario to design expectations. This stage uses 

reasoning operators to gather resources across several models, and to identify 

important concepts. More importantly, it attempts to ‘understand’ the building and 

its circumstances and uses this knowledge to construct a realistic scenario.  

• Stage II, Analysis feedback – is concerned with executing the scenarios 

generated in Stage I on a large scale, then retrieving results and comparing them 

to user design objectives. This stage uses reasoning operators to aggregate 

results in conjunction with applied knowledge rules to find answers about the 

performance of the scenario as a whole or the behaviour of certain model objects. 

 

Figure 6-10. ONTOCS system process workflow through its two main stages 
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The two stages reflect the way in which humans conduct design starting with the creation 

of the environment (which carried out by using IFC model resources), and then creating 

the events which add context to each model. For the second stage, the analysis is 

applied using similar factors which are used in practice, except that they are expressed 

using operators which are then applied at the user’s discretion. The main benefits to this 

process is the automation of the model creation and the ability to manage model data on 

a larger scale, allowing the analysis of multiple models at the same time. The limitation 

of this method is that designers conventionally rely on visualisation to understand the 

building and crowd simulation event, which in this case are quantified using algorithms 

and rules, thus eliminating the visualisation part of the process. 

6.3.1. Stage I – Scenario generation 

The knowledge mining process for the first stage of the process is about the system 

being able to ‘understand’ the building model. This is also outlined in Figure 6-10, where 

the 3 most important factors each answer a question about the assumed context of a 

scenario: 

1. Capacity – How many people inhabit the environment? 

2. Exits – Where are they supposed to evacuate? 

3. Agents – What sort of people are assumed? 

Answering these questions requires multiple steps. 26 SPARQL queries have been 

constructed and tested which are relevant to the first stage of the process, summarised 

in Table 6-1. These operate in conjunction with many SWRL rules across different 

ontologies (see Appendix C).  

The first step resides in understanding the geometry of the model. This is different from 

re-constructing geometry using schema specifications and algorithm in the sense that 

the ontology is able to reason which types of geometric concepts are required from one 

domain into the other, whilst also ‘understanding’ their purpose in these application 

domains. This must be converted in a knowledge graph in the first place, which is to 

express the IFC model into IfcOwl. Knowledge operators then process this model and 

other resources and are used to identify the relevant objects and data which are used 

generate the files required by the CST. Several SPARQL queries were constructed for 

model conversion purposes to retrieve the geometry (Table 6-1). Figure 6-11 showcases 

the main categories of queries, with Figure 6-12 showing an example of the query which 

retrieves names and other identity data from the IfcOwl model (using query Q-IFC-2).  

The geometry is defined from basic constructs such as lines, points and direction vectors. 

The ONTOCS platform extracts the geometric data from IfcOwl, converts it in memory 

and creates the equivalent MassMotion instances. The consequence the highly nested 
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nature of IFC and IfcOwl resulted in long queries which had be constructed in order to 

get the most basic elements (such as coordinate points or lengths of rectangles). It was 

observed during testing that this is slower in performance than importing a model from 

IFC directly (tests and results are discussed in Chapter 7). This was addressed in several 

papers, and some rules have been developed by Pauwels et al. (2016) to simplify the 

structure. This sort of rules were used to allow faster identification of properties related 

to items, or to wrap primitive data types, which can considerably improve the querying 

times. They are expected to increase significantly with the size of the elements in the 

model. 

 

 

Figure 6-11. SPARQL operators retrieving information from the IfcOwl model 

However, before retrieving the geometry, the scope of a CST and what geometric objects 

it can use. This was established in the alignment between the CSS and IfcOwl ontologies 

in Section 5.2.1. The conceptual alignment is then applied here in conjunction with the 

reasoning query labelled Identify objects from Figure 6-11 (Q-FBA-1 in Table 6-1), 

which is summarised in natural language. An example of the query running on a test 

model is shown in Figure 6-13. This is the first step in filtering the vital objects which 

needs to be exchanged from the BIM to the CST, thus enabling knowledge already 

expressed in the ontologies to be applied and acting in a similar way to a Model View 

Definition (MVD) protocol. The secondary effect of this is that it implicitly leaves out all 

the information which is out of scope for a simulation scenario. 
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Table 6-1. List with developed queries for Stage I. 

Query 

code 
Name Reasoning Category 

Q-IFC-1 Find objects yes Identify objects 

Q-IFC-3 Get IFC Storeys no Identify objects 

Q-RES-4 Find inhabited spaces yes Identify objects 

Q-RES-5  Find exit spaces yes Identify objects 

Q-IFC-2 Get IFC Types no retrieve identity data 

Q-IFC-5 Get IFC Placements no retrieve object positions 

Q-IFC-6 Get IFC Placements (spaces) no retrieve object positions 

Q-IFC-7 Get IFC Placements (mapped) no retrieve object positions 

Q-IFC-19 Get IFC Orientations no retrieve object positions 

Q-IFC-4 Get IFC Shapes no retrieve object geometry 

Q-IFC-8 Get IFC Rectangle shapes no retrieve object geometry 

Q-IFC-9 Get IFC Rectangle shapes (mapped) no retrieve object geometry 

Q-IFC-10 Get IFC Arbitrary shapes no retrieve object geometry 

Q-IFC-11 Get Arbitrary shapes (mapped) no retrieve object geometry 

Q-IFC-14 Get IFC BREP shapes no retrieve object geometry 

Q-IFC-15 Get IFC BREP shapes (mapped) no retrieve object geometry 

Q-IFC-17 Get IFC Extrusions no retrieve object geometry 

Q-IFC-18 Get IFC Extrusions (mapped) no retrieve object geometry 

Q-IFC-20  Get descriptions no retrieve object properties 

Q-IFC-21  Get areas no retrieve object properties 

Q-RES-1 Get occupancy no retrieve object properties 

Q-RES-2 Get classifications no retrieve object properties 

Q-RES-3 Match occupancy factors yes retrieve other resources 

Note: A full description of the queries is available in Appendix C. 
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Figure 6-12. SPARQL query Q-IFC-2 operating on the IfcOwl model, retrieving data about 
instances with results shown below it 

 

Figure 6-13. SPARQL query Q-IFC-1 reasoning IfcOwl individuals which are also 
MassMotion ontology individuals according to ontology schema alignment 

Once these objects are identified, they are stored, and further information is retrieved 

using various other SELECT queries, which are always matched in memory through the 

IfcIdentifier class to ensure the correct data is retrieved for each object. Due to the 

structure the IFC schema and the long nature of SPARQL queries prevents the efficient 

retrieval of all the data in one go. Filtering improves the performance of the queries, as 

Pauwels et al. (2016) have concluded over several tests in querying building model data 

in IfcOwl format, and it reduces the scope of the query to relevant data as well. Due to 

reasoning flags and depending on query complexity, it can sometimes yield very large 
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datasets of results for generic queries, most of which are expected to be out of scope. If 

the query is too specific, it can yield no results. To account for this, some queries 

operating on IfcOwl FILTER down on specific class types. This resulted in some queries 

being very similar in structure, especially at the beginning on the code, only to differ 

slightly towards the end (see Appendix C for full query codes). 

 

The second step involves understanding the context of the model. The information 

requirements which can contribute to the context of a simulation model were identified in 

Section 4.3.1. Not all of the identified sources are always required, and the process of 

defining the context of a scenario needs to be dictated by the designer, thus user input 

needs to be considered throughout the entire process. From consultations with industry 

experts, out of the geometric concepts, the spaces were identified to be the most 

important, as they can describe the building’s functionality and the layout of the spaces 

has a significant impact on the behaviour of the inhabitants (Chitty and Fraser-Mitchell 

2003, Kobes et al. 2010).  

 

Figure 6-14. Example of contextual information being interpreted by rules from an IFC 
domain to provide context to a crowd simulation model 
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From design experience imbedded in guides and documentations and from expert 

consultations, two main categories of Space were identified as most relevant, which are 

represented in the CSS ontology: 

• InhabitedSpace – any space which has a value of inhabitants at the start of a 

simulation which is not 0, thus a departure point for agents; 

• RefugeSpace – any space which is a designated area for refuge from fire, thus 

a destination point for agents. 

Several ways in which spaces can provide context to a simulation have been explored. 

Figure 6-14 shows an example of building data explicitly available in an IFC model, which 

can be used to describe things which are relevant to how spaces are assumed in a crowd 

simulation domain. These examples are possible answers to the previously asked 

questions about the simulation context.   

In order to extract this knowledge, the following operators have been developed: 

1) SPARQL queries which retrieve the relevant properties about spaces from the 

IfcOwl, such as areas (Q-IFC-21), or identity data related to names (Q-IFC-2) or 

design codes (Q-RES-2, Q-RES-3); this data is then explicitly stored within the 

scope of the CSS ontology as RDF resources for each specific scenario; 

2) SWRL rules which operate on explicit resources from the CSS ontology and other 

resources such as the Uniclass2015 or the UKSOC factors; They fulfil the role of 

identifying which spaces are RefugeSpaces or InhabitedSpaces, and what their 

capacities are; these are provided in Table 6-2 below. 

3) SPARQL rules which operate on the CSS ontology used to retrieve the reasoned 

knowledge by the SWRL rules mentioned above; thus the system is able to 

interpret what the function is for every space object in a scenario context 

(example query and results in Figure 6-15). 

 

Figure 6-15. SPARQL query (Q-RES-4) reasoning individuals which are classified as 
‘InhabitedSpace’ within the scope of the CSS ontology 
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The verification of the SPARQL queries and SWRL rules has been done by constant 

testing throughout the development of the ONTCS system by ensuring the correct 

information is retrieved from basic mock model data. Within the scope of the described 

resources here and in previous chapters, they function correctly. Their efficiency was 

tested, and a discussion is available in Section 7.2. 

Table 6-2. List of SWRL rules for the CSS ontology classifying space types 

SWRL CODE DESCRIPTION 

R-CSS-1, InhabitedSpace 

Space(?space) ^ 

occupants(?space, ?number)  

-> InhabitedSpace(?space) 

A space with occupants is 

considered an occupied space 

R-CSS-2, RefugeSpace 

Space(?space) ^  

uniclassCode(?space, ?code) ^ 

swrlb:stringEqualIgnoreCase(?code, "SL_20_90_30") 

-> RefugeSpace(?space) 

If a space has the specific Uniclass 

code for Refuge Space 

(SL_20_90_30), is considered a 

RefugeSpace class in the CSS 

ontology. 

R-CSS-3, RefugeSpace 

Space(?space) ^  

name(?space, ?text) ^  

swrlb:containsIgnoreCase(?text, "exit")  

-> RefugeSpace(?space) 

If a space has a name suggesting it 

is a fire refuge area, it is classified as 

RefugeSpace in the CSS ontology. 

R-CSS-4, RefugeSpace 

Space(?space) ^  

name(?space, ?text) ^  

swrlb:containsIgnoreCase(?text, "refuge")  

-> RefugeSpace(?space) 

If a space has a name suggesting it 

is a fire refuge area, it is classified as 

RefugeSpace in the CSS ontology. 

R-CSS-5, RefugeSpace 

Space(?space) ^  

description(?space, ?text) ^  

swrlb:containsIgnoreCase(?text, "refuge")  

-> RefugeSpace(?space) 

If a space has a description 

suggesting it is a fire refuge area, it is 

classified as RefugeSpace in the 

CSS ontology. 

R-CSS-6, RefugeSpace 

Space(?space) ^  

description(?space, ?text) ^  

swrlb:containsIgnoreCase(?text, "exit")  

-> RefugeSpace(?space) 

If a space has a description 

suggesting it is a fire refuge area, it is 

classified as RefugeSpace in the 

CSS ontology. 
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6.3.2. Stage II – Analysis feedback  

The second stage of the knowledge mining process aims to correctly interpret simulation 

results on a large scale and provide feedback to safety engineers. The analysis feedback 

process is characterised by asking the system questions similar to those in natural 

language, like:  

‘Which scenario evacuates agents in less than 1 minute?’ 

Figure 6-10 shows the involvement of users in this process. The ONTOCS system allows 

users to choose from a set of different predefined objectives, which query model data 

according to identified PIs in Section 4.3.2. The use of objectives allows the ontology 

reasoning to scope on specific tasks.  

Table 6-3 shows examples of user objectives, and the operators they rely on. Each row 

in the table represents an instance of FBA ontology ObjectiveAnalysisSet class (as 

introduced in 5.1.2) A set includes two separate objectives, each answering specific 

questions:  

a. Total egress time – what is the total time for all the agents to travel to the exits? 

b. Capacity egress – by what time can x% of the population be evacuated?  

These objectives have to be inputted by users when evaluating scenarios, as shown in 

Figure 6-16. By applying several rules, the system can provide answers for the sets of 

objectives chosen. The process time increases with the complexity of the rules in place, 

as well as with the number of tested scenarios, (see Chapter 7 detailed case study).  

 

Table 6-3. Example of objective sets inputted by uses for the analysis stage 

Objective 

set 

a. Total egress time (s) b. Capacity egress Valid 
scenarios 

population (%) time limit (s) 

1 90 50 45 1 to 9 

2 90 75 45 1 to 5 

3 120 75 60 1 to 10 
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Figure 6-16. ONTOCS interface for objective input page 
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Figure 6-17. Plotted egress progression results for several example scenarios and 
objective set 3 from Table 6-3 

The system is able to query data across various databases from simulations, and 

process the results with reasoning flags, categorising each scenario in accordance to 

user objectives. Figure 6-17 shows an example of egress progression plotted data from 

mock simulations in time vs agent percentages. The lines plotted represent agents 

leaving the premises of the building, the higher a point on the line the more time it takes 

to evacuate the more agents. Outlined in green, AnalysisObjectiveSet 3 shown the line 

(3.a) and the area (3.b) under which the scenarios are meeting user requirements. 

The basic functionality lies in categorising scenarios in accordance to each objective, 

and thereby each rule overseeing it. The reasoning of the rules is retrieved by asking the 

ontology questions posed by the SPARQL queries in Table 6-4. When these queries are 

sent through, they effectively call their corresponding rules, listed in Table 6-5. 

The inclusion of InvalidScenario class and its subclasses was required to assess which 

scenarios do not meet objective requirements, as the nature of a SWRL rule only allows 
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one atom at the head of the rule, thus for every rule checking for ValidScenario, its 

opposite exists for InvalidScenario. With the current rules in place, ValidScenario and 

InvalidScenario classes are not mutually exclusive. This is because a scenario can 

satisfy one objective, such as 3.a from Table 6-3, and if evaluated true, be classified as 

a ValidTotalEgressTimeScenario, subclass of Valid Scenario, but fail another (like 

3.b) and be classified as an InvalidCapacityEgressScenario, and consequently a 

subclass of InvalidScenario. This means that a scenario can be valid for one objective, 

but invalid for another objective and thus be categorised simultaneously as both valid 

and invalid. To mitigate this limitation, another rule is put in place which checks that all 

objectives are met at the same time, categorising it as a FullyValidScenario class within 

the developed FBA ontology. This class is used by a SWRL rule which effectively 

intersects the first two rules R-FBA-1 and R-FBA-2. The nature of SWRL rules reasoning 

and combined with OWL expressivity causes the rules to be very specific in nature and 

be applied on well-defined classes for them to process fast and correctly.  

The knowledge mining process is undertaken by the intelligence imbedded within the 

developed ontologies and SWRL rules by following the imposed processes at a scenario 

level (using performance indicators such as egress/travel times). This method facilitates 

the finding of new knowledge about the performance of each specific scenarios 

stemming from a version of a building model (in IFC). The results are presented to users 

for further analysis and decision-making. The level of new knowledge is dependent on 

the expressed knowledge and developed processes to retrieve it.   
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Table 6-4. Developed queries retrieving knowledge from the FBA model 

SPARQL QUERIES 

Q-FBA-1, Find valid total egress scenarios 

Question Which scenarios are a ValidTotalEgressScenario class? 

 

 

Function Finds the valid scenarios which evaluate true by applying rule R-FBA-1. 

Requires reasoning? 
YES 

Q-FBA-2, Find valid capacity egress scenarios 

Question Which scenarios are a ValidCapacityEgressScenario class? 

 

 

Function Finds the valid scenarios which evaluate true by applying rule R-FBA-2. 

Requires reasoning? 
YES 

Q-FBA-3, Find valid scenarios 

Question Which scenarios are a ValidScenario class? 

 

 

Function Finds scenarios which are valid from any rule applied.  Computes the 
union valid subclasses (implicitly applies rules R-FBA-1 and R-FBA-2. 

Requires reasoning? 
YES 
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Q-FBA-4, Find fully valid scenarios  

Question Which scenarios are a FullyValidScenario class? 

 

 
Function Find the valid scenarios which evaluate true by applying rule R-FBA-3. 

Requires reasoning? 
YES 

Q-FBA-5, Find invalid total egress scenarios 

Question Which scenarios are an InvalidTotalEgresScenario class? 

 

 

Function Find the invalid scenarios which evaluate true by applying rules  
R-FBA-4 and R-FBA-5. 

Requires reasoning? 
YES 

Q-FBA-6, Find invalid capacity egress scenarios 

Question Which scenarios are an InvalidCapacityEgresScenario class? 

 

 

Function Find the invalid scenarios which evaluate true by applying rule R-FBA-6. 

Requires reasoning? 
YES 

Q-FBA-7, Find invalid scenarios 

Question Which scenarios are an InvalidScenario class? 

 

 

Function Finds scenarios which are invalid from any rule applied.  Computes the 
union of subclasses that are invalid (implicitly calls rules R-FBA-5 and 6) 

Requires reasoning? 
YES 
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Table 6-5. SWRL rules operating with the FBA ontology for classifying scenarios 

SWRL RULES 

SWRL CODE DESCRIPTION 

R-FBA-1, ValidTotalEgressScenario 

 
hasObjective(?objectivesSet, ?objective) ^ 
FindTotalEgressTime(?objective) ^ 
hasTimeLimit(?objective, ?requirement) ^ 
timeInSeconds(?requirement, ?timeLimit) ^ 
appliesToScenario(?objectivesSet, ?scenario) ^  
hasEndResult(?scenario, ?result) ^ 
TotalEgressTime(?result) ^  
timeInSeconds(?result, ?timeResult) ^ 
swrlb:lessThanOrEqual(?timeResult, ?timeLimit) ^  
hasResult(?scenario, ?popResult) ^ 
PopulationResult(?popResult) ^ 
numberRemainingAgents(?popResult, ?remainingAgents) ^  
swrlb:equal("0"^^xsd:integer, ?remainingAgents)  
-> ValidTotalEgressScenario(?scenario) 
 

If a simulation result is below 
the required time specified in 
the objectives AND there are 
no remaining agents within the 
simulation, then the scenario is 
classified as a valid 
ValidTotalEgressScenario in 
the FBA ontology. 
The opposite of rule R-FBA-4 
and R-FBA-5 

R-FBA-2, ValidCapacityEgressScenario 

 
hasObjective(?objectivesSet, ?objective) ^ 
FindCapacityEgressStatus(?objective) ^ 
hasTimeLimit(?objective, ?timeRequirement) ^ 
timeInSeconds(?timeRequirement, ?timeValue) ^ 
hasPopulationCapacity(?objective, 
?percentageRequirement) ^ 
percentageRequired(?percentageRequirement, 
?percentageValue) ^ appliesToScenario(?objectivesSet, 
?scenario) ^  
hasIntermediateResult(?scenario, ?simulationTimeResult) ^ 
SimulationTime(?simulationTimeResult) ^ 
timeInSeconds(?simulationTimeResult, ?timeResult) ^ 
swrlb:lessThanOrEqual(?timeResult, ?timeValue) ^ 
percentageEvacuated(?simulationTimeResult, 
?percentageResult) ^  
swrlb:equal(?percentageResult, ?percentageValue)  
-> ValidCapacityEgressScenario(?scenario) 
 

If an intermediate result has a 
certain capacity of the 
population evacuated below a 
certain time, it is a valid 
scenario -
ValidCapacityEgressScenario 
in the FBA ontology.  
It is the opposite rule for  
R-FBA-6 

R-FBA-3, FullyValidScenario 

 
ValidTotalEgressScenario(?scenario) ^ 
ValidCapacityEgressScenario(?scenario)  
-> FullyValidScenario(?scenario) 

A scenario satisfies multiple 
criteria objectives at the same 
time, it is a valid scenario – 
FullyValidScenario in the FBA 
ontology 

R-FBA-4, InvalidTotalEgressScenario 

 
hasObjective(?objectivesSet, ?objective) ^ 
FindTotalEgressTime(?objective) ^ 
hasTimeLimit(?objective, ?requirement) ^ 
timeInSeconds(?requirement, ?timeLimit) ^ 
appliesToScenario(?objectivesSet, ?scenario) ^ 
hasEndResult(?scenario, ?result) ^ 
TotalEgressTime(?result) ^  

If a simulation result is above 
the required time specified in 
the objectives, then the 
scenario is classified as invalid 
- InvalidTotalEgressScenario 
in the FBA ontology. 
The opposite of rule R-FBA-1, 
and will act in conjunction with 
R-FBA-5 to check agent 
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timeInSeconds(?result, ?timeResult) ^ 
swrlb:greaterThan(?timeResult, ?timeLimit) -> 
InvalidTotalEgressScenario(?scenario) 

numbers remaining in the 
simulation. 

 

R-FBA-5, InvalidTotalEgressScenario 

 
hasObjective(?objectuiveSet, ?objective) ^ 
FindTotalEgressTime(?objective) ^ 
appliesToScenario(?objectiveSet, ?scenario) ^ 
hasEndResult(?scenario, ?result) ^ 
PopulationResult(?result) ^ 
numberRemainingAgents(?result, ?remainingAgents) ^ 
swrlb:notEqual("0"^^xsd:integer, ?remainingAgents) -> 
InvalidTotalEgressScenario(?scenario) 

If a simulation still has 
remaining agents which have 
not evacuated in time, then the 
scenario is classified as invalid 
- InvalidTotalEgressScenario 
in the FBA ontology. 
The opposite of rule R-FBA-1, 
and acts in conjunction with 
rule R-FBA-4 
which checks the required 
evacuation time. 

R-FBA-6, InvalidCapacityEgressScenario 

 
hasObjective(?objectivesSet, ?objective) ^ 
FindCapacityEgressStatus(?objective) ^ 
hasTimeLimit(?objective, ?timeRequirement) ^ 
timeInSeconds(?timeRequirement, ?timeValue) ^ 
hasPopulationCapacity(?objective, 
?percentageRequirement) ^ 
percentageRequired(?percentageRequirement, 
?percentageValue) ^ appliesToScenario(?objectivesSet, 
?scenario) ^ hasIntermediateResult(?scenario, 
?simulationTimeResult) ^ 
SimulationTime(?simulationTimeResult) ^ 
timeInSeconds(?simulationTimeResult, ?timeResult) ^ 
swrlb:greaterThan(?timeResult, ?timeValue) ^ 
percentageEvacuated(?simulationTimeResult, 
?percentageResult) ^ swrlb:equal(?percentageResult, 
?percentageValue) -> 
InvalidCapacityEgressScenario(?scenario) 
 

If an intermediate result with a 
specified capacity of the 
population evacuated later 
than the required time, it is an 
invalid scenario -  
InvalidCapacityEgressScenari
o in the FBA ontology. 
It is the opposite rule for  
R-FBA-2 

R-FBA-7, ValidTimeInstantEgressScenario 

 
hasObjective(?objectivesSet, ?objective) ^ 
hasTimeInstant(?objective, ?requirement) ^ 
timeInSeconds(?requirement, ?timeInstant) ^ 
appliesToScenario(?objectivesSet, ?scenario) ^ 
hasIntermediateResult(?scenario, ?popResult) ^ 
PopulationResult(?popResult) ^ atRuntime(?popResult, 
?simulationTimeResult) ^ 
timeInSeconds(?simulationTimeResult, ?simulationTime) ^ 
swrlb:equal(?timeInstant, ?simulationTime) ^ 
numberRemainingAgents(?popResult, ?remainingAgents) ^ 
swrlb:equal("0"^^xsd:integer, ?remainingAgents) -> 
ValidTimeInstantEgressScenario(?scenario) 
 

If an intermediate result has 
evacuated all agents at a 
specific time, it is a valid 
scenario – 
ValidTimeInstantEgressScenar
io in the FBA ontology 
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6.3.3. Linking models for future extensibility 

From the two previous sections, methods to store and retrieve information and 

knowledge were presented in a specifically applied way, to meet system requirements. 

As resources are stored and retrieved throughout the design process, it is necessary to 

conceptualise the relationships between models over the BIM lifecycle and how CSS 

and FBA models converge for future extensibility to other design problems. 

Concerning the way in which the system deals with scenarios on a large-scale, Figure 

6-18 conceptualises the relationships between information and knowledge models over 

time. It is important to consider the progression of the BIM model over its lifecycle on the 

Y axis, where changes in building design or layout are expected. This effectively brings 

forth a new design problem with regard to the evacuation plan. On the X axis, the figure 

shows the change in scenario context, with each scenario assuming different things, and 

each performing differently. The scenario and feedback models are labelled as ‘dynamic’ 

because they refer to the ‘static’ models in different circumstances. The instances across 

all models eventually refer to the same ‘things’ in reality. The feedback analysis process 

is managed with the help of the feedback models, which link the scenarios their 

assumptions, results and user input together with the BIM design model for collective 

analysis.   

 

Figure 6-18. Static and dynamic information model progression considering changes in 
design and context 
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6.3.4. Scenario vs element view 

The previous sections of this chapter introduced ways to reason about linked data on a 

scenario level and on an object level. However, when it comes to Stage II, knowledge 

operators were defined only for a scenario model level. The main cause of this is the lack 

of formalised knowledge from design guidance.  

From discussion with industry experts, it was noted that besides the spaces, doors and 

stairs are the types of objects which can cause concerns at a design level. However, 

there are very few ways in which these are effectively measured and assessed. The 

most common way, as was also mentioned in Section 4.2.2 is to rely on travel time, which 

can relate to an entire scenario, a space or even individual agents. Conventionally, travel 

time and distances from spaces to nearest exits are assessed geometrically using layout 

plans.  

When it comes to assessing this using CSTs, safety engineers rely on visualising the 

problem or on various tool features allowing them to track agents. Figure 6-19 shows an 

example of measured travel time and distances of agents, reported as an average in 

terms of the space of origin. This sort of information is aggregated together at an object 

level by the ONTOCS system making use of simulation data and cross-scenario linking 

of concepts, as shown in the previous section. From the room in question, over 90 agents 

evacuate using available exits. The shortest exit is only 6m away, whereas the longest 

is over 40m. A human observing these events in an animation can easily explain why 

that is, certain agents will evacuate on a different route, as CST have the ability to 

simulate such complex human behaviours. However, when attempting to imbed this sort 

of awareness into a knowledge system, things are more challenging.  

Although agent movement can be tracked through model calculations, it can be hard to 

correctly interpret their behaviour. Due to the many assumptions present in each 

scenario and the large data provided by simulation outputs, explaining ‘why something 

is happening’ is the role adopted by the FBA ontology. Due to the complex interaction of 

concepts, it can become very complex to represent in an ontology, or undecidable when 

applying rules. A second example is conceptualised in Figure 6-20 showing that some 

factors may not explain the cause of certain results and their behaviour. As such, it is 

required to leverage the embedded knowledge and the relationships that exist between 

the different assumptions. Let’s consider the example of a forming bottleneck in a certain 

area in a building, like Space 3 shown in Figure 6-20. High traffic density in certain areas 

is caused by the influx of agents provided by various origin points, i.e. Spaces 1 and 2. 

However, determining which origin point has more impact in causing the bottleneck is a 

complicated problem, as it is dependent on many factors such as agent characteristics, 

geometry of the spaces, distribution of agents, etc. 



129 

 

 

Figure 6-19. Example of scenarios where a group of agents decide to change the 
evacuation route 
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Complex rules need to be put in place which can represent this in formalised ontological 

and semantical knowledge that could help determine the causes. 

 

Figure 6-20. Example of objects and properties (contextual and geometric) influencing 
the final analysis result 

When considering such rules, careful consideration is required along with validation of 

the rules. The retrieval of such knowledge is complex, and it is limited by the reasoning 

types that ontologies and SWRL rules can provide. Additionally, due to the OWA which 

governs ontology reasoning, where evaluation of rules can be TRUE or FALSE, but also 

UNKNOWN.  

The easier alternative is to make use of linked data to leverage its connections of objects 

and present the results in an easy to interpret way by designers, as was shown in Figure 

6-19. 

6.4. Summary 

This chapter presented ways in which knowledge about building design performance can 

be stored and retrieved intelligently, and how to make use of explicit and implicit 

knowledge which can be leverage by using semantic web ontologies, SWRL rules and 

SPARQL queries. The chapter began by showing which data and knowledge is worth 

storing throughout the process and how, while hinting at the limitations and challenges 

of such a method. The second part outlines ways in which implicit and explicit knowledge 

is mined using knowledge operators developed, discussing how they work and what the 

concerns are when constructing them. The knowledge mining is facilitated by ontologies 

reasoning in conjunction with rules, by categorising scenarios in accordance with design 

objectives. The chapter finished by showcasing how knowledge models interact on a 

higher level and mentioned the challenges and limitations of machine-interpretable rules 

at an object level feedback concerning crowd simulation-based evacuation models.  
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 Chapter 7. System implementation, testing and 

validation 

 

This chapter presents the development of the ONTOCS (Ontology Crowd Simulation) 

system and validation of the developed knowledge base from previous chapters. The 

first part (Section 7.1) outlines the system design. The second part (Section 7.2) presents 

a case study carried out on a real-life building. The tests are done following the overall 

methodology presented in Section 3.2, and each use-case carried out aims to prove that 

the system is functional and reliable when performing knowledge mining. The case study 

objectives, use-cases and rationale are presented in detail before showing and 

discussing the results. 

7.1. Introduction to the ONTOCS system 

ONTOCS follows the conceptual process of knowledge mining-based design iteration 

loop, as previously introduced in Chapter 3. The basic principles of knowledge mining 

and storage processes and their requirements have influenced the system architecture. 

Although the overall framework makes use of several other third-party tools, from the 

programming perspective, ONTOCS controls the processes and information exchange 

to facilitate a semi-automatic process of multi-scenario construction and analysis on a 

large scale.  

The main independent tools which collaborate during the design process are: 

1) ONTOCS – the main system packages developed in Java. It is responsible for 

controlling the entire process, connecting the different tools and models together, 

as well as providing the user interface. Its main class, SystemManager, 

integrates all the packages; 

2) Stardog – the RDF database server responsible for storing all the relevant 

ontologies and to provide reasoning in the back-end; 

3) MassMotion – the CST (introduced in Section 4.3.1) which is responsible with 

running the scenarios on a large scale and provides raw data on the evacuation 

events within the simulated building environment; 
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4) IFC to RDF converter – converts IFC EXPRESS format files to RDF models to 

work within the schema of IfcOwl (OpenBIMstandards 2017a); 

5) Jetty server (The Eclipse Foundation 2018) – provides the database support for 

hosting the entire ONTOCS application to run as a web service. It is used to store 

all simulation files and results databases in SQL, as part of each design session. 

Although BIM tools were not envisaged as part of the system, they are expected to 

provide the building digital models. To ensure openness and interoperability, the IFC 

format was preferred. During testing and development, the building modelling was done 

using Autodesk Revit 2016 and 2017. The possibility of embedding the ONTOCS 

interface into a BIM tool was considered initially. However, this was omitted in order to 

avoid relying too much on a single BIM platform.  

7.1.1. ONTOCS process workflow 

The high-level interaction between the system components is shown in Figure 7-1. The 

components follow a specific workflow process which guide the users through the two 

main stages of the knowledge mining process. The arrows in the figure indicate the flow 

of information and the collaboration between the several tools and ontologies. The 

process starts with the acquisition of all the necessary information via Stage I input, 

which considers input from several sources: most importantly the IFC building models, 

which are the focal point around which knowledge is stored, but also the user input which 

is considered at each step. The ontologies developed and discussed in Chapter 5 are 

hosted on Stardog graph databases. The ontology schema models and resources are 

all part of the same graph store, where all the relevant data is linked, with no external 

resources having been used at the current stage. The ontologies are constantly queried, 

and data and knowledge resources are stored explicitly to facilitate a smooth flow of the 

process. Stage I inputs and resources are used to generate simulation scenarios - which 

effectively become Stage II inputs. Finally, simulation results and user objectives are 

reasoned to provide performance analysis outputs back to the users via the interface. 

The entire process is defined by eight main processes of controlled data flow, as 

numbered in Figure 7-1: 

1) Converting building from IFC to RDF - this is done automatically by the system 

when uploading a chosen IFC model. Alternatively, direct upload of an IfcOwl 

instance model is possible; 

2) Uploading the IfcOwl digital building model on the RDF store - the IfcOwl 

schema ontology is also uploaded during this process which gives context to 

the model resources; 

3) Processing of user input and additional resources – other schema ontologies, 

like the CSS and FBA are uploaded to the same RDF session store (additional 
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ontologies can also be uploaded); User input concerning scenario context is 

captured by the interface and processed by the ONTOCS packages, with 

relevant scenario assumptions being parsed into CSS ontology individuals as 

separate RDF resource graphs; all these resources are then used to carry out 

step 4). 

4) Generating MassMotion scenario files – the number of scenarios is inputted 

by the user, with each scenario context being outputted into a separate file 

which is then executed at step 5). The CSS ontology and other relevant linked 

resources are queried to find the data required to create functional 

MassMotion scenario files (queries and rules applied at this step were 

described in Section 6.3.1); 

5) Executing MassMotion scenario files – the ONTOCS SystemManager class 

passes the generated files to the MassMotion tool via the console; each 

scenario is executed by the tool which provides confirmation on the status of 

each run back to the SystemManager; 

6) Recording simulation results – MassMotion saves simulation results in SQLite 

databases, which are then kept on the Jetty server in specific session folders. 

These are accessed by the ONTOCS application ad-hoc for finding results 

which are related to user objectives; 

7) FBA ontology reasoning processes – the inputted user objectives and scenario 

results are saved into the FBA resources graphs for rules processing 

(knowledge operators for this stage were described in Section 6.3.2); 

8) Retrieving knowledge about the design – reasoning results from step 7) are 

retrieved by the system and outputted to the user interface in collections of 

results, making use of the AnalysisObjectivesSet class from the FBA 

ontology – essentially each set of objectives was reasoned and provided 

results within the scope of the investigated scenarios. 

The steps described above present an overview of the process workflows of information 

and knowledge storage and retrieval, following the implementations from Chapter 6. As 

discussed in previous chapters, due to the complex nature of crowd simulation model 

and the input requirements, each step relies on the correct execution of previous ones. 

Additionally, knowledge management processes are highly dependent on the context of 

the information (Bates 2011). As such, formalising all the concepts need to be a prime 

concern in order to for the output to be correct and relevant. 
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Figure 7-1. ONTOCS system components with numbered workflow steps 
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7.1.2. ONTOCS architecture 

 

Figure 7-2. ONTOCS system package diagram across functional layers; packages in 
green represent developed code; packages in grey represent imported code 

The system architecture is presented in Figure 7-2 using Unified Modelling Language 

(UML) diagrams (Pilone and Pitman 2005). The core package is ontocs, which includes 

the SystemManager class. This class was designed according to different use case 

scenarios to facilitate the workflow of the entire process. It saves all the data in memory 

for each session and is the package which facilitates collaboration between different 

applications. It makes use of secondary APIs and third-party developed programs to 

communicate with the Stardog server, convert IFC to IfcOwl and to run MassMotion as 

a background service when executing the simulations. The ontocs package is reliant on 
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4 other sub-modular packages which deal with data extraction and manipulation as 

shown in Figure 7-2: 

1) ontocs.ifcModel package – retrieves data from the IfcOwl RDF instance models 

by running SPARQL queries. Once the relevant data about model objects is 

retrieved, including identity data, geometry and properties, it is stored in memory 

for future manipulations and conversions to other models and tools; this package 

also includes methods to create the geometry from IFC schema concepts; 

2) ontocs.mmModel package – its primary function is to facilitate programmatic 

conversion from IFC objects in memory to MassMotion objects. Additionally, it 

has methods for enabling communication with the external MassMotion 

simulation tool; 

3) ontocs.scenario package – manages information about scenario set-up and 

user input assumptions; uses the CSS and other ontology resources to store 

explicit data and knowledge or to retrieve implicit information about a scenario. 

The package methods follow a specific workflow meant to facilitate correct 

creation of simulation scenarios. For example, it begins with identifying the 

geometry environment, then proceeds to create events according to ontology 

resources and user input; 

4) ontocs.feedback package – uses the FBA ontology to store simulation results 

and user input, and to retrieve implicit information from the SWRL rules defined 

for the analysis stage. This package collaborates with the previous one which 

stores and manages the data about scenarios in memory. 

Considering the prototype architecture of the ONTOCS system, several limitations were 

observed throughout development and testing. 

Firstly, regarding the IFC model, special classes have been created to tackle not only 

the retrieval of basic IFC constructs from the IfcOwl ontology, but also the ability to 

generate the geometry from scratch. This requires significant development and upkeep 

for future implementations. 

Secondly, the high-level generalisation of the CSS ontology is unable to provide all the 

details for constructing complete object data at a CST level. Using multiple CSTs to be 

part of the design loop might be beneficial when comparing different performance results, 

but this requires specifically tailored packages to integrate each CST with the system.  

Thirdly, the scenario and feedback packages include classes that query the knowledge 

base, as well as classes that parse data from memory objects and populate the resource 

graphs for different ontology domains. This requires extensive knowledge of the used 

ontology structures and high upkeep costs to ensure data correctness.  
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Finally, the presentation layer of the system is required for processing user input and 

guiding the users throughout the design workflow. Although the system provides a high 

degree of automation concerning BIM data, the user input remains vital for constructing 

scenarios and knowledge which is relevant to the situation at hand. This means that the 

interface design must provide engineers with the necessary tools for correctly assessing 

the information and design knowledge returned by the system. The interface 

implemented for ONTOCS is provided in Appendix D. 

 

7.2. ONTOCS Case study on Queen’s Buildings 

The second part of this chapter focuses on testing the ONTOCS platform though a case 

study carried out on a real-life building. The aim of the case study was to assess the 

viability of using an ontology-based system in a design context. Several objectives were 

defined to break down the research question Q7.  

Firstly, the ability of the system to understand the building data and secondary resources 

correctly was considered vital. Thus, during development, the imbedded code and 

knowledge operators were constantly tested and improved. The case study is used to 

validate this assumption. 

Secondly, the efficiency of the system to work with large datasets was considered 

important in showing the benefits of automation. This was assessed by comparing 

manually constructed models to automatically constructed ones for one use case. Query 

speed and scalability was tested by processing results on a set of 36 simulations for a 

second use case. 

Thirdly, the reliability on building design codes to provide population data was 

investigated when other sources of data is not available. To assess this, simulation 

results of real building occupancy data were compared with simulation results of design 

codes’ data. 

The next sections introduce the building and outline the case study objectives and 

assumptions. The results are then provided in two separate sections, one for Stage I – 

Scenario generation (Section 7.2.3) and one for Stage II – Analysis Feedback (Section 

7.2.4), each of the sections using a different use case on the same building model. 

Finally, the results are discussed in Section 7.2.5 following the defined objectives. 
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7.2.1. Building description 

The building chosen for the case study is an academic environment building from Cardiff 

University. The building has several floors, however only the ground floor level was taken 

into consideration for simplicity and for a more in-depth analysis. The ground level has a 

good mix of spaces such as laboratories, dining areas, common rooms, offices, lecture 

rooms and many auxiliary spaces. The environment experiences a lot of traffic during 

the day, depending on the academic courses. 

 

Figure 7-3. Case study building layout, ground floor 

A survey of the use of the building was carried out, with the aim to identify the level of 

occupancy, available fire exits and routes. The layout shown in Figure 7-3 divides the 

spaces in several categories for simplicity, with a full description of each space provided 

in Appendix E. The ground floor has three main fire compartments, each with their 

respective entrances outlined in red. These main entrances experience heavy traffic on 

a daily basis. All available data regarding space occupancy and functionality was 

attached to objects during the modelling stage, and therefore is present explicitly in the 

IFC/IfcOwl models for fast processing by knowledge operators. 
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7.2.2. Use cases – objectives, assumptions and rationale 

The following questions outline the objectives of the case study: 

1) How fast is a scenario model generated, in terms of geometry and context? 

2) How fast is the context created when relying on design guide resources? 

3) What are the differences between a manually created simulations and those 

created by the ONTOCS system? 

4) How reliable are the simulation results originating from the automatic process for 

future analysis consideration? 

5) Is the system correctly interpreting the results according to user inputted design 

objectives? 

6) How reliable are design occupancy factors in comparison to real building 

occupancy data? 

7) How efficient is the reasoning process for evaluating user objectives on a large 

scale? 

8) How do query times scale with increasing number of simulations? 

Use case for Stage I – Scenario Generation 

The first use case aims to answer objectives 1) to 4), which are directly targeted at the 

automatic scenario generation stage. 

A number of scenarios were developed manually using the MassMotion simulation tool, 

based in the data gathered about the building. The results of this process were then 

compared to the results provided by scenarios created automatically by the ONTOCS 

system. The manually constructed scenarios are presented in Table 7-1, following the 

recommendations from the PD 7974 (2004) of simulating scenarios at 100% and 33% 

building capacities with and without the main entrances being available as evacuation 

exits. The different capacity percentages are expected to allow for the estimation of 

different evacuation times as was introduced in Section 2.1.1. 

A pre-set MassMotion agent profile was used across all scenarios, which is in 

accordance to the PD7974 document. The agents were programmed to evacuate as 

soon as the simulation starts and to head to the nearest exits available to them. In the 

case of manually constructed models, agents were modelled to evacuate through the 

nearest exits, according to the real building fire plan, not being allowed to choose fire 

exits from other fire departments. On the other hand, the automatically generated 

scenarios assume that all agents are aware of all the exits, thus MassMotion will aim to 

optimise the flow of agents. The rationale behind this decision is that with assumptions 

being the same, the MassMotion tool will give nearly identical results. This also allows to 
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assess if the available ontology information is enough to generate similar scenarios to 

those done manually. 

The appearance of the agents within the simulation was set to be instantaneous and 

simultaneous, meaning that all agents assigned to a specific space appear at the start 

of the simulation and all at the same time. This simulates the act of people being already 

present in each inhabited space. This however creates high density areas in some parts 

of the model at simulation start. To increase the level of realism, scenarios SC5 and SC6 

from table 7-1 have been manually developed with more distributed agent entries across 

larger rooms. For these two scenarios, several other portal objects were constructed for 

7 out of the 17 inhabited spaces, allowing the generation of agents to be less dense at 

the start of the simulation. All the walls and columns inside the building shell are present, 

therefore simulating under applicable design conditions.  

Table 7-1. List of constructed and analysed scenarios 

Scenario Capacity Entrances Exits Agents Profile 

SC1 100% available 

available 

373 

PD7974 

SC2 100% blocked 373 

SC3 33% available 124 

SC4 33% blocked 124 

SC5* 100% available 373 

SC6* 100% blocked 373 

Note: Scenarios SC5 and SC6 were only constructed manually for arguing a more 
realistic distribution of agents across larger rooms. These types cannot be created 
by the ONTOCS system at this time. 

Use case for Stage II – Analysis Feedback 

The use case for the second stage was created to address questions 5) to 8), which are 

set in the context of a larger scale of simulations. A number of 36 simulation scenarios 

were inputted into ONTOCS. 

These scenarios were divided in two categories depending on the population data source 

(Table 7-2). Each scenario assumes a different population capacity, as is recommended 

in PD 7974 (2004) when assessing the performance of a specific building layout. In a 

first series of scenarios (1 to 18), data is taken from the IFC model data, which is present 
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explicitly within the constructed model via custom object properties (e.g. each space 

object has an assigned number of occupants). The data present in the IFC model reflects 

the surveyed maximum capacity of each space from the building in real life. The second 

series of scenarios (19 to 36), the IFC model is missing data about the population, which 

is reasoned by implicit means, where the type of space is identified from the Uniclass 

classification, which is then given an occupancy factor based on the UKSOC codes. This 

factor is then multiplied with the area of each space, giving an approximate number of 

occupants per space. 

Most scenario assumptions are identical to those used in the previous use case, apart 

from the variation of the population capacity. Additionally, all scenarios in this use case 

assume the main entrances of the building to be blocked. 

 

Table 7-2. Simulation scenarios created using the ONTOCS system for analysis 

Scenario Capacity Population data Entrances Exits Profile 

1-18 30 – 200% 

(increments 

of 10%) 

IFC model 

blocked available PD7974 

19-36 UKSOC 

 

Simulation results from all the simulations were manually checked against results 

returned by the system. Two sets of objectives (each with two sub-objectives) were 

assumed (Table 7-3), aimed at evaluating which scenarios satisfy them. 

 

Table 7-3. Set of analysis objectives inputted into the system for evaluating the 36 
simulation scenarios 

Objective 

set 

Objective Objective 

Valid scenarios 
(a) Total egress time (s) 

(b) Capacity egress 

population (%) time limit (s) 

1 120 50 60 ? 

2 120 95 90 ? 
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In order to assess the performance of the system on dealing with large data sets, a series 

of measurements were carried out when the system was evaluating the above 

objectives: 

1) Single objective analysis – each objective from Table 7-3 was queried separately; 

2) Multi-objective – both objectives from Table 7-3 were queried together. 

 

To answer question 8) regarding system scalability, the steps above were repeated for 

multiple sessions, each with a different number of simulation scenarios stored in 

memory, from 1 to 36 in increments of 1 (e.g. one session ran 10 simulations, then a 

new session was created with 11 simulations, then 12, etc.). Each query in every case 

was tested 5 times to account for anomalies and average performance values were 

plotted. This resulted in each query being tested 180 times in total, and consequently 

some rules they depend on up to 720 times in total. The rationale behind querying 

objectives separately or together was to evaluate how rule reasoning time performs in 

each case, and thereby investigating if certain rules behave differently under multiple 

circumstances. The queries used to retrieve reasoning results were previously outlined 

in Chapter 6 and summarised in Table 7-4 below. Each query (with specific name and 

code) relies on one or multiple developed SWRL rules which are triggered when the RDF 

database is queried for new knowledge about the design. It is expected that each query 

execution time will differ based on the amounts of recorded results data from simulations, 

and on the number of inputted objectives from the user side. Thus, query times in these 

cases were measured and contrasted in the following sections. 
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Table 7-4. SPARQL queries and their respective SWRL rules operating within the FBA 
ontology 

Query Dependent 
rules 

Objectives applied 
Name Code 

Find valid total egress 
scenarios 

Q-FBA-1 R-FBA-1 
single (a) 

multiple (a) & (b) 

Find valid capacity 
egress scenarios 

Q-FBA-2 R-FBA-2 
single (b) 

multiple (a) & (b) 

Find valid scenarios   Q-FBA-3 
R-FBA-1     
R-FBA-2 

single (a) 

single (b) 

multiple (a) & (b) 

Find fully valid scenarios  Q-FBA-4 R-FBA-3 

single (a) 

single (b) 

multiple (a) & (b) 

Find invalid total egress 
scenarios 

Q-FBA-5 
R-FBA-4     
R-FBA-5 

single (a) 

multiple (a) & (b) 

Find invalid capacity 
egress scenarios 

Q-FBA-6 R-FBA-6 
single (b) 

multiple (a) & (b) 

Find invalid scenarios  Q-FBA-7 
R-FBA-4     
R-FBA-5        
R-FBA-6 

single (a) 

single (b) 

multiple (a) & (b) 

 

The following section presents the results from the testing, which are then discussed 

together at the end of this chapter. 
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7.2.3. Stage I – Scenario generation use case results 

 

Figure 7-4. Average query times for geometry retrieval 

 

Results on retrieving model information from IFC and additional resources are shown 

here. The query times for retrieving geometry is shown in Figure 7-4, while the context 

retrieval is shown in Figure 7-5.  

The query times show an average retrieval time based on 10 measurements taken in 

total for each query (see Table E-2, Appendix E for full data). The retrieval times depend 

on the initial building model and the number of objects it contains. 

 

The input model used is summarised in Table 7-5, showing its size in different formats, 

and the relevant model objects being found and converted from IFC. 
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Figure 7-5. Average query times for context retrieval  

 

Table 7-5. Input model size and ONTOCS conversion report 

Model size 

Revit 2018 IFC IfcOwl (RDF) 

11.6 MB 1.7 MB 11.3 MB 

Model objects converted to MassMotion (and CSS) from IFC 

Barriers/Walls Barriers/Columns Floors/Spaces Links/Doors 

254/254 41/41 84/84 77/77 
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Figure 7-6. Comparison of manual versus automatic model creation time 

Results on comparing the manual model construction to automatic model construction 

by ONTOCS is shown here. The first column in Figure 7-6 shows a scenario being 

constructed solely from the queries working in IFC model data and properties and 

additional context is constructed from using the UKSOC and Uniclass. The final column 

shows the time for manual construction using the data in Table 7-6. The data in the table 

assumes an expert level of MassMotion user.  

Table 7-6. Time for manual construction actions of the model using MassMotion 

 Action Quantity Time (s) Total time (s) 

1 Import IFC model 1 8 8 

2 Convert objects 1 2 2 

3 Discard unused objects 1 1 1 

5 Correct Links 3 10 30 

6 Create Portals 32 15 480 

7 Create Journeys 17 25 425 

8 Evaluate for errors 1 120 120 

 

Figure 7-7 shows two merged models showing their differences. Additional geometric 

objects with no IFC equivalents (e.g. Portals) are constructed automatically based on 

IFC centroids of spaces, which can differ from positioning done manually. 
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Figure 7-7. Merged manual and ONTOCS automatic models for object positions 
comparison  
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Figure 7-8. Plotted agent numbers versus time for scenarios SC1 (blue) and SC2 (red) 

 

 

The results for the scenarios running at 100% population capacities is shown here, 

according to the assumptions stated in Table 7-1.  

Figure 7-8 plots manual and ONTOCS generated models for scenarios cases SC1 and 

SC2, contrasting the two. Blue lines assume scenarios with main building entrances 

available, while the red assumes entrances blocked. 
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Figure 7-9. Plotted agent population versus time for scenarios 1 and 2 (ONTOCS), 5 and 6 
(manual) 

 

 

Figure 7-9 plots ONTOCS generated models for scenarios SC1 and SC2 and contrasts 

them with manually constructed models for scenarios SC5 and SC5. The last ones 

assume a more spread out entry for agents over the larger spaces. 

For both Figures 7-8 and 7-9 it can be observed that some lines have several dips down 

the lines, especially for ONTOCS scenarios. The presence of those points suggest high 

density around exits at certain points in time. The deeper the curve, the higher the traffic. 
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Figure 7-10. Plotted agent population versus time for scenarios SC3 (blue) and SC4 (red) 

 

In a similar way to the previous one, this section shows plotted manual and automatic 

models, but at a 33% population capacity in Figure 7-10. It can be observed that the 

differences of the lines are much higher at a lower population case, than in Figures 7-8 

and 7-9. This is because a lower population gives agents more freedom to move around 

the model.  

 

Figure 7-11 on the right shows plotted density maps for the maximum experienced 

densities during simulations. Only scenario case SC1 was plotted as an example of the 

differences that can occur in agent movement between a manual model and an 

automatic model. This reflects the differences in model construction and assumptions. 
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Figure 7-11. Plotted maximum density experienced during scenario SC1 for ONTOCS and 
manually constructed models 
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7.2.4. Stage II – Analysis feedback use case results 

 

 

Figure 7-12. Plotted agent number versus final egress times for scenarios 1-36 

 

The figure above shows a plot of final egress time for all the 36 scenarios for the second 

use case. The trend lines show the expected performance of the building with increasing 

population. The IFC model data has a steeper trendline. This is because it assumes 

some spaces to be much more populated than others (see Appendix Table E-1, 

Appendix E), compared to design codes which allow a more uniform spread of the 

population density per each space area value. 
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Table 7-7. Objective sets with ontology reasoning answers per query 

Objective set Valid scenarios Invalid scenarios 

1 

 Q-FBA-1 Q-FBA-2 Q-FBA-3 Q-FBA-4 Q-FBA-5 Q-FBA-6 Q-FBA-7 

objective (a) (b) (a) or (b) (a) and (b) (a) (b) (a) and (b) 

IFC 1-13 1-18 1-18 1-13 14-18  1-14 

UKSOC 19-27 20-30 19-30 20-27 28-36 31-36 28-36 

2 

 Q-FBA-1 Q-FBA-2 Q-FBA-3 Q-FBA-4 Q-FBA-5 Q-FBA-6 Q-FBA-7 

objective (a) (b) (a) or (b) (a) and (b) (a) (b) (a) and (b) 

IFC 1-13 1-13 1-13 1-13 14-18 14-18 14-18 

UKSOC 19-27 19-26 19-27 19-26 28-36 27-36 27-36 

Note: Cells in yellow highlight an error, where scenario 19 is missing from the answers 

 

 

 

 

 

The table above shows a summary of the answers provided by the FBA ontology and 

reasoning when objective sets were inputted.  These can be checked against values 

plotted in Figures 7-12, 7-13 and 7-14. 

Figures 7-13 and 7-14 show the progression of the evacuation event, as opposed to the 

final evacuation time vs population from Figure 7-12.  
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Figure 7-13. Plotted agent numbers versus egress progression in time for scenarios 1 to 18 which use real building data stored in the IFC model.                                                                           
UKSOC scenario 26 (blue) at 100% population capacity was added for comparison 
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Figure 7-14. Plotted agent numbers versus egress progression in time for scenarios 19 to 36, which use factors reasoned from UKSOC.                                                                
IFC scenario 8 (red) at 100% population capacity was added for comparison 
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From this point onwards, the results show query times and assess the efficiency of reasoning, and later the scalability is shown. 

 

Table 7-8 summarises the query times of FBA reasoning queries when retrieving knowledge about design performance over a set of 36 simulation 

scenarios. An average of 10 measurements was taken for each query in every condition, with red cells being removed from the average calculations 

as they are considered anomalies. 
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Table 7-8. SPARQL query times measurements taken during the session with the 36 scenarios running on the ONTOCS system 

Query 
Dependent 

rules 
Objectives applied 

Time measurements (milliseconds) 
AVG 

1 2 3 4 5 6 7 8 9 10 

Q-FBA-1 R-FBA-1 
single (a) 1659 1230 1232 1275 1301 1307 1304 1286 1391 1349 1297 

multiple (a & b) 2211 3111 3581 3387 3613 3653 3533 3594 3578 3572 3514 

Q-FBA-2 R-FBA-2 
single (b) 709 760 722 866 968 865 699 678 683 833 778 

multiple (a & b) 1247 987 985 947 940 953 967 979 987 972 969 

Q-FBA-3 
R-FBA-1   
R-FBA-2 

single (a) 887 939 858 951 953 925 1063 939 1032 966 951 

single (b) 302 311 339 345 363 356 298 305 301 332 325 

multiple (a & b) 3741 3251 3306 3784 3655 3755 3673 3758 3720 3766 3641 

Q-FBA-4 R-FBA-3 

single (a) 11 7 8 10 7 8 8 6 9 12 9 

single (b) 7 7 7 21 107 10 5 6 6 7 8 

multiple (a & b) 33524 33320 33370 33722 33235 33259 33243 33296 33281 33191 33344 

Q-FBA-5 
R-FBA-4   
R-FBA-5 

single (a) 157 110 114 127 135 139 111 142 97 98 123 

multiple (a & b) 202 174 172 161 185 166 161 180 185 178 176 

Q-FBA-6 R-FBA-6 
single (b) 327 316 300 464 344 350 311 282 321 382 340 

multiple (a & b) 841 595 580 592 588 593 600 613 580 596 593 

Q-FBA-7 
R-FBA-4   
R-FBA-5          
R-FBA-6 

single (a) 121 134 111 111 104 120 104 116 97 95 111 

single (b) 300 308 286 327 359 354 315 292 296 414 325 

multiple (a & b) 1073 719 850 723 746 742 738 738 751 736 749 

Note: Cells in red were removed from average calculations. Each query was executed 10 times for each objective condition from Section 7.2.2 
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Figure 7-15. Plotted query reasoning times for single objective input  

 

 

Taking data from Table 7-8, the figure above shows the results related to reasoning times 

when only one objective is inputted at a time form the use end. It can be seen that for 

each case, results are very different. 
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Figure 7-16. Plotted query reasoning times for multi-objective input  

 

 

Taking data from Table 7-8, the figure above shows the results related to reasoning times 

when multiple objectives being inputted at the same time. This is in contrast with Figure 

7-15. 

 

  

749

593

176

33344

3641

969

3514

0 5000 10000 15000 20000 25000 30000 35000

Time (ms)

Multiple objectives

Q-FBA-1 Q-FBA-2 Q-FBA-3 Q-FBA-4 Q-FBA-5 Q-FBA-6 Q-FBA-7



160 

 

The next charts show scalability results.  

A list of full plot data is available in Table E-3, Appendix E. 

 

 

Figure 7-17. Scalability for objective (a) – Total egress time 

 

 

The figure above shows the trend lines for queries in single and multiple objective cases 

for when rules which process objective (a) are applied.  
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Figure 7-18. Scalability for objective (b) – Capacity egress time 

 

 

The figure above shows the trend lines for queries in single and multiple objective cases 

for when rules which process objective (b) are applied.  
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Figure 7-19. Scalability for finding valid scenarios 

 

 

The figure above shows the scalability of query Q-FBA-3 in single and multi-objective 

cases when looking to find ValidScenario class individuals. The query performs a union 

of valid scenarios from both objectives (a) and (b). It therefore implicitly uses the rules 

which govern both objectives (R-FBA-1 and R-FBA-2) 
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Figure 7-20. Scalability for finding invalid scenarios 

 

 

The figure above shows the scalability of query Q-FBA-7 in single and multi-objective 

cases when looking to find InvalidScenario class individuals. The query performs a 

union of invalid scenarios from both objectives (a) and (b). It therefore implicitly uses the 

rules which govern both objectives (R-FBA-4, R-FBA-5 and R-FBA-6) 
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Figure 7-21. Scalability for finding fully valid scenarios 

 

 

The figure above shows the scalability of query Q-FBA-4 in single and multi-objective 

cases when looking to find FullyValidScenario class individuals. The query performs an 

intersection of valid scenarios from both objectives (a) and (b).  

It explicitly uses rule R-FBA-3, which is implicitly calling both rules for (a) – R-FBA-1 and 

(b) R-FBA-2. The intersection of nested rules results in a very high difference of query 

times. The lower values are near zero by comparison, because they do not have access 

to full data for reasoning, as R-FBA-3 needs to depend on both its implicit rules at the 

same time to actually function. 
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7.2.5. Discussion 

Considering the assumptions presented in Section 7.2.2, the results for each use case 

are discussed question-by-question to outline the findings and limitations from the case 

study. 

1) How fast is a scenario model generated, in terms of geometry and context? 

The efficiency for geometry and context information retrieval using the SPARQL queries 

is outlined in Figures 7-4 and 7-5 respectively. In terms of the geometry, querying from 

the IfcOwl instance model was on average around 34 seconds. The structure of the 

IfcOwl ontology needs long queries to retrieve basic measurement data types. Coupled 

with nature of the SELECT SPARQL queries, which loop through the results matching 

triple structures, the process becomes inefficient. Query time increases as the triple 

pattern grows. This is evident in Figure 7-4, where the longest time is for the BREP 

mapped shape query, which selects several loops of points for each complex geometric 

object. This would cause models with complex geometry such as steel columns and 

furniture to take a very long time to query using the current version of the IfcOwl. More 

testing would be required to assess the scalability of the developed queries on larger 

building models. In terms of context, the retrieval of explicit IFC object properties is 

significantly faster than geometry components, averaging around 9 seconds (Figure 7-

5). It is worth noting that only a few properties are retrieved, but due to the shorter triple 

chains, they perform significantly faster compared to geometry retrieval queries. 

2) How fast is the context created when relying on design guides resources? 

The context queries on explicit IFC model properties require no reasoning, making them 

relatively fast. However, the query labelled Q-RES-2, Get classifications in Figure 7-5 

is by far the longest to process. This query triggers the ontology alignment to match the 

classification code attached to each space to its correspondent in the Uniclass2015 

dataset graph. The reason for this delay is because the Uniclass2015 has thousands of 

classification codes on various levels. Once these are retrieved, the design occupancy 

factors for each space are reasoned. Figure 7-6 shows the query time required to retrieve 

the occupancy factors to average at 146 seconds. This delay is caused because the 

reasoning process has to evaluate the 56 SWRL rules which were used to correctly align 

the UKSOC and Uniclass2015 ontologies. Thus, retrieving implicit context information 

can take significantly longer than retrieving explicit data properties. However, as 

suggested by Figure 7-6, the time required to retrieve the context in this case is 7 times 

shorter than when constructing the model context manually. The figures show the 

average times experienced during testing (see Table 7-6), with the building environment 
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being imported from the IFC model. Creating the building entirely within the software 

without using a digital BIM was not considered efficient, as it would increase the time 

significantly, along with the risk of representing the environment inaccurately in terms of 

element sizes. The automatic process is in every case significantly more efficient. 

Additionally, the process of knowledge mining building context needs to be done only 

once, which is then used to create multiple scenarios. It is expected that the more 

secondary resources are in use, the time to retrieve the context would increase and it 

would be dependent on the optimisation of the ontology mappings in place.  

3) What are the differences between a manually created simulations and those 

created by the ONTOCS system? 

Although automatic processes will always be for faster than manual model construction, 

the automatic output needs to be correct. Figure 7-7 shows a merge between a manual 

and an automatic model. The construction of the geometry is nearly identical, as both 

processes imported and constructed the IFC model geometry correctly. However, the 

additional geometric objects which are constructed for the scenario context are 

positioned differently. Firstly, the placement of Portal objects within rooms is different. 

ONTOCS places each portal on top of the Space centroid as extracted from IFC, with 

each space having a corresponding portal. Spaces with a complex polygon shapes have 

shifted centroids, thus the difference between Portal positioning. For very large areas 

such as the Common Room or Restaurant in the building, a single portal is not 

representative enough of reality as it places all agents clustered together when 

simulations start. A more realistic scenario would have to distribute the agents across 

the entire area. However, it is difficult to correctly construct additional portals across an 

area, as it can easily end up outside it, or be obstructed by a barrier wall or furniture. The 

alternative would be to use a CST which is able to distribute agents across spaces 

without the use of Portal objects. 

4) How reliable are the simulation results originating from the automatic 

process for future analysis consideration? 

Figures 7-8, 7-9 and 7-10 show plotted results of both manual and automatic scenario 

results. The biggest difference is of 16 seconds evacuation time between the ONTOCS 

and manual models at 33% with entrances available (Figure 7-10). In addition to this, the 

two evacuation curves have very different trends in comparison to other pairs of 

scenarios. By contrast, the closest results in terms of time between a manual and an 

automatic simulation are those at 33% capacity with blocked entrances, at a difference 

of 2 seconds. This suggest that regardless of the assumed exit routes or the difference 

in portal placement, scenarios with fewer available exits and fewer flow restrictions on 

doors will be the most similar. The same is true when considering the 100% capacities 
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scenarios, where the red lines in Figure 7-8 and Figure 7-9 follow a more similar trend 

than the blue lines, although the final egress times differ by approximately 10 seconds in 

both figures. Manually constructed scenarios 5 and 6 modelled a more distributed agent 

entry yet resulted in very similar trendline and results to those assuming a single-entry 

portal. Curiously, both scenarios 5 and 6 have achieved very similar egress times, 

despite one having entrances blocked. This is explained by the fact that a more 

distributed agent placement has less of an impact on forming queues at doors, thus 

resulting in a faster evacuation.  

Finally, Figure 7-11 outlines the maximum density measured for two different scenarios 

(one manual, one automatic) and it can be observed that the agents in the automatic 

model are using the closest exits, resulting in some areas experiencing higher traffic 

densities. This simulation evacuated the agents 6 seconds sooner than the manual one, 

aiming to maximise the evacuation regardless of the density at the exits, which might be 

prone to other safety risks in real life cases. 

5) Is the system correctly interpreting the results according to user inputted 

design objectives? 

Table 7-7 shows the answers provided by each reasoning query which were checked 

against the plotted results in Figures 7-12,13 and 14.  Most of the answers are correct, 

with the exception of those involving queries Q-FBA-2 and Q-FBA-6, which check against 

objective (b). Scenario 19 seems to be missing from the table of results, both for the valid 

check rule (R-FBA-2 used by Q-FBA-2) and the invalid scenario check rule (R-FBA-6 

used by Q-FBA-6). An investigation into the results revealed that the data required for 

evaluating scenario 19 was missing from the ontology resources graph. This is because 

the algorithm fetching the SQL data looks for a specific percentage of population within 

a simulation and retrieves the simulation time. Due to its low population, scenario 19 

does not record any data for percentages between 49-51%, as a larger group of agents 

are leaving the simulation within a very short time, skipping the 50th percent. This is not 

a limitation of the ontology reasoning, but rather one concerned with validation of the 

data available from simulations which is provided to ontology reasoning. 

6) How reliable are design occupancy factors in comparison to real building 

occupancy data? 

As a secondary objective to evaluating the reasoning processes, it was established early 

on that other resources could be used to contribute to the context of the simulation. The 

aligned UKSOC and Uniclass2015 ontologies provide population data correctly, similar 

to the one present explicitly from the IFC model. However, in Figure 7-12 it can be 

observed that the populations assumed from UKSOC was over-estimated by a range of 

28% to 32% when compared to the corresponding scenarios using real data. This is 
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because a factor is multiplied by the area of a space and the number is rounded down 

to a whole. While the initial evacuation times are similar at first, as the population 

assumed increases the results start to vary. The final evacuation time of the UKSOC 

population was 40% higher than the one from the IFC data. Overall, the results are 

inconclusive, and more investigation would be required based on other building layouts. 

7) How efficient is the reasoning process for evaluating user objectives on a 

large scale? 

Figures 7-15 and 7-16 plot the average query times for retrieving the validity of the 

scenarios, with full measurements in Table 7-8. As expected, single objective query 

times are shorter than the multi-objective case. In the latter, reasoning times increased 

by varying factors from 1.24 to 4000 times longer. Due to their dependency on multiple 

rules, they are discussed separately here: 

• From queries operating on objectives (a) and (b), Q-FBA-2 performed the best 

and increased by 24%, whilst Q-FBA-1 is the least performant and increased by 

270%. Although both rely on similar rules (13+1 atoms), Q-FBA-2 performs 

significantly better; 

• From queries operating on multiple objectives implicitly, Q-FBA-3 performs least 

well when working on rules for objective (a), but significantly faster when working 

on rules from objective (b); this level of disparity does not exist for Q-FBA-7 which 

looks for invalid scenarios;  

• Overall it can be observed that queries which look for TRUE answers, trying to 

identify valid scenarios for objectives, perform worse than their respective FALSE 

check queries;  

• Finally, Q-FBA-4 increases in query time by a factor of 4000; this is explained by 

the fact that it relies on several rules, which are intersected implicitly by the R-

FBA-3 rule to check for fully valid scenarios (scenarios TRUE for (a) and (b) at 

the same time). For single objective tests (Figure7-15), the query times are 

extremely low, suggesting that the query is not applied for reasoning. This is 

because the query graph domains (defined by the PREFIX keyword) restrict the 

rule (R-FBA-3) from information to evaluate the other two implicit rules it calls. 

 

The results above suggest a need to optimise the rules for better processing time by 

improving query or ontology structure, and also a need to investigate how they perform 

with an increasing number of scenarios. 
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8) How do query times scale with increasing number of simulations? 

Considering the high increase in processing time from the previous question, it was 

investigated whether the query times increase linearly with the number of scenarios. 

Figures 7-17 to 7-21 show the relevant results for this question. Although several 

measurements were taken for each average time, the overall performance seems to 

oscillate between sessions. The session with 14 scenarios recorded anomaly 

measurements across several queries. Several observations were made on the provided 

data plots: 

• Concerning queries which satisfy objective (a) – Figure 7-17, there is some 

degree of linearity increase for the multi-objective case. This however is followed 

by a sharp increase starting with the 15 scenarios session, after which it 

stabilises. This appears to be connected to the low performance of query Q-FBA-

1, as discussed previously. However, when the query is applied in a single 

objective context it has a very low gradient. Queries which check for invalid 

scenarios appear to remain constant. 

• Concerning queries which satisfy objective (b) - Figure 7-18, there is a low linear 

gradient for the multi-objective case; this however is negated by the fact that they 

begin to stabilise for the last scenarios, suggesting they tend towards a constant. 

For the single objective case they remain constant throughout all measurements, 

despite their oscillations. 

• Concerning queries which rely on multiple rules for both valid (Figure 7-19) and 

invalid scenarios (Figure 7-20) they show a very low gradient for the single-

objective cases, and appear to show a steep gradient for the multi-objective case. 

However, as with the cases before, they stabilise towards the end points to 

almost no significant increase; these show very similar trends to those 

encountered at Q-FBA-1. 

• Concerning query Q-FBA-4, which intersects multiple rules (Figure 7-21), the 

trends are constant. Although it shows a dramatic increase in query time from 

single to multiple objectives, it experiences no increase in terms of the number of 

scenarios inputted.  

It can be concluded that the developed knowledge operators under the current system 

are able to scale well with increasing number of scenarios, showing no clear sign of a 

steep increase in query time. It has been observed that the query times oscillate 

frequently, and that there are certain steps of more significant increase after a certain 

number of scenarios, the most evident one starting at 15. To be able to establish the 

limits of this methodology for applying SPARQL and SWRL rules, a significantly higher 



170 

number of scenarios would need to be tested. However, it is debatable if this would be a 

requirement in practice. 

 

7.3. Summary 

This chapter began with introducing the developed ONTOCS system, showing its 

process workflow and underlying architecture. The system was tested on a case study 

of a real building. Two use cases were defined for testing the developed ontologies and 

knowledge operators, each case corresponding to different process stages. The results 

were then presented and later discussed in an attempt to answer the 8 objectives posed 

for the case study. Overall, the system functions correctly and the knowledge operators 

are able to construct and interpret model data correctly, with some limitations, which 

were outlined and discussed.  
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 Chapter 8. Discussion and future work 

 

 

Reflecting on the observations and findings from previous sections, this chapter provides 

a summary discussion of the research by revisiting the hypothesis and research 

questions. The limitations of the work are outlined, followed by planned future work to 

extend and improve the overall system and the developed ontologies.  

8.1. Revisiting the hypothesis 

The research hypothesis tested for this research was as follows: 

A knowledge processing-based approach can allow a fast retrieval of information 

and automatic construction of evacuation models by leveraging existing BIM data 

and design knowledge to enhance the decision-making processes about building 

performance by considering different simulation scenarios on a large scale. 

The hypothesis was then decomposed into 7 research questions, which are discussed 

below, based on findings from the previous chapters. Although it was initially envisaged 

that each chapter would focus on certain research questions, the findings from all 

chapters combined are used to evoke more comprehensive answers. 

Q1) How are evacuation models and tools used for assessing design 

performance while considering their scope and limitations? 

Evacuation models have been developed with the purpose of mimicking reality as close 

as possible in order to enable the prediction of human behaviour during fire evacuation 

events. Many models have been developed based on several methodologies, each with 

its own scope and limitations which need to be considered by safety engineers. CSTs 

are widely used to create very specific evacuation scenarios which are assessed by 

designers in attempts to prove a safe building layout for a building population. The 

scenario creation process is complex and inefficient requiring significant user input and 

configuration, as was concluded from the literature, but it also became evident in 

assessing the features of CSTs in Chapter 4. Additionally, one simulation scenario is 
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insufficient to provide designers with enough insight into building performance, so 

dealing with a large scale of scenarios is required.  

Q2) What is the current level of interoperability between CS for 

evacuation and BIM? 

BIM is used across many disciplines to facilitate interoperability and collaboration 

between design disciplines. The CS field is at a relatively low level of integration 

compared to energy or cost analysis. There have been many attempts at CSTs and BIM 

tools integration, but these are limited to geometry alignment, and do not account for the 

complexity of information required to facilitate a complete and automatic way of 

simulating realistic evacuation scenarios. Most CSTs in retail have many import 

capabilities, including IFC, making them BIM compatible. However, this is still limited to 

geometry, and many tools lose all semantics attached to IFC objects on imports, as was 

outlined in Chapter 4. 

Q3) What are the benefits of using ontologies for evacuation design, 

considering the BIM paradigm? 

The IFC format has been used as a tool for providing information exchange, but it still 

presents many challenges. BIM is moving in the direction of knowledge processing, with 

the development of IfcOwl, thus being able to leverage web linked data as a tool to 

extend interoperability to other knowledge domains, which were not previously 

considered. Ontologies excel at integrating data and resources from different knowledge 

domains and design perspectives. Additionally, ontology reasoning capabilities offer new 

creative ways to interpret data, information and knowledge and allow a more realistic 

representation of human behaviour and design knowledge than conventional tools. 

However, the practical application of ontology-based systems requires extensive 

knowledge of the domains involved and their correct definition, often being an expensive 

process to carry out.  

In addition to that, it was shown in Chapters 5 and 6 that an ontology representation of 

models allows a retrieval of contextual information for CS scenarios construction due to 

a semantic rich environment. 

 

Considering the research questions above (Q1, Q2 and Q3), a novel way was sought in 

which an intelligent system would be able to account for the limitations mentioned above, 

and to benefit from the use of semantic linked data. This methodology was proven in the 

rest of the chapters, each viewing the problem from different lenses.  
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Q4) What are the requirements for an intelligent system capable of 

integrating resources relevant to the CS field within the context of 

automation and analysis feedback, whilst considering practical 

deployment and future extensibility? 

The primary requirement consists in an intelligent system being able to interface with 

more than one CST. Section 4.1 presented a detailed analysis of several CSTs with 

particular focus on their functionality and features from a software design perspective. 

The common features used by these tools were identified and can be categorised into 4 

major functional categories: geometry, agent, event and analysis concepts. A more in-

depth survey of the tools was conducted in order to identify a baseline of common 

concepts, which was used to define a generalised taxonomy for CSTs. This was required 

to allow the inclusion of multiple tools and models to account for the gaps identified when 

Q1 was posed. The basic underlying concepts and principles from this taxonomy were 

then used to define a fully functioning crowd simulation model in an ontology 

representation which enabled the generalisation and therefore the interfacing of CSTs 

with a knowledge base, as was demonstrated in Chapters 5 and 6.  

The second requirement was to identify the information requirements that enable 

automation. Section 4.2 investigated ways in which a crowd simulation model can be 

made more automatic, by identifying what input is required for generating scenarios and 

what is required for providing meaningful knowledge about the performance of the 

design. These two requirements represented the two main stages through which an 

intelligent system is able to retrieve imbedded knowledge. The scenario generation stage 

(Section 4.2.1) outlines some basic concepts by which various sources of information 

available from existing knowledge or other design models can be considered for 

automatic scenario construction. A valid CSS requires not just geometric data, but also 

additional inputs which define its context. The potential sources of information which 

have an impact on scenario context definition were identified from various places 

including information models, design guidance, real building data, but most importantly 

user input, which is required to guide the process towards a realistic evacuation scenario. 

The second stage (Section 4.2.2) concerns feedback of output data and outlines key 

performance indicators used in practice to assess design performance, and what are the 

concerns around them in an automation context. While most factors can be quantified, 

the fact remains that CS analysis relies on user visualisation as well. These factors were 

further explored in Chapter 6 for practical deployment and proven to be reliable ways to 

retrieve information and knowledge about the design in Chapter 7.  

In terms of extensibility for future needs, several sources of information were identified 

which can be used throughout the entire building lifecycle and not just the design phase, 
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which was under the scope of this thesis. One of the primary sources which contribute 

the most was perceived to be from design guidance, as it is not expected to change, thus 

some were represented in ontology knowledge in Chapter 5. This is also coupled with 

the fact that ontologies are able to store data for future design use, as explored in 

Chapter 6. 

Answers related to practical deployment and extensibility for the future could not be 

outlined solely from Chapter 4 but had to be further explored in the next ones to give 

more insight into the matter. 

Q5) What are the challenges concerning information models and 

workflow processes being represented in a knowledge base considering 

the requirements for integration and knowledge retrieval? 

Chapter 5 outlined the required information models as part of the overall system design. 

One of the requirements for knowledge mining is to have a knowledge base in the first 

place. The information models developed and introduced represent the knowledge base 

for crowd simulation analysis and all its required resources, such as the digital building 

model, or design codes.  

The CSS ontology sits at the core of the developed system, being able to generically 

conceptualise a crowd simulation model with its relevant results. The CSS ontology was 

developed based on common object and feature concepts present in several CST tools 

investigated in Chapter 4. To be able to retrieve knowledge in the first place, additional 

concepts were added to conceptualise user assumptions and simulation results. The 

FBA ontology was developed which is closely related to the CSS, as was seen in their 

alignment. The scope of the CSS ontology is to represent simulation events and record 

them, while the scope of the FBA ontology is to analyse the results across several CSS 

resources as potential answers to design performance objectives. Creating objective 

concepts in the FBA ontology is vital for supporting a performance design process, where 

the decision ultimately lies with the designer. It was also pointed out that the way in which 

an objective is defined is based on several factors such as the intent of the designers, 

the types of performance indicators and the capabilities of the CST used for running 

simulations. The important aspects of such a method was outlined, along with its 

limitation when relying on user definitions of objectives, which requires extensive 

knowledge of the process and ad-hoc re-definition of concepts. Several objectives and 

results concepts were defined in more detail, as they were used and tested for the 

developed prototype and fully deployed and tested in Chapters 6 and 7, however more 

objective types need to be identified from industry practice for completeness.  

The inclusion of a CST ontology was required on a generic level to interface with the 

other models. However due to a complex structure of a program, focusing on the main 
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objects using a simple ontology is recommended with the role to transfer the necessary 

information to the CSS ontology which sits above it. IfcOwl was used to conceptualise 

the digital built environment, which is more than capable to provide all the necessary 

geometric objects and other contextual information from its other semantics, such as 

object properties, as pointed out in Section 5.2.1.  It was concluded that aligning the 

geometry of objects directly or using rules is impractical due to the format of the IFC 

itself, and the fundamental differences between geometric representations, making such 

a method highly inefficient for reasoning and querying, as was further confirmed through 

testing in Chapter 7 for the first use case.  

Other semantic resources were introduced which can contribute to the automation and 

knowledge mining process, thus allowing an ontology-based system to ‘understand’ the 

circumstances of each digital building environment to a higher extent. The prime example 

given here was the inclusion of design occupancy factors present in UK approved 

documents for fire safety. Although these codes could have been retrieved differently, 

they were expressed in an ontology fashion in order to be able to distinguish between 

different space types with the assistance of the Uniclass 2015 classification system, 

which is used to classify model objects. The alignment of these resources had to rely on 

SWRL rules due to the large sizes of individuals in the Uniclass RDF dataset. This shows 

that the inclusion of future resources from the SW would require significant rework and 

complex alignment methods would have to be employed to ensure the retrieved data is 

correct. In the case of the UKSOC factors, this was proven to work in Chapter 7. Several 

limitations were identified in the initial alignment however, especially the inconsistencies 

in defining space types present in the design codes, as well as not accounting for every 

space type, which meant that many types of space factors still need to be identified. 

However, the best way is to use the most realistic data available, which makes design 

occupancy factors unreliable in most situations.  

Q6) What needs to be considered for design knowledge storage and 

retrieval concerning building egress performance using evacuation 

models? 

The principal requirements to be able to process knowledge mining was to use operators, 

as was introduced in the methodology section. Chapter 6 began by introducing the two 

main types of operators used in this research: SWRL rules and SPARQL queries. These 

are most commonly used in conjunction with OWL models. Many rules and queries were 

developed to facilitate automation, intelligent system operation and relevant knowledge 

retrieval for the performance assessment stage of simulation scenarios. 

Firstly, the main need is to consider a robust structure of the ontology knowledge base 

by separating the resources accordingly, as was shown in the initial alignment in Chapter 
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5 and in Section 6.2.1. This ensures model information is correctly linked, providing the 

necessary context for the knowledge operation stages. 

Secondly, the relevant user input needs to be saved in the knowledge base, providing 

context to the analysis feedback stage and keeping track of design intent, as shown in 

Section 6.2.2. This further accounts for future extensibility needs, as posed by Q4, but 

also provides further context for knowledge retrieval processes.  

The third need concerns the automation of scenario creation which needs to separate 

the information retrieval process into geometry and context. Operators for geometry can 

become very complex and should not rely on reasoning, but rather employ simpler 

approaches, also confirmed by initial alignment attempts between the CSS and IfcOwl in 

Chapter 5. They are required to provide the model with static elements, which only need 

to be retrieved once. The knowledge retrieval after this stage consists in making the 

computer system ‘understand’ the context correctly. A way to define contextual 

information was shown using SWRL rules, which can be used quite creatively, depending 

on available resources. The problem remains that the system is only as intelligent as the 

rules it is provided with. Unfortunately, there is no way to guarantee that these rules will 

always allow the system to ‘understand’ the model, unless the auxiliary resources are 

provided in the first place, such as pre-defined properties in the IFC model or otherwise 

specified by user input.  

Finally, regarding the need concerning the analysis feedback stage of the process, 

several rules were constructed to conceptualise some of the PIs for performance 

assessment of CSM data. The knowledge embedded within these rules should be 

retrieved ad-hoc from separate SQL simulation data, on par with user objectives, due to 

the large datasets provided by each simulation scenario. The limitation here is that the 

construction of objectives, simulation results and rules to process them are 

interconnected. While only a few use cases were presented in Chapter 6, and deployed 

for testing in Chapter 7, there is still a need to identify how to implement more 

sophisticated analysis algorithms on various levels. The way to deal with knowledge 

retrieval and management on a large scale was conceptualised in Section 6.3.2, where 

the relationships between different knowledge models is shown considering change in 

design context over the building lifecycle. This is another step implemented in ensuring 

the future extensibility as posed by Q4. This paradigm can be applied for both a 

macroscopic scenario level and a microscopic object level. Due to time constraints, only 

the macroscopic level was implemented in practice and was proven to work efficiently in 

Chapter 7. However, the exploration in practice of the object level feedback would be 

beneficial in assessing more complex situations on a large scale, as was shown in 

Section 6.3.4 using several examples. Unfortunately, even with high expressivity 
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provided by ontologies, the fact remains that such complex situations are hard to assess 

even by human designers in real situations due to a lack of formalised knowledge and 

agent behaviour un-predictability. 

Q7) How reliable is a knowledge-based system in understanding the 

building model and other linked data resources in facilitating correct and 

efficient design support? 

The tests carried on the case study building in Chapter 7 reveal certain limitations 

concerning the methodology and others concerning the system itself. The ONTOCS 

system was able to successfully create correct scenarios for Stage I. Certain limitations 

in understanding the geometry were found, which make automatic models different from 

the manually constructed ones. However, this is subjective and depends on the situation. 

The context of each model was retrieved correctly, as they rely on the rules and queries 

to function correctly. The knowledge retrieval process at Stage I relies on the quality and 

correctness of the operators constructed. When comparing the scenarios from the first 

use case, it was observed that when there are more agents and fewer exits, the 

automatic scenarios are more reliable, regardless of the difference on the placement of 

agent entry points. For the Stage II, all objectives inputted were correctly interpreted 

except one case where data about a specific point was missing and thus the rule could 

not return a result. Making use of secondary resources to create the context of simulation 

models, specifically the use of design guide occupancy factors requires further 

investigation. The vague nature of design factors may not be the preferred choice, and 

it is highly dependent on building layout and its areas.  

In terms of the efficiency of the queries for Stage I, it was observed that retrieving 

geometry from a graph database can be time consuming, due to the complex structure 

of the IfcOwl used as a source. Retrieving object properties is relatively more efficient by 

contrast. Reasoning queries on model context was also computed in a relatively speedy 

manner. These methods rely heavily on the quality of the operators and the expressed 

knowledge. Where knowledge is available explicitly reasoning is done much faster than 

in the case where reasoning uses other information resources such as the UKSOC 

ontology included. For Stage II, retrieving the answers for each objective is relatively fast, 

but it appears to grow significantly when multiple rules are intersected to find more 

specific results. This was further investigated by running scalability tests for each query 

in single and multi-objective cases. The results show that scalability would not be a 

problem when several dozen scenarios are applied, and that many queries remain 

constant, with some showing linearity. From the results it was apparent that the 

reasoning times scaled in steps, with the first encountered at 15 simulations, with slightly 

higher reasoning time than the simulation numbers before it. However, further tests 
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would be required with sessions running a significantly higher number of simulations to 

identify the system and methodology limits. On the other hand, assuming an 

unrealistically high number of scenarios in parallel would not be beneficial in practice, 

defeating the purpose of making the process fast in the first place. 

Finally, it is worth noting that other CSTs results will differ than those provided here by 

MassMotion. However, the general findings seem to indicate that although simulations 

created automatically are different from those constructed manually, the trends can be 

similar enough to be used with enough confidence in decision-making process for design 

evaluation. 

 

It can be concluded that the hypothesis is true, semantic web data and model 

representations allow a fast retrieval of all the information requirements for CS 

construction and analysis. However, the implementations to do so require much 

investment in representing and linking all the relevant data, and correctly conceptualising 

the knowledge base with operators according to proven methods. This requires 

extensive knowledge of the domains involved and will require expertise for upkeeping a 

knowledge-based system up-to-date.  

 

8.2. Research limitations 

The limitations of this research and its developments are outlined here concerning the 

methodology, the system or the tools used in implementation and testing. 

ONTOCS system limitations: 

1) Dependency on code – the system itself is heavily reliant on its code packages 

to retrieve, transform and manipulate data from various resources including RDF 

graphs, SQL database and the user interface. This means that future 

developments need to integrate with its overall architecture. For example, the 

system converts IFC geometry from IfcOwl in memory directly into a MassMotion 

format. The inclusion of an additional CST would require a separate package 

solely for geometric conversion, in addition to some working with ontologies. 

2) Dependency on the MassMotion tool – the system can only collaborate with the 

MassMotion CST at the moment. This was done for simplicity. 

3) Interface restrictions – the system currently interfaces users over web pages 

through internet browsers in a very simplistic way, in which users cannot really 

interact directly with most of the model objects. 
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4) Code optimisation – the system was developed in an experimental context but 

would need more optimisation from a programming point of view, thus making 

the process faster overall. This however is not expected to improve reasoning 

times. 

Knowledge base and operators limitations: 

1) Level of knowledge formalisation - retrieval of knowledge depends on the level of 

the developed ontology and its operators. The developed ontologies do not 

encompass all available resources identified in Section 4.2, due to time 

constraints. This process requires extensive validation and testing. 

2) The FBA ontology and its respective SWRL rules are currently limited to only a 

few types of PIs assessment. These do not represent feedback analysis on an 

object level but is set as an objective for future work. 

3) SPARQL optimisation – over 32 queries were developed which work with the 

system retrieving data and knowledge. Geometry related queries are long due to 

the structure of the IfcOwl ontology. For the queries to become more efficient, a 

re-structuring and re-definition of the IfcOwl is recommended for future 

implementations. 

4) Limits of imbedded knowledge – finding new knowledge about evacuation design 

performance is limited to the power of the knowledge operators used. CS analysis 

traditionally requires safety engineers to observe agent movement and thus relies 

on visualisation. 

8.3. Future work 

Considering the limitations above, the following will be addressed in future work: 

• Integration of a second CST with the ONTOCS system and its workflow. This 

would allow a comparative analysis of simulation results. 

• Further improvement of the ONTOCS interface to allow an object view of the 

schema and more data results in the form of graphs, aiding the users in assessing 

the evacuation progression if required. 

• ONTOCS classes code optimisations will allow the system to work more 

efficiently and account for future extensions. 

• Investigation into PIs for object level performance assessment. In light of the 

benefits provided by the object-oriented of the developed CSS schema, an 

object-level view of the feedback process would be better suited for comparing 

different results on a microscopic level. This would require an investigation from 

literature and expert consultations on what methods are employed in practice. 
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These would then have to be implemented in the CSS and FBA ontologies, and 

coded to work with the system. 

• Investigation into methods to related scenarios and feedback models to changing 

IFC source models. Currently, the system makes use of a single IFC model which 

is the central ‘point of truth’ from which several simulations emerge, as was 

shown in Section 6.3.2. Dealing with changing versions of the IFC model would 

be a challenge to manage information and knowledge models correctly, whilst 

allowing a comparative analysis between different design stages in terms of 

model performance.  

• Further testing is planned for identifying the apparent incremental steps for 

reasoning times from a scalability perspective. Additionally, a newer Stardog 

version has been released which promises better query and reasoning 

performance. This would also be a good choice for improving reasoning times. 

   



181 

 

 

 

 Chapter 9. Conclusion and contribution 

 

 

Taking into consideration the findings and developments presented in previous chapters, 

several conclusions can be drawn. 

Section 2.1 revealed that the evaluation of evacuation time using CS models and tools 

is a complex and inefficient process which demands input of information from several 

fields of knowledge, including designer input across several stages during the process, 

as was also identified in Chapter 4. 

Although multiple attempts to integrate BIM with CST have been carried out in the past 

with the purpose to speed up the design process, these are mostly limited to geometry 

and do not consider a more holistic view of the information requirements for creating and 

analysing evacuation models. This was concluded from the literature in Section 2.2. 

The use of OWL ontologies is beneficial in providing a comprehensive layer of 

interoperability across multiple information models and knowledge domains available as 

web resources for the semi-automatic construction and analysis of CS models on a large 

scale, as was augmented in Section 2.3. 

Based on the above conclusions from the literature, the proposed methodology and 

system under investigation aimed to prove that a knowledge-based system was able to 

provide automation and a greater degree of interoperability for the crowd simulation-

based evacuation performance evaluation. 

The developed OWL ontologies introduced in Chapter 5 conceptualise the crowd 

simulation analysis domain in detail, allowing intelligent computer agents to store and 

retrieve knowledge about a building design from multiple contexts. These ontologies 

were verified through testing (in Chapter 7) and validated by consulting field experts.  

The developed knowledge operators and the workflow process provided by the ONTOCS 

system allows fast, correct and realistic scenario construction and analysis of simulation 

data on a large scale. This was evident from the results presented in Chapter 7. New 

knowledge can be retrieved about the design in accordance to design PIs on a scenario 

level, allowing a fast review of building performance in dozens of parallel contexts.  
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The developed OWL ontologies show great potential in storing and retrieving knowledge 

about the entire process, which can be extended to merge with other design fields (costs, 

energy, etc). Due to their holistic representation of information, they also show promise 

in exploring creative ways to evaluate design performance by considering an object-level 

view of model components (e.g. individual spaces, doors, assumptions, agents, etc.), as 

was discussed in Chapter 6. 

The ONTOCS system has been validated on a real-life building showing its potential to 

operate of real data and to work efficiently with a large scale of scenarios. The findings 

from the case study in Chapter 7 strengthen the arguments brought forward from 

previous chapters, but also outlined several limitations and how to deal with them for 

future research developments. 

 

The work carried out during this research project has contributed with several practical 

developments and with knowledge about the methodology adopted in delivering their 

implementation and testing. 

Practical research developments, in decreasing order of impact: 

1- ONTOCS (Ontology Crowd Simulation) software system, represents the core 

contribution of this research; an intelligent knowledge-based system capable of 

aggregating important data and information models which are relevant to 

evacuation design using CSTs. The intelligence imbedded within the system 

allows it to perform automatic scenario creation and to provide feedback to 

designers concerning building evacuation performance; 

2- OWL ontologies in the field of crowd simulation:  

i. Crowd Simulation Scenario (CSS) – represents a generic view of 

a simulation model containing objects, assumptions and results, 

suitable to interface with a plethora of other resources such as 

IfcOwl, design codes and CSTs; 

ii. Feeback Analysis (FBA) – conceptualises the mechanism to store 

design objectives and retrieve knowledge about design 

performance across multiple scenario models from the CSS 

ontology data; 

iii. UK Spaces Occupancy Capacities (UKSOC) – conceptualises 

part of design codes from the UK approved documents regarding 

occupancy of spaces based on their functionality and area. It has 

been aligned with the IFC ontology and Uniclass classification 

system to provide meaningful data in a conceptual design 

scenario; 
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iv. MassMotion ontology – the simple representation of the 

MassMotion crowd simulation tool, according to its objects’ 

relationships; 

3- SWRL rules developed in conjunction with the ontologies above to provide logical 

operations on data and facilitate the correct retrieval of knowledge from existing 

resources; these represent imbedded knowledge about the construction of 

simulation models and about the correct analysis of the simulation output; 

4- Taxonomy of common CST concepts – represents a baseline of objects which 

describe CS models and tools for them to be able to function. These concepts 

were identified from the analysis of several CSTs used in industry. 

Knowledge contribution from theoretical design, analysis and testing, in decreasing order 

of impact: 

1- By the sum of investigations carried to identify, represent and test the knowledge 

bases and operators within the scope of the research aims has contributed to 

knowledge about the limitations, benefits and challenges when employing such 

methods. This is concerned mostly with the field of CS, but the steps outlined in 

this thesis would also be easily replicated for other design disciplines, further 

benefiting from linked data concepts. 

2- The investigations into CS and BIM interoperability has contributed to knowledge 

by looking at common concepts between the two fields while commenting on their 

behaviours and challenges when aligning them in Chapter 5. Some concepts 

within the BIM field behave differently because they meet different functions 

within a model when compared to a CS model. The alignment of geometry 

remains problematic within the context of full ontological alignment, while the BIM 

domain lacks the definition of certain concepts and resources to facilitate CS 

automation. 

3- This study has relied heavily on using design regulations and guidance to 

conceptualise a performance assessment method in a machine-interpretable 

way. It has therefore contributed to knowledge by identifying the relevant sources 

of information from design via the literature, official documentations and also from 

field consultations with experts. Their reliability for automatic construction of 

models and knowledge retrieval was assessed in Chapter 7, along with the 

observations made during their testing. 

4- Finally, this research has contributed to knowledge from the literature surveys in 

the fields of CS, building evacuation, BIM and ontologies, commenting on recent 

developments, limitations and potential benefits. 
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 Appendix A – Simulation tools concepts  

For each CST, certain concepts require specific input from the user side which define 

the behaviour of the object. E.g. An agent is programmed to evacuate a certain route, as 

instructed by the user input. The concepts which require ‘Behaviour Input’ are marked 

with an ‘x’ in the last column – BI. 

Table A-1. MassMotion Concepts 

No Concept Function Notes 
Feature 
category 

BI 

SCENE 
OBJECTS 

Features which define the building environment. 

1 Bank 

Contains connection objects 
within the scene. 

Links, Ramps, 
Stairs are 
connection objects. 

Visualisation 

Interface 

  

2 Collection 

Contains any type of scene 
objects. 

Cannot contain 
other Collections. 

Visualisation 

Interface 

  

3 Perimeter 
Reduces the number of 
available routes for agents in 
the scene. 

  Geometry 
x 

4 Zone 

Define a conceptual area 
within the simulation. 

  Interface 

Geometry 

  

5 Transform 

Contains multiple objects and 
allows their geometry to be 
altered collectively. 

  Interface 

Geometry 

  

6 Barrier 
Represents regions which 
blocks agents' paths. 

  Geometry 
  

7 Cordon 

Defines a surface which is 
used to track agent 
movement. 

Does not impact 
simulation 
calculations. 

Geometry 

Analysis 

  

8 Volume 

Defines a volume which is 
used to track agents. 

Does not impact 
simulation 
calculations. 

Geometry 

Analysis 

  

9 Escalator Model real-life escalators.   Geometry   

10 Floor 
Models surfaces which 
allows agents to walk on. 

  Geometry 
  

11 Link Connects two floors together.   Geometry   

12 Path  
Guides agents on a well-
defined curve. 

  Geometry 
x 

13 Portal 
Allows agents to enter or exit 
a simulation. 

  Geometry 
  

14 Ramp 
Represents inclined 
surfaces. 

Add a vertical cost 
to agent 
movement. 

Geometry 
  

15 Stair 
Connects two floors of 
different elevations. 

  Geometry 
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No Concept Function Notes 
Feature 
category 

BI 

16 Server 
Model queuing behaviour of 
agents in more complex 
circumstances. 

  Geometry 
x 

17 Dispatch 
Distributes agents across 
Server inputs. 

  Geometry 
x 

18 
Reference 
Geometry 

Includes geometry objects as 
generic models, with no 
specified purpose. 

Does not impact 
simulation 
calculations. 

Visualisation 

Geometry 

  

19 Visual 

Enhances the appearance of 
the environment. 

Does not impact 
simulation 
calculations. 

Visualisation 

Geometry 

  

ACTIVITIES Features which define events during a simulation. 

20 Action 

Operation to be taken by 
agent. 

  Event 

Agent 

x 

21 Test 

Operate a check on a single 
agent. 

  Event 

Interface 

Agent 

  

22 Avatar 

Models the 3D 
representation of agents 
within the simulation. 

Does not impact 
simulation 
calculations. 

Visualisation 

Geometry 

Agent 

  

23 Circulate 
Defines a specified route 
over time for agents to follow. 

Agents move from 
one portal to 
another. 

Event 
x 

24 Evacuate 
Triggers when agents should 
begin evacuating the 
simulation. 

  Event 
x 

25 Broadcast 
Applies a specified Action to 
agents within the simulation. 

  Event 
x 

26 Journey 
Represent the act of people 
moving from A to B. 

A journey may 
have multiple exits. 

Event 
  

27 
Gate 
Access 

Opens of closes an access 
point objects dynamically. 

  Event 
x 

28 Profile 
Defines the physical 
characteristics of Agent. 

  Agent 
  

29 
Server 
Access 

Controls ingress and egress 
to/from Server objects. 

  Event 
x 

30 Time 
Reference to a specific point 
in time while the simulation is 
running. 

  Interface 
  

31 Timetable 
Allows for more complex and 
coordinated definition of 
events. 

Suitable for train, 
bus, plane 
schedules. 

Event 
x 

32 Token 
Allows access to agents for 
certain entry points. 

  Agent 
  

33 Trigger 
Fires in response to certain 
conditions during the 
simulation. 

  Event 
x 
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No Concept Function Notes 
Feature 
category 

BI 

34 Trip Matrix 

Creates agents across 
multiple portals and 
distributes their exit through 
others. 

  Event 

x 

35 Vehicle 
Simulates the controlled 
arrival and departure of 
agents at periodic intervals. 

  Event 
  

ANALYSIS Features which allow users to analyse the outputs. 

36 
Simulation 
Run 

Represents a single iteration 
of a MassMotion simulation. 

Start and end 
times must be 
specified. 

Event 

Visualisation 

  

37 Agent Filter 

Allows the selection of 
specific agent groups for 
analysis. 

  Analysis 

Visualisation 

  

38 Trip 

Defines a particular route 
through the environment. 

Consists of 
multiple areas, 
cordons, portals. 

Analysis 

Event 

  

39 Graph 

Queries and presents data 
for user analysis. 

  Analysis 

Visualisation 

  

40 Map 

Adds colour coded contours 
on the environment to 
visualise events and 
behaviour. 

  Analysis 

Visualisation 
  

41 Tables 
Queries and presents data in 
tabular form from the 
simulation ran. 

  Analysis 
  

42 Area 

Conceptual surfaces which 
can be used for analysis. 

Can include 
Volume, 
Collection, Zone, 
etc. 

Analysis 

Visualisation 
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Table A-2. Pedestrian Dynamics concepts 

No Entity Function Notes Feature 
category 

BI 

DRAW ELEMENTS Features which define the building environment. 
1 Height Layer Defines a coplanar area 

where agents can walk. 
  Geometry   

2 Obstacle Defines an area on 
which agents cannot 
walk. 

It's usually placed 
within a Height 
Layer 

Geometry   

3 Walkable area Represents an area 
within a Height Layer 
where agents can walk. 

Multiple areas 
can overlap. 

Geometry   

4 Opening  Walking area created on 
top of an obstacle. 

Allows agent to 
pass through 
otherwise un-
walkable 
obstacles 

Geometry   

5 Transfer Connects two different 
Height Layers. 

  Geometry   

6 Stair Models height between 
levels, and allows agent 
to cross them. 

Automatically 
acts as a 
Transfer object. 

Geometry   

7 Spiral Stair Similar to Stair.   Geometry   

8 Escalator/Moving 
Walk 

Models a slow moving 
conveyor belt which 
transports agents. 

Agents can stand 
still on it. Acts as 
a Transfer object. 

Geometry   

9 Passageway Models a walkable area 
where agent flow 
direction I controlled. 

  Geometry   

ACTIVITY 
LOCATIONS 

Features which define events at specific locations. 

10 Entry/Exit Allows agents to enter or 
exit the model. 

A single object 
can be both an 
exit and an entry. 

Geometry   

11 Waiting Forces agent to wait for 
specified/unspecified 
time. 

  Geometry x 

12 Waypoint Acts as a destination 
point for agents when 
circulating. 

  Geometry x 

13 Commercial 
Facility 

Models agents 
performing shopping 
activities. 

  Geometry x 

14 Service Facility Models a location where 
agents receive a certain 
kind of service. 

  Geometry x 

15 Ticker Facility Models a location where 
agent buy tickets for 
another activity. 

  Geometry x 

16 Access Control Models an area which 
agents have restricted 
access to. 

  Geometry x 

ACTIONS Features which define events during a simulation. 
17 Action Timer Triggers time based 

actions during a 
simulation run. 

  Event x 

18 Action Area Alters the behaviour or 
properties of certain 
agents. 

  Event x 
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No Entity Function Notes Feature 
category 

BI 

19 Flow Shifter Shifts the flow of an 
area. 

  Event x 

20 Flow Splitter Splits certain flows of 
agents. 

  Event 

Geometry 

x 

21 Indicative 
Corridor 

Forces agents to follow a 
specified route or queue 
for specific action. 

  Event   

22 Route Models agent behaviour 
on moving from A to B 

  Event x 

23 Local Obstacle Influences agents on 
which side to avoid an 
obstacle. 

  Geometry 

Mathematical 

  

SPECIAL 
ELEMENTS 

Other features, specific to this tool. 

24 Stand Models the physical 
infrastructure for a stand. 

Stand Stairs and 
Stand Portals can 
be added to it. 

Geometry   

25 Stand Stair Make the rows on 
Stands reachable to 
agents. 

  Geometry   

26 Stand Portal Connects a Stand to a 
Height Layer. 

  Geometry   

27 Stand Section Groups Stand seats 
together. 

  Interface   

28 Stand Obstacle Makes areas within a 
Stand which agents 
cannot walk on. 

  Geometry   

29 Transport Non 
Waiting Area 

Defines an area where 
agents are forbidden 
from stopping. 

  Geometry   

30 Transport 
Network 

Defines stop locations for 
transport elements. 

Models rail 
tracks, bus 
stations, etc. 

Event   

AGENT INPUT Features which allow users to define agents. 
31 Agent Profile Assigns a profile to a 

group of agents with 
similar characteristics. 

  Agent   

32 Route Defines the path agents 
take through the model. 

  Agent x 

33 Agent 3D Model Represents each agent 
with a 3D model. 

  Visualisation   

34 Agent Activities Defines which Activity 
Locations an Agent can 
visit over time. 

  Agent x 

35 Agent Generator Defines a number of 
agents of specific types 
when to appear. 

Route can be 
specified. 

Event x 

36 Arrival List Defines a creation 
schedule of Agents.  

Route can be 
specified. 

Event x 

OUTPUT 
ELEMENTS 

Features which allow users to analyse the outputs. 

37 Flow Counter A line which counts 
agents passing over it. 

  Analysis   

38 Density Area An area which overlays 
densities of agent traffic. 

  Analysis 

Visualisation 
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No Entity Function Notes Feature 
category 

BI 

39 Output Layer A layer which contains 
Output Elements. 

  Analysis   

40 Activity Route A list of activities which 
were carried out by 
agents. 

  Analysis   

41 Density Map Maps the density for the 
environment or agents 
over time. 

  Analysis 

Visualisation 

  

42 Frequency Map Shows the number of 
agents passing through 
at certain times. 

  Analysis   

43 Travel Time Map Shows the travel time of 
each agent using colour 
codes. 

  Analysis/ 

Visualisation 
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Table A-3. STEPS concepts 

No Entity Function Notes Feature 
category 

BI 

MAIN OBJECTS Features which create the most important objects on the model. 

1 Distribution Distributes values within a 
range. 

  Mathematical   

2 Curve Specifies a relationship 
between two parameters. 

  Mathematical   

3 Colour 
Distribution 

Distributes values within a 
range for colours. 

  Mathematical   

4 People Model Defines the appearance of 
agents. 

  Agent   

5 People Type Defines the properties of 
agents. 

  Agent   

6 People 
Group 

Defines a set of agents at 
a given time or place. 

  Agent   

7 Family Represents a group of 
agents which travel 
together. 

  Agent   

8 Shape Represents a complex 
geometric construct from 
basic lines. 

  Geometry   

9 Mesh Represents surfaces 
made from triangular 
shapes. 

Can represent 2D 
and 3D objects. 

Geometry   

10 Plane Defines a surface which is 
walkable to the agents. 

  Geometry   

11 Path Models stairs or 
unidirectional flows. 

Superseded by 
Shaped Planes. 

Geometry   

12 Plane Exit Defines an exit point out 
of a plane for agents to 
use.  

Links two planes. Geometry   

13 Internal Door Limits or alters the flow of 
people on one Plane.  

Does not link 
Planes. 

Geometry   

14 Checkpoint Defines a location which 
agent can move towards. 

Only functions in 
operation modes. 

Geometry   

15 Route Restricts movement of 
people via a defined path. 

Only functions in 
operation modes. 

Event 

Geometry 

x 

16 Matrix Specifies agent 
destinations according to 
their origins. 

Superseded by 
Route. 

Event x 

17 Access Specifies which agent can 
use which exit point within 
a plane. 

  Event x 

18 Blockage Defines surfaces on 
Planes which agents 
cannot walk on. 

Can be represented 
by points, lines, 
shapes, meshes. 

Geometry   

19 Location Specifies a smaller region 
on a Plane which is used 
to create agents. 

Can be used to plot 
density maps. 

Geometry   

20 Junction Specifies the way in which 
agents can split between 
more Paths. 

  Mathematical   

21 Item Geometry object used to 
enhance appearance. 

Is not involved in 
model calculations. 

Visualisation 

Geometry 
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No Entity Function Notes Feature 
category 

BI 

22 Group Groups different types of 
objects together. 

Can be used for 
statistical analysis 
across objects. 

Interface   

VEHICLE 
OBJECTS 

Features which define moving vehicle objects during a 
simulation. 

23 Lift Carries agents from one 
surface to another. 

An object which 
moves across the 
environment. 

Geometry x 

24 Train Represents trains 
geometrically. 

Is not involved in 
model calculations. 
Superseded by 
Vehicle 

Geometry   

25 Vehicle Dynamic surface which 
can transport agents 
across the environment. 

Is made out of 
several components. 

Geometry x 

26 Vehicle 
Model 

Represents vehicles 
geometrically. 

  Geometry   

27 Vehicle 
Element 
Type 

Represents a specific 
element as part of a 
Vehicle object. 

Can be used to 
resemble doors, 
areas, etc. 

Geometry   

28 Trajectory Defines the path of a 
vehicle. 

  Event x 

EVENT 
OBJECTS 

Features which define events during a simulation. 

29 Simulation 
Event 

Specifies an interval of 
time for events to occur. 

  Event x 

30 Emergency 
Event 

Triggers the act which 
simulates an evacuation 
at given times. 

  Event x 

31 People Event Creates groups of agents 
within the model at given 
times. 

  Event x 

32 Population 
Event 

Maintains a constant 
number of population flow 
on a given Plane. 

  Event x 

33 Exit Event Dynamically alters the 
state of an Exit Plane as 
opened or closed to 
agents. 

  Event x 

34 Blockage 
Event 

Dynamically alters the 
state of a surface to 
walkable or un-walkable 
by agents. 

  Event x 

35 Group Event Changes the colour of 
grouped elements 
depending on their states. 

Is purely for 
visualisation 
purposes 

Visualisation   

36 Lift Event Specifies the behaviour of 
Lift objects during a 
simulation. 

  Event   

37 Viewpoint 
Event 

Moves the view of the 
model to a specific points 
at given times. 

  Visualisation   

38 Viewpath 
Event 

Triggers a Viewpath 
object at a specified time 
during a simulation. 

  Visualisation   

39 Snapshot 
Event 

Takes an image shot of 
the view at a given time. 

  Visualisation   
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No Entity Function Notes Feature 
category 

BI 

40 Movie Event Triggers the recording of a 
simulation between time 
intervals. 

  Visualisation   

41 Clipping 
Plane Event 

Triggers Clipping Plane 
objects at given times 
during a simulation. 

  Visualisation   

42 Tracking 
Event 

Records the position of 
agents over specified time 
interval during simulation. 

  Visualisation   

SMOKE 
OBJECTS 

Features which model smoke from fire. 

43 Surface Represents smoke 
propagation visually. 

Does not affect 
model calculations. 

Visualisation   

44 Sample 
Plane 

Modifies walking speeds 
of agents according to 
smoke concentration data. 

Uses imported data 
from other software. 

Mathematical 

Geometry 

  

45 Dose Keeps track of the level of 
gas absorption by agents. 

  Analysis   

OUTPUT 
OBJECTS 

Features which allow users to analyse the outputs. 

46 Basic 
Variable 

Expresses certain 
statistical or raw data 
values about the 
simulation. 

  Analysis   

47 Expressions Uses several Basic 
Variables to output 
specific data. 

  Analysis   

48 Variable Monitors (saves or 
outputs) specified Basic 
Variables. 

  Analysis   

49 Condition Reports specified 
condition status during a 
running simulation. 

  Analysis   

50 Display Outputs data on screen 
during a simulation. 

  Analysis 

Interface 

  

51 Alert Displays on screen a 
message when Conditon 
is met. 

  Analysis 

Interface 

  

52 Label Labels model objects on 
view. 

  Interface   

53 Output Specifies which data to be 
saved as output into 
results files. 

  Interface   

54 Output Map Calculates and displays a 
contour of the events for 
analysis. 

Can only output 
once simulation has 
finished. 

Analysis 

Visualisation 

  

55 Scale Sets up the colour codes 
to display over a range of 
result values. 

Used for colouring 
Output Map. 

Analysis 

Interface 

  

NAVIGATION 
OBJECTS 

Features used for visualising the simulation. 

56 Viewpoint Saves a specific view of 
the model. 

  Visualisation   

57 Viewpath Connects Viewpoint 
objects in a sequence 
over time. 

  Visualisation   



206 

No Entity Function Notes Feature 
category 

BI 

RENDERING 
OBJECTS 

Features used for improving the visual aspect of the simulation. 

58 Clipping 
Plane 

Hides or shows parts of 
the model. 

  Visualisation 

Interface 

  

59 Light Adds lighting effects 
across the model for more 
realistic views. 

  Visualisation   

60 Material Adds a material effect to 
model geometry. 

  Visualisation   

61 Texture Map Adds images to 3D 
objects for more realistic 
representations. 

  Visualisation   
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Table A-4. BuildingEXODUS concepts 

No Entity Function Notes Feature 
category 

BI 

GEOMETRY Features which define the building environment. 

1 Node Basic unit used for 
constructing geometry in 
Exodus. 

  Geometry   

2 Free Space Node Models free space.   Geometry   

3 Boundary Node Models free space but 
alters on agent walking 
speed. 

I created for 
nodes near 
boundary 
lines. 

Geometry   

4 Seat Node Models seats/chairs.   Geometry   

5 Stair Node Models one lane on one 
riser of a staircase. 

  Geometry   

6 Discharge Node Manipulates agent's 
movement near Internal 
Exits. 

Used in 
conjunction 
with Attractor 
Node. 

Geometry   

7 Attractor Node Manipulates agent's 
movement near Internal 
Exits. 

Used in 
conjunction 
with Discharge 
Node. 

Geometry   

8 Landing Models free space on 
staircase landings. 

  Geometry   

9 Census Region Enables extraction of 
individual flow data. 

Does not 
impact agent 
behaviour. 

Geometry 

Analysis 

  

10 Internal Exit Models an exit location 
within the environment. 

Represents 
doors within a 
department 

Geometry   

11 Source Node Generates agents 
throughout the simulation. 

  Geometry   

12 Redirection Node Models decision nodes for 
circulating agents. 

Is used for 
agent 
itineraries. 

Geometry   

13 Direction Node Controls the direction of an 
agent's movement. 

  Geometry x 

14 External Exit Node Ultimate exit point out of 
the simulation environment. 

  Geometry   

15 Transit Node Represents more 
comprehensively lifts, 
staircases, corridors, etc. 

  Geometry   

16 Stair Transit Node Models stairs.   Geometry   

17 Escalator Transit 
Node 

Models escalators,   Geometry   

18 Lift Shaft Opening 
Transit Node 

Models opening areas 
around lift shafts. 

  Geometry   

19 Corridor Transit 
Node 

Models connection 
between horizontal spaces. 

Has no vertical 
component. 

Geometry   

20 Travelator Transit 
Node 

Models a travelator with a 
specified direction. 

  Geometry   

21 Metered Gate 
Transit Node 

Models metered barriers or 
ticked machines. 

  Geometry   
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No Entity Function Notes Feature 
category 

BI 

22 Arc Links node together, 
enabling agent movement. 

Restricts flow 
of agents. 

Geometry   

23 Line Represent linear geometry 
objects, usually boundaries 
around free space. 

  Geometry   

24 Census Line Monitors flow of agents 
over a given point. 

  Geometry 

Analysis 

  

25 Polygon Represents more complex 
shapes formed from Lines. 

  Geometry   

26 Text Label Label objects over the 
view. 

  Interface   

27 Sign Represents real-life 
signage within the 
environment, which guide 
the agents. 

Alters agent 
behaviour. 

Geometry x 

28 Primary Link Used to link floors. Each Primary 
is assigned a 
Secondary 
Link. 

Geometry   

29 Secondary Link Used to link floors. Each 
Secondary is 
assigned a 
Primary Link. 

Geometry   

30 Ruler Used to measure model 
geometry. 

  Interface   

31 Floor Represents a floor/level 
within the environment. 

Not clear if is 
set up in 
specific object. 

Geometry 

Interface 

  

POPULATION Features which define the agents within the simulation. 

32 Person/Occupant Collection of attribute used 
to describe a person. 

  Agent   

33 Group Collection of 
Persons/Occupants. 

  Agent   

34 Sub-Population Collection of Groups   Agent   

35 Population Collection of Sub-
Populations, making up all 
the agents. 

  Agent   

36 Occupant Itinerary 
List 

Defines a pre-defined list of 
tasks for Populations. 

  Agent 

Event 

x 

37 Occupant Exit 
Knowledge 

Defines how many exits 
are known to agents. 

  Agent x 

38 Local Familiarity Defines an agent's level of 
familiarity to the 
environment. 

  Agent   

39 Attribute Defines specific values 
which model agent 
attributes. 

Age, sex, 
speed, etc. 

Agent   

40 Range Defines a range of values.   Mathematical   

41 Distribution 
Curves 

Distributes values within a 
range. 

  Mathematical   

SCENARIO Features which describe a fire scenario. 

42 Hazzard Models smoke, heat, 
irritation and toxic gases. 

  Event x 
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No Entity Function Notes Feature 
category 

BI 

Geometry 

43 Hazzard Evolution Models the evolution of 
hazzards over time. 

  Event x 

44 Zone Represents specific areas 
within the model made 
from multiple nodes. 

  Geometry   

45 Fire Scenario Link Hazzards to Zones 
over time. 

  Event x 

46 Response Zone A Zone which alters the 
behaviour of agents. 

Can be used 
to delay or 
trigger agent 
evacuation. 

Event 

Geometry 

x 

47 Response Time Specifies the time when 
agents evacuate for a 
Response Zone. 

  Event   

48 Compartment 
Zone 

A collection of nodes which 
acts as a separate 
compartment. 

  Geometry 

Analysis 

  

49 Obstacle Zone Dynamically alters the 
walkable environment for 
agents. 

Is defined by 
specific times. 

Event 

Geometry 

x 

50 Exit Attractiveness Models how likely an exit is 
chosen by agents. 

  Mathematical   

SIMULATION Features which enable the animation and visualisation of a 
simulation. 

51 Simulation Models a specifically set 
scenarios to run for 
calculation. 

  Event 

Visualisation 

  

52 Graph Plots simulation data for 
user interpretation. 

  Analysis 

Visualisation 

  

53 Contour Visualises in colour codes 
simulation data, over 
simulation geometry 

  Analysis 

Visualisation 

  

54 Zone Contour Visualises in colour codes 
smoke data. 

  Analysis 

Visualisation 

  

55 Interrogation 
Objects 

Allows the users to retrieve 
data in relation to 
geometry, agents or other 
events over simulation 
time. 

Not clear if is 
set up in 
specific 
objects. 

Analysis   
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Table A-5. Simulex concepts 

No Entity Function Notes Feature 
category 

Behaviour 
input 

BUILDING Features which define the building environment. 

1 Floor Represents the 
walkable area over 
which agents can 
travel on. 

It is defined by 
the walls 
surrounding it, 
where the wall 
lines represent 
the limits. 

Geometry   

2 Staircase Allows agents to 
travel across from 
floor to floor. 

  Geometry   

3 Link Connects a Floor to 
a Staircase 

  Geometry   

4 Exit Final exit point for 
the building 

  Geometry   

5 DistMap Overlays a color-
coded mesh 
showing the 
distance from any 
point to nearest 
exit. 

  Analysis   

ROUTES Features which specify how agents should evacuate the 
building. 

6 Most Remote Agents take the 
highest distance 
route out of the 
model. 

  Event   

7 Test Position Places an agent on 
the specified 
location and 
simulates it walk 
out to nearest exit. 

  Event   

8 Stop Testing Stops all routes 
testing procedures. 

  Event   

PEOPLE Features which define the building population. 

9 Person Represents an 
individual agent 
within the model. 

  Agent   

10 Group Defines a group of 
agents, with a 
number and a 
concentration over 
an area. 

  Agent   

11 Characteristics Defines the 
physical properties 
of agents. 

  Agent   

SIMULATE Features for running and visualising the simulation 

12 Being Start the simulation 
process. 

  Visualisation   

13 Playback Playback a 
simulation process. 

  Visualisation   
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No Entity Function Notes Feature 
category 

Behaviour 
input 

14 Playback 3D Playback a 
simulation process 
in 3D. 

  Visualisation   

15 Pause/Stop Stops a simulation 
run. 

  Visualisation   

 

 

 

 

Table A-6. Summary of common CST concepts from previous tables 

Tool Geometry Agent Event Analysis Visualisation Interface Mathematical 

MassMotion 13 2 13 6 5 3 0 

Pedestrian Dynamics 22 3 9 7 1 1 0 

STEPS 14 4 11 9 15 3 5 

Exodus 31 8 7 4 0 2 3 

Simulex 4 3 3 1 4 0 0 
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 Appendix B – Developed ontologies 

This section outlines the developed ontologies using diagrams and shows the ranges of 

object and data properties as they appear in the Protégé software.  

Additionally, is shows the alignment of concepts between certain ontologies, and other 

resources which were used to define the ontologies as a reference. 
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Crowd Simulation Scenario (CSS) ontology 

 

Figure B-1. CSS ontology classes and object properties connecting them 
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Figure B-2. CSS ontology metrics 

 

Figure B-3. CSS ontology object properties 
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Figure B-4. CSS ontology data properties 
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Feedback Analysis (FBA) ontology 

 

Figure B-5. FBA ontology classes and object properties connecting them 
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Figure B-6. FBA ontology metrics 

 

Figure B-7. FBA ontology object properties 
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Figure B-8. FBA ontology data properties 
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UK Spaces Occupant Capacity (UKSOC) ontology 

Table B-1. Spaces occupant capacities (adapted from The Building Regulations 2015 
Appendix C3 – Methods of measurement) 

Table C1 Floor space factors (1) 

Type of accommodation (2)(3) Factor (m2/pers) 

1 Standing spectator areas, bar areas (within 2m of serving point) 
similar refreshment areas 

0.3 

2 Amusement arcade, assembly hall (including a general purpose 
place of assembly), bingo hall, club, crush hall, dance floor or hall, 
venue for pop concert and similar events and bar areas without 
fixed seating 

0.5 

3 Concourse, queuing area or shopping mall (4)(5) 0.7 

4 Committee room, common room, conference room, dining room, 
licensed betting office (public area), lounge or bar (other than in 1 
above), meeting room, reading room, restaurant, staff room or 
waiting room (6) 

1 

5 Exhibition hall or studio (film, radio, television, recording) 1.5 

6 Skating rink 2 

7 Shop sales area (7) 2 

8 Art gallery, dormitory, factory production area, museum or 
workshop 

5 

9 Office 6 

10 Shop sales area (8) 7 

11 Kitchen or library 7 

12 Bedroom or study-bedroom 8 

13 Bed-sitting room, billiards or snooker room or hall 10 

14 Storage and warehousing 30 

15 Car park 2/pers 

N
o

te
s
 

1.  As an alternative to using the values in the table, the floor space factor may be 
determined by reference to actual data taken from similar premises. Where appropriate, 
the data should reflect the average occupant density at a peak trading time of year. 

2. Where accommodation is not directly covered by the descriptions given, a reasonable 
value based on a similar use may be selected. 

3. Where any part of the building is to be used for more than one type of 
accommodation, the most onerous factor(s) should be applied. Where the building 
contains different types of accommodation, the occupancy of each different area should 
be calculated using the relevant space factor. 

4. Refer to section 5 of BS 5588-10:1991 Code of practice for shopping complexes for 
detailed guidance on the calculation of occupancy in common public areas in shopping 
complexes. 

5. For detailed guidance on appropriate floor space factors for concourses in sports 
grounds refer to “Concourses” published by the Football. Licensing Authority (ISBN: 0 
95462 932 9). 

6. Alternatively the occupant capacity may be taken as the number of fixed seats 
provided, if the occupants will normally be seated. 

7. Shops excluding those under item 10, but including - supermarkets and department 
stores (main sales areas), shops for personal services such as hairdressing and shops 
for the delivery or collection of goods for cleaning, repair or other treatment or for 
members of the public themselves carrying out such cleaning, repair or other treatment. 

8. Shops (excluding those in covered shopping complexes but including department 
stores) trading predominantly in furniture, floor coverings, cycles, prams, large domestic 
appliances or other bulky goods, or trading on a wholesale self-selection basis (cash 
and carry). 
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Figure B-9. UKSOC ontology with main classes and individuals 
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Figure B-10. UKSOC ontology classes and object properties connecting them 
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Figure B-11. UKSOC ontology metrics 

 

Figure B-12. UKSOC ontology SWRL rules matching individuals of specific classes to factors 
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MassMotion (MM) ontology 

 

Figure B-13. MM ontology with main upper classes and object properties connecting them 
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Figure B-14. MM ontology object properties 
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Figure B-15. MM ontology data properties 

 

Figure B-16. MM ontology metrics 
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Alignment between UKSOC and Uniclass2015 ontologies 

The alignment between UKSOC and the Uniclass2015 classification system is based on 

matching spaces with identical or similar names, as is shown in Table B-2 below. Some 

comments were made outlining conflicts and/or relationship better suited for integration 

(subclass or equivalency). 

Table B-2. Aligned common spaces between UKSOC categories and Uniclass categories 
with comments 

C
a

te
g
o

ry
 

N
o
 

UKSOC UNICLASS 2015 Note 

Type of space Uniclass equivalent Uniclass categories 

Description Code Title Sub-group Title 

1 

1 
Standing 
spectator areas 

SL_90_20_83 Spectator standing 
areas 

Common spaces equivalency 

2 
Bar areas 
(within 2m of 
serving point) 

SL_40_20_06 Bars Dining spaces subclasses, but 
ambiguous with 
12 and 22 

2 

4 
Amusement 
arcade 

SL_40_05_03 Amusement 
arcades 

Amusement spaces equivalency 

5 Assembly hall  SL_25_10_05 Assembly halls Educational spaces equivalency 

6 Bingo hall SL_40_05_43 Indoor play spaces Amusement spaces subclass 

7 
Club SL_40_60_21 Dance floors Performing arts 

spaces 
subclass 

8 Crush hall SL_90_10_27 Entrance halls Circulation spaces subclass 

9 
Dance floor SL_40_60_21 Dance floors Performing arts 

spaces 
equivalency 

10 
Dance hall SL_40_60_21 Dance floors Performing arts 

spaces 
subclass 

11 
Venue for pop 
concert and 
similar events 

SL_90_20_05 Audience standing 
areas 

Common spaces equivalency 

12 
Bar areas 
without fixed 
sitting 

SL_40_20_06 Bars Dining spaces subclasses, but 
ambiguous with 
2 and 22 

3 

13 
Concourse SL_80_10_16 Concourses Loading and 

embarkation 
spaces 

equivalency 

14 Queuing area SL_90_20_69 Queuing areas Common spaces equivalency 

15 

Shopping mall 
(4) (5) 

      no direct 
equivalent  

SL_20_50_12 Checkout points Commercial spaces category about 
queuing areas 

4 

16 
Committee 
room 

SL_20_70_15 Court rooms Judicial spaces equivalency 

17 Common room SL_25_10_15 Common rooms Educational spaces equivalency 

18 
Conference 
room 

SL_25_70_13 Conference rooms Information spaces equivalency 

19 

Dining room SL_40_20_27 Enclosed dining 
areas 

Dining spaces subclass, 
equivalent to 
Restaurant 

SL_40_20_28 Food courts Dining spaces subclass 
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C
a

te
g
o

ry
 

N
o
 

UKSOC UNICLASS 2015 Note 

Type of space Uniclass equivalent Uniclass categories 

Description Code Title Sub-group Title 

20 
Licensed 
betting office 
(public area) 

SL_90_20_89 Ticket offices Common spaces subclass 

21 Lounge SL_90_20_96 Waiting rooms Common spaces equivalency 

22 
Bar (other than 
in 1 above) 

SL_40_20_06 Bars Dining spaces subclasses, but 
ambiguous with 
2 and 12 

23 
Meeting room SL_20_15_50 Meeting rooms Administrative 

spaces 
equivalency 

24 Reading room SL_25_70_72 Reading rooms Information spaces equivalency 

25 

Restaurant SL_40_20_28 Food courts Dining spaces subclass, 
equivalent to 
Dining room 

SL_40_20_27 Enclosed dining 
areas 

Dining spaces subclass 

SL_40_20_59 Outdoor dining 
areas 

Dining spaces subclass 

26 Staff room SL_90_20_08 Breakout spaces Common spaces equivalency 

27 
Waiting room SL_90_20_96 Waiting rooms Common spaces equivalency, 

equivalent of 
Lounge 

5 

28 
Exhibition hall SL_25_50 Exhibition spaces Exhibition spaces subclass, but 

ambiguity with 
Museums 

29 

Studio (film, 
radio, 
television, 
recording) 

SL_75_10 Communications 
spaces 

Communications 
spaces 

subclass 

SL_40_60_78 Sound recording 
studios 

Performing arts 
spaces 

equivalency 

SL_75_10_73 Radio studios Communications 
spaces 

equivalency 

SL_75_10_93 Television studios Communications 
spaces 

equivalency 

6 30 
Skating rink SL_42_95_40 Ice skating rinks Winter sports 

spaces 
equivalency 

7 31 

Shop sales 
area (7) 

SL_20_50_22 Department store 
shop floors 

Commercial spaces subclass 

SL_20_50_85 Supermarket shop 
floors 

Commercial spaces subclass 

SL_20_50_51 Market stalls Commercial spaces subclass 

8 

32 Art gallery SL_25_50_42 Internal galleries Exhibition spaces subclass 

33 Dormitory SL_45_10_24 Dormitories Living spaces equivalency 

34 
Factory 
production area 

SL_30_50 Manufacturing 
spaces 

Manufacturing 
spaces 

equivalency 

35 Museum SL_25_50 Exhibition spaces Exhibition spaces subclass 

36 
Workshop SL_30_60_50 Maintenance 

workshops 
Cleaning and 
maintenance 
spaces 

subclass 

9 37 

Office SL_20_15_59 Offices Administrative 
spaces 

subclass 

SL_20_55_45 Letter sorting 
offices 

Postal 
communications 
spaces 

subclass 

SL_20_55_60 Parcel sorting 
offices 

Postal 
communications 
spaces 

subclass 
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C
a

te
g
o

ry
 

N
o
 

UKSOC UNICLASS 2015 Note 

Type of space Uniclass equivalent Uniclass categories 

Description Code Title Sub-group Title 

SL_20_85_80 Security offices Security spaces subclass 

SL_45_10_16 Concierge offices Living spaces subclass 

SL_80_10_60 Passport control 
offices 

Loading and 
embarkation 
spaces 

subclass 

10 38 

Shop sales 
area (8) 

SL_20_50_72 Retail kiosks Commercial spaces subclass 

SL_20_50_36 Hair and beauty 
salons 

Commercial spaces subclass 

SL_20_50_29 Financial and 
professional 
services outlets 

Commercial spaces subclass 

SL_20_50_32 Food and drink 
outlets 

Commercial spaces subclass 

SL_20_50_87 Tattoo and 
piercing parlours 

Commercial spaces subclass 

11 
39 

Kitchen SL_35_60_56 Non-domestic 
kitchens 

Food management 
spaces 

  

SL_45_10_23 Domestic kitchens Food management 
spaces 

  

SL_45_10_44 Kitchen-dining 
rooms 

Food management 
spaces 

  

40 Library SL_25_70_47 Library rooms Information spaces equivalency 

12 
41 

Bedroom SL_45_10_09 Bedrooms Living spaces subclass 

SL_45_10_57 Nursing home 
bedrooms 

Living spaces subclass 

42 Study-bedroom SL_45_10_08 Bedroom-studies Living spaces subclass 

13 

43 
Bed-sitting 
room 

SL_45_10_08 Bedroom-studies Living spaces subclass 

44 
Billiards room SL_42_40_79 Snooker, billiards 

and pool halls 
Indoor activity 
spaces 

subclass 

45 
Billiards hall SL_42_40_79 Snooker, billiards 

and pool halls 
Indoor activity 
spaces 

subclass 

46 
Snooker room SL_42_40_79 Snooker, billiards 

and pool halls 
Indoor activity 
spaces 

subclass 

47 
Snooker hall SL_42_40_79 Snooker, billiards 

and pool halls 
Indoor activity 
spaces 

subclass 

14 

48 
Storage SL_90_50 Storage spaces Storage spaces Equivalency, 

entire sub-
group 

49 
Warehousing SL_30_90 Warehousing and 

distribution spaces 
Warehousing and 
distribution spaces 

Equivalency, 
entire sub-
group 

15 50 

Car park SL_80_45_40 Indoor vehicle 
parking spaces 

Highway storage 
and maintenance 
spaces 

subclass 

SL_80_45_59 Outdoor vehicle 
parking spaces 

Highway storage 
and maintenance 
spaces 

subclass 
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Table B-3. Alignment SWRL rules between the UKSOC and Uniclass2015 ontology. Implements Table B-2 

No Rule name SWRL code 

1 CF-Category_1-01-SpectatorStandingAreas 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^  

swrlb:matches(?id, "SL_90_20_83") -> uksoc:hasFactor(?spaceClass, uksoc:factor1) 

2 CF-Category_1-02-BarsServingAreas 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^  

swrlb:matches(?id, "SL_40_20_06") -> uksoc:hasFactor(?spaceClass, uksoc:factor1) 

3 CF-Category_2-01-AmusementArcades 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^  

swrlb:matches(?id, "SL_40_05_03") -> uksoc:hasFactor(?spaceClass, uksoc:factor2) 

4 CF-Category_2-02-AssemblyHalls 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^  

swrlb:matches(?id, "SL_25_10_05") -> uksoc:hasFactor(?spaceClass, uksoc:factor2) 

5 CF-Category_2-03-IndoorPlaySpaces 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^  

swrlb:matches(?id, "SL_40_05_43") -> uksoc:hasFactor(?spaceClass, uksoc:factor2) 

6 CF-Category_2-04-DanceFloor 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^  

swrlb:matches(?id, "SL_40_60_21") -> uksoc:hasFactor(?spaceClass, uksoc:factor2) 

7 CF-Category_2-05-EntranceHalls 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^  

swrlb:matches(?id, "SL_90_10_27") -> uksoc:hasFactor(?spaceClass, uksoc:factor2) 

8 CF-Category_2-06-AudienceStandingAreas 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^  

swrlb:matches(?id, "SL_90_20_05") -> uksoc:hasFactor(?spaceClass, uksoc:factor2) 

 

9 

 

CF-Category_3-01-Concourses 

 

uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^  
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No Rule name SWRL code 

swrlb:matches(?id, "SL_80_10_16") -> uksoc:hasFactor(?spaceClass, uksoc:factor3) 

10 CF-Category_3-02-QueuingAreas 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^  

swrlb:matches(?id, "SL_90_20_69") -> uksoc:hasFactor(?spaceClass, uksoc:factor3) 

11 CF-Category_3-03-CheckoutPoints 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^  

swrlb:matches(?id, "SL_20_50_12") -> uksoc:hasFactor(?spaceClass, uksoc:factor3) 

12 CF-Category_4-01-CourtRooms 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^  

swrlb:matches(?id, "SL_20_70_15") -> uksoc:hasFactor(?spaceClass, uksoc:factor4) 

13 CF-Category_4-02-CommonRooms 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^  

swrlb:matches(?id, "SL_25_10_15") -> uksoc:hasFactor(?spaceClass, uksoc:factor4) 

14 CF-Category_4-03-ConferenceRoom 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^  

swrlb:matches(?id, "SL_25_70_13") -> uksoc:hasFactor(?spaceClass, uksoc:factor4) 

15 CF-Category_4-04-TicketOffices 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^  

swrlb:matches(?id, "SL_90_20_89") -> uksoc:hasFactor(?spaceClass, uksoc:factor4) 

16 CF-Category_4-05-WaitingRooms 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^  

swrlb:matches(?id, "SL_90_20_96") -> uksoc:hasFactor(?spaceClass, uksoc:factor4) 

17 CF-Category_4-06-UnfixedSeatingBarAreas 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^ 

 swrlb:matches(?id, "SL_40_20_06") -> uksoc:hasFactor(?spaceClass, uksoc:factor4) 

 

18 

 

CF-Category_4-07-MeetingRooms 

 

uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^  

swrlb:matches(?id, "SL_20_15_50") -> uksoc:hasFactor(?spaceClass, uksoc:factor4) 
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No Rule name SWRL code 

19 CF-Category_4-08-ReadingRooms 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^  

swrlb:matches(?id, "SL_25_70_72") -> uksoc:hasFactor(?spaceClass, uksoc:factor4) 

20 CF-Category_4-09-EnclosedDiningAreas 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^  

swrlb:matches(?id, "SL_40_20_27") -> uksoc:hasFactor(?spaceClass, uksoc:factor4) 

21 CF-Category_4-10-FoodCourts 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^  

swrlb:matches(?id, "SL_40_20_28") -> uksoc:hasFactor(?spaceClass, uksoc:factor4) 

22 CF-Category_4-11-OutdoorDiningAreas 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^  

swrlb:matches(?id, "SL_40_20_59") -> uksoc:hasFactor(?spaceClass, uksoc:factor4) 

23 CF-Category_4-12-BreakoutSpaces 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^  

swrlb:matches(?id, "SL_90_20_08") -> uksoc:hasFactor(?spaceClass, uksoc:factor4) 

24 CF-Category_4-13-BreakoutSpaces 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^  

swrlb:matches(?id, "SL_90_20_08") -> uksoc:hasFactor(?spaceClass, uksoc:factor4) 

25 CF-Category_5-01-ExhibitionHall 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^ 
swrlb:containsIgnoreCase(?id, "SL_25_50") -> uksoc:hasFactor(?spaceClass, uksoc:factor5) 

26 CF-Category_5-02-RadioStudios 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^  

swrlb:matches(?id, "SL_75_10_73") -> uksoc:hasFactor(?spaceClass, uksoc:factor5) 

 

27 

 

CF-Category_5-03-RecordingStudios 

 

uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^  

swrlb:matches(?id, "SL_40_60_78") -> uksoc:hasFactor(?spaceClass, uksoc:factor5) 

28 CF-Category_5-04-TelevisionStudios uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^  
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No Rule name SWRL code 

swrlb:matches(?id, "SL_75_10_93") -> uksoc:hasFactor(?spaceClass, uksoc:factor5) 

29 CF-Category_6-01-IceSkatingRinks 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^  

swrlb:matches(?id, "SL_42_95_40") -> uksoc:hasFactor(?spaceClass, uksoc:factor6) 

30 CF-Category_6-02-DepartmentStoreShopFloors 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^  

swrlb:matches(?id, "SL_20_50_22") -> uksoc:hasFactor(?spaceClass, uksoc:factor6) 

31 CF-Category_6-03-SupermarketShopFloors 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^  

swrlb:matches(?id, "SL_20_50_85") -> uksoc:hasFactor(?spaceClass, uksoc:factor6) 

32 CF-Category_6-04-MarketStalls 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^  

swrlb:matches(?id, "SL_20_50_51") -> uksoc:hasFactor(?spaceClass, uksoc:factor6) 

33 CF-Category_7-01-ExhibitionHalls 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^ 
swrlb:containsIgnoreCase(?id, "SL_25_50") -> uksoc:hasFactor(?spaceClass, uksoc:factor7) 

34 CF-Category_7-02-InternalGalleries 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^ 

swrlb:matches(?id, "SL_25_50_42") -> uksoc:hasFactor(?spaceClass, uksoc:factor7) 

35 CF-Category_7-03-Dormitories 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^  

swrlb:matches(?id, "SL_42_10_24") -> uksoc:hasFactor(?spaceClass, uksoc:factor7) 

36 CF-Category_7-04-ManufacturingSpaces 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^ 
swrlb:containsIgnoreCase(?id, "SL_30_50") -> uksoc:hasFactor(?spaceClass, uksoc:factor7) 

37 CF-Category_7-05-MaintenanceWorkshops 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^  

swrlb:matches(?id, "SL_30_60_50") -> uksoc:hasFactor(?spaceClass, uksoc:factor7) 

38 CF-Category_8-01-Offices uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^  
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No Rule name SWRL code 

swrlb:matches(?id, "SL_20_15_59") -> uksoc:hasFactor(?spaceClass, uksoc:factor8) 

39 CF-Category_8-02-LetterSortingOffices 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^  

swrlb:matches(?id, "SL_20_55_45") -> uksoc:hasFactor(?spaceClass, uksoc:factor8) 

40 CF-Category_8-03-ParcelSortingOffices 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^ swrlb:matches(?id, 
"SL_20_55_60") -> uksoc:hasFactor(?spaceClass, uksoc:factor8) 

41 CF-Category_8-04-SecurityOffices 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^ swrlb:matches(?id, 
"SL_20_85_80") -> uksoc:hasFactor(?spaceClass, uksoc:factor8) 

42 CF-Category_8-05-ConciergeOffices 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^ swrlb:matches(?id, 
"SL_45_10_16") -> uksoc:hasFactor(?spaceClass, uksoc:factor8) 

43 CF-Category_8-06-PassportControlOffices 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^ swrlb:matches(?id, 
"SL_80_10_60") -> uksoc:hasFactor(?spaceClass, uksoc:factor8) 

44 CF-Category_9-01-FoodManagementSpaces 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^ 
swrlb:containsIgnoreCase(?id, "SL_35_60") -> uksoc:hasFactor(?spaceClass, uksoc:factor9) 

45 CF-Category_9-02-LibraryRooms 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^ swrlb:matches(?id, 
"SL_25_70_47") -> uksoc:hasFactor(?spaceClass, uksoc:factor9) 

46 CF-Category_9-03-FinancialAndProfessionalServicesOutlets 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^ swrlb:matches(?id, 
"SL_20_50_29") -> uksoc:hasFactor(?spaceClass, uksoc:factor9) 

47 CF-Category_9-04-FoodAndDrinksOutlets 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^ swrlb:matches(?id, 
"SL_20_50_32") -> uksoc:hasFactor(?spaceClass, uksoc:factor9) 

48 CF-Category_9-05-HairAndBeautySalons 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^ swrlb:matches(?id, 
"SL_20_50_36") -> uksoc:hasFactor(?spaceClass, uksoc:factor9) 

49 CF-Category_9-06-RetailKiosks 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^ swrlb:matches(?id, 
"SL_20_50_72") -> uksoc:hasFactor(?spaceClass, uksoc:factor9) 
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No Rule name SWRL code 

50 CF-Category_9-07-TatooAndPiercingParlours 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^ swrlb:matches(?id, 
"SL_20_50_87") -> uksoc:hasFactor(?spaceClass, uksoc:factor9) 

51 CF-Category_10-01-Bedrooms 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^ swrlb:matches(?id, 
"SL_45_10_09") -> uksoc:hasFactor(?spaceClass, uksoc:factor10) 

52 CF-Category_10-02-NursingHomBedrooms 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^ swrlb:matches(?id, 
"SL_45_10_57") -> uksoc:hasFactor(?spaceClass, uksoc:factor10) 

53 CF-Category_10-03-BedroomStudies 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^ swrlb:matches(?id, 
"SL_45_10_08") -> uksoc:hasFactor(?spaceClass, uksoc:factor10) 

54 CF-Category_11-01-SnookerBilliardAndPoolHalls 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^ swrlb:matches(?id, 
"SL_42_40_79") -> uksoc:hasFactor(?spaceClass, uksoc:factor11) 

55 CF-Category_12-01-StorageSpaces 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^ 
swrlb:containsIgnoreCase(?id, "SL_90_50") -> uksoc:hasFactor(?spaceClass, uksoc:factor12) 

56 CF-Category_12-02-WarehousingAndDistributionSpaces 
uniclass2015:Space(?spaceClass) ^ smpo:identifier(?spaceClass, ?id) ^ 
swrlb:containsIgnoreCase(?id, "SL_30_90") -> uksoc:hasFactor(?spaceClass, uksoc:factor12) 
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 Appendix C – SPARQL queries  

Table C-1. SPARQL queries operating to IfcOwl 

SPARQL QUERIES 

Link for IFC schema concepts:  
http://www.buildingsmart-tech.org/ifc/IFC2x3/TC1/html/  
Documentation reference for geometry construction: BS ISO 10303-42:1994 

Q-IFC-1, Find objects 

Question Which are the instances with an IFC identifier which are also MassMotion 
instances? 

 
Function 
 
 

Finds all IfcOwl individuals from the IFC model, which have a unique identifier. 
Narrows the answers down using a filter, which limits those found to also be a 
MassMotion class. 

IFC concepts of interest: 
IfcIdentifier 
 

Requires 
reasoning? 
YES 

Q-IFC-2, Get IFC Types 

Question What are the IFC types of individuals with unique identifiers and any IFC name 
labels? 

 
Function Find the specific class of each object at the lowest level in the hierarchy tree which 

is part of the IfcOwl graph and optionally finds their labels (names or long names) 

IFC concepts of interest: 
IfcIdentifier, IfcLabel 
 

Requires 
reasoning? 
NO 

 
 
 
 
 
 
 

http://www.buildingsmart-tech.org/ifc/IFC2x3/TC1/html/
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Q-IFC-3, Get IFC Storeys 

Question What is the elevation and identifier of each IfcBuildingStorey class instance? 

 
Function Finds all storeys within the model and retrieves their elevations and its IFC 

identifier to match it in memory. 

IFC concepts of interest: 
IfcIdentifier, IfcBuildingStorey 
 

Requires 
reasoning? 
NO 

Q-IFC-4, Find inhabited spaces 

Question What are the shape definition types of each IFC object? 

 
Function Finds those IFC objects which have a shape, or a geometric representation within 

the model. Does not extract the shape, only the type of basic shape definition it is 
constructed from, according to the IFC schema specification. 

IFC concepts of interest: 
IfcIdentifier, IfcProduct, 
IfcProductDefinitionShape, IfcRepresentation, IfcSweptAreaSolid 
 

Requires 
reasoning? 
NO 
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Q-IFC-5, Get IFC Placements 

Question What are the relative coordinates of each geometric IFC object relative to its 
parent? 

 

 
Function Retrieves the coordinates in (x, y, z) of each IFC object with a geometric 

representation within the model. These coordinates are relative to its parent object. 
The parent of each object is also found in this query and then matched in memory 
to find the absolute position. 

IFC concepts of interest: 
IfcIdentifier, IfcProduct, 
IfcLocalPlacement, IfcObjectPlacement, 
IfcAxis2Placement3D, 
IfcCartesianPoint, 
IfcDirection 
 

Requires 
reasoning? 
NO 
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Q-IFC-6, Get IFC Placements (spaces) 

Question What are the relative coordinates of IfcSpace instances relative to its parent? 

 

 
Function Retrieves the coordinates in (x, y, z) of each IFC Space object with a geometric 

representation within the model. These coordinates are relative to its parent object. 
The query is similar to 5, and it accounts for some spaces having a different 
definition of relative position coordinates, stored in the IfcExtrudedAreaSolid 
concept. 

IFC concepts of interest: 
IfcIdentifier, IfcProduct, 
IfcLocalPlacement, IfcObjectPlacement, 
IfcAxis2Placement3D, 
IfcCartesianPoint,  
IfcSpace, IfcDirection 
 

Requires 
reasoning? 
NO 
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Q-IFC-7, Get IFC Placements (mapped) 

Question What are the relative coordinates of IFC Columns relative to its parent? 

 

 
Function Retrieves the coordinates in (x, y, z) of each IFC Column object with a geometric 

representation within the model. These coordinates are relative to its parent object. 
The query is similar to 5 and 6, and it accounts for some columns having a different 
definition of relative position coordinates, stored in the IfcRepresentationMap 
concept. 

IFC concepts of interest: 
IfcIdentifier, IfcProduct, 
IfcLocalPlacement, IfcObjectPlacement, 
IfcAxis2Placement3D, 
IfcRepresentationMap, 
IfcCartesianPoint, 
IfcColumn, IfcDirection 
 

Requires 
reasoning? 
NO 
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Q-IFC-8, Get IFC Rectangle shapes 

Question Which are the instances with unique identifiers which have a rectangular shape 
definition? 

 

 
Function Finds the elements which are defined as rectangular in nature and retrieve the 

basic values to construct its shape. 

IFC concepts of interest: 
IfcIdentifier, IfcProduct, 
IfcRepresentation, IfcProductRepresentation, 
IfcSweptAreaSolid, 
IfcRectangleProfileDefinition 
IfcAxis2Placement2D, 
IfcCartesianPoint, 
IfcDirection 
 

Requires 
reasoning? 
NO 
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Q-IFC-9, Get IFC Rectangle shapes (mapped) 

Question Which are the instances with unique identifiers which are defined as rectangular 
based on a mapped shape? 

 

 
Function Finds the elements which are defined as rectangular in nature and retrieve the 

basic values to construct its shape. Is nearly identical to 8, however a mapped 
shapes in IFC belongs to one object which can be copied by other identical objects, 
to save space. 

IFC concepts of interest: 
IfcIdentifier, IfcProduct, 
IfcRepresentation, IfcProductRepresentation, 
IfcSweptAreaSolid, 
IfcRectangleProfileDefinition 
IfcAxis2Placement2D, 
IfcCartesianPoint, 
IfcDirection, 
IfcMappedItem 
 

Requires 
reasoning? 
NO 
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Q-IFC-10, Get IFC Arbitrary shapes 

Question Which are the instances with unique identifiers that have an arbitrary shaped 
definition? 

 

 
Function Identifies objects with an arbitrary shape definition and retrieves the first point and 

its coordinates, which is part of a finite list of points used to define an arbitrary 
perimeter. 

IFC concepts of interest: 
IfcIdentifier, IfcProduct, 
IfcRepresentation, IfcProductRepresentation, 
IfcSweptAreaSolid, 
IfcArbitraryClosedProfileDefinition, 
IfcPolyline, 
IfcAxis2Placement3D, 
IfcCartesianPoint, 
IfcDirection, 
 

Requires 
reasoning? 
NO 
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Q-IFC-1, Get Arbitrary shapes (mapped) 

Question Which are the instances with unique identifiers which are defined by an arbitrary 
shape, mapped to a source object? 

 

 
Function Identifies objects with an arbitrary shape definition and retrieves the first point and 

its coordinates, which is part of a finite list of points used to define an arbitrary 
perimeter. This is nearly identical to 10, however the geometry is mapped to 
another source object, for storage reasons. 

IFC concepts of interest: 
IfcIdentifier, IfcProduct, 
IfcRepresentation, IfcProductRepresentation, 
IfcSweptAreaSolid, 
IfcArbitraryClosedProfileDefinition, 
IfcPolyline, 
IfcAxis2Placement3D, 
IfcCartesianPoint, 
IfcDirection, 
IfcMappedItem 

Requires 
reasoning? 
NO 
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Q-IFC-12, Get Polyline first point 

Question What are the instances with unique identifiers which are defined with a polyline 
shape?  

 

 
Function Identifies objects represented by polylines and retrieves the first point from a list of 

segments which define a curve made from n-1 linear segments. 

IFC concepts of interest: 
IfcIdentifier, IfcProduct, 
IfcRepresentation, IfcProductRepresentation, 
IfcPolyline 

Requires 
reasoning? 
NO 

Q-IFC-13, Get Polyline next points 

Question What are the coordinate points of the next point on a polyline? 

 

 
Function It is used in conjuction with 12 to retrieve polyline points from a nested list. It 

iteratively goes through all the points and retrieves their coordinates in (x,y,z). A 
variable “LIST_URI” has to be provided for each object defined by a polyline. 

IFC concepts of interest: 
IfcCartesianPoint 

Requires 
reasoning? 
NO 
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Q-IFC-14, Get IFC BREP shapes 

Question Which are the instances with unique identifiers that are represented by faceted 
breps and polyloops? 

 

 
Function Finds objects which have a geometry represented by breps faces and polylines. 

Each face is composed of polyline, and the entire object is composed by several 
faces. Retrieves the URI for the polyloops, which are queried at 16. 

IFC concepts of interest: 
IfcIdentifier, IfcProduct, 
IfcRepresentation, IfcProductRepresentation, 
IfcManifoldSolidBrep, 
IfcFace, IfcPolyLoop 

Requires 
reasoning? 
NO 

Q-IFC-15, Get IFC BREP shapes (mapped) 

Question Which are the instances with unique identifiers that have brep shapes mapped to 
other source objects? 

 

 
Function Finds objects which have a geometry represented by breps faces and polylines. 

Similar to 14, however the brep shape belongs to a source object to which other 
objects map to. Each face is composed of polyline, and the entire object is 
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composed by several faces. Retrieves the URI for the polyloops, which are queried 
at 16. 

IFC concepts of interest: 
IfcIdentifier, IfcProduct, 
IfcRepresentation, IfcProductRepresentation, 
IfcManifoldSolidBrep, 
IfcFace, IfcPolyLoop, 
IfcMappedItem 

Requires 
reasoning? 
NO 

Q-IFC-16, Get Polyloop next points 

Question What are the coordinates of the next point on the specified polyloop? 

 
Function It is used in conjunction with 14 or 15 to retrieve polyloop points from a nested list. 

It iteratively goes through all the points and retrieves their coordinates in (x,y,z). A 
variable “LIST_URI” has to be provided for each object defined by a polyloop. 

IFC concepts of interest: 
IfcPolyLoop, IfcCartesianPoint 

Requires 
reasoning? 
NO 

Q-IFC-17, Get IFC Extrusions 

Question Which are the instances with unique identifiers that have extrusions for their 
defined geometry shape? 

 
Function Finds objects which have a representation in 3D, usually described by an extrusion 

length and direction from their original 2D shape.  
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IFC concepts of interest: 
IfcIdentifier, IfcProduct, 
IfcRepresentation, IfcProductRepresentation, 
IfcSweptAreaSolid, 
IfcExtrudedAreaSolid, IfcDirection, 
IfcCartesianPoint 

Requires 
reasoning? 
NO 

Q-IFC-18, Get IFC Extrusions (mapped) 

Question Which are the instances with unique identifiers that have extrusions for their 
mapped geometry shape? 

 

 
Function Finds objects which have a representation in 3D, usually described by an extrusion 

length and direction from their original 2D shape. It is nearly identical to 16, 
however these objects use a different source object to copy its shape. 

IFC concepts of interest: 
IfcIdentifier, IfcProduct, 
IfcRepresentation, IfcProductRepresentation, 
IfcSweptAreaSolid, 
IfcExtrudedAreaSolid, IfcDirection, 
IfcCartesianPoint, 
IfcMappedItem 

Requires 
reasoning? 
NO 
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Q-IFC-19, Get IFC Orientations 

Question Which are the IfcOpeningElements with unique identifiers with a rectangular 
shaped definition? 

 

 
Function 
  

Finds openings in walls and retrieves their shapes and basic points for geometry 
construction. Openings are usually rectangular in nature, thus most of the door 
and window openings are found. 

IFC concepts of interest: 
IfcIdentifier, IfcProduct, 
IfcRepresentation, IfcProductRepresentation, 
IfcSweptAreaSolid, 
IfcAxis2Placement3D, IfcDirection, 
IfcCartesianPoint 

Requires 
reasoning? 
NO 
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Q-IFC-20, Get descriptions 

Question Which instances with unique identifiers have textual descriptions attached to 
them? And what is this description? 

 

 
Function Looks for objects which have a specific description property, which is can be either 

inputted by the users in a BIM tool or be available from the product factory 
specifications. 

IFC concepts of interest: 
IfcIdentifier, IfcText 

Requires 
reasoning? 
NO 

Q-IFC-21, Get areas 

Question Which are the IfcSpace type instances with unique identifiers that have a property 
defined “Area” and what is its value? 

 

 
Function Finds the spaces which have a specifically named property defined, which in this 

case is labelled “Area”. This is an IfcPropertySingleValue which usually has a 
name and a value defined. These types of properties differ from one BIM tool to 
another and they are also frequently defined by users to attach specific information 
about objects.  

IFC concepts of interest: 
IfcIdentifier, IfcPropertySet, 
IfcRelDefinesByProperties, 
IfcPropertySingleValue. 
 

Requires 
reasoning? 
NO 
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Table C-2. SPARQL queries operating on CSS and other resources 

SPARQL QUERIES 

Q-RES-1, Get occupancy 

Questio
n 

Which are the instances with unique identifiers in the IFC model that have a 
property named “SpaceOccupancy” and what is its value? 

 

 
Function Finds the IfcSinglePropertyValue labelled “SpaceOccupancy” and the objects to 

which it is attached. Retrieves this value which is used to save it in memory. This 
value is an integer which represents the number of people that occupy a space, 
which can be attached by designers to building spaces. 

Requires reasoning? 
NO 

Q-RES-2, Get classifications 

Questio
n 

Which are the IfcSpace type instances with unique identifiers in the IFC model that 
have a property which matches existing Uniclass2015 codes in available 
resources? 

 

 
Function Finds the IfcSinglePropertyValue which has identity data related to the 

Uniclass2015 classification, saved in the variable “?identifier” and the IfcSpace 
objects to which it is attached. Reasons if this value is present in the Uniclass2015 
dataset ontology graphs and returns only those instances to which the classification 
can be confirmed. 

Requires reasoning? 
YES 
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Q-RES-3, Match occupancy factors 

Questio
n 

What are the UK regulations spaces occupancy factors for Uniclass2015 
classification codes? 

 

 
Function Finds the values of the occupancy factors for each Uniclass2015 classification code 

in the building model. Reasons in conjunction with the alignment rules from 
Appendix B6.  

Requires reasoning? 
YES 

Q-RES-4, Find inhabited spaces 

Questio
n 

Which are the instances from a specific scenario that are classified as a 
InhabitedSpace class in the CSS ontology? 

 

 
Function Finds the instance that are reasoned by rules in Appendix C, Table C3 as 

“InhabitedSpace” class. 

Requires reasoning? 
YES 

Q-RES-5, Find exit spaces 

Questio
n 

Which are the instances from a specific scenario that are classified as a 
RefugeSpace class in the CSS ontology? 

 

 
Function 
  

Finds the instance that are reasoned by rules in Appendix C, Table C3 as 
“RefugeSpace” class. 

Requires reasoning? 
YES 
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 Appendix D – ONTOCS system interface 

This section showcases the workflow process which guides the designers through the developed web interface. The system provides the entire 

experience as a service, running from an internet browser. The workflow process reflects the steps described in Section 7.1.1. Additionally, it includes 

some steps where users can validate the models to ensure the system correctly reconstructs the IFC models, and that the scenarios are correctly 

created.  

Figures 7-3 to 7-10 show the separate navigation web pages which guide the user through the process of generating and analysing scenarios on a 

large scale. The interface has an important role in the capabilities in which users can contribute to the context of each simulation, as can be seen in 

Figure 7-6, or Figure 7-9. The input of the user assumptions and objectives are important in involving the designers as much as possible in the process, 

to help the system configure more realistic scenarios, and more relevant to each situation under analysis.  

The main limitation of the system lies in its ability to ensure the validity of the generated models, which was addressed by allowing users to download 

each model file and manually check it. During testing, it was observed that if certain sources of data is missing, some scenarios can be incomplete, 

thus these cannot be executed by simulation tools. This is a cause of the OWA of ontologies and rules implemented. In such situations, the interface 

can be used demand correct user input. For example, a scenario cannot be created without specifying where to look for the population data (IFC model 

or Design codes, etc); however, if the data is missing from the start, the scenario can still be generated, but with no population. This results in an empty 

model, without any event objects, which will eventually provide no results for analysis. 

The interface shows only some of the capability of an ontology-based system. The main benefit, which can be seen in Figures 7-9 and 7-10, is the 

ability to aggregate the data across multiple scenarios on large scales, as was presented conceptually in Section 4.2.2. Because the data is connected, 

the extent to which information and knowledge about the design can be generated is also dependent on the level of interface implementation.  
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Figure D-1. ONTOCS welcome page 
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Figure D-2. ONTOCS user log in page 
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Figure D-3. ONTOCS database selection and IFC model upload page 
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Figure D-4. ONTOCS geometry conversion report from IFC to MassMotion and ontology upload page 
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Figure D-5. ONTOCS scenario creation page 
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Figure D-6. ONTOCS scenario generation, validation and selection for analysis page 



259 

 

Figure D-7. ONTOCS scenario level results and feedback page 
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Figure D-8. ONTOCS objects creation and reasoning results viewing page 
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Figure D-9. ONTOCS object level results page 
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 Appendix E – Case study data 

This section presents a summary of the data gathered about the real-life building which was 

used for the case study and additional results from testing. 

Each numbered room from the Table E1 is shown on a detailed floor plan from Figure E-1. 

This data was inputted into the Revit model during the modelling stage and is also present in 

the IFC and IfcOwl models throughout the testing. 

Additional results gathered from case study use cases are provided in Tables E2 and E3 

below. Their data was plotted in charts in Chapter 7 for visualisation. Table E3 shows average 

times of query taken from 5 measurements across each objective case. The full data was not 

made available in print due to its size. 

 

 

Figure E-1. Case study building layout with numbered spaces 
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Table E-1. Building spaces data exported from Revit 

No Name 
Uniclass 

description 
Uniclass code Area 

Space 

Occupancy 
Comments 

1 Exit 
Fire refuge 

spaces 
SL_20_90_30 2.18 m²   

2 Staircase Stairways SL_90_10_87 19.34 m²   

3 Plant Room Plant rooms SL_90_90_64 32.60 m²   

4 Storage Storage rooms SL_90_50_84 15.92 m²   

5 Exit 
Fire refuge 

spaces 
SL_20_90_30 8.83 m²   

6 
Lecture 

Theatre 
Lecture theatres SL_25_10_47 80.25 m² 50  

7 Office Offices SL_20_15_59 62.52 m² 11  

8 Circulation Hallways SL_90_10_36 19.51 m²   

9 Entrance 
Fire refuge 

spaces 
SL_20_90_30 4.93 m²  Fire Exit 

10 
Common 

Room 
Common rooms SL_25_10_15 

120.26 

m² 
90  

11 Exit 
Fire refuge 

spaces 
SL_20_90_30 4.15 m²   

12 Storage Storage rooms SL_90_50_84 7.29 m²   

13 Shop 
Food and drink 

outlets 
SL_20_50_32 33.58 m² 5  

14 Circulation Hallways SL_90_10_36 39.82 m²   

15 Services 
Wall services 

voids 
SL_90_90_96 4.02 m²   

16 
Female 

Toilet 
Toilets SL_35_80_89 18.45 m²   

17 Storage Storage rooms SL_90_50_84 3.20 m²   

18 
Disabled 

Toilet 
Toilets SL_35_80_89 2.40 m²   

19 Storage Storage rooms SL_90_50_84 10.65 m²   

20 Services 
Wall services 

voids 
SL_90_90_96 2.66 m²   

21 Circulation Hallways SL_90_10_36 2.20 m²   

22 Circulation Hallways SL_90_10_36 9.15 m²   

23 Entrance 
Fire refuge 

spaces 
SL_20_90_30 8.07 m²  is fire 

refuge 

24 Circulation Hallways SL_90_10_36 6.75 m²   

25 Security Security offices SL_20_85_80 18.84 m² 3  

26 Circulation Hallways SL_90_10_36 
103.12 

m² 
  

27 Staircase Stairways SL_90_10_87 16.04 m²   

28 Lift Lift shafts SL_90_60_50 3.67 m²   



264 

No Name 
Uniclass 

description 
Uniclass code Area 

Space 

Occupancy 
Comments 

29 Services 
Wall services 

voids 
SL_90_90_96 2.99 m²   

30 Dining Area 
Enclosed dining 

areas 
SL_40_20_27 

305.93 

m² 
130  

31 Exit 
Fire refuge 

spaces 
SL_20_90_30 4.35 m²   

32 Exit 
Fire refuge 

spaces 
SL_20_90_30 3.78 m²   

33 Staircase Stairways SL_90_10_87 25.06 m²   

34 Exit 
Fire refuge 

spaces 
SL_20_90_30 6.22 m²   

35 Storage Storage rooms SL_90_50_84 9.96 m²   

36 Storage Storage rooms SL_90_50_84 4.29 m²   

37 Storage Storage rooms SL_90_50_84 2.94 m²   

38 Circulation Hallways SL_90_10_36 3.76 m²   

39 Entrance 
Fire refuge 

spaces 
SL_20_90_30 6.75 m²  Can act as 

a fire exit 

40 Kitchen Cooking spaces SL_35_60_16 86.19 m² 5  

41 Storage Storage rooms SL_90_50_84 6.93 m²   

42 Storage Storage rooms SL_90_50_84 2.82 m²   

43 Storage Storage rooms SL_90_50_84 6.02 m²   

44 Storage Storage rooms SL_90_50_84 13.65 m²   

45 Male Toilet Toilets SL_35_80_89 40.43 m²   

46 Circulation Hallways SL_90_10_36 2.41 m²   

47 Storage Storage rooms SL_90_50_84 3.76 m²   

48 Circulation Hallways SL_90_10_36 2.10 m²   

49 Circulation Hallways SL_90_10_36 15.60 m²   

50 Exit 
Fire refuge 

spaces 
SL_20_90_30 4.94 m²   

51 
Meeting 

Room 
Meeting rooms SL_20_15_50 12.66 m² 9  

52 Office Offices SL_20_15_59 13.34 m² 5  

53 Office Offices SL_20_15_59 13.24 m² 5  

54 
Changing 

Room 
Changing rooms SL_90_20_13 7.33 m²   

55 Storage Storage rooms SL_90_50_84 0.79 m²   

56 Circulation Hallways SL_90_10_36 85.70 m²   

57 Office Offices SL_20_15_59 7.30 m² 2  

58 
Disabled 

Toilet 
Toilets SL_35_80_89 3.78 m²   

59 
Female 

Toilet 
Toilets SL_35_80_89 1.58 m²   

60 
Disabled 

Toilet 
Toilets SL_35_80_89 3.65 m²   
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No Name 
Uniclass 

description 
Uniclass code Area 

Space 

Occupancy 
Comments 

61 Male Toilet Toilets SL_35_80_89 1.78 m²   

62 
Shower 

Room 
Showers SL_35_80_80 1.97 m²   

63 Male Toilet Toilets SL_35_80_89 2.64 m²   

64 Circulation Hallways SL_90_10_36 2.41 m²   

65 Storage Storage rooms SL_90_50_84 3.55 m²   

66 Office Offices SL_20_15_59 35.18 m² 7  

67 Exit 
Fire refuge 

spaces 
SL_20_90_30 3.69 m²   

68 Office Offices SL_20_15_59 28.82 m² 5  

69 Office Offices SL_20_15_59 8.22 m²   

70 
Control 

Room 

Experiment 

control rooms 
SL_25_30_28 18.82 m² 5  

71 Laboratory 
Engineering 

laboratories 
SL_25_30_27 88.26 m² 5  

72 Exit 
Fire refuge 

spaces 
SL_20_90_30 4.68 m²   

73 Laboratory 
Engineering 

laboratories 
SL_25_30_27 

105.58 

m² 
30  

74 Laboratory 
Engineering 

laboratories 
SL_25_30_27 98.55 m² 6  

75 Exit 
Fire refuge 

spaces 
SL_20_90_30 2.71 m²   

76 Exit 
Fire refuge 

spaces 
SL_20_90_30 2.82 m²   

77 Staircase Stairways SL_90_10_87 20.89 m²   

78 Exit 
Fire refuge 

spaces 
SL_20_90_30 5.59 m²   

79 Services 
Wall services 

voids 
SL_90_90_96 0.39 m²   

80 Services 
Wall services 

voids 
SL_90_90_96 0.75 m²   

81 Services 
Wall services 

voids 
SL_90_90_96 1.12 m²   

82 Services 
Wall services 

voids 
SL_90_90_96 0.75 m²   

83 Services 
Wall services 

voids 
SL_90_90_96 0.40 m²   

84 Services 
Wall services 

voids 
SL_90_90_96 0.37 m²   



266 

 

Table E-2. STAGE I query times for the run of 36 scenarios in parallel 

Query code Role Reasoning 
Time measurements (milliseconds) 

AVG 
1 2 3 4 5 6 7 8 9 10 

Q-IFC-2 geometry 

no 

733 264 284 177 354 182 145 234 237 201 281 

Q-IFC-3 geometry 22 11 10 17 33 29 12 21 24 15 19 

Q-IFC-4 geometry 651 652 736 693 683 677 631 572 632 564 649 

Q-IFC-5 geometry 1680 1444 1466 1502 1480 1500 1567 1437 1482 1447 1501 

Q-IFC-6 geometry 1479 1449 1456 1566 1448 1470 1401 1391 1389 1395 1444 

Q-IFC-7 geometry 2007 1838 1868 2026 1999 2086 1866 1853 1887 1888 1932 

Q-IFC-8 geometry 1173 1142 1136 1157 1146 1179 1134 1145 1138 1141 1149 

Q-IFC-9 geometry 1154 1136 1131 1187 1139 1172 1124 1129 1126 1136 1143 

Q-IFC-10 geometry 2264 2098 1885 2100 2181 2467 2166 2105 2251 2373 2189 

Q-IFC-11 geometry 1764 1666 1686 1839 2122 2015 1965 1822 1802 1892 1857 

Q-IFC-14 geometry 1029 1033 1030 1031 1040 1033 1039 1039 1036 1032 1034 

Q-IFC-15 geometry 15753 12664 12784 16487 15979 18236 14322 18516 22781 25366 17289 

Q-IFC-17 geometry 1058 1043 1055 1067 1054 1045 1052 1043 1051 1057 1053 

Q-IFC-18 geometry 1040 1032 1036 1061 1045 1045 1051 1056 1038 1045 1045 

Q-IFC-19 geometry 1236 822 826 1126 968 850 852 1003 819 911 941 

Q-IFC-1 context yes 1235 933 795 767 851 753 741 636 673 669 805 

Q-IFC-20 context 

no 

28 19 15 25 43 23 25 28 29 40 28 

Q-IFC-21 context 220 201 198 223 332 250 194 241 192 249 230 

Q-RES-1 context 450 316 251 254 222 191 318 423 235 382 304 

Q-RES-2 context 7729 7323 7390 6982 7299 7385 8521 7241 6927 7062 7386 

Q-RES-3 context 

yes 

165678 148797 151504 146634 142949 143510 140474 139552 140850 142746 146269 

Q-RES-4 context 1493 806 872 638 494 509 492 404 384 648 674 

Q-RES-5 context 43 66 52 35 32 23 56 21 16 109 45 
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Table E-3. STAGE II query times for increasing numbers of scenarios (part1/3) 

Query 
Objectives 

applied 

Scenarios 

1 2 3 4 5 6 7 8 9 10 11 12 

Average time (milliseconds) 

Q-FBA-1 
single (a) 731 1408 1211 1206 1077 1135 931 970 1016 1084 977 997 

multiple (a & b) 1055 1413 1742 1712 1619 1540 2030 2211 2187 2191 2112 2196 

Q-FBA-2 
single (b) 571 705 623 645 669 708 717 703 824 762 717 675 

multiple (a & b) 598 832 993 893 954 850 833 827 904 842 857 871 

Q-FBA-3 

single (a) 350 984 715 694 680 742 579 605 653 608 554 697 

single (b) 173 242 229 217 230 220 206 212 227 218 228 241 

multiple (a & b) 804 1495 1804 1657 1595 1636 1900 1957 2141 2100 1981 2049 

Q-FBA-4 

single (a) 6 6 10 10 10 8 10 11 9 9 10 9 

single (b) 7 5 9 8 9 7 9 8 8 7 7 7 

multiple (a & b) 33376 33317 33312 33321 33371 33309 33398 33341 33393 33290 33381 33274 

Q-FBA-5 
single (a) 62 106 100 103 92 112 92 105 87 108 100 112 

multiple (a & b) 68 128 172 154 140 156 144 143 141 132 136 134 

Q-FBA-6 
single (b) 216 255 241 255 259 276 246 227 237 218 237 221 

multiple (a & b) 217 463 530 450 381 451 419 394 399 386 377 401 

Q-FBA-7 

single (a) 60 94 97 90 97 94 83 88 82 90 86 93 

single (b) 201 231 219 210 223 230 210 207 228 221 225 235 

multiple (a & b) 277 589 663 593 501 582 530 516 551 530 551 533 
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Table E-4. STAGE II query times for increasing numbers of scenarios (part2/3) 

Query 
Objectives 

applied 

Scenarios 

13 14 15 16 17 18 19 20 21 22 23 24 

Average time (milliseconds) 

Q-FBA-1 
single (a) 1017 1021 1331 1382 1302 1360 1618 1365 1292 1376 1415 1459 

multiple (a & b) 2182 598 3655 3766 3926 3905 3753 3710 3709 3979 3924 3866 

Q-FBA-2 
single (b) 797 1035 740 762 723 849 759 819 742 772 921 768 

multiple (a & b) 858 750 1125 1165 1096 1077 1192 1063 1187 1098 1106 1123 

Q-FBA-3 

single (a) 628 635 941 1016 904 921 1061 962 928 962 968 968 

single (b) 240 473 299 275 287 309 299 291 306 317 289 279 

multiple (a & b) 2082 597 3713 3947 3981 4108 3986 3923 3939 4216 4063 4056 

Q-FBA-4 

single (a) 8 10 9 10 12 9 8 14 9 9 9 8 

single (b) 7 7 7 7 7 7 12 7 6 7 11 7 

multiple (a & b) 33354 24808 33244 33290 33277 33306 33304 33297 33243 33283 33244 33323 

Q-FBA-5 
single (a) 96 104 110 130 124 123 138 111 127 118 108 114 

multiple (a & b) 144 65 174 198 177 185 178 166 165 189 180 168 

Q-FBA-6 
single (b) 229 509 293 292 316 331 298 283 308 303 301 285 

multiple (a & b) 395 329 617 639 625 654 626 653 622 680 637 641 

Q-FBA-7 

single (a) 100 102 122 120 153 110 124 103 125 104 116 102 

single (b) 229 548 290 291 282 310 300 288 288 313 286 273 

multiple (a & b) 521 421 784 807 804 853 792 777 797 808 786 804 
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Table E-5. STAGE II query times for increasing numbers of scenarios (part3/3) 

Query 
Objectives 

applied 

Scenarios 

25 26 27 28 29 30 31 32 33 34 35 36 

Average time (milliseconds) 

Q-FBA-1 
single (a) 1438 1446 1308 1247 1213 1248 1288 1347 1204 1205 1270 1297 

multiple (a & b) 3896 3896 3925 3686 3692 3656 3817 3856 3660 3672 3808 3514 

Q-FBA-2 
single (b) 719 741 775 646 675 672 662 661 657 651 650 778 

multiple (a & b) 1116 1170 1037 961 994 981 1002 1018 974 1003 1012 969 

Q-FBA-3 

single (a) 999 962 950 816 919 933 904 928 863 905 876 951 

single (b) 290 283 346 273 300 287 295 296 285 286 276 325 

multiple (a & b) 4192 4148 4179 3891 3896 3852 4013 4076 3871 3833 3945 3641 

Q-FBA-4 

single (a) 10 8 10 11 12 11 8 11 8 10 9 9 

single (b) 6 8 9 8 7 8 6 8 7 6 6 8 

multiple (a & b) 33283 33299 33348 33451 33329 33394 33369 33360 33667 33403 33398 33344 

Q-FBA-5 
single (a) 122 113 102 117 142 106 133 119 122 117 111 123 

multiple (a & b) 182 199 185 182 174 179 172 173 174 174 176 176 

Q-FBA-6 
single (b) 299 289 321 285 292 286 310 305 295 289 293 340 

multiple (a & b) 651 641 638 569 611 618 627 639 624 606 631 593 

Q-FBA-7 

single (a) 115 110 107 108 109 115 110 106 120 261 103 111 

single (b) 284 316 323 277 302 300 279 290 285 273 275 325 

multiple (a & b) 826 789 821 751 759 818 814 791 781 747 795 749 
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