
Optimizing Infrastructure Placement in Wireless
Mesh Networks using NSGA-II

Liqaa F. Nawaf, Stuart M. Allen, Omer Rana
School of Computer Science & Informatics,

Cardiff Metropolitan and Cardiff University, UK

LLLNawaf@cardiffmet.ac.uk, {AllenSM,RanaOF}@cardiff.ac.uk

Abstract—Wireless Mesh Networks (WMNs) provide a flexible
and low-cost technology to efficiently deliver broadband services
to communities. In a WMN, a mesh router is deployed at each
house, which acts both as a local access point and a relay to
other nearby houses. Since mesh routers typically consist of off-
the-shelf equipment, the major cost of the network is in the
placement and management of Internet Transit Access Points
(ITAP) which act as the connection to the internet. In designing
a WMN, the aim is to minimize the number of ITAPs required
whilst maximizing the traffic that could be served to each house.
A multi-objective optimization algorithm is investigated to solve
the WMN infrastructure placement problem, using crossover
and mutation operators. A simulation based analysis is used to
demonstrate the benefit of the proposed approach.

Index Terms—Wireless mesh network; multi-objective opti-
mization algorithm; optimization; neighbourhood move; NSGA-
II;

I. INTRODUCTION

Wireless Mesh Networks (WMNs) are a promising approach

to providing ubiquitous broadband internet access, due to their

potential to support high data rates with small infrastructure

costs. In an infrastructure WMN, a limited number of Internet

Transit Access Points (ITAPs) serve as gateways or bridges

to the Internet. Antennae and low-cost mesh routers hosted

within residential communities have two functions: i) routing

traffic in/out of residential properties (houses) to mesh clients;

and ii) acting as relay links in a multi-hop wireless backbone

to route traffic throughout the (residential) neighbourhood,

communicating with the Internet via ITAPs. Such a multi-

hop structure decreases the number of ITAPs needed, lead-

ing to reduced operational costs and more effective use of

the available decentralized communications infrastructure. An

ITAP will share its Internet connection wirelessly with all

the houses in its neighbourhood. Each house then shares the

connection wirelessly with other houses nearby. This forms

networks of varying sizes to serve urban communities within

a city or rural area. In wireless neighbourhood networks, a

set of houses and a set of ITAPs are designed and deployed.

Fixed capacities are associated with each house and ITAP and

with all the connecting edges in the network. Demand from

houses needs to meet two specific metrics: throughput and

fairness, whilst minimising the number of ITAPs. In order to

achieve a good trade-off between throughput and fairness a

multi-objective optimization (MOO) algorithm is considered.

The paper is organized as follow: section II provides literature

review of related approaches. Section III defines the network

model and section IV briefly highlights the integer linear

program formulation of our problem. In section V we discuss

techniques for multi-objective optimization and for defining a

series of crossover and mutation operators. Section VI reports

the experimental results of using the Non-Dominated Sorting

Genetic Algorithm (NSGA-II), with Section VII providing

conclusions.

II. RELATED WORK

Evolutionary Algorithms (EAs) support multi-objective op-

timisation problems by maintaining a population of several

solutions throughout the optimization process. Some of these

populations are good in cost, while others are good in through-

put. Combining the population may have some opportunity to

introduce diversity. EAs have the potential of finding multiple

Pareto-optimal solutions in a single simulation run. In [1] the

benefits of Multi-objective Evolutionary Algorithms (MOEAs)

are considered. Population-based approaches such as Genetic

Algorithms (GAs) can be extended to solve MOO problems

referred to as called MOEAs.

Camelo et al. [2] proposed a method for solving routing

problems by considering Quality of Service (QoS) in WMNs,

using the multi-objective approach relying on EAs. In this

study, the NSGA-II was used for finding different alternative

routes that guaranteed the QoS requirements in both the Voice

over Internet Protocol (VoIP) and file transfer. The results

demonstrate the optimal route found by NSGA-II. The NSGA

was one of the first such EAs, proposed by Deb et al. in

[3]. Over time an improved version of NSGA was introduced,

called NSGA-II, enhancing the convergence and the spread of

the solutions. Researchers in [2] and [4] suggest and support

the use of NSGA-II and show that it has been able to come

closer than other EAs to the true Pareto front. For a highly

effective way of finding a set of effective solutions, multi-

objective approaches may be considered for solving the WMN

optimization problem where the overall number of ITAPs

is minimized laterally with high throughput and maximum

fairness. We also make use of NSGA-II, with a key focus

on using crossover and mutation operators suitable for this

problem.

1671

2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International
Conference on Smart City; IEEE 4th Intl. Conference on Data Science and Systems

978-1-5386-6614-2/18/$31.00 ©2018 IEEE
DOI 10.1109/HPCC/SmartCity/DSS.2018.00271

III. NETWORK MODEL

The ideal link model proposed in [5] is used with the

aim to minimise the number of ITAPs required (without any

environment interference), while maximising the bandwidth

available to users, and identifying a solution with the fairest
possible allocation (i.e. all users/ houses benefit from the

approach, with no disproportiate benefit for a small group

of users). Following [6], a network is formed by a set of

houses H = {h1,hM} , along with a set (I) of N locations

at which ITAPs can be installed. Each node has a location

(x, y). Each house h has a traffic demand, wh, and it may

be said that a house is served if all traffic at this location

can be successfully transmitted to an active ITAP (possibly

through a sequence of hops). It is assumed that the traffic

from each house can be subdivided and routed along multiple

paths simultaneously; hence a maximum flow algorithm is run

to compute the satisfied demand under an ideal link model. A

directed graph G is constructed with (H∪I) nodes, with edges

joining each pair of nodes that are within wireless range based

on distance. The capacity of each edge e ∈ E (G), Cape, is

the data rate that can be sustained on this link, and each node

has a capacity Caph which denotes the ability of a house

to process and forward data. Each ITAP also has a capacity

limit, based on its connection to the Internet and its processing

speed, denoted Capi.

IV. INTEGER LINEAR PROGRAMMING FORMULATION

Following [6] the model is formally described and its

variables and constraints defined. For each edge e and house

h, a variable xe,h is defined to indicate the flow which

originated from h to the ITAPs that are routed through e. For

each ITAP i, a variable yi indicates the number of ITAPs

installed at location i. As shown in Formulation 1, constraint

1 ensures flow conservation, namely, for every house except

the house where the flow originated, the total amount of flow

entering the house is equal to the total amount of flow exiting

it. The constraint in Equation 2 indicates that a house does

not receive the flow sent by itself. Constraints (3 - 5) of the

integer program capture the capacity constraints on the edges,

houses and ITAPs. Equation 6 says that no house is allowed to

send any traffic to an ITAP unless there is sufficient capacity

from the ITAPs installed there. The inequality 7 constrains

flows to be positive, and follows from the ITAP capacity

constraint and the assumption that is an integer in Equation

8. Constraint 9 specifies that the flow from a house must be

equal to or less than demand scaled by the allocation for the

house. Constraint 10 indicates the proportion of demand that

each house is allocated, specifically between [0, 1]. Making

the bandwidth bh means that the bandwidth allocated to each

house will be at most bhwh. Formulation 1:

Minimise fl(x); Maximise fD(x), fU (x) – subject to:
∑

e=(v,h′)
xe,h =

∑
e=(h′,v)

xe,h ∀h, h′ ∈ H,h′ �= h (1)

∑
e=(v,h)

xe,h = 0 ∀h ∈ H (2)

∑
h
xe,h ≤ Cape ∀e ∈ E(G) (3)

∑
h′,e=(v,h)

xe,h′ ≤ Caph ∀h ∈ H (4)

∑
h′,e=(v,i)

xe,h′ ≤ Capiyi ∀i ∈ I (5)

∑
e=(v,i)

xe,h ≤ whyi ∀i ∈ I, h ∈ H (6)

xe,h ≥ 0 ∀e ∈ E(G), h ∈ H (7)

yi ∈ {0, 1, 2, ...} ∀i ∈ I (8)
∑

e=(h,v)
xe,h ≤ bhwh ∀h ∈ H (9)

bh ∈ [0, 1] ∀h ∈ H (10)

V. TECHNIQUES FOR MULTI-OBJECTIVE OPTIMIZATION

We define a chromosome structure (within a GA) for a

data set with M houses and N potential ITAP locations. A

vector of length M + N is considered, where the first M
elements specify the bandwidth allocated to each house and

the remaining N elements specify the number of ITAPs to be

installed at each location. From Figure 1, a chromosome p:

p[i] is the bandwidth allocation to house i, for 1≤ i ≤M
p[M + i] is the number of ITAPs installed at location i, for

1 ≤ i ≤ N
For single objective problems as in [7], a fitness value

can be calculated for each chromosome, whereas for multi-

objective problems the fitness value is replaced by a vector of

fitness values for each objective. For the problem of optimizing

WMN infrastructure placement, objectives fD, fU and fI are

defined in Equations 11, 12 and 13. Equation 14 indicates the

minimum of all demand.

fD(x) =

((∑M

h=1
wh

)
−
(∑M

h=1

∑
e=h,v

xe,h

))
∑M

h=1
wh

(11)

fU (x) =
[A−min1≤h≤M (

∑
e=h,v

xe,h)]

A
(12)

fl(x) =

∑N

i=1
yi × Capi∑M

h=1
wh

(13)

A = min
1≤h≤M

wh (14)

A GA maintains a population of solutions which are up-

dated through a process of reproduction over a number of

generations. The overall aim is that the structures in chro-

mosomes that correspond to “good” solutions should survive

and propagate into the next generation. New individuals/

solutions (termed children) are created through the application

of crossover and mutation operators to a pair of parent chro-

mosomes. Crossover operators blend the genetic information

between a pair of parent chromosomes to explore the search

space, whereas mutation operators are used to maintain suf-

ficient diversity in the population. Crossover allows the basic

genetic material of parents to pass to their children, who then

form the next generation. A number of crossover operators

have been proposed for use in GAs, but in almost all of these,

1672

pairs of each gene from the parent chromosomes are combined

to pass the corresponding gene on to the child. In NSGA-II,

elitism is used in building the next generation. The elitism

operator combines the old population with the newly created

population and chooses to keep the better solutions from the

combined population. Elitism can speed up the performance

of the GA significantly and this can also help to prevent the

loss of good solutions once they are found.

Fig. 1. Single Chromosome of Allocation and Placement

A. Crossover Operator

Crossover operators create new offspring by “mating” two

selected parents with the aim of maintaining beneficial struc-

tures in the children. Selecting and implementing a crossover

operator depends on the chromosome representation and also

on the optimization problem. Initially two types of crossover

operator are applied to WMN:

Arithmetic crossovers are commonly applied in real-coded

GAs; they work by taking the weighted average of the two

parents. In [8] arithmetic crossover generates a high number

of individuals in the search space and creates a greater variety

of individuals by increasing the “genetic diversity” of the

population while still maintaining adequate coverage of the

ranges near and between the parents. Arithmetic crossover

uses the arithmetic mean to produce individuals in the next

generation, as shown in Algorithm 1. Previous studies have

shown that arithmetic crossover can enhance the rate of

convergence [8]. U(s) denotes a uniformly random value from

the set s.

Uniform crossover [9] for each gene makes a random, binary

decision on which parent to select, based on a specific mixing

ratio. For example, with a mixing ratio of 0.5 the child has an

equal probability of receiving a given gene from either parent,

whereas for a ratio of 0.75, selection is biased towards the first

parent. In this paper, the mixing ratio is fixed at 0.5. This is

described formally in Algorithm 2.

B. Mutation Operator

Mutation is a genetic operator used to introduce diversity

into the population as meta-heuristic algorithms are liable to

get stuck in a local optimum. The best mutation rate is often

difficult to determine, since a small value may not introduce

sufficient diversity, while a large value leads to many offspring,

leading to a random walk in the search space. Two mutation

operators: Gaussian and Uniform, are tested here. These types

of mutation operator can be used only for integer and real

valued genes.

Algorithm 1: Arithmetic Crossover (p, q, M, N)

p, q: parent chromosomes //(Select p and q randomly

from population)

M,N : number of houses, potential ITAP locations

σ = U([0, 1])
c is an empty chromosome of length M +N #initialize
child to Empty list
Loop over Houses, build allocations for child from

parents

for i ∈ {1, ...,M} do
c[i] = σ.p[i] + (1− σ).q[i]

end
Loop over Placement, build placement for child from

parents

for i ∈ {M + 1, ...,M +N} do
c[i] = �σ.p[i] + (1− σ).q[i]�

end
Return c

Algorithm 2: Uniform Crossover (p, q, M, N)

p, q: parent chromosomes //(Select p and q randomly

from population)

M,N : number of houses, potential ITAP locations

c is an empty chromosome of length M +N // initialize
child to Empty list

for i ∈ {1, ...,M +N} do
if U([0, 1]) > 0.5 then

c[i] = p[i]
end
else

c[i] = q[i]
end

end
Return c

Gaussian Mutation operator adds a Gaussian distributed

random value to the chosen gene of the allocation and place-

ment chromosomes, as shown in Algorithm 3. The aim of

Gaussian mutation is to avoid being trapped in the local

minimum by having more chance to pick genes (a small

number of solutions is generated) close to the current solution

rather than anywhere else. Mutating the gene preserves more

of the current solution [10], and applies diversity on Gaussian

principles on a smaller scale. Since allocation values must

fall within the range [0, 1], if the mutated value falls outside

these limits, it is “clipped” to the maximum/minimum allowed.

For the genes corresponding to ITAP placement, clipping is

necessary only for the lower bound of 0. However, as Gaussian

mutation leads to non-integral values, the resulting values

are rounded downwards. The effect of Gaussian mutation is

controlled by the standard deviation. The notation of λP and

λA represents the gene mutation probabilities of placement and

allocation. In Gaussian mutation, the ways to mutate genes for

placement and allocation are specified below;

1673

• Each gene corresponding to ITAP placement is modified

with probability λP /N .

• Each gene corresponding to bandwidth allocation is mod-

ified with probability λA/M .

where P denotes the population, Pm represents the mutation

rate, σP represent the standard deviation for placement and

σA represents the standard deviation for the allocation.

Algorithm 3: Gaussian Mutate (P , Pm, σP , σA, λP , λA,

M , N)

p, q: parent chromosomes //(Select p and q randomly

from population)

M,N : number of houses, potential ITAP locations

c is an empty chromosome of length M +N // initialize
child to Empty list
Loop over Houses;

for i ∈ {1, ...,M} do
Checking Mutation rate Pm;

if U([0, 1]) < λA/M then
Gaussian mutation & clipping ;

c[i] = max(min(c[i] +N(0, σA), 1.0), 0)
end

end
Loop over placement;

for i ∈ {M + 1, ...,M +N} do
Checking Mutation rate Pm;

if U([0, 1]) < λp/N then
Gaussian mutation & clipping ;

c[i] = max(c[i] + �N(0, σP)�, 0)
end

end

Uniform Mutation considers each gene in turn and makes a

decision whether to modify each gene separately. Normally,

this operation replaces the value of the gene with a value

selected uniformly randomly between some upper and lower

bounds, as described in Algorithm 4. However, since there is

no upper bound on the number of ITAPs that can be installed

at a location, separate gene mutation rates and processes for

placement and allocation are applied. For ITAP placement a

small perturbation is made to the value, rather than selecting

an entirely new value.

• Each gene corresponding to ITAP placement is modified

with probability λP /N , i.e. randomly select to either add

1 to or subtract 1 from the original gene.

• Each gene corresponding to bandwidth allocation is mod-

ified with a given probability, i.e. select a random value

of delta and then replace the original gene value for each

gene of the allocation chromosome.

Each of these two forms of mutation are selected randomly.

First, with the probability λA/M , the bandwidth allocated to

a house may be set at a random value between 0 and 1. If this

change is not made, with probability λA/M , the bandwidth

allocated to the house is set to 0 (i.e. choosing not to serve

them at all).

Algorithm 4: Uniform Mutate (P , Pm, λP , λA M , N)

p, q: parent chromosomes //(Select p and q randomly

from population)

M,N : number of houses, potential ITAP locations

c is an empty chromosome of length M +N //

initialize child to Empty list
Loop over Houses;

for i ∈ {1, ...,M} do
Checking Mutation rate Pm

if U([0, 1]) < λA/M then
c[i] = 0

else if U([0, 1]) < λA/M then
Mutate Gene

c[i] = U([0, 1])
end
Loop over placement;

for i ∈ {M + 1, ...,M +N} do
Checking Mutation rate Pm

if U([0, 1]) < λp/N then
Mutate Gene & clipping

c[i] = max(c[i] + U({−1, 1}), 0)
end

end

TABLE I
BENCHMARK DATA SETS

Data Set Houses ITAPs ITAP Locations Grid Area
DS1 100 10 10 100× 100
DS1A 100 10 10 100× 100
DS7 1000 50 100 500× 500
DS7A 1000 50 100 500× 500

VI. EXPERIMENTAL RESULTS

NSGA-II algorithm was run for the parameters below to

test the performance of different combinations of crossover

and mutation operators for the data sets described in Table I.

Each experiments was run 5 times on each test case with five

different random seeds. The results are presented for the mean

values of the 5 runs. The experimental results are discussed

in the following sections.

A. Parameter Settings

The arithmetic and uniform crossover with uniform and

Gaussian mutation were implemented and tested for differ-

ent combinations of population size and generations with a

population ranging from 16 to 200 and a generational range

from 125 to 500. A population size of 32 and max generation

of 500 are chosen, with a mutation rate (Pm) of 0.1 and gene

mutation probabilities of λP = λA = 1. The data sets in

Table I were applied for the wide range of instances for the

experiments in Table II. DS1 and DS7 were regenerated with

different random seeds for sets of ITAP and house locations

to generate new data sets with the same density, i.e. DS1A

and DS7A, with the properties as shown in Table I.

Some initial experiments were performed to determine a

population size and number of generations that would be ap-

1674

TABLE II
EXPERIMENTS ON DATA SETS

Experiments Data sets Wireless Range
Connectivity

Wireless Link
Capacity ITAP Capacity Generation

E6.1 DS1 25 5 10 500
E6.2 DS1A 25 5 10 500
E6.3 DS7 35 15 20 500
E6.4 DS7A 35 15 20 500
E6.5 DS7A 35 15 20 1000
E6.6 DS7 35 54 20 500

TABLE III
EXPERIMENT PARAMETERS

Parameter Pm σP σA λP λA House demand
Value 0.1 1 1/6 1 1 1

propriate – a smaller population leads to quicker convergence

but the algorithm is more likely to get trapped in local optima;

conversely a large population affects the ability of the GA to

explore the whole search space equally. Based on sensitivity

analysis of the results the population size was reduced and run

for a longer time, for more generations. To see the progress

of the algorithm, a population of 32 individuals and 500

generations were applied as a reasonable balance between

quality and runtime in the final solution.

B. Crossover Operator

The first experiments aimed to investigate the effective-

ness of the crossover operator. Both arithmetic and uniform

crossover were applied with Gaussian mutation operators using

the parameters in Table III.

To compare the final populations produced by each

crossover, we measure the relative spread of solutions be-

tween two sets of solutions – referred to as “set coverage”

(to measure any improvement in solutions). Five runs with

different random seeds were generated for each crossover

type to give sets of populations A and B and both sets were

compared pairwise. The average of set coverage indicating

uniform crossover outperformed the arithmetic crossover in

DS1 and DS1A of E6.1 and E6.2, and the arithmetic crossover

outperformed the uniform crossover in DS7 and DS7A of

E6.3, E6.4 and E6.6. The assumption is that uniform crossover

does better in small data sets, which may be easy problems,

whereas arithmetic does better in larger data sets because the

problem then is harder.

Effectively, with simulating smaller problems it is easy to

achieve improvement and easy to explore the search space

but the visible effect is small. Given the suspicion that a

small data set denotes an easy problem, it was proposed to

investigate harder problems. To confirm and draw attention

to the performance of arithmetic crossovers in comparison to

uniform crossovers in DS7 and DS7A, the NSGA-II algorithm

was run once with 1000 generations for DS7A, to compare

uniform and arithmetic crossovers. The longer the experiment

ran, the greater the difference found between the two types of

crossover. As before, set coverage was compared after every

100 generations. The uniform crossover initially outperforms

arithmetic, but arithmetic does better with the remaining gen-

erations. This indicates the good progress in larger problems

of arithmetic crossover compared to uniform crossover and

confirms that arithmetic crossover is more effective with larger

data sets.

In [8] the evaluation results show that algorithms which

use the arithmetic crossover consistently outperform those

using the uniform crossover; the arithmetic crossover is con-

sistently able to reach the neighbourhood of global minima

with competitive speeds of convergence. It is clear from the

above evaluation result that, while NSGA-II with arithmetic

crossover had the highest average set coverage in all test

case of DS7 and DS7A, uniform crossover performed well

in small data sets such as DS1and DS1A. Hence, further

investigation was suggested into the use of uniform crossover

in small data sets and arithmetic crossover in larger data sets.

From the above experiments where arithmetic and uniform

crossover were tested, the focus was determined as uniform

crossover in the house allocation, to improve allocation and

serve more demands, since arithmetic crossover would pull

everyone towards the middle, because arithmetic crossover

cannot give anyone either a full allocation or no allocation at

all. In other words, it would be hard to make progress in this

direction. For the ITAP placement, arithmetic crossover was

focused on improving the attainment of this objective. From

the techniques of uniform and arithmetic crossover. It is clear

that uniform crossover has a chance of selecting a bad solution

or an empty gene, while arithmetic crossover tends to move

away from selecting a bad solution. This is an advantage, but

its downside is that it also tends to move away from good

solutions. The arithmetic crossover takes the average of the

parents so as to strike a balance between their strengths which

smooths it out; this is a better method than taking one another,

as in uniform crossover.

The evaluation results indicate that uniform crossover

worked best on small data sets and arithmetic crossover had

the best average set coverage for larger data sets; therefore

arithmetic crossover and uniform crossover were subjected to

further investigation.

C. Mutation Operator Experimentation

To compare the performance of the proposed mutation

operators, experiments were performed on the data sets of

Table I to explore the efficiency of mutation when paired with

uniform crossover for DS1 and arithmetic crossover for DS7,

using the parameters shown in Table III , as before. The set

coverage results for these experiments illustrate that Gaussian

mutation gives better results than uniform mutation.

The evaluation results show that Gaussian mutation has a

slight tendency to outperform uniform mutation in both small

and large data sets. Hence Gaussian mutations are the most

effective mutation operators in the research; therefore, they

should be considered for further investigation.

D. Lifting Allocation Mutation

The mutation operators defined and applied so far are

limited in the extent of the changes that they make. For small

1675

values of Pm, λP and λA, there is very little perturbation

to the chromosome, which is unlikely to have a significant

effect on the overall cost. However, larger values of Pm, λP

and λA perturb the chromosome in an uncoordinated fashion,

potentially losing any beneficial structure in the solution. To

address this, a modified mutation operator was proposed that

applies changes to all the bandwidths allocated to all the

houses in a coordinated fashion, adding the same random value

to them all. Lifting allocation mutation is performed by adding

a single normally distributed random value (delta) to every

house. Lifting is performed with probability Pr, otherwise

the previously defined Gaussian mutation is applied. The Pr

represents the probability rates of 0.3, 0.5 and 0.9. The lifting

mutation within NSGA-II was applied to the data sets. The

set coverage shows good performance with lifting mutation for

DS1 with uniform crossover and Gaussian mutation compared

to the data set without lifting allocation. From the set coverage

result of E6.1 it was observed that the lifting allocation with

Pr of 0.5 and 0.9 shows better performance than Pr (0.3).

For further investigation of DS1 the lifting allocation with

Pr of (0.9) was then used. Applying lifting mutation to DS7

with arithmetic crossover and Gaussian mutation also showed

an improvement. The result of E6.3 illustrates that lifting

allocation with the Pr of 0.3, 0.5 and 0.9 outperformed the

data set without lifting allocation, giving set coverage of 40%,

45% and 40%, respectively. The lifting allocation with Pr
(0.5) outperformed the lifting allocation with Pr (0.3 and

0.9). The potential of a good experimental result from the

lifting allocation was perceived with Pr (0.5), presenting a

good diversity of solutions in the search space (see Figure 2)

which improved the performance of allocation with arithmetic

crossover and Gaussian mutation.

Without Lifting Allocation

Unserved Demand

N
um

be
r o

f I
TA

Ps

Unserved Demand

N
um

be
r o

f I
TA

Ps With Lifting Allocation

Fig. 2. Diversity of solution in the search space without and with Lifting
Allocation for DS7 of E6.3

In experiment E6.6 data set DS7 was investigated to

demonstrate the set coverage for lifting allocation applied

with arithmetic crossover and Gaussian mutation. The lifting

allocation shows good performance compared to other cases.

The lifting allocation for the Pr (0.5) did better than other

rates. For further investigation of DS7 of E6.3 and E6.6 the

lifting allocation with Pr (0.5) was used. The lifting allocation

mutation showed a marked improvement in the diversity of the

solutions in the search space of the sampled data sets.

E. Aggressive Placement Mutation

The previous section addressed the limitations of mutation

for bandwidth allocation by applying a “lifting” adjustment

to all houses. Here, modifying the mutation of placement

genes by applying an “aggressive mutation” was proposed.

Like lifting, aggressive identically mutates not a single gene

but a whole chromosome with mutation probability λA/N ,

thereby making greater changes possible. The selected mu-

tating gene of the placement is swapped with the K value.

The K = 2, 5, 10 value is a randomly chosen number from

the set of 2, 5 and 10. The value of K used for aggressive

placement mutation was compared in an experiment with

Gaussian placement mutation, to see the effect of the changes

that the aggressive mutation can make. The set coverage

of aggressive placement mutation of value K = (2, 5) in

DS1 of E6.1 showed a great improvement compared to the

Gaussian placement mutation with lifting allocation. However,

the aggressive placement mutation of value K = 10 showed

no improvement over the Gaussian with lifting allocation. The

set coverage of DS7 of E6.3 shows the aggressive placement

mutation performance of value K = (2, 5) compared to

Gaussian mutation with lifting allocation that has the same im-

provement value. The aggressive placement mutation of value

K = 10 shows a small improvement. The set coverage of DS7

of E6.6 demonstrates a greater improvement for aggressive

placement mutation than Gaussian placement mutation with

lifting allocation. The aggressive mutation of value K ensured

a better performance than Gaussian placement mutation. Thus,

the aggressive placement mutation of value K showed an

improvement over the Gaussian placement mutation in all data

sets.

F. Mutation Rate

The mutation applied in sections V and VI is controlled by

a number of parameters. Pm controls whether an individual

chromosome is mutated (otherwise, it is left unchanged), while

Pr, λP , and λA, control the gene mutation in placement

and allocation. Since the mutation rate can be very problem-

specific, it is better to run experiments with several rates to see

which rate maintains the greatest diversity in the population.

Using too high a mutation rate will increases the diversity

in the search space, but hinders convergence. At the same

time, using too small a mutation rate may result in premature

convergence (leading to local optima instead of a global

optimum). In other words, too high a mutation rate reduces the

search ability of NSGA-II to simple random sampling, while

too small a mutation rate almost always fails, resulting in a

local optimum due to the lack of diversity in the search space.

In the previous experiments a mutation rate of 0.1 was used

and then tests with mutation rates of 0.5 and 1.0, with lifting

1676

TABLE IV
SUMMARY OF THE USED OPERATORS AND PARAMETERS VALUE WITH THE

GENETIC ALGORITHM

Data Set Crossover Mutation Lifting
Allocation

Aggressive
Mutation

Mutation
Rate

DS1 Uniform Gaussian 0.9 2 and 5 0.5
DS7 Arithmetic Gaussian 0.5 2 and 5 0.5

allocation were carried out, comparing these with the previous

mutation rate. The set coverage show that the mutation rate

0.5 outperformed the mutation rate of 0.1 in the data sets

of experiments (E6.1, E6.3 and E6.6). The mutation rate 1.0

showed a slight improvement only in the large data sets of

E6.3 and E6.6. The experimental results demonstrate that the

set coverage for the mutation rate of 0.5 outperformed that of

the mutation rate of 0.1, which indicates the effectiveness of

the former over the latter. The best mutation rate seems to be

in the range of 0.5 of population size 32.

To sum up the experimental results obtained by the data

sets with the suggested operators and parameters that were

investigated with, see in Table IV the conclusion of the GA

progress.

To test the algorithm and to evaluate the performance of

the NSGA-II approach, the set coverage of NSGA-II and the

weighted sum approach are compared for the data set samples

of DS1, DS7 and DS7/E6.6, using the parameters of Table

IV plus Gaussian mutation. The evaluation result shows that

NSGA-II algorithm outperforms the weighted sum approach

for data sets DS1 and DS7. The non-dominated solutions of

the weighted sum are clustered together while the solutions

of NSGA-II are spread out in the search space; for example,

in DS7 the maximum and minimum numbers of ITAPs in the

weighted sum were 50 and 20, but in NSGA-II they were 49

and 0 respectively. This shows that the crowding distance in

NSGA-II is higher and gives better results than the weighted

sum.

VII. CONCLUSION

In this paper an evolutionary multi-objective optimization

algorithm was presented to solve the problem of optimiz-

ing WMN infrastructure placement, defining the GA which

involves applying crossover and mutation operators on two

individuals. The NSGA-II algorithm creates a child population

from its parent population using fast non-dominated crossover

and mutation. Several initial solutions with different operators

and parameters were investigated, to ensure the presence of

diversity, aiming to identify the best operator and parameters

to use as part of the comprehensive solution methodology.

The literature mentions a great variety of crossovers; the

ones illustrated here were Arithmetic and Uniform crossovers.

The set coverage comparison of crossover indicated that the

uniform crossover outperformed the arithmetic crossover in

small data sets such as DS1 and DS1A, while the arithmetic

crossover outperformed the uniform crossover in big data sets

such as DS7 and DS7A. The experimental results on the data

sets samples indicate that the Gaussian mutation outperformed

uniform mutation and was effective as a genetic operator.

However, the results for arithmetic crossover and Gaussian

mutation dramatically improved when used in combination

with a lifting allocation of 0.5 probability. Further investigation

of the potential of these operators is suggested. To change the

mutation of the placement genes an aggressive placement mu-

tation was applied; the results of this experiment demonstrated

the performance of aggressive placement mutation compared

to Gaussian placement mutation. A random mutation was

applied to one or more genes for the earlier test of instances

the mutation rate was set to 0.1 and then mutation rates of 0.5

and 1.0 were applied. The experimental result of the mutation

rate at 0.5 outperformed the mutation rate at 0.1 and 1.0. The

greatest performance improvements of mutation were obtained

by using a mutation rate of 0.5 with a gene probability muta-

tion of λP /N and λA/M . To conclude this paper, the NSGA-

II algorithm results were compared with the results of using

the weighted sum approach. the set coverage result showed

that the NSGA-II outperformed the weighted sum approach

for the sampled data sets. This indicates the effectiveness

and good performance of NSGA-II. It was observed from the

experiments that the NSGA-II algorithm performed generally

better than the weighted sum approach in terms of diversity

and quality from the approximation of the Pareto front.

REFERENCES

[1] O. Rifki and H. Ono, “A survey of computational approaches to portfolio
optimization by genetic algorithms,” in 18th International Conference
Computing in Economics and Finance, 2012.

[2] M. Camelo, C. Omana, and H. Castro, “Qos routing algorithms based on
multi-objective optimization for mesh networks,” IEEE Latin America
Transactions, vol. 9, no. 5, pp. 875–881, 2011.

[3] N. Srinivas and K. Deb, “Muiltiobjective optimization using nondomi-
nated sorting in genetic algorithms,” Evolutionary computation, vol. 2,
no. 3, pp. 221–248, 1994.

[4] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE transactions on evolu-
tionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[5] B. Aoun, R. Boutaba, Y. Iraqi, and G. Kenward, “Gateway placement
optimization in wireless mesh networks with qos constraints,” IEEE
Journal on Selected Areas in Communications, vol. 24, no. 11, pp. 2127–
2136, 2006.

[6] R. Chandra, L. Qiu, K. Jain, and M. Mahdian, “Optimizing the place-
ment of internet taps in wireless neighborhood networks,” in Network
Protocols, 2004. ICNP 2004. Proceedings of the 12th IEEE International
Conference on. IEEE, 2004, pp. 271–282.

[7] L. Nawaf, S. M. Allen, and O. Rana, “Internet transit access point
placement and bandwidth allocation in wireless mesh networks,” in
Computing and Communication Workshop and Conference (CCWC),
2017 IEEE 7th Annual. IEEE, 2017, pp. 1–8.

[8] G. S. Ladkany and M. B. Trabia, “A genetic algorithm with weighted av-
erage normally-distributed arithmetic crossover and twinkling,” Applied
Mathematics, vol. 3, no. 10A, pp. 1220–1235, 2012.

[9] G. Syswerda, “Uniform crossover in genetic algorithms,” in Proceedings
of the 3rd International Conference on Genetic Algorithms. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1989, pp. 2–9.
[Online]. Available: http://dl.acm.org/citation.cfm?id=645512.657265

[10] R. Tinós and S. Yang, “Evolutionary programming with q-gaussian
mutation for dynamic optimization problems,” in Evolutionary Com-
putation, 2008. CEC 2008.(IEEE World Congress on Computational
Intelligence). IEEE Congress on. IEEE, 2008, pp. 1823–1830.

APPENDIX

List of abbreviations used in this paper.

1677

bh Bandwidth allocated to each house
Cape Edge Capacity
Caph House Capacity
Capi ITAP Capacity

DS Dataset
EA Evolutionary algorithm
fD Unsatisfied Demand solution
fI Number of ITAPs solution
fU Unfairness solution
GA Genetic Algorithm

ITAP Internet Transit Access Point
MOEA Multi-objective Evolutionary Algorithm
MOO Multi-Objective Optimization

M Number of Houses
N Number of ITAP location

NSGA-II Non-Dominated Sorting Genetic Algorithm
P Population

Pm Mutation Rate
Pr Probability Rate

QoS Quality of service
VoIP Voice over Internet Protocol
wh House Demand

WMN Wireless Mesh Network
xe,h Flow from edge to house
yi Number of ITAPs installed at location i

1678

