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Abstract 

 

Abstract 

There has been increasing interest in droplet interface bilayers (DIBs) as novel devices 

for the study of lipid membranes and the development of artificial cell systems.  

Although DIBs have demonstrated to be useful in a number of laboratory applications, 

their wider use is hampered by a limited ability to exist untethered and remain 

mechanically stable beyond controlled laboratory environments. 

In this thesis, a microfluidic system is developed which enables the facile generation of 

hydrogel-encapsulated DIB networks which are freestanding and can exist in air, water 

and oil environments, without compromise to their ability to interface with the 

surrounding environment. Electrophysiology is employed in order to demonstrate the 

formation of bilayers between the encapsulated DIBs (eDIBs) and their external 

environment, achieved via the incorporation of the transmembrane pore α-Hemolysin. 

The eDIBs produced here are able to form higher-order structures akin to tissues via 

their assembly and adherence to one another, further demonstrating their potential to 

act as a chassis for artificial cells. Furthermore, the potential of eDIBs to be used as a 

platform for membrane studies is demonstrated via their use as a high-throughput array 

for membrane disruption fluorescence measurements using a plate reader, which 

makes use of the ability of eDIBs to be generated in large numbers as well as to be 

mechanically handled and placed in the wells of a 96-well plate. Fluorescence 

measurements were taken on up to 47 eDIBs simultaneously, and were able to detect 

bilayer leakage through pores as well as bilayer failure. 

The above experiments comprise the design, manufacture and use of a novel kind of 

DIB construct as a chassis for artificial cells and a platform for high-throughput 

membrane studies. It is proposed that eDIBs may help in realising the unfulfilled 

potential of DIB networks in applications in healthcare and beyond. 
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Chapter 1: Introduction and Literature Review 

Chapter 1: Introduction and Literature 

Review 

1.1 Synthetic Biology 

1.1.1 Introduction 

Synthetic biology is an emerging field of study that can be defined as “the design and 

construction of new biological, biological-based or biological inspired parts, devices and 

systems and the modification of existing biological systems”1. The field has been made 

increasingly possible thanks to the global ability to share and interpret data and 

knowledge across different fields of study, in order to gain multi-disciplinary insight into 

biological systems2. The broad aim is to give rise to new technologies inspired by 

biological systems to counter persistent grand challenges that face humanity within 

healthcare, energy production and the environment. It is expected to have as great a 

global impact as the advent of information and computing technology throughout the 

last century3.  

Appreciation of the “circuit-like connectivity” of biological parts and the ability of 

biological systems to collectively process sequential, feedback and logical operations 

has enabled a distinct engineering approach to synthetic biology4, applying concepts 

such as the standardization of components, decoupling of whole systems into parts 

and abstraction via mathematical modelling, for example5. One aspect of synthetic 

biology that has advanced significantly in the recent years is the development of 

synthetic genetic pathways and their inclusion in microorganisms for biochemical 

engineering applications, such as the production of biofuels6 and pharmaceuticals7, 8. 
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The engineering aspect is evident in the development of “biobricks”9, which is a 

standardized, modular format of building blocks used to assemble genetic circuits. 

1.1.2 Artificial cells 

Central to the field of synthetic biology is the development of artificial cells. Since the 

proposition of cell theory in 1839 by Matthias Schleiden and Theodor Schwann10, the 

cell has been considered the basic structural and functional component of all known 

living systems. With the sheer amount of functionality packed into cells and the 

applications that have developed from their study (biochemical engineering, cell 

therapies, studies into the origin of life etc.), it has become desirable to produce 

artificial mimics of cells which can overcome their inherent complexity and ex vivo 

frangibility11, as well as to develop novel devices and technologies which make use of 

some of the fundamental concepts that make cells so incredibly functional.  

 

Figure 1.1 The minimum component requirements for a cell to be considered “living” (a). It is 
likely that simpler systems capable of self-replication existed prior to the evolution of DNA and 
RNA information systems (b)12. 

In order to produce artificial cells one must first understand the key features of living 

cells that would need to be replicated. From a reductionist point of view, it can be said 

that biological cells are “living” due to the collective operations of compartmentalization, 

metabolism and information (Figure 1.1), allowing for self-preservation, replication and 

evolution13. In modern cells, these processes are based on three main components12: 

Compartmentalization
Identity & containment

Information
selection & inheritance

Metabolism
maintenance, growth 

and replication

Compartmentalization
Identity & containment

Metabolism
maintenance, growth and 

replication

a) b) 
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1. A semi-permeable membrane container that protects the internal contents of 

the cell and defines its boundaries, allowing for selective material and energy 

exchanges with an environment.  

2. Molecular complexes that carry inheritable information and control cell function, 

such as DNA and RNA. 

3. Metabolic pathways that allow cells to maintain and repair themselves, as well 

as perform functions of growth and replication. 

The debate concerning which of these three processes preceded which has been on-

going since Alexander Oparin first popularised the idea of the emergence of life from 

non-living materials in 192414-16. However, it is likely that that in early scenarios of the 

evolution of cells, compartmentalisation and metabolism were sufficient in achieving 

replication (Figure 1.1), as growth achieved via metabolism might have been able to 

force-split a compartment into “daughters”12. Here, it is proposed that 

compartmentalisation is the primordial aspect required to generate life, as life is 

fundamentally defined as being separated from an environment at large (i.e. cellular 

life).  

It can be said that “typical” artificial cells aim to possess all of the above features of 

living cells in order to give rise to a system containing the minimum requirements to be 

considered “alive” (however difficult such a definition may be), such as self-replication, 

metabolism and evolution. ”Non-typical” artificial cells on the other hand aim to produce 

constructs that do not necessarily confine to the all of the criteria defined above, but 

nevertheless display functionalities that mimic those of biological cells, in order to 

provide biological insight or novel, bio-inspired devices17. 
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1.1.2.1 Bottom-up vs. Top-down approaches 

Synthetic biology aims to produce and modify cells in order to understand how cells 

developed from non-living matter, and how they function and evolve, as well as to 

engineer new, useful life forms. Such efforts can be divided into two main approaches: 

the top-down approach and the bottom-up approach18 (Figure 1.2).  

 

Figure 1.2 Bottom-up and top-down synthetic biology approaches in producing artificial cells19. 

 

The top-down approach has insofar been the dominant approach, in which existing 

organisms are modified with the intention of reducing complexity and re-purposing 

cells20. Top-down approaches primarily focus on genetic modifications including the 

introduction of synthetic gene pathways and the elimination of non-essential genes,  as 

the other “living” aspects such as metabolism, compartmentalisation and containment 

are provided by the host organism. A significant milestone in the top-down approach 

was achieved in 2010 by Craig Venter´s research team, who managed to produce a 
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viable cell by introducing a synthetic genome into a cell containing no genome21. 

Experiments with a variety of synthetic organisms22 created in Venter´s lab provide 

promising proof of concept as well as a good platform for the development and 

commercial re-purposing of cells. Criticism has been sustained against claims that a 

truly synthetic life form had been created as only the genome is synthetic, but not the 

biochemical machinery and environment critical to its function23. However, this 

approach remains a pragmatic method of producing artificial cells that is both functional 

and tailored to specific applications, such as their use in biochemical engineering as 

bio-factories. 

Whilst the top-down approach is an exercise in reducing the complexity of existing 

organisms, bottom-up approaches attempt to increase complexity via the assembly of 

biological or non-biological materials into a synthetic, life-like system “from scratch”, 

often leaning on self-organizing processes24. This approach comes hand in hand with 

the philosophy of the late Richard Feynman, crystallised in his quote: “What I cannot 

create, I do not understand”25. This hints at the limitations of our understanding and 

ability to integrate information regarding highly complex systems, such as cells. Indeed, 

top-down synthetic biologists often have to worry about genetic and metabolic 

crosstalk, cell death, noise, mutations etc. when working with natural cells26, which 

exemplifies such complexities. The phrase makes reference to the virtues of 

understanding systems via the bottom-up, where one often has to engage in reiterative 

design and consider the pragmatisms and trade-offs required in order to generate 

functional and self-sustaining systems27. 

Bottom-up synthetic biology offers the potential to provide a conceptual bridge between 

non-living and living matter, and thus aid in our understanding of how life originated in 

the first place28. Additionally, artificial cells created in this approach would likely offer 
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higher degrees of tailorability and control than top-down artificial cells, and therefore 

their potential in technological applications remains enticing. 

For many bottom-up synthetic biologists, the first point of call in producing artificial cells 

has been in producing a suitable structural chassis which delineates the cell boundary, 

and allows for the maintenance of a cellular environment and the selective exchange of 

solutes across a semi-permeable membrane29. A number of different structures have 

been explored, including polymersomes30-32 and coacervates33, but phospholipid 

membranes have thus far been the most studied due to their biological relevance and 

ability to produce sub-compartmentalised structures. Phospholipids, phospholipid 

membranes and artificial cells constructed using such structures will be overviewed in 

section 1.2. 

1.2 Lipid membranes 

Lipid membranes are ubiquitous structures within the realm of biology that mediate 

compartmentalisation34. They form semi-permeable barriers that delineate cell 

boundaries as well as certain organelles, such as the nucleus, lysosomes and 

mitochondria, whilst being the main structural component of other organelles such as 

the Golgi apparatus and endoplasmic reticulum. The compartmentalisation offered by 

lipid membranes is essential for the function of biological systems for their ability to 

selective include or exclude different molecular species, and maintain concentration 

gradients between different cellular compartments as well as with their extracellular 

environment. Aside from this, lipid membranes also perform a variety of other functions 

such as cell signalling and small molecule transport, often aided by a variety of 

macromolecules such as transmembrane proteins, which are embedded within the 

membrane. Lipid membranes are formed via the self-assembly of lipid molecules into 

bimolecular leaflets. 
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1.2.1 Lipids 

Lipids are a broad class of non-polar, biological molecules. This includes fatty acids, 

sterols, triglycerides, waxes, phospholipids and others. Although cell membranes are 

composed from a large variety of lipids, this section will focus on the main class of 

bilayer-forming lipids in biological membranes, which are phospholipids. The 

phospholipid structure is based on a hydrophilic “head” group, which is attached to a 

hydrophobic “tail”, usually composed of two fatty acid chains with even number carbon 

atoms (usually 16-18 per fatty acid) and come in varying degrees of saturation, usually 

containing 1-4 unsaturated carbons. As such, they are amphiphillic and display 

interesting self-assembling properties. Phospholipids are usually classified according to 

their head group, which are formed from a phosphoric acid group with either a glycerol, 

choline, ethanolamine or serine moiety. Phosphocholine and ethanolamine 

phospholipids are neutral as their head is zwitterionic, whilst glycerol and serine 

phospholipids are charged. 

1.2.2 Lipid polymorphism 

Phospholipids self-assemble into higher order structures to form thermodynamically 

favourable states when present in a polar solvent such as water, as a result of their 

amphiphillic nature and the hydrophobic effect. The presence of non-polar molecular 

regions in phospholipids disrupts hydrogen bond networks between water molecules, a 

process that is energetically unfavourable. Thus, phospholipids aggregate into 

structures that shield their hydrophobic tails from the water whilst maintaining their 

heads hydrated, giving rise to a variety of lamellar and non-lamellar lipid phase 

structures35 as shown in Table 1. Factors that affect the formation of lamellar phases 

will be overviewed in the following section, due to their relevance to the formation of 

lipid bilayer structures within biology.  
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Diagram Name Notes 

 

Micelles and 
inverse micelles 

In polar solvents, lipids aggregate into 
spheres where the lipid head groups 
shield the tail groups. The inverse 
occurs in non-polar solvents.  
Micelles form in solvents when lipids 
are sufficiently concentrated in a 
solvent, defined by the critical micelle 
concentration (CMC). 

 

Lamellar phase 

Lamellar phases are composed of a 
bimolecular layer of lipids where lipid 
tail groups face each other and head 
groups are in contact with the polar 
solvent. This is the most important 
phase from a biological perspective. 

 

Hexagonal and 
inverse 

hexagonal 

Lipids in low quantities of water may 
form tubular structures with 
hydrocarbon chains on the inside in 
contact with each other, and the polar 
heads facing the water. Tubes form 
bundles of six, hence hexagonal 
phase. This disposition is thought to be 
a result of the hydrophobic effect36. 
Inverse hexagonal phases form in non-
polar solvents, in a similar fashion to 
inverse micelles37. 
 

 

Cubic phases 

Various cubic phases (such as Fd3m, 
Im3m, Ia3m, Pn3m, and Pm3m) form in 
water under certain conditions, such as 
high temperatures and high lipid 
concentrations38. Cubic phases are 
liquid crystalline bicontinuous 
structures that are not strongly 
favoured and involve high energy of 
activation barriers39. 
 

Table 1 Table depicting the main, different kinds of structures that lipids can give rise to. Images adapted 
from referenced publication40. 
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1.2.2.1. Factors that affect lipid polymorphism 

The kinds of structures that are formed depend on a variety of physical and chemical 

factors. One obvious factor is the solvent, as lipids will dissolve in non-polar solvents 

such as alkane oils, but form emulsions in non-polar solvents. The presence of salts 

and the pH of the solvent affects lipid polymorphism as the pH alters the protonation of 

hydrophilic head groups and cationic salts can affect its polarity by interacting with 

carbonyl regions. These factors, among others, define the relative size and 

hydrophillicity of lipid head groups41. Along with the type of lipid head and the length 

and unsaturation of lipid tail groups, this affects the overall shape of the lipid molecule 

and hence its packing into supramolecular structures. Agitation and the application of 

external forces such as electric fields define the degree of ionisation and interaction 

between lipid molecules which can modify the type and size of structures that they give 

rise to42. Other important factors include lipid concentration, the presence of other kinds 

of lipids, such as cholesterol, hydration levels, temperature and pressure43. 

1.2.2.2 Lamellar phase properties 

Lamellar phases, or lipid bilayers, can exist in a number of conformations depending on 

the type of lipids used and physical conditions such as temperature. 

1.2.2.2.1 Fluidity 

Lipid bilayers exist in various phases where individual lipid molecules have different 

levels of fluidity to move laterally within the bilayer leaflets. This depends on the 

temperature and hydration of the system44. At low temperatures, lipid bilayers exist in 

an orderly crystalline lattice with tightly packed lipids. Increasing temperature causes 

the bilayer to transition into a gel phase where lipids exhibit limited freedom of lateral 

movement. Higher temperatures cause the lipid bilayer to “melt”, and exist in a liquid-
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crystalline state where lipids exhibit a higher cross-sectional area and are more able to 

diffuse laterally45. In this state, lipid bilayers can be considered 2D-fluids, able to reseal 

holes and with varying degrees of mechanical rigidity34. The transition temperature 

between the gel and liquid states (Tg) depends on the nature of the lipid employed. For 

example, longer fatty acid chains give rise to higher Tg whilst chain unsaturation lowers 

it. 

The movement of lipids across the bilayer from leaflet to another is also possible 

although occurs at a slow rate in the absence of specialised enzymes46, due to the 

energetically unfavourable process of lipid heads having to traverse the hydrophobic 

region within the bilayer47.  

1.2.2.2.2 Curvature 

Depending on the overall geometry and the lateral stress profile of lipids, lipids can 

have a natural tendency to induce curvature in their supramolecular assembly, giving 

rise to different lipid structures. The relative widths of the head and tail groups of a 

particular lipid will give rise to different packing conformations, some of which are 

conducive to giving rise to curved structures, driven by the hydrophobic effect 

described earlier48. This varies depending on the relative polarity of the head group, the 

number and length of the fatty acid chains that form the lipid tail, and the degree of fatty 

acid chain unsaturation, which gives rise to kinks in the chain. Broadly, there are three 

main types of lipid geometric profiles which are shown in Figure 1.348. Cylindrical lipids 

are more likely to give rise to lamellar phases, whilst conical lipids with wider heads 

than tails will have a tendency to form micelles. Inversely conical lipids will tend to 

curve in the opposite direction, giving rise to inverse lipid phases as described in Table 

1. 
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Figure 1.3 Diagrams depicting geometrical aspects of lipids that affect their packing into 
supramolecular structures. a) Different lipids have different head to tail size ratios, which gives 
rise to a natural preference in packing. Type O lipids can naturally pack without any curvature, 
whilst type I and II lipids will tend to form concave and convex packing structures, respectively. 
b) Images depicting the lateral stress profile of lipids in the context of their packing, and the 
main forces that are implicated in lipid packing. Images adapted from referenced publication48. 

The lateral stress profile describes the relative effect of the different forces that act on 

individual lipids within a lamellar conformation, affected by the polarity of its head and 

the length of the fatty acid chains as well as their saturation. Lateral stress profile also 

applies to transmembrane proteins. A relative difference in the magnitude of forces 

acting along the length of the lipid molecule can aid in understanding the inclination of 

lipids to form curved structures beyond the structural geometry of the lipid48. 

1.2.2.2.3 Permeability 

Overton´s rule, pioneered in 1899, describes that the permeability of lipid bilayers to a 

given molecule is given by its solubility in lipid solutions49. Thus, the partition coefficient 

(LogP) of a given molecule between water and octanol can indicate its permeability 

through a lipid bilayer. LogP is given by: 

a) b) 
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𝐿𝑜𝑔𝑃 = 𝐿𝑜𝑔
[𝑠𝑜𝑙𝑢𝑡𝑒]𝑖𝑛 𝑜𝑐𝑡𝑎𝑛𝑜𝑙

[𝑠𝑜𝑙𝑢𝑡𝑒]𝑖𝑛 𝑤𝑎𝑡𝑒𝑟
 

 

However, it has since been found that the permeability of lipid bilayers depend on a 

number of factors other than solubility50. For example, lipids are amphiphillic molecules, 

so molecules need to pass through both hydrophilic and hydrophobic portions of the 

molecule. Indeed, evidence exists showing a decrease in permeability for highly 

hydrophobic substances51, which is likely due to this reason. Secondly, many 

substances exist in an ionised state which affects its ability to cross through a lipid 

bilayer52. Thus, LogP can be modified in the following manner (referred to as LogD): 

𝐿𝑜𝑔𝐷 = 𝐿𝑜𝑔
[𝑠𝑜𝑙𝑢𝑡𝑒]𝑖𝑛 𝑜𝑐𝑡𝑎𝑛𝑜𝑙

[𝑠𝑜𝑙𝑢𝑡𝑒]𝑖𝑛 𝑖𝑜𝑛𝑖𝑠𝑒𝑑 𝑤𝑎𝑡𝑒𝑟 + [𝑠𝑜𝑙𝑢𝑡𝑒]𝑖𝑛 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 𝑤𝑎𝑡𝑒𝑟
 

The rate at which small, nonpolar molecules diffuse through a lipid bilayer can be given 

by a modification of Fick´s Law53, which takes into account membrane properties such 

as its thickness and surface area: 

𝑑𝑛

𝑑𝑡
=  

𝐴𝐾𝐷

𝑥
(𝐶1 − 𝐶2) 

Where A is bilayer area, K is the partition coefficient of the transported substance, D is 

the diffusion coefficient of the substance within the bilayer, x is bilayer thickness, and 

C1 and C2 are the concentrations of the substance at either side of the lipid bilayer. 

1.2.2.2.4 Electrical properties 

It is common to find situations where two aqueous compartments are separated by a 

lipid bilayer. In such cases, the lipid bilayer can act as an electrical capacitor, as it 

separates two conductive regions and impedes the flow of charged species, but is able 
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to store charge at either side of the membrane54. Bilayer capacitance is proportional to 

bilayer area and inversely proportional to bilayer thickness, and can be measured via 

electrophysiology, where electrodes are placed at either side of the membrane and the 

current can be measured under an applied voltage. 

1.2.3 Biological membranes 

Lipid bilayers can be considered the main structural component of biological 

membranes, although they significantly differ from pure lipid membranes in their 

structure and function. This section will look at the main features of cell membranes, 

how they differ from pure lipid bilayers, and their significance within research. 

1.2.3.1 Gross structure and function 

The fluid mosaic model is the main conceptual representation via which cell 

membranes are understood (Figure 1.4), although the model has been updated 

significantly since its conception in 197255. The fluid mosaic model touches upon two 

basic features of cell membranes: they are fluid as described in section 1.2.2.2.1, 

where molecules are able to laterally diffuse with various degrees of freedom within the 

2-dimensional space of the bilayer; and they are composed of a large variety of 

different kinds of molecules.  
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Figure 1.4 Diagram depicting the main features of a cell membrane, including lipids and 
membrane proteins. The region containing cytoskeleton filaments represent the intracellular 
region. Image adapted from Wikimedia Commons. 

Typically, lipids compose around 50% of the mass of a cell membrane, with the 

remainder being mostly protein56. Glycolipids and glycoproteins are common which 

display carbohydrate moieties to the inside or the outside of the cell. The glycocalyx 

refers to the layer of carbohydrate moieties that forms on the exterior of cell 

membranes, with some being particularly dense such as with animal epithelial cells and 

certain bacteria. The interior face of the cell membrane is attached to the cell 

cytoskeleton, in particular with the actin cytoskeleton, which mediates cell structure as 

well as performing a variety of other signalling and transport functions. 

Being the main interface between a cell and its environment, the cell membrane 

performs a large variety of important cellular functions. Structurally, it provides a self-

repairing boundary to the cell and maintains it shape and integrity34. It provides an 

interface where molecular assemblies can come together and perform various 

functions, such as the signal transduction processes arising from G protein-coupled 

receptors. Other membrane proteins aid in the transport of molecules across the 

membrane and aid in setting up membrane action potentials. The glycocalyx is used for 

cell recognition, adhesion and signalling. The cell membrane is also involved in cell 

division and other whole-cell processes such as certain kinds of cellular motility.  
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1.2.3.2 Components 

1.2.3.2.1 Membrane lipids 

Cell membranes usually contain thousands of different lipids, which vary immensely 

between different animal kingdoms57. They are also characterised by being 

asymmetrical, where one leaflet significantly differs from the other in terms of lipid 

composition58. This asymmetry is actively regulated by the cell via use of specialised 

enzymes which aid in the directional movement of lipids from one leaflet to another46. 

Membrane asymmetry mediates a number of membrane functions, which can be 

exemplified by the localisation of phosphatidylserine (PS) phospholipids in mammalian 

cells. PS lipids are located primarily on the interior leaflet of a cell membrane and serve 

as a co-factor for various membrane-bound enzymes such as the Na+/K+ ATPase58. 

However, cells can actively display PS on their outer leaflet which is known to promote 

apoptotic and blood coagulation pathways. Additionally, cholesterols are present in the 

mix, which sit in the non-polar regions of the cell membrane lipid bilayer. This modifies 

the biophysical properties of the membrane, such as bilayer fluidity, by intercalating 

between lipids59. The heterogeneity of lipids and the presence of cholesterol profoundly 

affect the packing, permeability, curvature, fluidity and electrical properties of the cell 

membrane in comparison to pure lipid bilayers. For example, a bilayer containing 

saturated and unsaturated lipids will leave “gaps” in their packing which increases the 

membrane´s permeability to small molecules.  

A particular feature of cell membranes is the formation of lipid rafts, which are localised 

patches that are rich in cholesterol and sphingolipids, and therefore exhibit less fluidity 

and a higher packing density than their surrounding membrane60, 61. Due to their more 

ordered structure, transient nature, and their affinity for certain proteins, lipid rafts are 

thought to be involved in a variety of cell signalling processes, such as those regarding 
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receptor tyrosine kinases and G protein-coupled receptors60. Lipid rafts are also 

thought to be involved in the mediation of caveolae, which are specialised 

invaginations in cell membranes. Lipid rafts are an intense subject of investigation 

within the field, with on-going debates regarding their significance, existence, and 

mechanisms of function62. 

1.2.3.2.2 Membrane proteins 

It is estimated that around 30% of the proteome of a typical cell are membrane 

proteins63. Membrane proteins can be classified by localisation within the membrane: 

integral membrane proteins span across the membrane while peripheral membrane 

proteins attach to a particular side of the membrane. Their localisation is aided by their 

structure, with integral proteins containing hydrophobic regions that sit with the 

hydrophobic regions of the lipid bilayer, for example. Many proteins are able to rotate 

and diffuse laterally within the lipid membrane59. Membrane proteins mediate a large 

number of functions56: 

Transport: many integral membrane proteins function as pores and transporters, with 

some actively transporting molecules or ions at the expense of energy, and others 

passively transporting molecular species by providing a channel in the membrane. 

Certain protein pores act as toxins produced by pathogenic microorganisms, by 

inserting in their host´s membranes and causing lysis. For example, Staphylococcus 

aureus produce water-soluble hemolysins which lyse red blood cells via the production 

of pores in their membranes64. Electrophysiology techniques can measure the 

presence and activity of certain transport proteins due to their ability to modulate the 

flow of charge across a membrane65. 

Receptor: certain proteins can recognise specific signalling molecules in their 

extracellular face and give rise to intracellular signal transduction mechanisms. Two 
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major classes of receptor membrane proteins are G protein-coupled receptors and 

receptor tyrosine kinases. 

Enzymes: certain enzymes are anchored to cell membranes and mediate cell 

transduction mechanisms and other cellular functions. For example, receptor tyrosine 

kinases use their intracellular enzymatic activity to transmit signals upon extracellular 

ligand recognition. 

Adhesion: certain cells adhere to each other or to extracellular matrices and other 

surfaces. Transmembrane glycoproteins such as selectins and cadherins mediate cell 

adhesion processes. 

1.2.3.3 Importance of studying lipid membranes 

Biological membranes are the interface via which cells interact with the World and a 

biological surface that facilitates a large number of cellular processes. As such, many 

diseases and pathogenic pathways involve the cell membrane in one way or another, 

and over 60% of pharmaceutical drugs for a variety of applications target the cell 

membrane66. The design of many other drugs need to take membranes into 

consideration as the bioavailability of intracellular drugs will depend on their ability to 

cross membranes, and many other drugs need to be screened for toxicity against 

membrane components that perform vital functions, such as cardiac membrane 

proteins. Additionally, their biological significance and material properties make 

membranes a valuable topic of study for biophysicists and synthetic biologists. For all 

of these reasons, the understanding of the structure and function of membrane 

components is of tremendous value for both fundamental and applied sciences. 
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1.2.4 Artificial lipid membranes 

Biological sciences have largely benefitted from a reductionist method where biological 

systems are studied via their dissection into parts67. Due to the complexity and 

heterogeneity of biological membranes, the isolation of membrane part and processes 

in situ is challenging. Thus, the fabrication of artificial lipid membranes (ALMs) is a 

valuable technique that promises to give rise to a platform via which lipid bilayers can 

be studied in the absence of the influence of other biological components. Such 

biological components can also be individually incorporated into the ALMs in order to 

study their activity in isolation. The ability to form ALMs is aided by lipid self-assembly, 

as is the study of certain membrane proteins that are also able to self-assemble into 

lipid bilayers.  

ALMs are not only useful as a method to study the fundamental properties of biological 

membranes, but can be used in the pharmaceutical industry to screen substances 

against lipid bilayers or proteins reconstituted into them68. Certain ALM types can be 

used as encapsulation devices for drug delivery and cell transfections69, or as chassis 

for artificial cells70, 71.  

Different methods exist in the production of ALMs, including black lipid membranes 

(BLM)72, supported lipid membranes73, vesicles74 and droplet interface bilayers 

(DIBs)75. The following sections will focus mostly on DIBs as they are extensively used 

throughout this thesis, and vesicles, which have given rise to interesting biomimetic 

and artificial cell developments. 

1.2.4.1 Vesicles 

Vesicles are spherical constructs that are composed of a volume of water encapsulated 

by a lipid bilayer (Figure 1.5). The addition of water to a dried lipid film will give rise to 

multi-lamellar vesicles (MLVs) composed of a number of concentric lipid bilayer 
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spheres, as lipid bilayers assemble into spheres to minimise their surface area74. 

These can be further processed via membrane extrusion or sonication to give rise to 

smaller, unilamellar vesicles (SUVs) up to 100 nm in diameter74, and filtered to produce 

solutions containing vesicles of a particular size range. Numerous methods also exist 

that give rise to giant unilamellar vesicles (GUVs) up to 50 μm in diameter76, some of 

which assemble GUVs individually in comparison to the “bulk” methods of producing 

most other kinds of vesicles76. 

 

Figure 1.5 Diagram representing the basic structure and size of different kinds of lipid vesicles. 
Image adapted from referenced publication77. 

The structure of vesicles is fundamentally biomimetic, as they are found naturally in 

cells as certain organelles such as lysosomes and peroxisomes. They are also 

involved in cell secretions (exocytosis), cell uptake (phagocytosis and endocytosis), 

and the maintenance of the cell membrane via the fusion of vesicles containing newly 

synthesized membrane proteins, for example. Furthermore, they represent the basic 

architecture of a cell, as they are a volume of liquid encapsulated in a lipid bilayer that 

can encapsulate biological macromolecules and incorporate biological membrane 

constituents such as transmembrane proteins. This has given rise to a number of 

studies where minimal cell systems are incorporated into vesicles as artificial cells, and 

vesicles have been theorised to have been a necessary precursor of cellular life on 

Earth16, 78, 79. 
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The ability of vesicles to maintain concentration gradients has enabled their use in a 

variety of applications. Biological studies commonly employ them to measure the 

leakage or rupture of lipid bilayers in response to pore-forming substances80, via the 

encapsulation of reporter substances such as fluorescent dyes. They are also used as 

vehicles of delivery, may it be into cell culture transfections, or as therapeutic devices 

in drug delivery81.  

1.2.4.1.1 Vesicles as artificial cells 

It has been theorised that the spontaneous formation of fatty acid vesicles may have 

been the precursor to life as we know it, during the early stages of abiogenesis82, 83. 

Along with their ease of production, they make an attractive chassis to produce artificial 

cells. Fatty acid vesicles have been known to spontaneously self-reproduce in the 

presence of fatty acid anhydrides (such as oleic anhydride for oleic acid vesicles) for as 

far back as 199484. A notable advocate for vesicle-based artificial cells is Nobel 

laureate Jack Szostak, who´s research group has demonstrated that fatty acids 

containing RNA replicase as a model genome can spontaneously grow and self-divide, 

providing a route towards self-sustaining “protocells”79, 85. Subsequent experiments 

performed by other research groups have shown that DNA can be contained and 

replicated via polymerase chain reaction (PCR) cycles within phospholipid vesicles, 

and the amplification of such DNA can be linked to the division of the vesicles in the 

presence of a vesicle membrane precursor86. Furthermore, full protein expression 

systems have been incorporated into vesicles87, and have been maintained for up to 

four days by incorporating the transmembrane protein pore α-Hemolysin, which 

allowed the vesicle to uptake synthesis precursors from its environment70. Other 

interesting, biomimetic functions performed with vesicles have involved their interaction 

with microorganisms. Also, vesicles have been made to synthesise complex 

carbohydrates in the presence of precursors and exert an influence over the quorum 
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sensing mechanisms of a bacterial culture88. With all of these demonstrations involving 

a single vesicle compartment, the works of Elani et al. have focused on producing 

multi-compartment vesicles89, which have demonstrated to be able to functionally 

compartmentalise a multi-step chemical reaction via the transfer of substances across 

lipid bilayers through transmembrane pores90, 91. 

1.2.4.2 Droplet Interface Bilayers 

 

Figure 1.6 Diagrams representing the basic method of forming droplet interface bilayers (DIBs) 
from the contact of two droplets of water in oil in the presence of a bilayer-forming lipid. 

Droplet interface bilayers (DIBs) are typically formed from the contact of two aqueous 

droplets in oil in the presence of lipid, supplied either dissolved in the oil phase or as 

vesicles in the aqueous solutions (Figure 1.6). Lipid monolayers self-assemble at the 

oil/water interfaces and bilayers are formed where two monolayers are brought into 

close proximity92. This method of bilayer formation was first reported many decades 

ago, but interestingly only started gaining traction as an ALM study for various 

applications in the past two decades, notably by Hagan Bayley’s research group at 

Oxford75 and Takeuchi´s in Tokyo93. Since then, a large variety of applications and 

different DIB incarnations have arisen (Figure 1.7). DIBs have been formed between an 

aqueous droplet and hydrogel surfaces92, between hydrogel shapes94 and between 

aqueous droplets in air95. Physical encapsulation of DIBs has also been explored in 

order to develop shippable or storable ALM platforms96, 97. 
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Figure 1.7 Different methods of forming DIBs (DIBs outlined with dotted line box). In all of the 
incarnations, phospholipid is present in the oil phase. a) DIB formed between two aqueous 
droplets in oil. b) DIB formed between an aqueous droplet contacting a hydrogel surface, 
submerged in oil. c) DIB formed between two hydrogel shapes in oil. d) Air-stable DIB formed 
between two aqueous droplets on a surface coated in oil. e) DIBs formed between two aqueous 
droplets contained within a droplet of oil in water. DIBs also form between the internal droplets 
and the external aqueous environment. 

 

Notable benefits of DIBs include their stability, reported to be able to survive indefinitely 

under conditions that prevent evaporation92. They also exhibit a relative ease in 

incorporating membrane proteins, with a large variety of prokaryotic and eukaryotic 

proteins reported to have been introduced and studied in DIBs98-100. The ability to 

provide the lipid as vesicles suspended in the aqueous phases allows for the facile 

production of asymmetric bilayers101, important for the characterisation of biological 

membranes that exhibit this property. The use of droplets allows for novel methods to 

be developed due to their ease of manipulation. For example, the area of DIBs formed 

from droplets that are anchored on electrodes can be dynamically controlled by moving 

the electrode102, and reconstituted membrane proteins can be corralled103. DIBs can be 

formed and reformed indefinitely between many droplets, allowing for automation 

techniques104 and multiplexed bilayer formation, which can be employed to give rise to 

a) b) c) 

d) e) 
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high-throughput assay platforms105. DIBs also lend themselves well to the microfluidic 

realm for which numerous droplet manipulation techniques exist104, 106-108 (see section 

1.3). For many of these reasons, DIBs have increasingly been used to study 

membrane proteins99, 100, 109, model cell membranes110, 111 and nanopore sensing112, 

with some of these applications involving unprecedented, high-throughput bilayer 

arrays100, 112. 

1.2.4.2.1 DIB Networks 

A particular, paradigm-shifting aspect of DIBs is their ability to give rise to networks75, 

113, where DIBs are formed between any number of contacting droplets. This provides a 

foundation for the use of DIBs as novel devices, and for collective properties to arise 

and be studied. For example, “biobatteries”75 and wave rectifiers114 have been 

produced from DIBs, which offer the potential to give rise to soft matter electronic 

components. The use of DIBs as logical gate operators has briefly been explored as 

well115.  

The network forming properties of DIBs are of particular interest within the field of 

bottom-up synthetic biology; in its ability to give rise to biologically inspired multi-

compartmentalised structures91. Pioneering work employing this concept was 

performed by Gabriel Villar in Bayley´s group, who devised freestanding droplet 

networks by containing aqueous droplets within a larger oil droplet (Figure 1.8), 

allowing the formation of DIBs between the aqueous droplets and also between the 

aqueous droplets and an external, aqueous environment116. These structures, termed 

multisomes, have been manufactured via manual methods using micropipettes and by 

tethering the oil droplet to a silver wire “frame” in water, to avoid the structure from 

rising and rupturing at the water/air interface. Thus, work is still required in order to 

generate robust and freestanding multisomes. Work performed by Elani et al. has 
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taken this concept further by producing multisomes using microfluidic methods, and 

using them as “cell-like reactors”, where ethanolamine in one droplet within the 

multisome crosses a bilayer into a second, reaction compartment where pyrylium is 

converted into pyridinium. 

Villar et al. also developed droplet printing method which allowed for the creation of 

DIB network-based “tissue-like materials” (Figure 1.8), formed from thousands of 

picolitre droplets117. This novel material exhibited mechanical properties comparable to 

soft tissues, such as brain tissue, and was able to give rise to selective conductive 

paths with use of α-Hemolysin pores and self-assembled morphological changes.
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Figure 1.8 Diagrams depicting different two different DIB technologies developed by Dr. Villar in 
Hagan Bayley´s research group. a) the conception of multisome structures, formed from a 
number of aqueous droplets contained within a larger droplet of oil in the presence of lipid. 
Bilayers form between the internal aqueous compartments of the multisome and also between 
the compartments and the external aqueous environment. b) The development of a droplet 
printing technology allowing for the formation of tissue-like materials consisting of thousands of 
picolitre droplets forming a large bilayer network. Images are adapted from referenced 
publications116, 117. 

1.3 Microfluidics 

Microfluidics has been mentioned in previous sections as a technology that is used to 

produce droplet-based constructs for the generation on lipid bilayer structures, as well 

as artificial cell systems. This is because microfluidics offers the ability to produce 

microscale droplets and capsules in large numbers and with excellent control, by 

exploiting the characteristic behaviour of fluid flow in the microscale118. This section will 

provide a brief overview of the field with emphasis on the mechanisms of droplet 

generation. 

1.3.1 Introduction 

Microfluidics concerns the manipulation of fluids in channels and structures in the 

microscale, which can range in size from from 1 -1000 μm in diameter. Unique fluid 

flow characteristics emerge as channels decrease in diameter, giving rise to novel 

liquid handling techniques119 which are employed in many scientific and consumer 

technologies.  Along with miniaturisation in itself, microfluidics has found diverse 

applications within chemical120, biological121 and biomedical fields122 of study. 

Microfluidic technology has given rise to the concept of Lab-on-a-Chip (LoC)123 and 

micro Total Analysis Systems (μTAS)124, which aim to provide novel laboratory and 

diagnostic methods that are portable, disposable, or that simplify, automate or increase 

the throughput of large-scale processes125. Aside from the wealth of technological 

applications that microfluidics offers, it also provides insight into the fundamental 

physical laws that govern the behaviour of microscopic systems in their environment126. 
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1.3.1.1 Advantages 

The radically different fluid behaviours that are evident in microscale flows enables the 

emergence of potential new functionalities, experimental paradigms and. Low reagent 

volumes and increased surface area to volume ratios are inherent benefits of 

miniaturisation. Miniaturisation allows for enhanced process parallelization for high-

throughput processes and the integration of sequential reactions that would usually 

involve large or laborious laboratory set-ups127, 128. It also allows for portability, which 

has given rise to novel point-of-care diagnostic devices129. High control over physical 

and chemical properties allow for uniform reaction conditions to obtain high purity 

products130. Efficient heat transfer and a low footprint make microfluidics 

environmentally friendly120. Predictable fluidic environments and integration with 

microelectromechanical systems (MEMS) enable large-scale multi-process 

automation131-133. The creation of miniature, controlled environments allow for the study 

of biological cells in unprecedented manners134. Furthermore, droplet microfluidics 

allows for a new liquid handling paradigm and enables further advancements with 

regards to volume reductions, high-throughput135 and large surface to volume ratios for 

interfacial processes106, via the ability to generate large numbers of highly 

monodisperse droplets that can act as individual experimental units. One commercially 

successful example of a droplet microfluidic technology is the development of digital 

PCR136. Droplets can be selectively transported, sorted, fused, split etc.137, and can 

embody Boolean logic within fluidic systems138. Novel microencapsulation techniques 

have also emerged from droplet microfluidics, such as the ability to encapsulate 

individual biological cells139, or generate hierarchically encapsulated droplets (droplets 

inside droplets) 140.  
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1.3.1 Fluid Flow in the Microscale 

All organisms, including ourselves, live in some form of liquid or gaseous fluid. The 

intuitions that we have developed over the course of our lifetimes regarding our 

interactions with our fluidic environments are subject to a size scale dependency that 

becomes apparent when examining a radically different scale, such as the microscale. 

For example, in swimming, we produce a forward force by some form of stroke, in 

which we cause a turbulent, overall directional movement of fluid around us, propelling 

us forward even for some time after the stroke has been performed. Due to our 

relatively large mass, the force we generate with a stroke is large enough to greatly 

overcome the resistance offered by the fluid around us to being deformed (i.e. viscous 

forces), giving rise to turbulence and inertia. The way in which we swim would be 

fundamentally different if we were the size of a microorganism, as we would no longer 

be able to generate forces that out-compete other inherent forces in the system, such 

as viscosity and surface tension. This scenario exemplifies how fluid flow changes from 

the macro to the microscale, due to a relativistic difference in the magnitude of the 

different forces that govern a given fluidic system. 

The Reynolds number describes the ratio of inertial to viscous forces, and can thus be 

used to predict the scale dependencies of fluid flow depicted in the analogy. As the 

scale decreases, or as channels become microfluidic channels, viscous forces start to 

dominate inertial forces118. This viscosity is given by the velocity of flow caused by a 

given shear stress, such as a pressure gradient, and is a measure of the internal 

friction within the particles that constitute a fluid. Newtonian fluids display a linear 

relationship profile between shear stress and velocity, whilst the viscosity of Non-

Newtonian fluids varies depending on the rate of shear stress applied141.  
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The Reynolds number (Re) is given by the following equation: 

𝑅𝑒 =
𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑓𝑜𝑟𝑐𝑒𝑠

𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒𝑠
=

𝜌𝑣𝐿

𝜇
 

Where 𝜌 is density (kg m-3), 𝑣 is velocity (m s-1), 𝐿 is characteristic length (commonly 

channel diameter), and 𝜇 is dynamic viscosity (N s m-2). 

Low Re flows are governed by viscous forces and are described as being laminar, due 

to a tendency of fluid to flow in layers parallel to the overall direction of flow. Higher Re 

numbers give rise to turbulent flow, governed by inertial forces (Figure 1.9). 

 

 

Figure 1.9 Representation of laminar (left) vs. turbulent (right) flow in a situation where a fluid 
(blue) is flowing in a channel. Flow is represented by arrows. At low Re numbers, fluid flows in 
parallel layers. As Re increases, flow becomes turbulent and is characterised by a chaotic 
regime with swirls and eddies. 

For a straight channel, a transition from laminar to turbulent typically occurs around Re 

= 2000 – 2500. From the equation described above, different parameters can be 

modified in order to attain low Re fluidic flows, including fluid density, viscosity, velocity, 

and small channel diameters, with the latter being the obvious primary method within 

microfluidics. Laminar flows have the virtue of being of a more orderly and predictable 

nature141, and can be exploited to create concentration gradients142, efficient reagent 

technologies143, and to generate microdroplets144. 

Re < 2000 Re > 2000 

Channel walls 
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1.3.2.1 Multiphase Microfluidics 

Multiphase flow refers to the flow of two (or more) immiscible phases in contact with 

each other. When two immiscible phases, such as water and oil, flow in the same 

channel, different fluidic regimes can occur (Figure 1.10).  

 

Figure 1.10 Representation of common fluidic conformations in multiphase microfluidics. a) 
Sub-streaming b) droplets and c) slugs. Red and blue represent different immiscible phases, 
where the red fluid preferentially wets the channel surfaces (black). 

Due to the laminar nature of microfluidics, the fluids may flow in streams parallel to 

each other. However, this creates a large contact surface area between one fluid and 

the other, which can be energetically unfavourable. Also, the surface of the channel 

may preferentially wet one fluid over the other, causing a drive of the non-wetting fluid 

to minimise its contact with channel walls145. Furthermore, viscous instabilities may 

arise from the flow of one immiscible fluid in another, and pressures may build up when 

one fluid occludes the channel from another146. For all of the above reasons, it is 

common in the microfluidic scenario described above for one fluid to segment in the 

other, forming droplets or channel-occluding slugs. The process of droplet formation 

b) 

c) 

a) 
oil 

water 

Hydrophobic channel walls 
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can be controlled in order to give rise to the rapid production of monodisperse droplets 

encouraged by droplet-generating flow geometries147. 

1.3.2.1.1 Physics of droplet formation 

In a liquid-liquid multiphase system, droplet formation is governed by the shear force 

generated from one fluid onto another and the interplay of surface tensions between 

the fluids and also the channel walls145. Surface tension is defined as energy per unit 

area and is an important driver in the formation of droplets, as it drives a segment of 

fluid to adopt a spherical shape in order to minimise its surface area to volume ratio. In 

droplet formation, the wettability of the different fluids with the channel walls will define 

which of the fluids will form droplets in the other, where the fluid with the highest 

surface tension with the channel walls forming droplets, and the other fluid constituting 

a “carrier” phase. For example, hydrophobic channels will produce water in oil (W/O) 

droplets and not vice versa, to give rise to the most energetically favourable scenario. 

The interplay of surface tensions can be understood via the measurement of contact 

angles (figure 1.11), which quantifies the degree at which a liquid wets a solid 

surface148. The angle of a droplet on a surface represents the relative strength of forces 

between the liquid, solid and the surrounding air. Strategies exist to modify the surface 

tension between the different fluids, such as the use of surfactants149, and also to 

modify the surface energy of the channel walls via surface modification techniques150, 

151 (Section 2.2.1.4). 
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Figure 1.11 Droplet of water on a surface depicting the contact angle between the droplet and 
the surface. The relatively low angle here indicated a relatively high wettability of the droplet 
against the surface. 

Whilst surface forces encourage the formation of droplets in certain scenarios, viscous 

forces provide a resistance to fluid deformation required to break a fluid stream into 

segments. Thus the relative strength between these forces determines the manner in 

which droplets are formed in a particular droplet-generating scenario. This interplay is 

described by the Capillary number (Ca), which is given by the following equation: 

𝐶𝑎 =
𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒𝑠

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑓𝑜𝑟𝑐𝑒𝑠
=  

𝜇𝑣

𝜎
 

Where 𝜇 is dynamic viscosity (N s m-2), 𝑣 is velocity (m s-1) and 𝜎 is surface tension (N 

m-1). 

The weber number can also be of importance when analysing the formation of droplet 

formation, and relates to the interplay between fluidic inertia and surface tension along 

an interface152. Although inertia is usually negligible for microfluidic purposes, this can 

differ for high flow rate values and/or large diameters153. It is given by the following 

equation: 

𝑊𝑒 =
𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒𝑠

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑓𝑜𝑟𝑐𝑒𝑠
=  

𝜌𝑣2𝑙

𝜎
 

Where 𝜌 is density (kg m-3), 𝑣 is velocity (m s-1), 𝑙 is characteristic length (typically 

droplet diameter), and 𝜎 is surface tension (N m-1). 
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1.3.2.1.2 Droplet Coalescence  

A dispersion of droplets in an immiscible carrier phase is a thermodynamically 

unfavourable system due to the total interfacial area between the droplets and the 

carrier fluid, in comparison to a system where the fluids are separated by a continuous 

interface. This drives smaller, miscible droplets present in a system to coalesce with 

each other when in close proximity in order to minimize the total surface area between 

both fluids, in a mechanism called Ostwald ripening154. In a system without any 

surface-active molecules, the only resistance to coalescence is the thinning and 

evacuation of the immiscible fluid between one droplet and another, which is affected 

by the proximity of the droplets and the viscosity of the carrier phase155. Therefore, in 

order to avoid the coalescence of droplets into larger droplets, surfactant molecule 

solutions are used, which adsorb at immiscible interfaces (i.e. water and oil) due to 

their amphiphillic structure. Surfactants decrease the surface tension between the 

fluids which decreases the drive for coalescence, as well as providing electrostatic or 

steric repulsion between droplet interfaces149. This has an overall effect of droplet 

stabilization, and droplet microfluidics makes extensive use of surfactants for this 

particular purpose.  

1.3.3 Droplet-generating Geometries 

In order to generate droplets in multiphase microfluidics, two (or more) immiscible fluids 

need to be delivered into a common channel. It is at the point where the two fluids meet 

that droplet formation occurs, often aided by specific channel geometries that 

encourage monodisperse droplet formation of a desired size or configuration. Here, the 

T-junction, flow-focusing and coaxial geometries will be described. 
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1.3.3.1 T-junction 

T-junctions comprise two perpendicular channels with one phase flowing in each and 

delivering fluid into a common channel. Depending on the physical characteristics and 

flow rates of the fluids, different mechanisms of droplet formation occur, based on the 

interplay between three forces that act at the droplet/carrier phase junction. These are 

the surface tension force at the interface, the shear stress caused by the flow of the 

carrier phase on the droplet phase, and the hydrodynamic resistance the carrier phase 

flow experiences as the droplet phase interface occludes the channel147. The formation 

of droplets at high Ca numbers is caused by the exertion of shear stress from the 

carrier phase onto the growing droplet interface at the junction (Figure 1.12a). For lower 

Ca numbers (≈Ca < 0.1), shear stress alone is unable to deform the growing interface 

sufficiently to cause droplet formation, due to the relative effect of surface tension. 

Here, forming droplets obstruct the flow of the carrier phase and cause a build-up of 

hydrodynamic pressure upstream to the forming droplet, which causes the channel-

occluding droplet to break off alleviating the pressure build up (Figure 1.12b). It is likely 

that the ratio of channel diameters affects this form of droplet formation, especially for 

low Ca number scenarios, as channel occlusion by the forming droplet will depend on 

this.  
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Figure 1.12 Different methods of droplet formation in T-junctions.  a) For higher Ca numbers, 
droplet break-up is governed by the shear stress provided by the continuous phase onto the 
droplet phase. b) For low Ca numbers, pressure builds up as the forming droplet obstructs the 
flow of the continuous phase, which causes droplet break-up. Images adapted from Elveflow156. 

1.3.3.3 Flow Focusing Junctions 

As the name suggests, flow-focusing geometries involve the focusing of the flow of 

both the carrier and droplet fluids through a nozzle into a common channel (Figure 

1.13). Such geometries are usually symmetric in the radial plane, where the droplet 

fluid channel flows parallel to the output channel, and is flanked at either side by 

channels delivering the carrier fluid157.  

 

Figure 1.13 Depiction of a flow-focusing junction producing droplets under a dripping regime. 
Image adapted from Elveflow156. 

a) 

b) 

Ca < 0.1 

Ca > 0.1 
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The focusing of at least two channels of carrier fluid into a common channel provides 

shear stress to the growing interface of the droplet fluid as well as a build-up of 

hydrodynamic pressure as seen in T-junctions, causing droplet break off158. The coaxial 

co-flow of the droplet and carrier phase fluids can also give rise to Plateau-Rayleigh 

instabilities159, which arise in elongated cylindrical fluidic interfaces under shear stress 

and unconstrained flow, and cause droplet break-up153.  A large diversity exists within 

flow-focusing geometries, where the carrier fluids can be delivered parallel, 

perpendicular or diagonal to the droplet phase channel, different ratios of channel 

diameter can be used, the output channel can be widened after the droplet-forming 

junction, etc. Flow-focusing geometries give rise to different mechanisms of droplet 

formation which relate to the interplay of the dominance of viscous or surface forces, 

and thus can be characterised with the use of the Ca number153. These mechanisms 

are summarised in Table 2. 

Name Depiction Description 

Geometrically-
controlled 

 

This regime occurs at low Ca numbers 
(≈0.1) and is driven by the upstream 
build-up of hydrodynamic pressure 
caused by the occluding formation of 
the droplet. The “finger” of the droplet 
phase retracts back to the orifice one 
droplet pinch-off occurs. 

This method gives rise to droplets that 
are highly monodisperse and of a 
diameter roughly equal to the channel. 

Dripping 

 

Higher Ca numbers (≈0.2) give rise to 
this regime where the droplet phase 
fluid finger of the droplet fluid remains at 
a fixed location. Here, droplet break-up 
occurs once the finger is elongated 
enough to sustain a Plateau-Rayleigh 
instability. 

Droplet diameter is less than that of 
geometrically-controlled droplet break-
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up although remains highly 
monodisperse. 

Jetting  

 

Even higher Ca numbers (≈1) display a 
jetting mode of droplet formation, where 
the droplet phase finger elongates 
beyond the orifice forming an elongated 
cylinder of fluid, which breaks due to 
Plateau-Rayleigh instabilities along the 
jet. The droplets formed tend to be 
smaller than in dripping regimes and 
are not considered to be monodisperse. 

Table 2 Modes of droplet generation seen for microfluidic flow focusing junctions. Diagrams 
adapted from referenced publication158. 

It is difficult to ascertain the exact Ca numbers at which droplet generation regime 

changes occur, due to its dependency on a number of factors. For example, the use of 

surfactants shifts the Ca numbers at which transition occurs upwards, as well as high 

droplet to carrier phase flow rate ratios153.  

1.3.3.3 Coaxial droplet generation 

The droplet-generating configurations described in the previous two sections comprise 

planar channels, in what is commonly referred to as 2.5D. However, another method of 

droplet-generation exists which involves the coaxial alignment of tubes and channels in 

3D160. In this configuration, a tube flowing the droplet phase terminates within a larger 

tube flowing the dispersed phase, which gives rise to a coaxial geometry where the 

carrier fluid flow envelopes the flow of the droplet fluid (Figure 1.14). The study of 

droplet formation at a capillary nozzle predates the emergence of droplet microfluidics 

as it has been employed in many engineering applications including ink-jet printing, 

liquid/liquid dispersing and separation applications160. 

Similar to flow-focusing junctions, coaxial droplet generation can give rise to dripping 

and jetting regimes (Figure 1.14b), where a droplet is formed directly at the tip of the 

inner tube dominated by surface and hydrodynamic pressure forces, or where they 
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break up from an extended finger of fluid downstream due to Plateau-Rayleigh 

instabilities, respectively161. 

 

 

 

Figure 1.14 Coaxial droplet-generating regimes. a) Depiction of a coaxial droplet generator where a 
channel flowing the droplet phase is inserted inside a larger channel flowing the carrier phase. Image 
taken from Elveflow156. b) Dripping (left) and jetting (right) regimes of droplet generation in coaxial 
geometries. Photographs adapted from referenced publication162. 

The transition from dripping to jetting has been found to depend on a number of factors 

and to occur once the carrier phase velocity surpasses a critical value.  Dripping 

regimes have been found to occur below We numbers of ≈1 and Ca numbers of 

≈0.2162. The We number is taken into account for coaxial devices and not for flow-

focusing devices as the former usually comprises larger channels due to manufacturing 

constraints, whilst characterisation of the latter tends to ignore the Weber number due 

to the effect of inertia being negligible at smaller dimensions147, 153. Parameters that 

affect droplet formation include the ratio of channel sizes, the surface energy of 

channel walls, fluid velocity, flow rate ratio, the use of surfactants and the viscosity, 

density, and surface energy of the fluids. It is expected that geometrically-controlled 

droplet generation can occur in coaxial systems when the diameter ratio between the 

inner and outer tubes is sufficiently low so that the size of the growing droplet is equal 

or larger than the outer tube diameter. 
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1.3.4 Complex Emulsions 

Complex emulsions refer to fluidic constructs comprised of droplets containing droplets 

of an immiscible phase. Commonly produced complex emulsions are water-in-oil-in-

water (W/O/W) or oil-in-water-in-oil (O/W/O) emulsions. These can be described as 

double emulsions. Complex emulsions are considered to be metastable constructs163, 

as droplets contained within another droplet of an immiscible phase are likely to get 

ejected in order to minimise contacting surface areas. However, they can maintain their 

structure for extended periods of time when surfactants are used to stabilise the 

interfaces.  

Although first described in 1924164, interest in complex emulsions had not garnered 

much interest until the recent decades. Due to their compartmentalised nature, double 

emulsions have gained interest for applications in pharmaceuticals165, foods166 and 

cosmetics167. Particularly, a number of studies have focused on the potential 

pharmaceutical use of W/O/W emulsions as targeted delivery systems for water-

soluble drugs168. Double emulsions have also been regarded as a thin liquid film 

chemical extraction method, for example for the removal of mercury from waste 

water169. Alternatively, double emulsions can be used as intermediate structures to 

produce solid capsules via solidification methods170, 171. 

 Prior to the development of microfluidic techniques, complex emulsions have been 

generated in a bulk and heterogeneous manner via the use of valve homogenisers and 

membranes172. One notable example of this was performed by Higashi et al., who used 

a porous glass membrane to produce W/O/W emulsions composed of epirubicin-

containing water droplets within an iodinated poppy seed oil droplet, which 

preferentially accumulates in hepatocellular carcinoma tumours173. Although double 

emulsions could be generated with a low coefficient of variation in terms of the total 

emulsion size (below 10%), there was no control over the number or size of 
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encapsulated droplets using these bulk methods and hence their applicability was 

limited. Regardless, the prospect of using double emulsions for drug delivery due to 

their ability to transport and deliver water-soluble substances in a controlled or 

sustained manner remained enticing168. 

1.3.4.1 Microfluidic production of complex emulsions 

Microfluidic methods for complex emulsion generation often involve sequential droplet-

generating geometries, but other methods exist which produce complex emulsions in 

an integrated manner (single-step methods). Surface modification techniques are often 

employed for the production of complex emulsions due to the common requirement of 

having to generate droplets of two immiscible phases, which requires the preferential 

wetting of the channel walls with one phase or another. 

1.3.4.1.1 Sequential emulsification 

In 2005, Okushima et al. provided the first instance of double emulsion production 

using microfluidic techniques174, which harnessed the high degree of control that 

microfluidics offers in terms of monodisperse droplet generation and droplet 

manipulation to produce W/O/W emulsions containing a prescribed number of inner 

droplets as well as containing droplets of different identities (i.e. one containing a red 

dye and another containing a blue dye). First, droplets of water in oil are created using 

a T-junction design constructed out of PTFE tubes, comprising the hydrophobic portion 

of the device. The PTFE tubing is then connected to a glass capillary flowing water in a 

perpendicular manner, forming a second T-junction (Figure 1.15a). Similar devices 

fabricated from PDMS have also been produced175, with some available 

commercially176.  
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Furthermore, Abate et al. found that a similar method could be implemented which not 

only allows for the production of double emulsions, but for higher order emulsions 

including triple, quadruple and quintuple emulsions177, by sequentially aligning flow-

focusing droplet-generating geometries in series with alternating channel surface 

wettabilities (Figure 1.15b). Although these higher order emulsions have not yet found 

practical applications, their production is a feat in itself, demonstrates the capabilities of 

microfluidic emulsion generation. 

Other implementations of this sequential method have involved the use of coaxial 

droplet-generating geometries formed from glass capillaries (Figure 1.15c)178. Control 

of droplet size and the number of encapsulated droplets is achieved via the adjustment 

of the capillary orifice dimensions and flow rates. These devices have also 

demonstrated to be able to produce further, higher order emulsions, via the sequential 

alignment of an additional droplet-generating geometry following the generation of 

double emulsions (W/O/W), producing triple emulsions (W/O/W/O) 179.  
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Figure 1.15 Sequential emulsification microfluidic methods for the generation of complex 
emulsions. a) Droplets of water in oil are generated in a PTFE T-junction, which is connected to 
a hydrophilic glass capillary flowing water, producing W/O/W emulsions174. b) Sequential flow-
focussing geometries in PDMS with alternating hydrophobic/hydrophilic wettabilities are 
employed to generate double, triple, quadruple and quintuple complex emulsions177. c) Glass 
capillaries of alternative hydrophobic/hydrophilic wettabilities are aligned to create coaxial 
droplet-generating geometries, able to generate W/O/W and W/O/W/O emulsions179. 

 

a) 

b) 

c) 
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1.3.4.1.2 Single-step emulsification  

Double emulsions can also be produced in a single step via the specific arrangement of 

glass capillaries and the tailoring of glass surface wettabilities. One such example is 

illustrated in Figure 1.16a. This method has demonstrated to produce monodisperse 

double emulsions with good control over the size and number of droplets produced as 

well as being able to encapsulate droplets of different solutions via the use of double-

bore capillaries140. It is noted that the device fabrication is tricky due to the fragile 

nature of the glass capillaries and the requirement to precisely align the channels with 

each other and also with the oil/water interface inside the larger glass capillary. 

Attempts have been made to aid in the device fabrication and alignment of the 

capillaries via the use of 3D-printed parts180.  

 

Figure 1.16 Single-step formation of double emulsions. a) A capillary flowing the water droplet 
phase flows through an oil interface into another capillary, where water flowing around this 
capillary produces a 3D, flow focusing junction which breaks off W/O/W emulsions140. b) Multi-
bore glass capillaries generate double emulsions in a coaxial droplet-generating geometry 
where the outer ring of capillaries flow oil and the inner capillaries flow the water droplet 
phase181. 

 

Another single-step method reported uses multi-bore glass capillaries and a coaxial 

droplet-generating geometry to produce W/O/W emulsions (Figure 1.16b)181. The multi-

bore capillary is composed of a ring of capillaries flowing the oil phase, surrounding 1-3 

a) b) 
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capillaries flowing the internal aqueous phase(s). The outer capillary flows the external 

aqueous phase. Thus, the oil flowing from the multi-bore capillary fuse together, 

enveloping a number of droplets contained inside, defined by the number of inner 

capillaries and the flow rates used. Although elegant, this method does not appear to 

give rise to the same degree of control over droplet size and the number of 

encapsulated droplets as other methods described here. However, its straightforward 

device fabrication and operation make it an attractive method to generate double 

emulsions.  

1.3.4.2 Applications 

The development of microfluidic methods for the production of complex emulsions 

revived the interest in them for applications mostly in controlled release systems for 

pharmaceutical applications168. Adams et al. developed double emulsion systems with 

the ability to encapsulate up to three different aqueous solution droplets within a single 

oil droplet with control over their number and size, as well as wax-based double 

emulsion systems which allowed for the temperature-controlled release or coalescence 

of internal, aqueous cargoes140. These developments could be envisaged as a method 

to deliver a cocktail of drugs, or drug precursors for short-lived drugs into specific areas 

or tissues within the human body for triggered or sustained release.  

W/O/W double emulsions have been employed for the encapsulation of cells182 and the 

generation of multicellular spheroids183. The use of these double emulsions allows for 

cells to be encapsulated and a microenvironment to be maintained, which allows for 

individual cell secretome analysis184 as well as the maintenance of cell viability182. The 

encapsulation of cells in double emulsions has been proposed as a method for next-

generation single-cell screening184 as well as a vehicle for cell therapies and tissue 

engineering182.  
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Furthermore, double emulsions have been employed in order to generate artificial cells 

and artificial lipid bilayer systems. For example, Ho et al. developed W/O/W emulsions 

which were able to sense mechanical disturbances185 akin to many biological cells, as 

the compression of the emulsions resulted in the thinning of the oil phase which 

allowed for the transfer of calcium ions from the aqueous environment around the 

emulsion to the aqueous droplet within the emulsion. The increased influx of calcium 

could be envisaged as an artificial cell signalling trigger. Furthermore, Elani et al.186 

generated W/O/W emulsions to create multisomes116 comprised of aqueous droplets 

separated by droplet interface bilayers (DIBs), capable of communicating with the 

external aqueous environment through lipid bilayers. This provided with an important 

step forward in generating encapsulated DIB structures in a reproducible manner and 

in large numbers, for their development as artificial cells or compartmentalised 

chemistry vehicles, for example. 

1.4 Thesis aims 

The broad aim of this thesis is the production of robust and freestanding droplet 

interface bilayer networks that are compatible with a range of different environments, 

and that can be used as a chassis for artificial cells and for high-throughput membrane 

studies. Droplet microfluidic techniques will be used in order to produce such 

constructs, as it offers the ability to produce highly monodisperse droplets as well as 

droplets-within-droplets. Proof-of-concept demonstrations will be performed to assess 

the performance of such constructs as a high-throughput assay platform to 

characterise pore-forming molecular species. Additionally, we aim to demonstrate that 

the constructs can act as artificial cells via their ability to form higher order structures 

(i.e. artificial tissues) and also via communication with an external environment. All of 

this aims to widen the scope of applications for droplet interface bilayer networks as 

well as increase the practicality of their use via a facile, automated manufacture 
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method and the enhanced stability of the constructs. The project can be divided into 

the following aims: 

1. Development of a microfluidic device that is capable of producing droplets-

within-droplets in order to produce droplet interface bilayer networks within an 

oil droplet, forming bilayers with an external aqueous environment.  

2. Encapsulation of droplet interface bilayer networks within a hydrogel shell using 

microfluidic methods. This ensures that the constructs are robust whilst at the 

same time able to communicate with their external environment. 

3. Demonstration of the formation of lipid bilayers within such constructs via the 

use of electrophysiological methods and the incorporation of pore-forming 

membrane proteins. 

4. Development of a high-throughput, fluorescence assay capable of assessing 

the interaction of pore-forming species, such as peptides, on lipid bilayers. 

5. Demonstration of the ability of such constructs to form higher-order structures 

such as artificial tissues, via the tethering of constructs to one another. 
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Emulsions. 

2.0 Chapter Summary 

Microfluidics offers the ability to produce droplets of water in oil in a reproducible and 

monodisperse manner, which should allow for the generation of encapsulated artificial 

lipid bilayer constructs. This chapter will explore different manufacture methods for 

droplet microfluidic devices that are capable of generating hierarchical droplet 

emulsions for this purpose. Such methods include CNC machining and 3D-printing, as 

well as ancillary methods such as silanisation of microfluidic channels for tuneable 

surface wettabilities (i.e. hydrophilic/hydrophobic). The main outcome of this chapter is 

the development and assessment of a novel, hybrid 3D-printed microfluidic system 

capable of producing double and triple emulsions from sequentially aligned coaxial 

droplet-generating geometries, which will be employed to produce encapsulated 

droplet interface bilayer (DIB) soft matter constructs in the following chapters. 

2.1 Introduction  

Numerous fabrication methods exist for the generation of microfluidic devices and 

channels, each of which are compatible with a range of different materials, and can 

give rise to different channel properties and planar (2.5D) or 3D microfluidic features. 

Methods that allow for rapid prototyping are generally preferable due to the iterative 

design approach commonly employed in device engineering. For the particular purpose 
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of generating hierarchical emulsions, such as water-in-oil-in-water (W/O/W) or 

W/O/W/O emulsions, which provide a basic architecture to develop freestanding, 

encapsulated droplet interface bilayer networks, the choice of channel substrate is of 

particular importance due to the requirements to produce channels that allow for both 

water and oil droplet generation within the same device. Thus, materials and methods 

that allow for different surface properties within the same device are required in order 

to assemble devices that can produce both water-in-oil (W/O) droplets and oil-in-water 

(O/W) droplets at different locations within a microfluidic chip, for the ultimate assembly 

of W/O/W and W/O/W/O emulsions. This can be achieved by using different materials 

within the same microfluidic device that display different surface wettabilities, or by 

employing materials that are compatible with surface modification techniques. The 

overarching objective of this chapter is to produce a microfluidic device that is able to 

sequentially generate droplets of alternating phases using surface modification 

techniques. 

2.1.1 Microfluidic Device Fabrication  

Microfluidic device fabrication methods can be divided into categories relating to the 

substrates that they are compatible with. The use of PDMS with photolithographic 

techniques is widely employed in the microfluidic community1, 2 due to a cheap and 

relatively straightforward manufacture process that allows for rapid, iterative 

prototyping. PDMS can be cast against a mold with a <100 nm fidelity and presents 

with favourable physicochemical properties for a number of microfluidic applications3. 

These include transparency, low reactivity and surface energy, impermeability to water, 

permeability to gases, good thermal and electrical insulation, elastomeric properties, 

and general biocompatibility1. However, PDMS-based devices may sometimes be 

unsuitable due to its permeability to organic solvents4, such as for the production of 

hierarchical droplet emulsions which employ organic solvents as intended here. 
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Alternative methods involve the use of thermoplastics such as polymethyl methacrylate 

(PMMA), polycarbonate (PC), polystyrene (PS) and cyclic olefin copolymer (COC), 

which can be machined or hot-embossed to produce planar microfluidic channels and 

structures5, 6. These materials have been used for cell biology applications where 

PDMS can be problematic due to its ability to leach uncured oligomers into microfluidic 

channels and absorb small hydrophobic molecules7. Their excellent optical properties, 

biocompatibility, low inherent fluorescence and high manufacturability have contributed 

to their emergence as popular materials within commercial biomedical applications4. 

Fabrication of glass capillary microfluidic devices has gained recent traction due to the 

ability to easily generate channels within channels forming coaxial droplet-generating 

geometries, allowing for hierarchical droplet generation8-15, as well as the amenability of 

glass surfaces to be surface modified16. 3D-printing has also garnered attention as a 

method to produce microfluidic devices offering fast and easy fabrication compatible 

with rapid prototyping and device disposability17. Other fabrication methods exist which 

give rise to high-resolution micro and nano- fluidics, such as laser lithography18 and 

dry19 and wet etching20. The following sections will focus on glass capillary and 3D-

printing microfluidics as well as surface modification techniques, which are employed 

here due to their amenability in producing microfluidic devices for hierarchical emulsion 

generation in a straight-forward and low cost manner.   

2.1.1.1 Glass Capillary Devices 

Microfluidic devices comprised of glass capillaries are commonly used to prepare 

particles and hierarchically-assembled droplet emulsions9-12, 14, 21, as outlined in section 

1.4. These are often constructed via the assembly of glass capillaries within each 

other, giving rise to coaxial droplet-generating geometries. In the majority of instances, 

these devices are constructed using manual methods, adhesives such as epoxy resin, 

and re-purposed materials (i.e. modified syringe tips as inlets), although there have 
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been attempts to standardise the process of device assembly using 3D-printed 

scaffolds that aid in the alignment of channels13. Nevertheless, glass microfluidics 

offers an attractive way of producing double and triple emulsions due to its fabrication 

simplicity and material compatibility with surface modification techniques. 

2.1.1.2 3D-printing in Microfluidic Manufacture 

3D-printing has emerged as a versatile tool and method of manufacture of microfluidic 

devices in the recent years, sparked by the increased availability, quality and reduced 

cost of 3D-printing resources. A variety of different 3D-printing techniques exist, each 

offering different capabilities and limitations. Inkjet (i3DP) is a technique borrowed from 

inkjet printing which relies on pulses generated thermally or via piezoelectric effects to 

push either powder or a photopolymer out of a nozzle on demand22. It offers good 

printing resolution (down to 50 μm in the x or y directions23), however the difficulties in 

removing scaffolds limits its use in generating microfluidic structures. 2-photon 

polymerisation uses a laser alongside a photocurable, transparent epoxy resin which 

allows for the direct production of 3-dimensional structures24. It allows for the 

generation of microfluidic channels that are 25 μm in diameter down to the nano-

range25, but the technique is very infrastructure-heavy which limits its availability and 

practicality for many microfluidic applications. Stereolithography (SLA) involves printing 

layer upon layer of a photocurable resin and offers good resolution26, but is limited to 

the use of certain photocurable resins and also offers difficulties in printing closed 

microfluidic channels27. Fused filament fabrication (FFF) 3D-printers work by extruding 

layers of a thermoplastic through a high-temperature nozzle. It is a low resolution 

method of 3D-printing (typically can´t produce channels below 100 μm in diameter27), 

but is tremendously practical due to its low cost, high accessibility and compatibility 

with a range of thermoplastics. Off-the-shelf 3D-printers have been demonstrated to be 

able to produce self-contained microfluidic devices able to generate droplets and 
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encapsulated stem cells using a modular system28. Although these channels are 800 

µm in diameter, it is expected that the fidelity and resolution of consumer-ready 3D-

printers will increase as the technology advances. Therefore, with the ability of 3D 

printing to greatly increase the availability and accessibility of microfabrication for 

microfluidics, its potential to democratise microfluidic manufacture, or at least become 

a significant tool in rapid prototyping, remains large17.  

2.1.2 Surface Modification of Microfluidic Devices 

Due to the dependency of microfluidics on channel surface chemistry, it is not 

surprising that surface modification techniques are extensively used within the 

microfluidic realm and fulfil a variety of different roles. Broadly, surface modification 

techniques serve to either encourage or inhibit the adhesion or absorption of different 

molecules on channel surfaces. This is of particular importance within the biological 

applications of microfluidics, as protein and biomolecule surface immobilization29-32 are 

useful for biosensing and lab-on-a-chip applications33, as well as preventing unwanted 

protein adsorption34. Similarly, droplet microfluidics rely on surface modification to 

change the wetting properties of the surface, as this technique inherently involves the 

non-interaction of the dispersed phase with channel walls35 and hence surface 

wettability must be tailored in order to produce a desired droplet regime (i.e. hydrophilic 

channels for oil droplets hydrophobic channels for aqueous droplets). 

Naturally, surface modifications strategies will depend on the material used to fabricate 

the microfluidic channels. With polydimethoxysilane (PDMS) being by far the most 

popular material used for microfluidic fabrication2, 3, most instances of techniques found 

in the literature focus on the surface modification of this particular polymer36, 37, 

although many of these techniques may be used with other materials depending on 

surface chemistry and reactivity. On the other hand, surface modification techniques 

also exist within and beyond microfluidics, and for other common materials such as 
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PMMA30, 38-40, glass15, 41-43, and others due to the extensive and broad use of surface 

modification for applications unrelated or preceding microfluidics. 

A 2011 review on the surface modification of PDMS37 listed the following surface 

modification techniques: plasma treatment, silanisation, chemical vapour deposition 

(CVD), layer-by-layer (LBL) deposition, surfactant treatment, protein adsorption and 

graft-polymer based. Some of these techniques, including silanisation, CVD, surfactant 

treatment, protein adsorption and LBL can be grouped into self-assembled monolayer 

(SAM) techniques that rely on molecules that expose a desired surface chemistry to 

self-assemble and bond to the native surface (i.e. PDMS), and often to cross-link to 

form a stable layer43. Beyond these techniques, topographic techniques exist which 

involve the nanopattering44 or the use of nanocomposite materials45, 46 such as carbon 

nanotubes47, 48 to surface modify microfluidic channels, which is envisaged to give rise 

to a next generation of higher performance microfluidic devices37.  

With most microfluidic fabrication materials being sufficiently hydrophobic in nature 

(PDMS, PMMA, glass, polycarbonate, fluoropolymers etc.) to naturally generate 

droplets of water in oil, this section will focus on the use of surface modification 

techniques to generate droplets of oil in water. Many of the techniques described 

above are regarded as cumbersome (i.e. LBL and graft-polymer)37, whilst some are 

more suited towards biological applications (i.e. protein adsorption), and others involve 

the use of surfactant layers which are non-permanent and incompatible with certain 

studies, such as those involving the study of artificial lipid bilayers. As such, this section 

will focus mainly on plasma modification, silanisation, and other instances where 

channel surfaces are hydrophillised using relatively uncomplicated techniques. 
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2.1.2.1 Plasma activation 

Plasma activation relies on the exposure of a surface to gas plasma. Plasma is one of 

the four fundamental states of matter and is a gaseous mixture composed of positive 

ions and negative electrons that occur when gaseous substances are subjected to high 

temperatures or strong electromagnetic fields.  

In the context of plasma activation, the commonly used oxygen plasma acts as a 

source of high energy, short-lived reactive oxygen species which can break bonds 

within a polymer backbone49. For both PDMS and glass surfaces, silanol groups 

develop (Si-OH) upon exposure to oxygen plasma at the expense of methyl groups (-

CH3)50. In PDMS, some of these combine with each other to form Si-O-Si bonds51. This 

is further evidenced by tapping mode atomic force microscopy (AFM) which 

demonstrates increased stiffness after plasma exposure52, indicating increased cross-

linking and bond formation at the PDMS surface. However, the surface is nevertheless 

thought to contain a richness in polar –OH groups. PMMA surfaces develop carboxyl, 

carbonate and carbonyl groups at its surface according to XPS studies53. There is 

evidence that the use of water vapour plasma instead of the commonly used oxygen 

may increase the density of hydroxyl groups for this material54. These chemical groups 

increase the surface energy and hydrophillicity albeit in a short-lived manner, due to 

the process of hydrophobic recovery55-58 wherein the highly reactive surface groups 

exchange with polymer oligomers in the bulk material phase in order to minimize 

surface energy. This appears to be true for PDMS, glass and PMMA surfaces. 

Although methods exist to circumvent this issue to varying degrees55, 59, this renders 

plasma treatment in itself ineffective at producing lasting hydrophilic surfaces for the 

production of droplets of oil in water. However, it enables the permanent or semi-

permanent bonding of other hydrophilic species to the activated, reactive layer it 

produces to produce long-lasting hydrophilic surface modifications. Thus it can be said 
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that due to the highly effective but short-lived nature of plasma surface treatment, the 

direct use of plasma within microfluidic surface modification is limited, but critical to 

other surface modification techniques that require surface activation, such as 

silanisation. 

2.1.2.2 Silanisation 

Silanisation is a surface modification technique that relies on the covalent bonding of 

organosilanes onto a surface and their formation of an interfacial self-assembled 

monolayer (SAM). SAMs are usually formed from linearly structured molecules that 

contain a surface reactive group on one end and a functional group on the other60. The 

first observed example of a SAM was the spontaneous assembly of organic thiols on a 

gold surface61. The self-assembly of fatty acids on alumina surfaces is another 

example60. Organosilanes are commonly used due to their ability to form monolayers 

on a large variety of surfaces and the availability of organosilanes with different 

functional groups to decorate the surfaces of a channel43. Methoxy- or chloro- groups 

are present on the surface reactive end of organosilane molecules, which react with 

trace amounts of water to form silanol groups (Figure 2.1). These can then covalently 

bond to other free hydroxyl groups present on a surface, and lateral hydroxyl groups 

cross-link with adjacent silane molecules to form a SAM. These reactions are very 

sensitive to the amount of water present in the system, and although the formation of a 

high-quality monolayer is often challenging, consistent and uniform surface chemistry 

and wetting profiles are anyhow achievable60. Thus, organosilanes are able to surface 

modify practically any surface that contains a richness in hydroxyl groups, which, as 

explained previously, can be actively encouraged using plasma activation for common 

microfluidic manufacture materials such as PDMS, glass and PMMA.  
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Figure 2.1 The steps that give rise to the polymerisation of a trichlorosilane and a 
trimethoxysilane onto a glass surface containing surface hydroxyl groups. “R” denotes the 
apical portion of the molecule that forms the new surface once the glass is surface modified. 
The chloro groups on the trichlorosilane and the Methoxy groups on the trimethoxysilane react 
with trace amounts of water to form hydroxyl groups, producing hydrochloric acid and methanol 
as side products, respectively. The hydroxyl groups can then covalently bond with a surface 
containing other hydroxyl groups, and cross-link with adjacent organosilanes. 

 

The selection of organosilanes that contain surface-reactive methoxy- or chloro- groups 

will depend on the surface that is modified, as the reaction products of the covalent 

bonding are either methanol or chloride ions, respectively, which can damage the 

material that is being surface modified. For example, the latter risks the localised 

production of hydrochloric acid62 which may corrode certain substrates. 

Silanisation methods invariably involve the selection of an appropriate organosilane 

depending on the surface-exposed functional groups desired and the suitable surface-

reactive groups. The surface needs to be cleaned and modified, via plasma treatment 

for example, to contain surface hydroxyl groups. Then, the surface is exposed to the 

selected organosilanes and excess organosilane removed after a period of time. 

Optional baking of the surface can be performed to improve SAM quality as this 

enhances the cross-linking of the organosilanes side-chains43. Common silanes for 

surface modification are listed in Table 1. 
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Silane Hydrophobic/hydrophilic Common use(s) 

3-Aminopropyltriethoxysilane/3-

aminopropyltrimethoxysilane 

(APTES/APTMS) 

Hydrophilic 

Generation of amine-
rich surfaces which can 
be used to immobilise 
biomolecules63. 

3-

Mercaptopropyltrimethoxysilane 

(MPTS) 

Hydrophilic 

Generation of thiol-rich 
surfaces which can be 
used to immobilise 
thiol-containing 
molecules64. 

Octadecyl organosilanes Hydrophobic 
Generation of 
hydrophobic surfaces 
and protein 
adsorption65. 

Polytetrafluoroethylene 

organosilanes (PFS) 
Hydrophobic 

Generation of 
hydrophobic surfaces 
or used as a resist for 
electron beam 
lithiography66. 

PEG and PEO organosilanes Hydrophilic 

Generation of 
hydrophilic surfaces 13. 

Table 1 Different organosilanes and their common uses within microfluidics. 

 

Oxygen plasma, piranha solutions or UV/ozone exposure can be used for the 

introduction of surface hydroxyl groups, the selection of which will depend on material 

compatibility43. Exposure to organosilanes can be achieved via liquid phase deposition 

via submerging the desired surfaces in an organosilanes solution or chemical vapour 

deposition (CVD), with the latter reported to give rise to SAMs of a higher order and 

quality67.  

2.1.2.3 Other strategies 

Other surface modification strategies exist, especially for PDMS and glass. One 

example involves the coating of PMMA walls with poly vinyl alcohol (PVA) or 

hydroxypropylmethyl cellulose following substrate oxidation with UV/ozone or nitric 
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acid, which is reported to reduce water contact angle down to 18.9º (for PVA-coated 

polymer oxidised with UV/ozone)38. In these methods, oxidisation serves to increase 

hydrogen bonds between the substrate and the modifier, but it is considered that only a 

physical coating is achieved as there is no covalent bonding to the surface. Another 

method involves submerging PMMA in a solution of potassium iodide and iodine68. This 

method induces an increase in surface roughness and water contact angle is not 

reduced below 50º, and is therefore less preferable than other methods described 

here. 

2.2 PMMA Devices 

Initially, the production of flow-focusing, droplet-generating devices made from PMMA 

was explored, owing to the ease of manufacture by CNC machining and existing 

experience within the research group. Since the wetting profile of PMMA favours 

preferential wetting of oil over water, resulting in water in oil droplet formation, surface 

modification strategies were evaluated in order to attempt to produce oil in water 

emulsions. The ability to selectively modify PMMA to tailor its wetting profile would 

enable the production of sequential water and oil droplets to make hierarchical 

emulsions for later application as encapsulated DIB systems. 

2.2.1 Methods 

2.2.1.1 Microfluidic Fabrication 

Fabrication of PMMA microfluidic devices for the generation of W/O/W emulsions 

consisted of device design, PMMA milling and surface modification via silanisation. 

PMMA was purchased from Arkema (France). 
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2.2.1.1.1 CAD Design  

Computer Assisted Design was employed to design 2.5D and 3D microfluidic chips and 

assemblies. This was done using the software Solidworks (Dassault Systemes, 

France). 

2.2.1.1.2 CNC Machining  

Computer Numerical Control (CNC) micromilling (C30, LPKF, Germany) was used to 

manufacture PMMA chips. 2D designs were exported from SOLIDWORKS as .dxf files 

into the software CircuitCAM 5.0 (LPKF, Germany), which performed the contour 

routing for the milling of channels and holes. The file is then exported to the software 

Boardmaster (LPKF), which operates the C30 milling machine. The software 

automatically controls the milling tool movement in the X and Y dimensions, whilst the 

Z dimension (depth) had to be controlled manually. This required the milling of 

channels to occur in multiple steps, with each step milling a depth equivalent to a 

quarter of the width of the tip of the milling tool employed. This minimises the formation 

of material debris, protects the tool from damage and ensures a smooth surface finish. 

Typically, 0.15 mm and 0.8 mm end mill tools (LPKF) were employed, depending on 

the width of the channels. A rotational speed of 24,000 rpm and a travel speed of 20 

mm s-1 were used. The relatively slow rotational speed and relatively fast travel speed 

ensure that the PMMA substrate does not melt. Debris was collected using a vacuum 

line attached to the milling head. After the channels had been milled, a hand drill 

(Dremel, Germany) was used to drill holes for the microfluidic chip inlets and outlets 

using a 0.8 mm drill tool.  
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2.2.1.2 Surface modification 

Surface modification involved the plasma activation of glass and PMMA surfaces and 

their subsequent exposure to organosilanes to form a SAM. 

2.2.1.2.1 Plasma activation 

Plasma activation of glass or PMMA surfaces and capillaries was carried out using a 

Femto Plasma Cleaner (Diener, Germany). Prior to plasma activation, glass surfaces 

and capillaries were sonicated for 10 minutes in neat acetone, then methanol and then 

isopropanol. PMMA surfaces were sonicated in isopropanol only as acetone is able to 

dissolve the polymer, and methanol and ethanol can induce crazing and swelling of 

PMMA solids. The surfaces were then vacuum-dried for at least 10 minutes in the 

plasma cleaner. Oxygen plasma is generated using an oxygen stream at a flow rate of 

10 sccm and a pressure of 0.35 mbar. Oxygen plasma is qualitatively confirmed 

visually, as it generates white/blue light, as opposed to the purple light emitted by air 

plasma (Figure 2.2). During the method development process, surfaces were exposed 

to plasma for between 0 and 12 minutes. 
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Figure 2.2 Activation of glass or PMMA surfaces using oxygen plasma. a) Schematic of the formation of 
oxygen plasma using a high frequency generator (Diener, Germany) from oxygen gas (0.35 mbar). b) 
Photograph of plasma chamber displaying the generation of white/blue plasma, indicating oxygen plasma. 
This colour varies depending on the gas composition. 

 

2.2.1.2.2 Silanisation 

Glass or PMMA is silanised using 3-[Methoxy(polyethyleneoxy)propyl]trimethoxysilane 

(MPEOTMS) or N-(Triethoxysilylpropyl)-O-poly(ethylene oxide)urethane (TEOSPEO) to 

achieve hydrophilic surfaces (Figure 2.3). Following oxygen plasma activation (0.35 

mbar O2, 10 sccm, 10 minutes), substrates are submerged overnight in a 2% v//v 

solution of the desired silane in isopropanol. Care is taken in order to minimise the time 

between the end of plasma exposure and incubation with silane. Following silane 

incubation, the now silanised materials are washed with deionised water and cured at 

a) 

b) 
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120ºC overnight for glass and 70ºC for 24 hours for PMMA. The lower temperature of 

PMMA ensures that the polymer does not melt and hence disrupt its surface chemistry. 

 

                   

 

Figure 2.3 Silanisation of glass or PMMA surfaces. a) Two hydrophilic silanes (ABCR, Germany) used to 
produce hydrophilic glass or PMMA surfaces. b) Diagram depicting the functionalization of plasma 
activated surfaces using trimethoxysilanes. 

 

Incubation with silane 

Curing at high temperature 
Hydrophilic surface 

b) 

a) 

  3-[Methoxy(polyethyleneoxy)propyl]trimethoxysilane N-(Triethoxysilylpropyl)-O-poly(ethylene oxide) 

urethane 
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2.2.1.2.3 Contact angle measurements 

Contact angle measurements were taken using custom-made equipment. Sample 

surfaces were placed upon a movable z-stage and imaged using a digital USB 

microscope (Celestron, USA). A transmitted light base was used to produce high 

contrast images (Figure 2.4a). 1 μL droplets of either deionised water or squalene were 

placed on the desired surface using a pipette. Care was taken in order to dispense the 

droplet without touching the surface as well as to dispense the same volume of liquid 

for every experiment. Droplets were then given 10 seconds to rest before any images 

were taken. Droplet images were processed using ImageJ software using the 

“sharpen” and then the “find edges” functions in order to more accurately ascertain the 

edges of the droplet. The contact angle was then taken using the “angle” tool (Figure 

2.4b). For every contact angle measurement, an average was calculated from both 

sides of the droplet. 

         

Figure 2.4 Contact angle measurements. a) Photograph of the custom equipment assembled to image 
sessile droplet contact angles. Droplets are placed on a stage which is imaged using a USB microscope 
(Celestrion, USA) and illuminated with a transmitted light base. A clamped pipette is used to dispense 
droplets onto the desired surface which can move in the z dimension. b) Photograph of a droplet of water 
on a surface imaged as shown in a), after processing using the “sharpen” and “find edges” tools of the 
ImageJ software. Contact angle data was extracted from these images. 

 

a) b) 
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2.2.1.3 Microfluidic set-up 

PMMA microfluidic devices consisted of a machined steel sandwich manifold, as 

described by Castell et al.69, containing the PMMA micromilled chip as well as a PMMA 

“lid” to enable the sealing and visualisation of the channels (Figure 2.5). Inlet and outlet 

FEP tubing (Kinesis, UK) with an inner diameter of 0.5 mm and an outer diameter of 

0.76 mm were inserted into the appropriate holes that are drilled into the microfluidic 

chip and aligned with the manifold, facilitated by PEEK fingertight fluidic connectors 

(Kinesis, UK) that are screwed into the manifold. Nitrile rubber O-rings were used to 

seal these inlets and outlets via compression. The steel manifold is compression 

sealed via eight steel screws that go through the whole device, which avoids any 

leakage that may occur from the channels. 

 

Figure 2.5 Steel sandwich manifold components used for the microfluidic operation of 
micromilled PMMA chips69. Steel screws are used to compress the PMMA chip with a PMMA 
film, in order to seal the channels. A glass cylinder is placed on the PMMA film in order to aid in 
the compression whilst allowing for observation of the channels. Tubing inlets and outlets are 
inserted through the bottom and interfaced with the bottom compression manifold using PEEK 
fingertight fittings and rubber O-rings.  
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2.2.1.4 Microfluidic operation 

Fluids were delivered into the device using 3 mL luer lock plastic syringes mounted on 

syringe pumps (KD Scientific, USA), connected to the microfluidic device inlets using 

FEP tubing. The flow rates employed here ranged between 1 and 10 ml hr-1. 

2.2.1.5 Materials 

De-ionised water was used, Squalene was purchased from Sigma-Aldrich (USA), and 

the silanes 3-[Methoxy(polyethyleneoxy)propyl]trimethoxysilane (MPEOTMS) and N-

(Triethoxysilylpropyl)-O-poly(ethylene oxide)urethane (TEOSPEO)  were purchased 

from ABCR (Germany).  

2.2.2 Results and Discussion 

2.2.2.1 Silanisation of PMMA  

Unmodified PMMA surfaces were found to give rise to the production of water droplets 

in oil (W/O). Thus, silanisation of PMMA was attempted in order to produce hydrophilic 

channels which would allow for the formation of oil in water (O/W) emulsions and 

subsequently double emulsions (W/O/W). In order to do this, the surfaces were first 

plasma activated using oxygen plasma and then exposed to hydrophilic organosilanes. 

The effect of plasma activation times was explored (0 – 12 minutes), which produced 

increasingly hydrophilic surfaces indicating an increase in surface activation as 

described in Section 2.3.1.2.2 (Figure 2.5a). Subsequent silanisation resulted in 

hydrophilic surfaces (Figure 2.5b), with the highest achieved hydrophillicity involving a 

plasma activation time of 5 minutes and the use of MPEOTMS silane. Silanisation 

following 11 minutes of plasma activation resulted in less hydrophilic surfaces than 

when exposed to 5 minutes, contrary to what one would expect, as increasing plasma 

times appear to cause a more complete surface activation (Figure 2.5a). It is possible 
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that the increased heat that the PMMA surfaces are exposed to when subject to 11 

minutes of plasma activation affects the surface chemistry or topology in a manner that 

is detrimental to subsequent silanisation. 

Microfluidic flow was then attempted by flowing water (2 ml hr-1)  and squalene oil (0.5 

ml hr-1) through a micromilled PMMA microfluidic chip that had been surface modified 

using the conditions that led to the highest hydrophillicity as shown in Figure 2.5b (blue 

bar). After initial successful oil droplet formation, the surface modification appeared to 

wear off with time and continued flow, as the oil phase was observed to adhere to the 

channel walls as the experiment progressed. This can be seen in Figure 2.5c, as an 

elongated sub-stream of oil advances further down the channel after the T-junction, 

adhering to the channel wall. This occurred within a minute of oil and water flow, and it 

was therefore found that the surface modification was only temporary and inadequate 

as a technique for the sustained production of hierarchical emulsions. 
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Figure 2.6 Surface modification of poly (methyl methacrylate) (PMMA) by silanisation. a) The 
effect of plasma activation time on PMMA water contact angle (n = 3). b) Water contact angles 
for PMMA exposed to different silanisation conditions, using the silanes 3-
[Methoxy(polyethyleneoxy)propyl] trimethoxysilane (MPEOTMS) and N-(Triethoxysilylpropyl)-O-
poly(ethylene oxide) urethane (TPEOTMS) (n = 3). The bar in blue represents the condition 
which appears to give the best hydrophilic surface modification and is thus used in the 
microfluidic experiments shown in c). c) Images of a surface modified microfluidic channel 
(diameter = 500 µm) flowing droplets of oil in water generated upstream in a milled T-junction. 
As flow occurs, the oil interface grows in the direction of flow as the silane treatment wears off 
and the oil adheres to the channel surface, leading to droplets breaking off further down in the 
channel. The flow rates employed here are 0.5 ml hr-1 for the oil phase and 1 ml hr-1 for each of 
the water inlets. 

  

This is contrary to evidence in the literature that suggests that PMMA can be 

silanised54, although this evidence characterises surface modification via water contact 

angle which might not address the issue that such modification is not permanent. 

Silanisation with both of the hydrophilic silanes (as shown in section 2.2.1.2) was 

attempted as well as an experimental method to produce water vapour plasma as 

suggested in the literature54. The use of water vapour plasma was expected to give rise 

to a higher density of hydroxyl terminals on the PMMA surface, enhancing the 

silanisation process. This method consisted in subliming a 50 μL frozen droplet of 

deionised water within the plasma cleaner chamber up to the same chamber pressure 

as used for oxygen plasma (0.35 mbar), without any other gas flow. However, similar 

results were obtained for both oxygen and water vapour plasma silanisation. The non-

permanent nature of the silanisation was demonstrated by simulating water flow across 

the surface by washing freshly modified PMMA surfaces which had been surface 

activated with either oxygen or water vapour plasma prior to silanisation. Each washing 

event was found to increase the water contact angle (Figure 2.7), demonstrating that 

the silane layer was only weakly bound to the PMMA surface if bound at all. 
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Figure 2.7 Water contact angles of PMMA before (control) and after silanisation with N-
(Triethoxysilylpropyl)-O-poly(ethylene oxide) urethane (TPEOTMS), using either oxygen or 
water vapour plasma to activate the surface prior to silanisation. The substrates were then 
washed twice for 30 seconds with a stream of deionised water and the contact angles 
measured, demonstrating the washing off of the surface modification technique employed. The 
error bars represent standard deviation (n = 5). 

 

It is noted that silanisation can be a sensitive process, and it is therefore possible that 

the methodology employed led to ineffective silanisation. For example, the process is 

not carried out in a clean room as commonly suggested43, and curing is performed at a 

temperature below the boiling point of water, as it was necessary to choose a 

temperature below the melting point of PMMA. Also, the use of trichlorosilanes instead 

of trimethoxysilanes could have been attempted. Another explanation for the ineffective 

silanisation could be the diversity of functional groups present on the PMMA surface 

following oxygen plasma activation, as noted in section 2.1.2, of which only one type 

contains –OH terminals to which silanes can bond. This might give rise to a 

heterogeneous, low-density silanisation where silane molecules are not able to 

sufficiently cross-link. It was therefore concluded that, due to the difficulties in 

controlling the surface wettability of PMMA substrates, a different method relying on 

Untreated TPEOTMS Wash 1 Wash 2 

W
a
te

r 
c
o

n
ta

c
t 
a
n

g
le

 º
 



 

85 

 

Chapter 2 – Development of a Microfluidic Device for the Generation of Hierarchical 
Emulsions. 

surface modified glass capillaries would be explored due to its more prevalent use in 

the literature regarding the formation of W/O/W emulsions. 

2.3 Hybrid, 3D-printed glass capillary devices for the generation of 

W/O/W and W/O/W/O emulsions 

The inability to produce PMMA channels that are hydrophilic led to the exploration of 

an alternative method of producing W/O and O/W using microfluidics. Thus, the idea of 

a hybrid, 3D-printed microfluidic device based on the coaxial alignment of channels of 

alternating wettability was explored, as glass capillaries can be used which are known 

to be more amenable to silanisation techniques. 

2.3.1 Methods 

CAD design and surface modification techniques were performed as described in 

Section 2.2.1. 

2.3.1.1 3D-Printing 

3D-printing was performed using an Ultimaker 2 (Ultimaker, Netherlands) fused 

filament fabrication (FFF) 3D-printer, primarily extruding 3 ± 0.005 mm transparent poly 

(lactic acid) (PLA) filament (Faberdashery, UK). Devices designed in Solidworks were 

converted to .stl files and then imported into the Cura software (Ultimaker, 

Netherlands), which was used to virtually slice and parameterise designs into printer-

ready files (.gcode). The main printer parameters employed are adapted from Morgan 

et al.28 and summarised in Table 2. Such parameters allowed for high printing fidelity 

as well as a transparent and leak-free device. 
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Parameter Value 

Nozzle diameter 0.4 mm 

Layer height 0.06 mm 

Wall thickness 1.2 mm 

Top/bottom Thickness 1.2 mm 

Infill density 70% 

Print speed 30 mm s-1 

Travel speed 120 mm s-1 

Print cooling yes 

Nozzle temperature 215 ºC 

Build plate temperature 70 ºC 

Build plate adhesion skirt 

Enable support No 

 

Table 2 3D-printing parameters selected in the slicing software Cura (Ultimaker, Netherlands) 
for the manufacture of 3D-printed microfluidic devices. 

 

2.3.1.2 Microfluidic device assembly 

A microfluidic device for the production of hierarchical emulsions was assembled using 

a custom-designed, 3D-printed assembly along with glass capillaries (internal diameter 

= 2 mm, external diameter = 2.4 mm) (CM Scientific, UK), an ethylene 

tetrafluoroethylene (ETFE) T-junction (ID = 0.5 mm) (Kinesis, UK) and FEP tubing (ID = 

0.8 mm, OD = 1.6 mm) (Kinesis, UK). The device schematic and dimensions are 

shown in Figure 2.8.  
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Figure 2.8 a) CAD design showing the main device features and photograph of hybrid, 3D-
printed device used to generate W/O/W emulsions. b) Dimensions of the device. 

As shown in Figure 2.8, the ETFE junction is employed in order to produce water 

droplets in oil, and is then delivered coaxially into a hydrophilic, silanised glass capillary 

using FEP tubing. A second aqueous phase flows between the FEP tubing and the 

glass capillary, which allows for the coaxial formation of W/O/W hierarchical emulsions.  

The glass capillary is glued to a hole designed into the 3D-printed assembly using a 

two-part epoxy resin (Loctite, Germany). The output FEP tube of the ETFE junction is 

then inserted into the glass capillary through a chamber within the 3D-printed assembly 

so that it terminates ≈ 0.5 mm into the glass capillary, and screwed into the horizontal 

input of the 3D-printed assembly using a fingertight fitting (Kinesis, UK). The second 

aqueous phase is delivered into the 3D-printed assembly chamber using the vertical 

input on top of the device, which delivers fluid into the 3D-printed chamber and the 

glass capillary to form the coaxial, droplet-generating junction. The 3D-printed 

assembly aids in the alignment of the FEP tube with the glass capillary, and also allows 

a) 

b) 
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the fluidic inputs to be appropriately sealed with use of fingertight fittings. PTFE tape is 

wrapped around the thread of the fingertight fittings in order to secure a water-tight seal 

within the 3D-printed assembly.  

2.3.1.3 Microfluidic operation 

Fluids were delivered to the device as described for PMMA devices (Section 2.2.1.4).  

2.3.2 Results & Discussion 

2.3.2.1 Production of W/O and O/W emulsions using a hybrid, 3D-printed 

microfluidic device. 

The production of W/O/W emulsions in a sequential manner requires the independent 

generation of W/O emulsions and O/W emulsions. The microfluidic device shown in 

Figure 2.8 is employed for this, where water droplets are generated in the ETFE T-

junction and oil droplets are generated in the coaxial droplet-generating geometry. 

2.3.2.1.1 W/O emulsions  

It was found that a commercially available ETFE junction was able to produce aqueous 

droplets in oil at a variety of different flow rates (between 2 – 10 ml hr-1 for both oil and 

water phases), as well as being able to output these droplets into FEP tubing. 

Fingertight fittings between the ETFE and FEP materials were found to sufficiently seal 

the channels avoiding any leakage. An example of the generation of water droplets 

using an ETFE T-junction is shown in Figure 2.9. 
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Figure 2.9 The production of a stream of droplets of water in oil produced in the ETFE T-
junction and output into an FEP tube. The water is dyed pink with 25 μM sulphorhodamine B, 
and the oil phase is composed of squalene with 1% (v/v) Span-80. The flow rates employed are 
4 ml hr-1 for the water phase and 10 ml hr-1 for the oil phase.  

The frequency of droplet generation and the volume of the resultant droplets were 

analysed (Figure 2.10a and b). Frequency was calculated by measuring the time 

between the pinching-off of droplets, whilst droplet volumes were calculated from 

droplet dimensions in photographs, which were assumed to be ellipsoid in geometry 

(Appendix 1). Flow rate regimes where the water flow rate is higher than the oil flow 

rate are excluded as they failed to give rise to periodic droplet generation (Appendix 2). 
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Figure 2.10 The effect of water and oil flow rates in the production of W/O droplets in an ETFE 
T-junction. a) Droplet volume vs. flow rate. b) Droplet generation frequency vs. flow rate. 

The relationship between the frequency of W/O formation and water flow rate appears 

to be erratic across the range of water flow rates explored (Figure 2.10b), as a 

somewhat linear increase in frequency is visible for aqueous flow rates between 2 and 

6 ml hr-1, followed by a drop in frequency for the higher flow rates. Increasing oil flow 

b) 

a) 

Oil flow rate 
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rates appear to give rise to a higher frequency of droplet generation for a given water 

flow rate. The relationship between flow rates and droplet volume seems to be erratic 

as well (Figure 2.10a), which is very likely related to the variability in frequency. 

Additionally, droplet generation frequencies appear to inversely relate to droplet 

volume. This is expected as for any given aqueous flow rate, the same volume of water 

per given amount of time is divided by a larger number of droplets for higher droplet 

generation frequencies. It does appear that increasing water flow rates, particularly 

above 6 ml hr-1, gives rise to larger droplets, especially for low oil flow rates. This is 

expected as for higher water flow rates, a higher shear force is required from the oil 

phase in order to break the stream of water into droplets. 

The erratic nature of droplet formation within the ETFE junction could be because of 

droplets forming in close proximity with each other and coalescing, giving rise to a 

lower frequency of droplet generation as well as larger droplets. This is somewhat 

supported by the increase in droplet volume for aqueous flow rates of 8 and 10 ml hr -1 

(Figure 2.10a), and the fact that formed droplets transition from a 0.5 mm channel 

within the ETFE junction to a 0.8 mm channel in the FEP tube, which is a likely point for 

coalescence due to the expected drop in flow velocity. Another explanation of this 

could be the presence of void volumes between the tubing and the ETFE junction, as it 

is often challenging to cut the tubing perfectly flat. Such void volumes may cause a 

transient drop in velocity aiding in droplets coalescing at this junction. An alternative 

explanation for the difference could be a transitioning of one type of droplet-generating 

regime to another, as the Ca number varies for different flow velocities (as described in 

section 1.3). However, all estimated Ca numbers for these experiments except for the 

lowest flow rates employed appear to be >0.1 (Appendix 3), which is defined as being 

the transition point from “squeezing” to “dripping” regimes (see section 1.3.1). Thus, 

reproducibility, control and predictability of the number of droplets encapsulated per 

W/O/W should be achievable by maintaining a constant velocity following droplet 
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formation. It is likely that the system would benefit from the selection of a different 

method of aqueous droplet generation, such as using a PMMA chip or a coaxial 

droplet-generating geometry downstream. 

The formation of droplets in the ETFE T-junction appears to be governed by shear 

stress forces for all except one (2 ml hr-1 for both water and oil phases) of the flow rates 

employed, according to the Ca numbers obtained (see section 1.3.1). Ca numbers 

were calculated to be between 0.99 and 0.5, with transitions from one type of droplet 

generation to another thought to occur around Ca = 0.1 according to reports in the 

literature70. Increasing the flow rate of either of the fluids increases the resultant 

capillary number resulting in increased dominance of viscous over surface tension 

forces. 

2.3.2.1.2 O/W emulsions 

Further downstream in the microfluidic device, a coaxial junction is produced via the 

alignment of an FEP tube (ID = 0.8 mm) inside a larger glass capillary (ID = 2 mm). 

The FEP tube flows the squalene oil phase, whilst the glass capillary flows the water 

phase through the 3D-printed assembly. As with the T-junction upstream, fingertight 

fittings are used to seal the fluid inlets of the 3D-printed parts. Although glass is 

somewhat hydrophilic, in itself it was not able to produce oil droplets as oil would 

adhere to the surface. Silanisation with MPEOTMS was employed to increase the 

hydrophillicity of the channels, which contact angle measurements on glass coverslips 

confirmed (Figure 2.11).  
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Figure 2.11 Contact angles of both water and squalene oil on glass coverslips. Glass is 
silanised with 3-[Methoxy(polyethyleneoxy)propyl] trimethoxysilane. 

 

An example of the production of droplets of oil in water in the coaxial, droplet-

generating geometry using a silanised glass capillary is shown in Figure 2.12. 

Importantly, in contrast to PMMA, the channel remained hydrophilic under oil and water 

flow and was found to remain so for up to 3 months of non-continuous use.  

 

Figure 2.12 The production of droplets of oil in water in the coaxial, droplet-generating 
geometry within the 3D-printed microfluidic device. The oil phase is composed of squalene and 
the aqueous phase is deionised water. The oil flow rate is 10 ml hr-1 ad the water flow rate is 
100 ml hr-1. 

 

Oil droplets appear to break off after the diameter of the glass channel is occluded by 

the forming droplet, demonstrating a dominance of surface over viscous forces. For the 

whole range of flow rates employed (2 – 10 ml hr-1 for the oil, 100 – 500 m hr-1 for the 

carrier aqueous phase), the highest Ca number obtained is 0.00016, which indicates a 
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geometrically-driven regime of oil droplet formation as described in section 1.3.2. 

Because of this regime of droplet formation, it is likely that droplet size is highly 

influenced via the diameter of the glass channel and the FEP channel delivering the oil 

into the glass channel. Increasing carrier flow rates as well as lower oil flow rates give 

rise to smaller droplets, although droplet diameters remain between 1.6 mm and 2 mm 

for the majority of flow rates tested, further demonstrating the geometrically-driven 

regime of droplet formation and the dependency of droplet diameters to channel 

diameters (Figure 2.13).  

 

Figure 2.13 The effect of oil and carrier aqueous flow rates on oil droplet diameter, for droplets generating 
using a coaxial, droplet-generating geometry in the hybrid, 3D-printed device. 

 

The size of the resulting oil droplets is also likely dependent on the ratio of diameters 

between the FEP and glass channels15. Furthermore, it would be necessary to attempt 

oil droplet formation using different sized channels in order to better establish the 

relationship between channel diameter and resulting droplet diameter. This would be 

focus of future experiments as it would be beneficial to scale-down the device in order 
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to produce smaller oil droplets and hence smaller W/O/W emulsions, as discussed in 

section 2.4.4. 

In order to further characterise oil droplet formation, the frequency and volume of oil 

droplets generated in this way was characterised for the range of flow rates employed 

(Figure 2.14a and b).  

 

 

Figure 2.14 The effect of oil and water flow rates in the production of O/W droplets in a coaxial droplet 
generating geometry. a) Droplet volume vs. flow rate. b) Droplet generation frequency vs. flow rate. 

Increasing oil flow rates gave rise to increasing frequency of droplet generation where 

the effect of the carrier flow rates appears to be minimal (Figure 2.14b). There also 

appears to be higher variability in droplet generation frequency at higher oil flow rates. 
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Increasing oil flow rates gives rise to larger droplets for carrier flow rates below 300 ml 

hr-1; although oil droplet volumes remain between 2 and 2.5 μL for the higher flow rates 

explored (Figure 2.14a). This difference does not appear to be due to a difference in 

droplet-generating regime as Capillary numbers for all flow rate conditions remain well 

below 0.1, which is the Ca number at which transitions into other kinds of droplet-

generating regimes are thought to occur for flow-focusing junctions according to reports 

in the literature70, as seen in section 1.3.2. This data shows a higher predictability of 

O/W formation in the coaxial junction than for W/O formation in the ETFE junction for 

the range of flow rates explored. This is likely because of the geometrically-driven 

droplet formation regime, which has been reported to be highly stable, as well as the 

maintenance of constant channel diameters in comparison to droplet formation in the 

ETFE junction, which allows for the oil droplets to be sufficiently spaced from each 

other and thus avoid coalescence between multiple droplets. 

2.3.2.2 Production of W/O/W emulsions using a hybrid, 3D-printed 

microfluidic device. 

Using the device depicted in Figure 2.8, and the surface modification techniques and 

flow rate regimes described in the previous section, it was possible to generate W/O/W 

emulsions. First, water droplets are generated as shown in an ETFE junction as shown 

in Figure 2.9. The flow of droplets of water in oil is then passed into the 3D-printed 

microfluidic device, which is then broken up into droplets of oil containing a number of 

aqueous droplets within, in the coaxial, droplet-generating geometry downstream 

(Figure 2.12). The formation of W/O/W double emulsions using the flow regimes 

presented in section 2.3.2.1 is shown in Figure 2.15a.  

A second mode of droplet generation was also possible that gave rise to a jetting 

regime of droplet, and did not require the use of surface modification techniques 
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(Figure 2.15b). In this method, the carrier phase contained 10 mM oleic acid dissolved 

in a pH 12 aqueous solution, and acted as a surfactant dissolved in the aqueous phase 

as oleate. This reduces the surface tension between the carrier aqueous phase and the 

forming oil droplets, and appeared to significantly alter the method of coaxial droplet 

formation as W/O/W emulsions broke off into droplets much before the forming oil 

droplet occluded the majority of the glass channel, due to fluid flow instabilities. This is 

characteristic of a domination of viscous over surface forces, and a high Ca number is 

expected due to the decrease in surface tension between the oil and water phases. 

For both modes of fluidic operation, squalene is used as the oil phase with Span-80 

surfactant (1% v/v) in order to avoid the coalescence of the aqueous droplets contained 

within the W/O/W emulsions. For the subsequent application of these emulsions as 

artificial lipid bilayer constructs, the use of a surfactant in the oil phase is somewhat 

comparable to the presence of a dissolved phospholipid required in order to produce 

droplet interface bilayers within the fluidic constructs. 

 

Figure 2.15 Time lapse photographs depicting the formation of W/O/W emulsions using the 
hybrid, 3D-printed device depicted in Figure 2.8. Aqueous droplets are dyed red and contain a 
pH 7.4 phosphate buffer. Flow rates are 4 ml hr-1 for the internal aqueous phase, 8 ml hr-1 for 
the oil phase and 300 ml hr-1 for the aqueous carrier phase. Although the flow rates are the 
same for a) and b), different flow regimes are observed as a) uses a hydrophilic, surface 
modified glass channel, no surfactant in the aqueous, and a pH 7.4 phosphate buffer as the 

b) a) 

t = 1500 ms 

t = 2250 ms t = 375 ms 

t = 250 ms 

t = 125 ms 

t = 0 ms t = 0 ms 

t = 750 ms  

1 mm 1 mm 
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aqueous carrier phase, and b) uses no surface modification and a 10 mM solution of oleic acid 
in pH 12 water as the carrier phase.  

For both of the flow regimes described in Figure 2.15, emulsions could be produced for 

a wide range of flow rates (2 – 10 ml hr-1 for internal aqueous and oil phases, 100 – 500 

ml hr-1 for the external aqueous phase), giving rise to emulsions containing a different 

number of internal aqueous cores. Jetting regimes gave rise to little variability in the 

number of aqueous droplet encapsulated per emulsion for the range of flow rates, 

encapsulating between one and three aqueous cores. On the other hand, 

geometrically-controlled regimes allowed for the encapsulation of between 6 and 22 

aqueous droplets, as shown in Figure 2.16. This difference is likely because the 

geometrically-controlled regime involves a low frequency of oil droplet generation and a 

relatively high frequency of water droplet generation downstream. So, as the oil droplet 

is in its forming stages, a number of aqueous droplets can flow into it before it is 

pinched off into a W/O/W emulsion. This is expected to give rise to a more predictable 

regime of droplet encapsulation. 

Carrier aqueous flow rate = 100 ml hr-1 

 

Oil flow rate (ml hr-1) 

2 4 6 8 10 

Water 
flow rate 
(ml hr-1) 

2 14±0.82 14.75±1.26 14.25±0.96 14±0.21 14±0.82 

4 x 18.75±0.96 18.5±0.58 19±0.82 17±0.82 

6 x x 21 21±0.82 21 

8 x x x 20.25±0.5 21.25±0.96 

10 x x x x 21.5±1.73 
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Carrier aqueous flow rate = 300 ml hr-1 

 

Oil flow rate (ml hr-1) 

2 4 6 8 10 

Water 
flow rate 
(ml hr-1) 

2 7.5±0.58 6.75±1.26 7.25±0.96 8.25±0.5 9 

4 x 8.25±1.5 7.5±0.58 6.5±0.58 7.75±0.96 

6 x x 12.75±0.96 12.25±2.36 13.75±0.5 

8 x x x 12.5±1.73 12.5±0.58 

10 x x x x 12.25±0.5 

 

Carrier aqueous flow rate = 500 ml hr-1 

 

Oil flow rate (ml hr-1) 

2 4 6 8 10 

Water 
flow rate 
(ml hr-1) 

2 7±0.82 8.25±0.5 8 6.75±0.5 7.5±1 

4 x 9.25±0.96 9.75±0.5 11±0.82 11±0.82 

6 x x 9.75±0.96 12.5±0.58 12.5±1 

8 x x x 8.5±1.91 17±1.63 

10 x x x x 12.25±1.71 

 

Figure 2.16 The number of aqueous droplets encapsulated per oil droplet at a variety of 
different flow rates in the generation of water-in-oil-in-water (W/O/W) emulsions using a hybrid, 
3D-printed coaxial device. Flow rates marked “x” were excluded as they gave rise to non-
periodic water droplet formation (see Appendix 1). 

As shown in Figure 2.16, the flow rates of all three phases have an effect on the 

number of aqueous droplets encapsulated per oil droplet. Generally, increasing water 

and oil flow rates give rise to emulsions with a greater number of encapsulated 

droplets, as higher water flow rates generate water droplets at a higher frequency and 

higher oil flow rates give rise to smaller water droplets and larger oil droplets (See 

Figure 2.10 and Figure 2.14). The water flow rate appears to have a larger impact on 

the number of encapsulated droplet than the oil flow rate. Increased carrier water 

phase flow rates decrease the number of droplets encapsulates per emulsion, which is 

expected as this increases the frequency at which oil droplets are generated (see 

Figure 2.14), thus providing less time for the growing oil droplet to encapsulate 

aqueous droplets before being pinched-off.  



 

100 

 

Chapter 2 – Development of a Microfluidic Device for the Generation of Hierarchical 
Emulsions. 

2.3.2.2.1 Predicting the number of aqueous cores encapsulated per W/O/W 

emulsions produced using a geometrically-controlled regime of droplet 

generation 

As previously established, the geometrically-driven method of W/O/W emulsion 

formation allows for a wide range of aqueous droplets encapsulated per emulsion 

depending on the flow rates employed. In this section, a prediction model for the 

number of encapsulated droplets per W/O/W emulsion will be attempted based on the 

frequency of W/O and O/W generation for different flow rates, as seen in section 

2.3.2.1, by dividing the former with the latter. For example, if water droplets are being 

generated at 10 Hz, and oil droplets are being generated upstream at 1 Hz, then it 

stands to reason that 10 droplets are encapsulated per oil droplet. However, this simple 

calculation does not take into account that the presence of the flow of water droplets 

within the oil stream, as the frequency of oil droplet formation was determined 

experimentally in the absence of an aqueous phase forming droplets in the oil phase. 

To account for the flow of aqueous droplets in oil, the frequency of oil droplet formation 

is taken for the flow rate of the water and oil phases combined, which can be 

extrapolated from the linear trends seen for oil droplet frequency of generation (Figure 

2.17). The oil phase flow rate is kept constant at 10 ml hr-1 as it allows for the use of a 

wide range of internal aqueous flow rates (2 – 10 ml hr-1).  
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Figure 2.17 Variation of oil droplet generation frequency using the coaxial droplet generator in 
response to varying oil flow rate (0 - 10 ml hr-1). A linear regression is fitted displaying an R2 
value of 0.9543. This allows for the frequency of oil droplet generation to be predicted for a 
given oil flow rate when the external water phase is kept constant. Error bars represent 
standard deviation (n = 5). 

The linear trend in Figure 2.17 gives the following relationship for oil droplet frequency 

of generation: 

𝐹𝑜 = 0.0662𝑄𝑜 

Where 𝐹𝑜 is the frequency of oil droplet generation (Hz) and 𝑄𝑜 is the oil flow rate (ml 

hr-1). The y intercept is forced to 0 as no droplets are generated when 𝑄𝑜 = 0. 

This gives the following equation to predict the number of internal aqueous droplets 

encapsulated for a given frequency of aqueous droplet generation, at an oil flow rate of 

10 ml hr-1 and a carrier aqueous phase flow rate of 300 ml hr-1: 

𝑛 =
𝐹𝑤

0.0662(𝑄𝑜 + 𝑄𝑤) 
 

Where 𝑛 is the predicted number of aqueous droplets encapsulated per W/O/W 

emulsion, 𝐹𝑤 is the frequency of generation of water droplets, and 𝑄𝑤 is the flow rate of 

the droplet-forming water phase. 

y = 0.0662x
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This could be performed for a variety of carrier aqueous phase flow rates, and 

compared against empirical data as shown in Figure 2.16 regarding the number of 

aqueous droplets per W/O/W for the selected flow rates (Figure 2.18).   

 

Figure 2.18 The linear trend seen for the generation of O/W droplets for different oil and 
aqueous carrier flow rates (left). This linear trend can be used to predict the number of aqueous 
droplets encapsulated per W/O/W emulsions for a given frequency of W/O generation (right – 
“predicted” in graph). This prediction can then be compared to empirical data (right – 
“experimental” in graph) obtained. Error bars represent standard deviation (n = 5). 

The prediction model described is not able to accurately predict the number of droplets 

encapsulated per W/O/W emulsion for the majority of flow rates tested, although for an 

aqueous carrier flow rate of 500 ml hr-1 and aqueous flow rates below 6 ml hr-1, the 

100 ml hr-1 

300 ml hr-1 

500 ml hr-1 
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prediction is accurate ±1 droplet. This is likely because the volume of oil droplets for 

the aqueous carrier flow rate of 500 ml hr-1 is affected less by the oil (and presumably 

inner aqueous) flow rate than when lower aqueous carrier flow rates are used, as seen 

in Figure 14a.  Also, for the aqueous flow rate of 100 ml hr-1, the data fits a linear 

regression with low fidelity (R2 = 0.6639). Overall, the irregularity of aqueous droplet 

volume and generation frequency in relation to flow rate is likely the reason why these 

predictions are inaccurate, especially for inner aqueous flow rates above 6 ml hr -1. 

Thus, the production of W/O/W emulsions would likely benefit from an alternative 

method of water droplet generation, such as the use of a PMMA chip or a coaxial 

droplet generator as the one used for oil droplet generation, employing a hydrophobic 

silane to modify the glass channel in which such droplets are formed. This would likely 

give rise to a more predictable regime of water droplet formation and hence a higher 

degree of control and predictability over the number and volume of aqueous droplets 

encapsulated per oil droplet. 

2.3.2.3 Production of W/O/W/O emulsions using a hybrid 3D-printed 

microfluidic device 

The production of W/O/W emulsions as established in the previous section can be 

used as a chassis to produce DIB networks within an oil droplet, as demonstrated by 

Elani et al.71, for example. However, these constructs are inherently fragile because of 

their fluidic nature, and thus an extra, aqueous layer around the oil droplet would 

provide the foundation to encapsulate such DIB networks within a solid shell, with 

appropriate use of polymerisable aqueous fluids such as those that form hydrogels. 

This would allow for encapsulated DIB networks to be more rugged whilst at the same 

time able to communicate with an aqueous environment. One route to achieving this is 

the development of a device capable of producing W/O/W/O emulsions.  
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The hybrid, 3D-printed microfluidic device shown in Figure 2.8 allows for the alignment 

of further coaxial, droplet-generating geometries in series. In theory, this set-up would 

allow for the formation of double, triple and further hierarchical emulsions by aligning a 

number of coaxial, droplet-generating geometries and channels of alternating 

hydrophilic/hydrophobic wettabilities and increasing channel diameters. Thus, a device 

containing two sequentially aligned coaxial, droplet-generating geometries was 

designed and assembled for the production of W/O/W/O emulsions, using the same 

design principles as for the production of W/O/W emulsions (Figure 2.8). This device is 

shown in Figure 2.19. 

 

Figure 2.19 CAD image of a hybrid, 3D-printed device to generate W/O/W/O emulsions, where 
carrier phase 1 is an aqueous fluid and carrier phase 2 is hydrophobic and immiscible with 
carrier phase 1. The device is composed of a ETFE fluidic connector to generate W/O droplets, 
and two coaxial droplet-generating geometries as depicted in Figure 2.8, aligned in series. The 
first geometry is composed hydrophobic channel terminating within a larger hydrophilic channel, 
enabling the formation of W/O/W emulsions, whilst the second comprises this same hydrophilic 
channel terminating within a larger hydrophobic channel. This would allow for W/O/W emulsions 
to be segmented in a second oil flow, forming W/O/W/O emulsions. 

With double emulsions considered to be metastable fluidic constructs72, the production 

of triple emulsions was challenging as double emulsions formed at the first coaxial 

geometry would need to pass through a second coaxial geometry, which exerts shear 

force onto the double emulsion, and can result in coalescence of the different miscible 

phases. For example, the internal aqueous droplets could coalesce with the external 

aqueous droplets they are contained in, or the oil droplet containing aqueous droplets 

could coalesce with the external oil phase. In order to avoid this, surfactants were 

selected and used to avoid the coalescence of miscible phases (Table 3). 
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Phase Surfactant (% v/v) Comments 

Inner water 
No surfactant No surfactant required 

Inner oil (squalene) 
Span-80 1% Avoids the coalescence of inner water 

droplets 

Outer water 
Tween 0.5% 

Avoids the coalescence of inner and outer 
water phases during the second coaxial 
geometry in the device.  

Outer oil (mineral 
oil) 

Span-80 0.5% 
Avoids the coalescence of the inner oil 
phase and the outer oil phase in the 
second coaxial geometry and also after 
W/O/W/O droplets have been formed. 

Table 3 Table showing the use of surfactants in the different phases used to form W/O/W/O 
emulsions. Comments address the rationale for using the surfactants.  

Hydrophilic surface modification was employed for the glass capillary (as described in 

section 2.4.3) and an FEP tube was used as the outer channel of the second coaxial 

junction, due to its inherent hydrophobicity.  The production of W/O/W/O emulsions is 

shown in Figure 2.20. 
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Figure 2.20 Photographs showing the generation of W/O/W/O emulsions and a CAD diagram 
depicting the hybrid, 3D-printed microfluidic device used, displaying the regions where 
photographs a), b) and c) are taken. a) Formation of a sub-stream of water droplets in oil 
flowing parallel to an outer aqueous phase at the first coaxial geometry. b) formation of 
W/O/W/O emulsions at the second coaxial geometry stage. Here, both the internal oil and 
external water phase break up into droplets in the external oil phase. c) W/O/W/O emulsions 
collected from the device containing 3-6 inner aqueous cores. The flow rates employed are 6 ml 
hr-1 for the inner aqueous phase, 8 ml hr-1 for the inner oil phase, 200 ml hr-1 for the outer water 
phase and 250 ml hr-1 for the outer oil phase.  

The use of surfactants in the inner oil and outer water phases changed the manner in 

which W/O/W emulsions formed in the first coaxial geometry. In comparison to section 

2.3.2.2 where W/O/W emulsion formation exhibited a geometrically-controlled regime, 

here the stream of water droplets in oil did not break up into W/O/W emulsions within 

the glass capillary, but flowed as a sheath surrounded by the aqueous carrier phase 

within the same channel (Figure 2.20a). This is likely due to a decrease in surface 

tension caused by the assembly of surfactants at the oil/water interface, which reduces 

the drive of the oil to minimise its surface area and assume spherical geometries. This 

a) 
b) 

c) 

a b 
c 

t = 0 ms 

t = 200 ms t = 300 ms 

t = 100 ms 

1 mm 

1 mm 
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results in fluid flows that are characteristic of high Capillary numbers15. The break-up of 

this sheath flow into droplets occurred in the second coaxial geometry (Figure 2.20b) 

alongside the breakup of the outer aqueous phase. This gave rise to variability in the 

number of aqueous droplets encapsulated per W/O/W/O emulsion, as emulsions 

containing 3-6 inner aqueous were formed using the same set of flow rates (Figure 

2.20c). These constructs were output from the device into a petri dish where they were 

submerged in Mineral oil with 0.5% (v/v) Span-80. They did not remain intact for more 

than 5 minutes, as the inner oil phase would coalesce with the external oil phase 

(Figure 2.21). It is likely that this is due to the relatively large size of the droplets and 

the density difference between the different fluids that compose the emulsion. This 

behaviour could be exploited for applications requiring controlled release of an 

aqueous substance, such as for drug delivery. 

 

 

Figure 2.21 W/O/W/O emulsion ejecting the internal oil droplet (containing aqueous droplets) 
after ≈1 minute of remaining intact in a petri dish filled with the oil carrier phase. Coalescence 
between the internal oil droplet and the external oil environment ensues, leading to the un-
encapsulation of the internal aqueous droplets (dyed red). Scale bar = 1 mm. 

2.4 General discussion  

2.4.1 Fabrication of a novel, hybrid 3D-printed glass capillary device for 
the generation of hierarchically assembled higher order emulsions 

Using devices fabricated with surface modified glass capillaries, a 3D-printed 

assembly, and fluidic tubing and connectors, it was possible to produce W/O/W and 

W/O/W/O emulsions in a facile and cost-effective manner. Glass capillaries displayed 

100 ms intervals 

1 mm 
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an effective hydrophilic surface modification allowing for the prolonged generation of oil 

droplets in water; the 3D-printed scaffold aided in the coaxial assembly of the different 

hydrophilic and hydrophobic channels; and fluidic connectors such as fingertight fittings 

demonstrated good compatibility with the 3D-printed scaffold in the ability to interface 

without any leaks.  

Devices were constructed for the formation of W/O/W emulsions via the generation of 

droplets of W/O and its subsequent coaxial flow with an external aqueous fluid, which 

pinched-off W/O emulsions into W/O/W emulsions. A second, similar device 

constituting two coaxial droplet-generating geometries allowed for the subsequent 

pinching off of W/O/W emulsions in oil, forming W/O/W/O emulsions. This method of 

hierarchical droplet encapsulation offers the potential to add even more emulsification 

stages, aided via a basic 3D-printed scaffold which can be added and aligned with 

each other in series.  

A particular benefit of the microfluidic devices designed here are their accessibility, 

ease of use and cost. The devices are assembled from common laboratory materials. 

For example, glass capillaries are cheap and are used for electrophysiology 

applications; and fingertight fittings, ETFE junctions and FEP tubing are commonly 

found as part of high performance liquid chromatography (HPLC) rigs. 3D-printers are 

likely to be accessible to many research institutions and can be remarkably low cost. 

3D-printing also offers the ability for designs to be digitally shared which aids in the 

accessibility of the devices to other researchers. Specialised equipment or clean room 

environments are not required except for the surface modification techniques, which 

require the use of a plasma cleaner. However, as described in section 2.2.1.1, 

alternatives surface modification techniques exist. All of this serves to increase the 

ease via which researchers can produce double or triple emulsions for diverse 

applications, overcoming the microfluidic fabrication barrier28. 
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2.4.2 Stability 

The stability of W/O/W and W/O/W/O was not thoroughly assessed as the experiments 

focused on the ability to generate such emulsions. However, W/O/W emulsions were 

observed to remain intact for at least 1 hour when contained in a glass channel, likely 

due to the presence of surfactants. This was not true for the case of W/O/W/O 

emulsions, where the internal oil phase would coalesce with the external oil phase. 

This is likely due to the compound effect of the emulsions being relatively large and the 

density difference between the inner oil and outer water phase, causing the inner oil 

phase to rise in relation to the outer water phase. It is likely that this can be 

circumvented via the solidification of the outer shell of the emulsion. It remains 

unknown whether emulsions stabilised with lipid instead of surfactants will be 

sufficiently stable for droplets to survive the mechanical stress provided by droplet-

generating junctions. This is explored in the following chapter. However, there is 

evidence that that lipid bilayers can form in the presence of Span-80 surfactant, which 

has been reported to become excluded from a DIB once it has formed73. This can 

provide an alternative route to producing stable encapsulated DIBs if lipid alone fails to 

stabilise the emulsion interfaces, although further assessment of the mechanism and 

effectiveness of surfactant exclusion from lipid bilayers would be required. 

2.4.3 Monodispersity 

The monodispersity of the aqueous droplets, W/O/W and W/O/W/O emulsions remains 

untested for these experiments. It was observed that droplets were relatively 

monodisperse, and for droplet volume and frequency of generation as explored in 

section 2.3.2.1, low standard deviations were obtained (n = 5 for all experiments and 

conditions). Due to the geometrically-controlled regime of droplet formation and reports 

in the literature it is likely that high monodispersity is achievable. 
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2.4.4 Emulsions Size 

The emulsions produced here are in the millimetre range and therefore larger than 

desirable for many most applications including the generation of encapsulated droplet 

interface bilayers. For this particular application, smaller hierarchical emulsions would 

allow for higher surface area to volume ratios as well as bilayers of a smaller surface 

are which would likely increase the stability of the constructs, cheaper experiments due 

to less usage of reagents, increased efficiency of chemical reactions that require the 

maintenance of chemical concentrations, as well as the potential to use these 

constructs as parenteral medical devices for drug delivery, for example. Similar fluidic 

set-ups for the generation of hierarchical emulsions are seen in the literature, which 

operate in the micrometre range, giving rise to double emulsions that are 100 - 500 µm 

in diameter12, 74.  

The geometrically-driven nature of droplet formation, alongside the ability to purchase 

glass capillaries in the micrometre range and easily scale-down the size of the 3D-

printed assembly, mean that it is very likely that the devices presented in this chapter 

could be scaled down in order to produce smaller emulsions in the ≈100 μm range. 

This would be the focus of future experiments. 

2.5 Conclusion 

The work performed in this chapter provides a suitable foundation in order to produce 

encapsulated droplet interface bilayers templated from hierarchically assembled 

emulsions. The use of PMMA devices has proved to be challenging due to difficulties in 

preparing suitably hydrophilic channels. However, a novel microfluidic system has been 

developed instead which provides the means to generate W/O/W and W/O/W/O using 

sequentially aligned coaxial droplet-generating geometries, and offers advantages in 

terms of versatility, accessibility, ease and cost of fabrication. W/O/W emulsion 
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generation was demonstrated to be possible via dripping and jetting coaxial droplet-

generating, with the former involving the use of glass silanisation in order to render 

channels hydrophilic, and the latter involving the use of surfactants. This adds to the 

accessibility of the methods described here as a method can be selected depending on 

the equipment available to the user. The reliability of production in terms of droplet 

volume, frequency of generation and the number of aqueous droplets encapsulated per 

W/O/W has been explored here for dripping regimes, which demonstrates some control 

over these parameters although improvements can be made in order to increase the 

reliability of double emulsion production. Additional experiments exploring a wider 

range of flow rates, different sized channels and also the monodispersity of the 

emulsions produced would support the characterization of the devices explored here. 

The addition of lipid to the oil phase should allow for the generation of multisome-like 

structures, and the use of W/O/W/O emulsion can allow for further encapsulation of 

multisomes allowing for their increased stability by using polymerisable outer shell 

fluids. Their ability to release internal cargoes (Figure 2.21) may prove useful for 

applications in controlled release, such as in drug delivery or in food technology and 

cosmetics75. 

 

 

 

 

 



 

112 

 

Chapter 2 – Development of a Microfluidic Device for the Generation of Hierarchical 
Emulsions. 

2.6 References 

1. Fujii, T., PDMS-based microfluidic devices for biomedical applications. Microelectronic 
Engineering 2002, 61–62, 907-914. 
2. McDonald, J. C.; Duffy, D. C.; Anderson, J. R.; Chiu, D. T.; Wu, H.; Schueller, O. J.; 
Whitesides, G. M., Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 
2000, 21 (1), 27-40. 
3. McDonald, J. C.; Whitesides, G. M., Poly(dimethylsiloxane) as a Material for Fabricating 
Microfluidic Devices. Accounts of Chemical Research 2002, 35 (7), 491-499. 
4. Berthier, E.; Young, E. W. K.; Beebe, D., Engineers are from PDMS-land, Biologists are 
from Polystyrenia. Lab on a Chip 2012, 12 (7), 1224-1237. 
5. Liu, K.; Fan, Z. H., Thermoplastic microfluidic devices and their applications in protein 
and DNA analysis. The Analyst 2011, 136 (7), 1288-1297. 
6. Tsao, C.-W., Polymer Microfluidics: Simple, Low-Cost Fabrication Process Bridging 
Academic Lab Research to Commercialized Production. Micromachines 2016, 7 (12), 225. 
7. Regehr, K. J.; Domenech, M.; Koepsel, J. T.; Carver, K. C.; Ellison-Zelski, S. J.; 
Murphy, W. L.; Schuler, L. A.; Alarid, E. T.; Beebe, D. J., Biological implications of 
polydimethylsiloxane-based microfluidic cell culture. Lab on a Chip 2009, 9 (15), 2132-2139. 
8. Okushima, S.; Nisisako, T.; Torii, T.; Higuchi, T., Controlled production of monodisperse 
double emulsions by two-step droplet breakup in microfluidic devices. Langmuir: the ACS 
journal of surfaces and colloids 2004, 20 (23), 9905-9908. 
9. Utada, A. S.; Lorenceau, E.; Link, D. R.; Kaplan, P. D.; Stone, H. A.; Weitz, D. A., 
Monodisperse Double Emulsions Generated from a Microcapillary Device. Science 2005, 308 
(5721), 537-541. 
10. Shah, R. K.; Shum, H. C.; Rowat, A. C.; Lee, D.; Agresti, J. J.; Utada, A. S.; Chu, L.-Y.; 
Kim, J.-W.; Fernandez-Nieves, A.; Martinez, C. J.; Weitz, D. A., Designer emulsions using 
microfluidics. Materials Today 2008, 11 (4), 18-27. 
11. Ren, P.-W.; Ju, X.-J.; Xie, R.; Chu, L.-Y., Monodisperse alginate microcapsules with oil 
core generated from a microfluidic device. Journal of Colloid and Interface Science 2010, 343 
(1), 392-395. 
12. Adams, L. L. A.; Kodger, T. E.; Kim, S.-H.; Shum, H. C.; Franke, T.; Weitz, D. A., Single 
step emulsification for the generation of multi-component double emulsions. Soft Matter 2012, 8 
(41), 10719-10724. 
13. Martino, C.; Berger, S.; Wootton, R. C. R.; deMello, A. J., A 3D-printed microcapillary 
assembly for facile double emulsion generation. Lab on a Chip 2014, 14 (21), 4178-4182. 
14. Shang, L.; Cheng, Y.; Wang, J.; Ding, H.; Rong, F.; Zhao, Y.; Gu, Z., Double emulsions 
from a capillary array injection microfluidic device. Lab on a Chip 2014, 14 (18), 3489-3493. 
15. Nabavi, S. A.; Vladisavljević, G. T.; Gu, S.; Ekanem, E. E., Double emulsion production 
in glass capillary microfluidic device: Parametric investigation of droplet generation behaviour. 
Chemical Engineering Science 2015, 130, 183-196. 
16. Mike Wei, R. S. B., Wetting properties and stability of silane-treated glass exposed to 
water, air, and oil. Journal of Colloid and Interface Science - J COLLOID INTERFACE SCI 
1993, 157 (1), 154-159. 
17. Bhattacharjee, N.; Urrios, A.; Kang, S.; Folch, A., The upcoming 3D-printing revolution 
in microfluidics. Lab Chip 2016, 16 (10), 1720-1742. 
18. Malek, C. G. K., Laser processing for bio-microfluidics applications (part II). Analytical 
and Bioanalytical Chemistry 2006, 385 (8), 1362-1369. 
19. Garra, J.; Long, T.; Currie, J.; Schneider, T.; White, R.; Paranjape, M., Dry etching of 
polydimethylsiloxane for microfluidic systems. Journal of Vacuum Science & Technology A: 
Vacuum, Surfaces, and Films 2002, 20 (3), 975-982. 
20. Grosse, A.; Grewe, M.; Fouckhardt, H., Deep wet etching of fused silica glass for hollow 
capillary optical leaky waveguides in microfluidic devices. Journal of Micromechanics and 
Microengineering 2001, 11 (3), 257. 
21. Choi, C.-H.; Kim, J.; Nam, J.-O.; Kang, S.-M.; Jeong, S.-G.; Lee, C.-S., Microfluidic 
Design of Complex Emulsions. ChemPhysChem 2014, 15 (1), 21-29. 



 

113 

 

Chapter 2 – Development of a Microfluidic Device for the Generation of Hierarchical 
Emulsions. 

22. Walczak, R.; Adamski, K., Inkjet 3D printing of microfluidic structures—on the selection 
of the printer towards printing your own microfluidic chips. Journal of Micromechanics and 
Microengineering 2015, 25 (8), 085013. 
23. Sachs, E.; Cima, M.; Williams, P.; Brancazio, D.; Cornie, J., Three Dimensional Printing: 
Rapid Tooling and Prototypes Directly from a CAD Model. Journal of Engineering for Industry 
1992, 114 (4), 481-488. 
24. Xing, J.-F.; Zheng, M.-L.; Duan, X.-M., Two-photon polymerization microfabrication of 
hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery. 
Chemical Society Reviews 2015, 44 (15), 5031-5039. 
25. Jariwala, S.; Venkatakrishnan, K.; Tan, B., Single step self-enclosed fluidic channels via 
two photon absorption (TPA) polymerization. Optics Express 2010, 18 (2), 1630-1636. 
26. Au, A. K.; Lee, W.; Folch, A., Mail-order microfluidics: evaluation of stereolithography for 
the production of microfluidic devices. Lab on a Chip 2014, 14 (7), 1294-1301. 
27. Waheed, S.; Cabot, J. M.; Macdonald, N. P.; Lewis, T.; Guijt, R. M.; Paull, B.; 
Breadmore, M. C., 3D printed microfluidic devices: enablers and barriers. Lab Chip 2016, 16 
(11), 1993-2013. 
28. Morgan, A. J. L.; Jose, L. H. S.; Jamieson, W. D.; Wymant, J. M.; Song, B.; Stephens, 
P.; Barrow, D. A.; Castell, O. K., Simple and Versatile 3D Printed Microfluidics Using Fused 
Filament Fabrication. PLOS ONE 2016, 11 (4), e0152023. 
29. Breguet, V.; Gugerli, R.; Pernetti, M.; von Stockar, U.; Marison, I. W., Formation of 
microcapsules from polyelectrolyte and covalent interactions. Langmuir: the ACS journal of 
surfaces and colloids 2005, 21 (21), 9764-9772. 
30. Fixe, F.; Dufva, M.; Telleman, P.; Christensen, C. B. V., Functionalization of poly(methyl 
methacrylate) (PMMA) as a substrate for DNA microarrays. Nucleic Acids Research 2004, 32 
(1), e9. 
31. Hughes, A. J.; Lin, R. K. C.; Peehl, D. M.; Herr, A. E., Microfluidic integration for 
automated targeted proteomic assays. Proceedings of the National Academy of Sciences 2012, 
109 (16), 5972-5977. 
32. Soper, S. A.; Henry, A. C.; Vaidya, B.; Galloway, M.; Wabuyele, M.; McCarley, R. L., 
Surface modification of polymer-based microfluidic devices. Analytica Chimica Acta 2002, 470 
(1), 87-99. 
33. Wink, T.; Zuilen, S. J. v.; Bult, A.; Bennekom, W. P. v., Self-assembled Monolayers for 
Biosensors. Analyst 1997, 122 (4), 43R-50R. 
34. Huang, T. T.; Sturgis, J.; Gomez, R.; Geng, T.; Bashir, R.; Bhunia, A. K.; Robinson, J. 
P.; Ladisch, M. R., Composite surface for blocking bacterial adsorption on protein biochips. 
Biotechnology and Bioengineering 2003, 81 (5), 618-624. 
35. Mashaghi, S.; Abbaspourrad, A.; Weitz, D.; Oijen, A., Droplet microfluidics: A tool for 
biology, chemistry and nanotechnology. TrAC Trends in Analytical Chemistry 2016. 
36. Makamba, H.; Kim, J. H.; Lim, K.; Park, N.; Hahn, J. H., Surface modification of 
poly(dimethylsiloxane) microchannels. Electrophoresis 2003, 24 (21), 3607-3619. 
37. Zhou, J.; Khodakov, D. A.; Ellis, A. V.; Voelcker, N. H., Surface modification for PDMS-
based microfluidic devices. Electrophoresis 2012, 33 (1), 89-104. 
38. Shah, J. J.; Geist, J.; Locascio, L. E.; Gaitan, M.; Rao, M. V.; Vreeland, W. N., Surface 
modification of poly(methyl methacrylate) for improved adsorption of wall coating polymers for 
microchip electrophoresis. Electrophoresis 2006, 27 (19), 3788-3796. 
39. Subramanian, B.; Kim, N.; Lee, W.; Spivak, D. A.; Nikitopoulos, D. E.; McCarley, R. L.; 
Soper, S. A., Surface Modification of Droplet Polymeric Microfluidic Devices for the Stable and 
Continuous Generation of Aqueous Droplets. Langmuir : the ACS journal of surfaces and 
colloids 2011, 27 (12), 7949-7957. 
40. Zhang, Y.; Ping, G.; Kaji, N.; Tokeshi, M.; Baba, Y., Dynamic modification of 
poly(methyl methacrylate) chips using poly(vinyl alcohol) for glycosaminoglycan disaccharide 
isomer separation. ELECTROPHORESIS 2007, 28 (18), 3308-3314. 
41. Cras, J. J.; Rowe-Taitt, C. A.; Nivens, D. A.; Ligler, F. S., Comparison of chemical 
cleaning methods of glass in preparation for silanization. Biosensors and Bioelectronics 1999, 
14 (8–9), 683-688. 
42. Erb, R. M.; Obrist, D.; Chen, P. W.; Studer, J.; Studart, A. R., Predicting sizes of 
droplets made by microfluidic flow-induced dripping. Soft Matter 2011, 7 (19), 8757-8761. 
43. Glass, N. R.; Tjeung, R.; Chan, P.; Yeo, L. Y.; Friend, J. R., Organosilane deposition for 
microfluidic applications. Biomicrofluidics 2011, 5 (3), 036501-036501-7. 



 

114 

 

Chapter 2 – Development of a Microfluidic Device for the Generation of Hierarchical 
Emulsions. 

44. Mukhopadhyay, S.; Roy, S. S.; D'Sa, R. A.; Mathur, A.; Holmes, R. J.; McLaughlin, J. 
A., Nanoscale surface modifications to control capillary flow characteristics in PMMA 
microfluidic devices. Nanoscale Research Letters 2011, 6 (1), 411. 
45. Sershen, S. R.; Mensing, G. A.; Ng, M.; Halas, N. J.; Beebe, D. J.; West, J. L., 
Independent Optical Control of Microfluidic Valves Formed from Optomechanically Responsive 
Nanocomposite Hydrogels. Advanced Materials 2005, 17 (11), 1366-1368. 
46. Fu, X.; Mavrogiannis, N.; Ibo, M.; Crivellari, F.; Gagnon, Z. R., Microfluidic free-flow 
zone electrophoresis and isotachophoresis using carbon black nano-composite PDMS sidewall 
membranes. ELECTROPHORESIS 2017, 38 (2), 327-334. 
47. Rubner, M.; Wardle, B. L.; Cohen, R. E.; Toner, M.; Fachin, F. High definition 
nanomaterials. US9506846 B2, 2016/11/29/, 2016. 
48. Wang, C. F.; Wang, W. N.; Yang, S. Y.; Chen, L. T.; Tsai, H. Y. In Preparation and 
characterization of biomimetic superhydrophobic expanded graphite/carbon nanotube/polymer 
composites, 2016 International Conference on Electronics Packaging (ICEP), 2016/04//; 2016; 
pp 673-676. 
49. Lai, J. Y.; Lin, Y. Y.; Denq, Y. L.; Shyu, S. S.; Chen, J. K., Surface modification of 
silicone rubber by gas plasma treatment. Journal of Adhesion Science and Technology 1996, 
10 (3), 231-242. 
50. Bhattacharya, S.; Datta, A.; Berg, J. M.; Gangopadhyay, S., Studies on surface 
wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and 
correlation with bond strength. Journal of Microelectromechanical Systems 2005, 14 (3), 590-
597. 
51. Hillborg, H.; Ankner, J. F.; Gedde, U. W.; Smith, G. D.; Yasuda, H. K.; Wikström, K., 
Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry 
and other surface specific techniques. Polymer 2000, 41 (18), 6851-6863. 
52. Bar, G.; Delineau, L.; Häfele, A.; Whangbo, M. H., Investigation of the stiffness change 
in, the indentation force and the hydrophobic recovery of plasma-oxidized polydimethylsiloxane 
surfaces by tapping mode atomic force microscopy. Polymer 2001, 42 (8), 3627-3632. 
53. I. Uba, F.; R. Pullagurla, S.; Sirasunthorn, N.; Wu, J.; Park, S.; Chantiwas, R.; Cho, Y.-
K.; Shin, H.; A. Soper, S., Surface charge, electroosmotic flow and DNA extension in chemically 
modified thermoplastic nanoslits and nanochannels. Analyst 2015, 140 (1), 113-126. 
54. Long, T. M.; Prakash, S.; Shannon, M. A.; Moore, J. S., Water-vapor plasma-based 
surface activation for trichlorosilane modification of PMMA. Langmuir: the ACS journal of 
surfaces and colloids 2006, 22 (9), 4104-4109. 
55. David T Eddington, J. P. P., Thermal aging and reduced hydrophobic recovery of 
polydimethylsiloxane. Sensors and Actuators B 2006, 114, 170-172. 
56. Fritz, J. L.; Owen, M. J., Hydrophobic Recovery of Plasma-Treated 
Polydimethylsiloxane. The Journal of Adhesion 1995, 54 (1-4), 33-45. 
57. Hillborg, H.; Tomczak, N.; Olàh, A.; Schönherr, H.; Vancso, G. J., Nanoscale 
hydrophobic recovery: A chemical force microscopy study of UV/ozone-treated cross-linked 
poly(dimethylsiloxane). Langmuir: the ACS journal of surfaces and colloids 2004, 20 (3), 785-
794. 
58. Jokinen, V.; Suvanto, P.; Franssila, S., Oxygen and nitrogen plasma hydrophilization 
and hydrophobic recovery of polymers. Biomicrofluidics 2012, 6 (1), 016501. 
59. Vickers, J. A.; Caulum, M. M.; Henry, C. S., Generation of hydrophilic 
poly(dimethylsiloxane) for high-performance microchip electrophoresis. Analytical Chemistry 
2006, 78 (21), 7446-7452. 
60. Ulman, A., Formation and Structure of Self-Assembled Monolayers. Chemical Reviews 
1996, 96 (4), 1533-1554. 
61. Bain, C. D.; Troughton, E. B.; Tao, Y. T.; Evall, J.; Whitesides, G. M.; Nuzzo, R. G., 
Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto 
gold. Journal of the American Chemical Society 1989, 111 (1), 321-335. 
62. Nihonyanagi, S.; Eftekhari-Bafrooei, A.; Hines, J.; Borguet, E., Self-Assembled 
Monolayer Compatible with Metal Surface Acoustic Wave Devices on Lithium Niobate. 
Langmuir 2008, 24 (9), 5161-5165. 
63. Koyano, T.; Saito, M.; Miyamoto, Y.; Kaifu, K.; Kato, M., Development of a Technique 
for Microimmobilization of Proteins on Silicon Wafers by a Streptavidin−Biotin Reaction. 
Biotechnology Progress 1996, 12 (1), 141-144. 



 

115 

 

Chapter 2 – Development of a Microfluidic Device for the Generation of Hierarchical 
Emulsions. 

64. Rao, S. V.; Anderson, K. W.; Bachas, L. G., Oriented immobilization of proteins. 
Microchimica Acta 1998, 128 (3-4), 127-143. 
65. Schmitt, Y.; Hähl, H.; Gilow, C.; Mantz, H.; Jacobs, K.; Leidinger, O.; Bellion, M.; 
Santen, L., Structural evolution of protein-biofilms: Simulations and experiments. 
Biomicrofluidics 2010, 4 (3). 
66. Zhang, G.-J.; Tanii, T.; Zako, T.; Hosaka, T.; Miyake, T.; Kanari, Y.; Funatsu, T.; 
Ohdomari, I., Nanoscale Patterning of Protein Using Electron Beam Lithography of 
Organosilane Self-Assembled Monolayers. Small 2005, 1 (8-9), 833-837. 
67. Singh, J.; Whitten, J. E., Adsorption of 3-Mercaptopropyltrimethoxysilane on Silicon 
Oxide Surfaces and Adsorbate Interaction with Thermally Deposited Gold. The Journal of 
Physical Chemistry C 2008, 112 (48), 19088-19096. 
68. Fabrication, sealing and hydrophilic modification of microchannels by hot embossing on 
PMMA substrate. ResearchGate. 
69. K. Castell, O.; J. Allender, C.; A. Barrow, D., Liquid–liquid phase separation: 
characterisation of a novel device capable of separating particle carrying multiphase flows. Lab 
on a Chip 2009, 9 (3), 388-396. 
70. Garstecki, P.; Fuerstman, M. J.; Stone, H. A.; Whitesides, G. M., Formation of droplets 
and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab on a Chip 
2006, 6 (3), 437-446. 
71. Elani, Y.; Solvas, X. C. I.; Edel, J. B.; Law, R. V.; Ces, O., Microfluidic generation of 
encapsulated droplet interface bilayer networks (multisomes) and their use as cell-like reactors. 
Chemical Communications 2016, 52 (35), 5961-5964. 
72. Ficheux, M. F.; Bonakdar, L.; Leal-Calderon, F.; Bibette, J., Some Stability Criteria for 
Double Emulsions. Langmuir 1998, 14 (10), 2702-2706. 
73. Jeong, D.-W.; Jang, H.; Choi, S. Q.; Choi, M. C., Enhanced stability of freestanding lipid 
bilayer and its stability criteria. Scientific Reports 2016, 6, 38158. 
74. Chu, L.-Y.; Utada, A. S.; Shah, R. K.; Kim, J.-W.; Weitz, D. A., Controllable 
Monodisperse Multiple Emulsions. Angewandte Chemie 2007, 119 (47), 9128-9132. 
75. Garti, N., Double emulsions — scope, limitations and new achievements. Colloids and 
Surfaces A: Physicochemical and Engineering Aspects 1997, 123–124, 233-246. 

 

 

 

 

 

 

 

 

 



 

116 

 

Chapter 3 – Hydrogel Encapsulated Droplet Interface Bilayers (eDIBs) 

Chapter 3 – Hydrogel Encapsulated Droplet 

Interface Bilayers (eDIBs) 

3.0 Chapter Summary 

In the previous chapter, a microfluidic method was developed in order to produce 

hierarchical droplet assemblies comprising droplet within droplets, including water-in-

oil-in-water (W/O/W) and W/O/W/O. In this chapter, this technology is adapted to 

produce novel soft matter constructs comprising droplet interface bilayers encapsulated 

in a hydrogel shell (eDIBs). The construct also allows for the formation of lipid bilayers 

between the internal compartments and its external environment, enabling the ability of 

the internal compartments to selectively communicate with an aqueous environment. 

The presence of artificial lipid bilayers within these constructs is demonstrated via 

electrophysiology, in addition to the functional insertion of the membrane protein α-

Hemolysin. The alginate shell enables the construct to remain stable in different 

aqueous, air and oil environments, and they are able to withstand mechanical handing 

which enhances their practicality and applicability as constructs for membrane studies. 

These properties are demonstrated in this chapter, and along with the high-throughput 

methods employed to generate eDIBs, they represent a promising platform to carry out 

high-throughput membrane studies as well as to create artificial cell-like constructs for 

applications in bottom up synthetic biology. 
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3.1 Introduction 

Artificial mimics of lipid bilayers may not only aid in our understanding of biology via the 

reduction of complexity necessary to isolate and scrutinise individual processes, but 

may also find a place within the field of bottom-up synthetic biology1, as they are a 

prime candidate to carry out biomimetic compartmentalisation1.  

 

 

Figure 3.1 Diagram depicting the formation of a droplet interface bilayer (DIB) by contacting two 
droplets of water in oil with lipid.  

Droplet interface bilayers offer a simple and robust method to form artificial lipid 

membranes (ALMs) via the contact of droplets of water in oil in the presence of lipid 2, 3 

(Figure 3.1). In comparison to other methods of forming ALMs (as reviewed in section 

1.2.4), DIBs offer practical advantages such as the ability to insert electrodes  and 

spatially control and monitor individual droplets bound by lipid bilayers 2, 4. As such, 

DIBs have widened the scope of biophysical membrane study and aided in the 

advance of single-channel membrane protein studies 5-9. DIBs can survive for periods 

of weeks when conditions are such so that evaporation is prevented, such as when the 

droplets are submerged in oil, further widening their potential applications as device 

components. The collection of favourable aspects of DIBs as described above grant 

DIBs great potential in a variety of applications within membrane studies and synthetic 
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biology. For example, DIB networks have been used as biomimetic electrical 

components 10, 11 and to complete compartmentalised enzymatic pathways 12, 13. For a 

more comprehensive review of DIBs, see section 1.2.4.2. 

DIBs have traditionally been prepared manually and individually2, and, whilst numerous 

developments have been made in this way, DIB formation methods could benefit from 

methods that reduce manual preparation and increase experimental throughput. 

Microfluidics offers an alternative method of producing and experimenting with DIBs, 

due to its ability to produce highly monodisperse droplets in a rapid and automatic 

manner (see section 1.3.2) 14-18. A number of microfluidic methods have been 

employed to generate DIBs by exploiting the rapid assembly of lipid monolayers 

caused by the flow of droplets of water in oil19, and device geometries that allow these 

droplets to be kept in close contact with each other14, 16-18, 20. 

Whilst conventional DIB formation occurs in a bulk oil phase (Figure 3.1), the ability to 

form DIB networks that are freestanding in an aqueous environment would allow them 

to act as individual synthetic cells and would open up a wealth of possibilities if able to 

form bilayers with an external aqueous environment. By being untethered, the 

constructs could be used outside of laboratory environments or in high-throughput 

endeavours, and allow for novel handling capabilities. Sub-compartmentalisation within 

a network of bilayer-connected droplets would allow for the potential of spatially 

segregated chemical pathways and cascades which may be useful in biosensing or 

biochemical engineering applications for the production of valuable chemicals and 

pharmaceuticals21. Thus, value exists in producing a DIB system with such 

characteristics. 
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3.1.1 Multisomes 

 

Figure 3.2 A multisome, comprised of a number of aqueous droplets contained within an oil 
droplet (containing lipid) in water. Monolayers assemble at the oil/water interface, and form 
bilayers when in close proximity with each other. Thus, DIBs form between the internal droplets 
and also between the internal droplets and the external aqueous environment. 

In 2011, Villar et al. conceived a system which comprised of DIB networks that can 

exist and interface with an external environment with lipid bilayers 22, 23. Multisome 

structures constitute aqueous droplets that are encapsulated within a droplet of oil, 

facilitating the formation of interface bilayers between the internal droplets and the 

external environment via the close contact of the different water/oil interfaces (Figure 

3.2). This allows for the function of DIB networks in aqueous environments where 

communication with its surroundings can be achieved through the incorporation of 

membrane proteins, not unlike biological cells 22, 23. Similar bilayer networks have since 

been developed  by Elani et al. that dispense with the oil phase, by passing a network 

of DIBs in oil through an oil/water interface, yielding multi-compartment vesicles 

(MCVs), as the monolayer formed between the oil/water interface wraps around the 

monolayer that surrounds the DIB network in oil12. These constructs might be useful for 

applications where the oil phase in multisomes can be a burden, such as in potential 

drug delivery systems, however the multisome oil phase may be useful in providing 

with buoyancy, structural stability or as a reservoir for oil-soluble substances such as 

lipids. 
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Multisomes and MCVs have demonstrated to be able to spatially segregate enzymatic 

pathways12, 13 and communicate with their surrounding environment via membrane 

proteins13, 23, and multisomes have been produced using microfluidic methods13. These 

systems therefore embody potential candidate structures for development into future 

medical and industrial applications for their ability to incorporate selectively-

communicating compartments that can interface with physiological (i.e. aqueous) 

environments. 

However, multisomes are hampered by the inherent fragility of fluidic constructs which 

is necessary to survive in environments that do not enjoy precise laboratory control. 

Current demonstrations thus far have remained limited to structurally supported 

droplets23 or contained within a microfluidic channel13, which limits their potential as 

they are not truly freestanding. Multisomes often rupture when in contact with water-air 

interfaces or with container walls, requiring careful control of buoyancy in order for 

them to remain intact. This is demonstrated in section 3.3.2.1 (Figure 3.10). As such, a 

step-change is hereby proposed by embedding DIB networks within a permeable, yet 

mechanically rigid shell composed of a suitable hydrogel (Figure 3.3). This would 

provide the necessary foundation in order for DIB networks to be used as truly 

freestanding devices that may be able to function outside of a controlled laboratory 

environment and survive mechanical handling. Alginate is selected as a hydrogel-

forming agent as its transition from liquid to hydrogel can be controlled within a 

microfluidic device (see section 3.1.2.2), and also presents with a number of suitable 

properties as listed in Appendix 4. 
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Figure 3.3 An encapsulated droplet interface bilayer (eDIB) construct, comprised of a number 
of aqueous droplets (blue) in an oil droplet (orange) which is encapsulated in a hydrogel shell 
(green). This would allow DIBs to contained within a solid structure and therefore gain in 
ruggedness and stability, whilst at the same time still able to form DIBs between the internal 
droplet and external environment, conceded by the aqueous nature of the hydrogel. In this 
manner, eDIBs should be able to exist in both aqueous, oil and air environments. 

3.1.2 Alginate  

Alginates are polysaccharide polymers that are found abundantly in the cell walls of 

brown seaweed (Phaephyceae). Alginic acid is a linear polymer with homopolymeric 

blocks of (1-4)-linked β-D-mannuronate and its C-5 epimer α-L-guluronate (Figure 3.4), 

separated by blocks of random or alternating mannuronic and guluronic acids24.  

 

Figure 3.4 Chemical Structure of a typical alginate monomer. M and G denote the mannuronate 
and guluronate blocks, respectively. 

The proportion of such blocks as well as the molecular weight of the alginate differs per 

alginate source and preparation, resulting in different physical properties25. Importantly, 

alginic acid can be hydrated forming viscous hydrogels that are heat-stable at room 

temperature25, where the water molecules are entrapped within the alginate matrix due 

to capillary forces, but are still able to move within the polymer26. 

M 
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Figure 3.5 The ionotropic cross-linking of alginate using calcium ions. The calcium ions 
specifically bind the guluronic acid blocks, and co-ordinated alginate chains overlay adjacent 
chains forming an “egg box” structure. Diagram adapted from referenced publication27. 

 Alginate can exist in a soluble salt form, such as when bound to sodium (NaC6H7O6). 

Monovalent metal ions form soluble alginate salts, whilst multivalent cations (such as 

Ca2+ but excluding Mg2+) cross-link guluronic acid blocks within the alginate to form 

ionotropic alginate hydrogels via what is commonly known as the “egg-box” model 28 

(Figure 3.5). Covalently bonded alginate hydrogels can also occur when alginate 

chains are cross-linked using poly(ethylene glycol)-diamines 25. Alginate polymers can 

be degraded using enzymatic processes29 or microwaves exposure30. Ionotropic 

alginate hydrogels can be easily dissolved using a calcium ion chelation agent such as 

EDTA 31. 

3.2.2.1 Alginate properties and applications 

The physical properties of alginate hydrogels are dependent on the ratio of guluronic to 

mannuronate blocks (G/M ratio), with alginates rich in guluronic presenting higher gel 

strength, swelling and viscoelasticity due to the higher affinity of guluronic acid residues 

to divalent ions. Alginates rich in mannuronic acid are believed to offer better long-term 

stability32. Alginates with a high molecular weight provide gels with more robust 

mechanical properties33. 

Alginate hydrogels respond to mechanical stress differently depending on whether they 

are ionically or covalently cross-linked. Ionotropic alginate hydrogels give rise to plastic 
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deformation under mechanical stress, which causes loss of water content and a 

stochastic reformation of ionic bonds. Covalently linked alginate hydrogels do not 

experience the dissociation of bonds, and therefore give rise to elastic deformation34. 

 Alginate and its related salt forms are generally regarded as biocompatible 35-39, 

although impurities may remain as it is obtained from natural sources40. Thus, they are 

extensively employed within the biomedical, pharmaceutical and cosmetic industries 

due to their thickening, gel-forming and stabilizing properties41. The ability to 

controllably gel alginate into capsules or beads makes it suitable for encapsulation 

processes for drug delivery25, 32, 39, 42, 43, cell encapsulation38, 44-50 or the formation of 

biomimetic, soft matter constructs51, 52. Alginate hydrogels present numerous physical 

characteristics that are suitable for these encapsulation purposes, and make them ideal 

for the encapsulation of DIB networks, as it has already been shown that DIBs can 

form between aqueous droplets and hydrogels2 and between alginate hydrogel 

shapes53. A summary of the physical characteristics of alginate hydrogels is given in 

Appendix 4.  

Additionally, practical considerations allow alginate to be used to generate 

monodisperse capsules within a microfluidic device, using gelation methods that can 

be classified as being either internal or external42. Internal gelation requires an 

insoluble calcium salt to be present in the same solution containing alginate, such as 

calcium carbonate, which can solubilise upon acidification. Conversely, external 

gelation occurs when an alginate solution is brought into contact with a solution 

containing divalent cations, where this solution can be miscible with the alginate or not. 

Gelation method is reported to significantly change certain hydrogel properties such as 

pore size and matrix density54, and particular purposes will benefit from an 

appropriately selected method. For example, for drug delivery, internally gelled alginate 

hydrogels offer a lower encapsulation efficiency and faster release than externally 
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gelled alginate hydrogels42. Internally gelled alginate hydrogels are reported to be more 

homogeneous55, with externally gelled alginates beads often reported to contain a 

liquid core of the un-gelled alginate solution51, 52, 56, 57. 

In the context of the production of droplet interface bilayer networks encapsulated 

within a hydrogel shell, an internal mode of gelation is more desirable because of the 

improved homogeneity and permeability of such hydrogels42, 55, which are required in 

order to provide with robustness and the ability to interact with an aqueous 

environment, respectively.  

3.2.2.2 Alginate gelation & microfluidics 

Alginate solutions are shear-thinning fluids (and therefore Non-Newtonian) 58 of which 

role in the rheology of droplet formation is not yet fully understood 59, but is known to be 

problematic with regards to droplet monodispersity60, 61. In comparison to Newtonian 

fluids, the extensional viscosity of shear-thinning fluids can cause an alginate solution 

stream to resist droplet pinch-off and give rise to fluid jets which break off into 

heterogeneous droplets60. Effective capillary numbers can be calculated that account 

for shear-thinning effects and used to generate monodisperse droplets via flow rate 

modulation 59. 

Furthermore, it is important that the rate of gelation is controlled in order to avoid early 

and undesired formation of hydrogel which may obstruct continuous fluid flow, 

especially at the point of droplet formation. For this reason, an internal gelation method 

is preferred using low solubility calcium salts such as calcium sulphate and calcium 

carbonate, as this offers a higher degree of control than external gelation methods, 

which have been reported to give rise to quick, but poorly controlled gelation62. Using 

internal gelation methods, the rate of acidification, and hence gelation, can be 

extensively controlled63 via the choice and concentration of acid, initial pH of the 
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alginate solution, the use of a buffer solution, and the concentration and particle size of 

calcium carbonate.  

Alginate hydrogels in the form of capsules and beads have effectively been produced 

using microfluidic methods 47, 48, 64-69 which present with significant advantages in terms 

of control, homogeneity and uniformity in comparison to previous methods, including 

conventional emulsification70 and electrostatic droplet extrusion71. Droplets of oil have 

been encapsulated within alginate shells57, 67 using sequential coaxial droplet 

generating flows and an external gelation method relying on the partition of un-gelled 

O/W/O emulsion droplets from an oil phase into an aqueous phase containing calcium 

chloride67.  

3.1.3 Chapter aims 

As described in this introduction, there is great value in producing hydrogel-

encapsulated DIBs (eDIBs) which can contain DIB networks and communicate with an 

external aqueous environment via lipid bilayers. The hydrogel shell can provide with 

environmental compatibility and provide with robustness in comparison to previously 

described systems, such as multisomes and MCVs, allowing for the constructs to be 

fully freestanding and withstand mechanical handling. For this, the microfluidic methods 

used to produce W/O/W/O emulsions in the previous chapter will be adapted in order to 

controllably generate eDIBs in large numbers. The amphiphillic properties of lipids 

should allow for aqueous droplets to avoid coalescence, and thus forgo the use of 

surfactants as seen in section 2.3.2.2 and 2.3.2.3. Additionally, an external gelation 

method for alginate as described in section 3.2.2.2 should allow for the gelation of the 

alginate shell to occur after droplet formation, allowing for the continuous, in situ 

production of gelled eDIBs. Electrophysiology will be performed in order to demonstrate 

the formation of lipid bilayers between the internal compartments and the external 

environment of eDIBs, via capacitance measurements and also the incorporation of α-
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Hemolysin membrane proteins. Finally, the ability of eDIBs to survive in aqueous, air 

and oil environments will be demonstrated. 

 

Figure 3.6 Diagram depicting the microfluidic approach employed to generate eDIBs. A T-
junction is employed to generate droplets of water in oil with lipid, which is then passed through 
a first coaxial droplet generator flowing alginate with dispersed CaCO3. The resulting flow is 
passed through a second coaxial droplet generator flowing oil with acetic acid, producing eDIBs. 
Gelation of the alginate phase occurs as the acetic acid from the oil phase partitions into the 
alginate phase, lowering the pH and dissolving CaCO3 particles, which releases Ca2+ ions that 
trigger gelation. 

3.2 Methods 

All chemicals have been purchased from Sigma-Aldrich UK unless stated otherwise. 

Methods pertaining the design of the microfluidic devices employed are described in 

section 2.4.1. 

3.2.1 Preparation of fluids 

Lipid in oil solution: Lyophilised 1,2-diphytanoyl-sn-glycero-3-phosphocholine (Avanti 

Polar Lipids, USA) was dissolved in chloroform and dried down using nitrogen gas into 

a lipid film that adhered to the glass vial container. Once the lipid film was visibly dry 

and free of any chloroform, a 1:1 solution of hexadecane oil and silicone oil (AR20) was 

added to the vial to reach a lipid concentration of 5 mg mL -1. The solution is rested 

overnight to allow the lipid to fully dissolve in the oil mixture. 
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Alginate solution: 2% w/v low viscosity sodium alginate, 5 mg mL-1 calcium carbonate 

nanoparticles and sodium chloride to make up a total ionic strength of 0.5 M are added 

to deionised water and stirred with use of a magnetic stirrer at 360 rpm for at least 3 

hours, resulting in a homogeneously opaque and viscous solution. 

Carrier oil solution: 0.5% v/v glacial acetic acid is added to light mineral oil (Sigma-

Aldrich product nº M8410) and stirred for at least 30 minutes until the solution appears 

clear and homogeneous.  

Aqueous solution: Aqueous solutions used for droplet interface bilayers consisted of 

50 mM dibasic sodium phosphate and sodium chloride to make up a total ionic strength 

of 0.5 M. 50 µM Sulphorhodamine B or 1 mM Lissamine Green are added for colour 

(resulting in a pink or blue colour, respectively). 

α-Hemolysin: α-Hemolysin heptamers were prepared by Dr. Oliver Castell1 at a 

concentration of ≈30 nM in a 10 mM imidazole, 0.5 M NaCl, 20 mM HEPES, pH 8 

buffer. The solution was kept at -80ºC, and aliquots were diluted to ≈3 nM, and kept at 

5ºC for electrophysiology experiments. These aliquots were used within a week of their 

preparation and kept on ice during use. 

3.2.2 Microfluidics 

A 3D-printed microfluidic device for the generation of triple emulsions via coaxial 

droplet generating geometries is employed as described in Chapter 2. 3 mL or 25 mL 

plastic, luer lock syringes (Fisher Scientific, UK) are filled with the fluids and air bubbles 

are expelled. The fluids are dispensed using perfusion syringe pumps (Legato™ series 

single and double syringe pumps, KD Scientific, USA). 

Table 1 shows a typical regime of flow rates employed to generated eDIBs as well as 

notes regarding the operation of the microfluidic device. 
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Fluid Syringe 
Size  

Flow Rate 
(mL hr-1) 

Order of 
flow 

Notes 

Internal 
aqueous 

phase 

3mL syringe 
 

11.76 
 

3rd 
 

These fluids are pumped using the 
same syringe pump. 
Prior to the production of eDIBs, 
these fluids should be pumped 
until the FEP tube that delivers 
these fluids into the first coaxial 
droplet generator is filled with a 
monodisperse regime of droplets 
of water in oil. 
For the production of eDIBs, these 
fluids should be pumped only 
whence the device output FEP 
tube is filled with a monodisperse 
regime of alginate droplets in the 
carrier oil.  

Lipid-in-oil 
phase 

3mL syringe 
 

Alginate 
phase 

25mL 
syringe 

 
250 1st 

The fluid must not be kept in the 
syringe for longer than 30 minutes 
prior to use as the CaCO3 will 
separate from the mixture. 

Carrier oil 
phase 

25mL 
syringe 

400 2nd 
n/a 

Table 1 Flow rates used per fluid in the microfluidic manufacture of eDIBs, plus additional 
comments regarding the operation of the microfluidic device. 

As the device is used, an accumulation of polymerised alginate may occur at the orifice 

of the glass capillary, obstructing the even flow of both the alginate and oil phase. A 

100 mM EDTA solution is used to dissolve the adhered hydrogel, which is pumped 

through both the alginate and carrier oil inlets of the microfluidic device so that the 

affected areas are kept in this solution for at least 30 minutes. This can then be rinsed 

to get rid of the dissolved alginate and EDTA, and microfluidic operation resumed. 

3.2.3 Electrophysiology 

Electrophysiology was performed using custom electrodes connected to an Axopatch 

200B with a 203BU headstage (Molecular Devices, USA). The electrode tips are 

coated in a droplet (pL volume range) of agarose, performed by briefly dipping the tip of 
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the electrode onto a glass coverslip containing 5 μL of a 7.5 mg mL -1 solution of low 

melting point agarose in deionised water, which is kept at 90º on a heating block. 

Electrophysiology recordings of bilayer capacitance and ion flux were made under 

applied potentials of a +/- 23 mV triangle wave at 1 Hz or a fixed potential of 10-50 mV, 

respectively. Data was recorded with the software WinEDR (University of Strathclyde). 

Electrophysiology traces were analogue filtered using the Axopatch 200B equipment 

(low-pass, 5 Khz) and digitally filtered post-acquisition with either a 100 Hz low-pass 

filter. 

Droplet-droplet DIB electrophysiology is performed by pipetting two 0.2 µL droplets into 

a micromilled PMMA trough filled with a 1:1 mixture of hexadecane and silicone oil 

AR20 containing 5 mg mL-1 DPhPC lipid. The droplets are anchored onto the 

electrodes. eDIB electrophysiology is performed by placing eDIBs in a petri dish 

submerged in mineral oil. The eDIB hydrogel shell is pierced to access the internal 

cores with the electrodes. The tip of the electrode containing a droplet of agarose is 

then inserted into the internal cores.  Electrodes are mounted onto micromanipulators 

(Narishige, Japan). 

3.2.3.1 Electrode preparation 

A wire is prepared by stripping both sides of it (around 2 cm), exposing the internal wire 

filaments. A male crimp pin is soldered to one end and a female crimp pin to the other. 

The male crimp pin connects to the 203BU headstage whilst the female crimp pin 

connects to the Ag/AgCl electrode used for either droplet-droplet DIB or eDIB 

electrophysiology measurements. 

Droplet-droplet Ag/AgCl electrodes are prepared from 3-6 cm of 0.1 mm diameter silver 

wire. The AgCl tip is prepared by lightly sanding the wire tip (around 2 mm) and 

exposing it to a solution of sodium hypochlorite for 30 minutes. The exposed tip will 
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darken, which indicates that the silver wire tip has undergone chlorination. This silver 

wire can now be soldered to the female crimp pin to complete the electrode. 

Electrodes used for eDIB measurements are prepared differently, as they must be able 

to pierce the alginate shell and also be shielded from it in order to avoid short circuits 

when probing the internal droplets. When electrophysiology is performed to probe the 

bilayers formed between internal eDIB cores and the alginate shell, only the electrode 

that pierces the internal cores needs to be prepared in this way.  

Firstly, a glass capillary (1 mm ID, CM Scientific, UK) is pulled using a capillary puller, 

in order to produce a tapered and sharp capillary tip. The glass capillary is then cut 

from the non-tapered end so that the non-tapered part of the glass sheath is around 3 

cm long. Ag/AgCl silver wire treated as described above is inserted into the glass 

capillary through the non-tapered side of the glass sheath so that it reaches the inside 

of the tapered side of the glass. Then, the tapered tip can be broken with aid of 

tweezers in order for the silver wire to exit through the tapered end of the glass. The 

electrode wire is then passed through the glass capillary so that roughly 1 mm of 

untreated wire is exposed from the tip (Figure 3.7a). Epoxy resin is applied to the non-

tapered end of the glass capillary in order to fix the silver wire in place, and set aside 

for 20 minutes in order to dry. 
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Figure 3.7 Preparation of electrodes for eDIB electrophysiology. a) Schematic depicting the stages in the 
preparation of an eDIB electrode prior to the fixing of the electrode wire within the pulled glass capillary 
with epoxy resin. b) Schematic of the tip of the eDIB electrode at its final stage. c) Photograph showing the 
finished electrode, which has mostly been covered in parafilm in order to protect the fragile glass sheath 
around the silver wire. 

Polydimethoxysilane (PDMS) (2-part Sylgard 184 elastomer, DOW Corning, UK) is 

prepared to seal the junction between the tapered side of the glass and the tip of the 

electrode (Figure 3.7b). The tip of the electrode is briefly dipped into the PDMS 

solution, which forms a droplet of PDMS between the glass capillary and the silver 

wire. The electrode is then heated in an oven at 120 ºC for 30 minutes to cure the 

PDMS. The process of dipping the tip in PDMS and curing the resulting droplet is 

repeated until only 0.75 mm of un-chlorinated silver wire is left exposed at the tip. Each 

subsequent repetition will grow onto the solid droplet of PDMS cured from the first 

instance which gradually reduces the exposed length of the wire. Once the desired 

length of 0.75 mm is reached, the excess chlorinated silver wire can be cut off using a 

scalpel, and the glass electrode soldered onto the female crimp pin. To finalise the 

process, parafilm is used to secure the glass electrode in place, especially at the 

junction between the crimp pin and the glass capillary where it is most fragile (Figure 

3.7c). 

a) 

b) 

c) 

PDMS 
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A 7.5 mg ml-1 solution of low-melting point agarose in DI water was prepared and kept 

at 90°C. The electrode tip was dipped in this solution prior to its use for 

electrophysiology, in order to encourage the wetting and hence the penetration of the 

electrode tip into water droplets contained within an eDIB. 

3.3 Results & discussion 

3.3.1 Droplet-droplet electrophysiology 

Firstly, DIB formation between two droplets in bulk oil (1:1 ratio of silicon oil and 

hexadecane with 5 mg mL-1 DPhPC) was attempted in order to characterise bilayer 

capacitance and ion flux resulting from the insertion of α-Hemolysin pores. This was 

performed in order to provide a foundation for DIB formation and establish a 

benchmark via which subsequent eDIB bilayer measurement could be compared to. 

Droplet-droplet electrophysiology demonstrated the formation of DIBs between 

aqueous droplets as well as the insertion of α-Hemolysin membrane protein pores into 

the bilayer (Figure 3.8).  
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Figure 3.8 Droplet-droplet electrophysiology experiments. a) Photographs showing the 
formation of a DIB between two 0.2 µL aqueous droplets submerged in a 1:1 mix of hexadecane 
and silicone oil (AR20) containing 5 mg mL-1 DPhPC. The droplets are anchored on electrodes 
mounted on micromanipulators. A lipid bilayer forms between the droplets when they are 
brought in close proximity. Scale bar = 1 mm. b) Electrophysiology traces of the droplets shown 
in a). A 10 Hz, +/- 23 mV triangle wave potential is applied between the droplets, showing a 
capacitive current trace (above). This capacitive current trace increases in amplitude as the 
bilayer forms and increases its area. The dotted line represents the approximate point in time at 
which the bilayer starts to form. c) Electrophysiology trace of a droplet-droplet DIB under an 
applied voltage of 50 mV. The droplets contain 1M KCl, 50 mM NaH2PO4 and the 
transmembrane protein α-Hemolysin. A, B, C and D designate steps in current that correspond 
to α-Hemolysin insertions. 

 

3.3.1.1. Bilayer formation 

Bilayer formation between two aqueous droplets was evidenced via electrophysiology 

traces which demonstrated characteristic bilayer capacitance when a triangle wave 

500 

pA 

1 s 

a) 

c) 

Bilayer formation 

b) 

5
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potential is applied to the bilayer (Figure 3.8b). Prior to bilayer formation, minor 

capacitance is seen displaying a peak-to-peak amplitude of around 30 pA, which 

indicates the close proximity of the droplet interfaces (Figure 3.8b). This dramatically 

increases up to 1010 pA which corresponds to the formation of a droplet interface 

bilayer which can be visually confirmed (Figure 3.8a). The capacitive current trace 

displays a small gradient at its peaks which is an indication of bilayer leakage. The 

capacitance of the bilayer is given by: 

𝐹 =  
𝐴

𝑑𝑉
𝑑𝑡⁄

 

Where F is capacitance (Farads), A is current (Amperes), V is voltage (Volts) and t is 

time (seconds).  

This gives a bilayer capacitance of 2174 pF. According to the referenced publication, 

this gives a bilayer area of 0.33 mm2 for DPhPC DIBs in hexadecane, which would 

correspond to a circle diameter of 0.63 mm72. This is within range of an expected 

bilayer diameter for a pair of 0.2 µL droplets of which diameter (assuming they are 

spheres) is 0.73 mm. Specific capacitance is calculated to be 0.667 µF cm-2 which is 

identical to that reported in the selected literature, for DPhPC DIBs formed in a 1:1 

mixture of hexadecane and silicon oil AR-2072. 

3.3.1.2. Insertion of the membrane protein α-Hemolysin 

The incorporation of the transmembrane protein pore α-Hemolysin into droplet-droplet 

bilayers was demonstrated. Once a DIB has formed, insertions of the transmembrane 

pore in the membrane were visualised using electrophysiology as stepped increases in 

current under an applied 50 mV potential (Figure 3.8c). A number of steps in current 

can be seen in the trace (A, B, C and D in Figure 3.8c), which likely correspond to 

insertions of α-Hemolysin single channels into the membrane. Assuming that step C 
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constitutes a simultaneous insertion of two α-Hemolysin channels, the average step 

size is 35.4 ± 3.44 pA. 

3.3.2 Microfluidic production of encapsulated droplet interface bilayers 

(eDIBs)  

3.3.2.1 Production of multisomes with control over the number and 

identity of inner aqueous cores. 

Using the 3D-printed microfluidic device for the production of W/O/W emulsions 

described in Chapter 2, multisomes were produced by using squalene with 5 mg/mL 

DPhPC as the oil phase, providing the lipid in order to produce DIBs between the 

internal cores and between the internal cores and the external aqueous environment. 

Control over the number of inner cores was demonstrated by varying the flow rate of 

the inner, middle and outer phases of the droplet system, with the ability to controllably 

produce multisomes containing up to four inner aqueous cores (Figure 3.9a-c). The 

diameters of these multisomes appear to be 2 mm, which is the internal diameter of the 

capillary in which they are produced.  

The ability to produce multisomes containing cores of different identity is also 

demonstrated. A 3D-printed microfluidic device (Figure 3.9e) is used which allows for 

the sequential generation of droplets of water in oil of alternating composition (Figure 

3.9d and f), using two droplet-generating T-junctions, and a hydrophobic channel 

surface composed of PLA polymer. It was possible to generate multisomes containing 

two cores of different identities at a frequency of 2.5 Hz using a flow rate of 1 ml hr-1 for 

the internal aqueous phases, 4 ml hr-1 for the oil phase and 300 ml hr-1 for the external 

aqueous phase. 
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a) 

b) 

c) 

d) 

e) 

f) 

f) 



 

137 

 

Chapter 3 – Hydrogel Encapsulated Droplet Interface Bilayers (eDIBs) 

Figure 3.9 Production of multisomes using a 3D-printed microfluidic device described in 
Chapter 2. a) Photographs of multisomes containing 1-4 inner aqueous cores (dyed with 1mM 
Malachite Green) in squalene containing 5 mg mL-1 DPhPC. The multisomes are contained 
within a 2mm ID square channel. b) Graphs showing the number of aqueous cores per 
multisome produced in 8 seconds of microfluidic operation at the flow rates described in c). c) 
Table showing the flow rates of the inner, middle and outer phases used to generate 
multisomes containing 1-4 inner aqueous cores, as shown in a) and b). d) Time lapse images 
showing the production of a multisome containing two inner aqueous cores of different identity, 
dyed with blue and red food dyes. The flow rates employed are 1 ml hr-1 for the inner aqueous 
phases, 4 ml hr-1 for the oil phase and 300 ml hr-1 for the external aqueous phase. e) 
Photograph of the 3D-printed microfluidic device that was designed and used to produce 
aqueous droplets in oil of alternating identity. f) Image of a multisome containing two inner 
aqueous cores of different identity that has been collected in a 3D-printed collection chamber. 
Section a) is adapted from referenced publication73. Scale bars = 1 mm. 

Following from the microfluidic production of multisomes, it was attempted to transfer 

them into an observation chamber in order to test their ability to remain stable 

untethered and outside of the microfluidic device used to produce them (Figure 3.10). 

The chamber was filled with an aqueous solution equivalent to the aqueous solution 

used for the inner aqueous droplets of the multisomes (excluding dyes), and consisted 

of a 3D-printed chamber with a hydrophilic, silanised glass lid (methods described in 

section 2.2.1.2). It was found that multisomes could not remain stable in the device and 

a number of them would coalesce when in close proximity (Figure 3.10).  

  

≈2 mins 

1 mm 
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Figure 3.10 Images showing the use of a 3D-printed collection chamber (above) designed to 
collect and store microfluidically-produced multisomes. The photograph on the left depicts a 
multisome containing one red and one blue aqueous core that is contained in buffer within the 
collection chamber. The photograph on the right shows the collection chamber after ≈2 minutes 
of microfluidic operation, where a number of multisomes have coalesced to form a large 
network of blue and red DIBs in oil.  

3.3.2.2 Production of droplet interface bilayers encapsulated in an alginate 

hydrogel shell (eDIBs). 

Using the 3D-printed microfluidic device described in section 2.3.1.2, Figure 3.18, it 

was possible to produce W/O/W/O emulsions which formed encapsulated droplet 

interface bilayers (eDIBs) comprised of a number of aqueous cores contained within an 

oil droplet with dissolved lipid, which is encased in a hydrogel shell.  

3.3.2.2.1 Microfluidic manufacture 

The process for the production of eDIBs is outlined in 

Figure 3.11 (a-d). A regular stream of aqueous droplets in oil containing dissolved lipid 

was produced using an external ETFE T-junction or a 3D-printed device for the 

generation of droplets of water of alternating composition. These droplets flowed into 

the 3D-printed microfluidic device using FEP tubing which terminated within a silanised 

glass capillary embedded in the 3D-printed microfluidic device. An input channel into 

the 3D-printed device allowed for an alginate solution to flow into the glass capillary 

and around the aqueous droplets in oil delivered by the FEP tubing, creating a coaxial 

droplet-generating geometry. This enabled the formation of oil droplets containing a 

prescribed amount of inner aqueous droplets. Another input channel of the 3D-printed 

device received a continuous flow of mineral oil containing 0.5% v/v acetic acid. This 

flowed into a second FEP tube within which the glass capillary carrying the oil droplets 

containing aqueous droplets terminated. This second, hydrophobic, coaxial flow 
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geometry, created the triple emulsion comprising a flow of alginate droplets, each 

containing an internal oil droplet with aqueous droplets inside (Figure 3.11).   

Modulation of the relative flow rates of the different fluids provided control over the 

number of internal aqueous cores and the frequency of production. For example, the 

flow rates 11.76 ml hr-1 for both the internal aqueous and oil phases, 250 ml hr-1 for the 

alginate phase and 400 ml hr-1 for the carrier oil phase resulted in eDIBs where 96% of 

them containing 10±1 aqueous cores, produced at a frequency of 2 Hz (Figure 3.11e). 
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Figure 3.11 The microfluidic production of encapsulated droplet interface bilayers (eDIBs). a) 
Diagram of the method via which eDIBs are produced depicting a T-juncton to generate water 
droplets and coaxial droplet-generating geometries for the subsequent encapsulations stages. 
b) CAD schematic of the 3D-printed microfluidic device used to produced eDIBs as per the 
method described in a). c) Photographs depicting the three different stages in eDIB formation. 
d) Time sequence photographs showing the formation of W/O/W (left) and W/O/W/O (right) 
emulsions within the coaxial droplet generating geometries in the 3D-printed microfluidic device. 
e) Graph showing the number of aqueous cores encapsulated per eDIB for 100 eDIBs using the 
flow rates 11.76:11.76:250:400 (aqueous, oil, alginate, oil).  

a) 

b) 

c) 

d) e) 
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The microfluidic production of eDIBs was found to be suitably reliable and reproducible 

for the purposes described in this chapter.  Flow rates were experimentally selected 

and optimised (Appendix 5) to produce monodisperse eDIBs with regards to the 

number of encapsulated aqueous cores (Figure 3.11e). eDIB monodispersity was not 

characterised although the geometrically-driven regime of droplet formation prevents 

large variances in droplet volumes and geometries (as described in sections 1.3.3.3 

and 2.3.2)74. The flow rate of the oil carrier was selected to be suitably high (400 ml hr -

1) in order to overcome the shear-thinning properties of alginate which can resist 

droplet pinch off, as lower flow rates resulted in cylindrical alginate fluid jets 60. Careful 

alignment of the tubes forming the second coaxial geometry within the microfluidic 

device was required in order to prevent the ejection of the oil droplet from the alginate 

shell in flow, and proved to be a critical step in the microfluidic device fabrication 

processes outlined in Chapter 2 (section 2.3.1.2).  

It is expected that the volume of the different phases and the frequency of production 

should follow a similar model as outlined in Chapter 2 (section 2.3.2.1) despite 

differences in fluid properties and the use of different surfactants, due to the 

maintenance of coaxial, geometrically-driven droplet formation regimes. However, 

variability in the number of aqueous cores encapsulated per eDIB was observed. For 

example, for the set of flow rates employed in these experiments, 72% of eDIBs 

contained the anticipated number of internal droplets (10 aqueous droplets per eDIB) 

whilst 26% contained one droplet more or less. This was attributed to an early 

formation of bilayers between adjacent aqueous droplets in the microfluidic 

encapsulation process, proving an adhesive force between contacting droplets which 

resulted in the droplet pair being either included or excluded from the forming oil 

droplet (Figure 3.12). The microfluidic device was able to tolerate these fluctuations for 

periods of up to 1 minute at least, without much other impact on droplet formation, 
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despite the non-linear pressure profiles of droplet formation and breakup mechanisms 

75, 76. 

 

Figure 3.12 A bilayer forming between adjacent droplets early in the encapsulation process, 
providing with adhesion between droplets close to the oil droplet break-up point. This occurred 
occasionally and could result in either the inclusion or exclusion of the droplet pair, giving rise to 
variability in the number of aqueous cores encapsulated for a given set of flow rates (Figure 
3.11e). 

3.3.2.2.2 Alginate shell gelation 

The alginate phase of the eDIBs proceeded in-flow and appeared to gel sufficiently in 

the length of the final FEP tube within the microfluidic device (typically 15 cm long) to 

be able to act as a solid upon exit from the device, and withstand mechanical handling 

or being placed in aqueous or oil environments (Figure 3.16). This was caused by the 

partitioning of acetic acid from the mineral oil phase to the aqueous phase, initiating the 

liberation of free calcium cations from the dissolution of calcium carbonate particles 

suspended in the alginate solution, which cross-link the alginate monomers to form a 

hydrogel. The dissolution of calcium carbonate in a low pH environment is in 

accordance with the following reaction: 

CaCO3 + 2H+ (aq) → Ca2+ (aq)+CO2+H2O 

It was observed that there were two circumstances where alginate would gel and 

adhere to the orifice of the glass capillary at the second coaxial geometry. Firstly, a 

1 mm 
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plug of gelled alginate would develop at the orifice when flow was paused after 

generating eDIBs. This was usually resolved by resuming flow, as the plug of alginate 

would be dislodged from the orifice and expelled from the device. Alginate would also 

gel and adhere to the glass capillary after prolonged microfluidic flow which required 

the use of an EDTA solution to dissolve the gelled alginate, as described in section 

3.2.2. A method that was not employed here that would circumvent this issue would be 

the use of a chaperone fluid, where the alginate droplet formation occurs in a non-

gelling carrier solution that is miscible with the gelling carrier solution, which is 

introduced later on in the microfluidic device. In this way, the droplet-forming geometry 

would be protected from early gelation50. 

The presence of suspended calcium carbonate particles accounts for the initial opacity 

of the alginate shell. As the reaction described above takes place, the alginate shell is 

rendered transparent from the outside to the inside, as the acetic acid penetrates 

deeper into the alginate shell. Thus, the transparency of the alginate shell can be used 

to assess the extent of its gelation. Full transparency is achieved after approximately 

15 minutes (Figure 3.13). 

 

Figure 3.13 Photographs demonstrating how the alginate shell of an eDIB becomes transparent 
over a period of approximately 15 minutes. This occurs as acetic acid from the carrier oil phase 
partitions into the alginate phase, which contains suspended calcium carbonate particles that 
confer an initial opacity to the phase. The lowering of pH caused by the partitioning process 
causes these particles to be dissolved, resulting in transparency of the eDIB shell. These eDIBs 
have been output into a petri dish and are submerged in mineral oil containing 0.5 % v/v acetic 
acid. 

The rate at which calcium cations are liberated can be modified to provide control over 

the shell morphology. The majority of eDIBs produced in this chapter are of an 
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asymmetric, ovoid morphology, with the internal cores often not residing in the centre 

of the construct. This is because eDIBs are produced as channel-occluding slugs within 

the microfluidic device, and the onset of gelation of the alginate shell occurs at this 

point. This asymmetrical shape can be desirable for bottom-up synthetic biology 

applications, where it can provide with directionality and geometrical polarity, which can 

be useful for the implementation of eDIB motility, for example. For other applications a 

spherical shape may be preferable to ensure a more homogeneous access to the DIBs 

contained within. It is possible to produce more spherical eDIBs by delaying gelation 

until after they have exited the microfluidic device, as shown in Figure 3.14.  

 

 

Figure 3.14 Photograph of a spherical eDIB produced by delaying the alginate shell gelation 
process by using a carrier oil phase with no dissolved acid. Gelation occurs once it has been 
submerged in a petri dish containing mineral oil with 0.5% glacial acetic acid. 

 

It is noted that the control of the alginate shell gelation may be achieved by modulating 

the rate of calcium cation liberation from calcium carbonate. For example, calcium 

carbonate particle size and concentration, acetic acid concentration, buffering of the 

alginate phase, surface area to volume ratio of the capsule, capsule size and flow 

1 mm 
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conditions (i.e. flow-dependent advective mixing and the volume ratio of alginate to 

carrier oil) can all be modulated to control the rate of gelation. This may be useful in 

order to modulate not only the shape, but the rigidity and adhesiveness between a 

number of individual eDIBs. 

Osmotic balancing between the internal cores and the alginate shell was a challenge 

because the alginate shell is comprised of a number of chemicals that affect osmotic 

pressure and that undergo a dynamic process during gelation. As acetic acid partitions 

into the alginate phase, the pH drops which causes CaCO3 particles to dissolve 

releasing Ca2+ cations, and sodium alginate molecules to cross-link which releases Na+ 

ions. Uncertainty exists in the amount of acetic acid present in the hydrogel, the 

amount of CaCO3 dissolution and the degree of alginate cross-linking. In order to 

address this, assumptions were made in order to calculate the approximate ionic 

strength of the alginate shell prior to the addition of a relatively high concentration of 

salt (NaCl) to osmotically balance the inner aqueous phases with the alginate shell, 

causing any differences in ionic strength of the alginate phase due to the uncertainties 

described above to be less significant. These assumptions were a) all of the CaCO3 in 

the alginate phase is dissolved and b) all of the alginate is cross-linked. The ionic 

strength of the alginate phase prior to the addition of salt was calculated to be 0.0505 

M, and both the alginate and internal aqueous phase were balanced up to an ionic 

strength of 0.5 M using NaCl. Due to the ability of eDIBs to survive in aqueous 

environments, it should be possible to overcome these issues by incubating eDIBs in 

aqueous solutions that are osmotically matched with the internal cores, as the alginate 

shell will osmotically equilibrate with its surroundings. 

Other methods of alginate gelation may also be employed and the kinetics of calcium 

delivery harnessed to control alginate morphology. For example, the release of photo-

caged calcium may provide an internal gelation method31 that dispenses with the 
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requirement of acid exposure and calcium carbonate particle suspension. An 

alternative method of alginate gelation was explored where the carrier phase was 

substituted for 1-octanol containing 150 mM dissolved calcium chloride (Figure 3.15). 

This external method of gelation relies on the partitioning of calcium cations from the 

octanol to the alginate phase77. This method offers the potential to circumvent potential 

issues with the internal gelation method described in this chapter, such as the initial 

opacity of the alginate phase, uncertainties regarding the pH and ionic strength of the 

hydrogel shell, and the unnecessary production of CO2 via the dissolution of CaCO3. 

 

Figure 3.15 Photograph of eDIBs in an FEP tube (internal diameter = 2.5 mm) produced using 
an external gelation method relying on the partitioning of calcium chloride between a carrier 1-
octanol phase containing 150 mM calcium chloride and the alginate phase.  
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3.3.2.2.3 eDIB stability  

Unlike multisomes, eDIBs could be collected on exit from the device intact, and 

demonstrated to be self-supporting and resistant to rupture on contacting liquid air or 

container interfaces. The eDIBs were found to be stable in aqueous, oil and air 

environments (Figure 3.16) and were able to withstand careful manipulation using 

hands or tweezers (Figure 3.16b and c), as well as being manipulated using a pipette 

(Figure 3.16c) or stored in a 1.5 mL Eppendorf vial (Figure 3.16b). 
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Figure 3.16 Photographs of encapsulated droplet interface bilayers (eDIBs). a) eDIBs floating in 
water (left) or submerged in oil (right). b) From left to right: an eDIB being handled using fine 
tweezers, four eDIBs contained in oil within a 1.5 mL Eppendorf tube, an eDIB being held on a 
gloved finger. All eDIBs depicted here were output directly from the microfluidic device. c) A 
sequence of images depicting the pipetting of an eDIB into an empty petri dish. This eDIB is 
absorbed from another petri dish containing eDIBs submerged in oil, using a 1 mL pipette with a 
cut pipette tip. Scale bars = 1 mm.  

 

 

a) 

b) 

c) 
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Additionally, it was found that eDIBs could be interfaced with the natural World, and 

were found to remain stable when placed upon a leaf found from the local flora of the 

Cardiff University grounds (Figure 3.17). This provides a basis via which eDIBs can be 

used outside of a laboratory environment. 

 

Figure 3.17 Photograph of eDIB placed on a leaf collected from the outdoors of Redwood 
Building (Cardiff, UK). This demonstrates the potential of eDIBs to interact with materials in the 
outside World. For photographic purposes this image was taken indoors. 

eDIBs could be kept intact for periods of weeks at room temperature when kept in oil, 

as this prevented evaporation of the hydrogel shells.  During the course of the 

experiments described in this chapter, it was noted that eDIBs were able to survive 

over two weeks submerged in oil in a petri dish, and withstand the mechanical agitation 

of being transported by foot in an Eppendorf tube from different Cardiff University 

departments (approximately 1.2 km apart) This is a somewhat remarkable feat due to 

the notorious instability of artificial lipid bilayers and certain conditions for DIB formation 

within the experiments of this chapter that are expected to be detrimental to bilayer 

stability. For example, the bilayers produced in this chapter are considerably larger 

than many of those seen in the literature3, which is likely to decrease the stability of the 

DIBs. Also, unlike other methods of DIB production, the continuous, microfluidic 

method of eDIB production employed here did not allow for the incubation of droplets 
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that is seen and suggested in the DIB literature2, 11, which allows for the formation of 

lipid monolayers around the droplets. This process is considered a prerequisite for 

bilayer formation. This may be offset by reports that suggest that microfluidic flow 

enhances the speed at which lipid monolayers form around droplets19. The amount of 

time between the formation of the droplets of water in oil and their encapsulation within 

an oil droplet was usually less than 20 seconds in the experiments reported here, 

compared to incubation times in the order of 5-15 minutes that are suggested in the 

literature. Incubation time can be increased in eDIB production by increasing the length 

of the FEP tube prior to the encapsulation of the droplets of water in an oil droplet, and 

the ETFE T-junction where the droplets are formed. However, it was found that 

increasing the length of this tube affected the homogeneity of droplet production, 

especially the distance between the droplets, which was due to the flexible nature of 

the FEP tube that likely allowed for a heterogeneous flow of oil around the droplets. 

This can be circumvented by using different methods of water-in-oil droplet production, 

or using a rigid material to deliver the droplets into the 3D-printed device, such as a 

glass capillary. It is also likely that the hydrogel shell around the DIBs increases the 

stability of the bilayers formed. Observations support this hypothesis as, in the case of 

DIB failure within eDIBs, it is usually the DIBs between the internal cores that fail 

before the DIBs between the internal cores and the hydrogel shell, despite the internal 

cores being osmotically balanced for the large majority of experiments performed. 

Different lipids and lipid compositions can be explored in order to increase the stability 

of the bilayers contained within the eDIBs or to modulate bilayer stability in response to 

different environments. For the experiments reported here, DPhPC was used as the 

sole constituent of the lipid bilayers due to its reported formation of high stability lipid 

bilayers 78, 79. It was found that the use of 1,2-dioleoyl-sn-glycero-3-phosphocholine 

(DOPC) instead of DPhPC caused a significant amount of bilayer failure within the 

microfluidic production stages where the aqueous droplets are first brought into close 
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proximity. eDIB bilayer stability may benefit from the inclusion or use of polymerisable 

lipids80, 81. Also, lipid mixtures or cell lipid extracts may be used to generate more 

biomimetic bilayers within the eDIBs82. Asymmetrical lipid bilayers may be achievable 

via the delivery of lipids as vesicles within the aqueous droplets instead of dissolved in 

the oil phase83. 

3.3.2.3 eDIB electrophysiology 

The presence of lipid bilayers segregating compartments was confirmed by 

electrophysiology (Figure 3.18). A characteristic square wave current was recorded in 

response to a triangular wave voltage, giving a bilayer capacitance of 2826 pF (Figure 

3.18a). This corresponds to a bilayer area of approximately 0.42 mm2 for DPhPC in 

hexadecane (Specific capacitance 0.652 μF cm-2 72). Electroporation of the bilayer was 

observed under an applied potential of 50 mV (Figure 3.18b), giving rise to transient 

increases in current. 

In subsequent experiments, it was attempted to insert α-Hemolysin membrane pores 

into the eDIBs in order to electrically measure single-channel insertions and the 

resulting ion flux. This was performed by pipetting 0.2 µL aqueous droplets of the α-

Hemolysin (≈3 nM) solution onto the alginate shells of the eDIBs being electrically 

probed. The droplets would wet the alginate shell and thus allow for the α-Hemolysin 

pores to diffuse to the eDIB bilayers. For these experiments, a 30 mV potential was 

applied across the bilayer. Step-wise increases in current were seen when probing the 

bilayers between the alginate shell and the internal aqueous cores, associated to 

individual pores inserting in the bilayer resulting in an ion flux across the membrane. 

Two types of insertion events were observed: a) step increases in current associated 

with α-Hemolysin inserting into the bilayer that directly separated both electrodes 

(Figure 3.18c, inset red pore and trace) and b) capacitive transient increases in current 

that decayed (Figure 3.18c, inset blue pore and trace). The latter behaviour has 
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previously been reported as a result of pore insertion into bilayers connected to the 

droplet being probed from the wider droplet bilayer network 5, 84. A combination of these 

behaviours was also seen (Figure 3.18d). 

 

 

Figure 3.18 Electrophysiology experiments performed on eDIBs. a) A photograph depicting an 
eDIB with Ag/AgCl electrodes (top), where one is inserted in one of the internal aqueous cores 
and the other is in the alginate shell. In response to a ±23 mV triangle wave, a capacitive 

a) b) 

c) d) 
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current is measured, signifying the presence of a lipid bilayer (bottom). b) A short period of 
electroporation in an eDIB membrane is observed during a period under an applied potential of 
50 mV. c) Following the contacting of the external shell of an eDIB with an aqueous droplet 
containing the protein pore α-Hemolysin, protein insertion events are detected which facilitate 
ion flux across the bilayer (red traces). Transient current spikes are also observed (blue traces) 
due to protein insertion into neighbouring bilayers of the droplet bilayer network of the eDIB. d) 
Successive step-wise increases in current are measured as multiple protein pores insert (Step 
size ca. 18 pA), with both types of protein pore insertions seen in c). 

 

Electrophysiology experiments proved challenging for eDIBs due to the requirement of 

having to pierce an alginate shell in order to access the internal droplets. This required 

the piercing electrode to be shielded from the conductive alginate phase via the 

preparation of custom electrodes (as described in section 3.2.3.1). Also, the eDIBs 

proved to be susceptible to this kind of mechanical manipulation, and often the 

mechanical force of the electrode on the eDIB would cause its internal droplets to 

coalesce with the alginate shell and hence bilayer failure. To circumvent this issue, a 

0.5x phosphate buffered saline solution was used in the alginate phase for the 

microfluidic generation of eDIBs that had a more flexible outer shell that could be 

pierced with little impact on the integrity of the bilayers within. 

Electrophysiology experiments served to prove the formation of lipid bilayers between 

the internal aqueous cores and the alginate shell. Droplet-droplet electrophysiology 

was performed as it is a well characterised technique which was used to benchmark 

the electrophysiology performance of the eDIBs2. DIBs formed via this method 

displayed capacitance with little current leakage and abundant individual α-Hemolysin 

insertions. In comparison, the capacitance of the bilayers within the eDIB displayed 

more leakage and less abundant α-Hemolysin insertions. The increased leakage of 

eDIB bilayers is possibly due to the eDIB bilayers being larger than the droplet-droplet 

bilayers. Using a specific capacitance of 0.652 µF cm-2 for DPhPC in hexadecane72, the 

eDIB bilayer demonstrated in Figure 3.18 has an area of 0.42 mm2 as opposed to 

0.082 mm2 of the droplet-droplet bilayer in Figure 3.8. It was found that increasing 
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concentrations of dye in the aqueous cores increased the gradient of bilayer 

capacitance traces, which indicated an effect on bilayer leakage (Figure 3.19).  

 

Figure 3.19 Electrophyiology traces representing the capacitance of eDIB bilayers between 
internal cores of varying Lissamine Green concentration (1mM, 100µM, 10µM, 0) and the 
hydrogel shell. Capacitance is observed with varying amounts of leakage under an applied 10 
Hz ±23 mV triangle wave potential. Leakage is visible as a gradient at the capacitance peaks. 

α-Hemolysin insertions were less abundant in eDIBs due to the method of α-Hemolysin 

delivery to the bilayers. Droplet-droplet bilayers allowed for α-Hemolysin to be 

contained within the bilayer droplets. For eDIBs, α-Hemolysin was delivered by adding 

droplets of α-Hemolysin to the alginate shell, which involves the proteins having to 

diffuse distances in the order of millimetres through an alginate hydrogel which 

comprises a relatively large volume (ca. 10 µL), resulting in fewer pores reaching the 

membrane despite the use of a higher concentration. Indirect α-Hemolysin insertions 

(Figure 3.10c inset blue pore and trace) were observed for eDIBs as capacitive 

transient increases in current that subsequently decayed. This behaviour has 

previously been reported as a result of pore insertion into indirectly interrogated 

bilayers within a wider droplet bilayer network 5, 84. Consequently, we attribute this 

behaviour to insertions into neighbouring bilayers of the connected network that are not 

directly probed by the Ag/AgCl electrode that is inserted into an internal aqueous core. 

The conductivity of these pores was difficult to ascertain due to uncertainties with 

regards to the ionic concentrations of the alginate phase but were found to be 

comparable to other experiments in the literature for similar conditions23. 

1mM 100 µM 10 µM 0 M 

0.2 s 

5000  
pA 
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3.4 Conclusion 

In this chapter, it is shown that encapsulated droplet interface bilayer networks (eDIBs) 

based on W/O/W/O emulsions represent a robust and freestanding artificial bilayer 

network platform with the ability to interface with an external aqueous environment, as 

well as remain stable in aqueous, air and oil environments. eDIBs have been shown to 

be able to withstand mechanical handling and remain intact for prolonged periods of 

time. This goes beyond current reports in the literature that have aimed at producing 

mechanically stable DIBs in solid substrates 85, 86 which do not allow for communication 

with an external environment, attempts to stabilise DIBs in air87, which are not 

freestanding or compatible with aqueous environments, and attempts to produce 

freestanding droplet networks in water12 which are not stable in other environments and 

lack the handling capacity, rigidity, and the oil phase that eDIBs provide, which can act 

as a reservoir for lipids and other oil soluble substances. 

The microfluidic method described here represents a cost effective, scalable and 

reliable method of producing eDIBs, and provides a means to control both aqueous 

core number as well as aqueous cores of different contents. This control enables 

eDIBs to retain favourable properties of DIBs, such as asymmetrical droplet contents or 

bilayer lipid composition, the insertion of functional membrane proteins, and 

communication between droplets, whilst affording an unprecedented combination of 

mechanical stability and environmental compatibility.   

eDIB monodispersity is yet to be characterised, and further exploration of flow rates 

and the use of an additional syringe pump to independently control the internal 

aqueous and oil phase flow rates will allow greater control over droplet encapsulation. 

Automation of eDIB production is thought to be possible. Further developments should 

focus on the miniaturisation of eDIBs into the microscale (<100 µm in total diameter), 



 

156 

 

Chapter 3 – Hydrogel Encapsulated Droplet Interface Bilayers (eDIBs) 

which is expected to be readily possible by scaling down channel diameters within the 

microfluidic device, and might improve eDIB manufacture in terms of bilayer stability 

and alginate gelation by increasing surface area to volume ratios. 

The developments described here expand on the potential of artificial lipid bilayers for 

applications within fundamental science and bottom-up synthetic biology, and enables 

DIBs and droplet networks to be used outside of the laboratory for the development of 

functional materials in the external World (Figure 3.17). It is proposed that eDIBs may 

enable lab-in-a-capsule technologies through droplet network compartmentalisation, 

and could therefore represent self-contained assay platforms for use in environments 

that are not readily reducible to laboratory settings. With alginate being biocompatible 

and their widespread use in internal medicine, eDIBs could develop into diagnostic and 

therapeutic complex capsules capable of dynamic interaction with biological cells, 

tissues and organisms. Individual eDIB constructs may be engineered to physically 

interact with one another and form higher order structures, akin to artificial tissues84. 

Additionally, freestanding DIB networks may be able to integrate with other advances 

within the field of bottom-up synthetic biology, such as the ability to form motile 

droplets88-91, further aiding in the development of self-sustaining artificial cell systems90. 
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Chapter 4 – The Assembly of Encapsulated 

Droplet Interface Bilayers into Higher 

Order Structures 

4.0 Chapter Summary 

This chapter represents exploratory work in the assembly of higher order structures 

from individual encapsulated droplet interface bilayers (eDIBs), as developed in 

previous chapters. Their hydrogel shells are used as a means for a number of eDIBs to 

form higher order assemblies which can be regarded as artificial tissues. These novel 

constructs display multi-compartmentalisation at the level of their building blocks (the 

eDIBs), as well as at the level of the higher order assembly, providing a foundation for 

the continued development of functional, bottom-up synthetic biology constructs 

displaying hierarchical order and with the potential to give rise to complex functionality. 

Electrophysiology is employed in order to demonstrate electrical communication within 

an eDIB higher order assembly. Additionally, the microfluidic methods employed to 

produce eDIBs were used to produce alternative eDIB conformations, such as 

elongated chains and eDIBs containing a number of DIB networks within, which offer 

an alternative to producing higher order assemblies as well as potential models for the 

study of biological processes.  

4.1 Introduction 

Whilst the survival of single-cell organisms depends on the coaction of a number of 

different sub-cellular parts, multicellular organisms add subsequent layers of 
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complexity by depending on the cooperation of a number of higher order cellular 

organisations. This has allowed more complex biological systems to exist, applying the 

same fundamental functions that allow cells to survive (i.e. compartmentalisation, 

metabolism and replication) at a supra-cellular level (these functions are performed by 

groups of cells). Thus, whilst the development of artificial cells in itself is of great 

significance, it would be advantageous to develop a chassis for artificial cells that is 

capable of assembling into higher order structures akin to artificial tissues, as the 

continuous development of a system that can give rise to complexity via multi-

compartmentalisation at different scales is expected to allow for more complex 

functionalities and emergent behaviours. 

DIBs have often been referred to as potential structures for the development of artificial 

cells1-6. The development of DIB networks that function in aqueous environments7, 

such as the encapsulated DIBs (eDIBs) described in this thesis5, further realises this 

potential by allowing for its communication with an external, aqueous environment, and 

offers the ability to give rise to compartmentalised chemistry8.  

Villar et al. expanded the scale of droplet bilayer networks by several orders of 

magnitude, creating complex 3D networks of many thousands of droplets each 

individually printed9. By increasing the scale and dimensionality of droplet networks 

higher order behaviours could be introduced, ascribing tissue-like properties to the 

material. By printing 3D structures of two different droplet compositions with osmolality 

gradient between these different droplet types, passive diffusion of water across 

adjoining membranes was exploited to give rise to differential droplet swelling and 

shrinkage at defined locations in the 3D architecture. This introduced a responsive 

shape changing programmability into the synthetic tissue. Additionally, specific 

communicative paths could be engineered into the material by creating a path of 

droplets functionalised with membrane pores within a larger droplet assembly. This 



 

164 

 

Chapter 4 – The Assembly of Encapsulated Droplet Interface Bilayers into Higher 
Order Structures 

allowed for rapid electrical communication along defined pathways within the artificial 

tissue structure. More recent developments have introduced light-responsive in vitro 

transcription and translation systems into the droplets, allowing for such paths to be 

directly written by exposure to light10. 

This work demonstrated a route to the development of tissue-like materials by 

expanding the scale of the number of droplets involved by several orders of magnitude, 

in comparison to previous DIB networks. Each “cellular” unit of the synthetic tissue is 

an individual droplet, which are connected by membranes to create a much larger 

structure. It would be advantageous to be able to create synthetic tissues comprised of 

multi-compartmentalised building blocks, affording the opportunity to engineer more 

sophisticated functionality into the cellular units of the tissue. It is anticipated that this 

would enable further complex tissue like properties and emergent behaviours to be 

exploited, creating a system closer to that of eukaryotic tissues. Towards fulfilling this 

ambition, it is proposed that eDIBs could constitute individual building blocks of a 

higher order structure, and consequently the production of tissue-like systems from 

eDIBs is the focus of this chapter. 

The eDIBs developed in the previous chapter comprise a DIB network that is 

encapsulated within a hydrogel shell. The alginate shells can be used in order to 

segregate a number of DIB networks whilst allowing for diffusive communication 

between them due to the aqueous nature of the hydrogel. This provides a route 

towards which artificial tissues can be generated comprised of multi-

compartmentalised, cellular units, as recently proposed by Bayoumi et al. 11. This 

chapter aims to assemble eDIBs into higher-order, tissue-like structures whilst 

maintaining multi-compartment complexity at the cellular level. This will be attempted 

via the adherence of eDIBs to one another, which may be achieved via the incomplete 

gelling of the alginate shell as well as its elastic deformability (see section 3.1.2). An 
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alternative method will also be attempted via the production of eDIB conformations that 

comprise a number of oil-encapsulated DIB networks within a shared, alginate 

structure, which is expected to be achievable via the modulation of flow rates in the 

microfluidic production of eDIBs. 

4.2 Materials and Methods 

eDIBs were prepared as described in Chapter 3 (Section 3.3.2.2), using the microfluidic 

methods developed in chapter 2. Images were taken either with an iPhone 6, a USB 

microscope (Celestrion, USA), or a custom light microscope. eDIBs generated 

microfluidically were deliberately exited into containers for their assembly into higher 

order structures. 

4.3 Results 

4.3.1 eDIB “Proto-tissues” 

eDIBs prepared as in Chapter 3 were output into a petri dish filled with mineral oil. 

Contacting eDIBs were found to adhere to each other when in close contact (Figure 

4.1).  
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Figure 4.1 eDIBs in a petri dish filled with mineral oil which have been output directly from the 
microfluidic device. The eDIB aqueous cores are dyed pink with 25 μM sulphorhodamine B. The 
hydrogel shells of the eDIBs adhere to each other when in close proximity deforming their 
shape. Scale bars = 1 mm. 

Figure 4.1 shows 2D conformations of eDIBs that are adhered to each other forming a 

higher order, tissue-like structure. 3D conformations of eDIB proto-tissues were also 

possible by outputting eDIBs at a higher density into a glass beaker, as shown in 

Figure 4.2. 

 

 

1 mm 1 mm 
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Figure 4.2 Beaker (5 mL) displaying a 3-dimensional network of adhered eDIBs in oil, forming 
3D proto-tissues. 

The eDIB shells appear to be deformable and adapt their shape to one another when in 

close proximity. Plastic deformability is a known property of ionically cross-linked 

alginate hydrogels12, although it is likely that the adherence of eDIBs here is also aided 

by incomplete gelling of the hydrogel shells, as they are exited from the microfluidic 

device rapidly without any additional incubation time in the gelling solution (mineral oil 

+ 0.5% acetic acid v/v). Additionally, the oil environment they are kept in likely provides 

a driving force for the alginate shells to minimise their contact area with the surrounding 

oil due to surface tension forces, and thus adhere to each other. It was found that 

eDIBs displayed some mechanical resistance when it was attempted to separate an 

eDIB from a group of adjoined eDIBs using a pair of tweezers (Figure 4.3i-iii), but it was 

possible to separate an eDIB without damage to the contained droplet networks, and 

also re-join the eDIB back into the larger assembly (Figure 4.3iii-v). This showcases the 

mechanical stability of the eDIBs, their ability to form mechanically resistant 
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assemblies, and also the ability of eDIB assemblies to be spatially re-configured. This 

provides a route towards self-repairing and mechanically adaptable tissue-like 

materials. 

 

Figure 4.3 A group of 5 eDIBs forming a “proto-tissue”. Tweezers are employed in order to 
separate an eDIB from the larger assembly, and then re-assemble the eDIB back into it without 
any apparent damage to the encapsulated bilayer network. The eDIB aqueous cores are dyed 
red with 25 μM sulphorhodamine B. 

Similarly, it was found that eDIBs in oil in close proximity with each other would 

spontaneously assemble into a higher order assembly, as shown in Figure 4.4. This is 

likely due to surface tension forces between eDIBs in close proximity.  

 

Figure 4.4 Time-course of eDIBs in oil in close proximity spontaneously assembling together 
into a “proto-tissue” over the course of 5 seconds. The eDIB aqueous cores are dyed red with 
25 μM sulphorhodamine B. 

eDIBs assemblies in oil could also be aspirated using a pipette and then pipetted back 

out, with little or no damage to the eDIB structure, further demonstrating the robustness 

of the eDIBs as well as of their higher order assemblies. This is shown in Figure 4.5. 
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Figure 4.5 An assembly of 5 eDIBs in oil being aspirated into a cut pipette tip from a petri dish, 
and then being pipetted back out. The eDIB aqueous cores are dyed red with 25 μM 
sulphorhodamine B. Image iv appears to show one eDIB less, although this is because one 
eDIB is now sitting on top of another. 

The adhesion of the eDIBs to each other was found to allow for diffusive electrical 

contact between eDIBs, evidenced by electrophysiology, where bilayers formed 

between the inner droplets of an eDIB and its hydrogel shell could be probed by having 

one electrode in an aqueous core of the probed eDIB and the other in the alginate shell 

of an adjacent eDIB within the larger eDIB assembly (Figure 4.6). Bilayer capacitance 

was observed when a +/- 23 mV, 10 Hz triangle wave potential was applied.  

                              

 

Figure 4.6 Diffusive electrical contact is demonstrated between eDIBs forming an artificial 
tissue in oil via electrophysiology. One electrode is present in the alginate shell of one eDIB, 
whilst the other is present inside an aqueous droplet contained within another eDIB, forming a 
bilayer between the aqueous droplet and its hydrogel shell. Capacitance was observed when a 
+/- 23 mV, 10 Hz triangle wave potential was applied (b), which demonstrates that the eDIBs 
share a conductive path between them due to the contact of the hydrogel shells. eDIBs are 
dyed blue with 50 μM Lissamine green. Scale bar = 1 mm. 
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4.3.2 Alternative eDIB conformations 

Higher order eDIB assemblies could also be produced by encapsulating a number of 

eDIB networks within the same alginate hydrogel structure. In Chapter 2, the 

modulation of flow rates was used in order to affect the volume and generation 

frequency of aqueous droplets in a microfluidic device, giving rise to different numbers 

of encapsulated aqueous droplets per oil droplet (See section 2.3.2). A similar 

approach was employed here in order to produce higher order eDIB assemblies by 

modulating the alginate hydrogel formation in the carrier oil phase. 

One example of this is the production of an eDIB chain, where a number of oil droplets 

containing aqueous cores inside was produced in an elongated alginate cylinder. This 

was achieved by using the microfluidic flow rate regimes used in chapter 3 (section 

3.3.2.2) to produce eDIBs, except for the external oil phase flow rate which is halted 

after the tube has been prefilled with the oil solution. This avoided the breaking up of 

the alginate into droplets and allowed for an elongated alginate structure to form. The 

residual oil in the FEP outlet tube at either end of the alginate slug was sufficient to 

trigger initial gelation of the alginate exterior, before extruding the construct into a petri 

dish for complete gelation.  
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Figure 4.7 An eDIB chain within the final FEP tube of the microfluidic device employed to 
produce them (See section 2.3.2.3). The eDIB chain is comprised of a number of oil-
encapsulated DIB networks within an elongated alginate hydrogel cylinder.  

 It was found that the alginate chains produced could be exited into a petri dish and 

manipulated with tweezers, with minimal damage to its structure and the DIBs 

contained within. 

                   

Figure 4.8 eDIB “chains” comprised of a number of oil-encapsulated DIB networks within an 
elongated hydrogel matrix. eDIB aqueous cores are dyed pink with 25 μM Sulphorhodamine. a) 
eDIB chain in a petri dish containing an aqueous solution. b) The eDIB chain can be 
manipulated and picked up with use of tweezers, demonstrating the robustness of the structure. 
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Additionally, it was also possible to produce eDIBs that comprised of two oil droplets 

containing droplet networks sharing the same alginate shell. These constructs could be 

produced by the slowing of the oil carrier phase relative to the preceding phases, 

resulting in a longer alginate droplet formation time and therefore the incorporation of 

additional oil droplets. In practice, this was achieved using the same flow rate regime 

employed to generate eDIBs as in section 3.3.2.2, and reducing the external oil carrier 

phase to a stop. The double-core eDIBs were produced for a short period of time 

between the use of flow rates for the generation of single-core eDIBs and the halting of 

the external oil carrier phase. It is likely that this can be achieved consistently be using 

relatively low carrier oil flow rates or a pulsatile flow regime. This kind of structure could 

find applications in the study of processes that occur where cells communicate in close 

contact with each other, bringing their respective membranes into close contact. 

Similarly, such architectures may pave the way for exploitation of close proximity and 

low diffusional volume between bilayers in synthetic systems, for example in the 

engineering of a synthetic synapse. 

 

Figure 4.9 eDIB displaying two oil droplets with DIB networks within. The oil droplets are in 
close proximity to each other which could be used as a model for neuronal synapses or close 
cell-to-cell communication, for example. eDIB aqueous cores are dyed orange with 70 mM 
calcein (fluorescent yellow alginate is due to calcein contamination at the point of microfluidic 
manufacture). 
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4.4 Discussion & Conclusion 

The work performed in this chapter shows initial work in the production of higher order 

assemblies using eDIBs as building blocks or artificial cells. It was demonstrated that 

eDIBs could form higher order assemblies where the hydrogel shells of a number of 

eDIBs adhered to each other when in close contact. This would occur spontaneously 

when eDIBs were placed in close contact with each other, displaying potential self-

assembling properties likely due to surface forces. Additionally, eDIBs within a larger 

assembly could be mechanically separated and re-joined, which demonstrated the 

potential of eDIB artificial tissues to be spatially re-configurable and display self-

repairing properties. Electrophysiology experiments confirmed that eDIBs forming a 

higher order assembly were in diffusive electrical contact with each other, and thus 

chemical and electrical communication between an eDIB artificial tissue should be 

achievable.  

In comparison to the artificial tissues developed by Villar et al., the artificial tissues 

produced here achieve multi-compartmentalisation at the level of the individual building 

blocks, in addition to that of the higher order assembly. In the demonstrated system 

there are both connected and isolated components within the higher order structure, 

with the hydrogel in diffusive contact and internal droplet networks isolated by lipid 

bilayers. In contrast, the work of Villar et al. uses membranes to segregate all 

compartments of the larger structure. There are likely opportunities and drawbacks of 

each approach, depending on the requirement, for example, to isolate or perfuse. 

Given that it is possible to form DIBs between contacting hydrogels, the described 

approach with eDIBs could be extended to form bilayers between contacting alginate 

shells, thus generating similar membrane based selective connectivity between 

individual cellular units as that achieved by Villar et al.’s approach. It is notable that 

such an approach could be expected to generate significant complexity, affording 
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bilayer networks within bilayer networks. The employment of membrane protein 

regulated communication between and within droplet networks created the opportunity 

for feedback, interference, transmission as well as isolation of processes. 

A similar concept to the eDIB tissue system reported in this chapter was proposed by 

Bayoumi et al., where hydrogel blocks containing a number of DIB networks within 

could be considered to be protocells or proto-tissues. It was reasoned that the 

formation of DIBs between a number of these units could be considered to be a proto-

tissue or proto-organ. The capability to produce eDIBs rapidly and in large numbers by 

the microfluidic methods developed here, should facilitate the realisation and scaling of 

this concept, beyond of what is achievable using manual methods of production. 

An alternative approach towards the production of higher order eDIB assemblies was 

also demonstrated here, achieved by modifying microfluidic flow regimes in the 

production of eDIBs, which gave rise to alginate structures containing a number of oil 

droplets with DIB networks within them. For example, an elongated cylinder of alginate 

containing a number of oil-encapsulated DIB networks was produced, as well as eDIBs 

containing two oil-encapsulated DIB networks in close proximity. The latter could find 

applications in the development of biomimetic models for scenarios of close cell-to-cell 

contact, such as in neuronal synapses. Control over the gelation process should allow 

for a myriad of eDIB proto-tissue shapes and conformations to be produced. For 

example, large eDIB proto-tissues can be formed by outputting eDIBs into a mould of a 

desired shape, where eDIBs can be output from the microfluidic device as gelled 

droplets or as a stream of un-gelled alginate containing DIB networks within oil droplets 

for subsequent, off-chip gelation.  

The formation of DIBs between the alginate shells of eDIBs would be the immediate 

focus of future work. It is expected that this should be immediately achievable as the 

formation of DIBs between hydrogel shapes has been evidenced by others13, 14. This 
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can be achieved by incubating eDIBs in oil containing a suitable phospholipid, and 

bringing them into close contact after a period of incubation allowing for the assembly 

of lipid monolayers around the eDIB hydrogel shell. The formation of lipid bilayers 

would be evidenced using electrophysiology. This would allow for the exploitation of the 

collective properties and multi-compartmentalisation offered by DIB networks across 

two different scales, as depicted in Figure 4.10, which is envisaged to have the 

potential to give rise to complex, emergent behaviour which can mimic biological 

function or be used for industrial and medical application in the future.   
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Figure 4.10 a) Depiction of the different levels of communication achievable through bilayers 
with conventional DIBs, eDIBs and eDIB tissues. i) DIBs can only give rise to communication 
between one droplet and another. ii) eDIBs can also give rise to communication between DIB 
droplets and an external, aqueous environment. iii) eDIB tissues should be able to form bilayers 
between each other in oil and perhaps in water too with use of polymerisable lipids15, for 
example, allowing for communication between a number of eDIBs. b) Different methods via 
which eDIBs forming tissues can communicate and interact with each other, with the use of the 
selective transfer of substrates from one eDIB compartment to another, or from one eDIB to 
another, with or without the use of membrane proteins that allow for the selective transfer of 
substances from one compartment to another. 

DIB networks have been shown to give rise to collective properties, which can be 

exploited to give rise to electrical devices such as wave rectifiers16.The assembly of 

a) 

b) 

i) ii) iii

) 
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eDIBs containing readymade electrical devices could allow for the formation of complex 

electrical circuits in a soft matter system.  

Additional work would involve the use of chemical systems and perhaps 

communication between eDIB populations of different chemical identity. One chemical 

system that could be employed is the conversion of resazurin to fluorescent resorufin in 

the presence of horseradish peroxidase and hydrogen peroxide. This could be 

employed for the detection of glucose present in an aqueous environment via its 

uptake into eDIB compartments and oxidation using glucose oxidase, for example17. 

Furthermore, it would be interesting to incorporate chemical waves that occur across 

an eDIB proto-tissue, as a method of chemical synchronisation, stasis and sensing 

between a number of eDIBs, akin to the behaviour of slime molds such as physarum 

polycephalum18, 19, which pulsate via cytoplasmic streaming in order to give rise to 

homeostasis and locomotion. This could be imitated in a proto-tissue system via the 

incorporation of oscillating chemical reactions such as the Belousov-Zhabotinsky 

reaction20.  

It is anticipated that these kinds of higher order structures can be used to amplify the 

potential use of DIBs as bio-inspired devices, and may be used as arrays for 

membrane studies or optical sensing, akin to the pattern-recognising DIB array 

developed by Restrepo-Schild et al.21. eDIB assemblies may also find use as models 

for biological tissues. The alginate shells of the eDIBs can be considered to be mimetic 

of an extracellular matrix22, which holds the artificial cells in place. Alginate hydrogels 

also limit the diffusion of large molecules23, which could be useful for the maintenance 

of a local microenvironment within the synthetic tissue. Additionally, alginate can be 

functionalised with different chemical moieties for its selective adhesion or 

sequestering of substances24. 
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Chapter 5 – eDIB Arrays as a High-

Throughput Assay Platform for Membrane 

Leakage and Disruption 

5.0 Chapter Summary 

This chapter concerns the development of a high-throughput assay platform for artificial 

lipid membranes (ALMs) using eDIBs as developed in Chapter 3. For this, eDIBs with 

aqueous cores containing a self-quenched solution of calcein are placed individually 

within wells of 96-well plates. Changes in fluorescence resulting from the de-quenching 

of calcein upon its release into the alginate shell of the eDIB are measured using a 

plate reader. Firstly, the assay is shown to be able to detect calcein droplet 

coalescence with the alginate shell, resulting from bilayer failure and giving rise to large 

and rapid increases in fluorescence. Secondly, the assay is shown to be able to detect 

leakage from bilayers, which gives rise to steady increases in fluorescence, as one 

would expect from the formation of bilayer pores. Validation experiments are performed 

by spiking eDIB wells with known amounts of fluorophore and comparing standard 

plate reading (single value) and well scanning measurements providing spatial 

information, in order to account for artefacts that may arise from spatial variations 

within the well. The assay platform is demonstrated via the exposure of eDIBs in 96-

well plates to the detergents Triton-X100 and sodium dodecyl sulphate (SDS), which 

are known to stochastically form pores in bilayers. Following the demonstrations that 

the assay can detect different kind of bilayer disruption, proof-of-concept experiments 

are performed via exposing eDIBs to concentrations of the pore-forming peptides 
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Magainin 2 and PGLa, demonstrating the ability of eDIBs to serve as a high-throughput 

platform for optical membrane assays. 

5.1 Introduction 

As mentioned in section 1.2, lipid membranes and membrane proteins are vital to the 

function of cells and organisms, and are implicated in a large number of diseases. For 

example, type II familial hypercholesterolemia and cystic fibrosis are membrane 

receptor related diseases1, and many types of haemolytic anaemia are cell membrane 

disorders2. A significant amount of pathogenic microbes interact with membranes in 

one form or another3, many causing pathogenesis via membrane-interacting or pore-

forming toxins (i.e. α-Hemolysin from staphylococcus aureus). Additionally, a large 

amount of antibiotics work by targeting bacterial cell membranes1.  

Despite the importance of lipid membranes and membrane proteins, few high-

throughput methods exist for their study. Taking from the success of DNA4 and protein-

protein interaction microarrays and chips5, there is great potential in the production of 

lipid bilayer arrays which are necessary for the high-throughput study and function of 

membrane proteins. This would provide the potential to accelerate drug screening and 

discovery, as well as improve fundamental studies into membrane and membrane 

protein function and interactions. It would also open up the possibility to develop novel 

medical care devices at the point-of-care for early detection of pathogens or other 

disease-related markers6.  

The difficulties in producing lipid membrane and membrane protein arrays lie in the 

somewhat fragile nature of lipid membranes as well as challenges in inserting 

functional membrane proteins within a lipid membrane6. Additionally, common 

electrophysiological methods for recording membrane protein function and lipid 

membrane properties suffer from scaling issues, with arrays requiring increasingly 
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complex electronic set-ups. Optical methods are more easily scalable and are 

commonly used for membrane protein pore flux experiments7. 

High-throughput bilayer arrays have few basic requirements. They require to be 

composed of a geometrically-defined pattern of biomolecules (in this case, artificial lipid 

membranes) which allow for parallel screening via the addition of samples6, thus 

requiring access to one or both sides of the lipid membrane. They also require assays 

that allow for measurements to be taken rapidly and accurately, preferably in an 

automated manner. The ALMs should be reproducibly stable. Such arrays would 

benefit from methods that allow for the automated production of ALMs and sample 

handling, as well as the ability to assay via a number of different means i.e. both optical 

methods and electrophysiology. Furthermore, it is also advantageous to produce arrays 

which can interface with existing technology, such as robots, sample handlers and 

measurement tools, such as those that are optimised for a microplate format. 

5.1.1 Current ALM array technologies 

Virtually all methods of producing ALMs have been converted into arrays with varying 

degrees of success. This section will provide an overview of planar and supported lipid 

membrane, vesicle and DIB arrays.  

5.1.1.1 Planar lipid membranes 

Planar lipid membranes, or black lipid membranes (BLMs), are formed by “painting” 

lipid in an adequate solvent in an aperture between two aqueous compartments8. 

Methods for BLM formation are known to be laborious, and the resultant bilayers often 

contain excess solvent due to the mechanism of formation, and are known to be 

somewhat unstable9. Microfabrication techniques have allowed BLM methods to be 

significantly improved, via the use of micrometer-sized apertures (15 -50 μm) to form 

BLMs10, 11. Le Pioufle et al. developed a 5 x 5 BLM array12 with over 15 hours of 
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survivability, and able to give rise to simultaneous and parallel electrophysiology 

recordings of protein channels. 

5.1.1.2 Supported lipid membranes 

In 1997 Groves et al. created the first array of supported lipid bilayers (SLBs)13. 

Diffusion barriers were produced using photolithographic techniques, whereby 

membrane patches were partitioned homogeneously into an array format. The ability to 

produce concentration gradients of charged lipid via exposure to an electric field is 

preserved, although bilayer fluidity is likely limited to the upper leaflet of the bilayer as 

the lower is anchored to the surface. Heterogeneous arrays are also possible using a 

microcapillary tube to place vesicle solutions in different areas of the array14. Over the 

years, different methods of depositing SLB arrays on surfaces have been developed15, 

with a few delving into the microfluidic realm16. These kinds of arrays allow for largely 

optical assays and have been used for the high-throughput screening of drugs17, 

immune cell interactions18, and other applications. Overall, SLB arrays provide the 

ability to produce high-throughput, optical, parallelised measurements on either 

identical or heterogeneous SLBs. Individually addressable SLB arrays have also been 

produced14, which allows for parallel sample analysis. Challenges remain inherent to 

the use of SLBs, such as the lack of access to one side and difficulty in inserting 

transmembrane proteins. Microcavity SLBs have arisen in the recent years in order to 

circumvent the issue of accessibility to either sides of the bilayer and have been used 

to monitor transport into a bilayer-separated compartment19, however 

electrophysiological methods in such systems remain still a challenge. Another 

drawback of SLB arrays is their scant resemblance to biological membranes, as they 

lack in curvature and facile methods to achieve bilayer asymmetry, aside from not 

enclosing a volume of fluid as cell membranes and vesicles do.  
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5.1.1.3 Vesicles 

Methods to produce vesicle arrays have been extensively studies in the last couple of 

decades due to their potential for high throughput membrane protein analysis20. 

Vesicles are naturally more biomimetic than supported or planar lipid bilayers due to 

their curvature and their relevance within cell biology, and are usually generated in 

large numbers as dispersions21. Vesicle-based assays for pore-forming substances, for 

example, are usually confined to bulk, ensemble measurements which can be less 

revealing than measurements on individual bilayers22-24. Thus, the ability to tether 

vesicles to a surface allows for the generation of high-throughput, multiplexed assays 

with the ability to assay individual bilayers. 

Vesicle arrays usually rely on the patterning of surfaces where an array of vesicle-

adhesive patches sit in a non-adhesive background. A number of microfabrication 

techniques have been used to develop such arrays, which have been reviewed by 

Bally et al.6 and Mazur et al.20. For the immobilisation of vesicles, complementary DNA 

strands have been employed25, where one strand is present on the supporting surface 

and a complementary strand is present on the vesicle surface, attached to it using 

cholesterol-linked DNA. Another method involves the use of disulphide-based linkage, 

which was reported to simplify the process as well as make the array reusable26. This 

method was used to quantify growth hormone related peptides at a nanogram level. 

Saliba et al. used another kind of vesicle array to assay protein recruitment to 

membranes in “a quantitative, automated, multiplexed and high-throughput manner”27. 

In this study, liposomes were formed on agarose patches where they remained for at 

least 6 hours, and were used to detect fluorescent-tagged proteins derived from 

bacterial and mammalian cells. 

GUV arrays have also been created containing membrane proteins (aquaporin Z in this 

case) 28, whereby 30 GUV were created via electro-formation. The functional 
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preservation of aquaporin Z was suggested via the change in size of the GUVs arising 

from increased water transport facilitated by the Aquaporin pores in comparison to 

control GUVs, in response to osmotic imbalances. The use of GUV arrays carry the 

inherent benefit of looking at individual constructs that can be generated with controlled 

size and composition, allowing for single bilayer studies. 

5.1.1.4 Droplet interface bilayers 

Droplet interface bilayers (DIBs) offer exciting potential in producing bilayer arrays, due 

to the ease and robustness of their formation, as well as the large variety of 

manipulation techniques available to aqueous droplets29-31. A few examples of DIB 

arrays exist in the short history of DIB technology. 

One of the first examples of a DIB array was demonstrated by Syeda et al., whereby a 

droplet anchored on a micromanipulator-attached electrode is used to form a DIB 

between itself and any one of droplets from a 4 x 4 array of droplets32. This was 

employed to sequentially screen a potassium channel against channel blockers in 

different droplets by electrophysiology. Castell et al. developed a microfabricated 

device whereby DIBs were formed between droplets and a hydrogel surface7 in a 6 x 3 

array. This was used to optically quantify the inhibition of the membrane pore α-

Hemolysin via the fluorescent detection of Ca2+ flux into the droplets using wide-field 

total internal reflection (TIRF) microscopy. The use of total internal reflection (TIRF) s 

employed here to visualise a number of bilayers in parallel offers the potential to 

visualise transmembrane proteins and ion flux with single-molecule resolution. This is 

employed by Huang et al., who developed a hydrogel-hydrogel DIB array comprised of 

up to 2500 DIBs, able to visualise and optically encode the transfer of nucleic acid 

sequences across the transmembrane pores α-hemolysin and Mycobacterium 

smegmatis porin A (MspA) for sequencing purposes. Optical recordings were taken at 

an impressive density of ≈104 pores per mm2. Soga et al. developed a device able to 
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form ≈ 10,000 DIBs between a droplet and a volume of fluid within a cylindrical 

chamber33. The size of the chambers, droplets, and bilayers formed are of importance 

here, as they form 4 µm wide bilayers across volumes of fluid ranging between 3.3 fL 

and 200 aL, and a much larger volume of fluid shared between all bilayers. Such a set-

up allowed for the measurement of the diffusion of a fluorescent dye (Alexa 488) 

across α-Hemolysin pores within a large number of lipid bilayers. The low volume of 

fluid within the chambers allowed for relatively rapid measurements of low numbers of 

α-Hemolysin channels in the membranes (1 or 2 per membrane). The same system 

has been employed to generate asymmetric lipid bilayers34. The main drawback of this 

set-up is that the bilayers are not fully individually addressable, as they all share the 

same aqueous volume on one side of the bilayer. 

Furthermore, microfluidic systems are being developed which allow for the automated 

or facilitated production of DIB arrays, although demonstrations of their use as high-

throughput assays have yet to be performed. In one instance, microfluidic droplet-

trapping geometries are used to bring aqueous droplets (in lipid-containing oil) in close 

proximity to each other in groups of 3, forming bilayers between them35. Up to 27 of 

these DIB networks are produced in a single device, and a limited demonstration of the 

passive transfer of fluorophores across the bilayers was used to suggest the formation 

of DIBs, and demonstrates the ability to optically image transport between the droplets. 

Another example of an automated method of DIB array production involves the use of a 

PMMA microdevice with movable chambers, whereby droplets are initially separated 

from one another and upon sliding the moving parts of the device against each other, a 

number of DIB droplet pairs form36. Although these systems demonstrate potential in 

rapidly producing large numbers of DIBs, further experiments are required in order to 

demonstrate their application in high-throughput assays. 
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This chapter will focus on the development of a DIB platform for high-throughput 

studies, using eDIBs in 96-well plates. eDIBs can be output in an array that is 

compatible with common-place laboratory equipment, such as optical plate readers, 

further facilitating a compatible, bilayer array assay platform. Demonstration of the 

capabilities of the array is performed by exposing the eDIBs to bilayer-disrupting 

molecules, namely detergents and pore-forming peptides, and the leakage, or transfer 

of dye from one bilayer compartment to another is measured. 

5.1.2 Membrane disruption 

Bilayer disruption often occurs from membrane pore formation, which can occur via the 

insertion of transmembrane protein pores, such as α-Hemolysin, which structurally 

contain a pore, or via a number of different molecular species which form pores via 

disruption of lipid packing and order within a membrane. Such substances include 

detergent-like peptides, pore-forming peptides, as well as a number of detergents. 

Membrane lysis, solubilisation and pore formation caused by these molecules are 

important in many biological and technical applications37. For example, peptides that 

disrupt membranes, either via their lysis or the formation of pores, constitute a 

pathogenic or defence mechanism of certain organisms and microorganisms3. As such, 

they can be exploited as anti-microbial and other therapeutic small molecules38. 

Additionally, membrane solubilisation is an important biophysical technique used to 

isolate, purify, extract or reconstitute membrane structures such as proteins37, 39. 

The mechanisms of membrane disruption of many of these substances remain 

somewhat elusive due to their complexity and dependence on a number of variables 

including concentration, pH, lipid head polarity, and the presence of cholesterol or other 

membrane constituents. Initially, it was thought that the main mechanism via which 

micelle-forming amphiphiles disrupted bilayers was via their insertion into the bilayer 

and the induction of curvature stress, as the micellar curvature contrasts with the 
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relatively planar structure of the lipid bilayer40, 41. However, diversity in the action and 

kinetics of different detergents clarified that the disruption of lipid bilayers could not be 

a cause of curvature stress alone. Kragh-Hansen42 described two different 

mechanisms of amphiphile-induced bilayer disruption: 1) the trans-bilayer insertion of 

amphiphiles into the bilayer and 2) the stripping of lipids from the bilayer caused by the 

presence of amphiphile micelles in solution. Some detergents and peptides are thought 

to give rise to pores in a lipid bilayer or local defects which increase bilayer 

permeability, and cause lysis in this way, whilst others thought to cause a more 

“fulminant” bilayer disruption where the bilayer is destroyed once a critical curvature 

stress is reached41. This has made it convenient to classify the activity of bilayer-

disrupting amphiphiles as either homogeneously or heterogeneously membrane-

disrupting41, 43. 

The debate regarding the exact mechanisms of action for many peptides and 

amphiphiles is largely due to the challenges in their study, as many currently available 

techniques rely on ensemble averaging (e.g. x-ray diffraction44, ensemble vesicle 

leakage assays20, 23). Suggested models of bilayer disruption include the “barrel-stave” 

and toroidal models of pore formation, and the “carpet model”45 (Figure 5.1). The 

barrel-stave describes the assembly of peptides into a barrel-like bundle where 

individual, helical peptides would be the staves, and was found to be unique to the 

action of alamethicin46, 47. The toroidal pore model involves peptides that only associate 

with the lipid head groups, where the pore is lined by the peptides and lipid head 

groups, as the bilayer leaflets bend continuously from one monolayer to another, 

protecting the lipid tail groups48. The carpet model involves the accumulation of 

peptides parallel to the membrane surface (the formation of a “carpet” of peptide along 

the membrane) which causes membrane disruption at a critical peptide concentration49, 

similar to the homogeneous method of bilayer disruption described by Kragh-Hansen.  



 

189 

 

Chapter 5 – eDIB Arrays as a High-Throughput Assay Platform for Membrane 
Leakage and Disruption 

 

 

 

Figure 5.1 Depiction of the three main mechanisms of pore-forming peptides on lipid bilayers. 
Image adapted from referenced publication50. 

A subsequent, more updated model suggests that both the toroidal pore and carpet-like 

mechanisms can occur under exposure of bilayers to the same peptide, depending on 

membrane lipid composition, peptide concentration, pH, and salt and buffer 

concentration51. This led to the development of the Shai-Matsuzaki-Huang (SMH) 

model for pore formation52, whereby peptides in a carpet-like conformation on the 

membrane surface thin out the outer lipid bilayer leaflet, causing a strain which is 

relieved via stochastic bilayer pore formation. 

More recent techniques using GUVs have allowed for single bilayer resolution leakage 

assays53 which has further clarified the action of certain peptides on bilayers, however 

the field would still largely benefit from a scalable single bilayer resolution system that 

simultaneously allows for leakage assays, electrophysiology experiments and 

potentially microscopy studies such as TIRF as well. The production of such a system 

is the focus of this chapter. A particularly interesting pore-forming peptide system to 
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interrogate is the Magainin 2 and PGLa system, which are known to have synergistic 

effects54. Experiments using these peptides will provide proof-of-concept of the system 

reported here. 

5.1.2.1 Magainins 

Magainins are a family of cationic linear peptides that exhibit antimicrobial properties, 

secreted as a mixture from the glands of the Xenopus Laevis frog55. Magainins are 

active against bacteria54, demonstrated via their effect of membrane-potential 

dissipation in Escherichia Coli, and also against some eukaryotic cells such as 

spermatozoa56, and certain tumor cells57. Indeed, membrane disrupting peptides have 

garnered significant interest as a novel class of therapeutic molecules58.  

By the 1990s, it was theorised that the mechanism of action of magainins was one of 

transmembrane pore formation, due to their relatively short length and tendency to 

form α-helices, conforming to archetypes of channel-forming peptides, such as 

alamethicin57. Subsequently, interest increased in the action of specific magainins 

Magainin 2 and PGLa, due to the discovery of a synergistic, cell-disrupting effect on E. 

coli, tumour cells and liposomes54. Elucidation of their mechanism of action has been a 

subject of study and debate ever since. 

Early experiments on the effects of PGLa and Magainin 2 demonstrated that they 

preferentially interact with negatively-charged lipids, both forming lipid-peptide 

supramolecular pores that induced the release of the water-soluble dye calcein from 

large unilamellar vesicles (LUVs)59. This was subsequently confirmed for Magainin 2 

via a calcein leakage assay performed on singular GUVs, which showed a gradual 

decrease in fluorescent intensity when exposed to the peptide53, indicative of the 

formation of transmembrane pores. It has since been thought that Magainins induce 

the formation of variable-sized toroidal pores composed of between 4-7 Magainin 
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peptides and with an inner diameter between 3 and 5 nm47, 60. With regards to the 

synergism of Magainin 2 with PGLa, solid-state NMR has shown that Magainin 2 

enhances the ability of PGLa to transition from a membrane-parallel to a 

transmembrane (more tilted) conformation61, which seems to support an SMH model of 

bilayer disruption by which PGLa aids in the transition from a carpet-like assembly to 

the formation of pores. It has also been found that single amino acid mutations in 

Magainin 2 significantly altered its synergistic effects with PGLa, indicating towards 

specific molecular recognition between the peptides59. 

5.1.3 Chapter Aims 

This chapter aims to develop an ALM array using eDIBs output into a 96-well plate. Via 

the incorporation of self-quenched calcein in the eDIB cores, the array can be used as 

a high-throughput assay for membrane disruption by measuring the de-quenching of 

calcein upon its release or transfer across the bilayer and into the alginate shell and 

buffer present in the well. 

Firstly, eDIBs are produced as outlined in Chapter 3, containing a self-quenched 

solution of calcein. These are placed individually into the wells of a 96-well plate. Plate 

reader measurements are used to correlate observations with fluorescence 

measurements, in order to assess the ability of the plate reader to detect the de-

quenching of calcein as resulting from bilayer failure or leakage. 

Secondly, eDIBs are exposed to different conditions, such as different ionic strengths, 

in order to a) demonstrate the ability of the eDIB array to give information regarding 

their stability when exposed to different conditions, and b) optimise the assay in order 

to produce eDIBs that are as stable as possible. 

Thirdly, validation experiments are performed in order to assess the ability of the eDIB 

array to measure small increases in fluorescence as a result of the formation of bilayer 
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pores. For this, the buffer in the wells is spiked with known amount of calcein in order 

to simulate leakage of calcein from the eDIB. Well scanning measurements are 

performed and used to compare plate reader measurements and account for any 

spatial variations that may occur during the course of an experiment, which is expected 

to give rise to potential measurement artefacts. 

Finally, 96-well plates containing eDIBs are exposed to different concentrations of 

detergents (Triton-X100 and sodium dodecyl sulphate), as well as the synergistic, pore-

forming peptides Magainin 2 and PGLa. This provides proof-of-concept that the 

platform is a useful tool in producing high-throughput fluorescence measurements on 

eDIBs in order to assess bilayer integrity when exposed to bilayer-disrupting 

molecules, thus demonstrating their ability to form individually addressable ALM arrays 

and their potential as a platform for membrane studies. 

5.2 Methods 

All chemicals were purchased from Sigma-Aldrich, except for Magainin 2 (Genscript, 

USA) and PGLa (Generon, UK). 

5.2.1 Generation of eDIBs 

eDIBs were generated as described in Chapter 3, with the microfluidic equipment 

developed and characterised in Chapter 2. 

5.2.2 Imaging 

Images were taken using the camera of an iPhone 6 with or without the use of an 

attachable 0.67x macro lens (Wilko, UK), or a USB microscope (Celestron, USA). 
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5.2.3 Fluorescence measurements  

Fluorescence measurements were taken using a Fluostar Optima (BMG Labtech, 

Germany). The filters used are 485 for excitation and 520 for emission. Fluorescence 

values are given as arbitrary units ranging from 0 to 1 (where 1 = saturation of the plate 

reader measurement at the particular gain employed). 

5.2.4 Preparation of detergents and peptides 

The detergents Triton-X100 and SDS were prepared from a liquid stock by dissolving in 

a buffer composed of 10 mM HEPES adjusted to a pH of 7 using HCl and NaOH. The 

solution was adjusted to an ionic strength of 500 mM using NaCl in order to maintain 

ionic balance across bilayers. This same buffer conditions were employed to dissolve 

the lyophilised peptides Magainin 2 and PGLa at a concentration of 100 µM, and used 

as a stock to add to the eDIB wells for peptide exposure experiments.  

5.3 Results & Discussion 

5.3.1 Method Development 

This section comprises the development of a dye release assay using eDIBs in 96 well 

plates, able to detect both bilayer failure and leakage. 

5.3.1.1 Preparation of 96 well plates containing eDIBs 

The first step in producing an eDIB array was to output eDIBs individually into the wells 

of a 96-well plate. The wells were first prepared by adding 150 µL of buffer, matched to 

the internal cores of the eDIB (10 mM HEPES, pH7, ionic strength adjusted to 0.5 M 

using NaCl), in order to provide the external aqueous media for the eDIB. 100 µL 

(unless stated otherwise) of mineral oil was added on top of the buffer in order to 
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provide conditions that prevent evaporation of the aqueous phase and of the eDIB, 

once placed in the wells. 

eDIBs were generated microfluidically as described in Chapter 3, but the microfluidic 

flow was halted periodically when the final FEP tube was filled with eDIBs.  The eDIBs 

were then kept in this tube for 5 minutes in order to allow for the full gelling of the 

alginate shell (Figure 5.2a), before being flowed into the wells. In order to flow the 

eDIBs into the wells, the carrier oil phase flow was resumed at a flow rate of 30 ml hr -1, 

which allowed for the eDIBs to be slowly and carefully delivered in individual wells 

alongside a small volume of the oil carrier phase. Figure 5.2b shows an eDIB in a well, 

which is submerged in the aqueous volume within the well, and sits below the water/oil 

interface due to it being less dense than the aqueous phase. The alginate shell of the 

eDIB appears to be invisible as it is fully gelled and equilibrated with the aqueous 

volume around it, and thus displays similar refractive indexes.  

 

Figure 5.2 Photographs showing a) eDIBs in the exit tube of the microfluidic device, and b) 
eDIBs in wells of a 96 well plate imaged from the side (left inset) and from the top (right inset). 
The eDIBs are submerged in an aqueous buffer which is covered with mineral oil. The inner 
aqueous cores of the eDIBs are an orange-brown colour as they contain 70 mM calcein, and 
the alginate shell of the eDIB is not visible as it is equilibrated with the surrounding buffer and 
thus displays the same refractive index. 

eDIBs were delivered to the wells by submerging the tip of the FEP tube in the oil 

phase of the well, and allowing for the eDIB to exit the tube and sit at the oil/water 

interface within the well. This method allowed for batches of 12 eDIBs to be placed in 

wells in under 15 minutes, dependant on the length of the final FEP tube of the 

microfluidic device. It is anticipated that increasing the exit tube length or altering 

a) b) 
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gelling conditions (as described in chapter 3) would enable a significant increase in the 

rate of this process. 

5.3.1.2 Selection and characterisation of a fluorescent, content release 

assay compatible with eDIBs 

Optical bilayer leakage assays commonly rely on content release assays, where the 

transfer of a fluorophore, of a fluorophore-activating species7, gives rise to a 

detectable, fluorescent signal. One such method relies on the use of a self-quenching 

fluorophore, such as calcein62, which upon its release from a DIB droplet or a vesicle 

into an aqueous media, gives rise to a fluorescent signal as it is diluted and un-

quenched at the other side of the bilayer. This system is a good candidate for a 

leakage assay using eDIBs, as a self-quenching concentration of calcein can be 

contained within the eDIB internal droplets, which would give rise to fluorescence when 

it is transferred to the external, aqueous media through bilayer pores, or by droplet 

coalescence, which is an expected result from bilayer failure. 

In order to characterise the fluorescence of calcein, fluorescence measurements were 

taken using a 96-well plate filled with aqueous solutions with varying concentrations of 

calcein (0.001 mM to 50 mM). Calcein is excited at a wavelength of 495 nm and emits 

at 515 nm. As shown in Figure 5.3, fluorescence decreases above a concentration of 

≈1 mM, and displays very low fluorescence at a concentration of 50 mM, indicative of 

self-quenching. Based on this experiment and on other reports, a concentration of 70 

mM was selected to be contained within the eDIB cores for the content release 

assay22. 
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Figure 5.3 Fluorescence of calcein solutions of different concentrations (from 0.001 mM to 50 
mM) as determined by the plate reader using a 96-well plate. Peak fluorescence is given at 1 
mM, and increasing concentrations give rise to self-quenching. At 50 mM, the solution is mostly 
self-quenched displaying low levels of fluorescence. 150 µL of the calcein solutions are added 
to the wells (n = 3 per concentration), and the gain employed was 850. 

 

Subsequently, it was found that eDIBs in wells containing 70 mM calcein in its cores 

gave rise to a sharp increase in fluorescence in the well upon the coalescence of one 

or more cores with the external aqueous media within the well. This could be visualised 

by exposing the eDIB wells to a blue light LED, as shown in Figure 5.4. 
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Figure 5.4 Photograph showing the appearance of intact and ruptured (bilayer failed resulting in 
droplet coalescence) eDIBs in a 96 well plate, imaged using a USB microscope under a blue 
light LED. Ruptured eDIBs display a strong, yellow fluorescent output across the entire well 
whilst intact eDIBs display no visible fluorescence. 

 

This demonstrates that the assay is able to detect bilayer failure, as the resulting 

coalescence of an eDIB aqueous core gives rise to a large fluorescent response. This 

allows for a “digital” kind of assay, where either bilayers fail over a period of time or 

remain intact. It was possible to obtain time-resolved data via time-lapse imaging of 

eDIB wells over a period of time. This is shown in Figure 5.5, where eDIBs are exposed 

to a high ionic strength buffer (0.7 M) and imaged over time with a USB camera under 

a blue light LED. 

Ruptured eDIB 

Intact eDIBs 
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Figure 5.5 Time-lapse photographs showing a number of eDIBs imaged in a 96-well plate 
under a blue light LED, of which a number of them rupture over the 14 hour period as they are 
exposed to a high ionic strength buffer (10 mM HEPES, pH 7, adjusted to 0.7 M ionic strength 
using NaCl). 

Additionally, it was observed that eDIBs sometimes leaked small amounts of 

fluorophore whilst in the microfluidic exit tube, which did not correspond to the 

coalescence of an eDIB aqueous core with the alginate shell (as this gives rise to a 

much larger increase in fluorescence, as seen with other eDIBs where internal cores 

did coalesce with the alginate shell), and thus is likely due to the stochastic formation of 

transient bilayer holes during the early stages of DIB formation, as shown in Figure 5.6.  

 

Figure 5.6 Photograph of eDIBs in the microfluidic exit tube, where two eDIBs display some 
fluorescence due to calcein leakage through the bilayers. The eDIBS are exposed to a blue light 
LED in order to excite the fluorophore. 

This phenomenon was likely to occur for some eDIBs in all cases where eDIBs have 

been produced, such as in Chapter 3, but not visible until the incorporation of the 

eDIB leakage 
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calcein release assay into the eDIBs. This suggests that the assay is highly sensitive 

and indicates that it would be possible to detect calcein leakage through bilayer pores 

formed by exposure to pore-forming peptides or detergents.  

5.3.1.2.1 Use of plate reader fluorescence measurements for calcein 

leakage assay in eDIBs to determine bilayer failure 

Following the demonstrations that the assay is able to detect bilayer failure in eDIB 

wells via visual confirmation, it was attempted to corroborate such observations with 

fluorescent data using a plate reader. This would allow for increased throughput via 

automation, using methods that are compatible with common-place laboratory 

equipment. 

In the first instance, eDIBs were placed in adjacent wells containing buffer, and SWR 

measurements were taken on them at hourly intervals for 11 hours. This provided an 

opportunity to correlate observations with fluorescent measurements. The eDIBs 

presented with varying levels of initial fluorescence, as the alginate phase would 

commonly be contaminated with calcein from internal droplet coalescence during the 

process of microfluidic production and initial bilayer leakage as shown in Figure 5.6. 

This was resolved in subsequent experiments (from section 5.3.1.3 onwards) via the 

more careful alignment of the microfluidic channels in further iterations of the 

microfluidic devices, which caused less calcein droplet coalescence in the microfluidic 

manufacture process. Additionally, the buffer within the well of an eDIB could be 

exchanged with fresh buffer in order to eliminate any fluorescence visible under a blue 

light LED, arising from calcein contamination. This was performed routinely in future 

experiments to achieve comparably low levels of initial fluorescence in the eDIB wells. 

As shown in Figure 5.7a, each eDIB displayed a different amount of fluorescence 

change from the beginning (t = 0) to the end (t = 11 hours) of the experiment. Figure 
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5.7b shows representative traces for the three different eDIB behaviours as well as 

before and after photographs used to correlate fluorescence measurements with 

observations. 

 

Figure 5.7 a) Change in fluorescence over a period of 16 hours for eDIBs in a 96 well plate. 
eDIBs that remained intact throughout the experiment showed little change in fluorescence 
(0.011±0.016 a.u.), whilst eDIBs that ruptured gave rise to a larger change in fluorescence 
(0.231±0.159 a.u.). Some eDIBs ejected their cores without necessary giving rise to 
coalescence with the external well media, which showed a moderate increase in fluorescence 

0 Hours 11 Hours 

a) 

b) 
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(0.151±0.129). b) Representative graphs showing the change in fluorescence over time for the 
three behaviours described in a), as well as before and after photographs of the wells in 
question. 

eDIB behaviours could be classified into three categories based on observations and 

comparing the eDIBs at the beginning and end of the experiment. A number of eDIBs 

remained intact throughout the experiment (Figure 5.7a, blue bars), which displayed 

little total change in fluorescence. Many others contained bilayers that failed at different 

points throughout the experiment, showing a net rise in fluorescence (Figure 5.7a, red 

bars), corresponding to the coalescence of calcein droplets with the external aqueous 

environment. Bilayer failure in these eDIBs was likely due to a number of reasons, such 

as differences in osmotic pressure between the inside and outside of the eDIB, 

stochastic bilayer failure, or the effect of vibrations within the plate reader, causing 

mechanical stress on the bilayers.  

The variability regarding the change in fluorescence is likely due to a number of 

reasons. Firstly, the buffer around the eDIB displayed different concentrations of 

calcein, which, upon further addition of calcein gave rise to a variable increase due to 

the non-linear correlation of calcein fluorescence with concentration. This is because 

the alginate shell of the eDIBs would commonly be contaminated with calcein in the 

microfluidic manufacture process. The lower the level of initial fluorescence, the greater 

the increase upon coalescence of calcein-containing droplets with the alginate phase 

and the external buffer, as seen with eDIBs A02 and F04 in Figure 5.7a. Secondly, 

there is variability in the number of aqueous droplets contained within each eDIB, as 

well as the number of droplets that coalesce with the alginate shell due to bilayer 

failure. Thus different amounts of calcein are transferred from the inside of the eDIB to 

the outside, from a self-quenched to a more fluorescent state.  

A small number of other eDIBs ejected their internal cores without these coalescing 

with the alginate phase or the buffer around the eDIB, hence the third classification 
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(Figure 5.7a, orange bars). However, some of these eDIBs did give rise to an increase 

in fluorescence (Figure 5.7b, orange trace), indicating that some calcein within the 

eDIB had coalesced with the outer buffer or alginate shell. This was resolved in 

subsequent experiments via the use of further iterations of the microfluidic device 

where the coaxial alignment was improved, giving rise to eDIBs where the oil droplet is 

more centred within the alginate shell; and also via the addition of 100 µL of oil to the 

well instead of 50 µL. It is hypothesised that droplet ejection might have been due to 

the oil droplet being un-centred within the alginate shell, which would asymmetrically 

reduce its protective effects on the oil droplet contained within, enabling its expulsion. 

Additionally, the increased volume of oil might have reduced the radius of curvature of 

the water-oil interface, and the surface tension stress imparted by the water/oil 

interface onto the eDIBs, which could allow for them to maintain their integrity better. 

Uncertainty exists regarding the cause of such observations, and was deemed beyond 

the scope of this thesis as it was resolved in subsequent experiments via the changes 

mentioned above. 

This experiment demonstrates that the platform is able to distinguish between eDIBs 

where bilayers fail and eDIBs where bilayers remain stable throughout a period of time. 

Of importance, for an eDIB to give rise to a “negative” result, a number of bilayers must 

remain intact, as each eDIB contains a number of aqueous droplets forming DIBs with 

the hydrogel shell. Furthermore, with improvements on microfluidic manufacture 

methods, allowing for the production of eDIBs displaying low initial levels of 

fluorescence, the platform as described here should allow for quantitative 

measurements that determine bilayer integrity when exposed to conditions that can 

cause bilayer failure, for example in the presence of peptides or detergents that disrupt 

bilayers in a homogeneous manner. 
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5.3.1.3 Determination of eDIB stability using plate reader fluorescence 

measurements. 

The platform described in the previous sections was employed in order to determine 

conditions that gave rise to stable eDIBs. For these experiments, the number of eDIBs 

that remain intact after a period of time can be counted and compared between 

different conditions. This could be done using the plate reader as described in Section 

5.3.1.2.1 or with visual confirmation using periodic imaging and a blue light source as 

described in Section 5.3.1.2. eDIB survival percentage was assessed 16 hours after 

the start of the experiment, and eDIBs were left to rest for one hour in the wells after 

being outputted from the microfluidic device. 

In the first instance, eDIBs were incubated with 150 µL of a 10 mM HEPES buffer of 

different ionic strengths, adjusted using NaCl. The ionic strength of the inner cores was 

adjusted to 0.5 M (70 mM calcein, 10 mM HEPES and 397 mM NaCl), and therefore it 

was hypothesised that a 0.5 M buffer on the outside would give rise to a higher number 

of stable eDIBs as this would entail a low osmotic pressure. The alginate shell was also 

adjusted to 0.5 M using NaCl. As shown in Figure 5.8, over 80% of eDIBs incubated in 

a 0.5 M buffer composed of 10 mM HEPES adjusted to a pH 7 using NaOH and NaCl, 

and to an ionic strength of 0.5 M using NaCl, survived after 16 hours, with decreasing 

survivability the more ionically unbalanced the buffer solution is to the internal cores. 
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Figure 5.8 16 hour survival of eDIBs incubated in a 96-well plate with different ionic strength 
buffers. Ionic strength was adjusted using sodium chloride. Survival is reported as the 
percentage of eDIBs that remained intact throughout a 16 hour period, and was determined as 

shown in Figure 5.7. As expected, eDIBs display best survival when incubated in a buffer that 
is osmotically matched with the internal cores. 

 

Additionally, eDIB stability was tested via comparing eDIBs in wells in oil alone or in oil 

and buffer, measured either with the plate reader or via imaging on the laboratory 

bench, in order to establish the methods that give rise to the most stable eDIBs (Figure 

5.9). In the experiment performed in Section 5.3.1.2.1, fluorescent measurements 

indicated that eDIB bilayers ruptured mostly within the first two hours of the experiment, 

which could indicate that the plate reader measurements were disrupting the bilayers, 

possibly via mechanical. However, it was found that around 80% of the eDIBs 

measured in buffer both with and without the plate reader remained intact throughout 

the experiment, and stability only decreased down to 70% when eDIBs were measured 

using the plate reader and were kept in oil without any buffer. This could possibly due 

to the fact that eDIBs in oil are in contact with the well walls, whilst eDIBs in buffer are 

suspended within the well, possibly dampening any effect of the vibrations on the 

eDIBs. 
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Figure 5.9 16 hour survival of eDIBs incubated in either oil or oil and buffer (0.5 M buffer) in 96-
well plates, measured either in a plate reader as described in Figure 5.7, or on the laboratory 
bench as described in Figure 5.5. Survival is reported as the percentage of eDIBs that remained 
intact throughout a 16 hour period. 

These experiments aided in determining the best conditions to use the platform and to 

rule out any possible effects the plate reader might have on eDIB stability. Over 80% of 

eDIBs in wells were consistently found to remain intact over the course of 16 hours 

when the external buffer was adjusted to 0.5 M, and up to 81 wells containing eDIBs 

were measured at once, with each well containing at least 6 bilayers per eDIB. This 

was considered to be a suitable level of initial bilayer stability. 

5.3.1.4 Characterisation and validation of the eDIB content release assay 

to measure dye leakage through bilayer pores 

The next step in the development of the assay platform was to enable plate reader 

measurements to accurately measure small increases in fluorescence over time, as 

opposed to large and rapid increases in fluorescence as seen in the previous sections. 

This would allow the platform to be used to measure the leakage of dyes such as 

calcein as resulting from exposure to substances that heterogeneously disrupt 

membranes by forming transmembrane pores or holes.  
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It is possible to envisage two kinds of assay for leakage through lipid bilayers. One 

involves the leakage of dye through bilayers measured as a change in the spatial 

distribution of fluorescence within a well, and the other measuring a total change in 

fluorescence in a well upon bilayer leakage. For example, the de-quenching of a 

fluorophore when leaked from the inside of an eDIB droplet to the outside would allow 

for this. For the second kind of assay, spatial information within the well would improve 

the sensitivity of measurements but is not a necessary requirement, as it is with the first 

kind of assay described. This method is the most suitable for plate reader assays in the 

first instance, as it only involves the extraction of single data values and is thus a more 

accessible technique, whilst the first kind of leakage assay method would involve 

spatial resolution achieved by well microscopy or more sophisticated plate reading 

methods such as well scanning. Thus, this kind of assay is the one chosen to measure 

leakage of calcein through bilayer pores in eDIB wells here.  

It is noted that the presence of the eDIB within the well may give rise to artefacts in 

single measurements (i.e SWR measurements), as spatial variations within the well 

may arise from the low, initial levels of fluorescence that the eDIBs display, and 

movements of the eDIB throughout the course of an experiment. In order to 

characterise the effect of such possible artefacts and validate the ability of SWR 

measurements to accurately measure changes in well fluorescence arising from eDIB 

leakage, control experiments are performed and SWR data compared against well 

scanning data, as the latter provides with increased spatial resolution which allows for 

the effects of spatial variations within the well to be characterised and accounted for. 

In the first instance, eDIBs spiked with a known concentration of calcein from 0 –49 μM 

were compared against control wells containing the same concentration of calcein and 

the same volume of buffer (150 μL), which was maintained at the same pH and ionic 

strength throughout the experiments (Figure 5.10). The SWR fluorescent values of the 
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eDIBs after the addition of calcein could be subtracted from the initial eDIB 

fluorescence, in order to reduce the variable fluorescent output of eDIBs prior to being 

spiked. This showed that increasing concentrations of calcein in wells containing eDIB 

could be measured for at least 7 μM calcein, which would be the equivalent of 6.67% of 

the volume of an eDIB internal core leaking into the external buffer volume. The 

fluorescent output and gradient was lower than for wells containing no eDIBs. This is 

possibly due to the shorter optical length for wells with eDIBs due to the presence of 

the eDIB, or light scatter caused by the different interfaces.  

 

 

Figure 5.10 Fluorescence of wells in a 96-well plate containing different concentrations of 
calcein, as determined using single-value measurements on the plate reader. Data in blue 
refers to wells with no eDIBs (control wells), whilst data in red refers to wells containing an 
eDIB. For the latter data set, the fluorescence of the wells prior to the addition of calcein is 
subtracted from the fluorescence after the addition of calcein. For all measurements, n = 3. The 
gain employed is 1150. 

It is noted that plate readers are typically designed to measure optical parameters from 

homogeneous solutions in wells. However, eDIBs introduce heterogeneity into the 

wells, which can produce artefacts in measured fluorescence, such as variations in 

eDIB position and shape, initial contamination of the eDIB shell, movement of the eDIB 

throughout the experiment, potential light scatter from the different phases and 
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interfaces, and low amounts of measured fluorescence from the quenched calcein 

cores. It is likely that these factors give rise to the higher standard deviation of 

measured eDIBs vs. control as seen in Figure 5.10. 

In order to characterise the spatial variations within the eDIB wells, well scanning was 

performed on the wells both before and after spiking with calcein, as shown in Figure 

5.12. Well scanning experiments were enabled by the plate reader employed and 

performed by measuring points in a 15 x 15 grid spanning across 5 mm of the diameter 

of the well (total well diameter = 6 mm) (Figure 5.11a). Code was developed in 

MATLAB (courtesy of Dr. Oliver Castell) which reconstructed a fluorescent image of the 

well and extracted useful metrics from well scanning pixel data, such as the mean, 

median, top and bottom values (given as the mean fluorescent value for the top or 

bottom 5%, 10% or 20% of the pixels), centre of mass (CoM) and CoM displacement 

from the centre pixel of the well. This was also used to generate coloured intensity map 

images of the wells as shown in Figure 5.12 and Figure 5.24. 

 

                            

Figure 5.11 a) Image representing the 15 x 15 grid used for well scanning using the plate 
reader. Fluorescence data is taken for the black squares, adding up to a total of 177 data points 
per well. b) Representation of the points measured on an eDIB within a well, where a 
measurement is made for every square. The photograph is taken from above, although 
fluorescent measurements are taken from the bottom of the well. 

5 mm 

5
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Well scanning data could be compared against SWR data in order to gain confidence 

in the ability of SWR to measure leakage of dye through the bilayers and to account for 

potential spatial variations within wells. Additionally, by comparing different WS metrics, 

it is possible to understand whether SWR data values represent the mean fluorescence 

across the whole well, or the fluorescence of a defined area within the well. 

 

Figure 5.12 a) Well scanning images of eDIBs before and after the addition of calcein. The 
concentration of calcein added per well is shown in the “after” well scanning images adjacent to 
the wells, in µM. b) Photograph showing the 96-well plate after the addition of calcein and the 
taking of well scanning measurements. 

The well scanning data, along with the photograph of the wells, show that before the 

addition of calcein to the wells, CoM (represented as a black circle in the well scanning 

plots) appears to represent where the eDIB cores are, as they generate low levels of 

fluorescence due to incomplete quenching. However, once calcein concentration is 

a) 

b) 
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increased in the surrounding well medium, the CoM is skewed towards the centre of 

the well as the eDIB ceases to represent the most fluorescent area within the well. For 

example, it is visible in the photograph that the eDIBS inn wells D02 and F02 are 

displaced towards the right, but are not represented as such in the “after” well scanning 

plot, but are in the “before” well scanning plot. For the majority of “after” well scanning 

plots, fluorescent intensity appears to radiate outwards from the centre of the well, 

despite the calcein concentration being homogeneous throughout the well. This could 

possibly be due to reflections or scatter of light at the borders of the well. 

It is possible to estimate the point at which the CoM ceases to represent the position of 

the eDIB, via comparing the total fluorescent output of eDIBs spiked with different 

concentrations against control wells (Figure 5.13). 

 

Figure 5.13 Graph showing the fluorescence of wells in a 96-well plate containing different 
concentrations of calcein, as determined using SWR measurements in the plate reader at a 
gain setting of 1150. Data in blue refers to wells with no eDIBs (control wells), whilst data in red 
refers to wells containing an eDIB. In comparison to the data shown in Figure 5.10, eDIB 
fluorescence prior to the addition of calcein is not subtracted from the fluorescence values 
obtain after the addition of calcein. N = 3 except for all measurements except the 0 data point 
for the eDIB-containing wells, where n = 27. The gain employed is 1150. 

According to Figure 5.13, it appears that a calcein concentration above 21 μM is the 

point at which its fluorescence is higher than initial levels of eDIB fluorescence caused 
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by the quasi-quenched inner cores and potential calcein contamination of the alginate 

shell from the eDIB manufacture process. Therefore, it is expected that, above this 

concentration, CoM as determined by well scanning will cease to represent the position 

of the eDIB within the well. Additionally, the gradient of the spiked eDIB is lesser than 

that of the control wells, which is possibly due to the fact that the eDIB reduces the total 

amount of external fluorescent medium around the eDIB that is measured, as the 

fluorescence within the eDIB (inside the alginate shell) does not increase with added 

calcein in the external medium. 

In order to characterise the effect of eDIB displacement from the centre across a range 

of fluorescent outputs, the mean pixel value (Figure 5.14) and top 10% of pixels (Figure 

5.15) values can be compared against SWR measurements, and also against CoM 

displacement from the centre of the well. The correlation between mean pixel value 

and the top 10% of pixels will allow for the determination of the nature of SWR 

measurements (i.e. whether it measures the mean fluorescence emitted by the whole 

of the well or only an area within the well). The top 10% of pixel values are likely to 

represent the fluorescence emitted by the eDIB at low concentrations of spiked calcein, 

or the centre of the well for higher concentrations of calcein that give rise to a 

fluorescent output that is larger than the initial fluorescence of an eDIB in a given well. 

On the other hand, one would expect the mean to give an accurate representation of 

the fluorescence of the external media; however this might not be the case as well 

scanning images show that less fluorescence is detected at the side of the wells than 

at the centre. For low concentrations of spiked calcein, it is expected that mean pixel 

values overestimate the fluorescence of the well medium due to the contribution of the 

eDIB. For these graphs, measurements are included from both before and after the 

eDIBs have been spiked with calcein in order to characterise a large range of 

fluorescent values. 
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Figure 5.14 Correlation of mean pixel values and standard well reading values for eDIB wells 
both before and after the addition of calcein to the wells. The values correlate well along a linear 
regression (R2 =0.9927). eDIBs that ruptured during the course of the experiment were excluded 
from the graph. 

 

Figure 5.15 Correlation of the top 10% pixel values and standard well reading value for eDIB 
wells both before and after the addition of calcein to the wells. The values correlate well along a 
linear regression (R2 = 0.9963), as well as displaying a gradient close to 1. This likely indicates 
that standard well reading measures the centre of the well, as for most well scanning top 10% 
values, the highest point of fluorescence in the well is in the centre of the well. eDIBs that 
ruptured during the course of the experiment were excluded from the graph. 

For both mean pixel and the top 10% of pixel values, the fluorescence data correlated 

well with SWR across the whole range of fluorescent outputs (R2 > 0.99). Thus, spatial 

variability of the eDIB in the well does not appear to have a large effect on SWR 

measurements, indicating that SWR measurements are generally an accurate 

representation of the fluorescent output of the wells. The strong correlation between 
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the top 10% of pixel values and SWR (WStop10% = 0.9599 * SWR + 0.0014), along with 

the fact that most wells display highest fluorescence values at the centre, indicate that 

SWR measurements are likely measuring a small number of pixels at the centre of the 

well. 

For lower fluorescence values (approximately < 0.1), it appears that the mean pixel 

value correlates better with SWR than the top 10% of pixel values, as the latter is 

measuring the fluorescence of the eDIB cores, which are not necessarily in the centre 

of the well. For higher values, top 10% of pixel values appear to correlate with SWR 

better than the mean pixel value, as increasingly, the centre of the well becomes the 

highest point of fluorescence in the well surpassing the low levels of fluorescence 

emitted by the eDIB quenched calcein cores. Thus, as fluorescence increases in the 

well (or as leakage occurs), the effect of eDIB displacement from the centre is 

diminished. 

For further clarification of the effect of eDIB displacement on fluorescent output, SWR 

and well scanning data can be compared, taking into account CoM displacement 

values for each eDIB (Figure 5.16). 
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Figure 5.16 Ratio of well scanning top 10% and mean to standard well reading values both 
before and after the addition of calcein to the wells. The displacement of the centre of mass of 
the well is shown per individual point. The ratio of well scanning top 10% and mean values to 
standard well reading values I roughly 1 and 0.7, respectively, and individual points that deviate 
from this ratio correlate well with high centre of mass displacement from the centre of the well. 
Additionally, high centre of mass displacement from the centre of the well occurs at low 
standard well reading values mostly, which corroborates findings that increased fluorescence in 
the well skews the centre of mass towards the middle of the well. Therefore, displacement of an 
eDIB from the centre of well is only of relevance for low fluorescence values as determined via 
standard well readings or well scanning. 

The graph shows the ratio of the top 10% of pixel values to SWR and mean pixel value 

to SWR measurements along with CoM displacement for each data point, 

corresponding to individual well measurements. It is visible that, for SWR fluorescence 

values below approximately 0.1, CoM displacement values are significantly larger than 

the rest, whereas for values above this, it doesn´t exceed a value of 2 pixels. It is 

notable in the graph that the ratio of the top 10% of pixel values and SWR appears to 

be around 1, except for values of low fluorescence and high displacement, where the 

top 10%of pixel values appears to be larger than SWR. This is expected as the eDIB is 

the major source of fluorescence, and thus when it is displaced, SWR is not measuring 

the highest point of fluorescence in the well, whilst the top 10% of pixel values is. The 

ratio between mean pixel value and SWR is lower than the top 10% of pixel values and 

SWR, as SWR measures central pixels within the well, whilst the mean pixel value 

takes the sides of the well, displaying lower fluorescence than the middle, into account. 

The difference between both ratios appears to decrease with increasing fluorescence, 
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as the well becomes more homogeneous and the eDIB ceases to be the major source 

of fluorescence. However, the mean pixel value to SWR ratio is also deviated by CoM 

displacement at low fluorescence, albeit less, for the same reasons as described above 

for the top 10% of pixel values to SWR ratio. 

The significance of this is that, for low fluorescence values, it is reasonable to expect 

that SWR may be underestimating the fluorescence of the well as would be measured 

by the top 10% of pixel values or mean pixel value, depending on the CoM 

displacement and thus the displacement of the eDIB from the centre. The movement of 

an eDIB throughout a time-course experiment could give rise to measurement artefacts 

such as false positive values for leakage, if the eDIB moves from the periphery of the 

well into the middle. Because of the good correlation of well scanning metrics such as 

the top 10 of pixel values with SWR measurements, it is possible to account for these 

situations and provide correction factors for different displacement values. Such a 

method would allow time-resolved leakage experiments to be measured via SWR, and 

spatial variations controlled for with use of periodic well scanning measurements.  

In order to correct for CoM variations, it is necessary to understand how the distribution 

of fluorescence in the well is affected by displacement. The top 1% of pixel values 

represents eDIB fluorescence independent of its position, whilst we hypothesise that 

SWR measures the centre of the well as established earlier. Therefore we propose that 

it should be possible to predict the top 10% of pixel values based on SWR if we can 

understand their relationship, as given by Figure 5.17. For these graphs, only un-

spiked eDIBs are used as for spiked eDIBs, the CoM increasingly represents the centre 

of the well despite eDIB position, as described earlier.  
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Figure 5.17 Correlation of well scanning top 10% values with standard well reading values 
taken on eDIB wells before the addition of calcein to the external buffer.  

 

From the relationship (WStop10% = 0.9588 * SWR), a set of predicted top 10% pixel 

values can be generated and compared against measured measured top 10% pixel 

values. The ratio between the measured and predicted values indicate the accuracy of 

the predicted values, and it is expected that accuracy will decrease (i.e. the ratio will 

deviate further from 1) as displacement increases, as the highest area of fluorescence 

within the well (measured by the top 10% of pixel values) is no longer in the centre of 

the well (measured by SWR). This is shown in Figure 5.18. 
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Figure 5.18 Correlation of the ratio of predicted well scanning top 10% values to measured well 
scanning top 10% values, as determined using the data and equation obtained from Figure 
5.17, against displacement of the centre of mass from the centre of the well, as determined via 
well scanning. This shows how the accuracy of the predicted well scanning top 10% values is 
affected by the displacement of the centre of the mass from the centre of the well, and can be 
used to provide a correction factor to determine what the top 10% values would be based on 
displacement and standard well reading data. 

The graph shows that predicted TOP is increasingly inaccurate with increasing CoM 

displacement as the eDIB moves away from the area measured via SWR. Therefore, 

the polynomial equation generated indicates the deviation in accuracy as displacement 

increases, and can be used to generate a correction factor which can be used to obtain 

accurate top 10% of pixel values based on SWR and CoM displacement (Figure 5.19). 

This shows that eDIB fluorescence values can be accurately determined from SWR 

independent of its displacement (R2 = 0.9944). 
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Figure 5.19 Correlation of measured well scanning top 10% values and standard well reading 
data, as well as the correlation of top 10% values as obtained from standard well reading and 
centre of mass displacement values(i.e. displacement corrected top values) (see Figure 5.17 
and Figure 5.18).  

Additionally, the same logic can be applied in order to produce accurate SWR 

measurements from the top 10% of pixel values and CoM data (Figure 5.20a). This 

would allow SWR to be adjusted for displacement, and to unpick the effects of 

displacement, or variations in displacement throughout a leakage experiment (Figure 

5.20b) 
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Figure 5.20 a) Correlation of the ratio of well scanning top 10% and standard well reading 
values with displacement of the centre of mass from the centre of wells. This is used to assess 
the accuracy of standard well reading in representing the highest area of fluorescence in a well, 
in relation to the displacement of this area from the centre of the well, which is the area hat 
standard well readings measure. b) Correlation between measured well scanning top 10% 
values and standard well readings, as well as between measured well scanning top 10% values 
and predicted standard well reading values as obtained from a). This allows for standard well 
reading values to be accurately predicted from well scanning data, in order to correct for eDIBs 
that show displacement of the centre of mass from the cenre of the well. 

The data shows that deviations in fluorescence measured via SWR caused by eDIB 

displacement and movement can be corrected for using WS measurements. This 

should allow for the measurement of small amounts of eDIB dye leakage when the 

CoM of fluorescence is representative of eDIB position, allowing for higher sensitivity in 

measuring bilayer leakage. 

In conclusion, this section demonstrates that eDIBs can be used in a high-throughput 

manner assay to assess bilayer leakage via the release of a self-quenched dye into an 

external buffer in a well. As leakage increases, the well becomes more homogeneous 

which allows for accurate measurements of increases in fluorescence associated to 

dye release from the inner cores of an eDIB, whereas for low levels of leakage, 

accuracy is reduced as the eDIB displays some fluorescence as the calcein-containing 

aqueous cores are not fully quenched, which allows for movement of the eDIB within 

the well to affect the fluorescent output as measured via SWR. However, a method to 
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account for such movement has been devised by comparing the top 10% of pixel 

values to SWR measurements, and producing a correction factor via which 

displacement of the well CoM can be accounted for. This should allow for SWR 

measurements to be taken frequently over the course of an experiment, whilst well 

scanning can be used periodically in order to correct for the movement of an eDIB 

within a well which can give rise to measurement artefacts that can obscure low levels 

of leakage. This is a desirable format of leakage measurement, as well scanning 

measurements take a longer time to perform, reducing the amount of measurements 

possible per given time, and the measurements inherently give rise to increased 

mechanical vibrations within the machine which may have the potential to disrupt eDIB 

bilayers. Thus, SWR measurements have been validated to measure leakage, with 

sensitivity governed by the gain settings employed on the plate reader. 

5.3.2 Plate reader measurements of bilayer failure and leakage using the 

eDIB assay platform  

5.3.2.1 Use of the assay platform to determine bilayer leakage caused by 

the detergents Triton-X100 and sodium dodecyl sulphate (SDS) 

Following from the previous set of experiments aimed at validating SWR 

measurements to measure leakage from bilayers, proof-of-concept experiments were 

performed to assess bilayer leakage in eDIBs under exposure to different 

concentrations of the detergents sodium dodecyl sulphate (SDS) and Triton-X100 as 

they are known to give rise to stochastically formed pores conducive to the leakage 

and de-quenching of calcein from the inner eDIB cores43.  
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5.3.2.1.1 SDS 

In the first instance, eDIBs were exposed to 5, 10 and 50 µM SDS and measured over 

a 16 hour period via SWR measurements using a high gain setting (1150). Data was 

generated for individual wells showing changes in fluorescence over time (Figure 5.21). 

As such, each graph in the panel represents the change in fluorescence over a 16 hour 

period for an individual well. Wells displayed a variable amount of initial fluorescence 

due to eDIB contamination in the manufacturing process, likely affected by eDIB 

position. Coalescence of calcein-containing eDIB cores with the alginate shell and well 

media consistently gave rise to a saturated response under the gain setting employed, 

which was convenient in distinguishing bilayer failure in eDIBs in contrast to leakage. 

This could be visually confirmed at the end of the experiment as described in Figure 

5.7. 
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Figure 5.21 Graphs showing the fluorescence of eDIBs in a 96-well plate incubated with varying 
concentrations of SDS over a period of 16 hours, measured using standard well reading 
measurements. Each graph represents an individual well. A high gain setting (1150) is 
employed in order to visualise small changes in fluorescence. eDIBs that undergo bilayer failure 
were found to saturate the measurement at the gain settings employed, and are represented 
with red lines. 
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It was found that 50 µM SDS caused eDIB bilayer failure very rapidly, which resulted in 

an initial saturated response in all eDIBs tested, as bilayers ruptured between the 

addition of SDS and the start of SWR measurements. 10 µM SDS gave rise to similar 

results, with most eDIBs rupturing before the start of measurements and some in the 

first 30 minutes. 5 µM SDS caused some eDIB bilayers to fail, and a steady increase in 

fluorescence in other eDIBs, likely indicative of bilayer leakage. Survivability of eDIBs 

was therefore affected by the presence of SDS, as seen in Figure 5.22. 

 

Figure 5.22 Survivability of eDIBs (as shown in Figure 5.21) exposed to varying concentrations 
of the detergent sodium dodecyl sulphate (SDS), showing the percentage of eDIBs that do not 
undergo bilayer failure over the course of the 16 hour experiment. The data is obtained by 
looking at SWR measurements that give rise to saturation over the course of the experiment, as 
well as visual confirmation after the plate reader measurements have taken place. 

In order to further assess leakage, the initial fluorescence value obtained per individual 

eDIB was subtracted from the rest of values, in order to produce fluorescence graphs 

normalised to zero, and better be able to cross-compare the different eDIBs and 

conditions. This is shown in  
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Figure 5.23. Due to the subtraction, well fluorescence saturation appears to be at 

variable levels of fluorescence depending on the starting point of fluorescence for each 

well, as eDIBs were not measured prior to the addition of SDS. For example, eDIB 

wells measured at saturation for the first measurement will display a fluorescence of 

zero throughout the experiment as there is no change in fluorescence throughout the 

course of the experiment. This effect can be circumvented in future experiments via the 

measurement of eDIB fluorescence prior to the addition of bilayer-disrupting agents, 

achieving a true zero measurement which can be subtracted from subsequent 

measurements.  



 

225 

 

Chapter 5 – eDIB Arrays as a High-Throughput Assay Platform for Membrane 
Leakage and Disruption 

 

 

Figure 5.23 Graphs showing the change in fluorescence over a period of 16 hours of eDIBs in a 
96-well plate incubated with varying concentrations of SDS, measured via SWR. Each graph 
represents an individual well and change in fluorescence is normalised to 0 via subtraction of 
the first SWR measurement from the rest of measurements. A number of graphs have been 
labelled (C1, C2, C3, A1, A2, B1) for reference in text. A high gain setting (1150) is employed in 
order to visualise small changes in fluorescence. eDIBs that underwent bilayer failure during the 
course of the experiment are represented with red lines. 

SDS 0 µM 

 

SDS 5 µM 

SDS 10 µM 

SDS 50 µM 

16 hours 

0
.5

 a
.u

. 
C1 C2 

C3 

A1 

A2 

B1 



 

226 

 

Chapter 5 – eDIB Arrays as a High-Throughput Assay Platform for Membrane 
Leakage and Disruption 

 

The normalised data shows that two out of the three surviving eDIBs incubated in 5 μM 

SDS display a large, steady increase in fluorescence (labelled as A1 and A2 in Figure 

5.23) which is indicative of dye leakage through eDIB bilayers, as the increases in 

fluorescence are significantly larger than as seen with control eDIBs. Two control 

eDIBs (C1 and C2) display a visible increase in fluorescence over time, which could be 

due to eDIB movement within the well, likely towards the centre of the well. One eDIB 

displays a decrease in fluorescence (C3) over time which may be due to the movement 

of an eDIB away from the centre of the well.  

Well scanning images are shown in Figure 5.24 displaying example wells from Figure 

5.23 for control eDIBs, leaking eDIBs and eDIBs showing bilayer failure.  eDIBs that 

displayed bilayer rupture gave rise to a saturated response across the whole well (B1), 

whilst eDIBs that displayed leakage show a localised focal point of fluorescence close 

to the centre of the well with an increase in fluorescence throughout the whole well 

(A1), independent of eDIB position. Control eDIBs that showed an increase in 

fluorescence according to SWR measurements appeared to increase their 

fluorescence in a similar manner to the leakage eDIB, albeit much less, coinciding with 

the SWR measurements. The CoM of C1 appears to move towards the centre of the 

well, although this might also be due to low levels of leakage, whilst C2 doesn´t show a 

change in CoM although does increase in fluorescence akin to the leakage trace. This 

could be because fluorescence does not increase sufficiently so that the CoM ceases 

to represent the position of the eDIB, and thus the CoM at 16 hours still reflects the 

position of the eDIB within the well.  
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Figure 5.24 Well scanning images of selected eDIB wells as shown in Figure 5.23, displaying 
the change in fluorescence over a period of 16 hours. The black circle in the well scanning 
images represent the CoM of fluorescence in the well. B1 shows an eDIB that ruptures over the 
course of the experiment, giving rise to a saturated fluorescence response across the well due 
to the high gains setting employed, A1 shows an eDIB that displays high amounts of leakage 
throughout the course of the experiment due to the presence of 5 µM SDS.  C1 and C2 are 
control eDIBs, where C1 appears to show low levels of eDIB leakage skewing the CoM towards 
the centre, and C2 also appears to leak although CoM remains away from the centre, likely 
reflecting the position of the eDIB within the well. 

The experiment shows that it is possible to use the eDIB assay platform and SWR 

plate reader measurements to obtain high-throughput data showing changes in 

fluorescence over time, which can be attributed to either bilayer failure and hence the 

rapid de-quenching of calcein giving a sharp increase in fluorescence, or the leakage of 

dye through bilayer pores, visible as a steady rise in fluorescence over time. Thus it 

was found that SDS appears to be able to form such pores which allow for the leakage 

of calcein from the inside of an eDIB to the outside.  

5.3.2.1.2 Triton-X100 

A similar experiment was performed using different concentrations of Triton-X100, 

determined via previous range-finding experiments aimed at using concentrations that 
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do not result in the immediate rupture of all eDIB bilayers. The Triton-X100 experiment 

is shown in Figure 5.25, using only normalised data in order to better visualise bilayer 

leakage. 
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Figure 5.25 Change in fluorescence over a period of 16 hours of eDIBs in a 96-well plate 
incubated with varying concentrations of Triton-X100, measured via SWR. Each graph 
represents an individual well and change in fluorescence is normalised to 0 via subtraction of 
the first SWR measurement from the rest of measurements. A high gain setting (1150) is 
employed in order to visualise small changes in fluorescence. eDIBs that underwent bilayer 
failure during the course of the experiment are represented with red lines. 

 

 

Figure 5.26 Survivability of eDIBs (as shown in Figure 5.25) exposed to varying concentrations 
of the detergent Triton-X100, showing the percentage of eDIBs that do not undergo bilayer 
failure over the course of the 16 hour experiment. The data is obtained by looking at SWR 
measurements that give rise to saturation over the course of the experiment, as well as visual 
confirmation after the plate reader measurements have taken place. 

 

Results show that the presence of Triton-X100 decreases the survivability of eDIBs 

(Figure 5.26) in comparison to the control group. However, eDIBs incubated in 82.5 μM 

Triton-X100 display better survivability than eDIBs incubated in 16.5 μM Triton-X100, 

whereas one would expect increasing concentrations of Triton-X100 to give rise to 

decreasing survivability. However, this could be an artefact of relatively low sample 

numbers. Regarding bilayer leakage, it appears that Triton-X100 causes bilayer failure 

without giving rise to previous leakage, as steady increases in fluorescence in Triton-

X100 wells do not differ significantly from controls. Therefore it is likely that small 
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increases or decreases in fluorescence over time are likely due to eDIB movement 

within the well. Two eDIBs display a higher increase in fluorescence than the rest of 

eDIBs, one pertaining to the control group (A1) and another incubated in 82.5 μM 

Triton-X100, and therefore cannot be attributed to leakage caused by the presence of 

Triton-X100 unless further evidenced in future experiments. Thus, the data points 

towards a homogeneous mechanism of action of the detergent Triton-X100 on the 

bilayers.  

Comparing the effect of SDS vs. Triton-X100 on the eDIB bilayers, it appears that SDS 

has a more potent effect in causing bilayer rupture than Triton-X100 (i.e. 0% survival of 

eDIBs incubated with 10 µM SDS vs. 42.5% survival of eDIBs incubated with 165 µM 

Triton-X100). However, it appears that SDS is capable of causing leakage of dye 

through the bilayer at concentrations of 5 µM, visible via a steady increase in 

fluorescence at a rate beyond what is seen for any control eDIBs. This is indicative of a 

heterogeneous mode of action of SDS on the eDIBs. In comparison, Triton-X100 does 

not give rise to steady increases in fluorescence that is different than control eDIBs, but 

with increasing concentrations, gives rise to bilayer rupture and decreased eDIB 

survivability without prior leakage. Thus, albeit limited by low sample numbers, the 

findings are consistent with reports in the literature regarding the differences in the 

mechanisms of bilayer solubilisation caused by Triton-X100 or SDS63. Microscopy 

experiments on GUVs indicate that Triton-X100 inserts into bilayers and rapidly 

equilibrates between the bilayer leaflets, giving rise to rapid-forming holes once a 

solubility threshold is reached that results in bilayer failure, whilst it is thought that SDS 

causes local membrane curvature stresses as it remains mostly contained in one 

bilayer leaflet, leading to the formation of transient macropores at sufficient 

concentrations43, 64.  
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Further experiments with eDIBs would aim to clarify such different mechanisms of 

actions by increasing the range of Triton-X100 concentrations tested, and further 

exploring a range of concentrations at which leakage appears to be more likely for 

SDS, between 0 – 10 µM.  

5.3.2.2 Use of the eDIB assay platform to determine bilayer disruption 

caused by the synergistic pore-forming peptides Magainin 2 and PGLa 

Following from demonstrations that the eDIB assay platform can detect leakage using 

SWR measurements, the system was employed to test the ability of pore-forming 

peptides Magainin 2 and PGLa to disrupt eDIB lipid bilayers. As described in section 

5.1.2.1, these peptides are thought to act synergistically and debate exists regarding 

their mechanism of bilayer disruption. Thus, a high-throughput method to assay their 

ability to disrupt membranes at varying peptide concentrations and ratios would be 

beneficial in elucidating their activity. 

Firstly, eDIBs were incubated with a range of concentrations of either Magainin 2 or 

PGLa, and then with both, in order to assess the synergistic effects reported for the 

peptides. As with previous experiments, SWR measurements were taken for 16 hours 

using a high gain setting (1150). The range of concentrations tested were selected to 

be below the concentrations at which all eDIBs immediately ruptured based on 

previous range-finding experiments with Magainin 2. This concentration was found to 

be between 0.7 and 3.5 μM, and the range of concentrations tested in subsequent 

experiments was 0.1 – 1.5 μM. This is in contrast with reports in the literature showing 

that concentrations between 3 – 10 μM cause leakage of calcein dye from GUVs but no 

overall bilayer disruption53, however this difference is likely due to different 

experimental conditions such as the use of GUVs and the use of charged lipid 

mixtures, in comparison to DIBs and the zwitterionic lipid DPhPC employed in the 

experiments reported here.  
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Figure 5.27a and Figure 5.28a show the change in fluorescence over time for eDIBs 

incubated with either Magainin 2 or PGLa at different concentrations, respectively. The 

data shown is normalised to zero as described for the SDS and Triton-X100 data. 

Figure 5.27b and Figure 5.28b show the percentage of eDIBs surviving without any 

bilayer rupture for Magainin 2 and PGLa, respectively. 
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Figure 5.27 a) Graphs showing the change in fluorescence over a period of 16 hours of eDIBs 
in a 96-well plate incubated with varying concentrations of Magainin 2, measured via SWR. 
Each graph represents an individual well and change in fluorescence is normalised to 0 via 
subtraction of the first SWR measurement from the rest of measurements. eDIBs that 
underwent bilayer failure during the course of the experiment are represented with red lines. A 
high gain setting (1150) is employed in order to visualise small changes in fluorescence. b) 
Survivability of eDIBs as shown in the graphs in a), shown as the percentage of eDIBs that do 
not undergo bilayer failure over the course of the 16 hour experiment. The data is obtained by 
looking at SWR measurements that give rise to saturation over the course of the experiment, as 
well as visual confirmation after the plate reader measurements have taken place. 
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Figure 5.28 a) Change in fluorescence over a period of 16 hours of eDIBs in a 96-well plate 
incubated with varying concentrations of PGLa, measured via SWR. Each graph represents an 
individual well and change in fluorescence is normalised to 0 via subtraction of the first SWR 
measurement from the rest of measurements. eDIBs that underwent bilayer failure during the 
course of the experiment are represented with red lines. A high gain setting (1150) is employed 
in order to visualise small changes in fluorescence. b) Survivability of eDIBs as shown in the 
graphs in a), showing the percentage of eDIBs that do not undergo bilayer failure over the 
course of the 16 hour experiment. The data is obtained by looking at SWR measurements that 
give rise to saturation over the course of the experiment, as well as visual confirmation after the 
plate reader measurements have taken place. 

 

For both Magainin 2 and PGLa, decreasing eDIB survivability is seen with increasing 

concentrations of peptide, demonstrating that the peptides are indeed active at 

disrupting zwitterionic bilayers. However, it appears that eDIBs were more susceptible 

to bilayer failure in the presence of PGLa than Magainin 2 at higher concentrations (1 - 

1.5 µM). The data for the peptides are comparable as evidenced by similar survivability 

of the control groups (82.5% of eDIBs survived intact for both experiments). Bilayer 

leakage does not appear to occur for either peptides, as few eDIBS demonstrate a 

steady rise in fluorescence, and those that do are indistinguishable from control. The 

fact that some eDIBs show a steady decrease in fluorescence from baseline further 

indicates that these small variations in fluorescence are likely due to spatial variations 

within the well, or other measurement artefacts. Therefore the data suggests that the 

b) 
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peptides disrupt bilayers in a homogeneous manner, at least for the zwitterionic lipid 

bilayers tested in these experiments. 

Next, the synergistic effects of Magainin 2 and PGLa were tested by incubating eDIBs 

in a concentration of both peptides and comparing against the same concentration of 

single peptide. Figure 5.29a and b shows change in fluorescence over time for eDIBs 

incubated with Magainin 2, PGLa or both peptides, as well as the percentage of eDIBs 

surviving without any bilayer rupture, respectively. 
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Figure 5.29 a) Graphs showing the change in fluorescence over a period of 16 hours of eDIBs 
in a 96-well plate incubated with varying concentrations of Magainin 2, measured via SWR. 
Each graph represents an individual well and change in fluorescence is normalised to 0 via 
subtraction of the first SWR measurement from the rest of measurements. eDIBs that 
underwent bilayer failure during the course of the experiment are represented with red lines. A 
high gain setting (1150) is employed in order to visualise small changes in fluorescence. b) 
Survivability of eDIBs as shown in the graphs in a), showing the percentage of eDIBs that do 
not undergo bilayer failure over the course of the 16 hour experiment. The data is obtained by 
looking at SWR measurements that give rise to saturation over the course of the experiment, as 
well as visual confirmation after the plate reader measurements have taken place. 

 

The experiment demonstrates the synergistic effects of Magainin 2 and PGLa in giving 

rise to bilayer failure, as survivability of eDIBs incubated in a 1:1 ratio for the peptides 

drops to 0% over a 16 hour period in comparison to the same concentration of either of 

the peptides. Because of this, it is yet unconfirmed whether peptide synergy can give 

rise to leakage, as the eDIBs ruptured within the first hour of the experiment at the 

concentration tested. Therefore, subsequent experiments would focus on testing a 

suitable range of concentrations that would allow for the detection of leakage, lower 

than the concentrations employed here. 

b) 
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5.4 Conclusion 

The experiments performed in this chapter have shown that eDIBs can be used as a 

high-throughput assay platform to measure the leakage of the self-quenching 

fluorescent dye calcein from its internal aqueous cores into the alginate shell and an 

aqueous buffer in a 96-well plate. For this, eDIBs can be output individually into a 96-

well plate, and measurements taken using a plate reader via single-value, standard 

well reading (SWR) or well scanning measurements. As they are individually 

addressable and can be generated in large numbers, this system conforms to the basic 

requirements for an ALM array as described in section 5.1. 

The assay platform has been demonstrated to be able to distinguish between two types 

of bilayer disruption. The first kind is bilayer failure, which caused the coalescence of 

eDIB aqueous cores with the external media, resulting in a sharp increase in measured 

fluorescence within the well. This could be determined via SWR measurements as well 

as visual confirmation due to the high resultant fluorescent output. The second kind is 

bilayer leakage resulting in the steady leakage of calcein from the internal eDIB 

aqueous cores, which can occur when bilayer pores are formed. eDIB stability within 

the wells was found to be variable but sufficiently high in order to carry out high-

throughput experiments, ranging between 62.5 % and 100% of control eDIBs in the 

experiments performed in this chapter remaining measurably intact by the end of the 

experiment. 

For the measurement of bilayer leakage, validation experiments were performed by 

adding known amounts of calcein to the external media within an eDIB-containing well, 

and comparing SWR measurements against well scanning measurements in order to 

account for SWR measurement artefacts that can arise from variations in the position 

of an eDIB within a well. It was found that SWR is able to detect concentrations of 
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calcein added to the well independent of eDIB position, although for low concentrations 

the position of an eDIB can affect SWR measurements as SWR was found to measure 

an area within the centre of the well. However, by comparing well scanning metrics 

such as the top 10% and mean pixel values with SWR, it was possible to produce 

correction factors to account for these variations which would allow for SWR 

measurements to be adjusted based on the known position of an eDIB within a well. 

Therefore, this would allow for SWR measurements to be taken frequently and well 

scanning measurements to be taken periodically over the course of an experiment, in 

order to distinguish between low levels of leakage and eDIB movement within a well. 

This is a favourable system for the measurement of leakage from eDIB bilayers as 

SWR measurements are significantly more rapid than well scanning measurements, 

allowing for increased time resolution (i.e. measurements every 15 minutes). 

Following the validation experiments, proof-of-concept experiments aimed at 

measuring leakage of eDIBs arising from exposure to the detergents Triton-X100 and 

SDS were performed. These experiments showed that SDS can give rise to leakage of 

calcein from eDIBs at a concentration of 5 µM, with increasing concentrations resulting 

in bilayer rupture, whilst Triton-X100 gives rise to bilayer rupture without any 

measurable bilayer leakage at the concentrations tested. These findings corroborate 

reports regarding the differences in the mechanisms via which the detergents act on 

lipid bilayers41. 

Finally, the assay platform was employed in order to assess the behaviour of the pore-

forming peptides Magainin 2 and PGLa, which are known to act synergistically to 

disrupt lipid bilayers composed of charged lipids. It was found that Magainin 2 and 

PGLa can separately cause failure of bilayers composed of zwitterionic lipid (DPhPC), 

related to the concentration of the peptide, without any discernible bilayer leakage prior 

to bilayer failure. The synergistic effects of the peptides were also corroborated, as 
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incubation of eDIBs with a 1:1 ratio of peptides caused the failure of more eDIBs than 

incubation with the same concentration of either peptide. Further experiments are 

required in order to elucidate whether the peptides synergistically give rise to bilayer 

leakage, exploring a larger range of concentrations, and using different kinds of lipids 

to form lipid bilayers. The nature of the assay allows for 2D-screens of peptide 

concentrations, which would be the focus of further experiments. The lack of visible 

leakage seen here is likely due to reports that the peptides only form pores in bilayers 

formed from charged lipids. However, the experiments performed here indicate that 

they also interact with zwitterionic lipid bilayers, albeit likely via different mechanisms 

and in a homogeneous manner, giving rise to bilayer failure without prior discernible 

leakage. Further experiments would aim to test the activity of the peptides on different 

lipid compositions, including the use of charged lipids. 

The nature of eDIBs presents with novel opportunities in lipid bilayer array systems, in 

particular due to their robustness and ability to contain DIB networks. The assay 

described in this chapter would allow for the eDIBs to be additionally measured via 

electrophysiology or microscopy techniques, either directly in the wells or by extracting 

selected eDIBs from the wells via suction or mechanical handling, which has been 

demonstrated to be possible in Chapter 3. This remains yet to be demonstrated and 

would be a focus of future experiments. Additionally, eDIBs can be produced with a 

prescribed number of inner cores of different contents, which could be used to increase 

screening throughput, assess bilayer-compartmentalised chemical pathways or allow 

for the inclusion of a number of fluorescence assays per eDIB. For example, a “lipid-in” 

method could be employed where different aqueous cores contain different lipid 

mixtures and fluorescent dyes, allowing for simultaneous assaying of different 

asymmetric membranes, which upon bilayer leakage or rupture would give rise to 

distinguishable fluorescent outputs. It is therefore proposed that the array system 

produced in this Chapter may find numerous, ingenious applications in high-throughput 
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ALM studies, due to the intrinsic advantages of microfluidic manufacture and the eDIB 

chassis. 

Current limitations of the experiments performed here meant that the number of inner 

cores per eDIB could not be modulated. For example, it might be beneficial to include 

only one aqueous core per eDIB, which would mean that only one DIB is assessed per 

well. This would allow for better characterisation and quantification of leakage in a well, 

as the number of bilayers and bilayer area could be readily known. This would indeed 

be possible with use of an additional syringe pump to control the ratio of flow rates for 

the inner aqueous and oil phases during the eDIB manufacture process, allowing for 

control over the frequency of droplet generation and hence the number of droplets 

encapsulated per eDIB. Furthermore, the contamination of the alginate shell of eDIBs 

with the inner aqueous core fluids, caused by the microfluidic manufacture process can 

be a problem, especially when assessing small amounts of leakage that may occur 

from membrane proteins, for example. However, this can be circumvented via buffer 

exchanging the aqueous contents of the well, or via the use of fluorescent dyes that 

can be controllably and externally quenched. For example, calcein can be quenched 

via the addition of ferric iron65. Additionally, different assays can be employed that give 

rise to optical responses that diminish over time. For example, luciferin can be 

contained within the aqueous cores of the eDIB aqueous cores, which upon leakage or 

bilayer failure mixes with luciferase in the alginate shell or the external aqueous 

media66, giving rise to bioluminescence. Any luminescence that arises from initial 

contamination of the alginate shell with luciferin can be eliminated by waiting until 

luminescence naturally subsides before starting an experiment, for example. 

In conclusion, this chapter has demonstrated the ability of eDIBs to be used as a high-

throughput bilayer array assay platform to measure bilayer disruption where each eDIB 

is individually addressable, and it has been demonstrated here to provide single-bilayer 
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resolution for up to 47 eDIBs simultaneously (Figure 5.25) (or 78 as shown in Figure 5.8, 

if measuring only bilayer failure and not leakage), containing a number of DIBs each 

related to the number of aqueous cores contained per eDIB. The nature of the 

microfluidic manufacture of eDIBs and plate reader measurements allow for an assay 

platform that is low cost, high-throughput, scalable, and flexible, which might allow for 

its future development and use in applications such as drug screening and point-of-

care diagnostics.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

245 

 

Chapter 5 – eDIB Arrays as a High-Throughput Assay Platform for Membrane 
Leakage and Disruption 

5.5 References 

1. Goldberg, D. M.; Riordan, J. R., Role of membranes in disease. Clinical Physiology and 
Biochemistry 1986, 4 (5), 305-336. 
2. Gallagher, P. G., Red cell membrane disorders. Hematology. American Society of 
Hematology. Education Program 2005, 13-18. 
3. Goot, G. v. d., Pore-Forming Toxins. Springer Science & Business Media: 2001; p 188. 
4. Heller, M. J., DNA microarray technology: devices, systems, and applications. Annual 
Review of Biomedical Engineering 2002, 4, 129-153. 
5. Reymond Sutandy, F. X.; Qian, J.; Chen, C.-S.; Zhu, H., Overview of Protein 
Microarrays. Current protocols in protein science / editorial board, John E. Coligan ... [et al.] 
2013, 0 27, Unit-27.1. 
6. Bally, M.; Bailey, K.; Sugihara, K.; Grieshaber, D.; Vörös, J.; Städler, B., Liposome and 
Lipid Bilayer Arrays Towards Biosensing Applications. Small 2010, 6 (22), 2481-2497. 
7. Castell, O. K.; Berridge, J.; Wallace, M. I., Quantification of Membrane Protein Inhibition 
by Optical Ion Flux in a Droplet Interface Bilayer Array. Angewandte Chemie International 
Edition 2012, 51 (13), 3134-3138. 
8. Montal, M.; Mueller, P., Formation of Bimolecular Membranes from Lipid Monolayers 
and a Study of Their Electrical Properties. Proceedings of the National Academy of Sciences of 
the United States of America 1972, 69 (12), 3561-3566. 
9. Ti Tien, H., Black Lipid Membranes at Bifaces : Formation characteristics, optical and 
some thermodynamic properties. The Journal of General Physiology 1968, 52 (1), 125-144. 
10. Fertig, N.; Meyer, C.; Blick, R. H.; Trautmann, C.; Behrends, J. C., Microstructured 
glass chip for ion-channel electrophysiology. Physical Review. E, Statistical, Nonlinear, and Soft 
Matter Physics 2001, 64 (4 Pt 1), 040901. 
11. Peterman, M. C.; Ziebarth, J. M.; Braha, O.; Bayley, H.; Fishman, H. A.; Bloom, D. M., 
Ion Channels and Lipid Bilayer Membranes Under High Potentials Using Microfabricated 
Apertures. Biomedical Microdevices 2002, 4 (3), 231-236. 
12. Le Pioufle, B.; Suzuki, H.; Tabata, K. V.; Noji, H.; Takeuchi, S., Lipid Bilayer Microarray 
for Parallel Recording of Transmembrane Ion Currents. Analytical Chemistry 2008, 80 (1), 328-
332. 
13. Groves, J. T.; Ulman, N.; Boxer, S. G., Micropatterning Fluid Lipid Bilayers on Solid 
Supports. Science 1997, 275 (5300), 651-653. 
14. Cremer, P. S.; Yang, T., Creating Spatially Addressed Arrays of Planar Supported Fluid 
Phospholipid Membranes. Journal of the American Chemical Society 1999, 121 (35), 8130-
8131. 
15. Castellana, E. T.; Cremer, P. S., Solid supported lipid bilayers: From biophysical studies 
to sensor design. Surface Science Reports 2006, 61 (10), 429-444. 
16. Kam, L.; Boxer, S. G., Spatially Selective Manipulation of Supported Lipid Bilayers by 
Laminar Flow:  Steps Toward Biomembrane Microfluidics. Langmuir 2003, 19 (5), 1624-1631. 
17. Yamazaki, V.; Sirenko, O.; Schafer, R. J.; Nguyen, L.; Gutsmann, T.; Brade, L.; Groves, 
J. T., Cell membrane array fabrication and assay technology. BMC Biotechnology 2005, 5, 18. 
18. Shen, K.; Tsai, J.; Shi, P.; Kam, L. C., Self-Aligned Supported Lipid Bilayers for 
Patterning the Cell−Substrate Interface. Journal of the American Chemical Society 2009, 131 
(37), 13204-13205. 
19. Maher, S.; Basit, H.; Forster, R. J.; Keyes, T. E., Micron dimensioned cavity array 
supported lipid bilayers for the electrochemical investigation of ionophore activity. 
Bioelectrochemistry 2016, 112, 16-23. 
20. Mazur, F.; Bally, M.; Städler, B.; Chandrawati, R., Liposomes and lipid bilayers in 
biosensors. Advances in Colloid and Interface Science. 
21. F Szoka, Jr.; Papahadjopoulos, a. D., Comparative Properties and Methods of 
Preparation of Lipid Vesicles (Liposomes). Annual Review of Biophysics and Bioengineering 
1980, 9 (1), 467-508. 
22. Patel, H.; Tscheka, C.; Heerklotz, H., Characterizing vesicle leakage by fluorescence 
lifetime measurements. Soft Matter 2009, 5 (15), 2849-2851. 



 

246 

 

Chapter 5 – eDIB Arrays as a High-Throughput Assay Platform for Membrane 
Leakage and Disruption 

23. Ahyayauch, H.; Requero, M. A.; Alonso, A.; Bennouna, M.; Goñi, F. M., Surfactant 
effects of chlorpromazine and imipramine on lipid bilayers containing sphingomyelin and 
cholesterol. Journal of Colloid and Interface Science 2002, 256 (2), 284-289. 
24. Hovakeemian, S. G.; Liu, R.; Gellman, S. H.; Heerklotz, H., Correlating antimicrobial 
activity and model membrane leakage induced by nylon-3 polymers and detergents. Soft matter 
2015, 11 (34), 6840-6851. 
25. Städler, B.; Falconnet, D.; Pfeiffer, I.; Höök, F.; Vörös, J., Micropatterning of DNA-
Tagged Vesicles. Langmuir 2004, 20 (26), 11348-11354. 
26. Shoji, A.; Sugimoto, E.; Orita, S.; Nozawa, K.; Yanagida, A.; Shibusawa, Y.; Sugawara, 
M., A reusable liposome array and its application to assay of growth-hormone-related peptides. 
Analytical and Bioanalytical Chemistry 2010, 397 (3), 1377-1381. 
27. Saliba, A.-E.; Vonkova, I.; Ceschia, S.; Findlay, G. M.; Maeda, K.; Tischer, C.; Deghou, 
S.; van Noort, V.; Bork, P.; Pawson, T.; Ellenberg, J.; Gavin, A.-C., A quantitative liposome 
microarray to systematically characterize protein-lipid interactions. Nature Methods 2014, 11 (1), 
47-50. 
28. Kang, Y. J.; Wostein, H. S.; Majd, S., A Simple and Versatile Method for the Formation 
of Arrays of Giant Vesicles with Controlled Size and Composition. Advanced Materials 2013, 25 
(47), 6834-6838. 
29. Gross, L. C. M.; Castell, O. K.; Wallace, M. I., Dynamic and Reversible Control of 2D 
Membrane Protein Concentration in a Droplet Interface Bilayer. Nano Letters 2011, 11 (8), 
3324-3328. 
30. S. Friddin, M.; Bolognesi, G.; Elani, Y.; J. Brooks, N.; V. Law, R.; M. Seddon, J.; A. Neil, 
M. A.; Ces, O., Optically assembled droplet interface bilayer (OptiDIB) networks from cell-sized 
microdroplets. Soft Matter 2016, 12 (37), 7731-7734. 
31. Bayley, H.; Cronin, B.; Heron, A.; Holden, M. A.; Hwang, W.; Syeda, R.; Thompson, J.; 
Wallace, M., Droplet interface bilayers. Molecular bioSystems 2008, 4 (12), 1191-1208. 
32. Syeda, R.; Holden, M. A.; Hwang, W. L.; Bayley, H., Screening Blockers Against a 
Potassium Channel with a Droplet Interface Bilayer Array. Journal of the American Chemical 
Society 2008, 130 (46), 15543-15548. 
33. Soga, N.; Watanabe, R.; Noji, H., Attolitre-sized lipid bilayer chamber array for rapid 
detection of single transporters. Scientific Reports 2015, 5, srep11025. 
34. Watanabe, R.; Soga, N.; Yamanaka, T.; Noji, H., High-throughput formation of lipid 
bilayer membrane arrays with an asymmetric lipid composition. Scientific Reports 2014, 4, 
srep07076. 
35. Schlicht, B.; Zagnoni, M., Droplet-interface-bilayer assays in microfluidic passive 
networks. Scientific Reports 2015, 5. 
36. Barlow, N. E.; Bolognesi, G.; Flemming, A. J.; Brooks, N. J.; Barter, L. M. C.; Ces, O., 
Multiplexed droplet Interface bilayer formation. Lab on a Chip 2016, 16 (24), 4653-4657. 
37. Seddon, A. M.; Curnow, P.; Booth, P. J., Membrane proteins, lipids and detergents: not 
just a soap opera. Biochimica et Biophysica Acta (BBA) - Biomembranes 2004, 1666 (1–2), 
105-117. 
38. Pushpanathan, M.; Gunasekaran, P.; Rajendhran, J., Antimicrobial Peptides: Versatile 
Biological Properties. International Journal of Peptides 2013. 
39. Bordier, C., Phase separation of integral membrane proteins in Triton X-114 solution. 
Journal of Biological Chemistry 1981, 256 (4), 1604-1607. 
40. Heerklotz, H., Interactions of surfactants with lipid membranes. Quarterly Reviews of 
Biophysics 2008, 41 (3-4), 205-264. 
41. Nazari, M.; Kurdi, M.; Heerklotz, H., Classifying Surfactants with Respect to Their Effect 
on Lipid Membrane Order. Biophysical Journal 2012, 102 (3), 498-506. 
42. Kragh-Hansen, U.; le Maire, M.; Møller, J. V., The mechanism of detergent 
solubilization of liposomes and protein-containing membranes. Biophysical Journal 1998, 75 (6), 
2932-2946. 
43. Lichtenberg, D.; Ahyayauch, H.; Goñi, Félix M., The Mechanism of Detergent 
Solubilization of Lipid Bilayers. Biophysical Journal 2013, 105 (2), 289-299. 
44. Ladbrooke, B. D.; Williams, R. M.; Chapman, D., Studies on lecithin-cholesterol-water 
interactions by differential scanning calorimetry and X-ray diffraction. Biochimica et Biophysica 
Acta (BBA) - Biomembranes 1968, 150 (3), 333-340. 
45. Brogden, K. A., Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? 
Nature Reviews Microbiology 2005, 3 (3), 238-250. 



 

247 

 

Chapter 5 – eDIB Arrays as a High-Throughput Assay Platform for Membrane 
Leakage and Disruption 

46. Laver, D. R., The barrel-stave model as applied to alamethicin and its analogs 
reevaluated. Biophysical Journal 1994, 66 (2 Pt 1), 355-359. 
47. Yang, L.; Harroun, T. A.; Weiss, T. M.; Ding, L.; Huang, H. W., Barrel-stave model or 
toroidal model? A case study on melittin pores. Biophysical Journal 2001, 81 (3), 1475-1485. 
48. Ludtke, S. J.; He, K.; Heller, W. T.; Harroun, T. A.; Yang, L.; Huang, H. W., Membrane 
pores induced by magainin. Biochemistry 1996, 35 (43), 13723-13728. 
49. Shai, Y., Mechanism of the binding, insertion and destabilization of phospholipid bilayer 
membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. 
Biochimica Et Biophysica Acta 1999, 1462 (1-2), 55-70. 
50. Costa, F.; Carvalho, I. F.; Montelaro, R. C.; Gomes, P.; Martins, M. C. L., Covalent 
immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomaterialia 
2011, 7 (4), 1431-1440. 
51. Bechinger, B., The SMART model: Soft Membranes Adapt and Respond, also 
Transiently, in the presence of antimicrobial peptides. Journal of Peptide Science 2015, 21 (5), 
346-355. 
52. Zasloff, M., Antimicrobial peptides of multicellular organisms. Nature 2002, 415 (6870), 
389-395. 
53. Tamba, Y.; Yamazaki, M., Single giant unilamellar vesicle method reveals effect of 
antimicrobial peptide magainin 2 on membrane permeability. Biochemistry 2005, 44 (48), 
15823-15833. 
54. Westerhoff, H. V.; Zasloff, M.; Rosner, J. L.; Hendler, R. W.; De Waal, A.; Vaz Gomes, 
A.; Jongsma, P. M.; Riethorst, A.; Juretić, D., Functional synergism of the magainins PGLa and 
magainin-2 in Escherichia coli, tumor cells and liposomes. European Journal of Biochemistry 
1995, 228 (2), 257-264. 
55. Zasloff, M., Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, 
characterization of two active forms, and partial cDNA sequence of a precursor. Proceedings of 
the National Academy of Sciences of the United States of America 1987, 84 (15), 5449-5453. 
56. de Waal, A.; Gomes, A. V.; Mensink, A.; Grootegoed, J. A.; Westerhoff, H. V., 
Magainins affect respiratory control, membrane potential and motility of hamster spermatozoa. 
FEBS Letters 1991, 293 (1), 219-223. 
57. Cruciani, R. A.; Barker, J. L.; Durell, S. R.; Raghunathan, G.; Guy, H. R.; Zasloff, M.; 
Stanley, E. F., Magainin 2, a natural antibiotic from frog skin, forms ion channels in lipid bilayer 
membranes. European Journal of Pharmacology 1992, 226 (4), 287-296. 
58. Giuliani, A.; Pirri, G.; Nicoletto, S. F., Antimicrobial peptides: an overview of a promising 
class of therapeutics. Central European Journal of Biology 2007, 2 (1), 1-33. 
59. Matsuzaki, K.; Mitani, Y.; Akada, K.-y.; Murase, O.; Yoneyama, S.; Zasloff, M.; 
Miyajima, K., Mechanism of Synergism between Antimicrobial Peptides Magainin 2 and PGLa. 
Biochemistry 1998, 37 (43), 15144-15153. 
60. Matsuzaki, K.; Sugishita, K.; Ishibe, N.; Ueha, M.; Nakata, S.; Miyajima, K.; Epand, R. 
M., Relationship of membrane curvature to the formation of pores by magainin 2. Biochemistry 
1998, 37 (34), 11856-11863. 
61. Tremouilhac, P.; Strandberg, E.; Wadhwani, P.; Ulrich, A. S., Synergistic 
transmembrane alignment of the antimicrobial heterodimer PGLa/magainin. The Journal of 
Biological Chemistry 2006, 281 (43), 32089-32094. 
62. Benachir, T.; Lafleur, M., Study of vesicle leakage induced by melittin. Biochimica et 
Biophysica Acta (BBA) - Biomembranes 1995, 1235 (2), 452-460. 
63. Ahyayauch, H.; Bennouna, M.; Alonso, A.; Goñi, F. M., Detergent Effects on 
Membranes at Subsolubilizing Concentrations: Transmembrane Lipid Motion, Bilayer 
Permeabilization, and Vesicle Lysis/Reassembly Are Independent Phenomena. Langmuir 2010, 
26 (10), 7307-7313. 
64. Sudbrack, T. P.; Archilha, N. L.; Itri, R.; Riske, K. A., Observing the Solubilization of 
Lipid Bilayers by Detergents with Optical Microscopy of GUVs. The Journal of Physical 
Chemistry B 2011, 115 (2), 269-277. 
65. Thomas, F.; Serratrice, G.; Beguin, C.; Saint Aman, E.; Pierre, J. L.; Fontecave, M.; 
Laulhere, J. P., Calcein as a fluorescent probe for ferric iron - Application to iron nutrition in 
plant cells. Journal of Biological Chemistry 1999, 274 (19), 13375-13383. 
66. Johnson, F. H.; Eyring, H., The nature of the luciferin-luciferase system. Journal of the 
American Chemical Society 1944, 66, 848-848. 



 

248 

 

Chapter 6 – Summary, Conclusions and Future Directions 

Chapter 6 – Summary, Conclusions and 

Future Directions 

6.1 Summary of findings 

The work performed in this thesis has revolved around the generation of a novel kind of 

encapsulated droplet interface bilayer network (eDIB)1, and its subsequent 

development as a chassis for artificial cells and a platform for lipid membrane studies. 

In comparison to other DIB networks, as developed primarily by Villar et al.2, 3 and Elani 

et al.4-6, the eDIBs described here are uniquely rugged thanks to their alginate shell, 

which enables them to be freestanding, mechanically handled and survive in air, water 

and oil environments. Alongside the microfluidic manufacture methods developed, 

which allows for their rapid and reproducible production, it is expected that eDIBs can 

give rise to novel applications using freestanding DIB networks, namely in the 

development of artificial cells and tissues, and novel biosensors. The multi-

compartmentalised nature of eDIBs alongside their robustness may allow for the 

prospect of novel “lab-in-a-droplet” applications which could be used to bring the 

laboratory to the natural World.  

The experimental work in this thesis can be divided into three main blocks: the 

development of the microfluidics used to produce complex emulsions required to make 

eDIBs, the characterisation of eDIBs, and their use as a high-throughput assay for the 

study of lipid membrane disruption. 

Microfluidic manufacture methods were explored in order to generate both water-in-oil-

in-water (W/O/W) and W/O/W/O emulsions, required in order to produce the eDIB 
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architecture, which comprises a network of DIBs formed from aqueous droplets inside 

an oil droplet containing dissolved lipid, encapsulated within a hydrogel shell. Firstly, 

micromilled PMMA devices were explored, however it was found that silanisation 

techniques for surface modification, required to produce droplets of oil, were 

unsuccessful (see section 2.2). Thus, a novel microfluidic device was produced, 

comprising sequentially aligned coaxial droplet generators made from glass capillaries, 

which were assembled together and aligned using a 3D-printed scaffold. In the device, 

W/O droplets are produced using an external T-junction, which flow into the coaxial 

device flowing a second aqueous phase through a glass capillary. This glass capillary 

was silanised in order to produce a hydrophilic surface, which was assessed using 

contact angle measurements. The volume and generation frequency of both the W/O 

droplets and the O/W droplets produced were found to be controllable via flow rate 

modulation, and in this way gave rise to W/O/W emulsions reproducibly encapsulating 

between 7 and 23 aqueous droplets per emulsion. W/O/W emulsions could then be 

passed through a second coaxial droplet generator within the same microfluidic device, 

flowing oil through a larger FEP tube, resulting in W/O/W/O emulsions. The hybrid, 

coaxial microfluidic device produced presented used common-place laboratory 

materials , and was found to be accessible due its low cost and ease of assembly, 

granted by the 3D-printed scaffold; and versatile due to it sequential alignment, 

allowing for the production of double and triple emulsions as demonstrated here, 

although further emulsions are also likely possible via further sequentially aligned 

coaxial geometries using channels of alternating wettabilities7. 

Using the microfluidic methods described above for the generation of W/O/W/O 

emulsions, encapsulated droplet interface bilayers (eDIBs) were generated. This was 

achieved by using a lipid-containing oil solution for the oil droplet phase resulting in the 

formation of DIBs between the internal droplets and also between the internal droplets 

and the alginate shell. The alginate shell was produced via the gelation of the external 
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aqueous phase within the microfluidic device, using an internal gelation mechanism8. 

The resulting eDIBs were found to be considerably rugged, in comparison to similar 

structures that do not contain a hydrogel shell (i.e. multisomes2), which were found to 

commonly rupture upon contact with surfaces and phase interfaces. The hydrogel-

encapsulated eDIBs were shown to be able to remain intact in both aqueous, oil and air 

environments and could survive in oil for periods of weeks, when kept in conditions that 

prevented evaporation (such as when submerged in oil). Additionally, eDIBs were 

shown to be able to withstand manual handling such as with tweezers, and could be 

sucked-up and expelled using a pipette. Electrophysiology techniques were employed 

in order to demonstrate the formation of lipid bilayers between the internal droplets and 

the hydrogel shell, as well as the insertion of the membrane protein α-Hemolysin. This 

demonstrated the ability of eDIBs to selectively communicate with their environment. 

Additionally, it was shown that eDIBs could form higher order structures in 2 and 3 

dimensions, via the adherence of eDIBs to one another. This forms a basis via which a 

number of DIB networks can give rise to larger, tissue-like assemblies. Moreover, 

eDIBs could be made to form into elongated structures comprising a number of oil-

droplets containing DIB networks within an alginate “snake”, which might find 

applications in drug delivery or as biological models for communication between cells in 

close proximity. Furthermore, eDIBs could also be produced within a polymerisable 

substance, such as TMPTA, instead of alginate, which could in principle be used in 

order to produce storable and shippable DIB networks. 

Finally, eDIBs were employed in order to generate an artificial lipid membrane (ALM) 

array, which was demonstrated with use of a fluorescence release assay based on 

calcein de-quenching in order to obtain high-throughput data on membrane disruption. 

For this, the internal eDIB droplets contained a self-quenched solution of calcein, which 

gave rise to fluorescence upon its release into the alginate shell. eDIBs could be 
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individually placed within the oil- and buffer-filled wells of a 96-well plate, and 

fluorescently measured over time using a plate reader. It was found that internal 

droplets coalesced with the alginate phase upon bilayer failure, which gave rise to a 

sharp increase in well fluorescence. Leakage through bilayer pores could also be 

detected, and was validated using control experiments where wells containing eDIBs 

were spiked with known concentrations of calcein and the resulting well scanning and 

standard well reading measurements compared, in order to account for spatial 

variations within the wells. It was found that spatial variations gave rise to minimal 

effects in standard well read measurements and could be accounted for by using well 

scanning data. Proof-of-concept experiments were performed by exposing eDIBs in 96-

well plates to concentrations of the detergents Triton-X100 and sodium dodecyl 

sulphate (SDS), as well as the pore-forming peptides Magainin 2 and PGLa. It was 

found that SDS was able to give rise to steady increases in fluorescence indicating the 

formation of stochastic bilayer pores, whilst Triton-X100 caused bilayer failure without 

prior detectable leakage. These results were found to be coherent with mechanisms 

proposed in the literature9. It was also found that Magainin 2 and PGLa caused bilayer 

failure in eDIBs, and their potency in disrupting the bilayers increased when acting 

synergistically in a 1:1 ratio. This was also found to be coherent with reports on the 

literature about their function, as Magainin 2 and PGLa are known to act 

synergistically10, 11, and form pores in charged lipid bilayers12-14. The lipids employed 

here (DPhPC) are zwitterionic and it was therefore expected that the peptides might 

disrupt the eDIB bilayers differently. It was thus demonstrated that the eDIB assay 

platform was able to detect different profiles of membrane disruption, and presents a 

number of favourable aspects such as the fact that the assay is high-throughput, 

scalable and likely automatable, and low-cost due to the use of common laboratory 

equipment such as a plate reader. Further, optical measurements can be 

supplemented with gold-standard electrophysiology measurements on identified 
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constructs of interest. The eDIBs are individually addressable within each well and also 

remain suitably stable throughout the course of 16 hour experiment. 

6.2 Short term future work 

 Short-term future work comprises work which would immediately improve or follow 

from the work that has already been performed in this thesis. This section will be 

divided into work concerning microfluidics, eDIB characterisation, and the eDIB array 

for high-throughput bilayer measurements. 

6.2.1 Microfluidics  

Monodispersity: The monodispersity of the droplets and the double and triple 

emulsions was not characterised. Characterisation of the monodispersity aids in 

understanding the performance and reproducibility of the microfluidic device in 

producing eDIBs. 

Use of ETFE junction resulted in unpredictable formation of W/O droplets: As 

shown in Figure 2.8 in Chapter 2 (section 2.3.2), the modulation of water and oil flow 

rates gave rise to erratic W/O formation regarding the size and frequency of generation 

of the droplets. The use of a more reproducible and predictable method of droplet 

formation would allow for better control over resulting double and triple emulsions and 

hence a better ability to predict the number of aqueous droplets contained per W/O/W 

emulsion for a given set of flow rates, for example. 

Scaling down: The emulsions produced here are relatively large within the 

microfluidics realm: double and triple emulsions are around 2 mm and 3 mm in 

diameter, respectively. This is likely due to the use of large channels and a 

geometrically-driven regime of droplet formation. Thus, further experiments would 

focus on scaling down the device in order to produce emulsions that are significantly 
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smaller, likely to give rise to more controllable emulsion production, less reagent use, 

as well as more stable and useful eDIBs. Ideally, eDIBs would be produced that are at 

least smaller than 1 mm in diameter. 

6.2.2 eDIBs 

eDIB communication: Insofar, demonstration of communication between different 

internal eDIB compartments has not been performed. Further work would involve the 

use of chemical systems that allow eDIBs to selectively transfer chemicals from one 

compartment to another, and also uptake chemicals from the environment and give rise 

to a signal, such as a luminescent or fluorescent signal. For this, an Amplex Red 

system for the detection of glucose could be employed, as is employed in the 

referenced publication5. 

eDIB tissue communication: communication between a population of eDIBs would 

solidify the claim that they are able to act as synthetic tissues, as insofar they have only 

demonstrated to be able to adhere to one another. Firstly, it would be desirable to 

demonstrate the formation of lipid bilayers between eDIBs using electrophysiology. 

Alginate hydrogel shapes have been reported elsewhere to be able to form DIBs 

between them15. Secondly, the Amplex Red system as mentioned above5 could be 

employed in order to demonstrate communication between two populations of eDIBs. 

For example, hydrogen peroxide produced by one population of eDIBs could be used 

to trigger the fluorescence in another population of eDIBs, via its passive diffusion into 

eDIB cores containing Amplex Red. Another interesting example of eDIB tissue 

communication could be achieved via the incorporation of oscillator reactions, such as 

the Belousov-Zabotinsky (BZ) reaction16, which could be used to enable tissue-wide 

chemical synchronisation in an oscillating fashion. 
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6.2.3 eDIB array for high throughput membrane studies 

Proof-of-concept experiments using Magainin 2 and PGLa: the experiments 

performed would be adequately completed via the demonstration of a 2D concentration 

screen in a 96-well plate, in order to test different concentrations and ratios of peptides. 

This would provide an example of the versatility and high-throughput of the eDIB array. 

Furthermore, the use of charged lipids in the eDIBs, such as 1,2-dioleoyl-sn-glycero-3-

phospho-(1'-rac-glycerol) (DOPG)12, would allow for further demonstrations of the 

ability of the array to detect bilayer leakage, as well as shed light on the ability of the 

peptides to affect lipid bilayers of different compositions.  

Assaying via different means: it is hypothesised that the eDIB array allows for the 

ALMs to be probed in situ via different means aside from optical means. Thus further 

experiments would demonstrate the ability to probe eDIBs via electrophysiology within 

the wells following plate reader measurements. 

Lower limit of detection:  Determination of the lower limit of detection for bilayer 

leakage through eDIBs would be of benefit in understanding its limitations and 

assessing whether the assay would be able to measure leakage through fixed-diameter 

protein pores, for example. 

6.3 Long-term future work 

This section will highlight potential projects and aspects of work with eDIBs that have 

been identified in being able to bring value to the fields of bottom-up synthetic biology 

and the development of bio-inspired devices. 

Adaptivity and Responsiveness: A key feature of biological cells is their ability to 

sense their environment or biological cues, and then respond or adapt accordingly. 

This can be emulated in artificial cells or eDIBs by coupling sensing with actuator 
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mechanisms17. For example, a luciferin-luciferase system can be used to generate light 

in response to chemical cues, and then activate light-responsive membrane proteins, 

such as bacteriorhodopsin18, 19, which can give rise to an ion flux in response. Gelation 

and de-gelation can also be actuated in this way, which could give rise to the release of 

the inner contents of an eDIB20. Such a system can be envisaged to be useful in 

triggered drug delivery systems. It would be of great value to incorporate protein 

expression or energy generation systems such as ATP-synthase, which can be 

employed by the cell to produce suitable proteins or energise transport, locomotion, or 

other biomimetic processes in response to environmental stimuli. 

Multi-compartmentalised chemical synthesis: Because of the multi-

compartmentalised nature of eDIBs, it should be possible to incorporate multi-step 

enzymatic or chemical pathways for the production of valuable chemicals. The 

separation of reaction steps into different compartments would allow for the avoidance 

of reaction product-inhibition as well as the maintenance of concentration gradients and 

specific conditions (i.e. pH) that are most favourable for individual reaction steps, within 

an individual construct. Reaction steps can be separately assessed via the 

incorporation of optical sensing mechanisms (i.e. reaction products give rise to 

fluorescence or luminescence). Additionally, reaction products can be made to trigger 

gelation of internal eDIB cores in order for facile collection of the final reaction 

products. The ability to mass produce eDIBs using microfluidics makes this a feasible 

method to produce valuable chemicals with high yields. Furthermore, such strategies 

can be used to give rise to in situ chemical synthesis for the use of eDIBs as drug 

delivery vehicles, via the compartmentalisation of prodrugs and activators, for example. 

Artificial cell communication with biological cells: eDIBs can be co-incubated with 

biological cells and made to interact with them, via the release of cytokines and 

hormones. Furthermore, eDIBs can be engineered to react to biological cell stimuli by 
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releasing substances in response to their chemical cues, establishing feedback loops 

or the sequential release of biological molecules for biological cell differentiation or 

pathogen modelling, for example. 

6.4 Frontiers for the development of artificial cells 

Natural, biological cells are enormously complex in their structure, behaviour and 

function. However, several advances have been developed over the recent decades for 

both bottom-up and top-down biology approaches. Artificial cells based on natural 

organisms have been produced containing entirely synthetic genomes21. Artificial cell 

chassis systems based around lipid membranes have been produced which have 

demonstrated to give rise to a number of biological behaviours, such as the ability to 

replicate and express genetic material22, give rise to multi-compartmentalisation4, 

adhere to each other23, communicate with microorganisms24, contain primitive 

metabolisms5, incorporate cytoskeletal components25 and form higher order structures 

such as tissues3. Other endeavours have also managed to demonstrate life-like 

behaviours arising from simple, droplet structures, such as spontaneous division26 and 

motility27. It is expected that the successful development of truly artificial cells will 

depend on the co-operation of scientists across different fields and approaches to 

synthetic biology, and their ability to develop a single artificial cell platform able to 

incorporate many of the functionalities described here, so that such functions are 

dependent on each other and reactive to stimuli, as they are with living cells. For 

example, a significant achievement would be the incorporation and function of a 

minimal, synthetic genome inside a bottom-up synthetic cell chassis. 

A common theme seen in biological systems is the ability of emergent behaviours to 

arise from the collective action of a number of discrete components. This occurs across 

all scales of biology via self-organisation28 mechanisms, whether it is in the self-
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assembly of molecules into supramolecular, functional structures, the co-operation of 

cells that give rise to multicellular organisms, or the collective action of individual 

organisms that give rise to super-organisms, seen with certain arthropods such as ants 

and bees29. In all of these cases, self-organisation arises from a set of initial conditions, 

parameters, and interaction rules, from which patterns and behaviours emerge that 

extend beyond the scale of the individual subunits of the system, without requirement 

of an external coordinator. Such interaction rules often give rise to negative and 

positive feedback loops, oscillations, threshold response criticality and other collective 

phenomena30, which allow the emergent system to be qualitatively different than the 

sum of its subunits. 

Whilst the current approaches and successes in the development of artificial cells have 

mostly been of a reductionist nature, it could be argued that if biology were truly to be 

replicated, one would require to implement a set of interaction rules between a number 

of discrete components that give rise to “living” behaviours at a higher-order, systems 

level. Outside of the realm of biology, this can be exemplified by the creation of 

Conway´s Game of Life, which is a computer program where a two-dimensional 

orthogonal grid of square cells evolve over time without any input beyond its initial 

configuration31. Synthetic biology has yet to incorporate such concepts in the design of 

artificial cells. This can be envisaged via the creation of an artificial cell platform which 

can incorporate a selection of reactive phenomena, such as the ability to express 

functional proteins as a reaction to stimuli, or the ability of individual cells to physically 

interact and communicate chemically when in close proximity. The engineering of self-

organization and emergence in soft matter systems remains an exciting challenge as it 

offers the ability to cause system-level changes via the modification of subunit 

parameters. Additionally, this offers to shine new perspectives on our understanding of 

“living” and other complex systems. 
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6.5 Concluding statements 

This thesis has shown the development process of a novel kind of DIB construct, 

herein named eDIBs, comprised of a DIB network encapsulated within a hydrogel shell. 

It has been demonstrated that these constructs are uniquely rugged, are able to 

communicate with their environment using membrane proteins, and form higher-order 

structures. These properties enable the use of eDIBs as chassis for artificial cells. 

Proof-of-concept experiments have shown that they can be employed as an artificial 

bilayer array for membrane studies, offering a flexible platform that is able to 

interrogate bilayer constructs individually in a high-throughput fashion. Additionally, the 

microfluidic methods used allow for the controlled and scalable generation of eDIBs in 

large numbers. The employment of relatively accessible methods and equipment 

throughout this thesis for the generation of eDIBs (i.e. 3D-printing, silanisation), and 

their use as an ALM array (i.e. plate reader) enable facile uptake of the production and 

use of eDIBs in other laboratories, further providing the tools to expand upon the 

potential that eDIBs offer.  

For all of the reasons stated above, we propose that eDIBs may be able to harness 

previously unrealised potential of DIB networks for applications in healthcare and 

beyond, perhaps with the opportunity to create novel, “lab-in-a-capsule” technologies 

that can be used outside of typical laboratory settings, and a hierarchically-organised 

artificial cell system. 
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Appendix 

APPENDIX 1 - Calculation of oil droplet volume from photographs 

Oil droplet volume was calculated using the dimensions depicted in Figure 2.2 and 

using the following equation for the volume of an ellipsoid:  

𝑉 =
4

3
𝜋

𝑥2𝑦

2
 

 

Figure 1 Image of an oil droplet generated using the 3d-printed, hybrid device in the coaxial geometry, 
using a flow rate of 10 ml hr-1 for the oil phase and 300 ml hr-1 for the carrier aqueous phase.  

However, the droplet is not an ellipsoid as its geometry is constricted by the inner 

diameter of the glass channel where it is contained, and thus could more accurately be 

represented as a cylinder with a spherical cap at either side. Another potentially more 

reliable method would be to output the droplets into a container filed with water and 

calculate their volume as a sphere. 

 

 

 

 

 

x 

y 

Oil droplet 

 



 

262 

 

Appendix 

APPENDIX 2 - Flow rates that allow for the periodic generation of water 

droplets in oil using an ETFE T-junction as a droplet generator. 

Table and photograph displaying the variability in water droplet production in squalene 

oil using an ETFE junction. a) Table displaying all of the flow rates tested. Green 

indicates flow rates which allow for the stable, periodic production of droplets whilst red 

indicates erratic droplet production. b) Photographs depicting examples of 

monodisperse droplet production (above) and erratic droplet production (below). 

  
Oil flow rate (ml hr-1) 

  
2 4 6 8 10 

Water 
flow 
rate 

(ml hr-1) 

2           

4           

6           

8           

10           

 

 

  

b) 

a) 

Water droplets Oil 

Water flow rate: 2 ml hr-1 

Oil flow rate: 6 m hr-1 

Water flow rate: 6 ml hr-1 

Oil flow rate: 2 m hr-1 

Water droplet 

Oil flow rate: 6 m hr-1 

Oil 

Oil flow rate: 6 m hr-1 

Water 

Oil flow rate: 6 m hr-1 

Oil 

Oil flow rate: 6 m hr-1 
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APPENDIX 3 - Capillary number calculations 

The table shows the range of parameters (at room temperature and pressure) used to 

determine the Ca numbers for the generation of W/O droplets in an ETFE junction and 

the generation of O/W droplets in the coaxial junction. The equation for the Ca number 

can be found in section 1.3.2.1.1. 

Parameter  Water Oil (squalene) 

Dynamic viscosity 
μ 

8.9*10-4 N s m-2 2 
0.012 N s m-2 3 

Velocity 0.835 – 1.67 m s-1 (for 10 – 20 ml 
min-1 flowing through a 0.5 mm 
channel (diameter). 

5.4*10-5 – 2.7*10-4 (for 100 
– 500 ml min-1 flowing 
through a 2 mm channel 
(diameter) 

Surface tension 0.02 – 0.04 N m-1 between water and squalene3. 

 

Ca calculations are estimates and used to compare microfluidic behaviours to those 

seen in the literature. It is noted that the viscosity values for the oil as well as the 

surface tension values employed may be different due to the presence of surfactant.  

The range of Ca obtained for all flow rate and surface tension values is 0.037 – 0.074 

for W/O droplets, and 0.000032 – 0.00016 for O/W. These values correspond to a 

dripping and a geometrically-driven regime of droplet formation, respectively, as 

described in section 1.3.2. 
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APPENDIX 4 - Table of physicochemical properties of various alginate 

hydrogels. 

Property Value Referenc
e (s) 

Conditions Comments  Value 

Viscosity 
163 cP / 

shear 

thinning 

Al-Hajry et 
al. 19994 

 

Dimitriu et 
al. 20045 

Viscosity of a 2% 
w/v low visc. 

Sodium Alginate 

solution prior to 
gelation. 

Low viscosity 

alginates are 
chosen because 
they are 

favourable for 
microfluidic flow. 

Alginates of different viscosity 

can be used to suit a desired 
microfluidic flow regime (i.e. 
dripping vs. jetting). 

Also, alginates of different 
viscosity give rise to hydrogels 
with different physical 

properties such as gel density 
and stiffness. 

Density 
1.02 kg 

m-3 
n/a 

2% v/v low 
viscosity alginate 
(as used here). 

n/a The density of the alginate 

hydrogel can be used to 
control capsule buoyancy. 

Depolymeris

ability 
yes 

Klinger et al. 

2014 

Alginate polymers 
can be 

depolymerised with 

microwave 
irradiation. 

Other methods 
exist and depend 

on whether the 
alginate gel is 
covalently or 

ionotropically 
cross-linked. 

This allows for capsules to 
perform as triggered release 

vehicles or in tissue repair, in 
circumstances where an 
internal cargo required to be 

delivered. 

Compression 

modulus 

2.539 

GPa 

Anne-
Virginie et 

al. 20096 
 

Measured via 
ultrasound for a 
2% w/v sodium 

alginate solution 
hydrogel beads. 

n/a By selecting different alginate 
types or by varying the 
concentration or gellng 

method, alginate beads and 
capsules can be produced to 
resist different degrees of 

mechanical stress. 
Young´s 
Modulus 

14±2 
kPa 

Ahearne et 
al. 20087 

2% w/v sodium 
alginate. 

n/a 

Gel Strength 58.9 mN 

Choi et al. 

20028 
 

3% w/v sodium 

alginate hydrogel. 

n/a 

Mesh Size 
5.3±1.0 

nm 

Kaklamani 

et al. 20149 
 

Sodium alginate 
2.5% w/v 

hydrogels 
prepared with 1M 

CaCl2 

n/a By varying the type, 
concentration and gelling 

method of the alginate, 
alginate capsules and beads 
can be produced with varying 

permeability to differently sized 
molecules, offering a route 
towards selective and semi-

permeability. 

Porosity 
88.84%±

3.21 

(avg) 

Choi et al. 
2002 

 

3% w/v sodium 

alginate hydrogel 
w/ 0.25:1 CaCO3 : 
sodium alginate 

(w/v). 
 

The gels prepared 
in this paper are 

made to contain 
air. This is done 
by the release of 

CO2 from CaCO3. 
Gelation is carried 
out by external 

CaCl2 

In our constructs, 
CO2 is also 

released as it is 
reacting with 
acetic acid. 

Pore Size 

0.50±0.1
4 nm 

(median 

pore 
diameter

) 

Choi et al. 

2002 
 

Swelling 
ratio 

21±0.9 
Kong et al. 

2004 
 

3% w/v sodium 

alginate solution 
prepared with 

CaSO4 as gelation 

agent. 

This is the 
swelling ratio of 
dry vs. wet 

sodium alginate 
(pre & after 
hydrogel 

formation), not the 
swelling ratio of 
alginate 

The swelling ability of alginate 
beads and capsules can be 
exploited to cause structural 

changes which could be useful 
for biomedical applications. 
This also suggests alginate 

beads and capsules can be 
dry-stored and rehydrated into 
hydrogels. 
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hydrogels. 

Thermal 

stability 

Up to 

160ºC 

Iwaki et al. 

20129 
 

2% w/v 

medium/high 
viscosity sodium 

alginate. 

According to 
paper, above this 

temperature dry 
alginate films start 
to lose weight. 

Thermal stability demonstrates 
the potential robustness of 

alginate beads and capsules, 
and allows them to be heat 
sterilised for biological and 

medical purposes. They can 
also be used to carry out 
chemical reactions that benefit 

from heat or are triggered or 
ceased by temperature. 

Conductivity 

(dry alginate 
film) 

8.7 × 

10−5 
S/cm 

Conductivity 

described here is 
of a dry alginate 
film. Conductivity 

of an alginate 
hydrogel will 
depend mostly on 

the buffer/water it 
is dissolved in. 

Conductivity allows alginate 

beads and capsules the 
potential to electrically interact 
with each other and biological 

tissues, and to be used to carry 
out electrophysiologicy 
recordings in conjunction with 

DIBs, for example. 

Transparenc
y 

Up to 
90% 

Transparency 

depends greatly 
on the way the 
hydrogel is 

prepared. E.g. 
hydrogels gelled 
with dispersed 

CaCO3 will be 
turbid as long as 
CaCO3 is 

unreacted. 

Transparency of alginate 

beads and capsules allow 
them to be optically 
characterised or to be used to 

carry out optical assays. Also, 
potentially large structures 
composed of alginate can be 

produced with little impact on 
visibility. 

Refractive 
index 

1.37 

Esteban et 
al. 200910 

 

0.7% w/v sodium 

alginate in 
deionised water 

gelled with CaCl2. 

 

 A refractive index similar to 

water facilitates optical 
characterisation of alginate 
hydrogels stored in water. 

UV-vis 

absorption 

Peaks 
@ 970 

and 
1200 nm 

Absorption peaks 
are that of water 
as it is the main 

constituent of 
alginate 
hydrogels. 

Low UV-vis absorption allows 
alginate beads and capsules to 
be used as a medium for 

spectroscopy. 
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APPENDIX 5 - Optimisation of flow rates for the production of eDIBs 

containing a prescribed number of aqueous cores. 

Initially, the following flow rates were employed, which were empirically determined to 

produce relatively monodisperse emulsions: 

Phase Flow rate (ml hr-1) 

Inner aqueous 12 

Inner oil 12 

Alginate 150 

Carrier oil 400 

  

The distribution of the number of cores encapsulated per eDIB for 100 eDIBs flowing 

continually is shown in the following graph: 
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Figure 1 Graph depicting the distribution of the number of aqueous cores encapsulated per eDIB for 100 eDIBs 
produced continually using the following flow rates: inner aqueous phase: 12 ml hr -1; inner oil phase: 12 ml hr -

1; alginate phase: 150 ml hr-1; carrier oil phase: 400 ml hr-1. A Gaussian distribution is fitted to the data (red line), 

displaying a peak at 10.28 cores per eDIB. 

A Gaussian profile is fit to the distribution displaying a peak at 10.28. This can be used 

to adjust the inner aqueous and oil flow rates to approximate the peak to the nearest 

whole number (i.e. 10 cores per eDIB): 
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12

10.28
× 10 = 11.76 

Thus, a flow rate of 11.76 ml hr-1 for both the inner aqueous and oil phases is tested 

which gives rise to the following distribution: 
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Figure 2 Graph depicting the distribution of the number of aqueous cores encapsulated per eDIB for 100 eDIBs 
produced continually using the following flow rates: inner aqueous phase: 11.76 ml hr -1; inner oil phase: 11.76 

ml hr -1; alginate phase: 150 ml hr-1; carrier oil phase: 400 ml hr-1. 

This method effectively reduced the polydispersity of the eDIBs produced with regards 

to the number of aqueous cores encapsulated per eDIB, via optimisation of the inner 

aqueous and oil flow rates. Whilst the initial flow rates employed gave rise to a wide 

distribution of the number of cores per eDIB (8-14 cores per eDIB) with 57% containing 

10 cores and 78% containing 10±1 cores, the optimised flow rates produce a narrower 

range (8-12 cores) with 70% containing 10 cores and 96% containing 10±1 cores. The 

optimisation process could be repeated on the distribution obtained, but was found to 

increase polydispersity. 
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