
Iron-Catalyzed Methylation Using the Borrowing Hydrogen
Approach
Kurt Polidano,† Benjamin D. W. Allen,† Jonathan M. J. Williams,‡ and Louis C. Morrill*,†

†School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, U.K.
‡Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, U.K.

*S Supporting Information

ABSTRACT: A general iron-catalyzed methylation has been developed using methanol as a C1 building block. This borrowing
hydrogen approach employs a Knölker-type (cyclopentadienone)iron carbonyl complex as catalyst (2 mol %) and exhibits a
broad reaction scope. A variety of ketones, indoles, oxindoles, amines, and sulfonamides undergo mono- or dimethylation in
excellent isolated yields (>60 examples, 79% average yield).
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Methylation is a fundamental transformation in synthetic
chemistry that is widely used for the synthesis and

functionalization of fine chemicals.1 Traditional methylation
procedures often employ toxic and/or potentially explosive
reagents including iodomethane, dimethyl sulfate, or diazo-
methane, among many others.2 In recent years, methanol, an
abundant and biodegradable liquid, has emerged as an
attractive alternative reagent for methylation.3 Borrowing
hydrogen (BH), or hydrogen autotransfer, combines a transfer
hydrogenation process with a concurrent reaction on the in
situ-generated reactive intermediate.4 This one-pot oxidation-
reaction−reduction sequence has received much attention due
to its inherent high atom economy and minimal waste
generation,5 allowing bench stable and inexpensive alcohols
to be used as alkylating agents.6 In comparison with benzyl and
long-chain n-alkyl alcohols, it is challenging to use methanol as
the alkylating agent in BH processes, due partly to the
increased energy of dehydrogenation (ΔH (MeOH) = +84 kJ
mol−1, cf. ΔH (EtOH) = +68 kJ mol−1)7 to form the required
transient reactive formaldehyde intermediate.
Following the pioneering work of Grigg on the ruthenium-

and rhodium-catalyzed methylation of arylacetonitriles and
aromatic amines,8 respectively, there have been a number of
subsequent reports describing precious metal-catalyzed BH
methylation (Scheme 1A).9 Despite these advances, a key
challenge in hydrogen transfer chemistry is the development
and use of catalysts based on earth-abundant, inexpensive
metals for more sustainable processes.10 Considerable progress
has been made in this regard, with well-defined iron,
manganese, and cobalt catalysts being employed for a variety
of homogeneous BH alkylation processes.11 With the vast
majority of reports primarily focusing on the use of benzyl

alcohols as alkylating agents, Beller and Sortais have reported
the methylation of aromatic amines using manganese pincer
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Scheme 1. Previous Work and Outline of the Fe-Catalyzed
BH Methylation Strategy
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complexes.12 Furthermore, Liu has recently disclosed a cobalt-
based catalytic system for methylation.13 However, the
catalytic BH methylation using iron,14 the most abundant
transition metal in the Earth’s crust, remains an unsolved
problem. Herein, we report an efficient and general iron-
catalyzed methylation of ketones, indoles, oxindoles, amines,
and sulfonamides using methanol as a sustainable C1 building
block (Scheme 1B).
To commence our studies, we selected butyrophenone 1 as a

model substrate (Table 1). After extensive optimization,15 it

was found that a BH system composed of Knölker-type
(cyclopentadienone)iron carbonyl precatalyst 2 (2 mol %),16

trimethylamine N-oxide (4 mol %) to activate the catalyst,17

K2CO3 (2 equiv) as base in MeOH ([1] = 0.5 M) at 80 °C for
24 h, enabled the methylation of 1, giving 3 in 98% NMR yield
and 88% isolated yield (entry 1). No methylation occurs in the
absence of the iron precatalyst 2 (entry 2), with a significant
reduction in conversion observed in the absence of trimethyl-
amine N-oxide (entry 3). Substituting Me3NO for PPh3 as
activator or lowering the loading of Me3NO to 2 mol %, both
result in decreased NMR yield of 3 (entries 4 and 5).
Employing KOH or KOt-Bu as base, or using substoichio-
metric quantities of K2CO3 (0.5 equiv) all result in lower
conversions to 3 (entries 6−8). Using methanol as solvent is
crucial, with a mixed solvent system (MeOH:toluene (1:1))
resulting in only 40% NMR yield (entry 9). Altering the
reaction concentration (entries 10 and 11), reaction temper-
ature (entries 12 and 13), or reducing the catalyst loading to 1
mol % (entry 14), lowers the efficiency of the methylation of 1
to 3.

The full scope of the Fe-catalyzed BH methylation process
was explored, starting with the mono- and dimethylation of
ketones (Scheme 2A).18 Using the optimized reaction
conditions (Table 1, entry 1) a variety of aryl alkyl substituted
ketones were converted to the corresponding methylated
products in excellent isolated yields (products 3−21, 87%
average yield). Acetophenone derivatives bearing α-alkyl (Me,
Et, n-Pr, n-Bu, Bn), α-phenyl and α-heteroatom (OMe, OPh,
NHPh) substitution undergo efficient methylation without
cleavage of the carbon-heteroatom bonds within products 9−
11.19 Within the aryl unit, 4-CF3, 3-CF3, and 2-CF3
substitution is tolerated in addition to halide (4-Cl) and
electron-donating (4-OMe) substituents. Hindered extended
aromatic systems (1-Np) and heteroaryls (2-furanyl, 2-
thiophenyl and 3-pyridyl) can also be present within the
ketone. The monomethylation procedure performs well upon
scale-up, with the formation of 3 successfully carried out on a
10 mmol scale in 99% (1.61 g) isolated yield. 5-, 6-, and 7-
membered cyclic ketones also undergo methylation, using
KOt-Bu (10 mol %) as base, giving products 22−24. A
representative selection of acetophenone derivatives, which are
unsubstituted at the α-position, undergo dimethylation using 2
equiv of KOt-Bu at 110 °C in high isolated yields (products 4,
13, 16, 17, and 25−27, 74% average yield). The catalytic
system tolerated the reducible benzyl ether moiety within 26.
Selectivity considerations exist when employing ketones that
are enolizable at both α-positions. Phenyl acetone, 1-
phenylbutan-2-one, and dibenzyl ketone undergo selective
monomethylation at 80 °C, giving 28, 29, and 30 in 50%, 58%,
and 57% isolated yields, respectively. For phenyl acetone and
1-phenylbutan-2-one, monomethylation occurs preferentially
at the more acidic benzylic position.
Next, we explored the use of indoles and oxindoles as

substrates for the Fe-catalyzed BH methylation process
(Scheme 2B/C). Using 2 equiv of K2CO3 as base, a variety
of indoles undergo C(3)-methylation in high isolated yields
(products 31−36, 78% average yield).20 In addition to
unsubstituted indole, methyl and halide substituents are
tolerated at the 2-, 4-, 5-, 6-, and 7-positions. Furthermore,
by employing CD3OD as solvent, d3-skatole 37, which has
utility in studying metabolism kinetics,21 was accessed in 67%
yield. Oxindoles, a class of activated amide, also undergo facile
C(3)-methylation at 110 °C (products 38−44, 77% average
yield). N-Methyl, N-benzyl, and N-phenyl substitution is
tolerated in addition to various halide substitutions at the 5-
position. This is the first example of borrowing hydrogen C-
methylation of an amide using a homogeneous catalytic
system.22

We also investigated the Fe-catalyzed BH N-methylation of
amines using methanol (Scheme 2D). Using the optimized
reaction conditions (Table 1, entry 1), a variety of arylamines
undergo monomethylation in high isolated yields (products
45−50, 74% average yield). Within the aryl unit, electron-
donating (4-OMe) substituents are tolerated in addition to
halides (4-Br, 4-Cl), hindered aromatic systems (2-Me), and
heteroaryls (3-pyridyl).23 A selection of cyclic and acyclic
secondary amines also undergo efficient N-monomethylation,
accessing the corresponding tertiary amines in high yields
(products 51−55, 78% average yield). Finally, employing
Renaud’s (cyclopentadienone)iron carbonyl precatalyst 61 (4
mol %),24 which contains a more electron-rich cyclo-
pentadienone framework, the N-monomethylation of sulfona-
mides was also demonstrated (products 56−59, 83% average

Table 1. Optimization of Fe-Catalyzed BH Methylationa

entry variation from “standard” conditions yieldb (%)

1 none >98 (88)
2 no [Fe] precatalyst <2
3 no Me3NO activator 55
4 PPh3 (4 mol %) instead of Me3NO 37
5 2 mol % of Me3NO 92
6 KOH (2 equiv) instead of K2CO3 93
7 KOt-Bu (2 equiv) instead of K2CO3 91
8 K2CO3 (0.5 equiv) 85
9 MeOH:toluene (1:1) 40
10 [1] = 0.2 M 94
11 [1] = 1 M 93
12 100 °C 94
13 60 °C 88
14c [Fe] precatalyst 2 (1 mol %) 81

aReactions performed using 1 mmol of ketone 1 and bench-grade
MeOH. [1] = 0.5 M. bYield after 24 h as determined by 1H NMR
analysis of the crude reaction mixture with 1,3,5-trimethylbenzene as
the internal standard. Isolated yield given in parentheses. c2 mol % of
Me3NO.
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yield). Methanesulfonamide and sulfonamides containing
electron-rich aromatic rings all undergo efficient N-methyl-
ation, whereas 4-CF3C6H4 substituted sulfonamide 60 was
unreactive.
Selecting the monomethylation of propiophenone as a

representative reaction, a number of experiments were

performed in order to obtain mechanistic insight (Scheme
3). First, the validity of several proposed intermediates (β-
hydroxy ketone 62, methyl ether 63, diketone 64, and enone
65) was probed by subjecting them to the “standard”
methylation reaction conditions (Scheme 3A). Conjugate
addition of methanol or the enolate of propiophenone to

Scheme 2. Scope of the Fe-Catalyzed BH Methylation Process§

§Reactions performed using 1 mmol of ketone, indole, oxindole, amine or sulfonamide starting material. All yields are isolated yields after
chromatographic purification Reagents and conditions: a10 mmol of ketone starting material; bKOt-Bu (10 mol %); c110 °C; dKOt-Bu (2 equiv);
e48 h; fCD3OD as solvent; g[Fe] precatalyst 2 (4 mol %), Me3NO (8 mol %); h96 h; i[Fe] precatalyst 61 (4 mol %), Me3NO (8 mol %).
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enone 65, would result in the formation of 63 and 64,
respectively. Compounds 62, 63, and 65 were all converted to
4 in 85% NMR yield, indicating that they are all plausible
reaction intermediates. The remaining mass balance in these
reactions (∼15%) was diol 66, which likely forms via conjugate
addition of the iron hydride species to 65, followed by trapping
of the resulting enolate with formaldehyde and subsequent
hydrogenation.25 Diketone 64 was returned after 24 h,
indicating that this is a nonproductive reaction pathway and
that 64 does not lead to the formation of 4. To gain further
mechanistic insight, employing CD3OD as solvent under the
otherwise standard reaction conditions, enone 65 was
converted to 67 (74%, > 95% D) providing evidence for the
proposed iron hydride species (Scheme 3B). Furthermore,
propiophenone 68 was converted to 69 (>95%, > 95% D),
confirming that methanol is the source of the methyl group. As
such, the proposed mechanism begins with CO decoordination
by Me3NO to form the active iron complex, which abstracts
hydrogen from methanol in the presence of base to form the
required transient reactive formaldehyde intermediate
(Scheme 3C). A subsequent aldol reaction with propiophe-
none generates β-hydroxy ketone 62 that undergoes base-
catalyzed dehydration to form enone 65, which may exist in

equilibrium with 63. Finally, reduction of enone 65 by the
iron−hydrogen complex gives methylated product 4 with
regeneration of the active iron complex.
In conclusion, we have developed a general and efficient Fe-

catalyzed methylation using methanol as a sustainable C1
building block via the borrowing hydrogen approach. A diverse
array of ketones, indoles, oxindoles, amines, and sulfonamides
undergo mono- or dimethylation in excellent isolated yields
(61 examples, 79% average yield). Mechanistic experiments
provided evidence for plausible reaction intermediates, an iron-
hydride species, and methanol as themethylating agent in this
catalytic process. Ongoing studies are focused on further
applications of earth-abundant transition metals in catalysis,
and these results will be reported in due course.
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(1) (a) Barreiro, E. J.; Kümmerle, A. E.; Fraga, C. A. M. The
Methylation Effect in Medicinal Chemistry. Chem. Rev. 2011, 111,
5215−5246. (b) Schönherr, H.; Cernak, T. Profound Methyl Effects
in Drug Discovery and a Call for New C-H Methylation Reactions.
Angew. Chem., Int. Ed. 2013, 52, 12256−12267.
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