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ABSTRACT

Classification of facial morphology traits is an important problem for
many medical applications, especially with regard to determining asso-
ciations between facial morphological traits or facial abnormalities and
genetic variants. A modern approach to the classification of facial char-
acteristics (traits) is to use three-dimensional facial images. In clinical
practice, classification is usually performed manually, which makes the
process very tedious, time-consuming and prone to operator error. Also
using simple landmark-to-landmark facial measurements may not accu-
rately represent the underlying complex three-dimensional facial shape.

This thesis presents the first automatic approach for classification and
categorisation of facial morphological traits with application to lips and
nose traits. It also introduces new 3D geodesic curvature features ob-
tained along the geodesic paths between 3D facial anthropometric land-
marks. These geometric features were used for lips and nose traits clas-
sification and categorisation. Finally, the influence of the discovered cat-
egories on the facial physical appearance are analysed using a new visu-
alisation method in order to gain insight into suitability of categories for
description of the underlying facial traits.

The proposed approach was tested on the ALSPAC (Avon Longitudi-
nal Study of Parents and Children) dataset consisting of 4747 3D full face
meshes. The classification accuracy obtained using expert manual cat-
egories was not very high, in the region of 72%-79%, indicating that the
manual categories may be unreliable. In an attempt to improve these ac-
curacies, an automatic categorisation method was applied. In general,
the classification accuracies based on the automatic lip categories were
higher than those obtained using the manual categories by at least 8%
and the automatic categories were found to be statistically more signifi-
cant in the lip area than the manual categories.

The same approach was used to categorise the nose traits, the result
indicating that the proposed categorisation approach was capable of cat-
egorising any face morphological trait without the ground truth about its
traits categories.

Additionally, to test the robustness of the proposed features, they were
used in a popular problem of gender classification and analysis. The re-
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Abstract iv

sults demonstrated superior classification accuracy to that of comparable
methods.

Finally, a discovery phase of a genome wide association analysis
(GWAS) was carried out for 11 automatic lip and nose traits categories.
As a result, statistically significant associations were found between four
traits and six single nucleotide polymorphisms (SNPs). This is a very good
result considering that for the 27 manual lip traits categories provided by
medical expert, the associations were found between two traits and two
SNPs only. This result testifies that the method proposed in this thesis
for automatic categorisation of 3D facial morphology has a considerable
potential for application to GWAS.



I dedicate this thesis to my mother spirit,
to my late brother (Shalan), who is my role model, and

to my loving father, husband, children and other free-minded citisen of
Iraq.



ACKNOWLEDGEMENTS

First, I am grateful to Allah (My Lord) the all high, the all great who made
it possible for me to finish this work. Secondly, I would like to thank my
principal supervisors, Dr. Yulia Hicks and Professor David Marshall, for
their direction, encouragement and endless enthusiasm. I would also
like to convey my gratitude to my co-supervisors Professor Stephen Rich-
mond, to whom I am greatly appreciative of his constant support and
ideas to tackle arising problems, and Dr. Alexei Zhurov for his interest,
knowledge, and assistance in solving any problems. I would like to ex-
tend a special gratitude to Dr. Peter Claes from Medical Imaging Research
Center, Leuven University, Belgium for his interest, help, and guidance
on face regularisation procedures. I would also like to convey my grati-
tude to Laurence Howe and Dr. Sarah Lewis from the School of Social and
Community Medicine, Bristol University, for their help and guidance on
the genetic aspects of this project.

I am extremely grateful to all the families who took part in this study,
the midwives for their help in recruiting them, and the whole ALSPAC
team, which includes interviewers, computer and laboratory technicians,
clerical workers, research scientists, volunteers, managers, receptionists,
and nurses, the UK Medical Research Council, the Wellcome Trust and
the Universities of Bristol and Cardiff, who provided core support for this
ALSPAC project. It would not have been possible to generate the data
used in this study without their involvement.

The love and support given to me by my husband, with his endless
patience, have taught me so much about sacrifice, discipline, and com-
promises and I thank him warmly and genuinely. I owe a debt of gratitude
to my father for his boundless love, unstinting support, and daily prayers.
I am also thankful to my beloved Murtadah and Ruquah for being such
great kids and giving me so much inspiration.

Finally, I wish to thank all of those who have helped me directly or
indirectly in the successful completion of my thesis.

vi



LIST OF ABBREVIATIONS

2D two-dimensional

3D three-dimensional

3D-FER 3D Facial Expression Recognition

3D-FR 3D Face Recognition

ALSPAC Avon Longitudinal Study of Parents and Children

ASM Active Shape Model

BRIM Bootstrapped Response-based Imputation Modeling

CH Calinski–Harabasz index

CSL Cost Sensitive Learning

DB Davies Bouldin index

DI Dunn index

DNA deoxyribonucleic acid

DSM Dense Surface Modeling

DZ dizygotic

FOP Fibrodysplasia Ossificans Progressiva

G Gaussian curvature

GESSA Geodesic Ensemble Surface Sampling Algorithm

GPA Generalised Procrustes Analysis

GWAS Genome Wide Association Study

H mean curvature

HCI Human-Computer Interaction

HK Mean curvature and Gaussian curvature

k1, k2 principal curvatures

LDA Linear Discriminant Analysis

MMP Mitchell–Mount–Papadimitriou (method)

MZ monozygotic

NMF Non-negative Matrix Factorisation

NS Noonan syndrome

PC Principal Component

PCA Principal Component Analysis

PLSR Partial Least Squares Regression

vii



List of Abbreviations viii

R curvedness

SHREC2008 3D Shape Retrieval Contest 2008 database

Si shape index

SI silhouette index

SNP Single Nucleotide Polymorphism

SVM Support Vector Machine



List of Figures

2.1 The oldest recorded body, face and head measurements record [304] 8

2.2 Facial anthropometric landmarks 16

3.1 Landmarks used in this work. 29

3.2 Denoising the 3D face. This result for one iteration only. 32

3.3 Components of a mesh object. Node, or vertex, locations (left),
connectivity structure (middle) and the defined surface (right). 33

3.4 The same nose tip correspondence in 3 individuals. 34

3.5 The anthropometric mask. 34

3.6 Antropometric mask mapped onto original 3D-image [67] 36

3.7 The regularisation general procedure steps. 36

3.8 The preprocessing methods. The difference between the methods
of preprocessing (Non-regularised and regularised). 37

4.1 Curvature estimation according to normal cycle theory: Eq. (4.1) 43

4.2 The minimum, maximum, mean, and Gaussian curvature infor-
mation 44

4.3 The shape index and curvedness described in 2D space. Indices
(Si ,R) are viewed as coordinates in the ( k1 and k2) plane, with pla-
nar points mapped to the origin. The effects on surface structure
from variations in the curvedness (radial coordinate) and Shape
Index [166] 45

4.4 The philtrum area 45

4.5 Binary SVM 49

4.6 Multiclass SVM 50

4.7 The ring size 52

4.8 Classification accuracy for different descriptor size 53

4.9 Classification rate for compound features 54

ix



LIST OF FIGURES x

4.10 Geodesic distance (A) is the shortest surface distance between any
two landmarks on the mesh, while Euclidean distance (B) is the
straight-line distance distance between the two landmark 55

4.11 The exact and fast marching algorithms. Two paths extracted for a
synthetic mesh. 57

4.12 The lip geodesic paths 58

5.1 Lip traits: basic morphological lip features, which vary greatly be-
tween individuals. 59

5.2 Lip traits 61

5.3 Block diagram of the proposed automatic lip traits classification
approach 62

5.4 Block diagram of the proposed automatic lip traits categorisation
approach 62

5.5 Lip landmarks 63

5.6 The geodesic paths used for lips trait classification and categoriza-
tion 64

5.7 Validating the quality of clustering 71

5.8 Validation index 83

5.9 Regression results: effect of a manual label (philtrum shape) on the
lower face 85

5.10 Regression results: effect of an automatic label (philtrum shape)
on the lower face 85

5.11 Visualisation of the effect of manual categories on the lower face
based on the regression results for dummy variables. The ‘Partial
coeffs’ columns display heat maps of the partial regression coeffi-
cients associated with mesh vertices (warmer colours correspond
to stronger effects). The ‘R2’ columns display heat maps of pro-
portion of the variance. The ‘p < 0.001’ columns show two-colour
maps of the statistical significance of the effect: yellow for p-value
< 0.001 and green for p-value ≥ 0.001. 87

5.12 Visualisation of the effect of automatic categories on the lower face
based on the regression results for dummy variables. The ‘Partial
coeffs’ columns display heat maps of the partial regression coeffi-
cients associated with mesh vertices (warmer colours correspond
to stronger effects). The ‘R2’ columns display heat maps of pro-
portion of the variance. The ‘p < 0.001’ columns show two-colour
maps of the statistical significance of the effect: yellow for p-value
< 0.001 and green for p-value ≥ 0.001. 89

6.1 Block diagram of the proposed gender analysis system using novel
and traditional 3D geometric features 93



LIST OF FIGURES xi

6.2 Geodesic paths used in the algorithm. The curvature features were
extracted for these paths’ surface points. Each face trait or region
has a different number of geodesic paths. A: forehead/eyes paths;
B: nose paths; C: upper lip paths; D: lower lip/chin paths 94

6.3 The highest-ranked landmarks’ geodesic paths 103

6.4 Classification performance using different types of 3D geometric
features 105

6.5 Face regressed on sex. Shows the effect magnitude (effect), Partial
R2 indicates the amount of variability in the location of each vertex.
P < 0.001 indicates the areas where partial R2 was significant 107

7.1 Nose traits 110

7.2 Block diagram of the proposed automatic categorisation approach
for the nose traits 111

7.3 Nose landmarks 112

7.4 Nose traits geodesic paths. For each nose trait there are cer-
tain geodesic paths (colored with red), their curvature features are
utilised for clustering purpose 113

7.5 Validation indexes for nose shape trait 116

7.6 Visualisation of nose traits categories in the subspace of the first
two PCs 118

7.7 Automatic nose traits categories regression results 122

7.8 Nose traits variation assessment 125

8.1 The Waardenberg syndrome [267] 131

8.2 The Pierre Robin syndrome [266] 131

8.3 Superimposition of average faces for nose shape trait 133

8.4 Superimposition of average faces for lower lip shape trait 133

8.5 Superimposition of average faces for lower lip tone shape trait 133

8.6 Superimposition of average faces for nose tip shape trait 134



List of Tables

2.1 Comparison among 3D systems 11

2.2 Some studies related to heritability and genetic effects on facial
morphology 25

3.1 Facial soft tissue landmarks definitions 29

5.1 List of geodesic paths defining morphological lip traits 65

5.2 Classification results based on Euclidean distance: accuracies and
AUC values. The classification is performed using the SVM and
boosting methods for the regularised and non-regularised meshes. 76

5.3 Classification results based on geodesic distance: accuracies and
AUC values. The classification is performed using the SVM and
boosting methods for the regularised and non-regularised meshes. 77

5.4 Classification results based on geodesic path curvatures: accura-
cies and AUC values. The classification is performed using the SVM
and boosting methods for the regularised and non-regularised
meshes. 78

5.5 Classification results based on different combinations of features:
error rates and AUC values. The classification is performed using
the SVM and boosting methods for the non-regularised and regu-
larised meshes. GD stands for geodesic distances, ED for Euclidean
distances, and GC for geodesic path curvature features. 79

5.6 The percentage of the number of times the validation methods
chose a certain number of clusters. Different numbers of clusters
were found to be optimum using different validity indices: Dunn’s
index (DI), silhouette index (SI) and Calinski–Harabasz index (CH). 83

5.7 Boosting classification results using the manual and automatic lips
area traits labels 84

xii



LIST OF TABLES xiii

6.1 Euclidean distance gender classification results. Accuracy mea-
sures the gender classification performance of the 3D Euclidean
distance features, based on the different facial portions, while sen-
sitivity and specificity measures the features’ accuracy in identify-
ing a male and specificity indicates the features’ ability not to iden-
tify a false male 99

6.2 Geodesic distance gender classification results. Accuracy mea-
sures the gender classification performance of the 3D Geodesic
distance features, based on the different facial parts, while sensi-
tivity and specificity measures the features’ accuracy in identifying
a male and specificity indicates the features’ ability not to identify
a false male 99

6.3 Geodesic path curvature gender classification results. Accuracy
measures the gender classification performance of the novel Geodesic
path curvature, based on the different facial parts, while sensitiv-
ity and specificity measures the features’ accuracy in identifying a
male and specificity indicates the features’ ability not to identify a
false male 100

6.4 Features combination results. The table shows that in general, the
gender classification validation scores increased when a combina-
tion of 3D geometric features was used 101

6.5 Landmark path rankings. This table illustrates the separated land-
marks’ gender classification abilities when their path descriptor
features were applied using the LDA classifier; 1 represents the
highest rank, while 6 represents the lowest rank 102

7.1 List of geodesic paths defining morphological nose traits 113

8.1 Results of the discovery phase genome wide association study(GWAS)131

8.2 Results of the discovery phase genome wide association study(GWAS)
medical effects 132



CONTENTS

ABSTRACT iii

ACKNOWLEDGEMENTS vi

LIST OF ABBREVIATIONS vii

LIST OF FIGURES ix

LIST OF TABLES xii

1 INTRODUCTION 1

1.1 Research objectives 2

1.2 Thesis contributions 2

1.3 Thesis overview 3

1.4 Publications arising from this study 4

2 LITERATURE REVIEW 6

2.1 Facial morphology overview 7

2.2 Face morphology recording techniques 8

2.2.1 Visual assessment (Manual anthropometric) 9

2.2.2 Two-dimensional (2D) photographs 10

2.2.3 Three-dimensional (3D) imaging technique 10

2.3 Facial morphology analysis and classification methods 12

2.3.1 3D facial dense surface modeling 12

2.3.2 Anthropometric measurements 15

2.4 3D local feature descriptors 18

xiv



LIST OF TABLES xv

2.5 Morphological lips traits classification 20

2.6 Morphometric perspective for facial gender analysis 21

2.7 Nose morphological traits classification 22

2.8 The face morphology characteristics/genotype association 24

2.9 Summary: Gaps in the current state of art 26

3 DATASET AND PREPROCESSING 27

3.1 ALSPAC Data Set 28

3.2 Preprocessing 30

3.2.1 Non-regularised preprocessing 31

3.2.2 Regularised preprocessing 33

3.3 Discussion 37

3.4 Summary 38

4 NOVEL 3D GEOMETRIC FEATURES FOR FACE MORPHOLOGY ANALY-

SIS 39

4.1 Parts vs whole 40

4.2 Curvature estimation methods 40

4.2.1 Estimating curvature using normal cycle theory based method 42

4.3 Facial morphology classification based on region features 45

4.3.1 Curvatures extraction 46

4.3.2 Classification methods 47

4.3.3 Experimental results 50

4.4 Novel geodesic path curvature feature descriptor 54

4.4.1 Geodesic path and distance 55

4.5 Discussion 57

4.6 Summary 58

5 AUTOMATIC LIPS MORPHOLOGY TRAITS CLASSIFICATION AND CAT-

EGORISATION 59

5.1 The proposed approach overview 61

5.1.1 The ALSPAC dataset and lips traits annotation 62

5.1.2 Data preprocessing 63



LIST OF TABLES xvi

5.1.3 Feature extraction and normalisation 63

5.1.4 Data balancing and classification 66

5.1.5 Automatic categorisation 68

5.1.6 Visualisation using partial least squares regression 72

5.2 Results 75

5.2.1 Experiment 1: Classification using 3D Euclidean distances 75

5.2.2 Experiment 2: Classification using 3D geodesic distance 76

5.2.3 Experiment 3: Classification using 3D geodesic path curva-

tures 77

5.2.4 Experiment 4: Classification using combination of features 78

5.2.5 Experiment 5: Unsupervised categorisation of lips traits 79

5.2.6 Experiment 6: Visualisation of the effect of traits categories

on the lip area 84

5.3 Discussion 85

5.4 Summary 90

6 A 3D MORPHOMETRIC PERSPECTIVE FOR FACIAL GENDER ANALYSIS

AND CLASSIFICATION 91

6.1 The proposed gender analysis approach 92

6.1.1 Preprocessing 93

6.1.2 Feature extraction 93

6.1.3 Euclidean and geodesic distances calculation 95

6.1.4 Classification 96

6.2 Experimental results 97

6.2.1 Experiment 1: Classification using 3D Euclidean distances 98

6.2.2 Experiment 2: Classification using 3D geodesic distances 99

6.2.3 Experiment 3: Classification using 3D geodesic path curvature100

6.2.4 Experiment 4: Classification using a combination of features 100

6.2.5 Experiment 5: Landmark discrimination ability 101

6.3 Discussion 103

6.4 Summary 108



LIST OF TABLES xvii

7 UNSUPERVISED NOSE MORPHOLOGICAL TRAITS CATEGORISATION 109

7.1 The proposed nose categorisation approach 111

7.1.1 Preprocessing 111

7.1.2 Feature extraction and normalisation 112

7.1.3 Categorisation, cluster validation, and categories effect vi-

sualisation 114

7.2 Experimentation and results 114

7.2.1 Experiment 1: Clustering and cluster validation 114

7.2.2 Experiment 2: PCA and cluster analysis 116

7.2.3 Experiment 3: Visualisation the effect of traits categories on

the nose area 119

7.3 Discussion 123

7.4 Summary 125

8 EXPLORING THE ASSOCIATION BETWEEN FACIAL MORPHOLOGICAL

TRAITS AND GENES 127

8.1 Methodology 128

8.1.1 Genome-wide Association Study (GWAS) 128

8.2 GWAS results 129

8.3 Face morphological traits analysis using average face 132

8.4 Discussion 134

8.5 Summary 136

9 CONCLUSIONS AND FUTURE WORK 137

9.1 Detailed conclusions 137

9.2 Future work 140

BIBLIOGRAPHY 142



Chapter 1

INTRODUCTION

The development of facial morphology and its associated characteris-

tics is the result of genetic and environmental interactions. Some char-

acteristics are subject to greater influence from genetics; for example,

face height and chin prominence are highly heritable [27, 144, 181, 182].

Other traits are subject to greater influence from environment; for exam-

ple, urban pollution (e.g., vehicle exhaust fumes and cleaning products) is

known to affect our facial development [40,72,233]. Twin studies provide

evidence for discovering the relative contributions of genetics and envi-

ronment on the individual’s facial and holistic development. Monozy-

gotic (MZ) twins share nearly 100% of their genes, which means that the

differences between the twins are likely to be caused by the environment.

Dizygotic (DZ) twins share about 50% of their genes [176, 215].

Generally, the shape of our face is mainly genetically determined.

Therefore, to understand how the face morphology is defined genetically

we need to determine the differences in facial appearance and link those

patterns of variation to genetic influences. The most important purpose

of understanding the genome is the ability to explore how genetic con-

ditions related to certain diseases and syndromes; this enables us to de-

velop new and functional ways to improve human health. Most previous

studies in clinical practice tried to manually classify facial morphological

characteristics (traits) which is time consuming and prone to operator er-

ror. In addition to that many studies used simple measurements such as

Euclidean distances and angles between face landmarks for facial traits

classification purpose (e.g., see [10,158,186,201]). These features are easy

to extract but poor in capturing facial 3D surface appearance.

To address these problems, this work proposes a new set of 3D fea-

tures capable of representing complex 3D facial shapes. It also proposes

1



Section 1.1. Research objectives 2

a new automatic approach for facial morphological traits classification

and categorisation which may be used in conjunction with the analysis of

relationships between facial traits and genetic variations based on these

features.

1.1 Research objectives

The main objectives addressed in this thesis are:

• Proposing a new set of 3D geometric features more suitable for face

morphology traits analysis and classification than the features used

currently in clinical practice.

• Developing an effective automatic facial morphological traits clas-

sification and categorisation approaches.

• Applying the proposed automatic approaches to a number of face

morphological traits.

• Proposing an approach to validate the discovered face morpholog-

ical traits categories.

• Conducting a genome wide association study (GWAS) for auto-

matic face morphological traits categories.

1.2 Thesis contributions

The contributions of the thesis can be summarised as follows:

• Establishing a set of novel 3D geometric features based on curva-

tures and geodesic paths between the facial anthropometric land-

marks which improve the classification accuracy of 3D face mor-

phology.

• Developing a new gender classification approach achieving higher

prediction accuracy comparing with the state of art comparable

methods using the novel 3D geometric features.

• Developing a new approach for automatic categorisation of mor-

phological traits in a large population with application to lips and

nose traits.
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• A new method for visualising the influence of the discovered cat-

egories on the facial physical appearance to gain insight into the

suitability of categories for the description of the underlying facial

traits by using PLSR (Partial Least Squares Regression) approach.

• Performing a genome wide association study (GWAS) of the auto-

matic lips and nose traits categories and analysis the results, to dis-

cover which geometric traits have a genetic basis.

1.3 Thesis overview

The remainder of this thesis is structured as follows:

• In Chapter 2 a review of the relevant literature relating to study-

ing human face morphology, the existing methods of recording and

analysis of facial morphology are presented. The literature perti-

nent to lips and nose morphological traits characterisation is also

explored. It explores the research that addresses the gender clas-

sification and finds the relation between the gender and the face

morphology characteristics. The applications of 3D face curvatures

and geodesic paths in computer vision are explored in depth. Fi-

nally, the concept of genome wide association study (GWAS) is also

investigated.

• The 3D dataset specification and its preprocessing (regularised and

non-regularised) is presented in Chapter 3.

• A novel set of 3D geometric set of features is presented in Chapter

4. These features are a unique combination of geodesic path curva-

tures between the anthropometric landmarks.

• Chapter 5 focuses on using the 3D geometric features presented

in Chapter 4 for lips trait classification and categorisation (which

is also called clustering or unsupervised classification). Moreover,

the clustering validation methods are explored and a new method is

adopted to determine and visualise the effect and statistical signifi-

cance of automatic lips categories on the lips area using the Partial

least squares regression (PLSR) algorithm.
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• In Chapter 6 a gender classification method is proposed using the

geometric features explained in Chapter 4. The gender classifica-

tion performance is compared with that using the state of art mea-

surements (Euclidean and geodesic distances). Establishing the re-

lation between face traits and gender for teenage Caucasian popu-

lation is the important contribution in this chapter.

• Chapter 7 focuses on using the 3D geometric features presented in

Chapter 4 for nose morphological traits categorisation. As in Chap-

ter 5, the clustering validation methods are explored and Partial

least squares regression (PLSR) method is used to determine the

statistical significance of automatic nose categories on the appear-

ance of the nose area. This chapter’s main contribution is perform-

ing automatic nose trait categorisation without previous knowledge

about the traits categories.

• Chapter 8 presents the results of the candidate gene association

study. In this chapter, the automatic lips and nose traits categories

proposed in Chapters 5 and 6 are used in GWAS. A simple method

to visualise traits variation is proposed, this method can be used to

visualise the morphological traits variation and the genes variation

influence on the 3D face.

• Chapter 9 provides the conclusions and suggestions for future

work.

1.4 Publications arising from this study

Below is a list of publications based on the novel contributions listed on

the previous page.

1. Hawraa Abbas, Yulia Hicks, and David Marshall, Automatic clas-

sification of facial morphology for medical applications, Procedia

Computer Science 60 (2015): 1649–1658.

2. Hawraa Abbas, Yulia Hicks, David Marshall, Alexei Zhurov, and

Stephen Richmond, A 3D morphometric perspective for facial gen-

der analysis and classification using geodesic path curvature fea-

tures, Computational Visual Media (in press).
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3. Hawraa Abbas, Yulia Hicks, Alexei Zhurov, David Marshall, Pe-

ter Claes, Caryl Wilson and Stephen Richmond, An automatic

approach for classification and categorisation of lip morphology,

PLOS One (submitted).

4. Hawraa Abbas, Yulia Hicks, David Marshall, Alexei Zhurov, Peter

Claes and Stephen Richmond, Unsupervised nose morphological

traits categorisation, Journal of Anatomy (to be submitted).

5. Hawraa Abbas, Yulia Hicks, Alexei Zhurov, David Marshall and

Stephen Richmond, Genetic association for lips and nose traits

phenotypes, PLoS Genetics (to be submitted).



Chapter 2

LITERATURE REVIEW

The scope of this thesis is fairly large and encompasses many different ar-

eas of research, from 3D facial morphology feature extraction to genes 3D

face morphological traits association, via machine learning techniques.

The main objective of this chapter is not to detail every technical field

used in this thesis but rather focus on methods and strategies used for

face morphology analysis and classification. Our primary aim is the anal-

ysis of the human facial morphology, from understanding of the face

shape and its parts, to finding relationships between face morphology

and gender, and finding the genetic association through automatic 3D

facial morphology classification and categorisation.

This chapter follows the journey made throughout the Ph.D, finding

the state of the art for each particular problem has been essential steps

to determine the gaps in research that is aimed to fill: automatic 3D face

morphology classification and analysis of their interaction with genotype.

Here, different theoretical areas are linked to solve a particular problem

and background information related to some of the tools or techniques

used in this work will be presented separately throughout the thesis when

appropriate.

First, an overview of the history of face morphology analysis is given.

Then, the next sections are used to review some related topics like 3D face

morphology analysis systems and brief description for 3D face morphol-

ogy classification and its applications, a few pioneering papers related to

thesis topics are presented. The local 3D geometric feature descriptors

are highlighted in Section 2.4. The lips and nose traits classification liter-

ature review are presented in Sections 2.5 and 2.7. The relationship be-

tween gender variation and face morphology is closely looked in Section

2.6. A review on gene association and heritability literature is then given.

6
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Finally, gaps in the current state of the art are analysed in Section 2.8.

2.1 Facial morphology overview

Face morphology analysis is a one of the oldest areas of research in art

and science. It is hard to determine who the first person to measure a

face. In fact, the study of facial morphology is believed to have originated

in ancient Egypt more than 4500 years ago. Later artists and philosophers

researched the ideal body and face proportions that society often uses to

define beauty. The analysis of face proportion in art continued for a long

period and still exists today [285]. However, the neoclassical canons of

Leonardo da Vinci were one of the first attempts to define the proportions

of the human body and head, see Fig. 2.1 [304].

Moreover, understanding of the face with the emergence of modern

anatomy in the 18th century. Knowledge was gained regarding the me-

chanical interaction muscles and bones behind the skin that is funda-

mental in many face related field ofstudy, particularly the facial shapes

and expressions studies [276]. In the Netherlands, Petrus Camper [284]

was recognised for his theory of the facial angle. He determined that

modern humans have facial angles between 70 and 80 degrees, with

African and Asian angles closer to 70 degree, and European angles closer

to 80 degrees. According to Camper’s new portraiture technique, the fa-

cial angle is created by drawing two lines: one horizontally from the ear

to the nostril; and the other perpendicularly from the advancing part of

the upper jawbone to the most prominent part of the forehead. Blumen-

bach in 1776 [35] followed soon thereafter by establishing the formal sys-

tem of analysing human skulls. On the basis of his craniometric measure-

ments, Blumenbach divided the human species into five races: Caucasian

or white race, Mongolian or yellow race, Malayan or brown race, Negroid

or black race, and American or red race.

The fields of neurology, psychology and sociology, that flourished in

the 20th century started to ask basic questions about how humans can

see and identify faces and his capabilities limitation and how important is

the face in human social interactions [304]. The ability to recognise faces

from birth to adulthood has been studied, in normal individuals as well

as in people with face syndromes [53, 255]. Furthermore, psychological
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research has been performed to define our ability to judge gender, age,

attractiveness and emotion from the facial shape and proportion [241].

Many research studies have found notable differences between the fa-

cial morphological proportions described in modern non-Caucasian eth-

nic populations [95–97, 308]. These investigations into the applicability

of these proportions have generated considerable amounts of data on

the facial dimensions of numerous ethnic groups from multiple regions

around the world. Nevertheless, not all characteristics of the human face

can be described by simple metrics, so the door is still open for categori-

cal scales describing shapes of the entire face and its elements.

Figure 2.1: The oldest recorded body, face and head measurements record
[304]

2.2 Face morphology recording techniques

Facial morphology is the study of facial form, shape and its structure.

Analysis of the human face has a long tradition, as discussed earlier. Dif-
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ferent techniques have been applied to analysing facial morphology and

assessing growth development of the face for various medical purposes

such as facial syndrome diagnosing, surgical treatment planning, facial

asymmetry and facial anomalies genes association.

2.2.1 Visual assessment (Manual anthropometric)

Visual assessment is one of the oldest methods of examination that is still

in use in medicine today. Visual assessment is the art of discovering or

judging of a person’s character from observing his visible features; it is a

form of anthropology based on visual observation of the physical charac-

teristics of the human body and exact measurements carried out in an-

thropometric measurements. The method has a high degree objective

assessment of some characteristics for instances: skin color; hair color

and eye color are among the more common characteristics assessed vi-

sually [95]. Also, this method can be used to characterise facial morphol-

ogy, for example, Kataria at el. [146] studied facial index of North Indian

population and to find out the distribution of their face type. Facial in-

dex is the facial height measured from Nasion to Menton with the help of

sliding caliper and the facial width measured between the Zygion of each

side with the help of spreading caliper, this measurement was conducted

on a total number of 400 subiects (200 males and 200 females) of 18–25

years of age. Using the same measurement tool, Al-Sebaei [10] conducted

a study on a group consisted of 168 healthy, Saudi Arabian dental stu-

dents originating from the Arabian Peninsula (93 males and 75 females,

age 20–24 years). By using a caliper, three neoclassical facial traits were

measured to analyse different traits in this ethnic group, these traits are

the vertical thirds of the face, the orbital trait, and the orbitonasal trait

(intercanthal distance = nasal width). Visual assessment has also been

used for research purposes in evaluating deformities such as cleft lip and

palate deformity [158]. This method is accurate to some degree but re-

quires special instruments and expert clinicians to make the measure-

ments. The face curvature also can not be measured using this approach.
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2.2.2 Two-dimensional (2D) photographs

The initial aim of photography is to provide a visual record of a particular

object or condition at a particular time. A well taken photograph records

the external appearance of health, disease or deformity. Moreover, there

has always been the need for photographic records for purposes of re-

search and publication, and for teaching and presentations. However,

this method has faced some difficulties and limitations due to the varying

degrees of resolution and accuracy of different photographic techniques.

Limiting factors of 2D images are the effect of pose variations and it is

sensitive to illumination changes, this effect on accurate manually or au-

tomatically landmarks placement.

In spite of that photography still the cheapest technique for face

recording. Photographs have been used by researchers to carry out facial

morphology analysis via identifying certain landmarks on facial struc-

tures and extracting anthropometric measurements such as distances,

angles, and ratios. Researchers [37, 176] worked on face measurements

such nose width to identify genes influencing facial variation. Two-

dimensional image techniques are very popular for after surgery assess-

ment and treatment. For example, Mckearney et al. [186] used the lips

images for forty-four participants aged 10 years, to access their upper lip

symmetry after cleft lip surgery. In general, this method is a common but

2D photographs do not capture 3D face shape, which contains important

morphological information.

2.2.3 Three-dimensional (3D) imaging technique

With the emergence of 3D imaging technique, it has become possible

to obtain a life-like 3D image of the face with natural texture and color.

Three dimensional imaging techniques which appropriate for captur-

ing facial data can be broadly divided into surface imaging and volu-

metric images. Stereophotogrammetry and laser scanners are the two

most commonly used surface imaging systems. Stereophotogrammetry

projects a light pattern or mesh onto different regions of the face whereas

laser scanners use laser rays to acquire depth information. Volumetric

images may provide bony structure as well as soft-tissue facial informa-

tion [137]. The understanding of facial morphology has been improved
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dramatically with the development of precise and reliable 3D acquisition

systems [278]. As previously discussed, face morphology analysis using

2D images is sensitive to illumination changes, but in 3D variations in

illumination only affect the texture of the face, but the captured facial

shape remains intact [7].

Many 3D imaging acquisition techniques and sophisticated software

tools are currently available. The acquisition quality is mainly linked to

the accuracy of recovering the z-coordinate (called depth information).

Moreover, all systems suffer from a potential movement of the participant

and facial expression changes between the multiple views that needed to

construct a 3D model of the face [77]. Table 2.1 outlines the merits and

demerits of popular systems.

Table 2.1: Comparison among 3D systems

Device Advantages Disadvantages

Traditional Stereo-Photogrammetry
(3dMDfaceTM System) [145, 147]

The images are captured
quickly by two or more cameras

take photos from different
angles and stitch the images

together into a 3D image

Low resolution
3D image quality

Laser [137]

Very accurate and high
resolution 3D image produce by

detecting the light
source which is deflected onto

a patient’s face
and a detector

captures the distorted light

Expensive equipment
and Technique-sensitive

Structured Light Technique [145, 147]

Very rapid 3D image
is captured by projecting

“structured light” onto the surface of
the individual. Cameras capture

the distorted light
as it reflects from the surface

Technique-sensitive
and Photorealistic varying

resolution quality

Video-imaging [137, 145]

The 3D image is
recorded by utilizing

video-camera to
capture number of frames

per second, also the Speech
and the animation can be captured

Low resolution,
High memory capacity

and time consuming for processing

Numerous studies has compared the performances of 3D imaging de-

vices and the robustness of their data outputs. For example, Knoops

at el. [156] conducted a study to compare the output quality of four 3D

scanners. Head shapes of eight adults were captured with different 3D

scanners: 3dMDface System, 3dMD Inc.; M4D Scan, Rodin4D; Structure

Sensor, Occipital Inc.; and 1.5T Avanto MRI, Siemens; he discovered that:

3dMDface System and M4D Scan provide the high quality results. While
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Schwenzer at el. [242] investigated accuracy and precision of two contacts

free 3D imaging systems (white light vs laser). The laser system is supe-

rior concerning robustness but the complex white light system showed

better accuracy at 0.2 s measuring time. In this work, laser based data is

used.

2.3 Facial morphology analysis and classification methods

Facial morphology analysis and classification is important in many med-

ical application. These applications include studying facial anomalies

in comparison with normal facial morphology, recognising the facial key

components of the particular syndrome, evaluating average facial growth

in a cohort of subjects, studying the relation between face genes and face

morphology, comparing facial morphologies for different ages, gender

and ethnicity etc. Representing and extracting good quality facial fea-

tures is an essential step in facial traits analysis and classification. For

this purpose, two methods for facial morphology analysis have used:

• Dense surface model this method is computationally efficient as

they reduce the computation space of the 3D faces by describing

them with fewer dimensions. However, this method is not discrim-

inative enough when the faces have small differences, classification

of very similar facial traits or working on facial traits parts.

• Anthropometric measurements, this method is recommended for

analysis of facial morphology by using measurements including

distances, angles, ratios and proportions [95]. Anthropometric

measurements remain a simple, inexpensive, efficient method for

describing facial morphology. However, such measurements are

unable to capture many face surface details and therefore discard

or ignore many important facial shape information.

2.3.1 3D facial dense surface modeling

The 3D dense model can be used to analyse face morphology by estab-

lishing correspondence of thousands of points across each 3D face im-

age. Prior to finding the dense correspondence among them, they need

to be fitting them in the same virtual space by removing the translation,
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rotation and size difference, as well as the registration process, to make

all faces appropriately aligned [39].

Different approaches have been reported for constructing dense cor-

respondences between 3D objects. For example, by extracting a set of

landmarks on the 3D surfaces, then these landmarks are triangulated in

a standardized manner and refined to construct the new mesh. Surface

correspondence and triangulation are computed simultaneously in a hi-

erarchical way, this method accuracy depends critically on the accuracy

of the initially extracted landmarks [291]. Another approach was intro-

duced by Kelemen et al. [150], where a parametric surface description for

objects of spherical topology was developed. This method follows the pi-

oneering work of Taylor and Cootes [71] on active shape models, but is

based on a hierarchical parametric object description rather than a point

distribution model.

The majority of the reported research in the field of facial morphology

analysis establishes dense correspondence models through a deforma-

tion procedure [17, 65, 123, 188] in which a template or a generic model is

deformed to the surface of an individual and dense correspondences are

constructed by analysis the deformed template or generic model. Much

research has been conducted using dense 3D models for analysis facial

morphology variation in the wide medical application such as syndrome

and face abnormality diagnosing, studying the heritability of the facial

traits, and exploring the relationship between the face morphology vari-

ation and biological genes.

The dense surface model has been used successfully in studying facial

abnormality syndrome and the caused heritable genes. For examples,

Hammond et al. [123] utilised the dense surface model to visualise and

recognise shape differences in a collection of 3D face images that includes

280 controls, 90 individuals with Noonan syndrome (NS), and 60 individ-

uals with Velo-cardio-facial syndrome. In 2012, the same author analysed

the facial traits for the Fibrodysplasia Ossificans Progressiva (FOP) syn-

drome, by applying dense surface modeling (DSM) technique [124].

Dense face models can be efficiently and effectively used to compare

differences in facial morphologies for various populations and sexes. In

general, various facial differences were spotted between the population

groups, these differences could be seen in the lips, nasal, and lower facial



Section 2.3. Facial morphology analysis and classification methods 14

regions. Kau et al. [148] assessed the face variation in 473 subjects were

recruited from 5 countries: Hungary, United Kingdom, Wales; United

States, Slovenia, and Egypt. The linear differences between face surface

models ranged from 0.37 to 1.00 mm in the male groups and from 0.28

to 0.87 mm in the women groups. Also Gor et al. [113] used the average

faces as templates to compare the morphological differences at 200 sub-

jects from 2 white population groups (Hungary and US), the mean facial

differences were 0.55±0.60 mm between the US and Hungarian women,

and 0.44±0.42 mm between the US and Hungarian men. The ranges of

differences were −2.02 to 3.77 and −2.05 to 1.94 mm for the female and

male pairings, respectively. Talbert et al. [269] used the dense surface

face model for 200 subjects to compare facial morphologies of an adult

African-American population to an adult Caucasian-American popula-

tion using 3D surface imaging. He found the most distinct differences

were in the forehead, alar base, and periocular regions and the average

difference between African-American and Caucasian-American females

was 1.18±0.98 mm.

Strong evidence exists supporting the genetic influence on facial traits

[157]. Much research has been conducted to find the relation between

face morphology and biological genes and the heritability. Claes et al. [63]

used dense quasi-landmarks to measure face shape in population sub-

jects from three locations (United States, Brazil, and Cape Verde). Claes

presented preliminary results and a validation strategy to create DNA-

based facial composites. The effects of sex, genomic-ancestry, and 24

individual SNPs (Single Nucleotide Polymorphism) were modeled with

respect to facial morphology using bootstrapped response-based impu-

tation modeling (BRIM) [62].

The similarity of facial appearance within families, across many gen-

erations, establishes the idea that certain key genes exert particularly

large effects on facial shape and appearance. Numerous studies have

estimated facial shape heritability using anthropometric measurement

[81, 153]. Some researchers have used the facial surface model to mea-

sure the heritability successfully. For example, a three-dimensional facial

models have been acquired on a cohort of 952 twins recruited from the

Twins UK data, then GESSA (Geodesic Ensemble Surface Sampling Algo-

rithm) was used to place thousands of landmarks throughout the facial
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surface and establishes point-wise correspondence across faces, yield-

ing a heritability maps of the human face [281]. Koppen [160] produced

measurement analysis for the 3D face model based on defining a set of

coherent parts using non-negative matrix factorisation technique (NMF)

whose shapes exhibit a large genetic influence [161], the shape variation

in each part was used to study facial morphological features that are most

likely heritable on twin data samples.

2.3.2 Anthropometric measurements

Facial anthropometric measurements based on identifying specific facial

landmarks allow the quantification of changes in facial morphology as a

result of growth or healthcare intervention. All faces share a set of land-

marks all of which have a particular biological meaning. Facial landmarks

can be divided into three broad categories [252]: biological or anthropo-

metric landmarks, mathematical landmarks, and pseudo landmarks.

• Biological or Anthropometric landmarks, which are often used by

scientists and physicians, are meaningful points that are defined as

standard reference points on the face and head, such as the nasion,

inner and outer canthi of the eyes, pronasale, subnasale, center of

the upper lip, center of the lower lip, outer corners of the mouth

(cheilions), and a chin point (pogonion) [92, 123]. Figure 2.2 illus-

trates major surface anthropometric landmarks.

• Mathematical landmarks which are defined according to certain

mathematical or geometric properties of human faces, such as the

middle point between two biological landmarks [190].

• Pseudo facial landmarks which are defined based on two or more

mathematical or anatomical landmarks or hair contours. These

landmarks do not have particular defined biological positions and

they are relatively easy to acquire using computational methods

[190], They are generally accurate enough for appearance based

face recognition techniques.

Landmark localisation is often performed manually, but much re-

search has been carried out on automatic accurate localisation. For ex-

ample, Ruiz et al. [235] presented an algorithm for automatic localisation
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of landmarks on 3D faces by combining the Active Shape Model (ASM)

with the local shape model to jointly find the locations of a set of 14 fa-

cial landmarks. Similarly, Sang-Jun et al. [211] applied the Active Shape

Models to extract the position of the eyes, the nose, and the mouth. the

Principal Curvatures, Mean and Gaussian Curvature, the derivatives and

the Shape and Curvedness Indexes used for 9 soft-tissue landmarks au-

tomatic identification [286]. Koppen [160] presented a pose-invariant

method for the estimation of landmark positions in 3D images of faces.

The anthropometric evaluation of facial morphology begins with the

identification of landmarks. A series of measurements between these

landmarks are then taken using carefully specified procedures. As a re-

sult, repeated measurements of the same individual are very reliable,

and measurements of different individuals can be successfully compared.

The accuracy of these measurements depends dramatically on landmarks

localisation and selection. Morecroft [197] conducted a study based

on analysis predefined anthropometric facial landmarks to evaluate 3D

shape analysis for facial identification. The results showed that 27 repro-

ducible facial landmarks are important for facial comparison and identi-

fication. Among these landmarks are glabella, pogonion, endocanthion,

exocanthion, cheilion, and stomion. Also, the influence of landmark la-

beling on the accuracy and precision of an indirect facial anthropometric

was determined in [22]. Eighteen standard linear facial measurements

were obtained from 19 anthropometric landmarks for 10 adults subjects,

with landmarks labeled and without landmarks labeled before image ac-

quisition, these were compared with anthropometric measurements. The

recorded results showed no huge difference in accuracy and precision for

the both labeling strategy.

Figure 2.2: Facial anthropometric landmarks
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Farkas et al. [95] described a total of 132 measurements on the face

and head. Some measurements are paired, where there is a correspond-

ing measurement on the left and right sides of the face. Such measure-

ments are:

• The Euclidean distance between facial landmark pairs.

• Geodesic distance between two landmarks, the distance measured

along a prescribed (shortest) path on the surface of the face.

• The angle of inclination between two landmarks with respect to one

of the canonical axes. As an example is the inclination of the ear axis

with respect to the vertical.

• The angle between locations, such as mento-cervical angle at the

chin.

The systematic collection of anthropometric measurements has made

possible a variety of statistical 3D face morphology investigations on

groups of subjects for many computer vision and medical applications

such as gender, race, or age classification, attractiveness and syndrome

diagnosis. Seo et al. [244] characterized the facial dimensions of 144

Korean children three-dimensional imaging. Cluster analysis was per-

formed on 16 facial dimensions to categorize them into different sizes, fa-

cial shapes were classified into three clusters: small, medium, and large.

For genes association, Toma [276] used 250 measurements between 21

facial landmarks (Euclidean distance, angle, and ratio) using the ALSPAC

dataset. A strong genetic association was identified between the common

SNP rs7559271 in PAX3 gene on chromosome 2 and the 3D facial distance

‘nasion to mid-endocanthion’ (n-men). Wilamowska et al. [294] stud-

ied the genes that caused the 22q11.2DS facial syndrome on 53 subjects

using 10 Euclidean measurements, these measurements were extracted

from the lips and nose landmarks. To study the relationship between

the anthropometric measurements of facial morphology and heritabil-

ity, Djordjevic et al. [81] conducted a study at 1380 twin subjects, 1275

linear distances measured between 51 landmarks (37 manually identified

and 14 automatically calculated), 1222 distances showed evidence of her-

itability control.
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Some studies have attempted to compare between anthropomet-

ric measurements and face dense model for face morphology analysis.

For example, Alqattan et al. [13] compared landmark and surface based

three-dimensional analyses for facial asymmetry and they concluded fa-

cial asymmetry can be accurately quantified using landmark and sur-

face based approaches. In contrast, Penget et al. [215] demonstrated that

dense face model may substantially improve the detection and charac-

terization of genetic association in common facial variation rather than

the Euclidean anthropometric measurements between facial landmarks.

Therefore, in this work, a new set of 3D face geometric features are de-

veloped, these features combine the advantages of anthropometric land-

marks and surface shape information.

2.4 3D local feature descriptors

Local features have proven to be very successful in many vision tasks

such as 3D object categorization and recognition, 3D modeling and scene

reconstruction, 3D model retrieval and shape analysis and 3D biomet-

rics [33, 42, 164, 171].

Local features have been widely investigated over the last few decades

with the aim of designing descriptors which are distinctive and robust to

to many compter vision applications [194]. A local feature based algo-

rithm involves two major phases: keypoint detection and feature descrip-

tion. In the keypoint detection phase, keypoints with rich information

content are first identified and their associated scales (spatial extents) are

determined. In the feature description phase, the local geometric infor-

mation around a keypoint is extracted and stored in a high-dimensional

vector (i.e., feature descriptor). The feature descriptors of one surface are

matched against the feature descriptors of other surfaces of interest to

yield point-to-point feature correspondences [117].

A feature descriptor is descriptive if it is capable of encapsulating the

predominant information of the underlying surface. A feature is robust if

it is insensitive to a number of disturbances which can affect the data, e.g.,

noise and variations in the mesh resolution [279]. Although a large num-

ber of feature descriptors have been proposed such as tested Heat Ker-

nel Signatures (HKS), spin image (SI), mesh histogram of gradient (Mesh-



Section 2.4. 3D local feature descriptors 19

HoG), Scale-Invariant Spin Image (SISI), local depth SIFT and general-

ized HKS (GHKS), they were exclusively designed for a specific applica-

tion scenario (e.g., object recognition, and shape retrieval) [116].

Facial curvatures have been studied and used extensively. Gaussian

curvature, mean curvature, principal curvatures, as well as shape index

values are the most widely used ones. The major applications being in

face recognition [101, 174, 198] or recognition a part of the face [219]

and face expression recognition [290]. The mean and Gaussian curvature

have been used as features for describing face regions [198]. Furthermore,

the maximum, minimum, Gaussian, and mean curvature were used as

features for 3D face recognition with different orientation on FRAV3D

database [101]. In case of recognition parts of the face, Pflug et al. [219]

employed the curvatures and semantic analysis of edge patterns to de-

tect the ear in 3D profile face. Pflug’s approach was robust against ro-

tation and scaling, with the accuracy of detection reaching nearly 96%.

Chang et al. [56] proposed a curvatures based approach for 3D face recog-

nition in the presence of varied facial expressions, their approach based

on combining the match scores from matching multiple overlapping re-

gions around the nose to handle the problem of expression variation. In

2009, Chen and Biswas [58], focused on the global properties of ranking

curvatures for small regions. Both Gaussian curvature and mean curva-

ture of 3D shapes have been used to propose a multiscale method for

3D object analysis and similarity classification. They showed how the

mean curvature can be used to find local features and extreme points

in 3D facial data. Wang et al. [290] applied these features to 3D facial

expression recognition. He used the SVM classification algorithm [115]

on the 100 subjects of the Bosphorus database and a 76.56% recognition

rate for six universal facial expressions was achieved. Junli et al. [311]

used a geodesic network generated for each face with geodesics and iso-

geodesics paths determined. Then, the mean curvature, Gaussian curva-

ture, shape index, and curvedness were computed for each node of the

network and combined together to produce an automated 3D facial sim-

ilarity measurement. Tang et al. [270] presented a 3D face keypoint detec-

tion, description and matching framework based on principle curvature

measures computed using normal cycle theory, their proposed method

achieved recognition rates of 97.96% on the FRGCv2.0 database, and a
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degradation of 3.9% between the neutral and the non-neutral expression

subsets. Recently, an interesting study handled significant pose varia-

tions problems in 3D face recognition by using HK (H stands for mean

curvature and K stands for Gaussian curvature) curvatures analysis for

landmarks detection at half face then the matching step was performed

with respect to frontal scans and side scans [175].

In this thesis, the curvatures are chosen but combined in a novel way,

for face morphological traits analysis and classification.

2.5 Morphological lips traits classification

The lips are the key feature for the lower face [131]. Many studies have

been undertaken to measure lip characteristics. Hwang et al. [135] have

advocated the use of sliding calipers or transparent rulers to measure dis-

tances between clinically observable points (e.g. mouth width by mea-

suring the distance from commissure to commissure). Heidari et al.

[129] measured and classified lips morphology in 100 healthy Sistani and

Baluch subjects, to analyse the lips characteristics difference between

these ethnic groups. As previously explained, ordinary two-dimensional

photography is the most common method of recording a human’s facial

morphology due to the ease of acquisition and low cost. For example,

the studies [54, 251] used photographs of subjects to perform anthropo-

metric measurements and classification of lips morphological traits, for

accessing the lips shape and attractiveness in very young subjects.

In the last two decades, three-dimensional imaging has become quite

common in various medical applications. Three-dimensional facial im-

ages are much more informative than two-dimensional photographs

[47, 207] and are advantageous for studying lip morphology. For exam-

ple, the study [199] used three-dimensional facial images of 109 subjects,

aged 5–6 years, to produce four categories for philtrum shape: triangular,

parallel, concave, and flat. Later on, Wilson et al. [295] produced 3D mea-

surements of lip vermilion and Cupid’s bow and described different mor-

phological features of the vermilion of the lips and associated lip traits for

4747 subjects from the ALSPAC dataset [295]. Sforza et al. [245] assessed

the nose and lip morphology using 3D scans of 64 North Sudanese sub-

jects with Down’s syndrome, age range 5–34 years. Although past research



Section 2.6. Morphometric perspective for facial gender analysis 21

indicates popularity of 3D imaging for research in facial morphology, the

current methods in the area still usually rely on manual facial trait classifi-

cation and categorisation, which is a very time consuming process. Con-

sequently, such research would benefit significantly from an automatic

method.

2.6 Morphometric perspective for facial gender analysis

The human face exhibits a set of significant social signals that give rise

to traits such as gender, expression, identity, age and attractiveness. Tra-

ditional gender classification methods use a set of facial features in su-

pervised classification algorithms; these methods differ according to the

type of features and classification algorithms used.

It is logical to focus on biologically significant landmarks in order to

extract features for facial gender classification since gender is a biological

characteristic. Although the gender classification problem has been the

subject of considerable research in recent years, current computer-based

vision methods for facial gender recognition tend to ignore facial biolog-

ical landmarks as the basis for gender classification despite their ability

to efficiently classify gender with a minimum number of features when

compared to the methods that use global 3D face geometric features. For

example, Ballihi et al. [24] used a large set of geometric geodesic paths

features (circular geodesic paths and radial geodesic paths) utilising the

AdaBoost algorithm for feature selection to yield a gender classification

rate of 86% at FRGCv2 dataset. Gender classification and face recognition

using landmark-based and simple geometrical features were the subjects

of much research in the past. Burton et al. [50] manually annotated 73

biological landmarks using a dataset of 91 male and 88 female faces, util-

ising a total of 2,628 Euclidean distance measurements. Due to limited

computational capacity, the authors handpicked only 19 distances (and

their corresponding ratios) and used these features to attain classification

accuracy of 94%. Han et al. [126] utilised more intricate measures such as

the volume and the area of face parts to classify gender in a small public

dataset of only 61 subjects. They used a support vector machine (SVM)

classifier to classify the areas and volumes of five local facial regions: the

temple, eyes, nose, mouth, and cheeks. Using five-fold cross-validation,
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they reported 82.6% gender classification accuracy. Gilani et al. [110] ex-

tracted the geodesic and Euclidean distances between 23 biological land-

marks annotated manually for 64 3D facial meshes. Using these features,

the authors proposed an approach that could determine a gender clas-

sification score for 3D faces with 89.6% classification accuracy. Toma et

al. [276] derived 250 facial parameters 90 Euclidean distances between

landmarks, 118 angles between 3D facial landmarks, and 42 Euclidean

distance ratios in the large ALSPAC 3D face dataset to classify gender with

approximately 80% accuracy.

Finding the relationship between facial morphology and gender vari-

ation also has received some attention. For example, Brown et al. [44]

reported the results of such investigation in a database consisting of 32

photographs of male and female faces. His results showed the jaw, brows,

eyes and chin (in descending order) effecting significant change in per-

ceived gender. For 3D faces, Toma [276] worked on finding which parts of

the 3D face are most effective in gender discrimination using the distance

measurements between the anthropometric landmarks pairs. Gilani et

al. [110] used the geodesic and Euclidean distances between the anthro-

pometric landmarks pairs and reported that the distances between the

eyes and forehead landmarks were the gender discriminative distances

in 64 adult samples. Another study was conducted on 1555 subjects be-

tween 3 and 25 years [151]. The subjects were divided into six age groups

to investigate facial sexual dimorphism between them, by using 29 tra-

ditional soft-tissue anthropometric measurements collected from 3D fa-

cial scans. Many differences between males and females faces relating

to noses, jaw lines, protrusiveness of mandibles, prominence of cheeks

and sizes of lips were reported at subjects from US and Hungary [113]. In

general, these studies used either the global face features or the distances

measurements between landmarks for gender classification. Therefore,

focusing on gender classification and analysis relaying on biological land-

marks is an interesting research topic.

2.7 Nose morphological traits classification

The nose is a characteristic component of the face, which is the best fea-

ture that distinguishes an individual [149]. Nose shapes and categorisa-
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tion are, therefore, vital to forensic analysis, examinations of sexual dif-

ferences and biological variability amongst ethnic groups and find the

relation between the facial morphology traits variation and background

genes and heritability. Shah et al. [248] and Adelaja et al. [3] found the

relationship between the nose morphology variation such as nasal root

width, nose height, nose width, nasal bridge length, nasal tip protrusion,

nasal index, facial width and nasolabial proportion with ethnic groups.

The objective of Tanikawa et al. [271] was to demonstrate sexual dimor-

phism in the entire three-dimensional facial surface form of adult hu-

mans depending on the nose shape variation. The sample consisted

of female and male groups (n = 200; age range, 18–35 years). Barash

et al. [26] investigated the face variation and especially the genes as-

sociated with nose morphology traits variation. This research studied

the effect of certain genes on facial variation specifically, associations of

nasal width with rs8035124 SNP, the cephalic index with rs16830498 SNP,

nasal index with rs37369 SNP, transverse nasal prominence angle with

rs59037879 and rs10512572 SNPs. Another interesting piece of research

investigated the relationship between the nose shape and human charac-

teristics [221]. Twelve shapes of noses according to human characteristics

were described such as the straight nose presents intelligence, kindness,

and faith, the Roman nose symbolizes bravery and understanding, while

short nose indicates low self-confidence.

Recently, interesting research was conducted on 3D faces from a dif-

ferent population (Asia, Europe, and Africa) to prove the thought of dif-

ferences in nose shape among populations are not the result of genetic ef-

fect only, but may be adaptations to climate. Linear distances were calcu-

lated from the 3D coordinates of nose landmarks to observe nares width,

Alar base width, Nasal height, Nasal ridge length and Nasal tip protru-

sion. The spatial distribution of these nose traits measurements is com-

pared with the global distribution of temperature, absolute humidity and

relative humidity. The authors found that that some manifestations of

nose shape may indeed have been driven by local adaptation to climate,

as example width of the nares is correlated with absolute humidity and

temperature [309]. Almost all these studies utilised basic geometric fea-

tures such as the Euclidean distances and angles between landmarks or

manual identification for nose traits categorisation.
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2.8 The face morphology characteristics/genotype association

Cells are the main working units for all living systems. Chemical DNA

(deoxyribonucleic acid) contains all the instruction needed to control the

cell’s activities. An organism’s complete set of DNA is called genome.

Genomes size varies widely, for example, the human genomes have more

three billion DNA. Human cells have 23 pairs of chromosomes (22 pairs

of autosomes and one pair of sex chromosomes), each chromosome con-

tains many genes. That mean, DNA is in genes and genes are on chro-

mosomes. The human genome is approximately contain 20,000–25,000

genes [276]. Single nucleotide polymorphisms, frequently called SNPs

(pronounced “snips”), are the most common type of genetic variation

among people. Each SNP represents a difference in a single DNA building

block, called a nucleotide [99]. In spite of the numerous number of genes

and SNPs that have been identified as pivotal for face morphology de-

velopment. Nevertheless, little is know about the genes that are involved

in facial variation, abnormalities or syndromes. Genome wide associa-

tion study (GWAS) is the analytical method for mapping genes against

human traits. It is powerful in detecting genes of small effect and disease

genes [232]. Table 2.2 lists some of heritability and genetic association

research. These studies have used the anthropometric measurements as

facial features for heritability calculation and gene associations.
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2.9 Summary: Gaps in the current state of art

As can be concluded from this literature review, one of the biggest chal-

lenges facing 3D facial morphology analysis is the automatic diagnosis

and classification of facial traits. The process for determining the 3D ge-

ometric features that are most discriminative for facial morphology traits

is still typically manual and uses simple anthropometric measurements.

These measurements do not present the variation in face surface shape

adequately. A lot of work is still needed in the study of the relationship

between face morphology traits and gender (sex) variation in a certain

age and ethnic groups. Solving these challenges will open the door for

progress in many medical and survive applications such as:

• Measuring significant facial shape differences, normal and disor-

dered facial asymmetry, and facial discordancy or the lack of har-

mony, useful for planning surgical interventions.

• Developing the criminal evidence science by predicting faces from

DNA.

• Discovering the relationship between the medical syndrome and

ethnic groups genes changes.

• Exploring traits variation/genotype associations in normal and ab-

normal subjects.

To address such issues, in this thesis the research effort was focused

on exploring the advantages of face biological (Anthropometric) land-

marks, by introducing a new set of 3D geometric features based around

them. These 3D geometric features take the advantage of using the an-

thropometric landmarks but at the same time capture accurately the

changes in face surface shape. The proposed geometric features are used

for automatic morphological traits classification and categorisation and

find the relationship between gender and facial traits in ALSPAC dataset.

This work was validated by investigating genotypes associations with

the automatic face morphological traits categories identified by our ap-

proach.



Chapter 3

DATASET AND

PREPROCESSING

Restricting analysis and classification of face morphology to 2D tech-

niques makes measuring the trait differences between individuals diffi-

cult. Consequently, for analysis of complex 3D facial surfaces, acquisi-

tion techniques that provide a large increase in morphometric informa-

tion are required, namely accurate 3D data scans.

However, the data from 3D scanners are often imperfect. Challenges

are generally in the form of noise or holes due to the absorption of laser

beam by the dark facial areas such as eyebrows and iris. Therefore, data

preprocessing is a very important step in face morphology analysis sys-

tems. It eliminates noise and remove some undesired parts such as

clothes, neck, ears, and hair from scan images. This step is common in

all 3D face vision applications, including 3D face morphology character-

isation and analysis.

In addition, the regularisation of a number of vertices by finding

dense correspondences in the 3D meshes is often performed before anal-

ysis of faces. Surface regularisation is the process of finding the geo-

metrical transformation between two or more surfaces that align the sur-

faces [60]. Many studies proved the use of dense sets of vertices is a ideal

for analysing face morphology because the sets allow one to inspect and

analyse facial images in detailed and holistic manner [138, 273].

In this work, two strategies for 3D face preprocessing are imple-

mented, namely regularised and non-regularised preprocessing, to com-

pare their effects on facial morphological traits classification. They are

described in detail in Chapter 5.

The sections in this chapter are as follows. In Section 3.1, the 3D faces

27



Section 3.1. ALSPAC Data Set 28

dataset used in this work is described in detail. In Section 3.2, the prepro-

cessing steps and algorithms used in this work are explained. In Section

3.3, a general discussion of the preprocessing methods used in this work

is presented. Finally, in Section 3.4, this chapter is summarised.

3.1 ALSPAC Data Set

This study is based on data from the Avon Longitudinal Study of Parents

and Children (ALSPAC). ALSPAC is a long term health research project

involving the study of over 14,000 children as they grow up. This study

recruited pregnant women living in the former county of Avon in South-

West England who had an estimated delivery date of between April 1,

1991, and December 31, 1992. The cohort was made up of 14,541 preg-

nancies that resulted in 13,971 singletons/twins that were alive at one

year of age. Ethical approval for using this data in this work was ob-

tained from the ALSPAC Ethics and Law Committee and the Local Re-

search Ethics Committees [14]. When the children reached the age of

around 15 years, their faces were scanned in three dimensions using two

Konica Minolta Vivid 900 laser cameras [277]. The scanned images were

imported into Rapidform 2006 (a reverse engineering software package

for 3D images) [268] and processed by removing the color texture in or-

der to highlight morphological features and eliminate the influence of fa-

cial color tones. Then, 21 facial landmarks represented by a total of 63 (x,

y , and z) coordinate values were manually identified1 and recorded for

each 3D facial image [277]. The biological landmark points, for this data

set, their location and meaning on the human face are shown in Fig. 3.1,

Table 3.1 contains their definitions.
1Manually obtained landmarks were already available for this dataset. However, they

can be obtained automatically using the following methods [78, 160, 235]
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Table 3.1: Facial soft tissue landmarks definitions

Landmarks Defnition

Glabella(g) Most prominent midline point between eyebrows

Nasion(n) Deepest point of nasal bridge

Endocanthion(en) L/R Inner commissure of the left / right eye fissure

Exocanthion(ex)L/R Outer commissure of the left / right eye fissure

Palpebrale superius(ps) L/R Superior mid portion of the free margin of upper left / right eyelids

Palpebrale inferius(pi) L/R Inferior mid portion of the free margin of upper left / right eyelids

Pronasale (prn) Most protruded point of the apex nasi

Subnasale(sn) Mid-point of angle at columella base

Alare(al)L/R Most lateral point on left / right alar contour

Labiale superius(ls) Mid-point of the upper vermilion line

Labiale inferius(li) Mid-point of the lower vermilion line

Crista philtre(cph) L/R Point on the left / right elevated margins of the philtrum just above VL

Cheilion(ch) L/R Point located at left / right labial commissure

Pogonion(pg) Most anterior midpoint of the chin

Figure 3.1: Landmarks used in this work.

Considerable amount of medical research has been conducted on the

ALSPAC data. For example, Horwood et al. [133] investigated the preva-

lence, nature, and frequency of psychosis-like symptoms in 12-year-old
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children and studied their relationship with IQ score. Another study was

to examine the association between alcohol and cigarettes taking among

adolescents and their early socioeconomic background [189]. The work

presented in this thesis is the first study conducted on this data which is

performed automatically.

3.2 Preprocessing

Preprocessing operations are aimed at improving the quality of data.

In this work, two approaches for data preprocessing are used (Non-

regularised and regularised). The motivation for using these methods is

to compare the face morphology analysis and classification performance

for raw images and registered images. The registration process is used

here to regularise (downsample) the images to certain template resolu-

tion, any image from the data set can be used as a template and regu-

larised all the images to its resolution [123]. However, in this work a tem-

plate called AM is used, these template used successfully in many face

morphology analysis research [60, 61, 185, 254]. Non-regularised (raw)

images correspond to high resolution, while the regularised images cor-

respond to low resolution. Consequently, the effect of high and low res-

olution mesh in face morphology classification is highlighted in Chapter

52.

• Non-regularised preprocessing in this case only the pose of each 3D

face was corrected to a canonical form based on landmarks for each

face. This step is required to reduce any errors due to the difference

in poses before extracting 3D geometric features.

• Regularised preprocessing in this case the raw face meshes are

marked with a small number of feature points and a 3D transform

is used to align each face to a reference face, the choice of reference

face will affect the final dense model. As the result, all the ALSPAC

faces are represented as uniformly distributed dense meshes with

7150 verticies.

In the following sections, both methods are described in detail.

2Different template sizes can be used in future to test their effect in face morphology
analysis and classification performance
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3.2.1 Non-regularised preprocessing

Facial orientation is not a part of the facial shape, and alignment of their

poses needs to be performed during or before features extraction. In a

landmarks based facial representation, the correspondences between the

faces are implicitly known via the landmark definitions. Thus, landmarks

can be used to solve the alignment problem prior to further data extrac-

tion as in [123]. The ALSPAC data set faces do not have any holes. There-

fore, only the rotation, translation, and scaling of the faces are carried out

using a Generalised Procrustes Algorithm (GPA), followed by eliminating

noises using well-defined filter.

Generalised Procrustes Algorithm (GPA)

Procrustes analysis (also called ordinary Procrustes analysis) is a form of

statistical shape analysis that aligns faces by minimizing the Procrustes

distance metric between their landmarks [114].

The algorithm steps are the following:

1. Choose a reference shape among the training set instances.

2. Align all other instances on the current reference by minimizing a

measure of shape difference called the Procrustes distance between

the instances.

3. Compute the mean shape of the current training set.

4. If the Procrustes distance between the mean shape and the refer-

ence is above a threshold, set the reference to mean shape and con-

tinue to step 2.

Suppose we have M faces each defined by 21 facial landmarks in three

dimensions (x, y, z). Then each facial shape is represented by 63 coordi-

nates.

The centroid of a shape is the point (x, y , z) with the 21 landmarks

mean coordinates. The centroid is taken to be the origin of coordinates

and all shapes are now translated to the origin:

(x1 −x, y1 − y , z1 − z), (x2 −x, y2 − y , z2 − z) and so on.

The size of a face is defined as its centroid size, which is the root
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square deviation of all landmarks from the centroid:

S =
√

(x1 −x)2 + (y1 − y)2 +·· ·+ (y21 − y)2 + (z21 − z)2 (3.1)

After the sizes of all faces (S1,S2, ...SM ) have been calculated, the scale

or size component is removed by scaling each object to the average face

size (S). Removing rotation is done by minimizing the Procrustes distance

between the current shape and mean shape [276].

Denoising

In many 3D processes, it is important to handle noise properly to avoid

distorted representation. The noise characterisation depends on the cho-

sen scanner. Noise characterisation for depth sensors and for laser beams

are different, most of the time, methods presume Gaussian and isotropic

noise [104]. Many studies recommended Laplacian smoothing filter to

smooth a polygonal mesh to remove the undesirable information (i.e.

spikes) and clutter due to the 3D scanner ( e.g. see [84,259]). In this stage,

a Laplacian smoothing filter in Graph MATLAB Toolbox [217] is used.

Figure 3.2 illustrates the denoising process for 3D face mesh, the degree

of 3D face smoothing depends on the number of iteration selected by the

user. In this work the number of iterations was fixed to one and the fil-

ter parameters were fixed to the default parameters used in the toolbox

examples l apl aci an.t y pe = di st ance, opti ons.s ymmetr i ze = 0 and

opti ons.nor mali ze = 1.

Figure 3.2: Denoising the 3D face. This result for one iteration only.
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3.2.2 Regularised preprocessing

Scanners usually digitize 3D surfaces in the form of dense 3D point

clouds. The point cloud representation is capable of completely repre-

senting 3D surfaces in face recognition systems [173]. However, 3D mesh

representation allows for flexible and efficient manipulation of surfaces.

For example, the deformation of 3D meshes is more flexible than point

clouds [77]. This surface information when it is stored as a “mesh”, is

defined by the 3D locations of a large number of points and how these

points are interconnected. It is something like a wire net, moulded onto

the surface of the object being imaged Fig. 3.3.

Figure 3.3: Components of a mesh object. Node, or vertex, locations (left),
connectivity structure (middle) and the defined surface (right).

For all 3D representation types, the main aim of regularisation pro-

cess is to establish a geometrical relationship between two or more sur-

faces (inter-subject) or between different morphologies of the same sub-

ject (intra-subject) [60]. In this work, the correspondence dense meshes

are obtained by non-rigidly mapping of an anthropometric mask (AM)

onto facial 3D images. An AM is essentially a predefined surface template

covering the facial area of interest. This template defines the number of

vertices used. By mapping the AM on the facial images, homologous spa-

tially dense mesh configurations for all 3D images are obtained. In this

context homologous means that vertex occupies the same position on

the face relative to all other vertices for all individuals, Fig. 3.4 shows the

corresponding nose tip points (i.e. points with the same indices) were

colored in the mapped faces of the other individuals. The mapping of

the (AM) onto the facial images is, therefore, standardises the facial 3D
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images from different individuals so they can be analysed in a spatially

dense way [60].

Figure 3.4: The same nose tip correspondence in 3 individuals.

Anthropometric Mask (AM)

The mask template used in this work is illustrated in Fig. 3.5, it represents

the average face of 400 Western Australian healthy young individuals be-

tween the ages of 5–25 years captured with the 3dMD facial scanning sys-

tem [65].

Figure 3.5: The anthropometric mask.

The steps for building the AM are as follows:

• A random face is taken from the database and used as an initial

template.

• That initial face template is registered to all other faces in the

database by using the Iterative closest point (ICP) method reported

in [34]. The Iterative closest point (ICP) is an iterative registration

algorithm alternating between correspondence update. The pa-

rameters update in every iteration step, until convergence occurs,

to the nearest local minimum of the objective function.
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• The resulting faces represent the shape of the target surfaces, but

have corresponding points. This helps in easily calculating a geo-

metric average face.

• The geometric average face is used as the template for another iter-

ation. The iterative process is repeated until convergence and the

template changes between iterations become negligible [65, 256].

Mapping of 3D Images

This mapping technique “fits” a template face (an anthropometric mask)

to any number of faces. This process is, metaphorically, like stretching

an elastic mask over a solid statue, as shown in Fig. 3.6. The result is that

the face, after regularisation, has the same number of vertices and same

connection structure as the template. The mask used for ALSPAC dataset

faces regularisation is illustrated in Fig. 3.7, but without the neck part.

The anthropometric mask consists of 7,150 vertices only. This technique

was developed by Peter Claes [60], which has been validated extensively

on faces [63, 66, 67]. The technique steps as shown in Fig. 3.7 are as fol-

lows:

• Five marks need to be indicated manually on the 3D facial image

(medial canthus of the right eye, medial canthus of the left eye,

nasal tip, right labial commissure, left labial commissure).

• Prior to regularisation, the floating surface is to be brought into the

vicinity of the target surface, by repositioning the floating surface,

using a rigid or affine transformation, into the coordinate system

of the target surface. This is performed by using the 5 initial start-

ing points. The mask and the target face were roughly rotated and

translated until the differences are harmonized. The Iterative clos-

est point (ICP) is used for that purpose.

• Surfaces of different subjects are matched to each other using a

non-rigid Thin Plate Spline (TPS) [82] based deformation model.

The basic principle of TPS is the comparison of two different shapes

is performed by distortion of the first one. It serves as a reference

which is here the AM, while the compared specimen is termed the
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target face. The deformation requires bending energy, which leads

to exactly reproducible deformation patterns [234].

• In each iteration, each floating surface point is assigned to a cor-

responding point. A simple way to assign correspondences relies

on using the Distance Weighted k-Nearest Neighbor Rule [87]. It is

non-probabilistic classification procedure, which can be adapted

to estimate the corresponding positions by weighing the contribu-

tion of k-Nearest target surface.

Figure 3.6: Antropometric mask mapped onto original 3D-image [67]

Figure 3.7: The regularisation general procedure steps.
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3.3 Discussion

In this work, software written in MATLAB by Peter Claes (The University

of Leuven) was used to regularise the facial surfaces to produce a dense

correspondence for all the faces. The template used for faces regularisa-

tion contained only 7150 vertices in order to test the robustness of our

3D geometric features and classification and categorisation systems on

very low resolution mesh comparing to the original mesh. Figure 3.8 illus-

trates the difference between the non-regularised and a regularised face.

It is clear that the lips morphology is more clear for non-regularised faces.

However, regularised images allow for faster extraction of facial features,

which is a key advantage for testing the robustness of the proposed auto-

matic classification method and if it is applicable for both high-resolution

images (e.g., captured with laser scanners) and low-resolution images

(e.g., obtained using stereo scanners).

(a) Non-regularised mesh

(b) Regularised mesh

Figure 3.8: The preprocessing methods. The difference between the
methods of preprocessing (Non-regularised and regularised).
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3.4 Summary

3D face preprocessing is a necessary step for all computer vision applica-

tions, specifically for face morphology classification and categorisation.

In this chapter two methods for preprocessing are described (regularised

and non-regularised), the effect of using these methods on face morphol-

ogy classification performance in-depth for lips traits classification will

be tested in Chapter 5.



Chapter 4

NOVEL 3D GEOMETRIC

FEATURES FOR FACE

MORPHOLOGY ANALYSIS

Once landmarks are annotated manually or automatically in zones of the

faces, it becomes possible to extrapolate important geometric informa-

tion their particular position gives them. For face morphology analysis

applications, the computation of the Euclidean distances or the angles

between landmarks is a widely used method. They are considered mea-

sures, rather than surface features. These measures are called anthropo-

metric, and one measure may involve more than one landmark. Nonethe-

less, these facial measurements do not provide explicit information about

facial shape. Instead, feature descriptors based on 3D geometry give im-

mediate information about the shape of eyes, mouth, nose, and global

traits variation. Different from all the existing 3D face morphology anal-

ysis and classification approaches, this work is the first to study the ef-

fectiveness of the curvature for the practical automatic 3D face morphol-

ogy classification and categorisation application. The curvatures are ex-

tracted for face parts and for the geodesic paths between the biological

landmarks.

This chapter is organised as follows. The face region features concept

are explained in Section 4.1. The basic curvature estimation methods

are described in Section 4.2. Curvatures robustness in facial morphol-

ogy classification is described in Section 4.3. Section 4.4 describes the

novel 3D geometric features based on geodesic paths. Section 4.5 pro-

vides a discussion of the results. Finally, Section 4.6 records this chapter

summary.

39
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4.1 Parts vs whole

The existence of part based face perception has been demonstrated in

computer vision applications. For example in 3D face recognition it can

provide robustness to facial expression by excluding affected parts [212].

In facial morphological traits studies, the face representation of choice

has always been holistic [63,73]. However, in this work, we argue that part

part-based facial morphology analysis can produce better results at least

for some of the traits. For example, for some detailed local facial traits,

such as chin dimple, part based morphology analysis may be a more suc-

cessful approach.

In this chapter we propose novel 3D geometric features based on face

parts, which are applied to classification and analysis of face morphology

in this and next chapters. These features can be divided into two types

according to the properties of the traits we analyse:

• Face region based geometric features. This type of 3D geometric

features are used to analyse face area based traits, such as philtrum

shape and chin shape.

• Geometric features based on the paths between anthropometric

landmarks.These features are used to analyse very specific morpho-

logical traits such as lips contours and tip nose shape.

For the both types, on the basis of our literature review, we decided to

use the curvature descriptors as the most effective for description of face

shapes.

4.2 Curvature estimation methods

In computer vision and geometric design applications, the surfaces of

discrete form such as meshes, and point surfaces become more and more

important. At the same time, various curvature estimation techniques

have been developed and implemented. From a mathematical stand-

point, the curvature information can be represented by the first and sec-

ond partial derivatives of the local surface [77]. Curvature estimation

techniques on mesh surfaces can be broadly divided into three groups;

continuous, discrete and estimation of a curvature tensor [103].
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The continuous estimation includes fitting a surface locally (at least

second order) then computing the curvatures by interrogating the fitted

surface. This method produces the best approximation of the underlying

surface. It has been one of the more common and robust approaches for

curvatures estimation. There are numerous curvature estimation meth-

ods depending on surface fitting principle [227], such as the quadric fit-

ting method suggested by Hamann [121] and a cubic-order algorithm for

approximating principal direction vectors by Goldfeather et al. [111].

The discrete estimation method utilises a direct approximation for-

mula for the curvature. These methods do not only involve solving a least

squares problem but also appear very fast and flexible. Research using

such discrete estimations for curvature includes Taubin [272] where the

tensor of curvature of the surface at the vertices in a polyhedral approx-

imation was estimated. A key advantage of Taubin’s method is its sim-

plicity, with the complexity being linear in both time and space. Meek

and Walton [187] and Meyer et al. [193] estimated curvatures directly on

the discrete triangle meshes on the basis of the Gauss-Bonnet theorem,

known as the angle deficit method, which approximates Gaussian cur-

vature as 2π minus the sum of the angles for the mesh faces at a vertex,

divided by an area associated with the vertex.

The curvature tensor estimation is similar to the discrete methods, ex-

cept that instead of estimating the curvature directly, a discrete estima-

tion of the curvature tensor is created, and the curvatures and princi-

pal directions are calculated from the curvature tensor. These methods

tend to have computational complexity lower than the fitting methods,

but slightly higher than the discrete methods but more estimated accu-

racy [103]. In this work the Normal Cycle curvature tensor method is used

to calculate the curvature features for the 3D images. This method was

implemented, in particular, by [100] to give a general method to define

curvatures of a large class of objects, without any assumptions of smooth-

ness or convexity and it has been successfully developed by the author

of [69].
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4.2.1 Estimating curvature using normal cycle theory based

method

This theory provides a unified, simple, and accurate way to define curva-

ture for both smooth and polyhedral surfaces [69, 262]. The main idea of

normal cycle theory is that in order to acquire a continuous tensor field

over an entire surface, a piecewise linear curvature tensor field should

be calculated by estimating the curvature tensor at each vertex and then

adding those values linearly across triangles. Fig. 4.1 shows the principal

method that is used to calculate the curvature tensor for each vertex along

the edge e, where for every edge e of the mesh there is a minimum cur-

vature (along the edge) and maximum curvature (across the edge). These

line dense tensors can be averaged over an arbitrary mesh region B ac-

cording to the following equation:

T (v) = 1

|B |
∑

edgesβ(e)|e ∩B |eeT (4.1)

where v represents the vertex position on the mesh, |B | is the sur-

face area around v over which the curvature tensor is estimated, β(e) is

the signed angle between the normal vector to the two oriented trian-

gles incident to edge e, |e ∩B | is the length of e ∩B , and e is a unit vec-

tor in the same direction as e [12]. In practical terms, the normal cycle

method is fast, and it provides excellent results, although the important

issue of how the user should choose the neighbourhood B that approxi-

mates a geodesic disk around the vertex v still remains. The selection of

the neighbourhood size can significantly affect the results: small neigh-

bourhoods provide better estimates, while an increase in the neighbour-

hood (ring) size smooths the estimates, which leads to less sensitivity to

noise [69, 236]. Generally, the eigenvectors of T (v) associated with the

eigenvalue magnitude are used to estimate curvatures at each vertex. The

principal curvatures k1 and k2 at v are estimated by the eigenvalues, while

the eigenvectors represent the curvature directions [12].
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Figure 4.1: Curvature estimation according to normal cycle theory:
Eq. (4.1)

Using principal curvatures (k1 and k2), Mean (H), and Gaussian (G) cur-

vature are calculated as:

H = k1 +k2

2
(4.2)

G = k1.k2 (4.3)

H is the average of the maximum and minimum curvature at a vertex

v . G is the multiplication of the principal curvatures; its sign denotes if

the surface is locally elliptic or hyperbolic [77]. Figure 4.2 illustrates the

four curvature features.



Section 4.2. Curvature estimation methods 44

Figure 4.2: The minimum, maximum, mean, and Gaussian curvature in-
formation

Shape index (Si ) quantitatively measures the shape of a surface at a

vertex v and captures the intuitive notion of local shape of a surface. Ev-

ery distinct surface shape corresponds to a unique value of Si (except for

the planar shape). The shape index for any surface point can be calcu-

lated from the principal curvature (k1 and k2) at that point.

Si = 0.5− 1

π
.t an−1(

k1 +k2

k1 −k2
) (4.4)

Another surface feature called, curvedness (R), measures how highly

or softly bent a surface is. Curvedness can define the scale difference be-

tween objects: for example the difference between a soccer ball and a

cricket ball. This surface point feature can be also calculated from the

principal curvatures (k1 and k2) as follows [83].

R =
√

(k1
2 +k2

2)

2
(4.5)

In general, the shape index (Si ) and the curvedness (R) are robust sur-

face information from the 3D image and they are invariant to change in

3D image orientation. Figure 4.3 shown that the variations in shape and
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curvedness, Si and R, can be represented as polar coordinates within a

Cartesian coordinate frame given by the two principal curvatures (k1 and

k2).

Figure 4.3: The shape index and curvedness described in 2D space. In-
dices (Si ,R) are viewed as coordinates in the ( k1 and k2) plane, with pla-
nar points mapped to the origin. The effects on surface structure from
variations in the curvedness (radial coordinate) and Shape Index [166]

4.3 Facial morphology classification based on region features

In this section, the curvatures capability in classifying facial morphologi-

cal traits are evaluated. Curvatures are used to classify the philtrum area

width into three classes predetermined manually by Wilson [295]. Multi-

class SVM (supper vector machine) machine learning method is used for

classification purpose. The philtrum is the vertical groove on the surface

of the upper lip, below the septum of the nose Fig. 4.4. For the assess-

ment, 1000 3D face meshes are used from ALSPAC dataset.

Figure 4.4: The philtrum area
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4.3.1 Curvatures extraction

The first step in creating any 3D face classification system is building the

features descriptors or vectors for the 3D faces. The features vector is ex-

tracted from the 3D face as a whole or from certain face region as our case.

In other words, for data set with n 3D faces m features vectors can be

produced to construct n ∗m training and testing matrix. In this work, af-

ter the non-regularised preprocessing method implementation, the max-

imum, minimum, mean, Gaussian, maximum direction, minimum Di-

rection curvature information was extracted for each face philtrum area,

each curvature is used as a separate entity to form the feature vector in

the training and testing classification set. After that, the feature vectors

are equally quantised to a certain number of features. In general, the pro-

cedure to extract training and testing sets are:

• Firstly, extracting out the philtrum area of each face according to

the landmarks (sn, ls, cphL and cphR) Fig. 3.1.

• Next, calculating the curvatures for the philtrum area using the

Normal Cycle method as previously described. Different sizes of the

ring (the number of vertices surrounding the vertex that the curva-

ture is calculated for it) were tested. Algorithm 1 below summarises

the process of the computation of curvatures using the Normal Cy-

cle approach.

• The number of features in the curvature vectors are not equal for

each subject’s philtrum, for example, if the philtrum 1 has 3∗2314

vertices then the curvature vectors will be 1∗2314 and philtrum 2

has 3∗ 1113 vertex, the curvature vectors will be 1∗ 1113. There-

fore, it became important to quantise them equally, therefore, each

curvature vector is quantised to 5, 10, 20,30,40, or 50 bins using

histogram normalisation technique. The histogram is obtained by

splitting the range of the data into equal-sized bins (called classes).

Then for each bin, the number of points from the data set that fall

into each bin are counted. The normalized count is the count in the

class divided by the number of observations times the class width.

For this normalisation, the area under the histogram is equal to one.

From a probabilistic point of view, this normalisation results in a
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relative histogram that is most akin to the probability density func-

tion and a relative cumulative histogram that is most akin to the

cumulative distribution function [15, 196].

Algorithm 1: Curvatures estimation using Normal Cycle method

Data: Set vertex V of philtrum area; F mesh faces for philtrum

area; R: the ring size

Result: The maximum and minimum curvature vectors C max,

C mi n; The maximum and minimum curvature direction

vectors Umi n, Umax; The mean curvature vector

C mean; The Gaussian curvature vector C g auss.

initialization n is the number of V ;

For i:=1 TO n

Specified surface area around Vi according to R which the

curvature tensor is estimated

Compute the tensor using Eq. 5

Calculate the eigenvector u and eigenvalue d of T (v)

[temp, I ] = sor t (d)

D(:, i ) = d(I )

U (:, :, i ) = u(:, I )

END

Umi n =U (: 2, :) after singleton removing from U

Umax =U (: 1, :) after singleton removing from U

C mi n = D(1, :)

C max = D(2, :)

C mean = (C mi n +C max)/2

C g auss =C mi n ∗C max

4.3.2 Classification methods

The aim of supervised learning is to build a concise model of the distribu-

tion of class labels in terms of predictor features. The resulting classifier

is then used to assign class labels to the testing instances where the val-

ues of the predictor features are known, but the value of the class label

is unknown [163]. Their are numerous methods for supervised learning

such as:

• Decision Trees are a classifier that characterises the observations

according to the value of the features. Each feature is represented
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by a node in the tree; with each branch from the node representing

a value that the feature can assume. The classification starts at the

root node. The features that best divide the data are selected as

nodes. Different measures are used to find the best features such

as: information gain, gini index, and refliefF algorithms. The data

division continues until the data is split into two subsets belonging

to the same class [86].

• Neural Networks the original idea behind the neural network is in-

spired by the mechanism of patterns recognition in the brain. A

neural network can approximate any relation between the class la-

bel and the features, and they can also deal with multi-class data

[127].

• K-Nearest Neighbor Classifier this classifier is based on the princi-

ple that the observations in the data are generally close to the other

similar observations which belong to the same class. KNN assigns

to an unlabeled observation the dominant class among the K near-

est neighbors. Many different metrics have been used to calculate

the distance between the observations within n-dimensional space,

where n is the number of features in the dataset [163].

• Random Forest RF is an ensemble classifier that consists of many

decision trees. RF seeks to address the problem of instability associ-

ated with single trees and their sensitivity to the training data. The

output class of RF is the statistical model of the output of individual

trees. RFs combine the “Bagging” concept, with a random subset of

features. Each tree is built on a separate bootstrapped sample, and

only a randomly selected feature subset is used at each node. In

this case a variation among the trees is obtained. The performance

of the RF is not sensitive to the values of their parameters [302].

In this work, Support Vector Machine (SVM) with linear kernal is used

for supervised learning because it is robust, accurate and is effective even

when using a small training sample [108]. This is achieved by mapping

the data into a higher dimensional space by using Kernel functions. A

linear kernel has been reported to provide the best performance in many

applications, and requires only one parameter to be tuned [32]. SVM have
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been applied in many domains such as image classification and biomed-

ical problems, it have reported a high classification accuracies [205, 222].

Classification using SVM

After extracting the feature descriptors from 1000 faces, they were classi-

fied using Support Vector Machine (SVM) [142] into three classes (narrow,

Average and wide) available to us in this study [295]. For evaluating the

classification performance 5-fold cross-validation method was used. In

this method, the dataset is divided into k subsets. Each time, one of the

k subsets is used as the test set and the other k − 1 subsets are put to-

gether to form a training set. Then the average error across all k trials is

computed [118].

The SVM is a popular supervised learning method. SVM is inherently

a two class classifier. Given a set of training examples, each data is marked

as belonging to one of the two classes and the SVM builds a model that

categorises the new example data to one class or another. SVM maps an

input sample to a high dimensional feature space and tries to find an op-

timal hyperplane that minimises the classification error for the training

data using the non-linear transformation function. The boundaries be-

tween classes are hyperplanes (a line in Fig. 4.5). The largest margin be-

tween the two classes means the best hyperplane for the SVM (two dash

lines in Fig. 4.5). The margin means the maximal width of the slab parallel

to the hyperplanes that has no interior data points. The support vectors

are the width constrain of that margin [142].

Figure 4.5: Binary SVM
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Figure 4.6: Multiclass SVM

However, facial Morphology classification is not a binary classifica-

tion. By their nature SVM is essentially binary classifier, but, it can be

adapted to handle the multiple classification tasks. Figure 4.6 shows a

multiclass SVM problem where we have four classes which are separated

by gaps. The two methods commonly used are the One-Against-One

(1A1) and One-Against-All (1AA) techniques. In 1AA approach an SVM

is determined for each class by discriminating that class against the re-

maining (N-1) classes. On the other hand, the 1A1 approach involves

constructing a classification results for each pair of classes resulting in

N(N-1)/2 classifiers.

The acknowledged drawback for 1A1 that it is more computationally

intensive since it requires many SVM classifiers to be built. However, both

approaches have approximately the same accuracy according to many

studies [18, 90, 293]. In this work, 1AA is chosen for its simplicity, prac-

ticality and to avoid the intensive computation of 1A1. In this work, pub-

licly available software SV M mul ti cl ass is used [143] with the parameters c

=100, g= 0.005 and t= 0.

4.3.3 Experimental results

The objective of this experiment is to classify the philtrum area width au-

tomatically to three classes, baseline compared to human expert manual

annotation [295] and to investigate for the best curvatures combination

for this purpose.

The extraction of curvatures depends on the selection of the ring size,

the size of the neighborhood (number of mesh layers) around the vertex
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used to calculate the curvature tensor, there is no standard number of the

ring size. Therefore, the range between 1 and 10 was tested for the best

ring size selection.

Figure 4.7 illustrates the affect of ring size on mean curvature values,

it is clear the selection of this factor affect the surface smoothing which

it is required to be high value if noise is present, but smoothing can also

mask surface detail.



Section 4.3. Facial morphology classification based on region features 52

Figure 4.7: The ring size

After comparing the classification accuracy for each case, the best

value was found to be 5 with a classification accuracy reaching 92% when

using the mean curvature feature, and 89% and 87% when using the max,
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min curvature respectively. The same was done when specifying the fea-

ture descriptor size as they were quantised into to 5, 10, 20, 30, 40, and 50

bins. The best classification accuracies were acquired when the descrip-

tor size was between 20–50 bins, the accuracies did not increase dramat-

ically when the descriptor size was larger than 50 bins.

The bar chart in Fig. 4.8 illustrates the classification accuracy for the

curvatures as described above. It shows that the curvature mean, max,

and min respectively offered the best classification accuracy. In contrast,

the worst accuracy was achieved by using the Gauss curvature and the

max direction. Also, it illustrates the dependence of the classification ac-

curacy on the number of bins used in the classification descriptor. Ad-

ditionally, Fig. 4.9. illustrates the classification accuracy when different

curvatures were combined into a single vector to acquire better classifi-

cation outcome. The results for feature combinations did not produce

better results in all cases. For example, when the mean and Gauss cur-

vatures were combined, the accuracy of 65% was achieved. While, the

best combination was the max and min with the classification accuracy

reaching 92% and exceeding it, but when the Mean, max and min were

combined, better performance accuracy of 97% is achieved.

Figure 4.8: Classification accuracy for different descriptor size
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Figure 4.9: Classification rate for compound features

4.4 Novel geodesic path curvature feature descriptor

Geodesic paths have been used extensively in face recognition systems

(e.g., see [5,24,139]). These studies employed the radial geodesic paths or

iso-geodesic paths of the whole face as features for FR purposes.

The previous section demonstrated the robustness of the curvatures

in the classification of the philtrum area width. This leads us to use the

curvatures but in a novel strategy to classify and cluster the face morpho-

logical traits. The geodesic path between anthropometric landmarks is

used to define key points, from which the curvature features descriptor

can be extracted. These geometric features are introduced because we

would like to classify and categorise specific anatomical facial traits, such

as nose tip shape, nose ridge shape, Cupid pow shape, etc., and to inves-

tigate the effect of anthropometric landmarks and the geodesic paths be-

tween them on facial traits analysis. In the following chapters, these novel

geometric features are used to classify the lips and nose morphological

traits and find the relation between the gender and facial morphology.

Many previous studies have used geodesic and Euclidean distances

as features for 3D facial morphology analysis (e.g., see [81, 109, 276, 287]).

These quantities are also calculated and their effectiveness is assessed for

lips trait classification and categorisation, as well as for gender classifica-

tion for the purpose of comparison.
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4.4.1 Geodesic path and distance

The geometric features used in this present work were curvatures of the

geodesic path between two anthropometric landmarks. The geodesic

path is the shortest curve or route between two points on a surface and

the geodesic distance is the length of this curve [200]. There are a number

of algorithms that may be used to compute geodesic paths and distances

on triangular meshes; some are approximate, such as the fast march-

ing method [218], while others are exact (and relatively slow). The exact

algorithms include the Mitchell–Mount–Papadimitriou (MMP) method

[264], the Chen and Han (CH) method [57], Xin and Wang method [299],

and heat method [74]. Figure 4.10 illustrates the difference between the

geodesic distance or path and the Euclidean distance. The Euclidean dis-

tance DB A between points A and B in three dimensions defined by their

coordinates (X A,YA, ZA) and (XB ,YB , ZB ) is calculated using the classic

formula:

DB A =
√

(XB −X A)2 + (YB −YA)2 + (ZB −ZA)2 (4.6)

Figure 4.10: Geodesic distance (A) is the shortest surface distance be-
tween any two landmarks on the mesh, while Euclidean distance (B) is
the straight-line distance distance between the two landmark

Fast marching method

Fast marching algorithm is a widely used algorithm in computer vision

and computer graphics [23, 68]. This algorithm can be described as fol-

lows. Suppose we are given a metric M(s)d s on some manifold S such

that M > 0. If we have two points, n0 ∈ S and n1 ∈ S , the weighted
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geodesic distance between n0 and n1 is defined as

d(S ,n0,n1)
def= min

y

(∫ 1

0
||y ′(t )||M(y(t ))d t

)
(4.7)

where the y ’s are all possible piecewise regular curves on S such that

y(0) = n0 and y(1) = n1. Fixing the point n0 as the starting point, the dis-

tance U(n)=d(S ,n0,n) to all other points, n, can be computed by propa-

gating the level set curve Ct = {n : U (n) = t } using the evolution equation

∂Ct /∂t (n) = Nn/M(n), where {Nn is the exterior unit normal to Ct at the

point n and U (n) satisfies the nonlinear Eikonal equation [218]:

‖∇U (n)‖ = M(n) (4.8)

Exact geodesic algorithm

The basic idea of the exact algorithm is to track together groups of short-

est paths that can be parameterised automatically. This is achieved by

partitioning each mesh edge into a set of intervals that are called win-

dows. The windows are then propagated across faces of the mesh in a

Dijkstra-like sweep. Therefore, for a triangle mesh surface S and a source

vertex v ∈ S, the exact algorithm computes an explicit representation

of the geodesic distance function D : S → R. For any point p ∈ S, this

function D
(
p

)
returns the length of the geodesic path from p back to

the source v . Once a complete representation of D has been computed,

one can quickly apply a "backtracking" algorithm to compute the short-

est path from any query point to the source. These shortest paths are

ruled by the following three attributes. Interior to a triangle, the short-

est path must be a straight line. When crossing over an edge, the short-

est path must correspond to a straight line [204, 264]. Exact methods

are more accurate in tracking geodesic paths than approximate meth-

ods (Fast marching) and are especially advantageous for low-resolution

meshes, where processing overhead is not so critical. Figure 4.11 high-

lights the difference between an exact and a fast geodesic algorithm in de-

termining geodesics in a synthetic low-resolution mesh, where the black

exact trajectory is clearly following the mesh edges more regularly than

the red fast trajectory.
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Figure 4.11: The exact and fast marching algorithms. Two paths extracted
for a synthetic mesh.

4.5 Discussion

The new 3D geometric features proposed in this chapter combined the

advantages of the curvatures with a geodesic path exist between the an-

thropometric landmarks for efficient face shape analysis. Specifically,

these features exploit the mean and Gaussian curvatures, shape indices,

and curvedness measures obtained from the geodesic paths between an-

thropometric landmarks of facial morphological traits.

These curvatures can be computed directly on the triangle meshes,

making the curvature based information more sensible and providing a

credibility in representing the triangle mesh shape changes. In this chap-

ter, the classification accuracy proved that the curvatures combination

can be used to enhance the 3D face morphology classification perfor-

mance. Also, the curvatures are robust geometric features, easy to extract,

the time consumption for processing is very little.

Figure 4.12 illustrate, as example, the geodesic path for the lip area,

curvatures are calculated for these paths vertices to produce the feature

descriptors, which are utilised for supervised or unsupervised classifica-

tion. The main problem is normalising the feature descriptors. In Chap-

ters 5, 6 and 7 the procedure of extracting the geodesic curvatures for each
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facial traits is explained in detail, and the method of normalising the fea-

ture descriptors is described minutely.

Figure 4.12: The lip geodesic paths

4.6 Summary

A new set of geometric features based on curvature measures computed

from the geodesic path between 3D facial landmarks is proposed. These

features are general features and can be tested in many 3D face appli-

cations, such as face recognition (FR) and Facial Expression Recognition

(FER). In the following chapters they will be used for face morphology

classification and categorisation, also for gender analysis and discrimi-

nation. Lips traits classification and categorisation method using these

features is presented in the next chapter.



Chapter 5

AUTOMATIC LIPS

MORPHOLOGY TRAITS

CLASSIFICATION AND

CATEGORISATION

The face is the most expressive part of the human body and is essential

in everyday social interaction. The lips are one of the key components

of the face (Fig. 5.1); the lips area runs from the base of the nose to the

tip of the chin and therefore constitutes most of the lower third of the

face. The lips include the philtrum and Cupid’s bow. The lip vermillion

is the thin layer of skin, red in colour, overlying a highly vascularized re-

gion. The appearance of the lips varies with facial movement; therefore,

the lips should be assessed when the subject is relaxed and has a natural

head position [257]. The morphological features of the lips vary greatly

between individuals and are particularly dependent on age, sex and eth-

nicity [79, 246].

Figure 5.1: Lip traits: basic morphological lip features, which vary greatly
between individuals.

Studying lips morphology is important for a number of diverse ap-
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plications, including face recognition and gender classification [159, 237,

249, 260]. The lips have also been reported to contribute to facial attrac-

tiveness and a number of studies have attempted to evaluate lip aesthet-

ics by creating norms and standards of ideal lip position and shape based

on cephalometric analysis and facial measurements [49, 131, 192, 231].

Furthermore, lip morphology plays an important role in the diagnosis

and analysis of many medical syndromes and face shape abnormalities,

as well as in finding genetic variants associated with these syndromes.

The cleft lip (CL) is one of the most recognisable facial anomalies

which has been the focus of clinical research for many decades. For ex-

ample, an in-depth review of 20 CL classification schemes was provided

in [289], while the association between genetic variants and environmen-

tal factors associated with cleft lip was analysed in [29]. Fetal alcohol syn-

drome (FAS) is another medical condition where lip morphology is used

in a diagnostic role. FAS is reported to be associated with certain charac-

teristic facial features, including smooth philtrum, thin upper lip vermil-

ion and short palpebral fissure length [265].

Thus, the identification and classification of lip shape characteristics

is important in many applications. So far, the categorisation (clustering)

of lip morphological characteristics (traits) has mostly been performed

manually in clinical practice which is time consuming and prone to op-

erator error.

The aim of the present work is to devise a method for automatic clas-

sification and categorisation of lip morphological traits. The method re-

lies on a combination of 3D geometric features. Six lips area shape traits

(Philtrum, Cupid’s Bow, lips contours, chin, and lower lip tone) Fig. 5.2

are investigated using our approach. These traits were categorised man-

ually by medical experts in previous research and the results of manual

categorisation and classification are available to us in this study [295] to

benchmark our approach results against a clinical expert results.
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Figure 5.2: Lip traits

Other research contributions is a new method for visualisation and

analysis of the effect of the found categories on the model of the lip area.

To this end, partial least squares (PLS) regression [136] is used. Many

studies proved the PLSR effectiveness in analysing the effects of biolog-

ical and environmental variables on facial shape. Shrimpton et al. [254]

used a spatially-dense multivariate regression to investigate the effect of

metadata (age, gender, and BMI) on facial form and tissue depth in 67

males and 89 females. Matthews et al. [185] showed the effect of gender

and head size variation in 473 one-year-old infants. Claes et al. [61] ex-

plored sex and ethnic variations in 592 Africans and Europeans and stud-

ied the effect size and statistical significance of sex in terms of local shape

characteristic changes (area, curvature and normal displacement). Con-

sequently, PLSR is adopted with dummy variables for visualising the in-

fluence of the discovered categories on the facial physical appearance to

gain insight into suitability of categories for description of the underlying

facial traits.

The remainder of this chapter is organised as follows: the next section

outlines the proposed approach, while Section 5.2 describes six compu-

tational experiments performed to evaluate the proposed automatic clas-

sification and categorisation approach. Section 5.3 provides a discussion

of the results. Finally, Section 5.4 presents summary remarks.

5.1 The proposed approach overview

In this section, an automatic lip morphology classification and categori-

sation approaches are described in detail. This is the first time that such

an automatic system has been developed, with past approaches being de-
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pendent on manual work of highly trained clinicians. An automated ap-

proach has clear benefits in bringing such technology to a wider general

use, as well as opening up potential for the analysis of large datasets with

direct benefit to such research areas as finding genetic associations and

automatic facial syndromes diagnosis.

Figures 5.3 and 5.4 shows the block diagrams of the proposed ap-

proaches which are then further explained below.

Figure 5.3: Block diagram of the proposed automatic lip traits classifica-
tion approach

Figure 5.4: Block diagram of the proposed automatic lip traits categorisa-
tion approach

5.1.1 The ALSPAC dataset and lips traits annotation

The ALSPAC dataset includes 4747 three-dimensional images of normal

young subjects, each with 21 facial landmarks. Eight anthropometric
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landmarks (sn, ls, li, cphL, cphR, chL, chR and pg) were localized in the

lips region Fig. 5.5.

Figure 5.5: Lip landmarks

In this work, six lips traits previously identified in [295] are considered

namely, philtrum shape, Cupid’s Bow shape, lips contours shape, chin

shape, and lower lip tone shape (Fig. 5.2). Depending on its appearance

each trait was manually categorised into between three and seven classes,

with the corresponding labels assigned to all ALSPAC images [295]. Some

of the categories in the ALSPAC dataset were unbalanced, i.e, only a few

images had the corresponding labels. For example, the philtrum shape

was categorised into seven classes, two of which were found to be minor-

ity categories ( contain only 150 and 180 subjects). Therefore, choosing a

suitable method to resolve this problem was essential.

5.1.2 Data preprocessing

The subjects were scanned with a laser camera at high resolution result-

ing in high density meshes. In this work, the proposed approach is tested

for both the non-regularised and regularised meshes.

5.1.3 Feature extraction and normalisation

Two methods to extract geodesic curvature features are employed. The

Euclidean and geodesic distances are also calculated to assess their ef-

fectiveness for lip traits classification and categorisation as compared to

geodesic curvature features. Because, many previous studies have fre-

quently used these quantities as features for 3D facial morphology analy-

sis (e.g., see [81, 109, 276]).
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Extracting geodesic paths

Gabriel Peyre’s MATLAB fast-marching toolbox [216] and the exact geodesic

toolbox [154] were used to find geodesic paths and calculate the geodesic

distances between two landmarks. The former toolbox was used for high-

resolution data (non-regularised meshes), while the latter one was used

for low-resolution data (regularised meshes) because as we explained in

Section 4.3.1 the exact method is more suitable for tracking low resolution

mesh and this compatible with [38] finding.

Figure 5.6(a) illustrates the paths used for all lip traits, apart from the

lower lip tone trait Table 5.1. For the lower lip tone trait we used the

geodesic path between Lower lip contour landmarks (chL, li and chR) and

four extra geodesic paths connecting the above landmarks shifted down

by a certain distance Figure 5.6(b).

((a)) Paths for the lips traits

((b)) Paths for the lower lip tone

Figure 5.6: The geodesic paths used for lips trait classification and cate-
gorization
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Table 5.1: List of geodesic paths defining morphological lip traits

Trait name List of related geodesic paths

Philtrum shape sn-cphL, sn-ls, sn-chpR, cphL-ls, cphR-ls

Upper lip contour chL-cphL, cphL-ls, ls-cphR, chpR-chR

Cupid’s bow cphL-ls, ls-cphR

Lower lip contour chL-li, li-chR

Lip-chin area li-pg

Curvature features

The local surface principal curvatures are first calculated for the points

along the geodesic path; the other features (mean curvature, Gaussian

curvature, shape index, and curvedness) are then calculated from the

principal curvatures. The extraction of these features depends on the se-

lection of ring size constraints which is the neighborhood around a vertex

from which estimate of the curvature tensor is calculated. In this work,

the ring size was selected experimentally to acquired better classification

results, thus the ring size 2 is recommended. See Chapter 4 for more in-

formation on the curvatures calculation algorithm.

Normalisation of curvature features

Histogram normalisation is used to normalize the features descriptors. It

is an estimate of the probability distribution of a continuous variable. It

is a kind of bar graph, to construct a histogram, the first step is to "bin"

the range of values—that is, divide the entire range of values into a series

of intervals—and then count how many values fall into each interval. The

bins are usually specified as consecutive, non-overlapping intervals of a

variable. If the bins are of equal size, a rectangle is erected over the bin

with height proportional to the frequency—the number of cases in each

bin. A histogram may also be normalized to display "relative" frequen-

cies. It then shows the proportion of cases that fall into each of several

categories, with the sum of the heights equaling one [134].

In this work, each geodesic path has a different number of nodes (ver-

tices) for curvature calculation. To deal with this, a normalised histogram

distribution was calculated for each path feature; for this purpose, the

number of bins selected was 5, 10, 15, 20, or 25, depending on the mini-

mum number of nodes in a path across the entire sample, the node num-
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bers for the longest path (li-pg) were around 100 node. The histogram

representation has used for features normalisation and representation in

many image and pattern recognition such as Bag-of-Words (BoW) image

representation [168], this motivate us to use the histogram representation

to normalise the geodesic path curvature features.

Let P k
1 , . . . , P k

n denote the vertices of a path P k on facial mesh k and

let mk
i , g k

i , ck
i , and sk

i denote, respectively, the mean curvature, Gaussian

curvature, curvedness value, and shape index value evaluated at vertex

P k
i (i = 1, . . . ,n). For each path, we choose a number b = 5, 10, 15, 20, or 25

such that b ≤ minn, where minn is the minimum number of vertices in

all paths P k across the sample. After the histogram normalisation (using

the MATLAB function histnorm) with b bins, we get exactly 4b character-

istic curvature features for path P k :

mk =
[

m̂k
1 , . . . ,m̂k

b

]
(5.1)

gk =
[

ĝ k
1 , . . . , ĝ k

b

]
(5.2)

ck =
[

ĉk
1 , . . . , ĉk

b

]
(5.3)

sk =
[

ŝk
1 , . . . , ŝk

b

]
(5.4)

where ˆ denotes the respective values resulting from the histogram nor-

malisation. Then a features descriptor is composed Dk = [
mk ,gk ,ck ,sk

]
consisting of 4b components. Because a different number of geodesic

paths are extracted for each traits, the features descriptor for each trait

can be calculated by concatenating its paths’ descriptors see Fig. 5.6 and

Table 5.1.

5.1.4 Data balancing and classification

The manual lip traits categories obtained in [295] are imbalanced (dif-

ferent classes have different number of subjects), and hence, balancing

data method is essential to handle this problem. The problem of imbal-

anced datasets can arise in classification when the number of elements

in one class is much lower than that in other classes. The main challenge

in the imbalance problem is that such small classes are often equally or

even more important than other classes. Standard classifiers naturally

tend to overestimate the importance of the larger classes and underesti-
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mate the importance of the smaller classes. To cope with this problem,

several methods have been suggested [48, 223, 239] which can be divided

into two groups: (i) data dependent methods and (ii) classifier dependent

methods.

Data dependent methods use data resampling to reduce the effect

caused by class imbalance. One approach is oversampling, in which the

dataset is balanced by replicating elements of a minority class. The ad-

vantage of this approach is that there is no data loss. The drawback is

that it may cause over fitting and additional computational overheads.

Another approach uses undersampling, suggesting that the dataset is bal-

anced by deleting some elements of a majority class. The main drawback

of this approach is that potentially useful information is neglected [223].

Classifier dependent methods are based on creating innovative algo-

rithms or modifying existing ones to tackle the class imbalance prob-

lem by constructing an efficient classifier. For example, Cost Sensitive

Learning (CSL) is associated with misclassifying patterns. A cost matrix

is utilised to decrease the relative weight of majority classes and increase

the relative weight of minority classes to ensure they have similar signif-

icance. The advantage of the CSL method is that no data is replicated or

eliminated; however, weighing data to specify relative costs for misclassi-

fication can be a difficulty [179]. A common approach to balance datasets

is to use the so-called boosting algorithm. Many studies (e.g., [263, 307])

have shown that the boosting method is quite effective in handling dif-

ferent types of unbalanced data. This method is an iterative technique to

enhance the performance of weak classifiers. This method is much more

helpful in tackling class imbalance problems, because it is the minority

class elements that are mainly expected to be misclassified and, hence,

should be assigned higher weights in subsequent iterations [162, 239].

Multiclass boosting

The present work uses the multiclass boosting method to classify the un-

balanced ALSPAC dataset [307] and compares the results with those ob-

tained using the multiclass SVM (supper vector machine) method which

does not do data balancing. The basic idea of boosting is instead of

learning a single complex classifier, learn several simple classifiers, then

combine the output of the simple classifiers to produce the classifica-
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tion decision. In this case, any weak learner can be potentially iteratively

boosted to become also a strong learner [70]. In this work, public MAT-

LAB software called Mul ti cl ass Gentle Ad aboosti ng is used for clas-

sification purpose [210] with the parameters opti ons.weakl ear ner = 0,

opti ons.epsi = 0.1, opti ons.l ambd a = 1e−2, opti ons.max−i ter ati on =
2000 and opti ons.T = 10. This Software uses Gentle Adaboost classifier

and the multiclass problem is performed with the 1AA strategy. Gentle

AdaBoost (GA) is one of the AdaBoost (Adaptive Boosting) variants [313].

The AdaBoost algorithm’s general steps are:

• Individual weights are given for data samples.

• Successive classifiers are learned on weighted versions of the data.

• The entire training set is considered in order to learn each classifier.

• The weight is updated by the misclassification of the previous clas-

sifiers.

• The next classifier focus on the most difficult patterns

• The algorithm stops when the error rate of a classifier is >0.5 or it

reaches the maximum number of iteration which is initialised by

the user.

Gentle AdaBoost (GA) improves it by using weighted least-squares regres-

sion. Commonly, GA produces a more stable and reliable classification

ensemble [70, 313].

5.1.5 Automatic categorisation

The aim of data clustering (categorisation), or cluster analysis, is to dis-

cover the natural grouping of a set of points, objects, or patterns. Web-

ster [191] defines cluster analysis as “a statistical classification technique

for discovering whether the individuals of a population fall into different

groups by making quantitative comparisons of multiple characteristics”.

This work investigates a way for automatically discovering lip traits

categorisations by using 3D geometric features. Unsupervised learning

(partitioning) has been investigated before in many applications. For ex-

ample, in character recognition [30]. It has also been explored in bio-

metrics, such as in fingerprint recognition where the fingerprints divided



Section 5.1. The proposed approach overview 69

into classes before the classification [184]. For example, Liu et al. [177]

applied Kmeans in PCA space to partition the gallery set into a number of

clusters, each containing a subset of face images having similar charac-

teristics. Yank et al. [301] investigated the problem of automatically dis-

covering human faces categorization from a collection of images, using

also Kmeans for clustering the SIFT images feature.

Since the task of clustering is subjective, the means that can be used

for achieving this goal are plenty. Every methodology follows a different

set of rules for defining the ‘similarity’ among data points. In fact, there

are more than 100 clustering algorithms known. But few of the algorithms

are used popularly. In general, the clustering methods can be divided

according to similarity measurement as follow:

• Connectivity models: These models are based on the notion that

the data points closer in data space exhibit more similarity to each

other than the data points lying farther away. These models can

follow two approaches. In the first approach, they start with clas-

sifying all data points into separate clusters and then aggregating

them as the distance decreases. In the second approach, all data

points are classified as a single cluster and then partitioned as the

distance increases. Examples of these models are hierarchical clus-

tering algorithm and its variants.

• Centroid models: These are iterative clustering algorithms in which

the notion of similarity is derived by the closeness of a data point to

the centroid of the clusters. K-Means clustering algorithm is a pop-

ular algorithm that falls into this category. In these models, the no.

of clusters required at the end have to be mentioned beforehand,

which makes it important to have prior knowledge of the dataset.

These models run iteratively to find the local optima.

• Distribution models: These clustering models are based on the no-

tion of how probable is it that all data points in the cluster belong

to the same distribution (For example: Normal, Gaussian). These

models often suffer from overfitting. A popular example of these

models is Expectation-maximization algorithm which uses multi-

variate normal distributions.
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• Density Models: These models search the data space for areas of

varied density of data points in the data space. It isolates various

different density regions and assign the data points within these re-

gions in the same cluster. Popular examples of density models are

DBSCAN and OPTICS [238].

Many studies have compared the computing performance and clus-

tering accuracy of different clustering algorithms [94,214,275]. In spite of

that, they concluded there was no superior clustering algorithm, but the

performance of the clustering algorithm depends heavily on the nature

of dataset. The present study carries out automatic categorisation of lip

traits by using Kmeans++ clustering technique. The standard Kmeans has

been successfully utilised in many computer vision application especially

in medical image processing (e.g., see [167, 209]. The Kmeans++ cluster-

ing algorithm has been shown to provide better categorisation (cluster-

ing) results comparing to standard Kmeans [19, 152] by updating the ini-

tialization mechanism to select cluster centroids.

Kmeans++

This method work on the same concept of kmeans for data clustering by

choosing C initial centroids, where C is a user specified parameter. The

most common form of standard kmeans is deceptively simple: the collec-

tion of points are assigned to the closest centroid to form the cluster, then

compute new centroids based on new clusters, these steps repeated un-

til the centroids remain the same (no change). kmeans++ outperformed

kmeans, both by achieving a lower potential value and also by completing

faster because Kmeans++ addressed the problem of choosing the cluster

center by specifying a procedure to initialize the cluster centers before

proceeding with the standard kmeans optimization iterations. With the

kmeans++ initialization, the algorithm is guaranteed to find a solution

that is O(logC ) competitive to the optimal kmeans solution [19, 152].

Cluster validation approaches

Determining the number of clusters relies on the cluster validity indexes.

In order to determine the optimal number of clusters C∗, other parame-

ters are fixed and parameter C is optimised by the validity indexes. The
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steps for determining the optimal number of clusters is shown in Fig. 5.7.

Given the dataset M , a specific clustering algorithm and a fixed range of

number of clusters [C mi n,C max], thus basic procedure involves the fol-

lowing:

• Repeat a clustering algorithm successively for the number of clus-

ters C from the predefined range [C mi n,C max].

• Select the C∗ for which the grouping provides the best result ac-

cording to the validity index.

• Compare the optimal C∗ value with external information if avail-

able.

Figure 5.7: Validating the quality of clustering

In this work, three cluster validation methods were used to specify the

number of clusters for each lip traits.

Silhouette index(SI) The silhouette index (SI) validates the clustering per-

formance based on the pairwise difference of between and within-cluster

distances. Moreover, the optimal cluster number is specified by maximis-

ing the value of this index. This index is computed by:

s(i ) = (b(i )−a(i ))

M ax {a(i ),b(i )}
(5.5)

where a(i ) is the average distance between the i th element and all

other elements within the same cluster while b(i ) is the minimum aver-

age distance between the element i th to any other cluster, of which the

element i th is not a member [178, 229].
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Dunn index the Dunn index (DI) measures the minimum pairwise dis-

tance between objects in different clusters as the inter-cluster separation

and the maximum diameter among all clusters as the intra-cluster com-

pactness1. The optimal cluster number is specified by maximizing the

value of this index. To calculate the Dunn index we firstly have to com-

pute the distances between all the data points as follow:

Dunn = mi n1≤i≤c

{
mi n

{
d(ci ,c j )

max1≤k≤c (d(Xk ))

}}
(5.6)

where d(ci ,c j ) defines the intercluster distance between cluster Xi

and X j and d(Xk ) is the intracluster of cluster (Xk ) and c is the number of

cluster [178, 229, 230].

Calinski-Harabasz index(CH) The Calinski–Harabasz index (CH) evaluates

the cluster validity relying on the average between- and within cluster

sum of squares. CH index calculates separation based on the maximum

distance between cluster centers, and measures compactness depending

on the sum of distances between objects and their cluster center. In addi-

tion, the optimal cluster number is specified by maximizing the value of

this index. This index is computed by:

C H = tr ace(SB )

tr ace(SW )
.
np −1

np −k
(5.7)

where (SB ) is the between cluster scatter matrix, (SW ) the internal

scatter matrix, np the number of clustered samples, and k the number

of clusters [229, 230].

5.1.6 Visualisation using partial least squares regression

Finally, we would like to analyse the relationship between automatically

or manually determined traits categories and the geometric character-

istics of the corresponding facial region. A common approach to dis-

cover the relationships in data is regression. The challenge in using dense

data is the large number of correlated dependent variables in compari-

son to the number of observations, leading to model instability when us-

ing the linear least squares regression. We have addressed this problem

1Compactness measures how closely related the objects in a cluster are [178]
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by using the more advanced technique of partial least squares regression

(PLSR) [136].

The aim of partial least squares regression is to establish a linear rela-

tionship between two sets of variables, X and Y , where X is the set of de-

pendent variables and Y is the set of independent variables. In our case,

Y is the set of manual or automatic categories dummy variables while X

is the set of the x, y , and z coordinates of all vertices in a regularised facial

mesh.

The main difference between linear regression and Partial Least Squares

regression is that the latter treats both sets of variables symmetrically

since they are both assumed to be subject to a common underlying cause,

whereas linear regression considers one set to determine the other.

In addition, linear regression is based on a statistical model where all

error is attributed to the dependent variable since it is assumed that the

independent variable is measured with zero error. This stands in sharp

contrast to PLS where no underlying model is used so no errors are at-

tributed to either set of variables.

A third significant difference in the case of more than one measure-

ment lies in the fact that PLS assesses the covariance between two com-

plete sets of variables, whereas multiple linear regression calculates the

regression coefficient for a dependency on each parameter separately

keeping all other parameters constant [310]. However, also with PLS it is

possible to keep every parameter but one approximately constant since it

depends on how X in equation (5.9) is constructed.

Taking the above properties of the different kinds of regression into

account it becomes clear that PLS regression is the more suitable ap-

proach when different effects in the lips need to be investigated where it

is not clear yet what their mutual effects will be. Indeed, if the first of two

highly correlated parameters is changed without constraining the second

one to remain constant, the effect on the second parameter caused by the

first one can be visualized. In equation (5.8) X and Y are both matrices

where each column represents the values for a different 3D face or the

lips area of the face of the ALSPAC database. Each row of X represents

the values for a different parameter and each row of Y represents an x,

y or z coordinate of a point on the 3D face or its lips area. X and Y in

equation (5.9) on the other hand are column vectors where X contains
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values that indicate the degree of change for every parameter in X , which

means that for every parameter of X that needs to be kept constant, the

corresponding value in X is equal to zero. The column vector Y is the cal-

culated effect on the coordinates of the 3D face lips area or the whole face

due to X . Equation(5.10) explains how a new shape Ŷ can be obtained

from the old one Ỹ [224].

Y =βX (5.8)

∆Y =β∆X (5.9)

Ŷ = Ỹ +∆Y (5.10)

The calculation of is preceded by an orthogonal projection of the ma-

trices X and Y similar to the projections in PCA. However this time the

projections are not calculated based on eigenvalue decomposition of the

variance-covariance matrix, as is the case in PCA, but on singular value

decomposition (SVD) of the covariance matrix describing the covariance

between the two sets. The reason for choosing SVD is that this covariance

matrix is not necessarily a square symmetrical matrix in contrast to ordi-

nary covariance matrices, because it is the covariance between two sets

of variables that are in general not of the same size [310]. The orthogonal

space is a simplified space where also the search for the direction of main

covariance between the two sets to calculate beta is greatly simplified,

just like in PCA where the simplified orthogonal space made it obvious to

find the direction of main variance in a dataset.

However, whilst categorical variables with two values may be di-

rectly entered as predictor or predicted variables in a multiple regression

model, the categorical variables with more than two values cannot be en-

tered directly into a regression model, therefore, dummy variables will be

used [261].

A dummy variable is an artificial variable created to represent an at-

tribute with two or more discrete values rather than continuous values as

in standard regression. Therefore, dummy variables are created in such

situations to force the regression algorithm to analyse attribute variables

correctly. The categorical variables (labels) were converted into dummy
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variables [261]. For C categories, we need to C−1 dummy variables before

starting the regression process to determine their multiple and partial ef-

fects on the lips region.

The effects of traits categories on lip morphology can be illustrated us-

ing color maps. Regression coefficients define a set of weights on each 3D

face vertex. Together they define the magnitude and the direction of the

vertex displacement per unit of the predictor (the predictors here are the

label dummy variables). The values of interest represented in the color

maps are: (1) the ‘partial coefficients’ (magnitude); (2) the proportion of

the variance at each vertex explained (partial R2) by the predictor; and (3)

the significance of the effect at each vertex [61, 185].

5.2 Results

Six computational experiments were designed in order to assess the per-

formance of proposed approaches for lips traits classification and cate-

gorisation. Experiments 1, 2, 3 and 4 were designed to investigate the best

features to classify lip traits using the manual labels provided in [295].

In these experiments, the classification performance is measured using

classification accuracy and AUC (Area Under ROC Curve) values. These

values are the average results for 5-folds2 cross validation runs. In Exper-

iment 5, the proposed automatic approach for lips traits catogrisation is

assessed. Finally, in Experiment 6, the effectiveness of manual and au-

tomatic categorisation are compared using visualisation method. A de-

tailed explanation of these experiments is provided in the subsequent

subsections.

5.2.1 Experiment 1: Classification using 3D Euclidean distances

The Euclidean distances between the landmarks defining the lip traits, as

shown in Fig. 5.6(a), were used to classify the lip traits in this experiment

because this distance measurement has used in many face morphology

analysis studies (Section 2.3.2). The Euclidean distances between the

landmarks pairs related to certain lip traits are combined together to form

the classification descriptor, for example, five distances combined to clas-

sify the philtrum shape. Table 5.2 lists the accuracies as well as the AUC

24745 ALSPAC face meshes were used in the classification task
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values for the classification performed using SVM and boosting classifiers

for all lip traits except for the lower lip tone. These accuracies indicate the

Euclidean distance is shown to be unsuitable for lips traits classification,

providing poor classification accuracies. However, the results are approx-

imately the same for both preprocessing methods, which indicates the

Euclidean distance measurement is not very sensitive to the mesh reso-

lution. The results are shown for both regularised and non-regularised

facial meshes.

Table 5.2: Classification results based on Euclidean distance: accura-
cies and AUC values. The classification is performed using the SVM and
boosting methods for the regularised and non-regularised meshes.

non-regularised mesh Regularised mesh
Lip traits SVM boosting SVM boosting

Accuracy
Philtrum shape 56.7 62 56 60.9
Cupid’s bow 56 62.7 55.4 62.5
Upper lip vermilion contour 56.6 60 57 58.9
Lower lip vermilion contour 57 61.5 56 60.7
Lower lip-chin shape 55 60.8 55.5 60.2

AUC values
Philtrum shape 0.558 0.628 0.552 0.615
Cupid’s bow 0.566 0.633 0.560 0.622
Upper lip vermilion contour 0.570 0.620 0.577 0.610
Lower lip vermilion contour 0.567 0.605 0.548 0.610
Lower lip-chin shape 0.553 0.605 0.549 0.600

5.2.2 Experiment 2: Classification using 3D geodesic distance

The second experiment used geodesic distances for the lip traits clas-

sification. These were used because many studies (e.g., see [119, 125])

suggest that geodesic distances could describe 3D models better than

Euclidean distances. The geodesic distances were calculated using the

fast marching and exact geodesic algorithms; these distances were be-

tween landmarks in the lips region, as shown in Fig. 5.6(a). Table 5.3

lists the classification results obtained using these features with both

classification methods (SVM and boosting), for the regularised and non-

regularised meshes. The accuracies were better when they compared

with the results obtained using an Euclidean distance measure. The re-

sults also show little sensitivity to the preprocessing method, since the

exact method is utlised to calculate the geodesic distances for regularised

mesh and this provides better performance comparing to fast marching
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method (Section 4.3.3).

Table 5.3: Classification results based on geodesic distance: accuracies
and AUC values. The classification is performed using the SVM and
boosting methods for the regularised and non-regularised meshes.

non-regularised mesh Regularised mesh
Lip traits SVM boosting SVM boosting

Accuracy
Philtrum shape 61.8 66.9 61 65.7
Cupid’s bow 60.9 65.6 60.2 64.5
Upper lip vermilion contour 59.6 65 58.7 63
Lower lip vermilion contour 59.9 65.6 58.6 64
Lower lip-chin shape 62 67.3 61 65.6

AUC values
Philtrum shape 0.614 0.668 0.61 0.653
Cupid’s bow 0.595 0.664 0.595 0.643
Upper lip vermilion contour 0.604 0.667 0.608 0.650
Lower lip vermilion contour 0.605 0.672 0.609 0.630
Lower lip-chin shape 0.624 0.659 0.618 0.654

5.2.3 Experiment 3: Classification using 3D geodesic path cur-

vatures

The previous two experiments utilised the Euclidean and geodesic dis-

tances as morphological lip features, which are traditionally used for clas-

sification. In contrast, the third experiment is based geodesic path curva-

ture descriptor. As explained in Section 4.3 this descriptor combines the

mean curvature, Gaussian curvature, shape index, and curvedness calcu-

lated for the points of the geodesic path between landmarks (Fig. 5.6(a)).

The combination of paths’ curvatures for each lip trait represent the clas-

sification feature descriptor for this trait.

The lower lip tone was the most difficult morphological trait to clas-

sify, because its geometric features have to be determined in a narrow

area very close to and below the lower lip contour. To this end, we used

several geodesic paths approximately parallel to the lower lip contour to

cover the desired area, as shown in Fig. 5.6(b). To find the optimal number

of such paths and the distance between them, tuning tests were carried

out that compared the classification accuracies. The best accuracy was

obtained for five paths separated in the vertical direction approximately

by 2 mm. Table 5.4 lists the classification accuracies and AUC values for

both classification methods (SVM and boosting) for the regularised and

non-regularised meshes. The classification accuracies increase markedly,
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for non-regularised meshes the boosting classification accuracies are ap-

proximately between 71%− 77%, while the classification accuracies for

regularised meshes are approximately between 67%−72%. The classifi-

cation accuracies depend on mesh resolution because the curvature fea-

tures are sensitive to mesh resolution, which confirms the inference made

in [102].

Table 5.4: Classification results based on geodesic path curvatures: accu-
racies and AUC values. The classification is performed using the SVM and
boosting methods for the regularised and non-regularised meshes.

non-regularised mesh Regularised mesh
Lip traits SVM boosting SVM boosting

Accuracy
Philtrum shape 68 74.8 64.9 70.6
Cupid’s bow 65 70.7 62 67.4
Upper lip vermilion contour 66 75.7 62.8 69.7
Lower lip vermilion contour 66 74 61.8 70.6
Lower lip-chin shape 66.8 75.5 63.7 71.8
Lower lip tone 67 76.8 63.7 72

AUC values
Philtrum shape 0.665 0.759 0.640 0.712
Cupid’s bow 0.637 0.694 0.615 0.662
Upper lip vermilion contour 0.654 0.738 0.618 0.690
Lower lip vermilion contour 0.649 0.732 0.625 0.689
Lower lip-chin shape 0.653 0.750 0.655 0.705
Lower lip tone 0.675 0.756 0.647 0.714

5.2.4 Experiment 4: Classification using combination of features

In this experiment, the classification performance was explored by us-

ing a combination of the Euclidean distance, geodesic distances and

geodesic curvature features as classification descriptor since many stud-

ies used different geometric features combination in many 3D face ap-

plications (e.g. see [89, 170]. The Min-Max scaling approach was used to

normalise the data to a fixed range zero to one [225].

The best performance was achieved when the geodesic distance and

curvature features were combined in classification experiment. Table 5.5

displays the classification results using different combinations of features

for the non-regularised and regularised faces. Using a combination de-

scriptor from the geodesic curvature features and the geodesic distances

increase the classification accuracy. For non-regularised meshes boost-

ing classification accuracies are approximately between 72%−79%. While

the classification accuracies for regularised meshes are between approxi-
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mately 70%−74%.

Table 5.5: Classification results based on different combinations of fea-
tures: error rates and AUC values. The classification is performed using
the SVM and boosting methods for the non-regularised and regularised
meshes. GD stands for geodesic distances, ED for Euclidean distances,
and GC for geodesic path curvature features.

Combination of features
Lip traits GC+ED GC+GD GC+ED+GD

SVM boosting SVM boosting SVM boosting
Accuracy (non-regularised faces)

Philtrum shape 66.8 72 69 76.8 69 76.5
Cupid’s bow 65 70 67 72 65.6 71.4
Upper lip contour 65 74.5 67 78.5 64.8 78
Lower lip contour 64 71.5 66 76.4 65.8 75.5
Lip-chin shape 64.8 73.2 69 78 67 76.8

AUC values (non-regularised faces)
Philtrum shape 0.655 0.725 0.664 0.770 0.680 0.772
Cupid bow 0.635 0.683 0.656 0.705 0.648 0.690
Upper lip contour 0.65 0.747 0.651 0.778 0.651 0.761
Lower lip contour 0.656 0.699 0.645 0.752 0.657 0.743
Lip-chin shape 0.640 0.723 0.690 0.759 0.665 0.757

Accuracy (regularised faces)
Philtrum shape 64.6 79.8 65.9 72.6 65.4 71.8
Cupid bow 61.5 65.3 63.7 69.7 61.9 68.8
Upper lip contour 60 69.5 63.8 73.2 62.8 71.7
Lower lip contour 62 70 64.8 72.6 64.9 72.6
Lip-chin shape 62 69.5 64.7 74.4 62.9 73.6

AUC values (regularised faces)
Philtrum shape 0.637 0.700 0.648 0.723 0.646 0.729
Cupid bow 0.605 0.645 0.643 0.687 0.615 0.674
Upper lip contour 0.604 0.685 0.629 0.728 0.630 0.697
Lower lip contour 0.600 0.680 0.640 0.698 0.635 0.692
Lip-chin shape 0.61 0.686 0.638 0.737 0.630 0.709

5.2.5 Experiment 5: Unsupervised categorisation of lips traits

In this experiment, the combination of geodesic curvature features and

geodesic distances were used to categorise (cluster) the lip morphologi-

cal traits without relying on manual categories to propose an automatic

categorisation system. An unsupervised clustering scheme was utilised

to partition these features into multiple clusters, each defined by a cen-

troid, the Kmeans++ algorithm was used to perform the clustering.

Kmeans++ starts with allocation one cluster center randomly and

then searches for other centers given the first one. So this algorithm uses

random initialization as a starting point, this can give different results on

different runs. Therefore, the Kmeans++ clustering algorithm was run 100
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times. Out of 100 results, the clustering results that produced the minimal

sum of squared distances score was chosen.

An analysis for the optimum number of clusters was carried out using

internal cluster validation techniques. We computed the validity indexes

CH, DI, and SI for all traits with the number of clusters C , ranging from

2 to 9, with the tests repeated 50 times to find a stable number of clus-

ters. For example, Fig. 5.8 plots the validation results for lips traits, for

the philtrum shape; the optimum number of clusters is 5 (based on DI

and SI) or 7 (based on CH). For the other traits, the optimum number of

clusters was obtained in the same manner : 3 for Cupid’s bow, 3 or 4 for

the upper lip contour, 3 or 4 for the lower lip contour, 5 for the lower lip-

chin shape, and 5 for the lower lip tone shape. These results are almost

the same as those produced by a medical expert in [295]. There are slight

differences: for example, the philtrum shape was categorised manually

into 7 clusters, while automatic categorisation sometimes produced five

clusters and sometimes seven clusters. To be able to compare to the man-

ual results in the next experiment, the philtrum shape with 7 automatic

clusters are used. The numbers in Table 5.6 shows the percentage of the

number of times the validation methods chose a certain number of clus-

ters.

Philtrum shape
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Cupid’s Bow shape

Upper lip contour shape
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Lower lip contour shape

Lower lip- chin shape
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Lower lip- Tone shape

Figure 5.8: Validation index

Table 5.6: The percentage of the number of times the validation methods
chose a certain number of clusters. Different numbers of clusters were
found to be optimum using different validity indices: Dunn’s index (DI),
silhouette index (SI) and Calinski–Harabasz index (CH).

DI SI CH

Traits 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7

Philtrum shape 5 10 35 20 30 0 10 45 10 35 0 0 30 15 55

Cupid’s bow shape 100 0 0 0 0 100 0 0 0 0 80 20 0 0 0

Upper lip vermilion contour shape 70 30 0 0 0 45 55 0 0 0 30 70 0 0 0

Lower lip vermilion contour shape 40 60 0 0 0 55 45 0 0 0 75 25 0 0 0

Lower lip-chin shape 0 25 65 10 0 0 25 60 15 0 0 35 50 15 0

Lower lip tone shape 0 35 55 10 0 5 45 50 0 0 20 35 45 0 0

The best classification accuracy was in the range of 72%−79% for the

manual labels Table 5.5. The boosting classification approach was re-

peated but this time with the automatic labels. Table 5.7 shows classi-

fication accuracies for the combined descriptor from the geodesic cur-

vature features and the geodesic distances, using both the manual and

automatic lips morphological traits labels. In addition, the lower lip tone

classification accuracy using the geodesic curvatures features and the au-
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tomatic categorisation labels was 92.7%, while this trait classification ac-

curacy was 76.8% when the same features and the manual categorisation

labels are used. It is clear the automatic labels classification accuracies

outperform that of the manual labels.

Table 5.7: Boosting classification results using the manual and automatic
lips area traits labels

Trait name Manual categories Automatic categories
Philtrum shape 76.8% 89%
Upper lip contour 78.5% 87.6%
Cupid’s bow 72% 84.8%
Lower lip contour 76.4% 90%
Lip-chin area 78% 86%

5.2.6 Experiment 6: Visualisation of the effect of traits categories

on the lip area

PLS regression was used to characterise the effects of the traits categories

on the regularised 3D faces. All statistical significance tests were based on

1000 permutations [16]. The partial effects (one variable is independent

of the others) in the multivariate regression were coded by the partial re-

gression coefficients. These coefficients define label weights at the mesh

vertices, which were visualised as a heat map; cooler colours represent

weaker effect on the vertex, while warmer colours represent stronger ef-

fect.

As an example, Fig. 5.9 illustrates the regression results for the man-

ual philtrum shape labels, while Fig. 5.10 shows those for the automatic

philtrum shape labels. In these figures the “partial coefficients” corre-

spond to the magnitude of the vertex displacement in 3D; the proportion

of variance that the predictor variable predicts at each individual vertex

is shown in partial R2. The effect of labels was displayed as colour maps

of statistical significance using two colours, with yellow indicating highly

significant results (p-value < 0.001) and green showing less significant or

insignificant results (p-value ≥ 0.001).

In Figures 5.11 and 5.12 the detailed results for all trait dummy vari-

able are visualised, in addition to the partial effect for each trait dummy

variable, the multiple effect for all independent variables combined is

also visualised. As can be seen from the multiple effect visualisation, all

traits categories effect is concentrated and significant in the lips area.
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partial coefficients R2 p < 0.001 (yellow)

Figure 5.9: Regression results: effect of a manual label (philtrum shape)
on the lower face

partial coefficients R2 p < 0.001 (yellow)

Figure 5.10: Regression results: effect of an automatic label (philtrum
shape) on the lower face

5.3 Discussion

The first three experiments in the present study aimed to determine

which facial features were the most effective in automatic classification of

the lip traits using non-regularised and regularised 3D meshes. Although

fairly effective for both the high and low resolution data, the Euclidean

distances alone did not produce good enough classification accuracies.

Experiment 2 showed that the geodesic distances between landmarks

provided better classification accuracies. We attribute this to geodesic

distances being more informative than Euclidean distance in describing

facial surfaces; the classification accuracies are higher with only small dif-

ferences between the non-regularised and regularised data. Experiment

3 used 3D geometric curvatures of the shortest geodesic path between

two anthropometric landmarks as features in the classification experi-

ments. The accuracies were found to improve markedly, which is due

to the curvature features taking into account local facial geometry and,

hence, characterising the lip shapes much better than the Euclidean and

geodesic distances.

Most of the previous studies [110, 119] have focused on using com-

binations of facial features to achieve higher classification accuracies. In
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the present study, we also adopted this approach and used a combination

of Euclidean and geodesic distances with geodesic curvature features (see

Table 5.5) to produce feature descriptors for the lips morphology classifi-

cation. The highest accuracy was obtained when geodesic distances were

combined with geodesic curvatures. The SVM (Support Vector Machine)

method failed to classify the lip traits efficiently, in contrast to the boost-

ing method, because the data are highly imbalanced in more than one

class; this finding seems to confirm the inference made in [45].

In spite of using different types and combination of features to clas-

sify the lip traits, the classification accuracies were not very high for the

lips traits manual categories provided in [295]. This encouraged us to

cateogrise the lip traits automatically using Kmeans++ algorithm. Three

internal validation techniques were used to select an optimum number

of clusters for each lip trait. The selection process was repeated 50 times

to find stable numbers of clusters. For the lower and upper lip contours,

these techniques were found to show quite contradicting results for three

and four clusters. For this reason, we used the categorisation results for

both alternatives in Experiment 6.

In Experiment 6, a new method was used to visualise the automatic

and manual categorisation (labeling) regression results for the lips area.

All previous studies [254], [185], and [61] dealt with continuous variables.

By contrast, the present study seems to be the first to deal with discrete

variables (automatic or manual categories) for face morphology classifi-

cation. Using dummy variables is a way to deal with the discrete variable

problem; for example, six dummy variables were used to represent the

philtrum shape trait which fall into seven classes. Figures 5.9 and 5.10

show the regression results for the philtrum shape trait with one dummy

variable.

Figure 5.11 details the regression results for the manual categories

showing the multivariable effect and contribution of each individual

dummy variable. Figure 5.12 details the regression results for the auto-

matic categories.

On careful examination of the results, one can see that our automatic

categories are fairly similar to the manual categories [295]. However, for

three out of seven traits, the lower lip-chin, lower lip contour and lower lip

tone shape, the automatic categorisation approach provide much better
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Figure 5.11: Visualisation of the effect of manual categories on the lower
face based on the regression results for dummy variables. The ‘Partial
coeffs’ columns display heat maps of the partial regression coefficients
associated with mesh vertices (warmer colours correspond to stronger
effects). The ‘R2’ columns display heat maps of proportion of the vari-
ance. The ‘p < 0.001’ columns show two-colour maps of the statistical
significance of the effect: yellow for p-value < 0.001 and green for p-value
≥ 0.001.
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categorisation results, as the automatic categories effect appears at the

right areas (compare Figures 5.11 and 5.12). In particular, for the lower

lip tone, the manual categories show a strong effect (red colours) near

the oral commissures rather than in the mentolabial sulcus area, which is

under the lower lip contour.

The cluster validity methods did not give us a clear indication of the

optimum number of clusters for the upper and lower lip contours. How-

ever, it is apparent from Fig.5.12 that using four clusters would be prefer-

able in both cases as the colours maps for respective dummy variables

highlight the correct areas better.

In general, the classification accuracy using the automatic categories

has outperformed the manual categories classification accuracy by at

least 8%. All this testifies that the approach for automatic categorisation

of 3D facial morphology proposed in this study has a considerable poten-

tial and gives an indication if these traits categories able to produce genes

association when GWAS is performed as will be explained in Chapter 8.
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Figure 5.12: Visualisation of the effect of automatic categories on the
lower face based on the regression results for dummy variables. The
‘Partial coeffs’ columns display heat maps of the partial regression co-
efficients associated with mesh vertices (warmer colours correspond to
stronger effects). The ‘R2’ columns display heat maps of proportion of
the variance. The ‘p < 0.001’ columns show two-colour maps of the sta-
tistical significance of the effect: yellow for p-value < 0.001 and green for
p-value ≥ 0.001.
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5.4 Summary

In this chapter an automatic approach for lips traits supervised and un-

supervised classification using geodesic curvature features are proposed,

these approaches can be used for any face morphology traits. The PLSR

algorithm was utilised in a new application, for visualising the affect of

manual or automatic face traits categories on the 3D face mesh. In the

next chapter, an approach for gender analysis and discrimination is pre-

sented using the same 3D geometric features.



Chapter 6

A 3D MORPHOMETRIC

PERSPECTIVE FOR FACIAL

GENDER ANALYSIS AND

CLASSIFICATION

Gender identification plays a remarkable role in social communication.

Humans find this task relatively easy, they are remarkably accurate at

determining the gender of subjects from their facial appearance. Even

with the hairstyle altered, men’s facial hair removed, and no cosmetic

cues, humans can still determine subjects’ genders from their faces with

more than 95% accuracy [2, 36, 41, 46, 50, 183, 206]. However, achieving

similar accuracy in automatic gender classification using computers re-

mains a challenge. It is crucial in many applications, for instance mak-

ing human-computer interaction (HCI) more user friendly, conducting

passive surveillance and access control, and collecting valuable statis-

tics, such as the number of women who enter a store on a given day.

Researchers have focused on developing various techniques for gender

classification since the 1990s, when the first automated system (SexNet)

capable of gender recognition using the human face was created [112].

Another essential topic of research, for more than two decades, has

been studying the relationship between facial traits and gender classifi-

cation or face recognition. Enlow et al. [93] contend that men have wider

and longer noses compared to women and that the male forehead is more

bowed and slanting than the female forehead, while Shepherd et al. [306]

argue that the female nose is less pointed than the male nose. Establish-

ing which portions of the face and facial morphology features are most

91
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effective for gender classification remains an open research topic due to

the strong dependency on the person’s ethnicity and age.

Direct Euclidean and geodesic distance measures between 3D facial

landmarks have been shown to be popular as local geometric gender clas-

sification features [110, 119]. In this Chapter, the new 3D geodesic path

features which were described in Chapter 3 were assessed in a gender

classification application using the ALSPAC dataset, which was a chal-

lenge as gender discrimination in young subjects is much more difficult

than in adults [59]. The results were then compared to the gender classifi-

cation results for the same dataset obtained by Toma [276], where he used

the Euclidean distances and angle measures between face landmarks for

gender classification purpose. The important contribution of this chapter

was determining the most discriminative portions of the face for gender

discrimination in teenage Caucasian populations.

The remainder of this chapter is organised as follow: In Section 6.1.

the proposed gender analysis approach is described and the computa-

tional experiments for gender classification and face morphology gender

discriminating ability are presented in Section 6.2. In Section 6.3 discus-

sion of the acquired results and comparing them with other research re-

sults are highlighted. Finally, a general summary is described in Section

6.4.

6.1 The proposed gender analysis approach

An overview of the proposed gender analysis approach is provided in

Fig.6.1, and the algorithm’s different components are explained below.
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Figure 6.1: Block diagram of the proposed gender analysis system using
novel and traditional 3D geometric features

6.1.1 Preprocessing

This work used 4,745 samples (all British adolescents: 2,512 females and

2,233 males) from the ALSPAC dataset; all of the 3D faces had neutral ex-

pressions and were posed as frontal views. For each face, all 21 of the

3D landmarks were used to extract the features descriptors. The non-

regularised preprocessing method was used only for preprocessing the

data for gender analysis since the previous chapter showed the lips mor-

phology classification accuracies in case the non-regularised preprocess-

ing were higher than regularised preprocessing method accuracies.

6.1.2 Feature extraction

A: Geodesic path extraction

Gabriel Peyre’s MATLAB fast-marching toolbox [216] was used to extract

the geodesic paths and geodesic distances between landmarks. These

paths were selected depending on Toma et al. [276] gender classification

results, he concluded that only 24 distances provided gender recognition

efficiency of over 70% from the 250 Euclidean distances which they ex-

tracted between ALSPAC data facial landmarks, thus in current work the

landmarks pairs which their distance recorded highest classification ac-
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curacies provided to us from [276] was used to extract the geodesic curva-

ture features between them. Testing more landmarks pairs such as paths

between the nose tip and eye corners will be planed for future work.

Figure 6.2 illustrates the paths that were extracted for each region of

the 3D face: the forehead/eyes region, the nose, the upper lip, and finally

the lower lip/chin region. For each face, eight paths were extracted from

the forehead/eyes region, nine paths from the nose region, ten paths from

the upper lip region, and six paths from the lower lip/chin region.

Figure 6.2: Geodesic paths used in the algorithm. The curvature features
were extracted for these paths’ surface points. Each face trait or region
has a different number of geodesic paths. A: forehead/eyes paths; B: nose
paths; C: upper lip paths; D: lower lip/chin paths

Curvature features

The principal curvatures were first computed for each path’s surface

point; the other features (mean curvature, Gaussian curvature, shape in-

dex, and curvedness) are then calculated on the basis of those curvature

calculations, following the outlined procedure in Sections 4.1.1 and 4.2.1.

The ring size was selected experimentally to acquired better classification

results, the ring size 2 was provided better classification accuracy.
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Normalisation of curvature features

The number of vertices included in a geodesic path varies for different

faces. A normalisation procedure was required to ensure that the respec-

tive paths of all facial images have the same number of points at which

curvature features are measured. To this end, a histogram distribution

was calculated for each feature; the number of bins selected was 5, 10, 15,

20, or 25, depending on the maximum and minimum number of points

in a path. This procedure provided us with four vectors of equal length:

mean curvature, Gaussian curvature, shape index, and curvedness. These

vectors were then concatenated to produce a single features descriptor,

for each path in a face, then the paths features for each region of face k by

concatenating its path descriptors:

Dk
nose = [Dk

1 , . . . ,Dk
8 ] (6.1)

Dk
eyes–forehead = [Dk

1 , . . . ,Dk
8 ] (6.2)

Dk
upper lip = [Dk

1 , . . . ,Dk
10] (6.3)

Dk
lower lip–chin = [Dk

1 , . . . ,Dk
6 ] (6.4)

6.1.3 Euclidean and geodesic distances calculation

Past researchers have frequently used geodesic and Euclidean distances

as features for 3D facial recognition, 3D facial morphology analysis, and

gender identification. In [95], the 3D Euclidean distance was used to

measure the deviation of the morphological face traits from the normal

face; these distances have been used also to delineate syndromes in [11].

Studies have shown, however, that geodesic distance is more appropri-

ate for gender identification and for measuring levels of facial masculin-

ity/femininity [109, 110].

For that, this work uses the Euclidean and geodesic distances as fea-

tures for gender classification in order to compare their performance with

the proposed geodesic curvature features (i.e. mean curvature, Gaussian

curvature, shape index, and curvedness for the geodesic path between

landmark). For each face, 33 geodesic distances and 33 Euclidean dis-

tances were calculated between the same landmarks that were utilised to

extract the geodesic paths shown in Fig. 6.2. The fast marching algorithm

and Eq. (4.6) were used to produce the geodesic and Euclidean distances,
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respectively.

6.1.4 Classification

The LDA classifier was used to determine gender using a five-fold vali-

dation process, as suggested in [105] for large datasets and our prelim-

inary experiments the LDA classifier provide better classification result

comparing to SVM. Using this process, the 4,745 samples were first parti-

tioned into five equally sized segments or folds; five iterations of training

and validation were subsequently performed in such a way that within

each iteration, a different fold of the data was held for validation while

the remaining four folds were used for training purposes.

LDA classifier

This work uses linear discriminant analysis (LDA) as a binary classifier to

predict the gender of 4,745 3D facial meshes since this classifier is easy

to implement and does not require the adjustment of any specific tuning

parameters. LDA has been successfully used for gender classification in

the past [31, 110].

In essence, LDA attempts to maximise the ratio of between class scat-

ters to within class scatter.

Assume we have m dimensional samples {x1, x2, ...., xn}, N1 of which

belong to W1(first class), and N2 belong to W2 (second class). Then, to

compute the linear discriminant projection for these two classes, the fol-

lowing steps should be followed:

Calculate the classes’ mean:

µ1 = 1

N1

∑
Xi∈W1

Xi , µ2 = 1

N2

∑
Xi∈W2

Xi (6.5)

Next, calculate the classes’ covariance matrix:

S1 =
∑

Xi∈W1

(
Xi −µ1

)(
Xi −µ1

)T , S2 =
∑

Xi∈W2

(
Xi −µ2

)(
Xi −µ2

)T (6.6)

From that calculation, the within-class scatter matrix SW = S1+S2 and

the between-class scatter will be SB = (µ1−µ2)(µ1−µ2)T . The LDA projec-

tion is then obtained as the solution to the generalised eigenvalue prob-
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lem.

SW
−1SB =λW (6.7)∣∣SW
−1SB −λI

∣∣= 0 (6.8)

Gender recognition is then established based on the calculation of

the Euclidean distance between the query or the tested and extracted 3D

facial feature descriptor after projection to the LDA space and the two

classes’ means, as well as the following projection to the LDA space µ∗
1 =

(W ∗)Tµ1 and µ∗
2 = (W ∗)Tµ2 [109, 110, 298].

Verification and validation techniques

Three measures are used to access the performance of the LDA classifier:

accuracy, sensitivity, and specificity [314]:

Accur ac y = T P +T N

T P +F P +T N +F N
∗100 (6.9)

Sensi t i vi t y = T P

T P +F N
∗100 (6.10)

Speci f i ci t y = T N

F P +T N
∗100 (6.11)

where T P is the number of true positives (i.e., LDA identifies a man

who was labeled as such), T N is the number of true negatives (i.e., the

classifier recognises a woman who was labeled as such), F P is a false male

classification, and F N is a false female identification. Accuracy indicates

overall detection performance.

6.2 Experimental results

Five computational experiments were designed for this study in order to

determine an optimal set of features for gender classification; an inves-

tigation was also conducted on the influence of different portions of the

face on gender classification accuracy within the ALSPAC dataset. Experi-

ments 1 through 3 determined which facial features were best suitable for

gender classification; it was also investigated which facial portions (eyes,

forehead, chins, lips, and nose) were most important for the task. Ex-
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periments 1 and 2 used the traditional Euclidean and geodesic distances

as classification features, while Experiment 3 utilised our novel feature

descriptors. Experiment 4 then examined the effect of combining the Eu-

clidean distance, geodesic distances and geodesic path curvature features

on the classification scores. In these experiments, the classification per-

formance was measured using classification accuracies, sensitivity and

specificity values. These values are the average results for 5-folds cross

validation runs.

Finally, Experiment 5 sought the most discriminatory features for gen-

der recognition in each facial region. The evaluation criterion for all of

the experiments was the average gender classification accuracy using the

five fold cross validation. In addition, sensitivity and specificity measures

were also used. A detailed explanation of these experiments is provided

in the following subsections.

6.2.1 Experiment 1: Classification using 3D Euclidean distances

The gender was classified by using 33 3D Euclidean distances extracted

from the 21 biologically significant landmarks. For each part of face, the

Euclidean distances between its landmarks are concatenated to form the

classification descriptor, for example, descriptor contain 8 Euclidean dis-

tances were used to classify the gender based on nose region only. The

proposed algorithm classified 79.4% of faces correctly as either male or fe-

male. Table 6.1 shows the gender identification accuracies facial portions,

in addition to the sensitivities and specificities. The Euclidean distances

were calculated because of previous work [276] on the ALSPAC dataset

used these as features for gender recognition purposes.
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Table 6.1: Euclidean distance gender classification results. Accuracy mea-
sures the gender classification performance of the 3D Euclidean dis-
tance features, based on the different facial portions, while sensitivity
and specificity measures the features’ accuracy in identifying a male and
specificity indicates the features’ ability not to identify a false male

Face parts Accuracy Sensitivity Specificity

Eye and forehead 67.3 0.69 0.66

Nose 69.7 0.64 0.71

Upper lip 65.6 0.6 0.68

Lower lip and chin 65 0.61 0.63

All parts 79.4 0.72 0.77

6.2.2 Experiment 2: Classification using 3D geodesic distances

The second experiment used geodesic distances to predict facial gender

scores; many previous studies [43, 119, 125] suggested that geodesic dis-

tances may represent 3D models better than 3D Euclidean distances, thus

in this work they have been used. Using the fast marching algorithm, 33

geodesic distances were calculated; these distances were extracted from

3D facial region landmarks to form the classification features descriptor,

as shown in Fig. 6.2. The acquired gender classification results using these

features are shown in Table 6.2.

Table 6.2: Geodesic distance gender classification results. Accuracy mea-
sures the gender classification performance of the 3D Geodesic distance
features, based on the different facial parts, while sensitivity and speci-
ficity measures the features’ accuracy in identifying a male and specificity
indicates the features’ ability not to identify a false male

Face parts Accuracy Sensitivity Specificity

Eye and forehead 73.2 0.76 0.71

Nose 75.4 0.65 0.77

Upper lip 72.4 0.61 0.7

Lower lip and chin 69 0.7 0.67

All parts 82.6 0.81 0.78
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6.2.3 Experiment 3: Classification using 3D geodesic path cur-

vature

The previous two experiments utilised the Euclidean and geodesic dis-

tances as features for gender identification, both of which are traditional

features for this task. In contrast, the third experiment uses the proposed

features descriptor based on the geodesic path curvatures. As explained

in chapter 4, the basic idea of this features descriptor relies on extracting

the surface points of a geodesic path between landmarks Fig. 6.2, then

determining the mean curvature, Gaussian curvature, shape index, and

curvedness features for those points. The overall gender recognition ac-

curacy was 87.3% this is much better than the results from Experiments 1

and 2. Table 6.3 shows the accuracy results using the geodesic path curva-

ture feature descriptor for each 3D facial region, as well as the sensitivity

and specificity values.

Table 6.3: Geodesic path curvature gender classification results. Accuracy
measures the gender classification performance of the novel Geodesic
path curvature, based on the different facial parts, while sensitivity and
specificity measures the features’ accuracy in identifying a male and
specificity indicates the features’ ability not to identify a false male

Face parts Accuracy Sensitivity Specificity

Eye and forehead 81.5 0.85 0.76

Nose 83.4 0.79 0.88

Upper lip 79.4 0.73 0.81

Lower lip and chin 78.7 0.76 0.72

All parts 87.3 0.9 0.85

6.2.4 Experiment 4: Classification using a combination of fea-

tures

After performing the previous experiments, we were able to rank the

features according to their classification accuracy. The best-ranking re-

sult was achieved when the geodesic path curvature features were used,

whereas the poorest result came about from utilising the Euclidean dis-

tance. In the fourth experiment, the robustness of the gender recogni-
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tion performance was explored by using the combination from the Eu-

clidean distances, geodesic distances (after scaling their values), and the

geodesic path curvature features. The total 3D facial gender recognition

rates are shown in Table 6.4. Overall, an improvement in classification

accuracies were observed. The best performance, 88.6% accuracy, was

achieved when the geodesic distance and the geodesic path curvature

features were concatenated.

Table 6.4: Features combination results. The table shows that in general,
the gender classification validation scores increased when a combination
of 3D geometric features was used

Face parts Accuracy Sensitivity Specificity

Geodesic distance and geodesic path curvature 88.6 0.87 0.9

Euclidean distance and geodesic path curvature 87.9 0.88 0.8

Geodesic and Euclidean distances and Geodesic path curvature 88.3 0.87 0.88

6.2.5 Experiment 5: Landmark discrimination ability

In this work, the proposed gender classification approach depends on

anthropometric landmarks as the basic points to extract different clas-

sification features. Certain landmarks were thus selected for each 3D

facial region in order to extract the Euclidean and geodesic distances

and the geodesic path curvature features following the recommendations

from [276]. The aim of this experiment is to determine for each face part

which landmark pairs delineate the best geodesic curvatures based fea-

tures for discriminating gender. The paths between pairs of landmarks

were ranked depending on their individual classification accuracies us-

ing the best features combination (geodesic distance and geodesic path

curvature) from Experiment 4. In other words, each path curvature fea-

tures used as classification features descriptor in LDA classifier, the paths

ranked according to their classification accuracies.

In spite of using feature selection methods is a significant part of

many machine learning applications dealing with small-sample and

high-dimensional data, but still raise challenges about the interpretabil-

ity and stability of feature selection techniques. Additionally, different

features selection method may provide different results [55,85,120]. Con-

sequently, in this work the classification accuracy used to rank the land-

marks paths and analysis the most discriminative landmark paths ac-
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cording to their classification accuracies. The presented work follows

[276] in using the classification accuracy to capture those landmarks

paths relevant to gender variations.

Table 6.5 illustrates the landmarks’ paths ranks for each 3D face re-

gion, while Fig. 6.3 shows the highest three ranks of landmark paths for

each region.

Table 6.5: Landmark path rankings. This table illustrates the separated
landmarks’ gender classification abilities when their path descriptor fea-
tures were applied using the LDA classifier; 1 represents the highest rank,
while 6 represents the lowest rank

Eyes and forehead Nose Upper lip Lower lip and chin

Landmark Rank Landmark Rank Landmark Rank Landmark Rank

g-n 2 n-prn 3 alL-chL 5 li-ls 2

exL-enL 5 Prn-sn 6 ahR-alR 5 li-pg 1

enL-enR 1 alL-n 4 chL-cphL 3 chL-li 4

enR-exR 6 alR-n 4 cphL-ls 2 chR-li 4

PsL-n 3 alL-prn 1 cphR-ls 2 chL-pg 3

psR-n 3 alR-prn 1 cphR-chR 3 chR-pg 3

enL-n 4 alL-sn 5 cphL-sn 6

enR-n 4 alR-sn 5 cphR-sn 6

alL-alR 2 Sn-ls 1

chL-chR 4
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Figure 6.3: The highest-ranked landmarks’ geodesic paths

6.3 Discussion

The first three computational experiments in this study aimed to deter-

mine which facial features are the most effective in gender classification.

Using only the 3D Euclidean distance (Experiment 1), we found the gen-

der classification accuracy to be 79.4%, which is well below human per-

ceptual accuracy but close to the results 80% by Toma et al. [276]. Ex-

periment 2 demonstrated that the geodesic distance between facial land-

marks provides a better gender recognition score; this is intuitively clear

since geodesic distance is a better measure of face shape than Euclidean

distance. However, the classification accuracy 82.6% determined using

this measure was still below the human accuracy threshold.

The feature descriptors (geodesic path curvatures) were subsequently

evaluated in Experiment 3 and produced a classification accuracy of

87.3%. The proposed geometric descriptor is an amalgamation of the

mean curvature, Gaussian curvature, curvedness, and shape index at the

vertices of the path and thus represents a richer description of the sur-

face than simple Euclidean or geodesic distance measures. Hence, the

obvious improvement in the classification accuracy.

As shown in the previous studies [110, 119], a richer combination of
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facial features can further improve classification accuracies. We explored

the various combinations of Euclidean or geodesic distance with our new

geodesic path features. We achieved a further improvement in the gen-

der classification accuracy (88.6%) using a combination of the geodesic

distance between landmarks and our geodesic path features.

This result compares favorably with other methods for gender clas-

sification. To the best of our knowledge, this is the best published result

based on an anthropometric landmark approach, which was achieved for

a credible large sample of 4,745 facial meshes. Several studies [50,98,110]

used geodesic and Euclidean distances (or their combinations) as geo-

metric gender classification features for both 2D or 3D facial images. The

reported classification accuracies were generally higher than ours, but

these were achieved for much smaller samples. Burton et al. [50] reported

96% accuracy for a sample of 179 faces, while Fellous et al. [98] obtained

90% accuracy for 109 facial images. Gilani et al. [110] achieved 98.5% ac-

curacy for 64 3D facial scans.

Other studies have only utilised global facial features for gender clas-

sification. For example, Wu et al. [298] used raw shape from shading

depth features to achieve a gender classification accuracy of 69.9% with

the FRGCv1 data set comprising 200 subject faces. Lu et al. [180] obtained

a gender classification rate of 85.4% using the vertices of a generic fa-

cial mesh fitted to the raw 3D data as a classification feature descriptor

for the same FRGCv1 data set. Ballihi et al. [24] achieved a classifica-

tion accuracy of 86% using a combination of radial and circular curves

as classification features and specified the curves at the nose, forehead

and cheeks regions, as a compact signature of a 3D face for face recogni-

tion and gender selection. However, it should be noted that the authors

used a small sample of 466 subject faces. It should also be noted none

of the above global methods is suitable for the investigation of specific

relationships between individual facial regions and gender classification

accuracy, which was the aim of this work. The present study operated

on a large population cohort of 4,745 fifteen-year-old Caucasian adoles-

cents; so the gender recognition efficiency identified in this study is likely

to be more robust than that of the other studies based on small samples.

Physiological and psychological research [2,50,208] supports the idea

that facial and gender recognition in the human brain is based more
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on individual regions than on the whole face. For example, Edelman et

al. [88] compared human performance against a computer model in the

classification of gender in 160 adult individuals (80 males, 80 females)

using frontal facial images. The study revealed that humans were better

than the computer model at discriminating females based on the upper

face, whereas for males the human accuracy was better for the lower face.

It was also highlighted that males have thicker eyebrows and larger noses

and mouths than females. Several forensic and anthropometric studies

also showed that the female face, mouth, and nose are smaller than those

of males [95].

Based on this information, the first three experiments conducted in

the present study concentrated on using individual facial parts to deter-

mine the gender recognition capability. Fig.6.4 shows an annotated view

comparing the classification performance among the 3D facial parts for

each feature type (Euclidean and geodesic distances and geodesic path

curvatures).

Figure 6.4: Classification performance using different types of 3D geo-
metric features

As can be seen from Fig. 6.4, the nose is the most important facial part

for gender discrimination in the ALSPAC dataset. In addition, the sensi-

tivity and specificity results shown in Tables 6.2, 6.3 and 6.4 identify the

nasal morphological areas that are most effective in discriminating the

gender of young Caucasian people. This finding is in agreement with the

medical studies [1,8], which addressed changes in nasal shapes and sizes
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in groups of 11 to 17 year old subjects in relation to gender discrimina-

tion. These studies have found that nasal height and nasal bridge length

become fully mature at 15 years of age in males and 12 years of age in

females.

After establishing a set of strong gender differentiating 3D geomet-

ric features, the discrimination capabilities of pairs of landmarks and

their curvature features along the geodesic shortest path between them

that have the best influence on classification are evaluated. This per-

formed by finding prime determinants of classification accuracy using

the LDA classification method. Such landmarks can then form the ba-

sis of a more efficient focused selection of specific manual landmarks or

even assist in developing a suitable directed automated landmark detec-

tion approach. The results indicate that the landmarks that describe 3D

facial profile curves are important in gender classification, as shown in

Fig. 6.3. These findings validate other studies that have relied solely on

3D profile curves. For example, Lei et al. [172] extracted the central verti-

cal profile and the nasal tip transverse profile, and located the face feature

points by analysing the curvature of profiles to obtain ten 3D geometric

face features with an accuracy of 98.8% using the ZJU-3DFED dataset and

an accuracy of 100% with the 3DFACE-XMU dataset. Also, Ter et al. [274]

performed 3D face matching and evaluation using profile and contour

of facial surface to achieve a mean average precision (MAP) of 0.70 and

92.5% recognition rate (RR) on the 3D face Shape Retrieval Contest data

set (SHREC’08) and a MAP of 0.96 and 97.6% RR on the University of Notre

Dame (UND) data set.

Moreover, the path between the internal eyes landmarks (enR-enL),

the Ala shape path (alL-prn-alR), and the Cupid bow path (cphL-ls-cphR)

yield the best characteristic paths for gender classification. These results

have been corroborated by the results from previous study that were con-

ducted on the same ALSPAC data set Toma [276], who worked on whole

3D faces (PCA analysis of a small set of Anthropometric landmarks and

Euclidean distance measures). This study identified approximately the

same face regions but with less accurate classification. Following the pro-

cedure described in Chapter 5 for determining the categorisation labels

statistical effect using PLSR, Fig. 6.5 displays color maps of facial regres-

sion on gender labels, as can be seen, the effect of sex is mainly located in
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the nose area, upper lips, chin, and eyes area and this is compatible with

Fig. 6.4 and Fig. 6.3 results.

(a) partial coeffs

(b) (R2)

(c) p < 0.001

Figure 6.5: Face regressed on sex. Shows the effect magnitude (effect),
Partial R2 indicates the amount of variability in the location of each ver-
tex. P < 0.001 indicates the areas where partial R2 was significant

Finally, the sensitivity and specificity showed little difference between

the above results for facial parts’ gender classification using the geodesic
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and Euclidean distances and the geodesic path curvature features with

the exception of the nose trait. In general, the first four experiments

yielded good specificity and sensitivity results, particularly Experiment

4, in which the geodesic distance and geodesic path curvature features

were integrated. In that experiment, the sensitivity value was 0.87, while

the specificity value was 0.9.

6.4 Summary

Numerous studies have investigated gender classification approaches at

2D or 3D faces but a little of them highlighted the relationship between

face morphology and gender discrimination at certain age group or eth-

nic. In this chapter, a new approach for gender analysis and discrimina-

tion is implemented using the proposed geodesic curvature features. The

performance of these features in gender classification is compared with

the Euclidean and geodesic distance performance. The gender classifi-

cation accuracies using the geodesic curvature features are higher than

these measurements accuracies. These features will be used to categorise

the nose morphological traits in the next chapter.



Chapter 7

UNSUPERVISED NOSE

MORPHOLOGICAL TRAITS

CATEGORISATION

Due to the distinct shape and symmetrical property of the nose, it is often

used as a key feature point in the 3D facial identification, analysis, auto-

matic landmarking, registration, etc. Many automatic 3D face landmark-

ing techniques rely on the fact that the nose shape is usually invariant

under variations in the pose and expression. Nose detection is the first

stage in these methods then other landmarks such as eyes and mouth

corners are specified according to the nose landmark position [258, 312].

The nose is used as a reference point to compute the geodesic distance

from it to other points in the 3D face surface [6] for 3D face identifi-

cation, or it was used as reference point to extract the radial and iso-

level geodesic paths for gender classification and face recognition [25].

Recently, Emambakhsh et al. [91] addressed the problem of expression

invariant face recognition by introducing an algorithm utilised the 3D

shape of the nose as discriminative feature descriptors.

From the medical aspect, the nose morphological traits play an es-

sential role in diagnosing many anomalies such as Noonan and 22q11

syndromes [122]. Their most striking face morphology characteristics are

large nasal height, with relatively narrow nares and nasal base but with

fullness above the tip of the nose [122]. In addition, the patients with asth-

matic related problems have different nose dimension and traits specifi-

cations from non-asthmatics [9]. It is easy to conclude the importance

of nose morphology analysis in different applications, especially in med-

ical fields. Several attempts (Section 2.6. Literature Review) have been

109
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made to classify noses. In such research, the nose traits categorisation

was mainly performed manually in clinical practice and on small subject

groups. Consequently, the aim of this chapter is to work on developing

a method for automatic nose morphological traits categorisation without

ground truth manual categories. In other words, the nose traits variation

is automatically discovered. Five nose traits (nose shape, ridge shape, ala

shape, tip shape and nasal tip shape) Fig. 7.1 are defined by a medical ex-

pert, we wish to categorise them automatically without previous knowl-

edge about their categories.

Figure 7.1: Nose traits

The rest of this chapter is divided into the following sections: Section

7.1. describes the proposed nose clustering approach, how the nose traits

geodesic curvature features are extracted, normalised and categorised.

The clustering operation, the number of cluster validation and categories

affect visualisation are presented in Section 7.2. Section 7.3 contains a

general discussion of the computational experiments that are conducted.

Finally, this chapter summary is made in Section 7.4.
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7.1 The proposed nose categorisation approach

The nose categorisation approach uses different components which are

explained below, these are essentially the same components that have

been used for lips morphological traits categorisation in Chapter 5. Fig-

ure 7.2 shows a block diagram of the proposed approach. Each block and

its input parameters are described below:

Figure 7.2: Block diagram of the proposed automatic categorisation ap-
proach for the nose traits

7.1.1 Preprocessing

This work used ALSPAC dataset which consists of 4,747 samples; all of

the 3D faces had neutral expressions and were posed as frontal views.

For each face, six anthropometric landmarks (g, n, prn, sn, alL and alR)

were localised on the nose area are used to extract the feature descrip-

tors Fig. 7.3. In this work, the non-regularised preprocessing method was

used.
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Figure 7.3: Nose landmarks

7.1.2 Feature extraction and normalisation

The categorisation approach was implemented using a combination of

geodesic curvature features and geodesic distance.

Geodesic paths extraction

Gabriel Peyre’s MATLAB fast-marching toolbox [216] was used to extract

the geodesic paths and distances between the nose landmarks. Each

nose’s traits will be clustered according to curvature features and geodesic

distances of certain geodesic paths. Figure 7.4 and Table 7.1 illustrates the

paths used for each nose traits. The nose shape, the ala shape, the ridge

shape, the tip shape and the nasal shape are the nose morphological traits

that we are looking to categorise them automatically in this work.
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Figure 7.4: Nose traits geodesic paths. For each nose trait there are certain
geodesic paths (colored with red), their curvature features are utilised for
clustering purpose

Table 7.1: List of geodesic paths defining morphological nose traits

Trait name List of related geodesic paths

Nose shape n-alL, n-alR, sn-prn, alL-prn, alR-prn, alL-sn, alR-sn

Tip shape prn-sn

Ridge shape g-n, n-prn

Ala shape alL-prn, alR-prn

Nasal tip shape sn-prn, alL-prn, alR-prn, alL-sn, alR-sn

Curvature features

The principal curvatures were first computed for each nose path’s surface

point; the other features (mean curvature, Gaussian curvature, shape in-

dex, and curvedness) are then calculated on the basis of those curvature

calculations. In this work, a ring size of 2 is used to calculate curvatures

since this value recorded best classification accuracy in Chapter 5.

Normalisation of curvature features

Each nose’s geodesic path has a different number of surface points (ver-

tices). To deal with this, the same procedure that used for normalising

the lips traits geodesic curvature features (Section 5.1.3) is followed, the

normalised histogram distribution for each path features is calculated;



Section 7.2. Experimentation and results 114

the selected number of bins was also 5, 10, 15, 20, and 25. Since a dif-

ferent number of geodesic paths are extracted for nose traits, the feature

descriptor for each nose morphology trait can be calculated by concate-

nating its paths’ descriptors.

7.1.3 Categorisation, cluster validation, and categories effect vi-

sualisation

The nose traits morphology is automatically categorised by using the

Kmeans++ [19, 152] clustering technique as in Chapter 5. Determining

the number of clusters relies on determining the best cluster validity in-

dexes. In this work, three cluster validation methods are used to specify

the number of classes for each nose traits: Silhouette index (SI), Dunn in-

dex and Calinski-Harabasz index (CH). These indices were explained in

Chapter 5. The nose traits categorisation approach was performed with-

out ground truth about traits categories. Therefore, analysing the traits

clusters structure by using the PC plot [297] and Silhouette plot [243] was

helpful in selecting the optimal number of clusters for nose traits.

Finally, Partial Least Squares regression [224], was used for investigat-

ing the significant influence of these traits categories on the nose area.

7.2 Experimentation and results

Three experiments were designed for this study in order to automatically

categorise nose traits (nose shape, ridge shape, ala shape, tip shape and

nasal tip shape) and to investigate the optimal number of clusters for

each nose trait. A visualisation method was also conducted to visualise

the influence of automatic nose morphological traits categories on 3D

face nose area.

7.2.1 Experiment 1: Clustering and cluster validation

The Kmeans++ was used for the unsupervised classification scheme. The

Kmeans++ clustering procedure was run 100 times. From 100 runs the

clustering result that produced the minimal sum of squared distances

score is chosen.

An analysis of the best number of clusters is accomplished by us-
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ing the internal cluster validation techniques. The validity indexes were

tested with Kmeans++ clustering results, a number of clusters are deter-

mined to correspond to the maximum value of (CH, Dunn, SI) indexes.

The performance of validity indexes CH, Dunn and SI are compared for

clustering parameter (C ) ranging between 2 and 9. The tests carried out

with 50 repetitions to choose a stable number of clusters for nose mor-

phological traits.

Figure 7.5 is an example of using validation indexes to specify the

number of clusters (C ) for the nose shape trait. The selection the number

of cluster to this trait was challenging because each internal validation

method indicates different number of clustering (DI indicates 5, SI indi-

cates 7 and CHI indicates 6). Therefore, Silhouette analysis is also used

to specify the optimal number of clusters by studying the separation dis-

tance between the resulting clusters. The silhouette plot provides a way

to assess a number of clusters visually, it displays how close each point

in one cluster is to points in the neighboring clusters [243]. According to

Silhouette analysis, the nose shape trait has seven clusters.

In the same manner, the correct number of clusters for other nose

morphological traits are obtained: Ala shape 3 clusters, Nasal Tip shape 5

clusters, Ridge shape 3 clusters, and Tip shape 5 clusters.
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Dunn, SI and CH Silhouette Plot 5 cluster

Silhouette Plot 6 cluster Silhouette Plot 7 cluster

Figure 7.5: Validation indexes for nose shape trait

7.2.2 Experiment 2: PCA and cluster analysis

The aim of this experiment is to study the effectiveness of principal com-

ponents (PCs) in capturing cluster structure. Principal component anal-

ysis (PCA) deals with the relatively high number of variables by using an

orthogonal linear transformation to convert the original set of correlated

data into a set of variables that are linearly uncorrelated, represented by

the principal components (PC) in a new coordinate system. The first co-

ordinate axis runs along the direction of the greatest variance in the orig-

inal set, the second greatest variance along the second coordinate axis
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and so on [297]. It is often of interest to visually inspect how well the data

points are separated in 2D or 3D space based on principal components.

It is a method to assess similarities and differences between samples and

determine whether samples can be grouped [303]. Fig. 7.6 plots the nose

morphological traits geodesic curvatures feature clusters in the space of

the first two PCs, which contain from 75% to 83% of the variation in the

data. Each of the nose traits clusters is represented by the different color

or different shape.
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Nose Shape Ala Shape

Nasal Tip Shape

Ridge Shape Tip Shape

Figure 7.6: Visualisation of nose traits categories in the subspace of the
first two PCs
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7.2.3 Experiment 3: Visualisation the effect of traits categories

on the nose area

Shape regression is an important technique in geometric morphomet-

rics for investigating the effects of various independent variables on mor-

phology dense data (dependent variables). In this experiment, PLSR was

used to find the association between the automatic nose traits categories

dummy variables and the nose area.

In Figure 7.7 the regression results for each trait dummy variable are

visualised, in addition to the partial effect for each trait dummy variable,

the multiple effect size for all independent variables combined is also vi-

sualised. The regression coefficients (partial coefficients) is the change in

3D vertices in relation to the change in the independent variable at that

particular point, and the effect size (R2) shows the proportion of the vari-

ance explained by the effect. The effect per vertex was visualised for sig-

nificant p-value < 0.001, multiple and partial statistical significance tests

were based on 1000 permutations.
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Figure 7.7: Automatic nose traits categories regression results
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7.3 Discussion

Linear measurements taken on the nose give an indication of height,

width, and thickness but do not provide sufficient information of the

surface topography or shape of the various nasal structures [21]. There-

fore, the automatic categorisation approach proposed in this chapter was

based on external morphological characteristics of the nose and the sur-

face shape of the nose. Different racial groups often have different char-

acteristic nasal features [20]. Therefore, nose traits categories found in

this work are restricted to a 15 year old Caucasian population. These cat-

egories may be different in other ethnic groups such as Middle Eastern

and Asian populations.

Cluster validity checking is aimed to evaluate the clustering results

and the selection of the scheme that best fits the underlying data. The

majority of algorithms are based on specific criteria for defining the clus-

ters in which a dataset can be partitioned. Figure 7.5 illustrates the vali-

dation indices for nose shape clustering. Dunn index selects five clusters

and CH selects six clusters while Silhouettes selects seven clusters as the

best partitioning. Figures 7.5b, 7.5c and 7.5d shows the Silhouettes graph-

ical plots for the three number of clusters. Silhouette coefficients near +1

indicate that the sample is far away from the neighboring clusters. A value

of 0 indicates that the sample is on or very close to the decision boundary

between two neighboring clusters and negative values indicate that those

samples might have been assigned to the wrong cluster. Consequently,

the Silhouette plot is a helpful method for selecting the best number of

clusters in addition to the internal validation method.

In this work, the automatic categorisation approach is applied to in-

vestigate nose traits variation without any ground truth about its cate-

gorisation. Therefore, using at least one more validation method to as-

sess the effectiveness of clusters structure was essential. Principal com-

ponents analysis (PCA) is a multivariate data analysis tool that can be

used to recombine the variables of a large multivariate dataset in such

a way that the first few variables of the reconstructed dataset account for

the majority of the variance in the data. The hope for using PCA prior to

cluster analysis is that PC’s help in extracting the cluster structure in the

dataset [226].
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Figure 7.6 shows the PC plot of nose morphological traits clusters,

some of these clusters are well separated and the clusters centroids are

far from each other as in ala shape and tip shape clustering plots, while in

nose shape clustering plot the clusters are overlapped. In unsupervised

classification, it is rare to get an output that is one hundred percent ac-

curate because real world data is rarely that simple and the density is not

linearly separable [140].

Regardless of that, as can be seen in Fig. 7.7 automatic categorisation

method seems work properly since the magnitude of the traits categories

effect and the proportion of their variance at 3D face vertice R2 appear

significant (red) on the nose traits related to them. For example, the ef-

fect of the tip shape categories is mainly located in nose tip curve. The

multiple effect regression results demonstrated that all traits categories

effect is concentrated and significant in the nose area.

Finally, the nose morphological traits are assessed by two medical ex-

pert examiners. Figure 7.8 illustrates the examiner’s rudimentary classifi-

cation scale for the characterisation of nose traits. Their results indicate

that the proposed method for automatic nose traits categorisation is ac-

ceptable from the medical expert view and these automatic categories

can be used in much medical application such as medical problem diag-

nosing for example asthma condition and finding the gene’s association.
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Nose shape images

Little Ala Rhomboid Clear Ala

Ala shape images

Round up Flat Round pointed up Drop Tip Slight Round up

Tip shape images

Bump Convex Straight

Ridge shape images

Normal rounded Wide columella Narrow columella Flat Pointed

Nasal tip shape images

Figure 7.8: Nose traits variation assessment

7.4 Summary

The proposed approach in Chapter 5, which was used for lips traits cat-

egorisation, was used here for categorising the nose traits automatically.

Additional validation methods were used because of the categorisation

work in this case, posed more challenges, due to the absence of any

ground truth traits categories. The results of this chapter indicate the

ability of this approach in categorisation any face traits without previous
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knowledge about this trait categories. The traits categories results of this

chapter and Chapter 5 are used in the next chapter for finding genes as-

sociation by applying GWAS.



Chapter 8

EXPLORING THE

ASSOCIATION BETWEEN

FACIAL MORPHOLOGICAL

TRAITS AND GENES

Facial traits display gene-environment interactions, which indicates that

facial characteristics are due to a mixture of environmental factors and

genetic factors. Genetic effects are obviously dominant during embry-

onic facial morphogenesis, while the environment may also influence

facial morphology during facial growths. Humans share most of their

genomes. Consequently, only a comparatively small number of genetic

differences have resulted in noticeable variation, that can be seen among

individuals of our species, this variation such as differences in height,

weight, face shape, and skin color. The complicated interaction between

genes and the environment, as well as between multiple genes, makes it

hard to understand and identify human traits variations. Therefore, in-

stead of looking at complex human traits, several researchers have gone

straight to the source and looked for nucleotide sequences, small varia-

tions in the individual nucleotides of the genomes (SNPs) that may cause

the change in an individual’s traits [37,176]. Despite intensive research on

genetics of the facial morphology using human models, the genetic varia-

tion that upholds normal human facial morphological traits is still mostly

elusive. The previous chapters demonstrated that it is possible to assess

and classify facial morphology traits automatically, specifically lips and

nose traits of normal human faces. This chapter explores the prospect of

assigning genetic associations (nucleotide sequences) to the variations of
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lips and nose morphological traits of normal faces. This chapter results

will add interesting findings to normal face morphological traits variation

and genes association research field, because it is the first GWAS con-

ducted on face morphological traits which were categorised automati-

cally. Another research contribution in this chapter is a simple method

to visualise morphological traits variation influence on the 3D face.

This chapter is organised as follows. The genetic data, the facial traits

and the GWAS are explained in Section 8.1. The results are demonstrated

in Section 8.2. Section 8.3 presents method to analyse face morphological

traits using average face. General discussion and comparison with other

studies are highlighted in Section 8.4. Finally, the chapter summary is

recorded in Section 8.5.

8.1 Methodology

The objective of this chapter was to perform a genome wide association

study (GWAS) for lips and nose traits, which were produced automatically

in Chapters 5 and 7. These traits are philtrum shape, Cupid’s bow shape,

upper and lower lip contour shape, lower lip chin shape, lower lip tone

shape, nose shape, ridge shape, nasial shape, Ala shape and tip shape

Fig. 5.2 and Fig. 7.1. A sample of individuals from the ALSPAC dataset

were used for GWAS. Genotype was available for 8,365 individuals and

3D face scans for 4,747 individuals. A total of 3,687 had both genotype

and 3D face scan available for testing.

8.1.1 Genome-wide Association Study (GWAS)

Genome wide association studies have demonstrated successes in as-

signing genetic association to facial morphology population variations

(Table 2.2. Literature Review). Genome wide association studies involve

two parts, the first one is the discovery part, by which the genetic associa-

tions are assessed for a population, and the second part is the replication,

where results from the first part are tested. Ideally, the replication sub-

jects should be from the same population group, as the discovering pop-

ulation in order to confirm the same effect. Also, the number of subjects

should be larger than the discovering samples, so as to confirm any false

positive results [51].
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Many genes have been reported as master genes for head and face de-

velopment [155]. Research attempts have been made to determine how

common these genes’ SNPs may affect normal facial morphological traits

and specifically on the lips and nose traits [128, 176, 195]. Example genes

and SNPs are:

• The (IRF6) gene on chromosome 1 and (ABCA4) on another part of

chromosome 1 have been associated with cleft lip and cleft palate

[28].

• The (PAX) genes have been shown to influence facial development,

and PAX proteins are important in developing the specification

of tissues. The (PAX) gene family consists of nine members [52].

PAX3 and PAX9 have been shown to influence facial development.

PAX3 has been identified with ear, eye, facial development and fa-

cial deafness hand syndrome [107, 228]. PAX9 has been associated

with a number of organs and other skeletal developments, partic-

ularly teeth. It has been also linked to congenital absence of all

teeth syndrome and non-syndromic cleft lip with or without cleft

palate [169, 288].

In this work, 64 SNPs are selected for performing the GWAS, to repli-

cate the finding of many face traits and genes association studies (Sec-

tion 2.8). These genes SNPs have been selected under the guidance of my

Ph.D. co-supervisor Prof. Stephen Richmond (medical expert) from the

Dental School, Cardiff University.

8.2 GWAS results

Genome associations were performed by a Ph.D. student Laurence Howe

at Bristol University, under the supervision of Dr. Sarah Lewis. Bonfer-

roni correction is a method for multiple testing analysis and finds statis-

tical significance of an SNP association p-value. The p-value, which is the

probability of seeing a test statistic equal to or greater than the observed

test statistic if the null hypothesis is true, is generated for each statistical

test. Statistical tests are generally called significant and the null hypoth-

esis is rejected if the p-value falls below a predefined alpha value, which
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is nearly always set to 0.05 [51]. In this GWAS there were around 64 in-

dependent SNPs, the statistical significance of an SNP association will be

0.05/64=0.0008.

Table 8.1 records the association results, the SNPs, and genes which

their p-values less than or near the hit value 0.0008. While Table 8.2 re-

ports the medical effect of these SNPs and genes on facial morphological

traits. Some of these SNPs have proven relationship with facial deformi-

ties syndromes. Waardenberg syndrome (Fig. 8.1) has an effect on the

face by, pale or brilliantly blue eyes, eyes of two different colors, or eyes

with one iris having two different colors. Also the appearance of wide set

eyes due to a prominent, and broad nasal root [106]. On the other hand,

the Pierre Robin syndrome Fig. 8.2 causes three main abnormalities char-

acteristics in humans faces: cleft palate, abnormal positioning of the jaw

or mandible and airway obstruction caused by backward displacement of

the tongue base [141].

Many medical studies have investigated in depth the relationship be-

tween these syndromes and face morphology variation and growth, espe-

cially in infant and children by using the anthropometric measurements

(e.g., see [76, 165, 250]). For that, using the geodesic curvature features

presented in Chapter 4 for diagnosing these syndromes through studying

face traits variation is planning for future work.

The SNPs rs9995821 and rs1852985 located at genes DCHS2 and

SUPT3H/RUNX2 respectively have shown an association with nasion po-

sition and nose shape facial morphological trait (columella inclination,

nose bridge breadth, and nose wing breadth) in approximately 6,000

Latin Americans [4]. In contrast, in this work, they report an association

with the lower lip in approximately 4747 Caucasian people. Thus, this re-

sult is interesting and should be examined further by carefully replicating

this finding in another population group, this planned as a part of our

future work beyond this thesis.
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Figure 8.1: The Waardenberg syndrome [267]

Figure 8.2: The Pierre Robin syndrome [266]

Table 8.1: Results of the discovery phase genome wide association
study(GWAS)

Feature p-value Reference SNP Gene

Lower lip contour shape
0.0004187 rs9995821 DCHS2

0.0006972 rs1852985 SUPT3H/RUNX2

Lower lip tone shape 3.447e-06 rs7011739 FAM84B

Nose shape
0.0001763 rs974448 DCHS2

1.318e-06 rs10176525 PAX3

Nose tip shape 0.000999 rs11655006 BC039327
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Table 8.2: Results of the discovery phase genome wide association
study(GWAS) medical effects

SNP Medical effect Reference

rs9995821 Alae and subnasale Columella inclination [4]

rs1852985 Nose bridge breadth [4]

rs7011739 Mild alteration to facial morpholgy, sporadic Cleft Lip Plate and Lower lip shape [283]

rs974448 Nasal root, Waardenberg syndrome [64]

rs10176525 Nose width [247]

rs11655006 Pierre Robin syndrome [130]

8.3 Face morphological traits analysis using average face

Average face is an important method for studying facial anomalies mor-

phology, evaluating facial asymmetries, average facial growth and com-

paring facial morphologies for different ages, gender and ethnicity etc

[123]. An average face can be superimposed on to a face and the surface

difference between the faces can be quantified in millimeters as mean

differences between all points from one surface to another. Color maps

can be used to visualise these differences [137].

In this chapter, the average face used to visualise the morphological

traits influence on the 3D face1. The GWAS results indicate four traits

have genes association, these traits are the nose shape (7 categories),

Lower lip contour shape (4 categories), the nose tip shape(5 categories),

and lower lip tone shape (5 categories). Average faces were constructed

for each trait category subjects, (e.g. nose shape has seven average faces).

Then the superimposition results between these average faces are visu-

alised as a color map which indicates the surface distances between two

average faces, the red color is highlighted the maximum difference while

the blue color the minimum difference. Figures 8.3, 8.4, 8.5 and 8.6 show

only the superimposition results of average face contains the minimum

number of subjects against the others for nose shape trait, lower lip shape

trait, lower lip tone shape trait and nose tip shape trait respectively.

1The average face is a simple method can be used to assess genes influence on the 3D
face. Unfortunately, ALSPAC institution refused to provide us with the genetic informa-
tion of the subjects
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Figure 8.3: Superimposition of average faces for nose shape trait

Figure 8.4: Superimposition of average faces for lower lip shape trait

Figure 8.5: Superimposition of average faces for lower lip tone shape trait
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Figure 8.6: Superimposition of average faces for nose tip shape trait

8.4 Discussion

The majority of human studies in this field have focused on the genetics

of various facial abnormalities such as cleft lip/palate, Downs syndrome,

Floating-Harbor syndrome, and Noonan syndrome [75,124,132,202,253].

In spite of that, there is insufficient evidence in the literature on the asso-

ciation between facial morphological traits and genes in a normal popu-

lation as this work did.

The Euclidean and angular measurements for 2D photographs or

manual anthropometric have been widely used in genetic studies [4, 37,

128,276]. The current study, which uses novel 3D geometric features, pro-

vides the opportunity to better capture facial traits shape automatically

and determine which genetic variants may influence these traits (the lips

and nose morphological traits). Few studies have been carried out using

the 3D geometric features for identifying the genes associations. For ex-

amples, Claes et al. [63] attempted modeling 3D facial shape from DNA.

The spatially dense quasi-landmarks were used to measure face shape

in population samples with mixed ancestry from three locations (United

States, Brazil, and Cape Verde). They looked for the relationship between

facial variation and the effects of sex, ancestry, and a subset of facial can-

didate genes, by using bootstrapped response-based imputation model-

ing (BRIM). The authors reported results on a set of 20 genes showing

significant effects on facial features. Recently, Tsagkrasoulis et al. [282]

placed thousands of landmarks throughout the facial surface of 952 twins

recruited from the Twins UK and automatically established point-wise

correspondence across faces. They used these landmarks to characterise
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facial geometry through curvature features and measured the heritability

maps of these faces (no genes association work). In general, these studies

were conducted on small datasets and used the correspondences dense

landmarks for calculating the geometric features for the whole face. In

contrast, in this work, a much larger population group was tested and

novel 3D geometric features were proposed, these features characterised

the facial morphological traits efficiently for genes association purpose.

Another interesting study was conducted on 694 Uyghurs, the authors in-

vestigated whether 3D faces could be predicted to certain degree by us-

ing the top associated SNPs. The approach was tested in hypothetical

forensic scenarios, to evaluate the prediction approach practical poten-

tial [220]. This study has motivated us to work on prediction the lips and

nose categories from the associated SNPs in the future.

Two other interesting studies have been conducted on ALSPAC dataset.

Paternoster et al. [213] identified genetic association between the com-

mon ‘intronic’ SNP rs7559271 in PAX3 gene and the 3D facial distance

‘nasion to mid-endocanthion’. Variation in n−men distance reflects vari-

ation in the nasal bridge prominence trait. Their study analysed the as-

sociation between the 21 landmarks principle components and 250 fa-

cial measurements (90 distances, 118 angles, and 42 ratios) with 500.000

SNPs. Wilson [296] performed a genome wide association study for 27

lips traits (manually categorised) with 500.0000 SNPs. Two trait/genotype

associations were found in the discovery sample that reached GWAS sig-

nificance; DOCK1 and chin dimple and CDH4 and mentolabial fold.

In this work, 11 lip and nose morphological traits (automatically cat-

egorised) were tested for the association with 64 SNPs only. The genes

associations were identified between 6 SNPs and four lips and nose

morphological traits in a population cohort of 15-year-old adolescents.

The most significant p-values were found between the nose shape and

rs10176525 and rs7011739 with lower lip tone.

Figures 8.3, 8.4, 8.5 and 8.6 illustrate the superimposition results of

average faces. The superimposition method was used to validate the dis-

covered face morphological traits categories. The average faces superim-

position results are approximately compatible with regression results in

Chapters 5 and 7, Fig. 5.12 and Fig. 7.7.
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8.5 Summary

In this chapter eleven lips and nose traits are used for applying GWAS,

four of them show significant association with genes’ SNPs. A simple

method to visualise face morphological traits variation is proposed, this

method can be used also to visualise the genes variation influence on

the 3D face. Generally, these results prove the effectiveness of the pro-

posed geometric features and face morphological traits classification and

caregorisation approach in the medical field application specifically in

genetic association studies. Therefore, more research ideas are planned

for the future.



Chapter 9

CONCLUSIONS AND

FUTURE WORK

The automatic classification and categorisation approach and the 3D ge-

ometric features presented in this thesis is principally different from the

previous approaches and geometric features in at least three respects:

• The proposed facial features are based on face surface variation,

rather than simple anthropometric measurements.

• The morphological traits are classified to reflect the standard vari-

ation in healthy population rather than a population with a dis-

eases/syndromes.

• The facial morphological traits variation analysis is performed au-

tomatically rather than manually.

9.1 Detailed conclusions

This thesis has made several contributions to the state of the art in 3D

face morphological traits classification and categorisation methods:

• In Chapter 3 two methods for data preprocessing implemented

(non-regularised and regularised), to find which method is more

efficient in facial morphological traits classification. The regular-

isation method that used here was used in [63] for efficient face

shape measurements. The two methods are used for lips morphol-

ogy classification and the accuracies indicate the non-regularised

method is more suitable for better classification accuracies using

the 3D geometric features proposed in Chapter 4.
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• In Chapter 4 a new set of 3D geometric features are derived from

mean, Gaussian curvatures, shape indices, and curvedness mea-

sures obtained along the geodesic path between 3D facial anthropo-

metric landmarks. These features describe the face surface shape

variation relying on the biological landmarks rather than the sim-

ple anthropometric measurements which provide poor surface in-

formation. The impact of these features on face morphology clas-

sification is tested comparing to anthropometric measurements.

The basic curvature features showed robust accuracies in classifi-

cation face parts (philtrum area) but for strict traits classification,

the geodesic curvatures were found more convenient. However,

these features extraction suffers from two limitations: selecting of

the suitable features descriptor normalisation method and the ring

size for curvature features calculation.

• In Chapter 5 the first automatic approach for lips morphological

traits classification and categorisation is proposed. The geodesic

curvature features which were proposed in Chapter 4 were used

for lips supervised classification. The classification accuracies

were calculated using the Boosting and SVM methods for both

types of preprocessing methods described in Chapter 3. The

classification accuracies using the boosting method were outper-

formed those of SVM method because it handles the data balanc-

ing problem. The classification accuracies (71% − 77%) for non-

regularised preprocessing method were higher than the regularised

ones. Consequently, this chapter’s experiments proved that the

non-regularised preprocessing method is better in characterisation

the face shape and facial morphological traits. The classification

accuracies for regularised face is comparable to those achieved us-

ing non-regularised preprocessing (67%−72%). This indicates the

robustness of the proposed geodesic curvature features in analysis

and classification face morphology traits in high and low resolution

meshes. The state of art measurements (Euclidean and geodesic)

distances are also calculated for lips traits classification purpose.

Their classification accuracies are less than the geodesic curvatures

features classification accuracies.
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An automatic categorisation approach was implemented since the

best obtained classification accuracies using manual categories

performed by [295] ranged from 72% to 79%. The number cluster

selection for Kmeans++ clustering method was a challenging prob-

lem, therefore different internal validation methods were tested for

verification. The PLSR was used to determine the effect of the man-

ual and the automatic traits categories on the 3D faces’ lips area

. This is the first work to produce a method to evaluate the per-

formance of manual or automatic facial morphological traits cat-

egories visually. Generally, the classification accuracies based on

the automatic lip categories were higher than those obtained using

the manual categories by at least 8% and the automatic categories

were found to be more significant in the lip area than the manual

categories.

• In Chapter 6 the proposed novel 3D geometric features were ap-

plied to the problem of gender analysis and discrimination. Five ex-

periments have been performed in this chapter that have explored

in some detail aspects of facial traits based on key anthropometric

landmarks. Their results have shown that the geodesic path curva-

ture features extracted between the 3D facial landmarks have the

ability to classify the gender of Caucasian teenagers with an accu-

racy of 87.3%. The combination of the new 3D geometric descrip-

tor with more classical distance measures obtained the best clas-

sification accuracy of 88.6%. The hybrid geodesic path curvature

features and geodesic distance demonstrated an improved ability

not only in terms of accuracy but also in sensitivity and specificity.

The sensitivity and specificity results show a noticeable variation

between Caucasian teenagers in terms of both female and male

nose morphology. Finally, the geodesic paths between certain fa-

cial landmarks were more discriminative for gender classification

and were more significant in 3D facial-profile contours. The nose

Ala path, Cupid bow path, and the path between the internal eyes

landmarks were shown to be significant.

• In Chapter 7 the nose morphological traits were categorised auto-

matically using the geodesic curvature features proposed in Chap-
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ter 4 and the geodesic distance. The same approach that was used

for categorising the lips morphological traits in Chapter 5 is utilised

here. The results of this chapter indicate the potential of the pro-

posed approach and the 3D geometric features to categorise any

face traits without previous knowledge about these trait categories.

The nose traits categories were assessed and described by the med-

ical experts from dental school, Cardiff University (Prof.Stephen

Richmond and Dr. Caryl Wilson).

• In Chapter 8 the Genome Wide Association Study (GWAS) was per-

formed for the lips and nose morphological traits categories deter-

mined in Chapter 5 and Chapter 7. The associations between 11

facial morphological traits and 64 were analysed. The statistical

significance of p-value was 0.0008 according to Bonferroni correc-

tion multiple testing analysis. The P-value was less than or near the

significant value for six SNPs, two of them related to facial Waar-

denberg syndrome and Pierre Robin syndrome. In contrast, Wil-

son [296] performed a genome wide association study for 27 lips

traits (manually categorised) with 500.0000 SNPs, two SNPs only

have p-value less than the hit p-value 1e−7. Moreover, in this chap-

ter, a new method was proposed for visualising facial traits vari-

ation influence on 3D face. In general, this chapter results prove

that the method proposed in the present thesis for automatic cate-

gorisation of 3D facial morphology is effective for genes association

medical application and open the door for remarkable research in

the future.

9.2 Future work

There are many research questions that have arisen as a result of this the-

sis, and the potential for future research includes:

• Investigate other methods for data clustering and curvature calcu-

lation such as Spectral clustering method and Voronoi curvature

calculation method.

• Investigate several approaches that may be used to compute geodesic

distances and paths on triangular meshes (e.g., see [300, 305]), to
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determine if they affect face morphology classification accuracy

and the computational time positively.

• Use other methods to normalise the geodesic curvature features.

For example, using the mean, the variation, the max value, the

min value, the mode value statistical information for describing the

geodesic curvature feature descriptors.

• Use the geodesic curvature features in the judgment of the degree of

masculinity or femininity of a face since facial gender is considered

to be a continuum of masculinity or femininity.

• Investigative other facial traits shape variation. For example, cate-

gorise the chin shape automatically and replicate the GWAS for this

face traits according to [296] finding.

• Replicate this thesis work (automatic lips and nose traits categori-

sation approach) on other datasets such as TwinsUK [80] and Face-

Base [203] datasets.

• Use the geodesic curvature features to study the face morphology

variation in subjects have craniofacial syndromes, such as Pierre

Robin and Waardenberg syndromes.

• Analyse the relation between the facial morphological traits varia-

tion and age groups.

• Develop a quantitative model to predict 3D faces morphological

traits based on the GWAS SNPs. In other words, built system to

predicate the face traits shapes from the related SNPs.

• Analyse the association of lips and nose morphological traits with

climate adaptation. In other words, study the effect of the environ-

mental conditions on face traits shape and growth.
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