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Abstract 

 

Microdeletions and microduplications at the chromosomic locus ch15q11.2 have been linked to 

an increased risk of developing several psychiatric and neurodevelopmental conditions. Abnormal 

expression levels of CYFIP1, one of the genes within this region, have been shown by several 

studies to cause alterations to the morphology and physiology of neuronal cells. However, despite 

its specific expression in progenitors of the developing cortex, little is known about the role played 

by CYFIP1 in neural development. 

This thesis presents an investigation of the biological mechanisms, through which CYFIP1 affects 

cortex development in vitro using human embryonic stem cells (hESCs). To this end, lines of hESCs 

either expressing a CYFIP1 transgene (CYFIP1tg) or harbouring a loss-of-function deletion 

(CYFIP1ko) were derived to mimic increased and decreased level of CYFIP1 expression, 

respectively, and differentiated into cortical glutamatergic neurons. Disruptions to the normal 

levels of CYFIP1 resulted into abnormal formation of neural rosettes and altered kinetics of 

neuronal differentiation. Importantly, CYFIP1 overexpression seemed to promote self-renewal of 

the progenitor pool, while loss of this gene had an opposite effect. 

Whole-genome transcriptomic analysis revealed the dysregulation of numerous pathways, 

including WNT signalling, cell adhesion and mitochondria metabolism. In line with this, the 

expression levels of N-Cadherin and the phosphorylation pattern of β-Catenin suggested that the 

signalling axis involving these two proteins is altered in CYFIP1tg and CYFIP1ko cortical 

progenitors. Moreover, pharmacological inhibition of WNT and AKT, which mediate this signalling, 

was able to rescue the excessive proliferation of NPCs associated with CYFIP1 overexpression. 

Finally, the presence of altered mitochondrial dynamics in CYFIP1tg and CYFIP1ko NPCs and 

neurons was validated using a high-content screening system. 

These data demonstrate that CYFIP1 plays a role in the regulation of cortex development and, 

consequently, in the clinical manifestations associated with 15q11.2 CNVs. Furthermore, they 

strengthen the hypothesis of a developmental origin for psychiatric conditions like schizophrenia 

and autism spectrum disorders.  
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1 Introduction 

 

Psychiatric disorders such as autism spectrum disorders (ASD) and schizophrenia (SZ) are common 

conditions that, combined, are estimated to affect more than 1% of the population worldwide 

(Baxter et al., 2015; Saha et al., 2005 and WHO.int). Many people affected by these disorders 

require long-term care and represent a high economic burden for society (Buescher et al., 2014; 

Chong et al., 2016).  

SZ usually becomes manifest post-puberty and is characterised by a combination of symptoms 

that are classified into “positive”, such as hallucinations and delusions, “negative”, such as apathy 

and lack of speech, and “cognitive”, which include defects of working memory, attention and 

verbal abilities (Patel et al., 2014). ASD are a group of heterogeneous conditions that usually arise 

during early childhood and are defined by the presence of some common aspects, such as 

restrictive and repetitive behaviours and deficits in social interaction and communication 

(Fakhoury, 2015).  

Both SZ and ASD arise from a combination of genetic and environmental factors. The last few 

years have seen the identification of hundreds of chromosomic loci responsible for an increased 

risk of developing these conditions. However, the way in which genetic mutations contribute to 

the disease pathology and, ultimately, the cellular mechanisms underlying these conditions are 

still largely unknown. To date, this represents perhaps the biggest obstacle to the development 

of new therapies. In vitro models in the form of human pluripotent stem cells (hPSCs)-derived 

neurons represent a promising approach to investigate the function of disease-risk genes and can 

also provide a platform for drug development studies.  

1.1  Relevance of Ch15q11.2 CNVs in the context of psychiatric disorders 

1.1.1 Genetics of psychiatric disorders: an overview 

Twin and adoption studies have been fundamental to understand the contribution of genetic and 

environmental factors to the aetiology of psychiatric disorders. The environmental factors most 

commonly associated with SZ are birth or residence in urban areas, season of birth, usually linked 

to a higher risk of pre-natal infections, starvation, obstetric complications, and advanced paternal 

age (Gejman et al., 2011). However, all these factors seem to have a relatively small effect 

compared to the influence of genetics.  
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Heritability, a parameter used to estimate how much of the variability of a phenotypic trait is due 

to the genetic variability in a given population, is estimated to be above 80% for SZ (Sullivan, 

2005). In fact, monozygotic twins have a higher concordance rate than dizygotic twins and the risk 

of SZ in the offspring of schizophrenic parents is the same whether they are raised by their 

biological or adoptive unaffected parents (Gejman et al., 2011).  Similarly, several studies 

estimated ASD heritability between 50% and 90% and the most commonly implicated 

environmental factors include prenatal viral infection and exposure to toxins, advanced paternal 

and maternal age and prenatal and perinatal stress (Freitag et al., 2010; Grabrucker, 2013; Kim & 

Leventhal, 2015). 

The first attempts to discover the genetic causes of SZ and ASD were represented by linkage and 

candidate gene studies. Linkage studies are based on the concept that alleles close together are 

transmitted together, as a unit, through meiosis (Lander & Kruglyak, 1995). Thus, they were used 

to map chromosomal regions that follow the same inheritance pattern between affected family 

members. In the context of SZ, some of the most significant chromosomic regions that emerged 

from these studies are represented by 1q21-22 (Brzustowicz et al., 2000; Rosa et al., 2002) and 

6p24-p22 (Moises et al., 1995; Schwab et al., 2000; Straub, 1995). Examples of loci associated to 

ASD by at least two independent linkage studies are represented by 3p25 (Lauritsen et al., 1999; 

McCauley et al., 2005; Ylisaukko-Oja et al., 2006) and 7q35 (Alarcón et al., 2008; Alarcón et al., 

2002; Ylisaukko-Oja et al., 2006). 

The candidate gene approach is a hypothesis-driven method, which aims to test if the frequency 

of a specific allele/haplotype of a gene of interest is higher in affected than unaffected subjects 

(Kwon & Goate, 2000). Well known candidate genes include Neuregulin 1 (NRG1) (Stefansson et 

al., 2002), Disrupted in schizophrenia 1 (DISC1) (Blackwood et al., 2001) and Dysbindin (DTNBP1) 

(Straub et al., 2002) for SZ and the oxytocin receptor (OXTR) (Wu et al., 2005), Contactin-

associated protein-like 2 (CNTNAP2)(Arking et al., 2008) and Reelin (RELN) (Persico et al., 2001) 

for ASD.   

Several more chromosomic loci and genes were identified by these early genetic studies, but most 

of them were found difficult to reproduce. Two reasons for this could be the small effect of the 

genetic variants analysed and the small sample size (Farrell et al., 2015; Freitag et al., 2010). 

Indeed, linkage studies had been successful in identifying the cause of disorders following a 

Mendelian pattern of inheritance, such as mutations of presenilin 1 in Alzheimer’s disease, but it 

is now known that most psychiatric disorders are likely caused by several common genetic 

variations with different degrees of penetrance (George-hyslop, 2000; Schellenberg et al., 1992; 

Sherrington et al., 1995).  
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More significant advances have been achieved in recent years thanks to the rapid evolution of 

new high-throughput microarray platforms and the formation of large scientific consortia. This 

has facilitated efficient processing of the genetic information of large cohorts of patients and 

controls. Genome-wide association studies (GWAS), analysis of chromosomic copy number 

variations (CNVs) and exome sequencing are the new techniques that significantly contributed to 

such advances. 

 

(I) GWAS 

GWAS are based on the analysis of markers across the whole genome to determine if some 

genetic variations are more abundant in individuals affected by a disease than the unaffected 

subject population. A genetic marker associated with the disease can represent in itself a 

causative variant, or it can be in linkage disequilibrium (LD) with the causative variant (Bush & 

Moore, 2012). This approach is hypothesis-independent and has led to the identification of many 

common variants, in the form of single nucleotide polymorphisms (SNPs) or chromosomic copy 

number variations (CNVs) (McCarroll, 2008).  

SNPs are single base substitutions, which are relatively common in the genome (~1 every 300 

bases) and within populations (>5%) (Schwab & Wildenauer, 2013). Overall it is estimated that 

each SNP associated with a psychiatric disorder is responsible for a small contribution towards 

the total genetic risk (Gejman et al., 2011; Yoo, 2015). Table 1.1 contains a list of genes in which 

SNPs for ASDs and SZ have been confirmed by more than one study. 

 
Table 1.1 Genes in which GWAS have reported the presence of risk variants linked to ASD or SZ. 

Disorder 
Gene 
symbol 

Gene name References 

ASD CDH9 Cadherin 9 (Ma et al., 2009; Wang et al., 2009) 

ASD CDH10 Cadherin 10 (Ma et al., 2009; Wang et al., 2009) 

ASD CNTNAP2 
Contactin-associated protein-
like 2 

(Anney et al., 2012; Arking et al., 
2008) 

ASD JARID2 
Jumonji and AT-Rich Interaction 
Domain Containing 2 

( Liu et al., 2015; Weiss, Arking et al., 
2009) 

ASD MACROD2 
MACRO Domain-Containing 
Protein 2 

(Anney et al., 2010, 2012; Vieland et 
al., 2017) 

ASD SEMA5A Semaphorin 3A (Vieland, 2017; Weiss et al., 2009) 

SZ AKT3 AKT Serine/Threonine Kinase 3 (Ripke et al., 2013, 2014) 
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SZ ARL3 
ADP Ribosylation Factor Like 
GTPase 3 

(Ripke et al., 2014; H. Yu et al., 2016) 

SZ AS3MT Arsenite Methyltransferase (Ripke et al., 2014; H. Yu et al., 2016) 

SZ CACNA1C 
Calcium Voltage-Gated Channel 
Subunit Alpha1C 

(Purcell et al., 2009; Ripke et al., 
2013, 2014) 

SZ CNNM2 
Cyclin And CBS Domain Divalent 
Metal Cation Transport 
Mediator 2 

(Ripke et al., 2011, 2014) 

SZ CSMD1 
CUB And Sushi Multiple 
Domains 1 

(Ripke et al., 2011, 2014) 

SZ CSMD2 
CUB And Sushi Multiple 
Domains 2 

(Ripke et al., 2014; H. Yu et al., 2016) 

SZ ITIH3 
Inter-Alpha-Trypsin Inhibitor 
Heavy Chain 3 

(Ripke et al., 2013, 2014) 

SZ MAD1L1 
MAD1 Mitotic Arrest Deficient 
Like 1 

(Ripke et al., 2013, 2014) 

SZ MIR137 MicroRNA 137 (Ripke et al., 2011, 2013) 

SZ NRGN2 Neurogranin 
(Ripke et al., 2014; Stefansson et al., 
2009) 

SZ NT5C2 5'-Nucleotidase, Cytosolic II (Ripke et al., 2011, 2014) 

SZ PCGEM1 
PCGEM1, Prostate-Specific 
Transcript (Non-Protein Coding) 

(Ripke et al., 2011, 2014) 

SZ TCF4 Transcription Factor 4 
(Ripke et al., 2011, 2014; Stefansson 
et al., 2009) 

SZ TSNARE1 T-SNARE Domain Containing 1 (Ripke et al., 2013, 2014) 

SZ VRK2 Vaccinia Related Kinase 2 (Ripke et al., 2014; H. Yu et al., 2016) 

SZ ZNF804A Zinc Finger Protein 804A 
(O’Donovan et al., 2008; Ripke et al., 
2014; Steinberg et al., 2011; 
Williams et al., 2011) 

 ASD, autism spectrum disorder; SZ, schizophrenia. 

 

 

CNVs are DNA segments of at least 1kb that are found deleted or duplicated in different genomes 

(Hosak, 2013). They can be inherited or they can be the result of de novo mutations, as they 

originate through several mutational mechanisms, mainly non-allelic homologous recombination 

between regions containing low-copy repeats (Gu, Zhang, Lupski, 2008). These chromosomic 

rearrangements are very frequent in the genome and contribute to human genomic variation 
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(Itsara et al., 2009). Interestingly, several studies on both SZ and ASD reported a higher frequency 

of de novo CNVs in the genome of affected individuals than in the control population 

(International Schizophrenia Consortium, 2008; Marshall et al., 2008a; Sebat et al., 2010; Xu et 

al., 2008). These findings suggest that genomic instability may be contributing to the pathology of 

these disorders.   

CNVs affect the expression level of the genes located in the deleted or duplicated regions. A 

popular interpretation of the link between this mechanism and psychiatric disorders is that CNVs 

alter the tightly regulated expression of dosage-sensitive genes important in neural development 

(Hosak, 2013; Tam et al., 2009). In agreement with this, it has been demonstrated that pathogenic 

CNVs are enriched for genes classified as ohnologs, when compared with CNVs identified in the 

general population. Ohnologs are duplicated genes originated by whole genome duplication 

events during vertebrate evolution. Many of them are developmental genes and members of 

protein complexes that are known to be highly dosage-sensitive (McLysaght et al., 2014). The 

effects of such changes in gene dosage are very variable, as several CNVs are associated with more 

than one disorder and can be also present, at lower frequency, in healthy control populations 

(Malhotra & Sebat, 2012). The most characterised CNVs associated to date with SZ and/or ASD 

are listed in Table 1.2 

 

 

Table 1.2 CNVs increasing risk for ASD and/or SZ 

CNV Disorder(s) References 

1q21.1 del/dup ASD/SZ 
(Bucan et al., 2009; Kirov et al., 2014a; Levinson et al., 
2011; Pinto et al., 2010a; Rees et al., 2014; Sanders et al., 
2011; Stefansson et al., 2008; Vacic et al., 2011a) 

2p16.3 del  ASD/SZ 
(Bremer et al., 2011; Glessner et al., 2009a; Kirov et al., 
2014b; Pinto et al., 2010b; Rees et al., 2014) 

3q29 del ASD/SZ 
(Kirov et al., 2014b; Levinson et al., 2011; Mulle et al., 
2010; Pinto et al., 2010b; Rees et al., 2014; Sanders et al., 
2011; Vacic et al., 2011b) 

15q11.2 del/dup ASD/SZ 
(Kirov et al., 2009, 2014b; Rees et al., 2014; Stefansson et 
al., 2008; Tam et al., 2010) 

15q11.2-13.1 dup ASD/SZ 
(Christian et al., 2008; Glessner et al., 2009b; Marshall et 
al., 2008a; Pinto et al., 2010b; Sanders et al., 2011; Vacic 
et al., 2011b) 
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15q13.3 del ASD/SZ 

(Bremer et al., 2011; Kirov et al., 2014b; Levinson et al., 
2011; Pinto et al., 2010b; Rees et al., 2014; Sanders et al., 
2011; Stefansson et al., 2008; The International 
Schizophrenia Consortium, 2008; Vacic et al., 2011b) 

16p13.11 dup ASD/SZ 
(Ingason et al., 2011; Kirov et al., 2014b; Pinto et al., 
2010b; Rees et al., 2014; Sanders et al., 2011; Vacic et al., 
2011b) 

16p11.2 del/dup ASD/SZ 

(Bremer et al., 2011; Glessner et al., 2009b; Kirov et al., 
2014b; Levinson et al., 2011; Marshall et al., 2008b; 
McCarthy et al., 2009; Pinto et al., 2010b; Rees et al., 2014; 
Sanders et al., 2011) 

17p12 del ASD/SZ 
(Kirov et al., 2009, 2014b; Pinto et al., 2010b; Rees et al., 
2014; Sanders et al., 2011; Vacic et al., 2011b) 

22q11.2 del/dup ASD/SZ 

(Bremer et al., 2011; Glessner et al., 2009b; Kirov et al., 
2014b; Marshall et al., 2008b; Pinto et al., 2010b; Rees et 
al., 2014; Sanders et al., 2011; Stefansson et al., 2008; The 
International Schizophrenia Consortium, 2008; Vacic et al., 
2011b) 

ASD, autism spectrum disorder; SZ, schizophrenia; del, deletion; dup, duplication. 

 

(II) Exome sequencing 

GWAS studies are, by definition, limited to the identification of common SNPs and CNVs and may 

therefore fail to identify highly penetrant mutations that occur at a lower frequency in a 

population, due to the decreased reproductive fecundity of the affected individuals (Power et al., 

2013). Because of the large effect size of such rare variants, they are likely to be easier in their 

functional interpretation, providing an important contribution to the understanding of the 

disorders with which they are associated (Gratten, 2016).  

The identification of rare genetic mutations requires the application of DNA sequencing 

technologies, such as whole-exome sequencing (WES). This type of analysis can be performed on 

case-parents trios, to investigate the effect of de novo mutations, or on cohorts of cases and 

controls. WES is still an emerging approach in the field of psychiatric disorders, likely because of 

its relatively high cost compared to older technologies. For the same reason, the studies published 

so far were conducted on small samples (Kato, 2015; Sener, Canatan, & Ozkul, 2016). 

So far in the context of SZ, the application of WES has not strongly implicated any individual genes, 

with the exception of SET Domain Containing 1A (SETD1A) (Singh et al., 2016). However, several 

studies have reported that rare (1:10000) and ultra-rare (1:100000) variants disrupting protein-
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coding genes are present at a higher frequency in SZ cases than in controls and that they are 

particularly enriched in specific gene sets, such as voltage-gated calcium channels and synaptic 

proteins (Genovese et al., 2016; Purcell et al., 2014).  A higher frequency of gene-disrupting 

mutations in cases versus controls has also been reported by WES studies for ASDs (Iossifov et al., 

2012).  The sequencing studies on ASDs present in the literature are several, but they are all based 

on a maximum of a few hundred individuals. Nonetheless, some potential causative genes appear 

in more than one study. Some of these are Forkhead box protein P1 (FOXP1), a transcription factor 

involved in  gene expression regulation during brain development (Egawa et al., 2015; O’Roak et 

al., 2011), Glutamate receptor, ionotropic, N-methyl D-aspartate 2B (GRIN2B), and Sodium 

voltage-gated channel alpha subunit 1 and 2 (SCN1A and 2A). Disruption of these genes is also 

associated with epilepsy (Codina-Solà et al., 2015; O’Roak et al., 2011; Roak et al., 2012; Sanders 

et al., 2013). 

At present, WES appears to be a promising approach to complement the large number of GWAS 

data already published, but bigger sample sizes are needed to identify significant rare variants 

with more confidence.  

Finally, it is important to mention that autistic behaviour is also one of the clinical manifestations 

of several genetic syndromes listed in Table 3. Such disorders have a known high-penetrant 

genetic cause and their pathology involves several organs. Generally, typical manifestations 

include dysmorphic features, metabolic dysfunctions, intellectual disability and seizures 

(Caglayan, 2010; Sztainberg & Zoghbi, 2016). However, these syndromes account for only a small 

proportion (5-7%) of the total ASDs cases (Schaaf & Zoghbi, 2011).   

 

Table 1.3 Monogenic syndromes associated with ASD (table based on Caglayan et al 2010 and 
Sztainberg and Zoghbi 2016) 

Syndrome Genetic mutation Main phenotypes 

Fragile X syndrome 
Silencing of FMR1 
gene by CGG triplet 
expansion  

Large head, protruding ears, macro-orchidism, 
aversion to social interaction, developmental 
delay, ID, ASD.  

FXS accounts for 1-3% of total autism cases  

Rett syndrome 
LOF mutation of 
MECP2 

Microcephaly, cognitive and motor 
impairment, epilepsy, ASD 

Tuberous sclerosis 
complex 

LOF mutation of 
TSC1 or TSC2 

Tumours in multiple organs, ID, ADHD, 
epilepsy, ASD  
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ASD, autism spectrum disorder; LOF, loss of function; ID, intellectual disability; ADHD, attention deficit 
hyperactivity disorder; FMR1, fragile X mental retardation protein 1; FXS, Fragile x syndrome; MECP2, 
methyl-CpG-binding protein 2; TSC1, tuberous-sclerosis 1 (hamartin); TSC2, tuberous sclerosis 2 (tuberin); 
NF1, neurofibromin; CACNA1C, Calcium Voltage-Gated Channel Subunit Alpha1 C; DHCR7, 7-
Dehydrocholesterol Reductase; SHANK3, SH3 And Multiple Ankyrin Repeat Domains 3. 

 

In conclusion, SZ and ASDs are characterised by high phenotypic variability and complex genetic 

architecture, which includes common, rare and de novo risk variants.  For this reason, the 

identification of the genetic causes underlying these diseases remains a challenge. Nevertheless, 

recent advances in genetic technologies have provided a long list of genetic variants associated 

with such psychiatric disorders. Research into the genes affected by such mutations and the 

biological pathways on which they converge can provide important insight into the mechanism 

underlying psychiatric disorders.  

1.1.2 The Ch15q11.2 locus 

CNVs in the long arm of chromosome 15 are estimated to be present at a frequency above 0.3% 

in the general population (Grozeva et al., 2012). Several low copy DNA repeat clusters (also called 

duplicons), containing pseudogenes, are present in this area. Misalignment of these sequences 

Neurofibromatosis 1 LOF mutation of NF1  
Multiple fibromas, macrocephaly, ID, 
developmental delay, ADHD, epilepsy, ASD 

Timothy syndrome 
Missense mutation 
in CACNA1C 

Congenital heart disorders, 
immunodeficiency, syndactyly, developmental 
delay, ID, ASD 

Smith-Lemli-Opitz 
syndrome 

LOF mutation DHCR7 Microcephaly, developmental delay, ID, ASD  

15q duplication 
syndrome 

15q11-q13 
duplication 

Hypotonia motor/cognitive/language delays, 
epilepsy, ASD 

Prader-Willi syndrome 
15q11-q13 deletion 
(paternal allele) 

Hyperphagia, obesity, small hands and feet, 
hypogonadism, obsessive compulsive 
behaviour, ASD 

Angelman syndrome 
15q11-q13 deletion 
(maternal allele) 

Facial dysmorphism, developmental delay, 
learning and speech impairments, ASD  

DiGeorge syndrome 22q11.2 deletion 
Facial dysmorphism, multiple organs 
abnormalities, developemtnal delay, mental 
illnesses including ASD 

Phelan-McDermid 
syndrome 

22q13.3 deletion 
(SHANK3 gene) 

Elongated head, ID, speech and motor delay, 
impulsivity, epilepsy, ASD  
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during meiosis can be responsible for non-allelic homologous recombination and, consequently, 

the formation of chromosomal abnormalities (Locke et al., 2004). Five breakpoints (BPs) have 

been characterised in the proximal region of the long arm of chromosome 15. Deletions and 

duplications in this chromosomic region can involve different combinations of these BPs (Butler, 

2017). 

Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two genetic imprinting disorders. 

They are characterised by neurodevelopmental phenotypes of variable severity and are caused 

by a deletion of the paternal copy of the 15q11-13 region for PWS, or the maternal one for AS 

(Butler, 2017; Nicholls & Knepper, 2001). The deletion is classified as type I when it occurs 

between BP1 and BP3 (6.6 Mb), or type II if it involves BP2 and BP3 (5.3 Mb) (Butler et al., 2008) 

(See fig. 1.1). Individuals with type I deletion have been found to have more severe intellectual 

and behavioural deficits, suggesting the presence of some dosage-sensitive genes in this region 

that play an important role in neurodevelopment (Butler et al., 2004). The region between BP1 

and BP2 spans approximately 500 Mb and encompasses four non-imprinted genes, which are 

NIPA1 (non-imprinted in Prader-Willi and Angelman syndrome 1), NIPA2, CYFIP1 (cytoplasmic 

FMRP-interacting protein 1) and TUBGP5 (tubulin gamma complex associated protein 5) (Chai et 

al., 2003). 

 

Figure 1.1 Scheme of the 15q11-13 chromosomic locus.   

Genes located between BPs 1 and 5 are shown in green when non-imprinted, genes expressed only from 

paternal allele (PWS critical region) are in blue and genes expressed only from maternal allele (AS critical 

region) in red. This image is taken from Butler’s review on 15q11.2 microdeletion syndrome (Butler 2017). 
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NIPA1 encodes for a magnesium (Mg++) transporter that is widely and highly expressed in the 

developing and adult brain (Goytain et al., 2007; van der Zwaag et al., 2010). Mutations in this 

gene are known to cause hereditary spastic paraplegia (Fink, 2003). 

NIPA2 also encodes a highly selective Mg++ transporter that is expressed in several organs 

including the brain, but is particularly abundant in placenta and kidneys (Chai et al., 2003; Goytain 

et al., 2008). Several studies have implicated a role for NIPA2 mutations in the aetiology of 

childhood absence epilepsy (Jiang et al., 2012, 2014; Xie et al., 2014). 

TUBGCP5 is part of the gamma-tubulin complex required for microtubules nucleation at the 

centrosome (Murphy et al., 2001). Its expression can be detected in many tissues of both mouse 

and human. In the brain, it is particularly high in subthalamic nuclei, a region important in the 

neurobiology of ADHD and obsessive-compulsive disorder (OCD) (Brem et al., 2014; Chai et al., 

2003; Doornbos et al., 2009).  

CYFIP1 is a cytoplasmic protein which is ubiquitously expressed in many organs and participates 

in two multi-protein complexes (Chai et al., 2003). It binds to FMRP to regulate mRNA translation 

and is part of the WAVE regulatory complex (WRC) (Abekhoukh & Bardoni, 2014; De Rubeis & 

Bagni, 2010; Napoli et al., 2008).  Its association with FMRP, the protein mutated in the FXS (see 

paragraph 1.1), makes CYFIP1 a highly likely candidate to explain the psychiatric phenotypes 

linked to 15q11.2 chromosomic abnormalities. Its expression and biological function have been 

the object of numerous studies, which will be reviewed later in this chapter.  

Besides modulating the severity of PWS and AS phenotypes, CNVs involving the region between 

BP1 and BP2 of chromosome 15 are also known to increase risk for neurodevelopmental and 

psychiatric conditions. The first study reporting the association between neurological disorders 

and 15q11.2 microdeletion was published in 2007 (Murthy et al., 2007). Since then, many 

additional cases have been reported. The clinical phenotypes most frequently present in 15q11.2 

deletion carriers include developmental delay and psychiatric disorders, including ASD and SZ. 

Other neurological problems, such as seizures, have also been described (Abdelmoity et al., 2012; 

Burnside et al., 2011; Cafferkey et al., 2014; Doornbos et al., 2009; Jerkovich & Butler, 2014; 

Madrigal et al., 2012; Picinelli et al., 2016; Vanlerberghe et al., 2015; von der Lippe et al., 2011). 

Clinical reports of 15q11.2 microduplications are less abundant in the literature. Patients usually 

present with developmental delay and autistic features. In addition, dysmorphic features, motor 

coordination issues and seizures were also reported in a few cases (Burnside et al., 2011; Picinelli 

et al., 2016; van der Zwaag et al., 2010).  
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The association between 15q11.2 CNVs and psychiatric disorders has been further strengthened 

by the results of several GWAS. In fact, 15q11.2 microdeletion or duplications are reportedly 

found at a frequency of 0.55-0.82% in SZ cases and of above 0.8% in ASD ones, while only 0.2-

0.4% control individuals have been found to carry such mutations (Kirov et al., 2009, 2014a; Rees 

et al., 2014; Stefansson et al., 2008). Data on inheritability are scarce for 15q11.2 duplications, 

but, in the context of deletions, it has been reported that most patients inherit the mutation from 

an unaffected parent (51%), while 5 to 22% of cases represent de novo CNVs (Butler, 2017; 

Cafferkey et al., 2014).  

The frequency of 15q11.2 deletions and duplications observed in control populations provides 

proof for incomplete penetrance and it has been proposed that other mutations in interacting 

genes or pathways may play an important role in determining the clinical phenotype (Butler, 

2017). Figures on penetrance are variable and incomplete, however two studies report similar 

values for the risk of SZ and ASD combined, associated with the microdeletion (10 and 13%) (Kirov 

et al., 2014a; Rosenfeld et al., 2013). Only one study investigates the effect of microdeletion and 

microduplication on ASD alone, reporting an estimated penetrance of 1.3% and 1.8% respectively 

(Chaste et al., 2014).  Despite the incomplete penetrance for psychiatric disorders, 15q11.2 

deletions have been recently shown to also impact the brain structure and IQ of control 

individuals, who often present with dyslexia and/or dyscalculia (Stefansson et al., 2014). 

Considering all the data presented above, it can be concluded that some of the genes located 

between BP1 and BP2 on chromosome 15 have an important role in brain development and 

neuronal function and that an incorrect expression level of such genes significantly increases the 

risk of developing ASD or SZ.  The next section reviews the existing literature on CYFIP1, which is 

considered, from a neurodevelopmental perspective, the most promising candidate gene 

encoded in the 15q11.2 chromosomic locus. 

1.2  CYFIP1 biology 

CYFIP1 (also known as p140Sra-1) is an evolutionarily conserved gene that was named as 

“cytoplasmic FMRP-interacting protein 1” by Schenck and colleagues in 2001 (Schenck et al., 

2001). In this study, the authors employed a yeast two-hybrid system to screen a mouse 

embryonic library for proteins binding to the N-terminus of FMRP. This led to the characterisation 

of two proteins, named CYFIP1 and CYFIP2. The latter is also able to bind the FMRP-related 

proteins FXR1P/2P, whereas CYFIP1 interacts only with FMRP. The two CYFIP proteins share ~88% 

homology (Schenck et al., 2001). 
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However, prior to this study, CYFIP1 had already been identified as a target of Rac1 small GTPase, 

named p140Sra-1 (Kobayashi et al., 1998), and CYFIP2 was already known as PIRI121 (Saller et al., 

1999).  Around the time they were established as FMRP binding partners, both CYFIP1/Sra-1 and 

CYFIP2/PIRI121 were also characterised as being associated with WAVE (WASP (Wiskott–Aldrich 

syndrome protein)-family verprolin homologous protein) proteins in the formation of the WAVE 

regulatory complex (WRC), which controls cytoskeleton dynamics (Eden et al., 2002; Steffen et al., 

2004). 

The interest on CYFIP1 as a potential risk gene for psychiatric disorders is therefore explained by 

its participation to these two fundamental cellular functions, the regulation of mRNA translation 

with the FMRP and the control of actin polymerisation as part of the WRC.     

1.2.1 Role of Cyfip1 in the WRC 

The WRC is a hetero-pentameric complex, which controls actin polymerisation by the Arp2/3, a 

process fundamental for cell adhesion, cell migration, vesicle trafficking and neurite extension 

(Takenawa & Suetsugu, 2007). Its components include WAVE1/2/3, ABI (Ableson interacting 

protein), NAP (NCK-associated proteins), CYFIP1/2 and HSPC300 (hematopoietic stem progenitor 

cell 300) (Chen et al., 2010). 

WAVE proteins are characterised by the presence of a VCA (Verprolin-homology, Central and 

Acidic regions) domain, which binds to Arp2/3 and G-actin monomers to guide actin 

polymerisation (Mendoza, 2013). The resolution of the WRC structure suggested a possible 

mechanism for the regulation of this multi-protein complex. It was proposed that the WRC is 

constitutively inactive, with the VCA occupied by CYFIP1/2, preventing its interaction with Arp2/3.  

Several processes requiring cytoskeletal rearrangements, such as the extension of lamellipodia, 

stimulate Rac1 activation, which can induce CYFIP1/2 release from the VCA (Chen et al., 2010). 

Cooperatively with Rac1, negatively charged phospholipids also participate in WRC activation, 

recruiting the complex to the cell membrane. Such a step is necessary to initiate the formation of 

cell protrusions or lamellipodia and can also facilitate WRC oligomerisation, which significantly 

enhances its activity (Oikawa et al., 2004; Padrick et al., 2008). 
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Figure 1.2 CYFIP proteins participation in the regulation of actin polymerisation by the WRC.  

(A) Schematic illustrating the WRC subunits forming an inactive complex. In this state, the WAVE proteins 

are associated with CYFIP, ABI2, NAP and HSPC300. (B) Activation of Rac signalling destabilises the 

interaction between WAVE and CYFIP, resulting into its dissociation, together with ABI2 and NAP (from 

Abekhoukh and Bardoni, 2014). 

 

1.2.2 Role of Cyfip1 in the regulation of mRNA translation 

Together with their role within the WAVE complex, CYFIP1/2 are known to interact with FMRP at 

the same domain this protein uses for dimerization with other FXR proteins (Schenck et al., 2001). 

This suggests that CYFIP1/2 have the ability to modify FMRP function, but the consequences of 

this interaction have not been entirely elucidated.  

FMRP is a ubiquitously expressed mRNA-binding protein which is particularly enriched in neuronal 

dendrites. It is believed that FMRP acts primarily as a translational repressor, but it is also involved 

in the regulation of localisation and stability of mRNA (Fernández, Rajan, & Bagni, 2013). Several 

studies conducted in neuronal cells identified over a thousand putative FMRP mRNA targets 

(Brown et al., 2001; Chen et al., 2003; Darnell et al., 2011). Importantly, a significant proportion 

of these overlaps with ASD risk genes reported by GWAS studies, while only a smaller fraction is 

represented by mood disorders- and SZ-related genes (Fernández et al., 2013). This evidence 

further strengthens the link between FMRP and ASD and provides important support to the 

hypothesis of an existing shared mechanism across psychiatric disorders. 

In the context of mRNA translation, CYFIP1 has been proposed to be part of a complex that binds 

and controls mRNA translation, interacting with both FMRP and the initiation factor 4E, eIF4E. 

According to this model, CYFIP1 is recruited by FMRP onto specific mRNAs to act as a 4E-BP (4E-

binding protein), blocking the initiation of translation (Napoli et al., 2008; Richter & Sonenberg, 

2005). In Cap-dependent translation, the start of this process requires the association between 

the initiation factors eIF4A-eIF4E-eIF4G (named eIF4F as a complex) and the 5’m7G cap of mRNA 
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molecules. 4E-BPs interfere with eIF4E-eIF4G interaction, keeping the translation inhibited 

(Richter & Sonenberg, 2005).  

 

 

Figure 1.3 Scheme of the proposed Cap-dependent translation mechanism involving CYFIP1. 

The translation of mRNAs is inhibited by the FMRP/CYFIP1 complex, which prevents binding of the eIF4E to 

the PABP. Synaptic stimulation requires mRNA translation at the spine level and, therefore, induces the 

release of FMRP and CYFIP1 from the translation complex. At the same time, the association between eIF4E, 

eIF4G and PABP allows the initiation of translation.  (from Napoli et al., 2008) 

 

In an attempt to find a single mechanism explaining CYFIP1 participation in actin polymerisation 

and protein synthesis, it has been suggested that cellular signals, converging on Rac1 stimulation 

of CYFIP1, trigger a conformational change that induces CYFIP1 release from the complex with 

FMRP and eIF4E and its recruitment to the WRC (DeRubeis et al., 2013). The authors designed two 

mutant forms of CYFIP1 to specifically inhibit its interaction with the WRC or eIF4E and transfected 

each isoform separately in primary neurons, where CYFIP1 had been knocked-down. Transfection 

of the first isoform was able to restore normal actin levels, while the second only rescued the 

translation of some known FMRP targets (DeRubeis et al., 2013). However, the interpretation of 

these results is in conflict with the numerous studies reporting CYFIP1 inhibitory role towards 

actin polymerisation, within the WRC (see previous paragraph). One explanation is that the 

mechanism regulating the distribution of the CYFIP1 protein pool between the two complexes 

could be more complicated than previously believed. Indeed, it has been recently shown that 

MNKs (Map kinase-interacting kinases) are also involved in the control of translation initiation in 

neuronal cells and that, by phosphorylating eIF4E, they induce its release from CYFIP1 (Genheden 

et al., 2015). It is therefore possible that even more proteins are involved in modulating CYFIP1 
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activity in the context of actin polymerisation and protein synthesis and that future studies will 

eventually clarify the mechanism. 

1.2.3 Expression pattern of CYFIP1 

There is little data on CYFIP1 expression pattern, as it has been investigated by very few studies. 

In situ hybridisation analysis by van der Zwaag et al. showed that Cyfip1 is expressed in the mouse 

brain as early as E12 (van der Zwaag et al., 2010). At this stage, the expression level appears to be 

enriched in the ventricular zone (VZ) of the forebrain, an observation in agreement also with data 

from the Eurexpress database (Eurexpress.org). Cyfip1 expression is maintained throughout 

embryonic development up to day E18.5, with strong signal still present in the VZ and cortical 

plate (CP) of the forebrain. In the adult, Cyfip1 was found in the olfactory bulb, the hippocampus 

and the cerebellum. 

Support that Cyfip1 protein is present in the developing cortex was recently provided by Yoon and 

colleague (Yoon et al., 2014). The authors showed specific localisation of Cyfip1 in the ventricular 

surface of the radial glia cells facing the VZ, co-localising with N-Cadherin and β-Catenin, and lower 

expression levels in the intermediate zone (IZ). However, in contrast to what had been previously 

reported by in situ studies, Cyfip1 protein did not appear to be expressed in the CP (van der Zwaag 

et al., 2010; Yoon et al., 2014).  

      

 

Figure 1.4 Cyfip1 expression in the mouse developing brain.  

(A) In situ hybridisation for Cyfip1 in E14.5 mouse embryo (from Eurexpress.org). (B) Specific localisation of 

Cyfip1 in VZ cells of E15.5 mouse forebrain (from Yoon et al 2014). 
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1.2.4 In vivo and in vitro studies on Cyfip1 alterations in neuronal cells  

The known association between abnormal CYFIP1 levels and the increased risk of acquiring 

developmental psychiatric disorders has driven research into modelling the consequences of such 

alterations, using genetically modified mice and rodent or human cultured cells.  

Pathania and colleagues demonstrated that Cyfip1 is essential for embryonic development, as 

Cyfip1 -/- mouse embryos are detectable only until day E8.5 (Pathania et al., 2014). They also 

showed that, in primary cultures of mature mouse hippocampal neurons, Cyfip1 is enriched at 

excitatory synapses and that haploinsufficiency and overexpression of this gene have opposite 

effects on dendritic complexity. More precisely, low levels of Cyfip1 decrease dendritic branching, 

while high levels lead to a more complex dendritic arborisation.  Spine maturation is also affected 

by such alterations (Pathania et al., 2014).  

The disruption of normal dendritic outgrowth by CYFIP1 overexpression was also reported in 

human neuroblastoma cells SY5Y and in cortical cells of transgenic mice by Oguro-Ando and 

colleagues (Oguro-Ando et al., 2014). According to their results, high CYFIP1 dosage causes a 

reduction in neurite length, but also a significant increase in branch number and cell size, in both 

models. With the support of a microarray analysis on E15 cortex of wild type (WT) and transgenic 

mice, the authors proposed mTOR upregulation as the disrupted pathway at the origin of the 

phenotype observed. This hypothesis was confirmed treating mouse neuronal progenitors with 

the mTOR inhibitor rapamycin, which rescued the morphological defects caused by Cyfip1 

overexpression (Oguro-Ando et al., 2014).  

The disruption of physiological CYFIP1 levels has been investigated also in human PSCs-based in 

vitro models. A transcriptomic analysis of CYFIP1-knock down (KD) against control iPSCs-derived 

neural progenitor cells (NPCs) revealed that many of the differentially expressed genes were 

related to cytoskeletal remodelling and cell cycle (Nebel et al., 2016). In agreement with 

cytoskeletal dysregulation, CYFIP1KD NPCs had lower levels of WAVE protein, lower levels of F-

Actin and bigger nuclei, but not significantly bigger cell size (Nebel et al., 2016). 

However, CYFIP1 is only one of the four genes affected by 15q11.2 deletions and duplications (see 

paragraph 1.1.2). As discussed in the next paragraph, iPSCs represent a useful tool to model CNVs 

encompassing several genes and they have also been used in the context of 15q11.2 deletions.  

Yoon and colleagues used iPSCs from three deletion-carriers and five controls to demonstrate that 

the self-organisation of NPCs into neural rosettes, a stage mimicking the neural tube formation 

during in vivo embryonic development, was compromised by the deletion (Yoon et al., 2014). The 

expression pattern of the adhesion proteins marking the rosettes lumen was disrupted and this 
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defect seemed specifically due to the reduction in CYFIP1 levels. Indeed, it could be reproduced 

by transfecting short hairpin RNA (shRNA) targeting CYFIP1 in control cells and it could be rescued 

by increasing CYFIP1 expression in cells carrying the CNV. Significant reduction of WAVE2 protein 

was also observed in both 15q11.2-deleted and CYFIP1KD NPCs. The authors confirmed the 

importance of CYFIP1 in the maintenance of the correct polarity for cortical progenitors with in 

utero electroporation experiments, in which they demonstrated that the correct level of Cyfip1 is 

necessary for the proper placement of radial glial cells (RGCs) and the correct distribution of 

neurons across the cortical layers (Yoon et al., 2014). 

In another study, Das and colleagues used iPSCs from two deletion carriers and one control to 

show that the mRNA levels for CYFIP1, NIPA1, NIPA2 and TUBGCP5 were reduced in pluripotent 

cells and neurons carrying the deletion (Das et al., 2015). In addition, they report that the 

morphology of mature neurons derived from the two patients suggested the presence of dendritic 

spine alterations, but no quantitative analysis was reported for this aspect (Das et al., 2015).  

To date, only these three studies have used PSCs to investigate the significance of 15q11.2 CNVs 

and, in particular CYFIP1, in human neuronal cells (Das et al., 2015; Nebel et al., 2016; Yoon et al., 

2014). However, all of them represent loss-of-function models. The derivation of iPSCs from 

duplication carriers, or the development of hPSCs-based models mimicking an increase of CYFIP1 

or other 15q11.2 genes, have not been reported. 

In the next paragraph, I review the use of human PSCs to model developmental psychiatric 

disorders. This topic was also the subject of a review published in the Brain Pathology journal, as 

part of a mini-symposium on “Using iPSCs to understand human neurological disease: potential 

and limitations” (Tamburini & Li, 2017). The content of this review is reported in the next 

paragraph with minor modifications.  

1.3   The use of human Pluripotent Stem Cells for in vitro modelling of 

neurodevelopmental psychiatric disorders 

Neurodevelopmental disorders are a group of conditions typically manifest early in life and are 

characterised by developmental deficits that produce impairments of personal, social, academic 

or occupational functioning. Neurodevelopmental (or neuropsychiatric) conditions include autism 

spectrum disorders, intellectual disabilities, schizophrenia and bipolar disorder, and have a 

substantial genetic component (Beneyto & Lewis, 2011; Cristino et al., 2014; O’Shea & McInnis, 

2016; Ziats & Rennert, 2016).  
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For a long time, psychiatric research mainly relied on post-mortem studies and animal models. 

The first approach has the major limitation of representing the end-stage of the disease, without 

being informative about its origin and pathological progression. Moreover, changes observed in 

post-mortem tissues may be secondary effects of a patient’s prolonged use of medications. 

Animal models, predominantly rodents, are available for several psychiatric disorders, especially 

autism spectrum disorders and schizophrenia, but they have so far failed to show significant  

predictive validity for drug discovery (Markou et al., 2009; Pratt et al., 2012). This may be due to 

the inability of model organisms to represent unique higher human functions and consequently, 

to recapitulate all the symptoms characterising a particular disorder (Nestler & Hyman, 2010). For 

example, despite the numerous rodent models available for schizophrenia, these are mostly 

representative of the psychotic aspects of the disease, but do not reliably reproduce the cognitive 

and negative symptoms, such as impaired working memory, anhedonia and social withdrawal 

(Jones, Watson & Fone, 2011). In the case of bipolar disorder, there are no animal models 

available to represent both the manic and depressive extremes characterising the disorder 

(O’Shea & McInnis, 2016). 

In just a decade from the derivation of the first line (Takahashi et al., 2007; Takahashi & Yamanaka, 

2006), induced pluripotent stem cells (iPSCs) have become a fundamental tool for modelling 

human development and diseases, as well as for drug discovery. Like their mouse counterparts, 

human iPSCs are believed to have the same self-renewal and pluripotency properties of human 

embryonic stem cells (hESCs), but are derived (reprogrammed) from somatic cells, such as skin 

fibroblasts (Takahashi et al., 2007), keratinocytes (Aasen et al., 2008), dental pulp (Tamaoki et al., 

2010; Yan et al., 2010) or blood (Loh et al., 2009). The reprogramming is achieved by forcing the 

expression of key pluripotency genes such as OCT4, SOX2, c-MYC and KLF4 in somatic cells, where 

the reprogramming factors start a self-regulatory loop that initiates and maintains pluripotency 

(Masui et al., 2007; Pan et al. , 2006). Expression of these reprogramming factors can be induced 

via viral transduction (Ban et al., 2011; Park, 2008), transfection of polycistronic plasmids 

(Montserrat et al., 2011), mRNAs (Warren et al., 2010) or direct delivery of recombinant proteins 

(Hongyan et al., 2009). Moreover, treatment with specific combinations of small molecules has 

been shown to greatly increase the reprogramming efficiency (Huangfu et al., 2008; Yan Shi et al., 

2008).  

The use of adult somatic cells as starting material means that iPSCs are free from the ethical 

concerns that surround the use of hESCs, and that they can be derived from individuals carrying 

genetic variants that predispose to an increased risk of human diseases. Working on iPSCs, and 

PSCs in general, has become increasingly important in psychiatric research thanks to the ability to 
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study the consequences of a large number of disease-associated mutations in the phenotypically 

relevant cell types. This is playing an important role in advancing our understanding of the cellular 

mechanisms underlying psychiatric disorders and reinforcing the hypothesis of their 

developmental origin. 

1.3.1 Generation of disease relevant neuronal cell types from human PSCs 

The brain contains thousands of neuronal types that differ in terms of neurotransmitter identity, 

electrophysiological properties and afferent/efferent connectivity (Nelson, Sugino & Hempel, 

2006).  Different neurological diseases often exhibit pathologies specific to certain brain regions 

and/or cell types. This means that the possibility of observing and, therefore, being able to correct 

a specific phenotype, is strictly dependent on the presence of the appropriate neuronal type in 

the system used. Therefore, an important consideration in modelling human neurological diseases 

is the generation of neural cell types targeted by the disease of interest.  

A number of neuronal cell types have been implicated in psychiatric disorders:  cortical projection 

neurons (Donegan & Lodge, 2016), inhibitory interneurons (Donegan & Lodge, 2016; Lewis et al., 

2012), hippocampal neurons (Frey et al., 2007), dopaminergic neurons (Donegan & Lodge, 2016) 

and striatal medium spiny neurons (Fuccillo, 2016; Simpson, Kellendonk & Kandel, 2010).  

Protocols to generate these neuronal types have been developed and are reviewed in this 

paragraph. Many lines of evidence demonstrate that in vitro PSC differentiation, to a large extent, 

mimics vertebrate development. In the context of neuronal conversion, PSCs firstly exit the 

pluripotent state and acquire a neuroectoderm fate.  Therefore, the majority of neuronal 

differentiation protocols start with the induction of a specific regional neuroepithelial phenotype 

(region-specific progenitors) from which the target cells arise. This is mostly achieved by artificially 

recapitulating the signalling environment that the region-specific progenitors normally 

experience in vivo, by adding an appropriate combination of ‘inductive’ molecules. The aim is to 

induce a cascade of transcription resembling normal development, leading to the expression of a 

combinatorial set of transcription factors characteristic to the desired neural progenitor 

phenotype. 

Currently, a popular method for generating neural cells  from hPSCs is via monolayer 

differentiation protocol by dual SMAD inhibition (Chambers et al., 2009). Normal central nervous 

system development follows an anterior first - posterior later temporal fashion. As such, the first 

neuroepithelial cells generated from PSCs exhibit features of forebrain regional identity. These 

anterior progenitors readily mature into neurons with predominantly cortical glutamatergic 

identity (Boissart et al., 2013; Espuny-Camacho et al., 2013; Shi et al. , 2012). Cell types of all 
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cortical layers appear in a sequence reminiscent of in vivo corticogenesis, from deep layers to 

superficial ones. The efficiency of this approach was shown to be very high, with glutamatergic 

neurons accounting for 80% to nearly 100% of the cells in culture.  

The specification of the other neuronal fates requires the use of additional morphogens to mimic 

the in vivo environment of the corresponding brain region. For example, the derivation of 

GABAergic interneurons requires the activation of sonic hedgehog (SHH) signalling (Y. Liu, Liu, et 

al., 2013; Y. Liu, Weick, et al., 2013), in some cases combined with WNT inhibition (Maroof et al., 

2013; Nicholas et al., 2013), to induce the medial ganglionic eminence (MGE) fate demonstrated 

by the expression of transcription factor NKX2.1. However, despite the induction of a high 

percentage of NKX2.1+ MGE-like progenitors, efficient generation of mature interneurons, 

including the two major subtypes, somatostatin (SST) and parvalbumin (PV), have so far proved 

challenging. On the other hand, caudal ganglionic eminence (CGE)-derived interneurons 

expressing calretinin have been derived with a higher efficiency (>70%), by exposing late neural 

progenitors to activin A, a member of the TGF-β superfamily (Cambray et al., 2012).  

When applied to forebrain neural progenitors at an earlier time window, activin A induces the 

specification of a lateral ganglionic eminence (LGE) fate, leading to the production of 40-50% of 

medium spiny neurons (Arber et al., 2015).  Other strategies for deriving this type of neurons rely 

on the use of SHH, alone or in combination with WNT inhibition (X.-J. Li et al., 2009; L. Ma et al., 

2012; Nicoleau et al., 2013), in a similar way to MGE protocols. Dopaminergic neurons, which are 

born in the ventral midbrain, can be differentiated from hPSCs by exposing the neural precursors 

to different combinations of WNT agonists with SHH (Denham et al., 2012; Kirkeby et al., 2012; 

Kriks et al., 2011) or FGF8 (Xi et al., 2012). In addition, FGF signalling blockade using a ERK/MEK 

inhibitor on exit of pluripotency, followed by addition of SHH and FGF8 has also been reported to 

induce authentic midbrain dopamine neurons (Jaeger et al., 2011). The yield of tyrosine 

hydroxylase positive cells is elevated in all these cases, reaching above 80%. Finally, only one 

protocol has been reported so far for the production of hippocampal neurons (Yu et al., 2014). 

For these cells, the application of WNT3a and BDNF to dorsal forebrain progenitors seems to be 

essential to induce the expression of PROX1, a marker for dentate gyrus hippocampal neurons.  

Monolayer differentiation has proved itself a highly efficient and reliable paradigm for generating 

a number of neuronal types.  Indeed, monolayer based forebrain glutamatergic neuron 

differentiation has been the platform of choice for the majority of disease modelling papers 

published so far (Brennand et al., 2015; Brennand et al., 2011; Chen et al., 2014; Griesi-Oliveira et 

al., 2014; Kim, Hysolli & Park, 2011;  Marchetto et al., 2010; Robicsek et al., 2013; Shcheglovitov 

et al., 2013a; Srikanth et al., 2015; Wen et al., 2014b; Yoon et al., 2014). However, the monolayer 
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culture system has limitations in visualising potential alterations in the cytoarchitecture of the 

derived ‘brain tissue’. This shortcoming can be overcome, to a certain extent, by differentiating 

PSCs in 3 dimensional (3D) structures called organoids (Lancaster & Knoblich, 2014; Mariani et al., 

2012; Qian et al., 2016), although at the expense of higher variability, both within and between 

organoids, and in different preparations. To date, only Mariani and colleagues have used 

telencephalic organoids for analysing the developmental abnormalities with iPSCs derived from  

patients with idiopathic autism (Mariani et al., 2015).  

The generation of ‘induced neurons’ (iNs) by direct reprogramming represents an alternative to 

conventional PSC neural differentiation. iNs are produced by forcing the expression of a defined 

set of transcription factors crucial for the acquisition of neuronal fate in somatic cells or PSCs 

(Ambasudhan et al., 2011; W. Hu et al., 2015; Ladewig et al., 2012; Pang et al., 2011; A. S. Yoo et 

al., 2011). iN protocols for the generation of specific neuronal types have also been published 

(Caiazzo et al., 2011; Colasante et al., 2015; Pfisterer et al., 2011; Sun et al., 2016; Victor et al., 

2014; Z. Xu et al., 2016). However, the iN approach may not be suitable for modelling diseases 

where pathogenesis occurs at neural progenitor stage, because it bypasses the process of neural 

progenitor specification, proliferation and differentiation choice towards distinct neuronal and 

glial fates.  Moreover, in contrast to hPSC neural differentiation, the number of iNs that can be 

generated from the donor somatic cells is limited due to the restricted proliferative capacity of 

somatic cells prior to senescence. These shortcomings combined may explain why there are no 

studies published to date using iN technology to model psychiatric disorders. 

1.3.2 Current status of iPSCs-based research for psychiatric disorders 

Brain imaging studies have demonstrated changes in the anatomy and neuronal activity in 

patients suffering from psychiatric disorders, while post-mortem studies have revealed aberrant 

cellular morphology (Black et al., 2004; Dinstein et al., 2011; Hutsler & Zhang, 2010; Whitfield-

Gabrieli et al., 2009). The iPSC technology has provided an invaluable tool to investigate the 

cellular basis of such alterations and elucidate the molecular pathways that may be targeted for 

drug discovery.  

The first proof-of-principle study using iPSCs was published by Brennand and colleagues in 2011 

(Brennand et al., 2011). The authors reported that neurons derived from schizophrenic patients’ 

iPSCs differ from those of the controls in neuronal connectivity, morphology and gene expression. 

This work was followed by several other schizophrenic iPSC studies reporting the emergence of 

earlier developmental abnormalities. 
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Robicsek and colleagues differentiated schizophrenia and control iPSCs into glutamatergic and 

dopaminergic neurons and found defects in the maturation of both cell types, with the dopamine 

lineage more severely affected (Robicsek et al., 2013). The authors also reported differences in 

mitochondrial distribution and function. This aspect of the phenotype was more pronounced in 

dopaminergic progenitors than the glutamatergic cells. This could suggest the presence of a higher 

vulnerability for dopamine cells to oxidative stress, but it could also reflect, at least in part, their 

extremely impaired maturation. Together with alterations of mitochondrial membrane potential 

and neuronal morphology, other defects often reported in neuronal cells from schizophrenic 

patients iPSCs are relative to WNT signalling and migration (K. Brennand et al., 2015; Topol et al., 

2015) (see also Table 1). 

All the studies listed above were based on heterogeneous cohorts of schizophrenic patients, 

selected only on the basis of their diagnosis, without knowledge of their genetic risk variants. This 

probably played a significant part in the high experimental variability evident in some of the 

results. 

It is known that schizophrenia has a strong genetic component, with rare Copy Number Variations 

(CNVs) significantly increasing the risk of developing this disorder (reviewed by Kirov (Kirov, 

2015)). Stratifying patients based on the presence of specific genetic mutations could help to 

reduce the degree of variability associated with iPSC work and discover new mechanisms that 

otherwise may be masked by the heterogeneity of the patients’ samples.  Wen and colleagues 

took the genetics orientated approach by analysing the effect of Disrupted In SChizophrenia 1 

(DISC1) mutations, which are known to co-segregate with major psychiatric illnesses (Millar et al., 

2000; Wen et al., 2014b). iPSCs lines were derived from two patients carrying the same frameshift 

mutation in the DISC1 gene and three unaffected individuals. The authors reported altered 

morphology and electrophysiological properties in DISC1 neurons, as well as the expression of 

genes related to synaptic transmission, neural development and major mental disorders. They 

also established the causality between DISC1 mutations and the changes observed by repeating 

some of the analysis in several isogenic cell lines. These were derived by correcting the DISC1 

mutation in one of the mutant lines and by introducing the same frameshift deletion present in 

patients in two control lines. Both synaptic and vesicular release properties were restored to 

normal levels in the cell line in which the DISC1 gene sequence had been corrected, while the 

control lines carrying DISC1 deletion recapitulated the original mutant phenotype. However, the 

majority of CNVs associated to psychiatric disorders contain multiple genes. This genetic feature 

makes iPSC modelling particularly advantageous over the generation of animal models. 

Microdeletion of the 15q11.2 locus has been reported by several studies as an important risk 
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factor for schizophrenia (Stefansson et al., 2008; The International Schizophrenia Consortium, 

2008). Yoon and colleagues demonstrated that iPSCs derived from 15q11.2 deletion carriers had 

significant defects in neural rosette formation (Yoon et al., 2014). The 15q11.2 region contains 

four genes, CYFIP1 was proposed to be the likely responsible gene for the observed phenotypes. 

Indeed, increasing CYFIP1 expression by lentiviral transduction in differentiating 15q11.2del iPSCs 

rescued the abnormal expression of apical polarity markers, while reduction of CYFIP1 expression 

by shRNA in a control line mimicked the phenotype observed in the deleted progenitors. The 

authors extended their quest into CYFIP1 function by shRNA knockdown of Cyfip1 in mouse 

embryos via in utero electroporation, which resulted in incorrect localisation of radial glia cells 

and nascent neurons. However, the consequences of CYFIP1 disruption in post-mitotic neurons 

were not explored.  

As for autism spectrum disorders, in vitro modelling was first applied to syndromic autism, such 

as Rett syndrome (RTT) and Phelan-McDermid syndrome (PMDS). RTT syndrome is one of the 

most common causes of mental retardation mainly affecting girls and is caused by mutations of 

the methyl CpG binding protein 2 (MECP2) (Amir et al., 1999). iPSCs-based investigations into RTT 

reported defects in neuronal maturation in patients’ cells (K. Y. Kim et al., 2011; M. C. N. 

Marchetto et al., 2010) (See also Table 1). In particular, Marchetto and colleagues demonstrated 

the presence of morphological alterations and reduced number of glutamatergic synapses in RTT 

neurons (M. C. N. Marchetto et al., 2010). This defect could be rescued by IGF1, a neurotrophic 

factor capable of promoting synaptogenesis. The same group subsequently reported the 

involvement of MeCP2 in regulating the expression of TRPC6, one of the genes disrupted by a 

translocation recently found in an autistic patient (Griesi-Oliveira et al., 2014).  

Similar cellular phenotypes were reported in in vitro models of PMDS. Shcheglovitov and 

colleagues investigated the cellular phenotypes of iPSCs-derived neurons from two patients 

carrying heterozygous deletion of chromosome 22q13.3, the mutation responsible for PMDS 

(Shcheglovitov et al., 2013b). Cortical neurons derived from these iPSCs displayed impaired 

excitatory synaptic transmission, while the properties of their inhibitory synapses were not 

affected. These deficits could be either rescued by increasing the expression of SHANK3, a gene 

included in the deleted locus, or by IGF1 treatment, which did not affect SHANK3 levels. 

Taking a different approach, Mariani and colleagues derived iPSCs from four probands with 

idiopathic autism, carrying no known genetic mutation previously associated with autism 

spectrum disorders, and unaffected family members (Mariani et al., 2015). Transcriptomic 

analysis of telencephalic organoids derived from patients and control cells revealed many 

differentially expressed genes, mainly relative to cell fate, proliferation, axonal guidance, synaptic 
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function and ion channels. Consistently with these results, probands’ cells showed dysregulated 

cell cycle and overproduction of inhibitory neurons, a phenotype that could be rescued by 

attenuating FOXG1 levels. 

In the context of bipolar disorder, after performing a microarray analysis of iPSC-derived neurons 

from three patients and three controls, Chen and colleagues found a similar alteration in the 

expression of transcription factors regulating dorso-ventral telencepahlic patterning (Chen et al., 

2014). These results, however, do not significantly overlap with those from Mertens et al, the only 

other publication employing iPSCs for bipolar disorder modelling to date (Mertens et al., 2015). 

Their work, based on hippocampal neurons derived from bipolar patients, showed that the 

hyperexcitability and abnormal mitochondria size of these cells could be rescued by lithium 

treatment, while alteration of mitochondrial membrane potential could not be improved. 

In the interest of space, table 1.4 summarises the above works together with additional studies 

not individually discussed in this mini review. It is evident that differences exist between studies 

within the context of the same disorder. These discrepancies may attribute to different 

differentiation protocols, culture systems and analysis methods. Nevertheless, some common 

themes emerge from these studies. In general, genes involved in nervous system development 

are reported to be affected by many studies and, in line with this, several phenotypes are already 

present at the neural progenitor stage. In particular, altered WNT signalling and mitochondria 

dysfunction seem to be frequently reported in patient-derived cells (K. Brennand et al., 2015; K. 

J. Brennand et al., 2011; Mertens et al., 2015; Robicsek et al., 2013; Srikanth et al., 2015; Topol et 

al., 2015; P. Wang, Lin, et al., 2015). They may represent shared mechanisms in the aetiology of 

neurodevelopmental psychiatric disorders. 

1.3.3 CRISPR-based genome editing as a powerful alternative to model 

neurodevelopmental disorders 

iPSCs represent a virtually unlimited and bankable source of patient-specific cells that can be 

differentiated into many disease-relevant neuronal types. Therefore, they allow the investigation 

of cellular phenotypes in cohorts of patients sharing a specific genetic mutation or the same 

clinical manifestation with unknown genetic background. This is particularly advantageous in the 

context of those disorders for which a genetic cause has not been identified, such as idiopathic 

autism cases (Ardhanareeswaran, Coppola & Vaccarino, 2015). However, iPSC-based studies can 

suffer from high variability due to differences in the genetic background of different patients, 

reprogramming methods and culture conditions (Sandoe & Eggan, 2013). Working with 

genetically modified hESCs or a well characterised reference line of hiPSCs and their isogenic 
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controls can represent an alternative to the use of patient iPSCs. This strategy will avoid the 

variability linked to the different genetic backgrounds of distinct patient iPSC lines and reduce the 

necessary work load of studying multiple patient iPSC lines required for identifying true 

phenotype and establish causality. 

The CRISPR (Clusters of Regularly Interspaced Short Palindromic Repeats)/Cas9 technology allows 

genome editing more easily and efficiently than traditional gene targeting via Homologous 

Recombination (Cong et al., 2013; Ding et al., 2013; Mali et al., 2013; Ran, Hsu, Wright, & 

Agarwala, 2013). CRISPR/Cas9 is a type II CRISPR system (reviewed by Makarova et al., 2011), 

which is naturally present in many bacteria as an immunity mechanism to protect them against 

foreign DNA (Gasiunas et al., 2012; Jinek et al., 2012). It consists of the Cas9 nuclease and a guide 

RNA (gRNA), a chimeric RNA molecule combining a CRISPR RNA (crRNA) and a transactivating RNA 

(tracrRNA), which together direct the Cas9 to cleave the target DNA sequence. This mechanism 

also requires the presence of a protospacer adjacent motif (PAM) upstream of the binding region 

(Jinek et al., 2012). As a genome editing tool, CRISPR/Cas9 can be used to target virtually any 

genomic sequence next to a PAM site, by simply designing appropriate gRNAs. The generation of 

a double strand break (DSB) by the Cas9 induces cellular DNA repair mechanisms, like non-

homologous ends joining (NHEJ), which is likely to introduce indels disrupting the targeted DNA 

sequence, or homology-directed repair (HDR), if a donor construct is present. This system has 

been optimised for its application to human cells, including hPSCs, by transfecting a single or 

multiple vectors to co-express the Cas9 nuclease and the gRNAs (Cho et al., 2013; Cong et al., 

2013; Jinek et al., 2013; Mali et al., 2013). As an alternative to the generation of a DSB by the wild-

type Cas9 enzyme, a mutated nickase version has also been developed, to facilitate HDR and 

reduce off-target mutations (Cong et al., 2013). Delivery of the CRISPR/Cas9 components via 

lentiviruses (Shalem et al., 2014; X. Wang et al., 2015), or adenoviruses (Maggio et al., 2014), has 

also shown a high efficiency in targeting the human genome. To further improve the flexibility and 

rapidity of genome editing in hPSCs, Danwei Huangfu’s group developed the iCRISPR platform, 

consisting of hESCs lines with doxycycline-inducible Cas9 expression (indicated as iCas9) (González 

et al., 2014). Transfection of iCas9 cells with gRNAs, derived via in vitro transcription, lead to over 

40% efficiency for single gene targeting or around 10% for triple gene targeting.  

Genome editing technologies are evolving fast and, as previously discussed, they represent a valid 

alternative to the use of iPSCs, because of the reduced variability associated with the use of 

isogenic cell lines. Alternatively, CRISPR/Cas9 could also be used to correct a specific genetic 

mutation in patient-derived cells. In this case, the rescue of the phenotype would provide the 

definitive proof of the connection between disease and genotype. When investigating the effects 
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of CNVs including several genes, the creation of isogenic models would be excessively time 

consuming, but it should at least be considered to confirm the causality link between the gene(s) 

of interest within a CNV and the phenotype observed in differentiated iPSCs. In conclusion, the 

careful planning of in vitro modelling experiments and parallel use of engineered hESCs and iPSCs, 

allows the generation of very elegant systems for the investigation of the cellular pathology 

underlying complex neurodevelopmental disorders. 
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Disease Genotype Cellular model Findings Reference 

Schizophrenia Mixed 

iPSCs from 5 patients and 6 
controls 
Differentiation to predominantly 
glutamatergic neurons 

Differences in neuronal connectivity, morphology and gene 
expression (glutamate, cAMP and WNT signalling, synaptic 
connection and long-term potentiation). 

(Brennand et al., 
2011) 

Schizophrenia Mixed 

iPSCs from 3 patients and 2 control 
individuals 
Differentiation to dopaminergic 
(DA) and cortical glutamatergic fate 

Defective differentiation to DA fate (lower TH expression, 
reduced number and length of neurites) 
Impaired maturation towards cortical glutamatergic fate 
(lower expression of synaptic markers) 
Mitochondrial abnormalities 

(Robicsek et al., 
2013) 

Schizophrenia Mixed 

iPSCs from 4 affected patients and 
6 controls 
Differentiation to neural progenitor 
cells (NPCs) 

Many differences in gene and protein expression (mainly 
relative to synapses, cellular adhesion and oxidative stress)  
Aberrant migration and increased oxidative stress in SZ NPCs 

(Brennand et al., 
2015) 

Schizophrenia Mixed 
iPSCs from 4 affected patients and 
6 controls 
Differentiation to NPCs 

Increased canonical WNT signalling in SZ cells  
No differences in migration 

(Topol et al., 2015) 

Schizophrenia 
Frameshift 
deletion in 
DISC1 gene 

iPSCs from 2 deletion carriers and 3 
controls 
Differentiation to forebrain 
neurons 

Morphological, electrophysiological and synaptic defects in 
DISC1-mutant neurons 
Phenotype rescued after correction of DISC1 mutation in 
patients’ cells 
Phenotype mimicked in control cells after introduction of 
DISC1 mutation 

(Wen et al., 
2014a) 

Schizophrenia 
15q11.2 
deletion 

iPSCs from 3 deletion carriers and 3 
control individuals 
Differentiation to NPCs 

Disrupted expression of apical adhesion proteins and 
formation of neural rosettes 
Phenotype rescued by lentiviral transduction to increase 
CYFIP1 expression 

(Yoon et al., 2014) 

Table 1.4 List of publications on iPSCs-based models of neurodevelopmental psychiatric disorders published to date. 
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Reduction of CYFIP1 level by shRNA recapitulated the 
phenotype 

Schizophrenia 
22q11.2 
deletion 

iPSCs from 6 deletion carriers and 6 
control individuals 
Embryonic bodies (EBs)-based 
differentiation to a mixed 
population of excitatory and 
inhibitory neurons 

Altered expression of miRNA regulating genes associated to 
psychiatric disorders  

(Zhao et al., 2015) 

Schizophrenia 
22q11.2 
deletion 

IPSCs from 8 deletion carriers and 7 
controls 
Differentiation to a mixed 
population of excitatory and 
inhibitory neurons 

Differentially expressed genes linked to cell cycle, cell survival 
and apoptosis and MAPK pathway 

(Lin et al., 2016) 

Syndromic 
Autism (Rett 
syndrome) 

MeCP2 
mutations 

iPSCs from 4 RTT patients and 6 
healthy controls 
Embryoid bodies (EBs)-based 
differentiation to a mixed 
population of excitatory and 
inhibitory neurons 

Reduced number of glutamatergic synapses, fewer spines and 
smaller soma in RTT neurons 
Synaptic defects rescued by IGF1 treatment 

(Marchetto et al., 
2010) 

Syndromic 
Autism (Rett 
syndrome) 

MeCP2 
mutations 

iPSCs from 5 RTT patients and 4 WT 
PSCs lines (3 iPSCs and HUES1) 
 

Impaired neuronal maturation of RTT iPSCs (lower TuJ and 
sodium channels expression) 

 (Kim et al., 2011) 

Syndromic 
Autism 
(Phelan-
McDermid 
syndrome) 

22q11.3 
deletion 

iPSCs from 2 patients and 3 control 
PSCs lines (2 iPSCs and HUES9) 
Differentiation to cortical neurons 

Altered excitatory post-synaptic transmission (reduced 
amplitude and frequency of excitatory post-synaptic currents, 
EPSCs)  
Inhibitory synaptic transmission unaffected 
Synaptic deficits restored to control levels by lentiviral 
transduction increasing SHANK3 expression, or IGF1 
treatment 

(Shcheglovitov et 
al., 2013a) 
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Syndromic 
Autism 

15q11-13 
duplication 
15q11-13 
deletion 
(Angelman 
syndrome ,AS) 

iPSCs from 4 duplication carriers, 1 
AS patient and 1 control 
Embryonic bodies (EBs)-based 
differentiation to a mixed 
population of excitatory and 
inhibitory neurons 

Altered level of transcripts related to neuronal 
differentiation, cell cycle and protein catabolism 
Several autism and epilepsy candidate genes amongst the 
differentially expressed genes 

(Germain et al., 
2014) 

Syndromic 
Autism 
(Fragile X 
Syndrome) 

FMR1 gene 
silencing 
caused by 
CGG 
expansion 

iPSCs from 3 patients and 2 hESCs 
control lines (H9 and HUES13) 
Cortical glutamatergic neurons 
differentiation 

Morphological abnormalities 
Reduced ability to fire trains of action potentials 
Abnormal synaptogenesis 

(Telias et al., 2015) 

Autism 
Spectrum 
Disorder 

Translocation 
in 3p21 and 
11q22 
chromosomes 
(Disruption of 
VPRBP and 
TRPC6 genes 
respectively) 

iPSCs from one patient and 2 
control lines (one iPSCs and 1 
HUES6) 
Differentiation to forebrain NPCs 
and neurons 

Differentially expressed genes relative to nervous system 
development and function (several CREB-target genes) 
Alterations of Ca++ influx, morphology and synapses 
Normal phenotype restored by lentiviral-mediated WT TRPC6 
expression or hyperforin (TRPC6 agonist) treatment 
Involvement of MeCP2 in TRPC6 regulation 

(Griesi-Oliveira et 
al., 2014) 

Autism 
Spectrum 
Disorder 

Mixed 

iPSCs from 4 patients and 8 
unaffected first-degree family 
members 
Differentiation to cerebral 
organoids 

Altered expression of genes involved in cell fate, proliferation, 
axonal guidance, synaptic function and ion channels 
Faster proliferation of ASD iPSCs and NPCs 
Overproduction of GABAergic neuros 
Phenotype rescued by reduction of FOXG1 level via shRNA 

(Mariani et al., 
2015)  

Autism 
Spectrum 
Disorder 

Mixed  

IPSCs from 8 patients with early 
brain overgrowth and 5 controls 
Differentiation to forebrain 
excitatory and inhibitory neurons 

Faster proliferation (altered β-catenin/BRN2 signalling) 
Reduced synaptogenesis and network activity 

(Marchetto et al., 
2016) 
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Bipolar 
Disorder 

Mixed 

iPSCs from 3 patients and 3 
controls 
Differentiation to forebrain 
neurons 

Dysregulated expression of several transcripts regulating 
dorso-ventral telencepahlic patterning, calcium signalling and 
miRNAs processing 

(Chen et al., 2014) 

Bipolar 
Disorder 

Mixed 

iPSCs from 6 patients and 4 
controls 
Differentiation to hippocampal 
dentate gyrus neurons 

Upregulation of mitochondrial genes, higher mitochondrial 
membrane potential and smaller mitochondria size in BD 
neurons 
Hyperexcitability of BD neurons (higher Na+ activation, 
increased action potential firing and amplitude) 
Mitochondrial and electrophysiological changes rescued by 
lithium (Li) treatment in neurons derived from Li-responsive 
patients 

(Mertens et al., 
2015) 
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1.4  Cortex development 

The cerebral cortex is considered to be the most complex structure of the human brain, which 

regulates its highest functions, such as consciousness and perception of reality, making it 

particularly relevant in the context of psychiatric disorders (Frith & Dolan, 1996). For this reason 

and because differentiation protocols for PSCs towards this fate are well characterised and 

reproducible, this approach is the most used in in vitro models of psychiatric disorders (see 

paragraph 1.3). The correct analysis and interpretation of the cellular phenotypes observed during 

the application of such protocols depends on a deep understanding of the corresponding in vivo 

process.  

Most of our knowledge about in embryonic cortical development derives from mouse studies, 

thanks to the availability of tissue and the ease of deriving mutant animals to study the function of 

specific genes. The following paragraphs describe embryonic cortex development primarily in the 

mouse model. Human data are included where important differences between the two models 

need to be highlighted.  

1.4.1 Early corticogenesis: progenitor subtypes and characteristics 

The most abundant class of neurons found in the cerebral cortex is represented by excitatory 

pyramidal neurons (~85%), which originate from the embryonic dorsal telencephalon, the rostral-

most region of the neural tube. GABAergic interneurons (INs), which migrate into the cortex from 

the MGE, in the ventral telencephalon, constitute the remaining 15-20% (Marín & Müller, 2014).  

The term corticogenesis is mainly used to indicate the generation of pyramidal neurons from 

progenitors located in the VZ and subventricular zone (SVZ), which together represent the 

proliferative area adjacent to the ventricles in the dorsal telencephalon (Fig. 5) (Tiberi, 

Vanderhaeghen & van den Ameele, 2012). The tissue forming the wall of the neural tube, where 

neurogenesis occurs, is characterised by an intrinsic polarity, with the side facing the ventricle 

defined as apical and the one in contact with the basal lamina (or pial surface) defined as the basal 

side (Fig. 5) (Taverna, Götz & Huttner, 2014). 

The first type of progenitors to arise early in development are neuroepithelial cells (NEs). These are 

bipolar cells that contact both apical and basal surfaces. The apical side is marked by the presence 

of tight junctions and a primary cilium, which detect signals present in the cerebrospinal fluid (CSF) 

filling the ventricle (Laguesse, Peyre & Nguyen, 2014). Signalling molecules in the CSF include 
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Fibroblast Growth Factors (FGF), Insulin-like Growth Factor (IGF), Sonic Hedgehog (SHH), Bone 

Morphogenetic Proteins (BMPs), Retinoic Acid (RA) and WNT (Taverna et al., 2014).  

NEs undergo a first phase of symmetric divisions to amplify the initial progenitor pool and later, 

with the onset of neurogenesis (~E12), switch to asymmetric divisions. The proliferation of this 

progenitor pool is characterised by a mechanism defined as Interkinetic Nuclear Migration (INM), 

which indicates the migration of the cell soma between the apical and basal side of the VZ at 

different phases of the cell cycle. Briefly, cell division during the M phase happens in contact with 

the apical surface, while other phases happen during migration towards the basal side (G1), while 

the nucleus is localised at the basal side of the VZ (S phase) or during migration from the basal to 

the apical side (G2). This mechanism, which allows all NEs to remain in contact with the apical 

surface, and to simultaneously migrate away from it at different times, leads to formation of what 

is defined as a pseudostratified epithelium (Fig 51a) (Taverna & Huttner, 2010). 

With the switch to asymmetric division, NEs undergo several changes, resulting in transformation 

into radial glia cells (RGCs). RGCs maintain some similarities to NEs, such as the extension of a 

primary cilium into the ventricle and the mechanism of INM (Laguesse et al., 2014). However, 

important differences include the loss of tight junctions, which are substituted by adherent 

junctions, and the expression of a different set of markers, including Paired box 6 (Pax6), Brain Lipid-

Binding Protein (BLBP), Vimentin (VIM) and Nestin (Feng et al., 1994; Götz et al., 1998; Laguesse et 

al., 2014).  

The adherent junctions, found at the apical surface, are marked by the presence of N-Cadherin 

(NCAD or CDH2) and Zona-Occludens 1 (ZO-1). Cadherins are transmembrane proteins which carry 

out, with their extracellular domain, calcium-dependent homofilic interactions, while, at the 

intracellular level, they recruit complexes of α/β-catenin. Catenin proteins mediate the interaction 

between Cadherins and the actin cytoskeleton, which is represented by a “belt” of F-Actin lining 

the apical surface of these cells (Suzuki & Takeichi, 2008; Thumkeo et al., 2011).  

The apical domain of RGCs is a fundamental signalling centre in the regulation of the balance 

between proliferation and differentiation of the cells occupying the VZ. The key signalling pathways 

active in this area include Wnt/β-Catenin, Notch, Fgf and Shh, all supporting the proliferation of the 

progenitor pool (Tiberi et al., 2012). Perturbation of the elements located at the apical surface of 

RGCs has deleterious consequences on the balance between self-renewal and differentiation of this 

class of progenitors. For instance, the interaction between Ncad and β-catenin contributes to 

regulating the pool of free β-catenin that can migrate into the nucleus and activate transcription 

(Taverna et al., 2014). It has been demonstrated that in vivo knock-down of Ncad in mouse cortical 

progenitors at E13.5, causes premature differentiation and migration away from the VZ (Zhang et 
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al., 2010). In addition to this, overexpression of a constitutively active form of β-catenin in mouse 

neural precursors causes abnormally enlarged brains due to the over-proliferation of neuronal 

progenitors (Chenn & Walsh, 2002).  However, a similar hyperactivation of the WNT pathway in 

basal progenitors has been reported to promote neuronal differentiation by activating the 

proneuronal gene Neurogenin 2 (NGN2), suggesting that most of these mechanisms are stage-

specific (Hirabayashi et al., 2004).  

Other proteins recruited to the apical domain and involved in signalling mechanisms include the 

atypical Protein Kinase C (aPKC) and Par complexes (Costa et al., 2007; Insolera, Chen & Shi, 2011). 

In particular, the level of Par3 in daughter cells regulates asymmetric division through a Notch-

mediated mechanism (Bultje et al., 2009).  Because of the connection between apical adhesion 

molecules and F-actin fibres, cytoskeleton dynamics are also involved in regulating RGCs behaviour. 

Indeed, conditional KO mouse models for RhoA and cdc42, two GTPase proteins participating in the 

control of actin polymerisation, showed alterations in RGC self-renewal (Cappello et al., 2006, 

2012). 

Asymmetric divisions of RGCs give rise to intermediate progenitors (IPs), another class of cortical 

progenitor cells, which are localised in the SVZ, and are characterised by a multipolar morphology 

and expression of the transcription factor Tbr2 (Englund, 2005). In mouse, these cells divide one or 

two times before undergoing the last terminal neurogenic division (Noctor et al., 2004). In humans 

and other gyrencephalic species, IPs can undergo more symmetric divisions, contributing to the 

expansion of the progenitor pool (Betizeau et al., 2013).  The primate SVZ is significantly thicker and 

can be subdivided into “inner” SVZ (ISVZ), containing TBR2+ cells, and “outer” SVZ, containing 

another type of progenitors defined as outer radial glia cells (oRGCs). Such cells are derived from 

apical RGCs by asymmetric division and are highly proliferative, generating more oRGCs, IPs or 

neurons directly (Betizeau et al., 2013). ORGCs possess a basal, but not an apical, fibre and express 

some pan-radial glia genes, such as VIM and HES1, and some unique markers, such as ITGB5, HOPX 

and TNC, which were recently identified. Moreover, the proliferation of this class of progenitors 

seems to be regulated by LIF/STAT signalling (Pollen et al., 2015). The expansion of the oSVZ is 

considered the most important event in the evolution of the neocortex (Dehay, Kennedy & Kosik, 

2015). 
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Figure 1.5 Scheme of cortical neurogenesis.  

(a) Interkinetic Nuclear Migration (INM) in ventricular zone (VZ) cells. (b) Neurogenic steps and progenitors 

subtypes in the mouse developing cortex. (c) Diversity of cortical progenitors in the human foetal cortex at 

approximately 15 weeks post-conception (PCW) (From Jiang and Nardelli 2016). 

 

1.4.2  Formation of the cortical layers 

Before the generation of neurons that will occupy the cortical plate (CP, layers I to V), Reelin+ Cajal-

Retzius cells appear close to the pial surface, in the so-called marginal zone (MZ). These early-born 

neurons are primarily generated in the cortical hem and septum and, in humans, can also originate 

from NE cells. A clear population of MZ cells is already present at gestational week (GW) 9 in the 

human developing cortex  (Bystron, Blakemore & Rakic, 2008). Cajal-Retzius cells secrete Reelin, a 

large glycoprotein, which provides fundamental signalling for the correct formation of the cortical 

layers (Frotscher, 1998). 

Cortical neurons of layers I to V are generated either directly from RGCs in the VZ or indirectly from 

intermediate progenitors in the SVZ. This happens via an asymmetric division, giving rise to a 

progenitor still capable of self-renewal and a cell destined to terminal differentiation, or via a 

symmetric neurogenic division (Noctor et al., 2004). Newly-born neurons migrate to the CP by 

somal translocation or locomotion. The first process happens when the cell extends a basal process 

and the cell body can move basally within it. In the second case, the neuron develops a short leading 
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process in the direction of the pial surface, but not attached to it, and the whole cell moves in that 

direction (Nadarajah et al., 2001).  

The formation of cortical layers happens in an inside-out manner, with early-born neurons 

populating the deep layers and late-born ones migrating past them to settle in more superficial 

positions. As soon as they leave the cell-cycle, the expression of specific transcription factors acts 

on post-mitotic neurons to specify their identity (Greig, Woodworth et al., 2013). This process is 

summarised in figure 1.6.  

Briefly, layer VI cortico-thalamic projection neurons are characterised by the expression of T-box 

brain protein 1 (Tbr1), a transcription factor that was demonstrated to be fundamental in the 

development of this class of neurons and that acts mainly by repressing FEZ Family Zinc Finger 2 

(Fezf2), which is in turn essential for specification of layer V sub-cerebral projection neurons (Chen 

et al., 2005; Mckenna et al., 2011). A typical marker of layer V neurons, named COUP-TF-interaction 

protein 2 (Ctip2) acts downstream of Fezf2 to regulate the extension of axonal projections to 

subcortical targets and determines in this way the acquisition of the correct fate (Chen et al., 2008). 

Layers II and III are primarily formed by neurons that project to other cortical structures, including 

callosal projection neurons, the axons of which extend across the corpus callosum into the 

contralateral hemisphere. The expression of the special AT-rich sequence binding protein 2, Satb2, 

which represses Ctip2, is essential for specifying the identity of this class of neuronal cells and for 

the development of their axonal projections towards the appropriate targets (Alcamo et al., 2008; 

Britanova et al., 2008). Satb2 is also weakly expressed by layer IV granular neurons, which project 

mostly locally (Alcamo et al., 2008; Britanova et al., 2008). They have been shown to derive from a 

population of SVZ progenitors labelled by Svet1 (Subventricular tag 1), and to be characterised also 

by the expression of the two homologues of the Drosophila homeobox Cut gene (Cux1/2) (Nieto et 

al., 2004; Tarabykin et al., 2001). Cux1/2 are specifically found in all upper-layer neurons, including 

Satb2+ layer II/III (Nieto et al., 2004).  

The specification of the various projection neuron subtypes happens in parallel to other processes, 

such as the specialisation of the different cortical areas and the generation and migration of 

inhibitory interneurons. Although very important in the context of cortex development, these 

events are not essential for the understanding and interpretation of the results presented in this 

thesis and, therefore, they are not reviewed in this chapter. 
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Figure 1.6 Schematic representation of cortical layer formation during mouse corticogenesis. 

 Neurons of all six cortical layers are generated sequentially, starting from E11.5. Cajal-Retzius (CR) cells are 

the first ones to appear and populate the top layer of the developing cortex. Subplate neurons (SPN) represent 

the first group of neurons to be generated from radial glia (RG) cells. They are followed by cortico-thalamic 

projection neurons (CThPN), subcortical projection neurons (SCPN), granular neurons (GN) and callosal 

projection neurons (CPN), in this order. At the end of corticogenesis, the remaining progenitors switch to the 

generation of astrocytes and oligodendrocytes (from Greig, Woodworth et al 2013). 

 

 

 

  



37 
 

1.5  Aims of the project 

Deletions and duplications of the 15q11.2 locus are known risk factors of psychiatric disorders and 

CYFIP1 is one of the four genes encoded in this region. In neuronal cells, CYFIP1 contributes to the 

regulation of actin polymerisation and mRNA translation in association with FMRP, the protein 

which mutation causes FXS. Because of this, CYFIP1 is considered the strongest candidate to be 

responsible for the development of psychiatric phenotypes in 15q11.2 CNVs carriers. 

The overall aim of this thesis is to investigate how altered levels of CYFIP1 affect cortical 

development of hPSCs, an aspect that may underpin its contribution to the phenotypes associated 

with 15q11.2 CNVs. To achieve this, I aim to generate hESCs lines with increased CYFIP1 expression 

and derive CYFIP1-knock out stem cells using CRISPR/Cas9. The parallel characterisation of these 

cell lines during cortical differentiation protocols will allow to uncover the mechanisms in which 

CYFIP1 is involved and, with the help of RNA-sequencing, those biological pathways that are 

specifically altered by changes in the expression of this gene. Manipulation of these pathways will 

be used to try and reverse the phenotypes associated to CYFIP1 alterations. 

Together with the derivation of hESCs with modified CYFIP1 levels, I will also derive iPSCs from some 

15q11.2 CNVs carriers recruited during the time of my project. Such iPSCs lines will be used to 

characterise the expression of the genes encoded in this locus during human cortical 

differentiation. This would help to understand if, together with CYFIP1, any of the other 15q11.2 

genes may be involved in the regulation of brain development.   
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2 Methods and materials  

2.1  Cell culture 

2.1.1 hESC culture 

The cell lines used in this study were H7 (wicell.org), iCas9 (González et al., 2014), their engineered 

derivatives, CYFIP1tg and CYFIP1ko, as well as iPSC lines derived from 15q11.2 deletion carriers. 

Human ESCs were maintained in mTesR1 or TesR-E8 media (STEMCELL technologies) under 

standard culture conditions (37˚C, 5% CO2) in 6 well-plates coated with Matrigel® (Corning, VWR). 

mTesR1 was used during critical steps, such as sub-cloning of genetically modified cells, or recovery 

after thawing or transfection. 

The cells were passaged every 3-4 days, when 70-90% confluent. Briefly, stem cells were washed 

once with DPBS and incubated in 0.02% EDTA (Sigma) for about 3 minutes at 37˚C. After removing 

EDTA, cells were dissociated into small clumps in fresh medium and were then seeded into a new 

plate. Usually, H7 and H9-iCas9 were split at ratios between 1:3 and 1:5. 

For freezing, approximately 1-2x106 cells were dissociated with EDTA as described above, 

centrifuged at 200g for 5 minutes and resuspended in 1ml of cold hESC medium with 10% DMSO 

(Sigma). Cryo-vials containing the cell suspension were transferred in an appropriate freezing 

container, placed at -80˚C, to achieve 1˚C/min cooling rate. Once frozen, cryo-vials were transferred 

to nitrogen tanks. 

For thawing, cryo-vials were placed in a water bath at 37˚C, to make this process as quick as 

possible. The thawed cell suspension was then transferred to 10 ml of pre-warmed hESC medium 

and centrifuged at 200g for 5 minutes. Finally, the cell pellet was resuspended in hESC medium and 

plated. 

2.1.2 Monolayer differentiation into cortical glutamatergic neurons 

The cortical pyramidal neurons differentiation protocol used for the experiments presented in this 

thesis is an adapted version of previously published ones (Espuny-Camacho et al., 2013; Kirwan et 

al., 2015; Yichen Shi et al., 2012). An outline of the procedure is shown in Figure 2.1. 
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Figure 2.1 Monolayer differentiation of hESCs into cortical pyramidal neurons. The timing for both 

parental lines is shown in grey, while the substrate and the type of media used at each stage are shown in 
blue and purple, respectively.   

 

Initially, stem cells were plated on Growth Factor Reduced Matrigel (Corning, VWR) and kept in 

hESCs medium until 80-90% confluent. The day when hESCs medium was switched to neural 

induction medium was set as day 0. The composition of all media used in differentiation 

experiments are listed in Table 2.1.  The timing of neuronal induction and maturation for H7 and 

iCas9 cells is remarkably different. Therefore, based on previous work of our group, the 

differentiation protocol was adapted accordingly. The cells were kept in neural induction medium 

until day 8 for the iCas9 line and day 12 for the H7, when LDN and SB were removed. 

Two days before the end of neural induction, the cells were split at a 2:3 ratio on fibronectin-coated 

plates. Coating with fibronectin (Millipore) was performed incubating a solution of 15μg/ml at 37˚C 

for at least 1 hour. For the splitting, the cells were first pre-treated with 100μM ROCK inhibitor (Y-

27632, STEMCELL Technologies), for 1 hour to prevent cell death. Then they were incubated in EDTA 

for 3 minutes and manually dissociated in N2B27 medium, using a 2ml serological pipette, keeping 

large cell clumps. These were carefully resuspended in the appropriate amount of neural induction 

medium and seeded in a new plate. 

After 8-10 days, the neural progenitors that form the differentiating cultures at this stage, were 

split again, at a ratio of 1:4, on Poly-D-Lysin/Laminin-coated plates. This coating was performed 

incubating first a solution of 10 μg/ml of Poly-D-Lysin (Sigma) for 30 minutes at room temperature. 

This was followed by 3 washes with DPBS and an overnight incubation at 37˚C with a 10μg/ml 

laminin solution (Sigma). A few days after this second passage, when cells displayed a clear neuronal 

morphology, the media is switched to N2B27, in which the B27 supplement contains vitamin A, to 

promote maturation. Throughout the whole differentiation protocol, cells were fed every other 

day. 
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Table 2.1 composition of media used for monolayer differentiation 

Media Composition 

N2B27 (without vitamin A) 

2:1 DMEM-F12 and Neurobasal, 

1x N2, 1x B27 without vitamin A, 2Mm Pen/Strep-Glutamine, 

0.1 mM Beta-Mercapto-Ethanol 

(All from Thermo Fisher) 

Neural induction medium 
N2B27 without vitamin A, 10μM SB-431542 (TOCRIS), 100nM 

LDN-193189 (TOCRIS) 

N2B27 (with vitamin A) 

2:1 DMEM-F12 and Neurobasal, 

1x N2, 1x B27 without vitamin A, 2Mm Pen/Strep-Glutamine, 

0.1 mM Beta-Mercapto-Ethanol 

(All from Thermo Fisher) 

 

2.1.3 hESC differentiation into brain organoids 

Human ESCs were differentiated into brain organoids according to the protocol published by 

Lancaster and Knoblich (Lancaster & Knoblich, 2014). Briefly, 9000 cells per well were seeded in U-

bottom ultra-low attachment 96w-plates to form embryoid bodies (EBs). EBs were fed every other 

day until 500-600 μm in diameter, when they were transferred to bacterial dishes in neural 

induction medium. After 4-5 days, the EBs showing a radially organised neuroepithelium were 

embedded in Matrigel droplets and cultured in differentiation medium. After a few days, when the 

embedded organoids started showing neuroepithelial buds, they were transferred to a spinning 

bioreactor in differentiation medium containing B27 with vitamin A and cultured in constant 

agitation until the time chosen for analysis. The composition of all media is listed in Table 2.2. 

Table 2.2 composition of media used for organoids differentiation 

Media Composition 

EBs medium 

DMEM-F12, KOSR (1:5), FBS (1:30, Biosera), 1x Pen/Strep-

Glutamine, 1x NEAA, bFGF (4ng/ml, PeproTech) and ROCK 

inhibitor (50mM, STEMCELL Technologies) 

Neural induction medium 
DMEM-F12, N2 supplement (1x), Pen-Strep-Glutamine (1x), 

NEAA (1x) and heparin (1μg/ml). 

Differentiation medium 

1:1 DMEM-F12 and Neurobasal, 0.5x N2, 0.5x B27 (with or 

without vitamin A), 1x Pen-Strep-Glutamine and 1x NEAA 

(All reagents from Thermo Fisher, unless otherwise stated) 

 

2.1.4 Other chemicals used in differentiation experiments 

For the experiment aimed at rescuing the neurogenesis phenotype in CYFIP1tg cells (Chapter 5.2.2), 

neural progenitors were treated for three days with XAV939 (1μM, TOCRIS), API2 (1μM, TOCRIS) or 
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an antibody blocking N-Cadherin function (ACAM GC-4, Sigma). An equivalent amount of DMSO 

(Sigma) was also added to the cultures as vehicle.  

2.2  Fibroblast and keratinocytes reprogramming into iPSCs  

The acquisition of primary tissue was performed in collaboration with the National Centre for 

Mental Health, with ethical approval from the Cardiff University Research Tissue Bank 

(11/WA/0255). Human dermal fibroblasts and keratinocytes were collected, cultured and 

reprogrammed by Dr. Craig Joyce. The reprogramming was carried out using the CytoTune®-iPS 2.0 

Sendai Reprogramming Kit (Thermo Fisher). Briefly, somatic cells from an early passage and at 

about 80% of confluency, were transduced with the appropriate amount of virus, according to 

manufacturer instructions. A week after transduction, the cells were re-plated on Matrigel-coated 

plates and, 24 hours later, their culture media was replaced with stem cells media. During the 

following 2 weeks, the media was replaced daily and the cultures were monitored for the 

appearance of iPSCs colonies. When they reached the appropriate size, these were manually 

picked, expanded and banked as described above. This part of the work was done in conjunction 

with Craig Joyce (NMHRI technician). 

2.3  Molecular cloning for CYFIP1-overexpression vector 

For the generation of the CYFIP1-overexpression vector, the full length open reading frame (ORF) 

of the human CYFIP1 gene was cut out of a commercial expression vector (Origene, SC100426) and 

cloned downstream of the CAG promoter in a pCAG-IRES-GFP plasmid available in the lab. To this 

end, the Origene plasmid was digested with the restriction enzyme NotI (New England Biolab, NEB) 

and run on a 2% agarose gel, to isolate the DNA band corresponding to CYFIP1 (4400 pb) from the 

backbone. The band corresponding to the CYFIP1 ORF was then cut and purified using the ISOLATE 

II PCR and Gel Kit (Bioline). At the same time, NotI was used to cut also the pCAG-IRES-PAC vector 

at the level of the insertion site, just downstream of the CAG promoter. This cut vector was then 

combined with a 3-fold molar excess of insert, the purified CYFIP1 ORF, for the ligation reaction. 

This was performed at room temperature, following the Quick ligation Kit (NEB) protocol. An aliquot 

of 5 µl from the ligation reaction was used to transform chemically competent cells 5-alpha F'Iq 

Competent E.coli (NEB) according to manufacturer’s instructions. Transformed bacteria were 

plated on LB agar plates containing ampicillin and incubated overnight at 37°C. On the following 

day, 10-20 miniprep reactions were set up from single ampicillin-resistant colonies. These were left 

to grow overnight in LB media, in constant agitation, at 37°C. The next day, the plasmid DNA was 



42 
 

extracted using QIAprep Spin Miniprep Kit (Qiagen) and screened with BglII and PvuI (both NEB) to 

reveal the presence and orientation of the insert. A representative image of the digested CYFIP1-

overexpression (pCAG-hCYFIP1-IRES-PAC) vector can be found in Chapter 3 (Fig. 3.1). All digestions 

were performed in the recommended buffers, at 37°C, for at least 1 hour.  

2.4  CRISPR/Cas9 targeting: gRNA design and synthesis 

Guide-RNAs (gRNAs) targeting the first exon of CYFIP1 were designed using DNA2.0, now ATUM 

(www.atum.bio) and the online CRISPR Design tool from the Massachusetts Institute of Technology 

(www.crispr.mit.edu). Three sequences were chosen based on the off-targets scores given by both 

online tools.  The gRNAs were then generated via in vitro transcription. To this purpose, a single-

strand DNA oligo containing a T7 promoter followed by a 20 nucleotides-long guide sequence and 

the tracr-RNA, was synthetized by Sigma (Fig. 2.1 A). This single-strand construct was used as 

template for PCR using a primer complementary to the T7 region and one complementary to the 

last 20 nucleotides of the tracr-RNA sequence (Fig. 2.1 A, red arrows). The resulting double stranded 

DNA amplicon was converted into RNA using the MEGAshortscript T7 kit for in vitro transcription 

(Thermo Fisher), to produce an RNA molecule composed by guide sequence and tracrRNA in a 5’ to 

3’ order. The yield was determined by running 2 µl of the in vitro transcription reaction on a 2% TBE 

gel (Fig. 2.1 B), while the remaining product was purified using the MEGAclear Kit (Thermo Fisher), 

to obtain the gRNAs ready for transfection. 

 

Figure 2.2 Generation of gRNAs. 

(A) Nucleotide sequence of one of the DNA oligo used as template for in vitro transcription. The T7 promoter 
sequence is shown in green, the guide RNA in black and the tracrRNA sequence in blue. Red arrows represent 
the primers used for PCR amplification of the ssDNA oligo. (B) RNA gel showing the products of in vitro 
transcription with three different guide sequences.  

 

2.5  Transfection of hESCs 

2.5.1 Nucleofection 

Nuleofection was used to deliver the pCAG-hCYFIP1-IRES-PAC plasmid (see paragraph 2.2) into H7 

hESCs, to derive CYFIP1-Overexpressing (CYFIP1tg) cells (see also Chapter 3). For the transfection, 
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the Lonza 4D-Nucleofector® and the P3 Primary Cell 4D-Nucleofector® X Kit were used, according 

to manufacturer’s instructions. For one nucleofection, about 2x106 H7 hESCs were dissociated with 

Gentle Cell Dissociation Reagent (STEMCELL Technologies) for 10 minutes and spun down in stem 

cells medium. The cell pellet was resuspended in 100 µl of P3 buffer together with 2 µg of plasmid 

DNA and placed into an electroporation cuvette. The CB-150 program, pre-installed in the 4D-

Nucleofector, was applied to deliver the plasmid. Immediately after this step, the cells were re-

plated in hESCs medium, supplemented with 100μM Y-27632, and left to recover for 2 days. After 

this time, puromycin selection (1μg/ml) was applied for ten days, until a few colonies of cells with 

stable expression of the transgene remained and grew to a suitable size to be manually picked. 

2.5.2 RNA transfection 

RNA transfection was carried out to deliver gRNAs into iCas9 hESCs for the derivation of the 

CYFIP1ko line (see also Chapter 3). The Lipofectamine® RNAiMAX transfection reagent (Thermo 

Fisher) was used for this purpose. Following the product protocol, 1μl of Lipofectamine and the 

appropriate amount of RNA were diluted into two separate aliquots of stem cell medium (250μl 

each, for one well of a 6 well-plate). These were then combined and incubated at room temperature 

for 20 minutes, to allow the formation of RNA-Lipofectamine complexes. After this time, such 

complexes were added dropwise to two wells of ~50% confluent iCas9 cells. The final concentration 

of RNA in the well was of 10 nM for the fluorescent Alexa555-Block iT RNA control (Thermo Fisher) 

and 20 nM for the guide RNAs used for CYFIP1-targeting.  

2.6  Gene expression analysis  

2.6.1 RNA extraction 

RNA was isolated from cultured cells using a phenol/chloroform extraction protocol. Firstly, 

cultured cells from one well of a 12-well plate were washed once with PBS and lysed in 1 ml of 

TRIzol® (Thermo Fisher). Cell lysates from the same experiment were stored at -80°C until all the 

samples, from multiple cell lines and/or multiple time points, were collected. Biological duplicates 

for each sample of each experiment, were taken.  

The extraction was performed following the manufacturer’s protocol. Briefly, the samples were 

thawed and 200 µl of chloroform were added to each of them. The samples were then shaken and 

centrifuged at 12,000g for 15 minutes to allow the separation of the mixture into a lower red 

phenol-chloroform phase, a white interphase, and a colourless upper aqueous phase. The RNA-

containing aqueous phase was transferred to a new tube, mixed with 500 µl isopropanol and left 
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to stand for 5 minutes at room temperature. The RNA was precipitated by centrifuging the samples 

at 12,000g for 10 minutes. The supernatant was discarded and the pellet washed in 75% ethanol. 

The RNA was pelleted again by centrifugation at 7,500g for 5 minutes. After removing ethanol RNA 

samples were air dried and resuspended in DEPC-treated bi-distilled water (ddH2O). All 

centrifugation steps were performed at 4°C. The RNA concentration was measured using a 

BioSpectometer (Eppendorf). 

2.6.2 DNase treatment 

RNA was treated with the TURBO DNA-free kit (Thermo Fisher) to remove any presence of 

contaminant DNA that could compromise the qPCR analysis. For each sample, 10 µg of RNA were 

diluted with nuclease-free water to a final volume of 17 µl, to which 2 µl TURBO DNase 10x buffer 

and 1 µl TURBO DNase were added. The samples were incubated at 37°C for 30 minutes. After this 

time, 2 µl of DNase inactivation reagent were added to stop the reaction and incubated for 5 

minutes at room temperature. Finally, the samples were centrifuged for 1.5 minutes at 10,000g to 

pellet the DNase enzyme and inactivation reagent and the supernatant, containing DNA-free RNA, 

was transferred to a new clean tube. At the end of the DNase treatment the RNA concentration 

was re-measured. 

2.6.3 Reverse transcription 

The qScript cDNA Supermix (Quantabio) was used for reverse transcription. Following the 

manufacturer protocol, 1 µg of RNA for each sample was diluted in DEPC-treated ddH2O up to a 

volume of 16 µl, which was combined with 4 µl of 5X Supermix. Samples were placed in a T100 

Thermal Cycler (Biorad) and the recommended program was run (25°C for 5 minutes, 42°C for 60 

minutes and 85°C for 5 minutes). The resulting cDNA was diluted 1:10 with ddH2O and stored at -

20 °C. 

2.6.4 qPCR 

Quantitative PCR (qPCR) was used to quantify transcripts of interest using fluorescent dsDNA-

binding dye and measuring its signal as the specific sequence of interest is amplified during the 

reaction. For this process, each sample was run as a triplicate. Firstly, a mastermix containing 10 µl 

of 2X PerfeCTa SYBR Green SuperMix (Quantabio), 2μl of primers (from a 10 µM stock) for the gene 

of interest and 6 µl of ddH2O was prepared for each well of 96-well plate needed for the analysis. 

A volume of 18 µl of this mastermix was pipetted into each well together with 2μl of the cDNA 

solution of the appropriate sample. The qPCR reaction was run on a Bio-Rad CFX Connect Real-Time 

System. The program used included an initial incubation at 95°C for 4 mins, followed by 40 cycles 
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of 94°C for 30 secs, 60°C for 15 secs and 72°C for 30 secs. A melting curve was also generated to 

check for the specificity of the product at the end of the run. The data were analysed on Microsoft 

Excel using the ΔΔCT method for relative quantification (Livak & Schmittgen, 2001; Pfaffl, 2001). 

Table 2.3 Primers used for qPCR 

Gene Fw sequence (5’-3’) Rev sequence (5’-3’) 

IRES CCACCATATTGCCGTCTT GAGGAACTGCTTCCTTCA 

CYFIP1 GAAAACCGTGGAGGTTCTGGA GCTCAATGGCATTTCTCTGGAAG 

NIPA1 TGGGCGCCCTTGGAGTA TGCCCAAGATGTTGAGCTTTT 

NIPA2 GGCCAACTTCGCTGCGTAT GGCACTTACTAGCACGCTGAGA 

TBGCP5 TGTTTTACTTTTTGGTGAACTGGTTAG TGAGCAACTGTGTCTTGTTCATGT 

GAPDH ATGACATCAAGAAGGTGGTG CATACCAGGAAATGAGCTTG 

18S rRNA GTAACCCGTTGAACCCCATT CCATCCAATCGGTAGTAGCG 
(NIPA1, NIPA2 and TUBGCP5 primers were published by Picinelli et al., 2016) 

 

2.7  Genotyping 

2.7.1 Genomic DNA extraction 

Cultured cells were washed once with PBS and incubated at 37°C overnight in lysis buffer (10 mM 

Tris-pH8.0-, 50 mM EDTA, 100 mM NaCl, 0.5% SDS) supplemented with 0.5mg/ml of Proteinase K 

(all components from Sigma). The following day the lysis buffer was mixed with an equal volume of 

isopropanol and the DNA was precipitated at 15,000g for 20 minutes. The resulting pellet was 

washed with 70% ethanol, air-dried and resuspended in an appropriate amount of ddH2O. DNA 

concentration was measured with a Biospectrometre (Eppendorf). 

2.7.2 PCR and DNA electrophoresis 

PCR was used for the screening of CYFIP1-targeted clones. Each PCR reaction included about 100ng 

of template genomic DNA, 10µl of 5X MyTaq Buffer, 1 µl of MyTaq Polymerase (Bioline), 2 µl of 

primers from a 20µM stock and ddH2O up to 50μl. Usually, 30 amplification cycles were performed 

in a T100 Thermal Cycler (BioRad). Each cycle included 15 seconds of denaturation at 95°C, 15 

seconds of annealing at 55-57°C and 10-20 seconds of extension at 72°C. The annealing 

temperature and length of the extension interval were optimised for each pair of primers. Finally, 

5 µl of the final PCR product were run on agarose gel (1 to 4% agarose, according to the size of the 

PCR amplicon). 
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Table 2.4 Primers used for genotyping of CYFIP1 locus 

Gene Fw sequence (5’-3’) Rev sequence (5’-3’) Product length 

CYFIP1 ATGTGTTGTTCCAGCCCAGG CATCATGTGGGGTCGGAGC 190bp 

CYFIP1 CCCTGAGAGAGACACGCAAC CCTCACTGCATAGTCTATTGGGA 557bp 

 

2.7.3 Surveyor assay 

The Surveyor assay allows the quantification of the targeting efficiency in a pool of transfected cells 

using the activity of the Surveyor Nuclease, which recognizes and cleaves mismatches caused by 

small indels in a DNA fragment. The Surveyor® Mutation Detection Kit (Integrated DNA 

Technologies) was used for this purpose. 

Following the manufacturer protocol, a PCR product derived from a pool of targeted cells was 

placed in the T100 Thermal Cycler (Biorad) to undergo a cycle of denaturation and re-annealing 

(95°C for 10 minutes, ramp down to 85°C at -2°C /s; ramp down to 25°C at -0.1°C /s; hold at 4°C). 

This allows the formation of heteroduplexes between the different DNA molecules within the PCR 

mixture, which was then mixed with MgCl2 (1:10) and SURVEYOR Enhancer S (1µl). The reaction 

was split in two equal parts, of which only one was treated with SURVEYOR Nuclease S (1µl), while 

the other was used as “non-treated” control. Both aliquots were incubated at 42°C for 60 minutes 

and then mixed with Stop Solution (1:10). Finally, reactions were run on a 4% agarose gel and 

imaged. The intensity of the bands, measured by ImageJ, was used to calculate the targeting 

efficiency according to the formula below (Ran et al., 2013).  

%indels= 100 x (1 – (1- fraction cleaved)1/2) 

2.7.4 PCR cloning and sequencing analysis  

Candidate CYFIP1 mutant hESC lines identified by PCR were selected for sequencing to verify the 

presence of indels and out-of-frame mutations. To this end, the targeted locus was amplified with 

a pair of primers producing a 600 bp product followed by cloning into the pGEM-T vector (Promega) 

following the manufacturer’s protocol. A ligation containing pGEM-T Easy vector (1µl), 2X reaction 

buffer (5µl), T4 DNA ligase (1µl) and purified PCR product (3µl) was set up and incubated for 1 hour 

at room temperature. A volume of 2 µl from this reaction was used to transform competent cells 

(NEB® 5-alpha F'Iq Competent E. coli) with a heat-shock mediated transformation. The competent 

cells were then plated on LB plates and incubated overnight at 37°C. For each transformation, the 

plasmid DNA was extracted from 10 minipreps as described above (2.3) and EcoRI digestion was 

used to verify the presence of the insert. The plasmids that has successfully incorporated the PCR 

amplicon were sent to GATC Biotec (gatc-biotec.com) for Sanger sequencing. The results were 

analysed with the BioEdit software (www.mbio.ncsu.edu/BioEdit).  Each sequence derived from a 
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targeted clone was aligned with the WT sequence and translated into the predicted protein, to 

characterise the type of mutation generated during the targeting.  

2.8  Western Blotting 

Cultured cells were lysed on ice using RIPA buffer (Abcam) supplemented with a protease and 

phosphatase inhibitors cocktail (Sigma). Cell lysates were centrifuged for 15 minutes at 12000g and 

the resulting supernatant was combined with 1X Bolt®LDS Sample Buffer (Thermo Fisher) and 1X 

Bolt®Sample Reducing Agent (Thermo Fisher) and boiled at 97°C for 5 minutes. Equal amounts of 

proteins for each sample were separated on 4-12% Bolt® Bis-Tris Plus gels (ThermoFisher) and then 

transferred to a PVDF membrane (0.45 µm pore size, Amersham Hybond, GE Healthcare) via 

electro-blotting. The membrane was blocked in 5% BSA (Sigma) in Tris Buffered Saline containing 

0.1% Tween (TBS-T) and incubated with primary antibodies overnight at 4°C. The membrane was 

then washed three times in TBS-T, incubated 1 hour at room temperature with secondary 

antibodies and washed again before imaging. The secondary antibodies used were conjugated to 

horse-radish peroxidase (HRP) (Abcam) or to infra-red dyes (IRDye 800CW or 680RD) (LI-COR). HRP 

secondary antibodies were detected following 5 minutes incubation with the reagent Luminata 

Crescendo HRP substrate (Millipore). Chemiluminescent detection was carried out with a BioRad 

ChemiDoc™ XRS+ system. Alternatively, when IR secondary antibodies were used, the blots were 

imaged with the LI-COR Odyssey CLx system. In both cases, the images were exported to ImageJ for 

quantification. 

Table 2.5 Antibodies used for western blotting 

Target Species Dilution Cat. Number Supplier 

βCAT mouse 1:1000 Sc-7963 Santa Cruz 

βCAT (p-ser33/37) rabbit 1:500 2009 Cell Signalling Technologies 

βCAT (p-Ser552) rabbit 1:500 9566 Cell Signalling Technologies 

CYFIP1 rabbit 1:3000 AB6046 Millipore 

GAPDH mouse 1:10000 AB8245 Abcam 

GAPDH rabbit 1:10000 AB9485 Abcam 

NCAD mouse 1:1000 18-0224 Thermo Fisher 

NIPA1 rabbit 1:500 AB128640 Abcam 

NIPA2 rabbit 1:500 AB84343 Abcam 

TUBGCP5 mouse 1:1000 AB168325 Abcam 
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2.9  Immunocytochemistry   

2.9.1 Immunofluorescence staining  

Cultured cells were washed with DPBS and fixed with cold 3.7% PFA for 15 minutes. PFA incubation 

was followed by 3 PBS (Sigma) washes before proceeding with staining. In the case of cerebral 

organoids, fixing was performed in a well of 24-well plate. Here, the desired number of organoids 

was washed with DPBS and incubated in cold 4% PFA for 15 minutes. They were then incubated 

overnight at 4˚C in a 30% sucrose solution in PBS. The organoids were then embedded in a pre-

warmed solution containing 7.5% gelatin (Sigma) and 10% sucrose (Sigma) in PBS. Gelatin blocks 

were cut with a cryostat (Leica) into 13 µm-thick sections and stored at -80˚C.  

For staining, cells or organoids sections were first permeabilised in PBS-T (0.3% Triton-X-100 in PBS) 

for 10 minutes, and then blocked in PBS-T with 2% BSA and 3% donkey serum (Gentaur) for 30 

minutes at room temperature.  Cells or sections were incubated with primary antibodies in blocking 

solution overnight at 4°C. They were then washed 3 times for 10 minutes in PBS-T and AlexaFluor 

secondary antibodies (Thermo Fisher), diluted in PBS-T, were added and incubated for 2 hours at 

room temperature, in the dark. Nuclei were stained with DAPI (Sigma), diluted 1:3000 in PBS. After 

3 more washes with PBS, stained cells or sections were mounted with DAKO fluorescent mounting 

medium and stored at 4°C.  

Table 2.6 Antibodies used for immunofluorescence 

Target Species Dilution Cat. Number Supplier 

CTIP2 Rat 1:500 AB18465 Abcam 

FOXG1 Rabbit 1:1000 AB18259 Abcam (ChIP grade) 

GABA Rabbit 1:1000 A2052 Sigma 

KI67 Mouse 1:1000 550609 BD Pharmigen 

MAP2 Mouse 1:1000 M1406 Sigma 

NCAD Mouse 1:1000 18-0224 Thermo Fisher 

NESTIN Rabbit 1:500 ABD69 Millipore 

NEUN Mouse 1:500 MAB377 Millipore 

NEUN Rabbit 1:500 ABN78 Millipore 

OCT4 Goat 1:500 SC-8629 Santa Cruz 

P27KIP1 Rabbit 1:500 06-445 Upstate (Millipore) 

PAX6 Mouse 1:1000 PAX6 DSHB 

PHH3 Rat 1:1000 641002 Biolegend 

SATB2 Mouse 1:100 AB51502 Abcam 

SSEA3 Rat 1:500 MAB4303 Millipore 

TBR1 Rabbit 1:500 AB31940 Abcam 

TBR2 rabbit 1:500 AB23345 Abcam 
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2.9.2 EdU proliferation assay 

The Click-iT® EdU Alexa Fluor Imaging Kit (Thermo Fisher) was used to measure proliferation of 

neural progenitors at several stages of differentiation. Cultured cells were incubated with EdU 

(1:1000, final concentration 10 µM) in culture media at 37°C, usually for 2 hours, then fixed in PFA, 

as described above. EdU detection was performed by incubating the cells for 20 minutes at room 

temperature in the Click-iT reaction cocktail, prepared as per manufacturer’s protocol. If co-staining 

with other nuclear markers, this step was performed after the incubation with secondary 

antibodies. Finally, EdU detection was followed by nuclei stain with DAPI and mounting, as 

described above.  

2.9.3 Imaging and picture analysis 

Stained cells were imaged using a Leica DM6000B inverted microscope, if fixed on plates, or a Leica 

DMI6000B upright microscope, if fixed on coverslips and mounted on slides. An average of 10 

random fields was acquired for each well or coverslip at a 20x magnification, if intended for 

quantification. Cell counting was performed automatically, using Cell Profiler (cellprofiler.org), for 

DAPI and most nuclear markers. Other measurements, such as number and morphology of neural 

rosettes, were performed manually, using the ImageJ software. Data analysis and representation 

was carried out using Microsoft Excel and R (www.r-project.org). Unless otherwise stated, all the 

immunohistochemistry quantifications were collected from at least two independent experiments, 

with at least two biological replicates for each marker counted.  

2.10 High Content analysis of mitochondria  

2.10.1 Mitotracker staining 

Neuronal cells were seeded, 2 or 3 days before the analysis, in 96 well- plates at a density of 2000 

cells per well. On the day of the analysis, they were incubated with 100 nM Mitotracker 

(ThermoFisher) for 1 hour at 37°C. Cultures were then fixed in PFA and the nuclei were stained with 

DAPI, as described above. The stained cells were preserved in DAKO for a few days at 4 °C. 

2.10.2 Cell Insight CX7 High Content Screening (HCS) platform 

The Cell Insight CX7 HCS platform (ThermoFisher) combines fluorescent microscopy (wide-field or 

confocal), automated image acquisition and quantitative analysis. The Spot Detector application 

allows quantitative analysis of fluorescence punctate stainings and was therefore used for the 

http://www.r-project.org/
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analysis of Mitotracker-labelled mitochondria. Before running the analysis, the “miniscan” function 

was used to set up and test all the parameters necessary for the assay. These include the 

background removal, thresholding and segmentation for the DAPI staining. The correct 

identification of all the nuclei in each field, also depends on the elimination of DAPI+ “objects” of 

abnormal shape or size, like small debris or clusters of nuclei not correctly segmented. For the 

Mitotracker staining, only background removal and thresholding were applied.  Images were 

acquired using the confocal function. At least 10 fields from about 10 wells for each cell line and 

time point were imaged without changing any of the acquisition and processing settings. 

Quantitative data relative to spot count, intensity and nuclear morphology were exported and 

analysed in Microsoft Excel and R. 

2.11 Flow cytometry analysis 

Flow cytometry was used to evaluate the efficiency of RNA transfection during the generation of 

CYFIP1-tageted cell lines (described in Chapter 3) and to analyse the cell cycle profile after DAPI 

staining (results in Chapter 4). Before the analysis, both transfected (or stained) and non-

transfected (or unstained) cells were dissociated in Accutase (Thermo Fisher) for 10 minutes at 

37°C. When this reagent was removed, the cells were resuspended in cold DPBS and analysed on a 

BD LSR Fortessa cytometer (BD Biosciences). Lasers of the appropriate wavelength were used for 

exciting the samples and gates were set using the unstained samples as negative controls. The 

instrument was set up with the help of Mark Bishop, lab manager for the European Cancer Stem 

Cells Research Institute of Cardiff University. Data were analysed with FlowJo_V10 software. 

2.12 Transcriptome analysis via RNA sequencing (with Daniel Cabezas de la 

Fuente) 

RNA was collected for sequencing at three time points of differentiation, for each cell line, in 

triplicate. The extraction was performed with the PureLink® RNA minikit (Thermofisher), following 

manufacturer’s instructions. RNA quality was checked on an Agilent Bioanalyzer 2100, by the 

Central Biotechnology Services (CBS) facility of Cardiff University. After confirmation that all the 

samples had a RNA Integrity Number (RIN) above 8, proving the absence of degradation, they were 

sent to the Oxford Genomics Centre for library construction and RNA sequencing (RNA-seq) 

(http://www.well.ox.ac.uk/ogc). Here, 1 μg of RNA was used for library construction with a TruSeq 

mRNA Library Preparation kit (Illumina). Paired-end sequencing was performed on an Illumina 

HiSeq 4000 with a depth above 28 million reads per sample.  
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Processing of the raw data, quality control and differential gene expression were performed by 

Daniel Cabezas de la Fuente, with the help of Dr Robert Andrews (Cardiff University Data Clinic) and 

Dr Andrew Pocklington (MRC Centre for Neuropsychiatric Genetics and Genomics). Briefly, the 

FASTQ files generated from the sequencing were trimmed from any residual Illumina adapter 

sequence and from low quality bases, then mapped to the Ensembl human genome GRCh38.84 

(hg38) using STAR (Bolger, Lohse & Usadel, 2014; Dobin et al., 2013). The FastQC software was used 

to perform a quality control of the data (www.bioinformatics.babraham.ac.uk/ projects/fastqc). 

Finally, the expression values for each gene, intended as the number of reads aligning to its 

sequence, were generated using the FeatureCounts software (Liao, Smyth & Shi, 2014).  These 

values were used for differential gene expression analysis. This was performed in R, using the 

Bioconductor package DESeq2 (Anders & Huber, 2010). The Benjamini-Hochberg (BH) correction 

method was applied to control for false discovery rate (Benjamini & Hochberg, 1995). The 

differentially expressed genes (DEGs) resulting from this process were analysed with the 

Bioconductor package ClusterProfiler to identify dysregulated pathways via KEGG gene set 

enrichment analysis (Kanehisa et al., 2012; Yu et al., 2012a). The selection of genes related to a 

specific function was carried out using the R package dplyr (CRAN.R-project.org/package=dplyr). 

With this, the data-frame of DEGs between two cell lines at one time point was cross-compared 

with the desired list of EnrezIDs. Neurogenesis-related transcripts were obtained from the Gene 

Ontology website (geneontology.org) and mitochondria-related transcripts were from the 

MitoCarta2.0 website (broadinstitute.org) (Calvo, Clauser & Mootha, 2016). Graphic representation 

of RNA-seq data was carried out with the R package ggplot2 (CRAN.R-

project.org/package=ggplot2).  
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3 Derivation of hESCs with altered CYFIP1 dosage and iPSCs 

carrying 15q11.2 CNVs 

3.1  Introduction 

Psychiatric disorders are caused by a complex combination of genetic and environmental factors 

(Robinson, Neale & Hyman, 2015; Sullivan, 2005). Many common genetic variants have been 

demonstrated to increase the risk of developing diseases such as ASD and SZ, with variable 

penetrance.  Some of these variants are represented by CNVs, which often include more than one 

gene (Gratten et al., 2014).  

In this context, the use of patient-derived iPSCs represents an advantageous alternative to the 

generation of animal or cellular models carrying mutations in several genes, the generation of which 

would be technically challenging. However, because of the genetic variability between individuals, 

iPSC-based experiments need to include several clonal lines from different patients, in order to 

produce reliable results.  A solution to this problem is represented by working with genetically-

modified hESCs and their parental isogenic line, which are not subject to the same degree of 

variability. This approach also allows to explore the phenotype specifically caused by one gene of 

interest, within a CNV, independently from the other genes in the same region and from the genetic 

background of a patient. Therefore, modified hESCs and patient-derived iPSCs represent two 

complementary aspects, which should both be considered for in vitro disease modelling.   

Since the start of iPSC research, an efficient and popular method for the reprogramming of patients’ 

somatic cells has been the ectopic expression of pluripotency-inducing factors using viral vectors, 

in particular retrovirus (Park, 2008; Takahashi et al., 2007). However, retroviral vectors have been 

demonstrated to be easily silenced, eventually resulting in incomplete reprogramming, and require 

integration into the host genome, leading to the disruption of random genes, with unknown 

consequences (Hu, 2014). 

Sendai virus-based (SeV) vectors have been developed as a safer alternative to express transgenes 

in a variety of host cells and have become an increasingly popular method for iPSC reprogramming. 

This is because SeVs are not pathogenic for humans and do not require integration into the host 

DNA. Moreover, the development of SeV vectors with depletion of fusion proteins and/or 

introduction of temperature-sensitive mutations into key viral proteins has opened the possibility 

of deriving virus-free stably reprogrammed iPSCs from a variety of somatic cells (Ban et al., 2011; 

Fusaki et al., 2009; Nakanishi & Otsu, 2012). These advantages have led our choice of 
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reprogramming system towards a commercially available kit containing SeV-based vectors for the 

delivery of Oct3/4, Sox2, c-Myc and Klf4, which have been successfully used by several published 

studies (Fusaki et al., 2009; MacArthur et al., 2012; Tucker et al., 2013). 

The generation of iPSCs carrying 15q11.2 CNVs is only one of the tools necessary to investigate the 

role played by the genes in this locus, particularly CYFIP1, during brain development. Together with 

patients’ cells, the derivation of isogenic hESC lines carrying CYFIP1 mutations alone is also 

necessary and, because 15q11.2 CNVs can occur as deletions or duplications, hESCs with increased 

and decreased expression of this gene are equally important.  

The overexpression of a gene of interest in hESCs can be challenging, as transgenes tend to be 

silenced over subsequent passaging of undifferentiated cells and also during the course of in vitro 

differentiation (Liew et al., 2007). However, a comparison of several vectors where the expression 

of eGFP (enhanced Green Fluorescent Protein) was driven by different promoters, showed that the 

pCAG promoter allows the generation of hESCs lines with stable transgene expression, maintained 

also in the differentiated progeny (Liew et al., 2007). This promoter is formed by the sequences of 

the cytomegalovirus early enhancer element, the promoter and first exon and intron of the chicken 

β-Actin gene and the splice acceptor site of the rabbit β-Globin gene and appears to be efficient 

also in bicistronic vectors. For instance, transfection of pCAG-GFP-IRES-PURO, where the GFP and 

puromycin-resistance gene (PURO) are linked by an internal ribosomal entry site (IRES), has been 

applied to several hESC lines to derive stably transfected clones, without affecting their 

pluripotency (Braam et al., 2008). Therefore, this approach appears to be promising also for the 

generation of CYFIP1-overexpressing (CYFIP1tg) hESCs.  

Gene targeting in hPSCs has recently become significantly easier by the discovery of the 

CRISPR/Cas9 system and its optimisation for use in mammalian cells. This technique requires the 

construction of plasmids or viral vectors allowing co-expression of the Cas9 and gRNAs into the 

target cells (Cho et al., 2013; Cong et al., 2013; Jinek et al., 2013; Mali et al., 2013). The need for 

several cloning steps can be bypassed using the iCRISPR platform, represented by hESCs containing 

a doxycycline-inducible Cas9 stably integrated in their genome. Once the Cas9 expression is 

induced, the only step required is the transfection of gRNAs, which can be generated by in vitro 

transcription or purchased. This method has been reported to have an efficiency as high as 40% 

(González et al., 2014). For this reason, the iCRISPR platform was chosen for the generation of 

CYFIP1-knockout (CYFIP1ko) hESCs.  

In this chapter, I describe the derivation and validation of CYFIP1tg and CYFIP1ko hESCs and the 

reprogramming of 15q11.2-deleted fibroblasts and keratinocytes into iPSCs. The characterisation 

of these patient-derived lines includes the analysis of protein levels for the four 15q11.2 genes in 
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iPSCs-derived NPCs and neurons, an aspect that has not been reported to date. The generation of 

iPSCs carrying 15q11.2 duplication has not been possible, because no patients with such mutation 

were recruited during my PhD. 

3.2  Results 

3.2.1 Generation of CYFIP1tg hESCs 

(I) Construction of Cyfip1 overexpression vector 

For the generation of CYFIP1tg hESCs, a bicistronic vector containing the CYFIP1 and puromycin 

acetyltransferase (PAC) genes under the control of the pCAG promoter was created (pCAG-hCYFIP1-

IRES-PAC). Such a construct allows high constitutive CYFIP1 expression and provides puromycin 

resistance to all stably transfected cells.  

The full-length human CYFIP1 open reading frame (ORF) was cut out of a commercially available 

expression vector and cloned downstream of the CAG promoter in a pCAG-IRES-PAC plasmid (Fig. 

3.1 A). A digestion with the restriction enzymes PvuI and BglII was performed to confirm the 

presence and orientation of the right insert (Fig. 3.1 B). The plasmid, the digestion of which is shown 

in lane 1, was used for transfection of H7 hESCs. 

 

 
Figure 3.1 CYFIP1-overexpression vector construction.  

(A) Map of CYFIP1-overexpression plasmid and (B) DNA electrophoresis gel showing BglII/PvuI digestion 

pattern of the same plasmid with CYFIP1 insert in the correct orientation (lane 1), in the wrong orientation 

(lane 2) or without insert (lane 3). 
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(II) Isolation of Puromycin-resistant hESCs clones and validation of increased Cyfip1 during 

neuronal differentiation 

The pCAG-Cyfip1-IRES-PAC plasmid was delivered into H7 hESCs via nucleofection, as described in 

Chapter 2. Puromycin selection was applied 48h after transfection and maintained for 10 days. 

During this time, 11 colonies of puromycin-resistant cells emerged and were picked manually and 

expanded as independent clones. RT-qPCR was performed to measure CYFIP1 and IRES mRNA levels 

at the stem cell stage. The results revealed that CYFIP1tg clones #3, #,4 and #5 expressed the 

highest level of CYFIP1transgene (Fig. 3.2 A and B). Despite having the correct ESCs morphology 

(Fig. 3.2 C), cells from clone #4 showed a poor efficiency of differentiation towards the neuronal 

lineage and were discarded from subsequent differentiation experiments. Conversely, CYFIP1tg #3 

and #5 turned efficiently into cortical neurons and, when compared to the parental line H7, 

maintained a higher CYFIP1 expression throughout the whole process, as demonstrated by the 

qPCR and western blot data (Fig. 3.2 E, F).  
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Figure 3.2 Characterisation of CYFIP1tg hESCs.  

RT-qPCR results for IRES (A) and CYFP1 (B) transcripts in all the hESC clones isolated after puromycin selection. 

Quantification data are normalised to GAPDH and 18S rRNA. Expression values are relative to the H7-CTRL, 

taken as 1. Error bars represent SD between 3 technical replicates. (C) Bright field images of three CYFIP1tg 

clones, showing normal hESC-like morphology. Scale bar= 100 μm. (D) RT-qPCR results for CYFIP1 expression 

at different stages of cortical differentiation of CYFIP1tg, clones #3 and #5 (clone numbers defined in A). Data 

are normalised to GAPDH and 18S rRNA. Expression values are relative to the control line at day 5, taken as 

1. Quantification (E) and western blots (F) for CYFIP1 protein during cortical differentiation of CYFIP1tg (#3 

and #5) and CTRL cells. RT-qPCR and western blot data (D and E) represent the mean value ± SD from 4 

independent experiments (N=4, 2 experiments for each CYFIP1tg clone). Data were compared by two-way 

ANOVA, followed by Tukey HSD test (*p<0.05, **p<0.01). 
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3.2.2 CYFIP1 targeting in iCas9 hESCs 

(I) Validation of RNA transfection procedure 

CYFIP1ko hESCs were derived from iCas9 cells, a line of genetically modified pluripotent cells with 

doxycycline-inducible expression of Cas9 nuclease (González et al., 2014). Gene targeting with this 

system requires the transfection of gRNA molecules into the cells, after the induction of Cas9 

expression.  

For this reason, I firstly verified the efficiency of RNA transfection using an Alexa555-conjugated 

RNA molecule delivered into the cells via a lipid-based transfection reagent optimised for RNA 

delivery. Flow-cytometry was used to analyse the population of transfected cells 24 hours later. The 

results showed that over 50% of the cells were fluorescent when compared to the non-transfected 

(negative) control sample (Fig.3.3).  

 

 

Figure 3.3 Validation of RNA transfection method.  

Histograms of FACS analysis showing a control (A) and transfected (B) sample of iCas9 cells. The analysis was 

carried out 24 hours post-transfection. 

 

(II) Transfection and screening of targeted clones 

After confirming the efficiency of the transfection method, iCas9 hESCs were transfected with 

gRNAs targeting the first exon of CYFIP1 (Fig. 3.4 A). The synthesis and transfection of the gRNAs is 

described in Chapter 2.2 and 2.4. Twenty-four hours after transfection, one of the transfected wells 

was used for extraction of the genomic DNA, together with a control (non-transfected) one. A PCR 

reaction was carried out for both samples to amplify the targeted locus and the product was then 

digested with Surveyor nuclease, to evaluate the targeting efficiency. Indel occurrence was 

estimated as explained in Ran et al. and resulted to be about 15% (Ran et al., 2013). A DNA gel 

showing the result of the Surveyor assay is shown in figure 3.4 B. 
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The remaining cells were dissociated, plated at a clonal density (250-500 cells per 6cm dish) and 

left to grow until small colonies emerged. About 100 of these colonies were manually isolated and 

expanded as single clones. Genomic DNA was extracted from some cells of each clone and used for 

PCR screening of the targeted CYFIP1 locus. This process led to the identification of several clones 

carrying insertions and/or deletions (indels) in the region of interest. An example of an agarose gel 

used to analyse the PCR results is shown in figure 3.4 B.  

Sanger sequencing was then used to verify the results of the PCR screening and to determine the 

exact nucleotide sequence of the targeted locus. As shown in figure 3.4 D and E, clones #31, #41 

and #70 had mutations in both alleles, but in the case of #41 and #70, one of the alleles had a 

deletion of 3 and 6 nucleotides respectively, leaving the gene sequence in frame. Other clonal lines 

containing mutations were #53 and #97, with a 1bp insertion in one allele, and #71 and #97, with 

only an in-frame deletion in one allele. Therefore, only clone #31 resulted to be a functional 

homozygous knock-out, with all the others being genetically or functionally heterozygous. Clone 

#31 was used for most of the experiments presented in this thesis and will be referred to as 

CYFIP1ko hereafter.  

(III) Validation of targeted clones 

The CYFIP1ko and two of the heterozygous lines (#41 and #70) were differentiated into cortical 

projection neurons in parallel to the control line to confirm that the mutations introduced did not 

affect the differentiation process in a way that would prevent the use of these mutant lines. During 

this process, proteins were collected from neural progenitors, a stage when CYFIP1 is known to be 

expressed. The results shown in figure 3.4 F and G confirm a significant reduction of CYFIP1 protein 

in all the targeted clones, particularly CYFIP1ko, when compared to the parental line. 

These data confirm that the cell lines generated by CRISPR/Cas9 targeting of CYFIP1 are suitable for 

modelling the effects of a reduction of this gene in human neurons, using in vitro differentiation 

from hESCs. 
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Figure 3.4 Screening and characterisation of CYFIP1-mutant hESCs.  

(A) Scheme of the CYFIP1 gene locus, highlighting the first translated exon (red) and the positions targeted by 

the three guide sequences used. gRNAs are reported with 5’ to 3’ orientation followed by the PAM (blue). (B) 

Surveyor nuclease assay of genomic DNA extracted from an untransfected pool of iCas9 hESCs (lane 1) and a 

well of transfected cells (lane 2). (C) Example of a DNA electrophoresis gel showing PCR products of the 

targeted locus from iCas9 hESCs (lane 1) and three targeted clonal lines where indels are present (lanes 2,3,4). 

(D) Summary of the genotyping results for all the clonal lines containing indels in one or both alleles. (E) Partial 

DNA sequence of CYFIP1 exon 1, in the parental iCas9 line and all the targeted clones where indels were found. 

(F) Western blot for CYFIP1 in CTRL (iCas9), CYFIP1ko (clone#31) and clonal lines #41 and #70 (heterozygous 

mutants).  

 

3.2.3 Derivation of iPSCs from 15q11.2-deleted fibroblasts and keratinocytes 

IPSCs were derived from fibroblasts and keratinocytes of two different patients carrying 15q11.2 

deletions using a commercial Sendai virus-based kit. Briefly, a population of somatic cells was 

transduced with viral vectors to induce the expression of several pluripotency genes (see also 

Chapter 2). Over time, colonies showing ESC-like morphology started to appear. More than 10 
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colonies per patient were isolated and expanded. These were named after the same identification 

number (ID) given to the patient followed by another number indicating the cellular clone.  

Clones EA008.4, EA008.21, EA062.13 and EA062.19 were stained for pluripotency markers and 

differentiated into cortical glutamatergic neurons to verify their ability to generate neurons. During 

this experiment, RNA and proteins were also extracted to quantify the expression levels of the 

deleted genes. In parallel to the patient-derived iPSCs, two control lines from a male and female 

healthy volunteer were also differentiated (CTRL#900 and CTRL#202, respectively). 

The results of the staining for the pluripotency markers SSEA3 and OCT4 for one control line and 

one iPSC clone per patient are shown in Figure 3.5 A. The same figure also demonstrates that both 

patient- and control-derived iPSCs were equally able to generate neuronal cells, as shown by the 

expression of typical neural progenitor (fig. 3.5 B) and post-mitotic neuron markers (fig. 3.5 C).  

 

 

Figure 3.5 Immunofluorescent staining in iPSCs and iPSCs-derived neuronal cultures.  

(A) Undifferentiated iPSCs stained for the pluripotency markers SSEA3 (green) and OCT4 (red). (B) iPSC-derived 

neural progenitors stained for a neuroepithelial marker nestin (green). (C) iPSC-derived neurons stained for 

the neuron-specific cytoskeletal protein MAP2 (green). All nuclei are counterstained with Dapi (blue). Scale 

bars=50 μm. 
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The analysis of the expression levels of the four 15q11.2 genes showed that CYFIP1 mRNA and 

protein were significantly reduced in patient-derived iPSCs compared to controls (fig. 3.6 A and fig. 

3.7 A).  

NIPA1 mRNA levels in patient iPSC-derived neuronal cells appear to be similar to those from the 

controls (fig. 3.6 B). However, the threshold cycles detected by RT-QPCR were all considerably high. 

This could mean the gene is expressed at a very low level, which may compromise the reliability of 

the quantification. In support to this hypothesis, western blot for NIPA1 showed only a very weak 

band at the neuronal stage and seemed almost absent in progenitor cells. Moreover, the intensity 

of NIPA1 bands did not appear to be different between patients and control cells (fig. 3.7 B). 

Interestingly, NIPA2 mRNA was particularly abundant at the NPCs stage and the protein was 

detected only at this time point. In neural progenitors, both the transcript and protein 

quantification showed significant reduction in cells carrying 15q11.2 deletion when compared to 

any of the controls used (fig. 3.6 C and fig. 3.7 C). In neurons, only the two clonal lines from EA062 

had a significant reduction in NIPA2 mRNA (fig. 3.6 C). 

The levels of TUBGCP5 transcript and protein were very variable between lines. Despite an apparent 

reduction in TUBGCP5 mRNA in EA008 progenitors and EA062 neurons, these differences were not 

statistically significant. This was reflected in the protein levels, which were similar in all lines and 

clones, at both differentiation stages (fig. 3.6 D and fig. 3.7 D). 

In conclusion, these data describe the characterisation of iPSCs carrying a 15q11.2 deletion. The 

expression of CYFIP1 and NIPA2 generally correlate with the number of copies of the gene present 

in the genome, both at the mRNA and protein level. On the other hand, the regulation of TUBGCP5 

and NIPA1 expression does not appear to be strictly related to the gene copies carried by an 

individual. However, NIPA1 seems to be present only at a very low level in in vitro differentiated 

post-mitotic neurons. 
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Figure 3.6 RT-qPCR for 15q11.2 genes in iPSCs-derived neuronal cells.  

Data were normalised to GAPDH and ribosomal RNA 18S and expressed relatively to the CTRL#900, taken as 

1, for each time point. Data represent mean ± SD (N=2 independent experiments) and were compared with a 

Two-way ANOVA, followed by Tukey HSD test (* p<0.05, **p<0.01). 
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Figure 3.7 Western blots for 15q11.2 genes in iPSCs-derived neuronal cells. 

The band intensity for each gene was normalised to that of GAPDH from the same membrane. Data represent 

mean ± SD (N=2 independent experiments) and were compared with a Two-way ANOVA, followed by Tukey 

HSD test (* p<0.05, **p<0.01). 
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3.3  Discussion 

This chapter describes the derivation of several hPSCs lines that lay the basis for the study of CYFIP1 

function in human brain development and its contribution to the increased risk for psychiatric 

disorders in 15q11.2 CNVs carriers. 

CYFIP1tg hESCs were derived from H7 hESCs via transfection of a vector where the CYFIP1 gene is 

driven by the CAG promoter. The use of a strong promoter is necessary to drive high level of 

constitutive transgene expression in hESCs, because they tend to be silenced during prolonged 

cultures and differentiation protocols. In agreement with published studies, the CAG promoter 

proved to be efficient in maintaining a high level of CYFIP1 both in stem cells and in differentiated 

neurons (Braam et al., 2008; Liew et al., 2007). Indeed, two of the CYFIP1tg hESCs lines tested, clone 

#3 and #5, were able to successfully differentiate into cortical projection neurons, maintaining a 

higher level of CYFIP1 expression than the parental H7 line, at any of the time points tested.  

However, the stable integration of the CYFIP1-overexpression plasmid in the host’s genome confers 

risk of interrupting important genes, which could affect the pluripotency and/or differentiation of 

the transgenic cells. Despite this, none of the CYFIP1tg hESCs clones showed abnormal morphology 

or behaviour, while the differentiation potential was compromised in only one of the transgenic 

lines (clone #4). Therefore, these two CYFIP1tg lines (#3 and #5) can be considered as a suitable 

gain-of-function model to investigate the consequences of an abnormally high level of CYFIP1 

during human neural development. Moreover, both clones were differentiated in parallel in most 

of the experiments, in particular during the initial stage of the project, to allow a confident 

identification of the cellular phenotypes specifically due to CYFIP1 overexpression. 

Human ESCs modelling the loss of CYFIP1 function were derived from the H9-iCas9 line (González 

et al., 2014), via transfection of gRNAs targeting the first translated exon of CYFIP1. When tested 

with a fluorescent RNA molecule, the transfection method used to deliver the gRNAs showed an 

efficiency comparable to that stated in the original publication on the iCRISPR system (González et 

al., 2014). However, the targeting efficiency reported in the same publication was, on average, 

around 40%, while that observed during CYFIP1 targeting was around 15%. This is not surprising 

and is likely due to the efficiency of the guide sequences chosen and to the genetic region targeted. 

Indeed, the data presented by Gonzalez et al also showed high variability in the percentage of 

mutant clones generated by targeting of different genes, ranging from as low as 20% to as high as 

70%. In addition to this, they also reported the preferential generation of the same non-random 

deletions in several clones, possibly due to microhomology-directed repair caused by the presence 

of small repeated sequences adjacent to the region where the DSB occurs (González et al., 2014). 
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Non-random deletions were detected also during the generation of CYFIP1-targeted lines. These 

were a 17 nucleotides-deletion present in clone #31 and #41 and a 6 nucleotides deletion present 

in one allele of clones #70, #71 and #107. Despite the efficiency observed being lower than 

expected, it was possible to generate a hESC line carrying a full knock-out of the CYFIP1 gene. 

Inactivation of this gene did not affect the behaviour of the targeted cells and resulted into a strong 

reduction of CYFIP1 protein in the line named CYFIP1ko. Therefore, hESCs from this clonal line 

represent a suitable model to investigate the effects of CYFIP1 loss during cortex development.  

Finally, iPSCs carrying a 15q11.2 deletion were also generated from two patients. Most of the 

interest in this CNV has been so far focused on CYFIP1, because of its functions within neuronal 

cells. The other genes encoded in this region have received little attention and their expression 

pattern has been investigated by just few studies and only at the mRNA level (Das et al., 2015; 

Picinelli et al., 2016; van der Zwaag et al., 2010). To carry out an initial characterisation of the 

patient-derived iPSCs, the expression of all the genes encoded in the 15q11.2 locus at both the 

mRNA and protein levels in two clonal iPSC lines per patient were compared to two control lines 

available in our group. RNA and protein samples were collected at the neural progenitor and 

neuronal stages from cultures differentiating into cortical pyramidal neurons, to carry out the 

analysis in a cell type relevant to neurodevelopmental psychiatric disorders.  

NIPA1 transcripts and protein levels were detected but at a very low level. Neuronal cells derived 

from patients carrying 15q11.2 deletion did not show a significant reduction of NIPA1 mRNA, in 

contrast with data from other studies (Das et al., 2015). NIPA1 protein was difficult to detect by 

western blot and, when present, the bands observed were very weak.  Several different 

combinations of antibodies and protein concentrations were tried to obtain this result. An increase 

in protein or antibody concentration resulted in the appearance of several unspecific bands rather 

than a more intense band of the right molecular weight. On the basis of these preliminary data, a 

small amount of NIPA1 seems to be present only in in vitro-derived cortical neurons and its level at 

this stage does not appear to be specifically linked to the number of NIPA1 copies in the genome. 

TUBGCP5 mRNA and protein were expressed in iPSC-derived neuronal cells at both time points 

tested. However, transcripts levels were very variable between cell lines and especially between 

patients. Also, the lack of one gene copy in 15q11.2-deleted cells did not result in significantly 

reduced protein levels. These results are different from what was expected on the basis of the qPCR 

data published by Das and colleagues (Das et al., 2015). However, the small sample used in that 

study and the high degree of variability observed in the results presented here may explain this 

discrepancy.  
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CYFIP1 mRNA and protein were detected at both the progenitor and neuronal stages and, in 

agreement with published data, loss of a copy of the gene results in significantly reduced expression 

levels for both mRNA and protein (Das et al., 2015; Picinelli et al., 2016).  

Finally, NIPA2 transcript was found at higher levels in progenitors than in neurons in all the lines 

tested. Interestingly, and in line with qPCR data, NIPA2 protein was detected only in neural 

progenitors and seemed to be absent in neurons. Moreover, the presence of 15q11.2 deletion 

significantly affects the expression of this gene, resulting in a clear reduction of its mRNA and 

protein. This is in agreement with published studies reporting that NIPA2 expression is positively 

correlated with the number of copies of the gene (Das et al., 2015; Picinelli et al., 2016; van der 

Zwaag et al., 2010). However, only one of these studies is based on in vitro-derived neurons and 

does not report any indication of the expression trend of NIPA2 mRNA during differentiation, as 

data are normalised to the control line for each time point analysed (Das et al., 2015). This makes 

it impossible to compare the interesting expression pattern observed in this study with any 

published data. NIPA2 specific expression in neural progenitors suggests a role for this gene in the 

developing cortex and opens a question about a possible contribution of NIPA2 to the phenotypes 

observed in 15q11.2 CNVs carriers.  

NIPA2 is a Mg++ transporter, mutations of which have been linked by some studies to an increased 

risk of epilepsy in the Chinese population (Jiang et al., 2012). Few data are available on its function 

in neuronal cells. Xie and colleagues used rat primary foetal neurons to demonstrate that mutations 

of NIPA2 interfere with its correct cellular localisation, lowering intracellular Mg++ and disrupting 

NMDAR currents  (Xie et al., 2014). The presence of NIPA2 in rat foetal cortical neurons seems to 

be in contrast with the impossibility to detect the same protein in in vitro-derived human neurons 

during the experiments presented here. The samples taken for this study are collected from young 

hESCs-derived neurons, which should be comparable to the E16-18 cortical cells used by Xie et al. 

Nevertheless, differences in the model and the maturity of cells could be at the origin of this 

inconsistency.  

Literature on the function of Mg++ transporters in NPCs is scarce. However, Mg++ is a very abundant 

ion in mammalian cells and a few studies linked its concentration to the proliferation and 

differentiation potential of neuronal precursors during adult neurogenesis (Jia et al., 2016; W. Liao 

et al., 2017). In light of these recent data, the investigation of a possible role of NIPA2 in NPCs 

represents an interesting venue for future studies.  

For most of the time spent working on the experiments presented in this thesis, iPSCs from only 

one 15q11.2 deletion carrier were available. Because of this, most of my work was focused on 

CYFIP1tg and CYFIP1ko cells, while work on patients-derived cells is still at a preliminary stage. 
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4 Phenotypic Analysis of CYFIP1tg and CYFIP1ko cells  

4.1  Introduction 

The expression of  Cyfip1  in the neuroepithelial cells facing the ventricle in the developing mouse 

cortex (Yoon et al., 2014 and Eurexpress.org) suggests a role for this gene in cortical development. 

Indeed, Yoon and colleagues demonstrated that knock-down of CYFIP1 in iPSC-derived neural 

progenitors disrupts the formation of neural rosettes, a defect observed also in NPCs carrying 

15q11.2 deletion (Yoon et al., 2014). The same authors also reported that Cyfip1 knock-down during 

mouse embryonic development results in aberrant localisation of radial glial cells and the neurons 

to which they give rise (Yoon et al., 2014). The apical side of neural rosettes is an important source 

of signals regulating the survival and neurogenic potential of the neural progenitors forming these 

structures (Banda et al., 2015; Elkabetz et al., 2008). Therefore, the disruption of the normal rosette 

morphology associated with reduced level of CYFIP1 is likely to impact on the generation of neurons 

at a later stage. However, the consequences of neural rosettes alterations in human neuronal cells 

and the mechanism behind the defects observed were not thoroughly investigated. 

The effects of CYFIP1 reduction in NPCs was analysed also by Nebel et al (Nebel et al., 2016). 

Transfection of shRNAs targeting CYFIP1, followed by RNA sequencing, revealed alterations in genes 

regulating cell cycle, cytoskeletal remodelling and cell adhesion. The differentially expressed genes 

were also enriched for FMRP targets and post-synaptic density (PSD) genes. This study also reported 

differences in the amount of F-Actin and the nuclear and cellular size of CYFIP1-deficient NPCs, but 

the authors did not examine all the cellular functions that appeared to be affected in the 

transcriptomic analysis (e.g. cell cycle) nor did they explore which pathway to manipulate to rescue 

the abnormalities caused by CYFIP1 knock-down (Nebel et al., 2016). 

In addition to 15q11.2 deletions, duplications of the same locus are also associated with psychiatric 

and developmental disorders (Burnside et al., 2011; Picinelli et al., 2016; van der Zwaag et al., 2010). 

Despite this, the investigation of increased CYFIP1 level in human cortical progenitors and neurons 

is still missing.  

In this Chapter, I report the phenotypic analysis of the CYFIP1tg and CYFIP1ko hESCs in cortical 

development in vitro. To this end, CYFIP1tg and CYFIP1ko neuronal cells were compared to their 

respective parental lines at different stages during differentiation and were analysed using several 

approaches. These include assays to evaluate the efficiency of neuronal induction, neural rosette 

formation and generation of neurons of all cortical layers. 



68 
 

4.2  Results 

4.2.1 Changes in CYFIP1 level do not affect neuronal induction efficiency 

CYFIP1tg and CYFIP1ko hESCs and their respective parental lines were differentiated to cortical 

pyramidal neurons using a protocol adapted from published studies (Espuny-Camacho et al., 2013; 

Shi et al., 2012). Under our conditions, PSCs differentiate into NPCs in about 18 days for H7 and 

CYFIP1tg cells and in about 12 days in the case of iCAS9 and CYFIP1ko lines. At this time, cells were 

stained for markers of cortical radial glia cells to analyse the efficiency of NPCs production and the 

positional identity of the differentiated cells. As shown in figure 4.1 A and B, virtually all cells in 

CYFIP1tg, CYFIP1ko and control cultures were positive for NESTIN, an intermediate filament widely 

expressed by proliferating cells of the developing central nervous system (Dahlstrand, Lardelli & 

Lendahl, 1995).  A high proportion of cells was also positive for PAX6 and FOXG1, two transcription 

factors expressed in dorsal forebrain progenitors and in all forebrain cells, respectively, (Greig, 

Woodworth et al., 2013), without significant differences between the CYFIP1 engineered and 

control cell lines (Fig.4.1 A-D).  

Moreover, at this stage, the number of cells expressing proliferation markers in CYFIP1tg and 

CYFIP1ko NPCs was also similar to the respective controls. KI67, a protein present during all active 

phases of the cell cycle (Scholzen & Gerdes, 2000), was present in more than 60% of cells for all the 

lines analysed (Fig. 4.2 A-D). Another important parameter in the context of proliferation is the 

incorporation of the thymidine analogue EdU (Salic & Mitchison, 2008). The ratio between EdU and 

KI67 is inversely proportional to the cell cycle length and it is often used as an indirect measure of 

the proliferation rate in cultured cells (Mariani et al., 2015; Qu et al., 2013). Both the number of 

Edu+ cells and the value of the EdU/KI67 ratio were similar for CYFIP1tg, CYFIP1ko and their 

respective isogenic control lines (Fig 4.2 C, D).  

Together these data demonstrate that an altered dosage of CYFIP1 does not affect the efficiency of 

neural induction, nor the positional identity or proliferation of cortical progenitor cells at an early 

stage of PSC differentiation.  

 



69 
 

 

Figure 4.1 Expression of cortical progenitor markers in CYFIP1tg and CYFIP1ko cultures. 

 Immunofluorescence for PAX6 (red), FOXG1 (green) and Nestin (red) in CYFIP1tg and H7 cultures at day 18 

(A) and in CYFIP1ko and iCas9 cultures at day 14 (B). All nuclei were counterstained with Dapi (blue). Scale 

bars=50 μm. (C) Quantification of cells expressing PAX6 and FOXG1 in CYFIP1tg and H7 NPCs at day 18 of 

differentiation. CYFIP1tg data represent an average of two different clonal lines. (D) Percentage of CYFIP1ko 

and iCas9 NPCs expressing PAX6 and FOXG1 at day 14 of differentiation. Data represent mean ± SD from 4 

independent experiments (2 experiments for both CYFIP1tg clones #3 and #5). All quantification data were 

compared by t-test and no significant differences were found. 
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Figure 4.2 Expression of proliferation markers in CYFIP1tg, CYFIP1ko and control NPCs. 

Immunofluorescence staining for KI67 (green) and Alexa-555 labelling of EdU (red) in day 18 CYFIP1tg and H7 

neural progenitors (A) and in day 14 CYFIP1ko and iCas9 neural progenitors (B). Nuclei are stained with Dapi 

(blue). Scale bars = 50 μm. (C, D) Quantification of KI67+ and EdU+ cells and KI67/EdU ratio in day 18 CYFIP1tg 

and H7 cultures and in day 14 CYFIP1ko and iCas9 cultures, respectively. Data represent mean ± SD from 3 

independent experiments. The CYFIP1tg line used was #5. Data were compared by t-test and no significant 

differences were found. 
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4.2.2 Abnormal levels of CYFIP1 interfere with the self-organising ability of 

cortical progenitors 

Cultures of CYFIP1tg and control progenitors were stained for NCAD (N-CADHERIN or CADHERIN 2), 

a protein that in vivo is localised at the apical surface of cortical progenitors of the VZ and that in 

vitro marks the centre of neural rosettes. These are polarised structures originated, during 

monolayer differentiation, by the self-organisation of neural progenitors around a centre devoid of 

cells (Elkabetz et al., 2008; Miyamoto, Sakane & Hashimoto, 2015).  

At a time when control cultures reached their peak of neural rosette formation, CYFIP1-

overexpressing progenitors formed significantly fewer rosettes (Fig. 4.3 C). Moreover, while NCAD 

staining appeared to exhibit the typical circular expression pattern in H7 control cultures, the 

CYFIP1tg cultures showed irregular NCAD staining, highlighting the aberrant and incomplete 

morphology of a significant proportion of rosettes (Fig 4.3 A and D). The disorganised nature of 

CYFIP1tg neural rosettes was more apparent at a higher magnification (Fig. 4.3 B). Nestin-stained 

CYFIP1tg progenitor cells did not show an apico-basal radial pattern as those in the control rosette 

(Fig. 4.3 B, white arrowhead).   Mitotic phospho-histone H 3 (pHH3)-expressing cells, which in vivo 

are only found adjacent to the ventricle, were correctly positioned around the lumen of neural 

rosettes in control cultures, but not in CYFIP1tg rosettes (Fig. 4.3 B, green arrowhead).  

In order to explore how these cells performed in a more complex system, CYFIP1tg and H7 hESCs 

were differentiated into brain organoids. Following a published protocol, PSCs were cultured in 

suspension to form embryoid bodies-like structures, which were then embedded in Matrigel 

droplets to allow expansion of the neuroepithelial tissue (Lancaster & Knoblich, 2014) (Fig. 4.3 E).  

Around 15 days post-Matrigel embedding, several VZ-like areas were evident in the control line. At 

this time, the thickness and area of each VZ region were measured from the most central section 

showing the widest ventricular area. The thickness was measured by averaging the length of four 

radial segments for each VZ. The area was selected with the free hand tool of ImageJ and calculated 

using the “Measure” function of the same program. The results of this analysis showed that 

CYFIP1tg hESCs-derived organoids had significantly smaller and thinner VZ-like areas than control 

ones, at the same time point (Fig. 4.3 F, G, H).  
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Figure 4.3 Abnormal neural rosettes and VZ-like areas formed by CYFIP1tg neural progenitors. 

(A) Immunostaining for NCAD (red) in control and CYFIP1tg cultures at day 18 of differentiation. Scale 

bars=50μm (B) Immunostaining for Nestin (white) and pHH3 (green). White arrowhead indicates an area of 

disorganised Nestin staining. Green arrowhead indicates a pHH3+ cells not adjacent to the rosette lumen.  

Nuclei were counterstained with Dapi (blue). Scale bars=25μm. (C, D) Quantification of NCAD+ rosettes and 

percentage of incomplete rosettes present in control and CYFIP1tg cultures at day 18 of differentiation. 

Quantification was carried out on two different CYFIP1tg clones each time (N=4, two independent experiments 

for both CYFIP1tg clone #3 and clone #5). (E) Bright field images of brain organoids at day 2 post-seeding and 

day 5 after Matrigel embedding. Scale bars=100μm (F) Immunostaining for NCAD and Nestin on a section of 

a control and a CYFIP1tg organoid at day 15 post-embedding. Nuclei were counterstained with Dapi (blue). 

Scale bars=50μm (G and H) Quantification of thickness and surface area of VZ-like structures in organoids 

derived from H7 and CYFIP1tg cells on day 15 post-embedding (N=3. Four organoids measured for each 

experiment). All data are represented as mean ± SD and were compared with t-test (*p<0.05, **p<0.01, 

***p<0.001).  
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The formation of neural rosettes was analysed also in CYFIP1ko cultures (Fig. 4.4). Following, 

immunostaining for NCAD, no differences were found in the number of rosettes between CYFIP1ko 

and the isogenic control cultures (Fig. 4.4 C). However, the expression pattern of NCAD was found 

to be abnormal in a high proportion of CYFIP1ko rosettes, as it lacked the typical circular 

configuration and, instead, appeared in a disperse pattern. In contrast, neural progenitors derived 

from the control line showed correct radial organisation and circular pattern of NCAD staining (Fig. 

4.4 A, B). Quantification of the proportion of incomplete rosettes over two independent 

experiments confirmed the presence of a significant difference (Fig. 4.4 C). 

Overall, these data indicate that abnormal levels of CYFIP1 impact negatively on the self-

organisation of cortical neural progenitors into correctly polarised structures. 

 

 

Figure 4.4 Disorganised neural rosettes in CYFIP1ko progenitor cultures. 

(A) Immunostaining for NCAD (green) and Nestin (red) in day 14 cultures of NPCs derived from control and 

CYFIP1ko cells. Nuclei are marked by Dapi staining (blue). Scale bars=50μm. (B) High magnification field 

showing one NCAD+ (green) neural rosette for both lines. Nuclei were stained with Dapi (blue). Scale 

bars=25μm. (C, D) Quantification of the number of neural rosettes and percentage of incomplete ones present 

in control (iCas9) and CYFIP1ko cultures at day 14 of in vitro differentiation (N=3). Data from the two cell lines 

are represented as mean ± SD and were compared by t-test (*p<0.05, **p<0.01, ***p<0.001).  
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4.2.3 CYFIP1 overexpression results in prolonged proliferation of the progenitor 

pool 

To investigate whether the disruption to normal rosettes morphology impacts the generation of 

neurons at later stages, the number of PAX6+ progenitors and post-mitotic NEUN+ neurons was 

analysed in H7 and CYFIP1tg cultures during a window of active neurogenesis, between day 30 and 

40 of in vitro differentiation. At both time points the percentage of PAX6+ cells was significantly 

higher in CYFP1tg cultures, while the number of neurons was considerably higher in the control 

population (Fig. 4.5 A, B, D, E).  

A 2-hour EdU incorporation experiment was then performed to quantify the fraction of proliferating 

cells in both CYFIP1tg and control cultures. This experiment confirmed the presence of a larger 

number of actively dividing cells within the CYFIP1-overexpressing population both at day 30 and 

40, with the difference at day 40 being highly significant (Fig. 4.5 F).  EdU incorporation can also be 

used to determine the neurogenic rate of a population of neural progenitors, as EdU is retained by 

the neuronal progeny upon exit from the cell cycle. In this case, an EdU pulse is given to the 

progenitors on a certain day and the percentage of cells co-labelled with EdU and a post-mitotic 

neuronal marker is analysed a few days later (Otani et al., 2016). This approach was used to analyse 

the production of neuronal cells in CYFIP1tg and control cultures. Co-staining for NEUN and EdU 5 

days after the EdU pulse was given revealed a significantly lower proportion of EdU+ NEUN+ cells in 

CYFIP1tg cultures than in the control ones (Fig. 4.5 C and G), suggesting that CYFIP1tg progenitors 

have a higher tendency to proliferate than to undergo terminal differentiation into neurons.  

This was further supported by flow-cytometry analysis of the control and CYFIP1tg cells stained with 

the DNA dye, Dapi. The amount of DNA present is indicative of whether the cell is in the G0/G1, S 

or M phase of the cell cycle (Fig. 4.5 H and I). Such analysis showed that at day 35 the majority of 

control cells had exited the cell cycle, while a significant proportion of CYFIP1tg cells was still in the 

S and M phases (Fig. 4.5 K). However, no significant differences were found when the same analysis 

was performed 1 week earlier (Fig. 4.5 J), confirming that proliferating progenitors behave in similar 

way at early stages of differentiation but persist for longer in CYFIP1tg cultures  

This over-proliferation of CYFIP1tg PAX6+ progenitors was also reflected by the delayed appearance 

of TBR2+ intermediate progenitors and of the typical cortical markers for deep and superficial layers 

(Fig. 4.6). The transcription factors TBR2, TBR1, CTIP2 and SATB2 appear in this order during in vivo 

corticogenesis and this pattern is maintained in in vitro differentiation (Espuny-Camacho et al., 

2013; Yichen Shi et al., 2012).  
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The percentage of TBR2 progenitors was significantly lower in CYFIP1tg cultures than in controls at 

day 30, but no difference was present at days 40 or 50. Both control and CYFIP1tg cultures were 

able to produce all types of pyramidal neurons, but significant differences were present in the 

numbers of TBR1+, CTIP2+ and SATB2+ cells at day 30. There were no differences at later stages, 

which is consistent with a delayed exit from the cell cycle of CYFIP1tg progenitors (Fig. 4.6 C). 

Together, these data provide evidence that CYFIP1 overexpression promotes expansion of the 

progenitor pool, at the expense of delayed neurogenesis, during in vitro cortical differentiation.  
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Figure 4.5 Overproliferation of neural progenitors caused by CYFIP1 overexpression. 

(A, D) Immunofluorescent staining and quantification of PAX6+ cortical progenitors (red) as a percentage of 

the total number of cells, marked by Dapi staining (blue). (B, E) Immunofluorescent staining and quantification 

of NEUN+ post-mitotic neurons (green). Nuclei were counterstained with Dapi (blue). (C) Double staining for 

EdU (red) and NEUN (green), 5 days after EdU incubation (2hours). All scale bars = 50 μm.  (F) Quantification 

of EdU+ cells at day 30 and 40 of differentiation, right after EdU incubation (2hours). (G) Quantification of 

EdU+/NEUN+ cells at day 40 of differentiation, 5 days after EdU incubation (2hours). (H, I) Flow-cytometry 

histogram of Dapi+ cells at day 35 of in vitro differentiation. The intensity of Dapi fluorescence allows to divide 

the cell population into three sub-populations, corresponding to the different cell cycle phases, G0/G1, S and 

M. (J, K) Percentage of cells in the different phases of the cell cycle at day 28 and 35 respectively. Quantitative 

data relative to control and CYFIP1tg lines were compared by t-test (*p<0.05, **p<0.01, ***p<0.001) (N=3, 

all experiments were performed on the CYFIP1tg clone#5).  All data are represented as mean ± SD. 
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Figure 4.6 Delayed appearance of cortical layer markers in CYFIP1t cultures. 

Immunostaining for TBR2, TBR1, CTIP2 and SATB2 in CYFIP1tg and control (H7) cultures at day 30 (A) and 50 

(B) of in vitro-cortical differentiation. Nuclei are labelled by Dapi (blue). Scale bars = 50 μm. (C) Quantification 

of TBR2, TBR1, CTIP2 and SATB2 in CYFIP1tg and control (H7) cultures at day 30, 40 and 50 of differentiation. 

For CYFIP1tg, data represent an average of two different cellular clones (CYFIP1tg clone #3 and clone#5, N=2 

experiments for each clone). The percentage of positive cells in overexpressing and control lines were 

compared using Two-way ANOVA (*p<0.05). Data represent mean ± SD. 
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4.2.4 CYFIP1ko cortical progenitors undergo premature neuronal differentiation 

The analysis of the proliferative behaviour of CYFIP1ko neural progenitors revealed an opposite 

trend to that of the CYFIP1tg cells.  Around day 20, in control iCas9 cultures, a substantial population 

of NEUN+ neurons began to emerge. However, at the same time, CYFIP1ko cultures already 

contained a significantly higher proportion of neurons and, accordingly, a much smaller pool of 

PAX6+ progenitors (Figure 4.7 A-D).  

A pulse-chase EdU incorporation experiment was performed to analyse the neurogenic rate of the 

progenitors present at this stage. EdU was given for 2 hours at day 20 and cells co-labelled for EdU 

and NEUN were quantified 5 days later.  More EdU+ neurons were found in the CYFIP1ko cultures 

than the controls, suggesting that more CYFIP1ko progenitors had given rise to neurons during the 

5 day period (Fig. 4.7 E, F). Consistently with this, the proportion of cells expressing TBR1 and CTIP2 

at day 20 was higher for CYFIP1ko cells than for the parental line. At day 30, more CTIP2+ cells were 

found in CYFIP1ko cultures and SATB2 was also significantly increased. However, by day 40, the 

quantification of these cortical neuronal subtypes did not show any difference (Fig. 4.7 G-I). 

Several cell cycle and proliferation markers were also analysed, to gain a more complete 

understanding of the phenotype caused by CYFIP1 loss.  At day 20, when more neurons are known 

to be present in CYFIP1ko cultures, the number of KI67+ cells, as well as the fraction of proliferating 

cells detected by flow-cytometry, were significantly smaller (Fig. 4.8 A, C). At the same time, a 

higher proportion of neuronal cells were found to be positive for p27KIP1, a cyclin-dependent kinase 

inhibitor, the upregulation of which promotes neuronal differentiation (Nguyen et al., 2006) (Fig. 

4.8 B). 

Overall, these data demonstrate that loss of CYFIP1 is associated with a reduced proliferative ability 

of cortical progenitors, which results in early loss of the self-renewing pool and, ultimately, 

premature neuronal differentiation. 
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Figure 4.7 Increased neurogenic ability of CYFIP1ko cortical progenitors. 

Immunostaining for PAX6 (red) (A) and NEUN (green) (C) in CYFIP1ko and control (iCas9) cultures at day 20 of 

in vitro cortical differentiation. (B, D) Quantification of PAX6+ and NEUN+ cells in CYFIP1ko and control (iCas9) 

cultures at day 20 of differentiation. (E, F) Staining for NEUN (green) and EdU (red) and quantification of 

double-labelled cells at day 25, 5 days after EdU pulse. (G-I) Immunofluorescent staining for TBR1 (green in 

G), CTIP2 (green in H) and SATB2 (red in H) at day 20 and quantification of these markers (I) at day 20, 30 and 

40 of in vitro differentiation. All nuclei are counterstained with Dapi (blue). All Scale bars = 50 μm. 

Quantification data in B, D and F were analysed by t test. Quantification data in I were compared y two-way 

ANOVA (*p<0.05, **p<0.01). All data are represented as mean ± SD and were collected from 3 independent 

experiments. 
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Figure 4.8 Reduced proliferation of CYFIP1ko progenitor pool. 

Immunostaining and quantification for KI67 (green in A) and P27kip1 (red in B) in CYFIP1ko and control (iCas9) 

cultures at day 20 of in vitro cortical differentiation. All nuclei are counterstained with Dapi (blue). Scale bars 

= 50 μm. (C) Flow-cytometry histogram of Dapi+ cells at day 20 of in vitro differentiation and quantification of 

the percentage of cells in G0/G1, S and M phases of the cell cycle, on the basis of Dapi content. Data represent 

mean values from 3 independent experiments ± SD. Significant differences were analysed by t-test (*p<0.05, 

**p<0.01). 

 

4.3  Discussion  

Human ESCs with an excess (CYFIP1tg) and a loss of CYFIP1 (CYFIP1ko) were differentiated into 

cortical pyramidal neurons to investigate the consequences of abnormal CYFIP1 levels in the 

context of human cortical development. Neither the overexpression nor the loss of CYFIP1 

appeared to compromise the efficiency of neuronal induction or the specification of the correct 

positional identity of the differentiated cells, as the percentage of neuronal progenitors expressing 
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dorsal telencephalic markers were comparable between both CYFIP1-mutant lines and the 

respective parental controls. 

One hallmark of early stage in vitro cortical differentiation is the appearance of neural rosettes, 

radial arrangements of NPCs with very similar characteristics to the RGCs present in the VZ of the 

embryonic cortex, such as the presence of intracellular nuclear migration (Banda et al., 2015; 

Elkabetz & Studer, 2009; Ziv et al., 2015). Neural rosettes formed by both CYFIP1tg and CYFIP1ko 

NPCs were morphologically different from those formed by controls, suggesting that CYFIP1 is 

fundamental for the self-organisation of NPCs in appropriately polarised structures. The 

differentiation of CYFIP1tg hESCs into a 3D model of cerebral organoids provided further evidence 

towards this conclusion. 

Aberrant neural rosette formation was previously reported by Yoon and colleagues in 15q11.2-

deleted iPSCs and CYFIP1KD cells (Yoon et al., 2014). Notably, the “scattered” expression pattern of 

rosette apical markers described in their study was very similar to that shown here for CYFIP1tg and 

CYFIP1ko NPCs. The same authors also reported that CYFIP1 reduction was associated with a lower 

level of WAVE2 protein, a fundamental component of the WRC, which regulates actin 

polymerisation (Takenawa & Suetsugu, 2007). For this reason, they argued that the destabilisation 

of this complex, caused by low CYFIP1 levels, was the cause of the defective neural rosettes (Yoon 

et al., 2014).  

However, actin is only one of the several proteins present at the apical side of these structures, 

which form closely interconnected system. Of these proteins, NCAD was shown to also be a key 

FMRP target, in a mouse model of FXS, during embryonic cortical development (La Fata et al., 2014). 

Therefore, malfunction of the CYFIP1-FMRP complex could alter the normal levels of NCAD 

translation and result in the formation of faulty apical junctions. Hence, each of these mechanisms, 

or a combination of the two, could explain CYFIP1 contribution to the neural rosette phenotype 

observed.  

Both the signalling molecules present within the rosettes and their cytoarchitectural organisation 

play an important role in the regulation of the neurogenic capabilities of the NPCs forming these 

structures (Banda et al., 2015; Ziv et al., 2015).  Consistent with this, CYFIP1tg and CYFIP1ko cells 

showed differences in their proliferative behaviour and neurogenic rate. EdU incorporation 

experiments and flow cytometry analysis of the cell cycle profile revealed that overexpression of 

CYFIP1 was associated with increased progenitor proliferation accompanied by a delayed 

generation of post-mitotic neurons, while CYFIP1 loss had the opposite effect.  Nonetheless, 

neurons of deep and upper cortical layers were formed by all the cell lines analysed, confirming 
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that the differences observed concerned only the kinetic of differentiation but not the fate of the 

cells generated.  

Importantly, neurogenesis mechanisms have been shown to be affected also in several FXS models. 

Loss of FMRP leads to increased proliferation and neuronal production in Drosophila larvae and 

increased generation of TuJ+ cells was observed in neurospheres derived from Fmr1-/y mouse 

embryos and FXS foetuses (Callan et al., 2010; Castrén et al., 2005). Moreover, loss of Fmr1 was 

shown to impact adult neurogenesis, by increasing proliferation and affecting neuronal 

differentiation and survival (Luo et al., 2010). In this model it was also demonstrated that Cyclin D1, 

CDK4, and GSK3β transcripts are FMRP targets and that Fmr1-/y NPCs have reduced WNT signalling 

levels (Luo et al., 2010). Recently, the correlation between FMRP and GSK3β was confirmed in NPCs 

derived from human FXS iPSCs, but it could not be verified in neurons, leading the authors to 

postulate that this association may be stage and species-specific (Telias et al., 2015). These data 

support the hypothesis that the FMRP-CYFIP1 complex may be controlling the translation of some 

key neurogenesis regulators and be ultimately responsible for the differentiation phenotype 

observed in CYFP1tg and CYFIP1ko cultures.  

Deficits of proliferation and differentiations have been described by several other in vitro models 

of SZ and ASD. For instance, two separate studies on iPSCs derived from individuals with idiopathic 

autism reported enhanced proliferation of neural progenitors, during both monolayer and organoid 

differentiation (Marchetto et al., 2016; Mariani et al., 2015). More specifically, the defects observed 

were relative to a decrease in cell cycle length, which caused a fast expansion of the progenitor 

population. Interestingly, in one of these studies, the increased proliferation was also shown to 

correlate with the degree of macrocephaly present in the donor patients (Marchetto et al., 2016). 

This type of alterations could be relevant in the context of the structural abnormalities observed in 

the brains of patients affected by psychiatric disorders, especially ASD. Indeed, the most commonly 

reported alterations in ASD subjects are larger brain volume and excess of cortical neurons, as well 

as abnormalities in cortical minicolums (Casanova et al., 2006; Courchesne et al., 2011; McKavanagh 

et al., 2015; Sacco et al., 2015). Moreover, mild brain structural abnormalities have been specifically 

reported for 15q11.2 CNV-carriers (Stefansson et al., 2014; Ulfarsson et al., 2017). 

In conclusion, the phenotypes detected in CYFIP1tg and CYFIP1ko neural cells confirm the 

hypothesis of an important role played by CYFIP1 during embryonic cortex development and fit in 

the broader scenario of proliferation and differentiation deficits as a possible common cellular 

pathology of neurodevelopmental psychiatric disorders. 
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5 Molecular basis of CYFIP1tg and CYFIP1ko phenotypes 

5.1  Introduction 

Data presented in the previous chapter showed that the overexpression and loss of CYFIP1 affect 

the formation of neural rosettes and the kinetics of neurogenesis during in vitro cortical 

differentiation. More precisely, increased and decreased levels of CYFIP1 had opposite effects on 

the proliferative and neurogenic ability of the cortical progenitor pool, suggesting that this 

phenotype is specifically caused by CYFIP1 changes. Therefore, investigation of the mechanism 

underlying this defect should provide important insight into the role of CYFIP1 in the context of 

cortex development. 

In vitro, neural rosette NPCs experience very similar signals to those present in the VZ during mouse 

corticogenesis (Banda et al., 2015). A large number of pathways have been implicated in the 

regulation of neuronal differentiation during mouse cortex development.  Of these, Notch and WNT 

pathways have been reported to be linked to CYFIP1 or its partner FMRP in various models.  

The Notch pathway, activated by Delta-like1 ligand (Dll1), is well known for promoting the 

maintenance of radial glia cells (RGCs) in an undifferentiated state. Upon activation, the 

intracellular domain of the Notch receptor is released and translocated to the nucleus to activate 

its target genes, HES1 and HES5 (Androutsellis-Theotokis et al., 2006; Imayoshi et al., 2010; 

Schroeter, Kisslinger & Kopan, 1998). These transcription factors repress the expression of pro-

neural genes and prevent the initiation of neuronal differentiation (Bertrand, Castro & Guillemot, 

2002; Ohtsuka et al., 1999). Pro-neural genes and Dll1 are expressed within the same cells, making 

them able to undergo neuronal differentiation whilst inhibiting the same fate in neighbouring cells, 

in a process known as “lateral inhibition” (Kageyama et al., 2008). Aberrant NOTCH expression was 

detected during in vitro neuronal differentiation of FXS iPSCs (Telias, Segal & Ben-Yosef, 2013). In 

addition, CYFIP1 was shown to be a NOTCH target in human keratinocytes (Dziunycz et al., 2017) .  

WNT signalling also plays a fundamental role in this context, as it regulates both patterning and 

neurogenesis of the developing telencephalon. Here, WNT molecules are expressed in the cortical 

hem and are necessary to maintain the dorsal identity of pallial cells (Backman et al., 2005). In 

addition, WNT has been shown to promote self-renewing symmetric divisions of cortical precursors 

of the VZ and its down-regulation is needed to initiate differentiation (Chenn & Walsh, 2002; Pöschl 

et al., 2013; Woodhead et al.,  2006). Activation of canonical WNT signalling is mediated by 

stabilisation of β-catenin, which would be otherwise degraded by a destruction complex, formed 

by glycogen synthase kinase 3β (GSK-3β), adenomatous polyposis coli (APC), axis inhibition protein 
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(Axin) and serine/threonine kinase casein kinase 1α (CK1α) (Moon et al., 2004). The accumulation 

of active β-catenin in the cytoplasm results in its translocation into the nucleus and the 

transcriptional activation of WNT target genes (Moon et al., 2004). Βeta-Catenin is also a binding 

partner of N-Cadherin (NCAD) and together, they form complexes present at the apical side of the 

VZ, which are also connected to the actin cytoskeleton by α-catenins (Nelson, 2004; Stocker & 

Chenn, 2015). Disruption of this type of complexes has been shown to severely affect the 

differentiation and migration of neural precursors (Stocker & Chenn, 2009; Zhang et al., 2010, 

2013). In addition to these, more signalling pathways contribute to the regulation of cortical 

neurogenesis, making the dissection of the mechanisms affected by CYFIP1 challenging.  

RNA-sequencing (RNA-seq) offers an absolute genome-wide quantification of all transcripts present 

in a sample of cells. This technique overcomes a number of limitations associated with other 

methods of transcriptomic analysis, such as microarrays, which are limited to the detection of 

known sequences and have a lower dynamic range (Wang, Gerstein & Snyder, 2009). RNA-seq was 

used to gain insight into the mechanisms driving the changes in neurogenesis observed in CYFIP1tg 

and CYFIP1ko cells and to allow a broader and unbiased characterisation of the pathways 

dysregulated in these cells. Importantly, this technique is increasingly used to characterise animal 

and cell-based models of ASD and SZ, as well as to analyse patients’ post-mortem brains, in the 

hope of uncovering the complexity underlying these disorders. Therefore, the comparison of the 

RNA-seq results obtained from CYFIP1tg and CYFIP1ko neural cells to existing datasets from ASD 

and SZ models will also allow to explore the presence of shared or convergent mechanisms, 

providing useful insights into the biology of these diseases. 

5.2  Results 

5.2.1 Molecular pathways affected by overexpression and loss of CYFIP1  

RNA-seq was performed on control and modified cells at three stages of differentiation. These were 

a neuroepithelial stage (day 10 for H7 and CYFIP1tg, day 5 for iCas9 and CYFIP1ko lines), a NPC stage 

(day 18 for H7 and CYFIP1tg cells, day 12 for iCas9 and CYFIP1ko) and a neuronal stage (day 45 for 

H7 and CYFIP1tg, day 35 for iCas9 and CYFIP1ko cells). After the necessary quality control steps on 

the raw data (performed by Daniel Cabezas de la Fuente), differential gene expression analysis was 

performed to compare each CYFIP1-modified line to their respective controls, for each time point 

(Anders & Huber, 2010). Differentially expressed genes (DEGs) with an absolute fold change value 

of at least 1.5 were used for KEGG (Kyoto encyclopaedia of genes and genomes) gene set 

enrichment analysis (Kanehisa et al., 2012; Yu et al., 2012). The most significant pathways affected 

in both the overexpression and knock-out datasets are shown in figure 5.1.  
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Firstly, the KEGG analysis revealed that most of the normalised enriched scores (NES) follow 

opposite directions for the overexpression and knock-out data sets. Because of this, these pathways 

can be considered to be specifically affected by changes in CYFIP1 levels, independently of the 

genetic background of the parental lines, the integration site of the overexpression plasmid or the 

effects of off-target mutations.    

Moreover, several of the pathways identified by this approach, such as WNT, PI3K, cell cycle and 

focal adhesion, play an important role in the regulation of neurogenesis. Therefore, they represent 

interesting candidates to investigate in the context of the phenotype presented in Chapter 4.  

Together with these, oxidative phosphorylation, which has been previously reported to be altered 

by several in vitro studies on psychiatric disorders, also appeared to be significantly affected in 

CYFIP1tg and CYFIP1ko cells at all time points (Ebrahimi-Fakhari et al., 2016; Mertens et al., 2015; 

Robicsek et al., 2013). For these reasons, neurogenesis and mitochondria-related genes were 

chosen for follow-up experiments on CYFIP1tg and CYFIP1ko lines.  

The same set of RNA-seq results is also being analysed in depth by Daniel Cabezas de la Fuente, 

another PhD student in our group. His work includes the characterisation of several aspects linked 

to the pathways illustrated in figure 5.1 (e.g. Calcium signalling), as well as the comparison between 

the transcripts altered by CYFIP1 mutations with existing databases of psychiatric disease-risk 

genes.  
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Figure 5.1 Biological processes and signalling pathways significantly affected by altered CYFIP1 
levels. 

The bar graph represents the results of KEGG enrichment gene set analysis carried out on the DEGs of each 

modified line compared to the respective parental line, for each time point. Only DEGs with an absolute fold 

change value of 1.5 were used for this analysis. A p value cut-off of 0.05 and a p-adjusted cut-off of 0.1 were 

also set. (NES, normalised enrichment score). This image was provided by Daniel Cabezas de la Fuente. 

 

5.2.2 Mechanisms underlying the neurogenesis phenotype in CYFIP1tg and 

CYFIP1ko neural cells 

(I) Neurogenesis-related genes affected by CYFIP1expression levels 

To gain further insight into the genes responsible for the abnormal neurogenesis in CYFIP1tg and 

CYFIP1ko cells, DEGs associated with the GO (Gene Ontology) term “neurogenesis” (GO:0022008) 

were selected from the NPC and neuronal data sets. For both these time points, the neurogenesis-

related genes affected by both an increase and a reduction of CYFIP1 were chosen for subsequent 

analysis (Fig. 5.2 A and B).  

This analysis revealed that, in the context of neurogenesis, the most substantial differences (highest 

fold changes and p-adjusted values) were observed at the NPC stage for the CYFIP1tg-control data 

set and at the neuronal stage for the CYIP1ko-control dataset. For both time points and datasets, 
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CYFIP1 and CYFIP2 transcripts were found to be significantly changed. They were upregulated in 

CYFIP1tg samples and downregulated in CYFIP1ko samples. In addition, WNT signalling genes, such 

as frizzled (FZD) receptors and WNT ligands, were highly represented in this data set, especially at 

the NPC stage. At the same stage, several Cadherins transcripts were also found to be altered 

(CDH1/2/4/11), as expected on the basis of the KEGG results. 

CYFIP1tg and CYFIP1ko NPCs showed opposite changes in many, but not all, genes expressed in the 

developing cortex. These included dopachrome tautomerase (DCT), expressed by VZ progenitors 

between E10.5 and E17.5 (Jiao et al., 2006), doublecortin (DCX), marking immature neuronal cells 

(Gleeson et al., 1999), LHX2, which is necessary for βCAT-driven cortical progenitor proliferation 

(Hsu et al., 2015) and forkhead box O3 (FOXO3), a downstream effector of PI3K-AKT that regulates 

proliferation and cell cycle exit of embryonic and adult neural stem cells (Paik et al., 2009; Renault 

et al., 2009; Vezzali et al., 2016). Strong upregulation of FOXG1 was also detected in CYFIP1tg NPCs 

(Fig. 5.2 A).  

At the neuronal time point, transcripts that were found to be significantly altered included many 

transcription factors involved in the fate specification of cortical neurons, Empty Spiracles 

Homeobox 1 (EMX1/2), Neurogenic differentiation 1/4 (NEUROD1/4), RELN, TBR1 and FEZF2 

(Martynoga et al., 2012; Mattar et al., 2008) (Fig. 5.2 B). Moreover, at this stage, DEGs related to 

synaptic maturation (Erb-B2 Receptor Tyrosine Kinase 4 or ERBB4, Discs Large MAGUK Scaffold 

Protein 4  or DLG4) and axonal growth and migration (Semaphorin 5A/B or SEMA5A/B) appeared 

to be also affected (El-Husseini et al. 2000; Li et al., 2007; Purohit et al., 2014; Yoshida, 2012). Finally, 

increased and decreased CYFIP1 levels also caused alterations in the expression  of several 

psychiatric disorder risk genes, such as CNTNAP2, NXRN3 , SHANK1/3 and TSC at the progenitor 

stage and NRXN1 and SHANK3 in neurons (Alarcón et al., 2008; Costales & Kolevzon, 2015; Curatolo 

et al., 2015; Gong & Wang, 2015; Reichelt et al., 2012). 

Importantly, a number of DEGs present in CYFIP1tg and CYFIP1ko datasets, such as WNT5A, FOXG1 

and CDH2, did not show the same direction of fold change. This is in part expected, as CYFIP1, 

contrarily to transcription factors, does not affect gene transcription directly. For instance, some of 

the observed changes could to be due to compensatory mechanisms activated by the cells, rather 

than being a direct consequence of CYFIP1 alterations. Nevertheless, variations in these genes 

prove the presence of a significant dysregulation of the pathways to which they belong.  
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Figure 5.2  Neurogenesis-related genes affected by abnormal CYFIP1 levels. 

Bar graphs illustrating the DEGs associated with the GO term “neurogenesis” (GO:0022008) for CYFIP1tg and 

CYFIP1ko NPCs (A) and neurons (B). The height of the bars is proportional to the gene expression fold change 

(FC) in respect to the appropriate control parental line. The colour represents the significance of the FC, 

expressed as -LOG10 of the p adjusted value (padj). 
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(II) Dysregulated Cadherin-Catenin signalling in CYFIP1tg and CYFIP1ko cells 

The analysis of the DEGs present in CYFIP1tg and CYFIP1ko data sets revealed a high representation 

of genes coding for members of the Cadherin family and genes related to WNT and PI3K-AKT 

pathways (Fig. 5.1 and 5.2). A point of convergence of these biological processes is represented by 

β-catenin (βCAT). The stabilisation of this protein in VZ progenitors requires the activation of WNT 

and AKT pathways and includes a strong contribution from NCAD, the levels of which correlate 

positively with βCAT activity (Zhang et al., 2010).  If affected, this mechanism could provide an 

explanation to the altered neurogenesis caused by CYFIP1 changes. To verify this, the amount of 

NCAD and βCAT, both active and primed for degradation, were analysed by western blot at three 

time points between the neural progenitor and neuronal stages.  

The levels of NCAD were increased in CYFIP1tg progenitors (day 18) and early neurons (day 35) 

compared to those derived from the parental line. Conversely, a lower amount of NCAD was 

detected in CYFIP1ko neural cells than in those derived from the parental line, at day 12 and 20. 

The differences in NCAD expression between CYFIP1tg or CYFIP1ko and their respective controls 

were visibly reduced at the last time point analysed (Fig. 5.3 A, B, E, F). Phosphorylation of βCAT by 

GSK3-β of the residues serine 33 and serine 37 (p-ser33/37) primes this protein for degradation, 

while phosphorylation of serine 552 (p-ser552) enhances its transcriptional activity (Fang et al., 

2007; Liu et al., 2002; Zhang et al., 2013). The amount of inactive βCAT, represented by the ratio 

between p-S33/37 βCAT over the total was reduced in CYFIP1tg early and late neurons compared 

to levels observed in the parental line (Fig. 5.3 A, C, E, G). Conversely, the quantity of active βCAT, 

expressed by the ratio between p-S552-βCAT/total βCAT was found to be generally higher in 

CYFIP1tg neural cells than in control ones. CYFIP1ko displayed overall an opposite pattern of βCAT 

phosphorylation, with a generally higher amount of p-S33/37-βCAT/ total βCAT and a lower ratio 

of active βCAT (p-ser552) in neurons of day 20 and 35 (Fig. 5.3 A, D, E, H).  Overall, these results are 

consistent with an increased activation of βCAT signalling in CYFIP1tg neural cells and a 

downregulation of βCAT signalling in CYFIP1ko cells, compared to their respective controls. 
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Figure 5.3 Western blot analysis of NCAD and βCAT in CYFIP1tg and CYFIP1ko. 

Western blots for NCAD, phosphorylated (p-S33/37 and p-S552), total βCAT and GAPDH in CYFIP1tg (A) and 

CYFIP1ko (E) cultures at three time points. These were defined as NPCs, early and mature neurons and 

corresponded to day 18, 35 and 45 for CYFIP1tg cells and to day 12, 25 and 35 for CYFIP1ko respectively. Bar 

graphs representing the quantification of NCAD (B, F), p-βCAT (S33/36) over the total βCAT (C, G) and p-βCAT 

(S552) over the total βCAT (D, H). The intensity of each band was measured with ImageJ and normalised to 

the intensity of GAPDH band on the same blot. Data represent the mean value ± SD from two technical 

replicates of two independent experiments. Expression values were compare via two-way ANOVA, followed 

by Tukey post-hoc test (*p<0.05). 
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(III) Manipulation of N-CADHERIN-mediated activation of β-catenin rescues the 

differentiation of CYFIP1tg progenitors 

The data presented above demonstrate a higher activation of the NCAD-βCAT signalling axis in 

CYFIP1tg neural cells than in those derived from the parental line H7. According to mouse 

developmental data, this alteration could be responsible for the abnormal expansion of PAX6+ 

progenitors in the overexpressing cultures. To verify this, late progenitors of day 30 CYFIP1tg and 

H7 cultures were exposed to several treatments aimed at reducing βCAT signalling activity and, 

ultimately, rescuing the delayed neurogenesis. These treatments included direct blockage of NCAD 

activity or, downstream of this, inhibition of WNT and AKT pathways, alone or in combination. The 

small molecules used for WNT and AKT inhibition were XAV939 and API2, respectively (Huang et 

al., 2009; Yang et al., 2004). NCAD blocking was achieved by incubating the cells with a specific anti-

NCAD antibody, which was used for the same purpose by several other studies on cultured mouse 

and human neural cells (Iefremova et al., 2017; Zhang et al., 2013). A control group exposed only 

to the vehicle DMSO was also included for both CYFIP1tg and H7 cells. After the treatments, the 

cells were left to mature for 5 additional days, before being fixed and stained for PAX6. The 

experimental scheme is illustrated in figure 5.4 A and B. 

The analysis of DMSO-treated cultures at the end of the experiment showed that 40% of NPCs in 

CYFIP1tg cultures were PAX6+, compared to less than 20% in the control, confirming previous results 

indicating an expansion of the PAX6+ fraction in CYFIP1tg cultures. The percentage of PAX6+ 

progenitors was still higher also in CYFIP1tg cells treated with XAV939 or API2, than in control cells 

exposed to the same molecules, showing that inhibition of WNT or AKT signalling alone had only a 

small effect on the delayed neurogenesis. However, the combination of these two treatments 

effectively lowered the number of PAX6+ CYFIP1tg NPCs to a level that was not statistically different 

from that obtained from control cells that had received the same inhibitors. Moreover, the 

percentage of PAX6+ cells present in overexpressing cultures treated with XAV939 and API2 was 

comparable to the amount of PAX6+ cells present in H7 cultures in control conditions. Finally, also 

the application of NCAD-blocking antibody resulted in a reduction of PAX6+ progenitors in CYFIP1tg 

cultures to below 30%, with no significant difference from the H7 cultures exposed to the same 

antibody (Fig. 5.4 C, D). In summary, the use of the NCAD-blocking antibody and of XAV939 and 

API2 together were the only two treatments able to normalise the levels of PAX6+ NPCs present in 

CYFIP1tg cultures, with the combination of WNT and AKT inhibition being the most successful.  

Dysregulation of the basal level of WNT signalling has been associated with an alteration of cells 

fate during in vitro differentiation, reflected in an imbalanced expression of dorsal and ventral 

telencephalic markers (Srikanth et al., 2015). Moreover, incubation of stem cells-derived neural 
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progenitors with the WNT inhibitor XAV939 is used by several protocols with the aim to ventralise 

cells during the derivation of GABAergic neurons  (Maroof et al., 2013; Nicoleau et al., 2013). 

Therefore, to ascertain that the observed reduction of PAX6+ cells was not due to a switch from 

dorsal to ventral cortical fate following XAV939 and API2 treatment, immunostaining for the 

neurotransmitter GABA was performed to quantify the number of inhibitory cells. No significant 

differences were found in the number of GABA+ cells in the vehicle treated control and CYFIP1tg 

cultures with or without WNT and AKT inhibition (Fig. 5.5).  

In conclusion, these data provide evidence that the inhibition of WNT and AKT signalling, can 

efficiently rescue the over-proliferation of PAX6+ cortical progenitors caused by high levels of 

CYFIP1, without altering the identity of the treated cells. 
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Figure 5.4 Reduction of βCAT activity downstream of NCAD rescues the delayed neurogenesis of 
CYFIP1tg cultures. 

(A) Scheme of βCAT stabilisation in VZ progenitors and the molecules used to modulate this signalling. NCAD 

stimulates AKT, which phosphorylates βCAT at the position S552, and WNT signalling, which blocks GSK3-β 

preventing its phosphorylation of βCAT. These pathways can be altered by blocking NCAD function with a 

specific antibody or by using AKT and WNT antagonists (API2 and XAV respectively). Image modified from 

Zhang et al., 2013. (B) Experimental scheme illustrating the application of the different treatments between 

day 30 and 33 of differentiation on CYFIP1tg and H7 control cultures. (C) PAX6 staining, in red, at day 38, 5 

days after the treatments, in each condition and cell line. Nuclei were counterstained with dapi (blue). (D) 

Quantification of the percentage of PAX6+ cells against the total of dapi+ nuclei. Data represent the mean 

value ± SD of three technical replicates from one experiment. The mean value for each treatment and cell line 

were compared with two-way ANOVA, followed by Tukey post-hoc test (*p<0.05, **p<0.01, ***p<0.001). 
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Figure 5.5 Quantification of GABAergic cells in CYFIP1tg and control cultures. 

(A) Staining for the neurotransmitter GABA at day 38, at the end of the rescue experiment. The staining was 

carried out in control cells in control condition (DMSO) and in CYFIP1tg cells exposed to control (DMSO) and 

XAV+API2 treatments. (B) Quantification of GABA+ cells in the same experimental conditions. Data represent 

the mean value ± SD of three technical replicates from one experiment.  No significant differences were found. 

 

5.2.3 Mitochondrial alterations in CYFIP1tg and CYFIP1ko neural cells 

(I) Mitochondria-related genes affected by CYFIP1 changes 

The KEGG pathway enrichment analysis presented in paragraph 5.2.1 highlighted a significant 

alteration of mitochondrial function in neural cells derived from CYFIP1tg and CYFIP1ko hESCs. To 

explore this aspect further, the DEGs related to mitochondrial function were analysed in more detail 

at the NPCs and neuronal stage.  

Many of the differentially expressed mitochondria-related genes, which were present in both the 

overexpression and knock-out datasets, code for enzymes forming the respiratory complexes. 

These include NADH dehydrogenase, also known as respiratory complex I (NDUFA genes), Succinate 

dehydrogenase complex subunit D (SDHD) that constitute part of Complex II, Ubiquinol-

Cytochrome C Reductase or Complex III (UQCR genes), the Cytochrome C oxydase or Complex IV 

A B 
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(COX genes) and the ATP synthase or Complex V (ATP genes). Most of these transcripts show 

opposite direction of FC in CYFIP1tg and CYFIP1ko at the NPCs stage (Fig 5.5 A), a pattern that was 

not maintained at a later time (Fig. 5.5 B).  The genes showing an opposite FC between CYFIP1tg 

and CYFIP1ko lines, at both time points, were the mitochondrial encoded genes MT-ND2/3/4/5, 

MT-CO2 and MT-APT6/8, which code for subunits of the respiratory complex I, II and V, respectively. 

Other transcripts that appeared to be affected by CYFIP1 levels were related to mitochondrial 

dynamics, such as fission, fusion and transport. These included genes for Fission, Mitochondrial 1 

(FIS1), Mitofusin 1/2 (MFN1/2), Misato 1 (MSTO1), Mitochondrial fission regulator 2 (MTFR2) and 

Mitochondrial dynamin like GTPase (OPA1). 

Together, these data show that the expression of many genes involved in the regulation of 

mitochondria metabolism and dynamics in neural cells is significantly affected by changes in CYFIP1 

levels. 
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Figure 5.6 Mitochondria-related genes affected by abnormal CYFIP1 levels. 

Bar graphs illustrating the DEGs associated with oxidative phosphorylation and mitochondria dynamics in 

CYFIP1tg and CYFIP1ko NPCs (A) and neurons (B). The height of the bars is proportional to the gene expression 

fold change (FC) in respect to the appropriate control parental line. The colour represents the significance of 

the FC, expressed as -LOG10 of the p adjusted value (padj). Genes were taken from the Human MitoCarta 2.0 

(Calvo et al., 2016). 



97 
 

(II) Disruption of mitochondrial dynamics in CYFIP1tg and CYFIP1ko neural cells 

Data presented above suggest the presence of significant changes in mitochondrial dynamics 

caused by altered levels of CYFIP1. To validate this, CYFIP1tg and CYFIP1ko NPCs and neurons were 

incubated with Mitotracker, a reagent that selectively labels the mitochondria (Cataldo et al., 2010; 

Leonard et al., 2015) (Fig. 5.6 A). The cells were then fixed and stained with Dapi and analysed on a 

high-content screening (HCS) platform for detection of intracellular “spots”, which represent 

Mitotracker-labelled mitochondria (Ghosh et al., 2005; Leonard et al., 2015). Representative images 

of Mitotracker-stained cells elaborated by the HCS software can be found in figure 5.6 B and C. This 

approach revealed the presence of significant differences in the number and size of spots. In 

particular, both the spots count and area in CYFIP1tg NPCs and neurons showed a tendency to be 

higher than those of the parental control cells, although statistical significance was only observed 

for the spots number at the progenitor stage (Fig. 5.6 D). Conversely, CYFIP1ko NPCs had less and 

smaller Mitotracker+ spots than the parental control group, but this difference was no longer 

detected in neuronal cells (Fig. 5.6 D).  

Moreover, the high-content analysis highlighted the presence of significant differences in the size 

of nuclei, with an opposite trend, in CYFIP1tg and CYFIP1ko cells compared to their respective 

controls. CYFIP1tg nuclei were significantly smaller than those of the parental control neuronal 

cells, while CYFIP1ko cell nuclei were smaller than the control at the NPCs stage but bigger at the 

neuronal stage. Overall, these results demonstrate significant alterations to mitochondrial 

dynamics and nuclear morphology in neural cells with abnormal CYFIP1 expression levels. 
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Figure 5.7 Alterations of mitochondria dynamics in CYFIP1tg and CYFIP1ko NPCs and neurons. 

(A) High magnification image of hESCs-derived NPCs stained with Mitotracker (red) and dapi, marking the 

nuclei (blue). (B) Representative field of mitotracker-stained cells elaborated by the HCS platform. Single nuclei 

are identified as primary object and the area surrounding each nucleus (delimited by green lines) is used for 

the detection of mitotracker+ spots. (C) Mitotracker+ spots (in yellow) detected in single cells. (D) 

Quantification of parameters relative to spots count, spots area and nuclei area, in arbitrary units provided 

by the HCS platform. Data are expressed as mean ± SD (N=3).  Significance was analysed by t-test (*p<0.05). 
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5.3  Discussion 

Whole-genome transcriptomic analysis was used to identify CYFIP1-mediated molecular changes in 

hESC-derived cortical cells with the aim to decipher the mechanisms responsible for the 

differentiation phenotype observed in CYFIP1tg and CYFIP1ko cells. However, the interpretation of 

these results should take into account the possibility that some gene changes may also reflect the 

different composition of the sample population, due to the altered differentiation kinetics of 

CYFIP1tg and CYFIP1ko lines presented in the previous chapter. A way to overcome this 

complication could be represented by sorting the cells samples prior to RNA-seq analysis, in order 

to separate progenitors and neuronal populations, or, after the RNA-seq, normalising mRNA 

changes to the expression levels of some stage-specific markers, such as Nestin and MAP2. Despite 

this, the transcriptomic analysis presented here helped to identify some important and novel 

pathways in which CYFIP1 is involved and provided important support to the phenotypic 

characterisation of CYFIP1-modified lines. 

First of all, CYFIP1 and CYFIP2 were the most significant DEGs, showing up- and downregulation in 

NPCs and neurons derived from CYFIP1tg and CYFIP1ko ESCs respectively. These results provided 

independent confirmation of the increased CYFIP1 levels in the overexpressing cells and of the 

decreased CYFIP1 expression in the knock-out ones, in line with the characterisation of these 

engineered lines reported in Chapter 3. With regard to CYFIP2, the regulation of its expression is 

not well characterised and previous studies report different results on the levels of this gene 

following knock-out or knock-down of CYFIP1. The reduction in CYFIP2 transcript levels in CYFIP1ko 

neural cells is in agreement with the results reported by Abekhoukh et al., showing a 

downregulation of Cyfip2 mRNA in mouse primary neurons with knock-down of Cyfip1 and in the 

blood of patients carrying 15q11.2 deletion (Abekhoukh et al., 2017). CYFIP2 has been reported to 

be one of the top-ranked FMRP targets, while CYFIP1 itself did not appear in the same list (Darnell 

et al., 2011). This suggests that CYFIP2 translation could be regulated by the FMRP-CYFIP1 complex 

and that changes in CYFIP2 transcript may be a consequence of alterations of its protein levels, as 

part of a feedback mechanism. However, other published studies did not find any change in CYFIP2 

expression following CYFIP1KD in human NPCs or in the brain of Cyfip1+/- mice (Bozdagi et al., 2012; 

Nebel et al., 2016). Future work on the regulatory network involving FMRP, CYFIP1 and CYFIP2 may 

help to explain these discrepancies. 

Another aspect providing additional support to the validity of our model is the significant 

enrichment for genes related to the regulation of actin cytoskeleton and axonal guidance in both 

CYFIP1tg and CYFIP1ko datasets (Fig. 5.1). Alterations to these pathways have also been reported 
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by other studies on in vitro and in vivo models of CYFIP1 alterations (Nebel et al., 2016; Oguro-Ando 

et al., 2014; Pathania et al., 2014). Other pathways highlighted by this analysis include the PI3K/AKT, 

cAMP and calcium signalling. PI3K/AKT alterations have been reported in FXS and SZ and are known 

to be important for dendritic branching, synaptogenesis and spine formation (Cuesto et al., 2011; 

Gross et al., 2010; Jaworski, 2005; Kalkman, 2006; Zheng et al., 2012). Moreover, modulation of this 

pathway has been proposed for pharmacological intervention for both ASD and SZ (Enriquez-

Barreto & Morales, 2016). Calcium and cAMP signalling are also fundamental in neuronal cells, 

especially in the regulation of synaptic activity and plasticity mechanisms (reviewed by Bading, 

2013). Together, these alterations confirm the relevance of the gene network affected by CYFIP1 

changes in the context of neurodevelopmental psychiatric disorders.  

In light of the phenotypic characterisation presented in Chapter 4, the signalling pathways involved 

in the regulation of neurogenesis were prioritised for a more in-depth investigation. Many of the 

DEGs affected by both the increase and loss of CYFIP1 included WNT signalling genes and adhesion 

molecules such as Cadherin proteins.  These, together with AKT, form an interconnected molecular 

system that has been previously shown to regulate the balance between proliferation and 

differentiation in the mouse cortex. According to this model, NCAD regulates βCAT stability by 

stimulating both WNT and AKT signalling, leading to an increase in βCAT-dependent transcriptional 

activation  (Zhang et al., 2010, 2013). The same signalling mechanism has been recently shown to 

be conserved in human cortex development using forebrain organoid differentiation from iPSCs 

derived from individuals with Miller-Dieker syndrome, which causes microcephaly and seizures 

amongst other symptoms (Iefremova et al., 2017). Defects in the distribution of NCAD at the 

ventricular surface and in the proliferation of NPCs in Miller-Dieker organoids were demonstrated 

to be specifically linked to decreased activity of the NCAD-βCAT signalling axis and could be rescued 

by treatment with a WNT agonist (Iefremova et al., 2017). The same pathways were found to be 

altered in CYFIP1tg and CYFIP1ko cells, as the phosphorylation pattern of βCAT by GSK3β and by 

AKT was consistent with a hyper-activation of βCAT in overexpressing cells and a downregulation 

in knock-outs. Moreover, treatment with a combination of WNT and AKT inhibitors was successful 

in rescuing the over-proliferation of PAX6 progenitors in CYFIP1tg cultures, confirming that this 

signalling cascade is specifically altered by the excess of CYFIP1.  

A likely mechanism by which CYFIP1 may be disturbing this pathway is through translational 

regulation of NCAD, AKT3 and GSK3-β that have all been reported to be FMRP targets (Darnell et 

al., 2011; La Fata et al., 2014). However, the fraction of transcriptionally active βCAT can also be 

affected by alterations to the actin cytoskeleton caused by malfunction of the WAVE complex of 
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which CYFIP1 is part. For instance, F-Actin accumulation in the nucleus has been shown to enhance 

the translocation of active βCAT to this cellular compartment (Yamazaki et al., 2016). 

Dysregulation of WNT signalling has been reported by several studies on in vitro models of 

psychiatric disorders, including ASD, SZ and BD (Brennand et al., 2011; Srikanth et al., 2015; Topol 

et al., 2015; P. Wang, Mokhtari, et al., 2015). Together with this, another aspect linking CYFIP1 

alterations to a broader spectrum of neurodevelopmental disorders is represented by changes in 

FOXG1 expression levels. FOXG1 plays a fundamental role in brain development and mutations in 

its locus are associated with severe mental retardation and microcephaly (reviewed by Florian, 

Bahi-Buisson & Bienvenu, 2012). In the context of in vitro models of psychiatric disorders, cells 

carrying DISC1 mutation were shown to have higher baseline WNT, together with downregulation 

of FOXG1 and downregulation of ventral forebrain markers (Srikanth et al., 2015). Conversely, 

upregulation of FOXG1 was reported  in cerebral organoids derived from ASD iPSCs, a defect 

specifically associated with a shift towards a more ventral identity of the differentiated cells 

(Mariani et al., 2015). Similarly, cortical progenitors with modified CYFIP1 levels showed an increase 

in the amount of FOXG1 transcript, a change that was stronger for the overexpressing line. 

However, this was not accompanied by differences in the percentage of FOXG1+ cells or changes in 

the dorso-ventral identity of the differentiated neurons, as the number of GABAergic cells in 

CYFIP1tg cultures was the same as in the controls. A reason for this may be that the increase 

observed in NPCs was only transient, as it was no longer present at the neuronal stage, when only 

a small but significant downregulation was detected by the RNA-seq analysis (data not shown).  

Finally, RNA-seq analysis revealed the presence of significant alterations in the expression of genes 

regulating mitochondria dynamics and oxidative phosphorylation. Overall, genes located in the 

nuclear DNA and coding for components of the respiratory chain showed similar levels and direction 

of FC, consistent with a co-regulation of their expression, a process controlled by signals originating 

from the mitochondria, such as the intracellular levels of Ca2+, reactive oxygen species (ROS) and 

ATP (Reinecke et al., 2009; van Waveren & Moraes, 2008).  

Changes in CYFIP1 levels seem to very specifically affect the expression of mitochondrially-encoded 

genes (MT-ATP6/8, MT-CO2, MT-ND2/3/4/5), as these show completely opposite FC pattern in 

overexpressing and knock-out cells at both the time points analysed. It has been suggested that the 

number of mitochondrial DNA (mtDNA) molecules per cell could play a role in regulating the 

transcription of mitochondrially-encoded genes. This indicates that the gene expression changes 

observed in CYFIP1tg and CYFIP1ko cells could be explained, at least in part, by different amounts 

of mitochondria or mtDNA (Reinecke et al. , 2009). Consistently with this, HCS analysis revealed 



102 
 

significant differences in several parameters related to the size and number of mitochondria 

between control NPCs and neurons and those with abnormal CYFIP1 levels.  

The mechanisms regulating the number of mitochondria or the number of mtDNA molecules are 

not well characterised (Lee & Wei, 2005; Reinecke et al., 2009). Nonetheless, it has been reported 

that mitochondrial dynamics play an important role during neural differentiation. In the mouse 

developing cortex, the commitment to neuronal differentiation is accompanied by mitochondrial 

fragmentation  and  by an increase in physiological levels of ROS, at the same time as the cells also 

undergo a metabolic switch from anaerobic to aerobic metabolism (Khacho et al., 2015). In 

addition, ROS levels have been shown to contribute to cellular signalling post-translationally, 

maintaining an appropriate level of PI3K-AKT and Notch activation, which are fundamental for self-

renewal of neural stem cells (Khacho et al., 2015; Le Belle et al., 2011). Therefore, the mitochondrial 

alterations present in CYFIP1tg and CYFIP1ko cells could contribute to the dysregulation of 

neurogenesis observed in these lines. 

Importantly, mitochondrial abnormalities were also reported in neurons derived from BD iPSCs, 

which displayed high membrane potential and decreased mitochondria size (Mertens et al., 2015) 

and in those from SZ iPSCs, which showed altered mitochondrial respiration and distribution 

(Robicsek et al., 2013). Mitochondrial homeostasis and metabolism were also affected in in vivo 

and in vitro models of tuberous sclerosis syndrome (Ebrahimi-Fakhari et al., 2016). This aspect 

represents another point of convergence between the phenotype caused by CYFIP1 mutations and 

other models of neurodevelopmental psychiatric disorders.  

Finally, the HCS analysis allowed the discovery of the presence of significant differences in the size 

of the nuclei in CYFIP1tg and CYFIP1ko NPCs and neurons. Similarly, Nebel and colleagues reported 

that nuclear size was affected also by CYFIP1KD, a phenotype that is consistent with alterations to 

the actin cytoskeleton (Jevtić et al., 2014; Nebel et al., 2016) 

In conclusion, the changes in gene expression revealed by the RNA-seq analysis confirmed the 

presence of a dysregulation of neurogenesis and supported a role for WNT and the NCAD/βCAT axis 

in the phenotype cause by CYFIP1 alterations. These, together with the changes in mitochondria 

dynamics, demonstrate the relevance of the phenotypes caused by CYFIP1 alterations in the 

context of neurodevelopmental psychiatric disorders. 
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6 General Discussion 

6.1  Summary of findings 

In this thesis, I investigated the role played by CYFIP1 during cortical differentiation of hESCs. 

CYFIP1tg and CYFIP1ko hESCs were derived to examine the consequences of increased and 

decreased levels of this gene, as both deletions and duplication of the genetic region where CYFIP1 

is located are found in psychiatric patients. NPCs derived from both lines showed deficits in the 

formation of neural rosettes and in the balance between proliferation and differentiation. In 

particular, the excess and loss of CYFIP1 had opposite consequences on this process. High levels of 

this gene were associated with an increased proliferative ability of the cortical progenitor pool, 

while the reduction of CYFIP1 was linked to premature exit from the cell cycle and neuronal 

differentiation. With the help of RNA-seq analysis, it was possible to confirm that the expression of 

a high number of genes involved in the regulation of neurogenesis was significantly affected in 

CYFIP1tg and CYFIP1ko cells. Follow up experiments, including analysis of the phosphorylation state 

of β-CAT and manipulation of the differentiation conditions, allowed to specifically link the 

neurogenesis phenotype with a malfunction of the NCAD-β-CAT signalling axis. In addition, the 

transcriptomic analysis revealed the presence of alterations to the oxidative phosphorylation 

system and to the regulation of mitochondria dynamics, which were confirmed using a platform for 

automated high-content screening. These findings uncovered a novel mechanism by which CYFIP1 

participates in the regulation of neuronal differentiation and revealed new biological functions in 

which this gene is involved. 

6.2  Convergent mechanisms in neurodevelopmental psychiatric disorders  

6.2.1 Cadherins- and Catenins-related signalling 

The analysis of the pathways dysregulated by altered levels of CYFIP1 provided interesting points 

of convergence with other in vitro and in vivo models of neurodevelopmental disorders. One of 

these aspects is represented by alterations to cadherin-dependent cell-cell adhesion. Mutations in 

genes of the Cadherins superfamily not only result in brain malformations, but they have also been 

found to increase the risk for several psychiatric diseases. For instance, deletions of the locus 

encoding CDH8 have been found in patients affected by ASD and learning disabilities (Pagnamenta 

et al., 2011) and SNPs in the proximity of CDH9 and CDH10 were identified in a ASD cohort by a 

GWAS study (Wang et al., 2009). In addition, SNPs within the sequence of CDH7 have been reported 

to increase the risk for SZ (Sklar et al., 2008; Soronen et al., 2010). These data have led, in the past, 



104 
 

to the formulation of a “cadherin hypothesis of schizophrenia”. According to this, the severe impact 

on brain development caused by alterations to the adhesion molecules system is responsible for an 

increased risk of psychiatric disorders (Yagi & Takeichi, 2000).  

As discussed in previous chapters, disruption of WNT signalling has also been reported by several 

in vitro-based studies on psychiatric disorders (Brennand et al., 2011; Srikanth et al., 2015; Topol et 

al., 2015). In addition, several in vivo models of neurodevelopmental disorders have shown an 

association between alterations in WNT signalling and the presence of behavioural defects typical 

of ASD.  A loss-of-function mutation in the dishevelled genes 1 and 3 (Dvl1-/-3-/+) in mice led to early 

differentiation of basal progenitors and expansion of deep cortical layers and resulted in the 

development of repetitive behaviour and abnormal social interaction later in life (Belinson et al., 

2016). Prenatal pharmacological activation of WNT signalling rescued both the structural and 

behavioural phenotypes (Belinson et al., 2016).  Alterations of the balance between proliferation 

and differentiation in the embryonic cortex have also been reported in another mouse model, in 

which the ASD risk gene CDH8 was knocked-down (Durak et al., 2016). Histological and 

transcriptomic analysis of this model demonstrated the presence of cell cycle and differentiation 

defects in the developing cortex. Adult mice showed decreased exploratory behaviour and 

sociability. These defects were demonstrated to be caused by a reduction of WNT activity, as 

introduction of a stabilised form of β-Catenin in the embryonic cortex completely rescued the 

phenotype (Durak et al., 2016).  

In humans, mutations involving WNT genes have been reported in a considerable number of 

psychiatric patients. These include SNPs in the sequence of WNT2 found in cohorts of ASD patients 

(Marui et al., 2010; Wassink et al., 2001) and CNVs involving the chromosomic locus containing 

FZD9, which are associated with serious developmental delay and ADHD (Merla et al., 2010; 

Sanders et al., 2011). A specific missense mutation in the WNT1 sequence, resulting in overactive 

WNT, has also been reported in ASD individuals (Martin et al., 2013). In addition, deleterious 

mutations of β-CAT have been found in SZ, ASD and ID patients (Levchenko et al., 2015; O’Roak et 

al., 2011; Tucci et al., 2014). Previous post-mortem studies also suggested alterations in the 

expression of WNT-related genes, such as WNT1 and β-CAT, in SZ brains (Cotter et al., 1998; 

Miyaoka, Seno, & Ishino, 1999). 

A number of studies showed evidence for AKT alterations in psychiatric patients. Genetic variants 

of the AKT1 gene were found to be associated with SZ in populations of various ethnicities (Bajestan 

et al., 2006; Emamian et al., 2004; Ikeda et al., 2004; Schwab et al., 2005) and specific reduction of 

AKT1 was observed in the hippocampus and cortex of SZ patients (Emamian et al., 2004). More 



105 
 

recently, SNPs in the AKT3 locus were also reported to be significantly associated with SZ in two 

recent GWAS studies (Ripke et al., 2014). 

Overall, the evidence from genetic and neuroanatomical studies, as well as from animal and in vitro 

models, converge to reinforce the hypothesis of the developmental origin of ASD and SZ and 

highlights the importance of WNT, AKT and Cadherin/Catenin signalling in their aetiology.   

6.2.2 Mitochondria alterations 

Mitochondria alterations represent another point of convergence between the phenotype 

observed in CYFIP1tg and CYFIP1ko neural cells and psychiatric disorders. Indeed, mitochondrial 

dysfunction has long been hypothesised to contribute to the pathology of ASD and SZ. 

Mitochondria-related phenotypes have been observed not only in several in vitro models of 

psychiatric disorders, as discussed in the previous chapter, but also in a number of animal models. 

For instance, two independent studies on a mouse model of Angelman syndrome showed abnormal 

levels of ROS and deficits in the structure of mitochondria, together with altered synaptic plasticity 

and performance in fear conditioning tasks (Santini et al., 2015; Su et al., 2011). Interestingly, the 

administration of a mitochondria-specific antioxidant in this model ameliorated both synaptic and 

memory phenotypes (Santini et al., 2015).  Moreover, a large body of evidence suggests that altered 

oxidative metabolism is also present in ASD patients. Lower levels of antioxidants were found in the 

urine, blood and lymphoblastoid cells of ASD subjects, when compared to control samples, and a 

recent post-mortem study detected a decreased expression of antioxidant enzymes in ASD patients’ 

brains compared to age-matched controls (Damodaran & Arumugam, 2011; Frustaci et al., 2012; 

Gu, Chauhan, & Chauhan, 2013; James et al., 2009).  In general, the prevalence of mitochondrial 

dysfunction in ASD has been estimated to be between 5% and 80%, depending on the measure 

used. Despite the variation, the level of prevalence is significantly higher than that of the general 

population (0.01%) (Giulivi et al., 2010; Rossignol & Frye, 2012). Moreover, the presence of 

mitochondrial disease in ASD patients correlates with the existence of other physiological 

abnormalities, such as motor delay and seizures (Rossignol & Frye, 2012). 

A popular theory for the aetiology of ASD is represented by the imbalance between the excitatory 

and inhibitory neuron activities in the affected brain (Canitano & Pallagrosi, 2017; Marín, 2012). 

Interestingly, mitochondrial deficits could affect the development and function of inhibitory 

interneurons more seriously than excitatory neurons. A recent study showed that, in the mouse 

embryonic cortex, pharmacological or genetic disruption of the oxidative phosphorylation process 

has very severe effects on the tangential migration of MGE-derived cortical interneurons, while the 

radial migration of developing pyramidal neurons was not significantly affected (Lin-Hendel et al., 
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2016). Moreover, fast-spiking parvalbumin+ interneurons are particularly rich in mitochondria and 

have high energy requirements, which are considered critical to sustain the typical high-frequency 

generation of action potentials (reviewed by Kann, Papageorgiou, & Draguhn, 2014). In line with 

this, deletion of the cytochrome oxidase gene in mice resulted in severe electrophysiological 

abnormalities in these cells consistent with increased excitatory activity in the circuit. These mice 

also displayed social and behavioural abnormalities, similar to those observed in other SZ and ASD 

models (Inan et al., 2016). 

Disruption of the excitation/inhibition balance has also been proposed to play an important role in 

the aetiology of SZ, making mitochondria dysfunction very relevant in the context of this disorder 

as well (Marín, 2012). In line with this, several post-mortem studies on SZ brains reported evidence 

of a reduction in mitochondrial number and/or functionality. The defects observed included a 

decreased number of mitochondria in layer 5/6 pyramidal neurons, altered expression of COX 

subunits in dopaminergic neurons and a significant alteration of mitochondria-related transcripts 

and proteins in the prefrontal cortex of SZ patients (Prabakaran et al., 2004; Rice et al., 2014; 

Roberts et al., 2015). Furthermore, evidence of decreased mitochondrial function has been found 

in the platelets of SZ subjects (Dror et al., 2002). In some cases, mitochondrial dysfunction could be 

secondary to other abnormalities, such as immune dysfunction or aberrant calcium homeostasis, 

nonetheless it represents a very common feature, present in a high number of ASD and SZ patients 

(Frye & Rossignol, 2011).  

In conclusion, the phenotypes caused by altered levels of CYFIP1 appear to have a significant degree 

of overlap with several mechanisms at the origin of psychiatric disorders, supporting the view that 

abnormal levels of CYFIP1 expression play a major role in the clinical manifestations observed in 

15q11.2 CNVs carriers. 

6.3  Future directions 

Disruption of the normal levels of CYFIP1 have been demonstrated to have a severe impact on the 

balance between proliferation and differentiation of cortical progenitor cells. However, alterations 

of the pathways regulating this process also have important implications at later stages of brain 

development, due to their involvement in neuronal migration and synapse formation. For instance, 

Cadherins are involved in synaptic adhesion and function. In particular, NCAD has been shown to 

be abundant at the contact sites between the filopodia, protruding from dendrites, and the axons 

(Hirano & Takeichi, 2012; Togashi et al., 2002). Moreover, NCAD-β-CAT complexes can bind to 

AMPA receptors in vivo and the amount of NCAD regulates the level of surface expression of these 

receptors (Nuriya & Huganir, 2006). In line with the strict connection between Cadherin-mediated 
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adhesion and WNT signalling, a number of WNT ligands has been demonstrated to be fundamental 

in the process of synaptogenesis, as well as for axonal and dendrite morphogenesis (Salinas & Zou, 

2008). Together, these aspects suggest that the analysis of morphological and electrophysiological 

properties of CYFIP1tg and CYFIP1ko neuronal cells is also necessary and could provide additional 

information about the contribution of this gene to the development of psychiatric symptoms. The 

need for this analysis is further supported by the presence of morphological and synaptic deficits in 

mice with Cyfip1 mutations (Oguro-Ando et al., 2014; Pathania et al., 2014). 

Another important aspect that should be examined using CYFIP1tg and CYFIP1ko hESCs is their 

differentiation into cortical inhibitory interneurons. Gene expression databases of mouse 

development show that CYFIP1 is expressed in the VZ of the MGE (Eurexpress.org), indicating that 

changes in the levels of this gene could potentially affect the development of this class of neurons. 

Moreover, as discussed above, cortical interneurons are more vulnerable to mitochondrial 

alterations, suggesting that the consequences of CYFIP1 loss- or gain-of function could be even 

more dramatic than those observed in pyramidal cells.  

Finally, to have a better understanding of CYFIP1’s role in the context of 15q11.2-related disorders, 

the investigation of neuronal cells derived from iPSCs carrying 15q11.2 CNVs is also necessary. 

Preliminary experiments on 15q11.2-deleted iPSCs showed that NIPA2 is expressed in developing 

neural cells and its level is reduced in neurons derived from 15q11.2del iPSCs. Therefore, NIPA2 

could potentially play a role in brain development. The importance of this and the other 15q11.2 

genes in the context of neurodevelopmental disorders can only be determined by analysing the 

phenotype of isogenic cell lines carrying mutations of one or multiple genes at a time.  Experiments 

addressing these questions, including transcriptomic characterisation of 15q11.2-deleted neural 

cells and generation of lentiviral vectors for the knock-out of the genes located in this region, are 

currently ongoing in our group. 

At the same time, we are carrying out an in-depth analysis of the RNA-seq data derived from 

CYFIP1tg and CYFIP1ko cells. This includes determining the degree of correlation between the 

transcriptome changes linked to CYFIP1 alterations and the network of genes affected by common 

variants in SZ patients, using the CLOZUK and SZ2 databases (Ripke et al., 2014). The same analysis 

will be done on the data set of DEGs found in 15q11.2-deleted neural progenitors and neurons. The 

comparison between the results obtained from patients’ iPSCs and CYFIP1 isogenic hESCs will 

provide significant information about the degree of CYFIP1 contribution towards the psychiatric 

phenotypes found in 15q11.2 CNVs carriers.  

Lastly, we will be able to compare the transcriptomic signature of the cells used in this study with 

those obtained from other in vitro models of neurodevelopmental disorders developed in our 
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group. These include iPSCs carrying 22q11.2 deletion, a mutation strongly associated with an 

increased risk of SZ (Murphy, Jones, & Owen, 1999; Stefansson et al., 2008), and hESCs with knock-

out of the Set Binding Protein 1 (SETBP1). Loss-of-function of this gene is strongly associated with 

ASD, intellectual disability and various congenital malformations (Coe et al., 2014; Roak et al., 

2012). The investigation of altered mechanisms shared between the different models will help, with 

time, to gain a deeper understanding of the link between genetic risk factors and psychiatric 

phenotypes. 

  



109 
 

7 Bibliography 

Aasen, Trond Raya, Angel Barrero, Maria J Garreta, Elena Consiglio, Antonella Gonzalez, Federico Vassena, 
Rita Bilić, Josipa Pekarik, Vladimir Tiscornia, G., Edel, Michael Boué, S., & Izpisúa Belmonte, J. C. 
(2008). Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. 
Nature Biotechnology, 26(11), 1276–84. http://doi.org/10.1038/nbt.1503 

Abdelmoity, A. T., Lepichon, J., Nyp, S. S., Soden, S. E., Daniel, C. A., & Yu, S. (n.d.). 15q11 . 2 Proximal 
Imbalances Associated With a Diverse Array. 

Abekhoukh, S., & Bardoni, B. (2014). CYFIP family proteins between autism and intellectual disability: links 
with Fragile X syndrome. Frontiers in Cellular Neuroscience, 8(March), 81. 
http://doi.org/10.3389/fncel.2014.00081 

Abekhoukh, S., Sahin, H. B., Grossi, M., Zongaro, S., Maurin, T., Madrigal, I., … Bardoni, B. (2017). New 
insights into the regulatory function of CYFIP1 in the context of WAVE- and FMRP-containing 
complexes. Disease Models & Mechanisms, 10(4), 463–474. http://doi.org/10.1242/dmm.025809 

Alarcón, M., Abrahams, B. S. B. S., Stone, J. L. J. L., Duvall, J. A. J. A., Perederiy, J. V. J. V. J. V, Bomar, J. M., … 
Geschwind, D. H. (2008). Linkage, association, and gene-expression analyses identify CNTNAP2 as an 
autism-susceptibility gene. The American Journal of Human Genetics, 82(1), 150–159. 
http://doi.org/10.1016/j.ajhg.2007.09.005. 

Alarcón, M., Cantor, R. M., Liu, J., Gilliam, T. C., & Geschwind, D. H. (2002). Evidence for a Language 
Quantitative Trait Locus on Chromosome 7q in Multiplex Autism Families. The American Journal of 
Human Genetics, 70(1), 60–71. http://doi.org/10.1086/338241 

Alcamo, E. A., Chirivella, L., Dautzenberg, M., Dobreva, G., Farin, I., Grosschedl, R., & Mcconnell, S. K. (2008). 
Satb2 Regulates Callosal Projection Neuron Identity in the Developing Cerebral Cortex, 4, 364–377. 
http://doi.org/10.1016/j.neuron.2007.12.012 

Ambasudhan, R., Talantova, M., Coleman, R., Yuan, X., Zhu, S., Lipton, S. A., & Ding, S. (2011). Direct 
reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem 
Cell, 9(2), 113–118. http://doi.org/10.1016/j.stem.2011.07.002 

Amir, R. E., Van den Veyver, I. . B., Wan, M., Tran, C. Q., Francke, U., & Zoghbi, H. Y. (1999). Rett syndrome is 
caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genetics, 
23(october), 185–188. http://doi.org/10.1038/13810 

Anders, S., & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biology, 
11(R106), 1–12. http://doi.org/10.1186/gb-2010-11-10-r106 

Androutsellis-Theotokis, A., Leker, R. R., Soldner, F., Hoeppner, D. J., Ravin, R., Poser, S. W., … McKay, R. D. 
G. (2006). Notch signalling regulates stem cell numbers in vitro and in vivo. Nature, 442(7104), 823–
826. http://doi.org/10.1038/nature04940 

Anney, R., Klei, L., Pinto, D., Almeida, J., Bacchelli, E., Baird, G., … Devlin, B. (2012). Individual common 
variants exert weak effects on the risk for autism spectrum disorders. Human Molecular Genetics, 
21(21), 4781–4792. http://doi.org/10.1093/hmg/dds301 

Anney, R., Klei, L., Pinto, D., Regan, R., Conroy, J., Magalhaes, T. R., … Hallmayer, J. (2010). A genome-wide 
scan for common alleles affecting risk for autism. Human Molecular Genetics, 19(20), 4072–4082. 
http://doi.org/10.1093/hmg/ddq307 

Arber, C., Precious, S. V., Cambray, S., Risner-Janiczek, J. R., Kelly, C., Noakes, Z., … Li, M. (2015). Activin A 
directs striatal projection neuron differentiation of human pluripotent stem cells. Development, 
142(7), 1375–1386. http://doi.org/10.1242/dev.117093 

Ardhanareeswaran, K., Coppola, G., & Vaccarino, F. (2015). The Use of Stem Cells to Study Autism Spectrum 
Disorder. The Yale Journal of Biology and Medicine, 88(1), 5–16. Retrieved from 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4345539&tool=pmcentrez&rendertype=
abstract 



110 
 

Arking, D. E., Cutler, D. J., Brune, C. W., Teslovich, T. M., West, K., Ikeda, M., … Chakravati,  a. (2008). A 
common genetic variant in the neurecin superfamily member CNTNAP2 increases familial risk of 
autism. American Journal of Human Genetics, 82(1), 160–164. 
http://doi.org/10.1016/j.ajhg.2007.09.015. 

Backman, M., Machon, O., Mygland, L., Van Den Bout, C. J., Zhong, W., Taketo, M. M., & Krauss, S. (2005). 
Effects of canonical Wnt signaling on dorso-ventral specification of the mouse telencephalon. 
Developmental Biology, 279(1), 155–168. http://doi.org/10.1016/j.ydbio.2004.12.010 

Bading, H. (2013). Nuclear calcium signalling in the regulation of brain function. Nature Reviews 
Neuroscience, 14(9), 593–608. http://doi.org/10.1038/nrn3531 

Bajestan, S. N., Sabouri, A. H., Nakamura, M., Takashima, H., Keikhaee, M. R., Behdani, F., … Osame, M. 
(2006). Association of AKT1 haplotype with the risk of schizophrenia in Iranian population. American 
Journal of Medical Genetics, Part B: Neuropsychiatric Genetics, 141(4), 383–386. 
http://doi.org/10.1002/ajmg.b.30291 

Ban, H., Nishishita, N., Fusaki, N., Tabata, T., Saeki, K., Shikamura, M., … Nishikawa, S. (2011). Efficient 
generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive 
Sendai virus vectors. Proc Natl Acad Sci U S A, 108(34), 14234–14239. http://doi.org/1103509108 
[pii]\r10.1073/pnas.1103509108 

Banda, E., McKinsey, A., Germain, N., Carter, J., Anderson, N. C., & Grabel, L. (2015). Cell polarity and 
neurogenesis in embryonic stem cell-derived neural rosettes. Stem Cells and Development, 24(8), 
1022–33. http://doi.org/10.1089/scd.2014.0415 

Baxter, A. J., Brugha, T. S., Erskine, H. E., Scheurer, R. W., Vos, T., & Scott, J. G. (2015). The epidemiology and 
global burden of autism spectrum disorders. Psychological Medicine, 45(3), 601–13. 
http://doi.org/10.1017/S003329171400172X 

Belinson, H., Nakatani, J., Babineau, B. A., Birnbaum, R. Y., Ellegood, J., Bershteyn, M., … Wynshaw-Boris, A. 
(2016). Prenatal β-catenin/Brn2/Tbr2 transcriptional cascade regulates adult social and stereotypic 
behaviors. Molecular Psychiatry, 21(10), 1–17. http://doi.org/10.1038/mp.2015.207 

Beneyto, M., & Lewis, D. a. (2011). Insights into the neurodevelopmental origin of schizophrenia from 
postmortem studies of prefrontal cortical circuitry. International Journal of Developmental 
Neuroscience : The Official Journal of the International Society for Developmental Neuroscience, 29(3), 
295–304. http://doi.org/10.1016/j.ijdevneu.2010.08.003 

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach 
to multiple testing. Journal of the Royal Statistical Society B. http://doi.org/10.2307/2346101 

Bertrand, N., Castro, D. S., & Guillemot, F. (2002). Proneural genes and the specification of neural cell types. 
Nature Reviews Neuroscience, 3(7), 517–530. http://doi.org/10.1038/nrn874 

Betizeau, M., Cortay, V., Patti, D., Pfister, S., Gautier, E., Bellemin-Ménard, A., … Dehay, C. (2013). Precursor 
diversity and complexity of lineage relationships in the outer subventricular zone of the primate. 
Neuron, 80(2), 442–57. http://doi.org/10.1016/j.neuron.2013.09.032 

Black, J. E., Kodish, I. M., Grossman, A. W., Klintsova, A. Y., Orlovskaya, D., Vostrikov, V., … Greenough, W. T. 
(2004). Pathology of layer V pyramidal neurons in the prefrontal cortex of patients with 
schizophrenia. The American Journal of Psychiatry, 161(April), 742–744. 
http://doi.org/10.1176/appi.ajp.161.4.742 

Blackwood, D. H. R., Fordyce, A., Walker, M. T., St. Clair, D. M., Porteous, D. J., & Muir, W. J. (2001). 
Schizophrenia and Affective Disorders—Cosegregation with a Translocation at Chromosome 1q42 
That Directly Disrupts Brain-Expressed Genes: Clinical and P300 Findings in a Family. The American 
Journal of Human Genetics, 69(2), 428–433. http://doi.org/10.1086/321969 

Boissart, C., Poulet,  a, Georges, P., Darville, H., Julita, E., Delorme, R., … Benchoua,  a. (2013). 
Differentiation from human pluripotent stem cells of cortical neurons of the superficial layers 
amenable to psychiatric disease modeling and high-throughput drug screening. Translational 



111 
 

Psychiatry, 3(8), e294. http://doi.org/10.1038/tp.2013.71 

Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. 
Bioinformatics, 30(15), 2114–2120. http://doi.org/10.1093/bioinformatics/btu170 

Bozdagi, O., Sakurai, T., Dorr, N., Pilorge, M., Takahashi, N., & Buxbaum, J. D. (2012). Haploinsufficiency of 
Cyfip1 produces fragile X-like phenotypes in mice. PLoS ONE, 7(8), e42422. 
http://doi.org/10.1371/journal.pone.0042422 

Braam, S. R., Denning, C., van den Brink, S., Kats, P., Hochstenbach, R., Passier, R., & Mummery, C. L. (2008). 
Improved genetic manipulation of human embryonic stem cells. Nature Methods, 5(5), 389–392. 
http://doi.org/10.1038/nmeth.1200 

Brem, S., Grünblatt, E., Drechsler, R., Riederer, P., & Walitza, S. (2014). The neurobiological link between 
OCD and ADHD. ADHD Attention Deficit and Hyperactivity Disorders, 6(3), 175–202. 
http://doi.org/10.1007/s12402-014-0146-x 

Bremer, A., Giacobini, M., Eriksson, M., Gustavsson, P., Nordin, V., Fernell, E., … Schoumans, J. (2011). Copy 
number variation characteristics in subpopulations of patients with autism spectrum disorders. 
American Journal of Medical Genetics, Part B: Neuropsychiatric Genetics, 156(2), 115–124. 
http://doi.org/10.1002/ajmg.b.31142 

Brennand, K. J., Simone, A., Jou, J., Gelboin-Burkhart, C., Tran, N., Sangar, S., … Gage, F. H. (2011). Modelling 
schizophrenia using human induced pluripotent stem cells. Nature, 473(7346), 221–5. 
http://doi.org/10.1038/nature09915 

Brennand, K., Savas, J. N., Kim, Y., Tran, N., Simone, A., Hashimoto-Torii, K., … Gage, F. H. (2015). Phenotypic 
differences in hiPSC NPCs derived from patients with schizophrenia. Molecular Psychiatry, 20(3), 361–
368. http://doi.org/10.1038/mp.2014.22 

Britanova, O., Romero, C. D. J., Cheung, A., Kwan, K. Y., Schwark, M., Gyorgy, A., … Akopov, S. (2008). Article 
Satb2 Is a Postmitotic Determinant for Upper-Layer Neuron Specification in the Neocortex, 378–392. 
http://doi.org/10.1016/j.neuron.2007.12.028 

Brown, V., Jin, P., Ceman, S., Darnell, J. C., O’Donnell, W. T., Tenenbaum, S. A., … Warren, S. T. (2001). 
Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in 
fragile X syndrome. Cell, 107(4), 477–487. http://doi.org/10.1016/S0092-8674(01)00568-2 

Brzustowicz, L. M., Hodgkinson, K. A., Chow, E. W. C., Honer, W. G., & Bassett, A. S. (2000). Schizophrenia on 
Chromosome 1q21-q22, 288(5466), 678–682. 

Bucan, M., Abrahams, B. S., Wang, K., Glessner, J. T., Herman, E. I., Sonnenblick, L. I., … Hakonarson, H. 
(2009). Genome-wide analyses of exonic copy number variants in a family-based study point to novel 
autism susceptibility genes. PLoS Genetics, 5(6). http://doi.org/10.1371/journal.pgen.1000536 

Buescher, A. V. S., Cidav, Z., Knapp, M., & Mandell, D. S. (2014). Costs of Autism Spectrum Disorders in the 
United Kingdom and the United States. JAMA Pediatrics, 168(8), 721. 
http://doi.org/10.1001/jamapediatrics.2014.210 

Bultje, R. S., Castaneda-Castellanos, D. R., Jan, L. Y., Jan, Y. N., Kriegstein, A. R., & Shi, S. H. (2009). 
Mammalian Par3 Regulates Progenitor Cell Asymmetric Division via Notch Signaling in the Developing 
Neocortex. Neuron, 63(2), 189–202. http://doi.org/10.1016/j.neuron.2009.07.004 

Burnside, R. D., Pasion, R., Mikhail, F. M., Carroll, A. J., Robin, N. H., Youngs, E. L., … Butler, M. G. (2011). 
Microdeletion/microduplication of proximal 15q11.2 between BP1 and BP2: A susceptibility region for 
neurological dysfunction including developmental and language delay. Human Genetics, 130(4), 517–
528. http://doi.org/10.1007/s00439-011-0970-4 

Bush, W. S., & Moore, J. H. (2012). Chapter 11: Genome-Wide Association Studies. PLoS Computational 
Biology, 8(12). http://doi.org/10.1371/journal.pcbi.1002822 

Butler, M. G. (2017). Clinical and genetic aspects of the 15q11.2 BP1-BP2 microdeletion disorder. Journal of 
Intellectual Disability Research, d, 568–579. http://doi.org/10.1111/jir.12382 



112 
 

Butler, M. G., Bittel, D. C., Kibiryeva, N., Talebizadeh, Z., & Thompson, T. (2004). Behavioral Differences 
Among Subjects With Prader-Willi Syndrome and Type I or Type II Deletion and Maternal Disomy. 
Pediatrics, 113(3), 565–573. http://doi.org/10.1542/peds.113.3.565 

Butler, M. G., Fischer, W., Kibiryeva, N., & Bittel, D. C. (2008). Array comparative genomic hybridization 
(aCGH) analysis in Prader-Willi syndrome. American Journal of Medical Genetics, Part A, 146(7), 854–
860. http://doi.org/10.1002/ajmg.a.32249 

Bystron, I., Blakemore, C., & Rakic, P. (2008). Development of the human cerebral cortex: Boulder 
Committee revisited. Nature Reviews. Neuroscience, 9(2), 110–122. http://doi.org/10.1038/nrn2252 

Cafferkey, M., Ahn, J. W., Flinter, F., & Ogilvie, C. (2014). Phenotypic features in patients with 15q11.2(BP1-
BP2) deletion: Further delineation of an emerging syndrome. American Journal of Medical Genetics, 
Part A, 164(8), 1916–1922. http://doi.org/10.1002/ajmg.a.36554 

Caglayan, A. O. (2010). Genetic causes of syndromic and non-syndromic autism. Developmental Medicine 
and Child Neurology, 52(2), 130–138. http://doi.org/10.1111/j.1469-8749.2009.03523.x 

Caiazzo, M., Dell’Anno, M. T., Dvoretskova, E., Lazarevic, D., Taverna, S., Leo, D., … Broccoli, V. (2011). Direct 
generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature, 
476(7359), 224–227. http://doi.org/10.1038/nature10284\rnature10284 [pii] 

Callan, M. A., Cabernard, C., Heck, J., Luois, S., Doe, C. Q., & Zarnescu, D. C. (2010). Fragile X protein controls 
neural stem cell proliferation in the Drosophila brain. Human Molecular Genetics, 19(15), 3068–3079. 
http://doi.org/10.1093/hmg/ddq213 

Calvo, S. E., Clauser, K. R., & Mootha, V. K. (2016). MitoCarta2.0: An updated inventory of mammalian 
mitochondrial proteins. Nucleic Acids Research, 44(D1), D1251–D1257. 
http://doi.org/10.1093/nar/gkv1003 

Cambray, S., Arber, C., Little, G., Dougalis, A. G., de Paola, V., Ungless, M. a, … Rodríguez, T. a. (2012). 
Activin induces cortical interneuron identity and differentiation in embryonic stem cell-derived 
telencephalic neural precursors. Nature Communications, 3(May), 841. 
http://doi.org/10.1038/ncomms1817 

Canitano, R., & Pallagrosi, M. (2017). Autism spectrum disorders and schizophrenia spectrum disorders: 
Excitation/inhibition imbalance and developmental trajectories. Frontiers in Psychiatry, 8(MAY), 1–7. 
http://doi.org/10.3389/fpsyt.2017.00069 

Cappello, S., Attardo, A., Wu, X., Iwasato, T., Itohara, S., Wilsch-Bräuninger, M., … Götz, M. (2006). The Rho-
GTPase cdc42 regulates neural progenitor fate at the apical surface. Nature Neuroscience, 9(9), 1099–
107. http://doi.org/10.1038/nn1744 

Cappello, S., Böhringer, C. R. J., Bergami, M., Conzelmann, K. K., Ghanem, A., Tomassy, G. S., … Götz, M. 
(2012). A Radial Glia-Specific Role of RhoA in Double Cortex Formation. Neuron, 73(5), 911–924. 
http://doi.org/10.1016/j.neuron.2011.12.030 

Casanova, M. F., van Kooten, I. A. J., Switala, A. E., van Engeland, H., Heinsen, H., Steinbusch, H. W. M., … 
Schmitz, C. (2006). Minicolumnar abnormalities in autism. Acta Neuropathologica, 112(3), 287–303. 
http://doi.org/10.1007/s00401-006-0085-5 

Castrén, M., Tervonen, T., Kärkkäinen, V., Heinonen, S., Castrén, E., Larsson, K., … Akerman, K. (2005). 
Altered differentiation of neural stem cells in fragile X syndrome. Proceedings of the National 
Academy of Sciences of the United States of America, 102(49), 17834–9. 
http://doi.org/10.1073/pnas.0508995102 

Cataldo, A. M., McPhie, D. L., Lange, N. T., Punzell, S., Elmiligy, S., Ye, N. Z., … Cohen, B. M. (2010). 
Abnormalities in Mitochondrial Structure in Cells from Patients with Bipolar Disorder. The American 
Journal of Pathology, 177(2), 575–585. http://doi.org/10.2353/ajpath.2010.081068 

Chai, J.-H., Locke, D. P., Greally, J. M., Knoll, J. H. M., Ohta, T., Dunai, J., … Nicholls, R. D. (2003). 
Identification of four highly conserved genes between breakpoint hotspots BP1 and BP2 of the 
Prader-Willi/Angelman syndromes deletion region that have undergone evolutionary transposition 



113 
 

mediated by flanking duplicons. American Journal of Human Genetics, 73(4), 898–925. 
http://doi.org/10.1086/378816 

Chambers, S. M., Fasano, C. A., Papapetrou, E. P., Tomishima, M., Sadelain, M., & Studer, L. (2009). Highly 
efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature 
Biotechnology, 27(3), 275–280. http://doi.org/10.1038/nbt.1529 

Chaste, P., Sanders, S. J., Mohan, K. N., Klei, L., Song, Y., Murtha, M. T., … Kim, S. J. (2014). Modest impact 
on risk for autism spectrum disorder of rare copy number variants at 15q11.2, Specifically Breakpoints 
1 to 2. Autism Research, 7(3), 355–362. http://doi.org/10.1002/aur.1378 

Chen, B., Schaevitz, L. R., & Mcconnell, S. K. (2005). Fezl regulates the differentiation and axon targeting of 
layer 5 subcortical projection neurons in cerebral cortex, 102(47). 

Chen, B., Wang, S. S., Hattox, A. M., Rayburn, H., Nelson, S. B., & Mcconnell, S. K. (2008). The Fezf2 – Ctip2 
genetic pathway regulates the fate choice of subcortical projection neurons in the developing cerebral 
cortex, 2–7. 

Chen, H. M., DeLong, C. J., Bame, M., Rajapakse, I., Herron, T. J., McInnis, M. G., & O’Shea, K. S. (2014). 
Transcripts involved in calcium signaling and telencephalic neuronal fate are altered in induced 
pluripotent stem cells from bipolar disorder patients. Translational Psychiatry, 4(3), e375. 
http://doi.org/10.1038/tp.2014.12 

Chen, L., Yun, S. W., Seto, J., Liu, W., & Toth, M. (2003). The fragile X mental retardation protein binds and 
regulates a novel class of mRNAs containing u rich target sequences. Neuroscience, 120(4), 1005–
1017. http://doi.org/10.1016/S0306-4522(03)00406-8 

Chen, Z., Borek, D., Padrick, S. B., Gomez, T. S., Metlagel, Z., Ismail, A. M., … Rosen, M. K. (2010). Structure 
and control of the actin regulatory WAVE complex. Nature, 468(7323), 533–538. 
http://doi.org/10.1038/nature09623 

Chenn, A., & Walsh, C. A. (2002). Neural Precursors Regulation of Cerebral Cortical Size by Control of Cell 
Cycle Exit in Neural Precursors. Science, 297(2002), 365–370. http://doi.org/10.1126/science.1074192 

Cho, S. W., Kim, S., Kim, J. M., & Kim, J.-S. (2013). Targeted genome engineering in human cells with the 
Cas9 RNA-guided endonuclease. Nature Biotechnology, 31(3), 230–2. 
http://doi.org/10.1038/nbt.2507 

Chong, H. Y., Teoh, S. L., Wu, D. B.-C., Kotirum, S., Chiou, C.-F., & Chaiyakunapruk, N. (2016). Global 
economic burden of schizophrenia: a systematic review. Neuropsychiatric Disease and Treatment, 12, 
357–73. http://doi.org/10.2147/NDT.S96649 

Christian, S. L., Brune, C. W., Sudi, J., Kumar, R. A., Liu, S., Karamohamed, S., … Cook, E. H. (2008). Novel 
Submicroscopic Chromosomal Abnormalities Detected in Autism Spectrum Disorder. Biological 
Psychiatry, 63(12), 1111–1117. http://doi.org/10.1016/j.biopsych.2008.01.009 

Codina-Solà, M., Rodríguez-Santiago, B., Homs, A., Santoyo, J., Rigau, M., Aznar-Laín, G., … Cuscó, I. (2015). 
Integrated analysis of whole-exome sequencing and transcriptome profiling in males with autism 
spectrum disorders. Molecular Autism, 6(1), 21. http://doi.org/10.1186/s13229-015-0017-0 

Coe, B. P., Witherspoon, K., Rosenfeld, J. A., Van Bon, B. W. M., Vulto-Van Silfhout, A. T., Bosco, P., … 
Eichler, E. E. (2014). Refining analyses of copy number variation identifies specific genes associated 
with developmental delay. Nature Genetics, 46(10), 1063–1071. http://doi.org/10.1038/ng.3092 

Colasante, G., Lignani, G., Rubio, A., Medrihan, L., Yekhlef, L., Sessa, A., … Broccoli, V. (2015). Rapid 
Conversion of Fibroblasts into Functional Forebrain GABAergic Interneurons by Direct Genetic 
Reprogramming. Cell Stem Cell, 17(6), 719–734. http://doi.org/10.1016/j.stem.2015.09.002 

Cong, L., Ran, F., Cox, D., Lin, S., & Barretto, R. (2013). Multiplex Genome Engineering Using CRISPR / Cas 
Systems. Science, (July). http://doi.org/10.1038/nbt1319 

Costa, M. R., Wen, G., Lepier, A., Schroeder, T., & Gotz, M. (2007). Par-complex proteins promote 
proliferative progenitor divisions in the developing mouse cerebral cortex. Development, 135(1), 11–



114 
 

22. http://doi.org/10.1242/dev.009951 

Costales, J. L., & Kolevzon, A. (2015). Phelan–McDermid Syndrome and SHANK3: Implications for Treatment. 
Neurotherapeutics, 12(3), 620–630. http://doi.org/10.1007/s13311-015-0352-z 

Cotter, D., Kerwin, R., al-Sarraji, S., Brion, J. P., Chadwich, A., Lovestone, S., … Everall, I. (1998). 
Abnormalities of Wnt signalling in schizophrenia--evidence for neurodevelopmental abnormality. 
Neuroreport, 9(7), 1379–1383. http://doi.org/10.1097/00001756-199805110-00024 

Courchesne, E., Mouton, P. R., & Calhoun, M. E. (2011). Neuron Number and Size in Prefrontal Cortex of 
Children With Autism. Jama, 306(18), 2001–2010. http://doi.org/10.1016/j.yped.2011.12.022 

Cristino,  a S., Williams, S. M., Hawi, Z., An, J.-Y., Bellgrove, M. a, Schwartz, C. E., … Claudianos, C. (2014). 
Neurodevelopmental and neuropsychiatric disorders represent an interconnected molecular system. 
Molecular Psychiatry, 19(3), 294–301. http://doi.org/10.1038/mp.2013.16 

Cuesto, G., Enriquez-Barreto, L., Carames, C., Cantarero, M., Gasull, X., Sandi, C., … Morales, M. (2011). 
Phosphoinositide-3-Kinase Activation Controls Synaptogenesis and Spinogenesis in Hippocampal 
Neurons. Journal of Neuroscience, 31(8), 2721–2733. http://doi.org/10.1523/JNEUROSCI.4477-
10.2011 

Curatolo, P., Moavero, R., & de Vries, P. J. (2015). Neurological and neuropsychiatric aspects of tuberous 
sclerosis complex. The Lancet Neurology, 14(7), 733–745. http://doi.org/10.1016/S1474-
4422(15)00069-1 

Dahlstrand, J., Lardelli, M., & Lendahl, U. (1995). Nestin mRNA expression correlates with the central 
nervous system progenitor cell state in many, but not all, regions of developing central nervous 
system. Developmental Brain Research, 84(1), 109–129. http://doi.org/10.1016/0165-3806(94)00162-
S 

Damodaran, L. P. M., & Arumugam, G. (2011). Urinary oxidative stress markers in children with autism. 
Redox Report : Communications in Free Radical Research, 16(5), 216–22. 
http://doi.org/10.1179/1351000211Y.0000000012 

Darnell, J. C., Van Driesche, S. J., Zhang, C., Hung, K. Y. S., Mele, A., Fraser, C. E., … Darnell, R. B. (2011). 
FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell, 146(2), 
247–261. http://doi.org/10.1016/j.cell.2011.06.013 

Das, D. K., Tapias, V., D’Aiuto, L., Chowdari, K. V, Francis, L., Zhi, Y., … Nimgaonkar, V. (2015). Genetic and 
morphological features of human iPSC-derived neurons with chromosome 15q11.2 (BP1-BP2) 
deletions. Molecular Neuropsychiatry, 1(2), 116–123. http://doi.org/10.1159/000430916 

De Rubeis, S., & Bagni, C. (2010). Fragile X mental retardation protein control of neuronal mRNA 
metabolism: Insights into mRNA stability. Mol Cell Neurosci, 43(1), 43–50. 
http://doi.org/10.1016/j.mcn.2009.09.013 

Dehay, C., Kennedy, H., & Kosik, K. S. (2015). The Outer Subventricular Zone and Primate-Specific Cortical 
Complexification. Neuron, 85(4), 683–694. http://doi.org/10.1016/j.neuron.2014.12.060 

Denham, M., Bye, C., Leung, J., Conley, B. J., Thompson, L. H., & Dottori, M. (2012). Glycogen synthase 
kinase 3β and activin/nodal inhibition in human embryonic stem cells induces a pre-neuroepithelial 
state that is required for specification to a floor plate cell lineage. Stem Cells, 30(11), 2400–2411. 
http://doi.org/10.1002/stem.1204 

DeRubeis, S., Pasciuto, E., Li, K., Fern??ndez, E., DiMarino, D., Buzzi, A., … Bagni, C. (2013). CYFIP1 
coordinates mRNA translation and cytoskeleton remodeling to ensure proper dendritic Spine 
formation. Neuron, 79(6), 1169–1182. http://doi.org/10.1016/j.neuron.2013.06.039 

Ding, Q., Regan, S. N., Xia, Y., Oostrom, L. A., Cowan, C. A., & Musunuru, K. (2013). Enhanced efficiency of 
human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell, 
12(4), 393–394. http://doi.org/10.1016/j.stem.2013.03.006 

Dinstein, I., Pierce, K., Eyler, L., Solso, S., Malach, R., Behrmann, M., & Courchesne, E. (2011). Disrupted 



115 
 

Neural Synchronization in Toddlers with Autism. Neuron, 70(6), 1218–1225. 
http://doi.org/10.1016/j.neuron.2011.04.018 

Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., … Gingeras, T. R. (2013). STAR: 
Ultrafast universal RNA-seq aligner. Bioinformatics, 29(1), 15–21. 
http://doi.org/10.1093/bioinformatics/bts635 

Donegan, J. J., & Lodge, D. J. (2016). Cell-based therapies for the treatment of schizophrenia. Brain Res. 
http://doi.org/10.1016/j.brainres.2016.08.010 

Doornbos, M., Sikkema-Raddatz, B., Ruijvenkamp, C. A. L., Dijkhuizen, T., Bijlsma, E. K., Gijsbers, A. C. J., … 
van Ravenswaaij-Arts, C. M. A. (2009). Nine patients with a microdeletion 15q11.2 between 
breakpoints 1 and 2 of the Prader-Willi critical region, possibly associated with behavioural 
disturbances. European Journal of Medical Genetics, 52(2–3), 108–115. 
http://doi.org/10.1016/j.ejmg.2009.03.010 

Dror, N., Klein, E., Karry, R., Sheinkman, A., Kirsh, Z., Mazor, M., … Ben-Shachar, D. (2002). State-dependent 
alterations in mitochondrial complex I activity in platelets: A potential peripheral marker for 
schizophrenia. Molecular Psychiatry, 7(9), 995–1001. http://doi.org/10.1038/sj.mp.4001116 

Durak, O., Gao, F., Kaeser-Woo, Y. J., Rueda, R., Martorell, A. J., Nott, A., … Tsai, L.-H. (2016). Chd8 mediates 
cortical neurogenesis via transcriptional regulation of cell cycle and Wnt signaling. Nature 
Neuroscience, 19(11). http://doi.org/10.1038/nn.4400 

Dziunycz, P. J., Neu, J., Lefort, K., Djerbi, N., & Hofbauer, F. (2017). CYFIP1 is directly controlled by NOTCH1 
and down-regulated in cutaneous squamous cell carcinoma, 1–13. 

Ebrahimi-Fakhari, D., Saffari, A., Wahlster, L., Di Nardo, A., Turner, D., Lewis, T. L., … Sahin, M. (2016). 
Impaired Mitochondrial Dynamics and Mitophagy in Neuronal Models of Tuberous Sclerosis Complex. 
Cell Reports, 17(4), 1053–1070. http://doi.org/10.1016/j.celrep.2016.09.054 

Eden, S., Rohatgi, R., Podtelejnikov, A. V, Mann, M., & Kirschner, M. W. (2002). Mechanism of regulation of 
WAVE1-induced actin nucleation by Rac1 and Nck. Nature, 418(6899), 790–793. 
http://doi.org/10.1038/nature00859 

Egawa, J., Watanabe, Y., Wang, C., Inoue, E., Sugimoto, A., Sugiyama, T., … Someya, T. (2015). Novel rare 
missense variations and risk of autism spectrum disorder: Whole-exome sequencing in two families 
with affected siblings and a two-stage follow-up study in a Japanese population. PLoS ONE, 10(3), 1–9. 
http://doi.org/10.1371/journal.pone.0119413 

El-Husseini, A., Schnell, E., & Chetkovich, D. (2000). PSD-95 involvement in maturation of excitatory 
synapses. Science, 290(5495), 1364–8. http://doi.org/10.1126/science.290.5495.1364 

Elkabetz, Y., Panagiotakos, G., Al Shamy, G., Socci, N. D., Tabar, V., & Studer, L. (2008). Human ES cell-
derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes and 
Development, 22(2), 152–165. http://doi.org/10.1101/gad.1616208 

Elkabetz, Y., & Studer, L. (2009). Human ESC-derived Neural Rosettes and Neural Stem Cell Progression 
Human ESC-derived Neural Rosettes and Neural Stem Cell Progression, LXXIII, 377–387. 
http://doi.org/10.1101/sqb.2008.73.052 

Emamian, E. S., Hall, D., Birnbaum, M. J., Karayiorgou, M., & Gogos, J. A. (2004). Convergent evidence for 
impaired AKT1-GSK3β signaling in schizophrenia. Nature Genetics, 36(2), 131–137. 
http://doi.org/10.1038/ng1296 

Englund, C. (2005). Pax6, Tbr2, and Tbr1 Are Expressed Sequentially by Radial Glia, Intermediate Progenitor 
Cells, and Postmitotic Neurons in Developing Neocortex. Journal of Neuroscience, 25(1), 247–251. 
http://doi.org/10.1523/JNEUROSCI.2899-04.2005 

Enriquez-Barreto, L., & Morales, M. (2016). The PI3K signaling pathway as a pharmacological target in 
Autism related disorders and Schizophrenia. Molecular and Cellular Therapies, 4(1), 2. 
http://doi.org/10.1186/s40591-016-0047-9 



116 
 

Espuny-Camacho, I., Michelsen, K. a, Gall, D., Linaro, D., Hasche, A., Bonnefont, J., … Vanderhaeghen, P. 
(2013). Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse 
brain circuits in vivo. Neuron, 77(3), 440–56. http://doi.org/10.1016/j.neuron.2012.12.011 

Fakhoury, M. (2015). Autistic spectrum disorders: A review of clinical features, theories and diagnosis. 
International Journal of Developmental Neuroscience, 43, 70–77. 
http://doi.org/10.1016/j.ijdevneu.2015.04.003 

Fang, D., Hawke, D., Zheng, Y., Xia, Y., Meisenhelder, J., Nika, H., … Lu, Z. (2007). Phosphorylation of beta-
catenin by Akt promotes beta-catenin transcriptional activity. The Journal of Biological Chemistry, 
282(15), 11221–9. http://doi.org/10.1074/jbc.M611871200 

Farrell, M. S., Werge, T., Sklar, P., Owen, M. J., Ophoff, R. A., O’Donovan, M. C., … Sullivan, P. F. (2015). 
Evaluating historical candidate genes for schizophrenia. Molecular Psychiatry, 20(5), 555–562. 
http://doi.org/10.1038/mp.2015.16 

Feng, L., Hatten, M. E., & Heintz, N. (1994). Brain lipid-binding protein (BLBP): A novel signaling system in 
the developing mammalian CNS. Neuron, 12(4), 895–908. http://doi.org/10.1016/0896-
6273(94)90341-7 

Fernández, E., Rajan, N., & Bagni, C. (2013). The FMRP regulon: From targets to disease convergence. 
Frontiers in Neuroscience, 7(7 OCT), 191. http://doi.org/10.3389/fnins.2013.00191 

Fink, J. K. (2003). The hereditary spastic paraplegias: nine genes and counting. Archives of Neurology, 60(8), 
1045–1049. http://doi.org/10.1001/archneur.60.8.1045 

Florian, C., Bahi-Buisson, N., & Bienvenu, T. (2012). FOXG1-related disorders: From clinical description to 
molecular genetics. Molecular Syndromology, 2(3–5), 153–163. http://doi.org/10.1159/000327329 

Freitag, C. M., Staal, W., Klauck, S. M., Duketis, E., & Waltes, R. (2010). Genetics of autistic disorders: review 
and clinical implications. European Child & Adolescent Psychiatry, 19(3), 169–178. 
http://doi.org/10.1007/s00787-009-0076-x 

Frey, B. N., Andreazza, A. C., Nery, F. G., Martins, M. R., Quevedo, J., Soares, J. C., & Kapczinski, F. (2007). 
The role of hippocampus in the pathophysiology of bipolar disorder. Behavioural Pharmacology, 
18(5–6), 419–430. http://doi.org/10.1097/FBP.0b013e3282df3cde 

Frith, C. D., & Dolan, R. (1996). The role of the prefrontal cortex in higher cognitive functions. Brain 
Research. Cognitive Brain Research, 5(1–2), 175–181. http://doi.org/http://dx.doi.org/10.1016/S0926-
6410(96)00054-7 

Frotscher, M. (1998). Cajal-Retzius cells, Reelin, and the formation of layers. Current Opinion in 
Neurobiology, 8(5), 570–575. http://doi.org/10.1016/S0959-4388(98)80082-2 

Frustaci, A., Neri, M., Cesario, A., Adams, J. B., Domenici, E., Dalla Bernardina, B., & Bonassi, S. (2012). 
Oxidative stress-related biomarkers in autism: Systematic review and meta-analyses. Free Radical 
Biology and Medicine, 52(10), 2128–2141. http://doi.org/10.1016/j.freeradbiomed.2012.03.011 

Frye, R., & Rossignol, D. (2011). Mitochondrial Dysfunction Can Connect the Diverse Medical Symptoms 
Associated With Autism Spectrum Disorders. Pediatr Res, 69(5), 41R–47R. 
http://doi.org/10.1203/PDR.0b013e318212f16b 

Fuccillo, M. V. (2016). Striatal circuits as a common node for autism pathophysiology. Frontiers in 
Neuroscience, 10(FEB). http://doi.org/10.3389/fnins.2016.00027 

FUSAKI, N., BAN, H., NISHIYAMA, A., SAEKI, K., & HASEGAWA, M. (2009). Efficient induction of transgene-
free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not 
integrate into the host genome. Proceedings of the Japan Academy, Series B, 85(8), 348–362. 
http://doi.org/10.2183/pjab.85.348 

Gasiunas, G., Barrangou, R., Horvath, P., & Siksnys, V. (2012). PNAS Plus: Cas9-crRNA ribonucleoprotein 
complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the 
National Academy of Sciences, 109(39), E2579–E2586. http://doi.org/10.1073/pnas.1208507109 



117 
 

Gejman, P. V., Sanders, A. R., & Kendler, K. S. (2011). Genetics of Schizophrenia: New Findings and 
Challenges. Annual Review of Genomics and Human Genetics, 12(1), 121–144. 
http://doi.org/10.1146/annurev-genom-082410-101459 

Genheden, M., Kenney, J. W., Johnston, H. E., Manousopoulou, A., Garbis, S. D., & Proud, C. G. (2015). BDNF 
Stimulation of Protein Synthesis in Cortical Neurons Requires the MAP Kinase-Interacting Kinase 
MNK1. Journal of Neuroscience, 35(3), 972–984. http://doi.org/10.1523/JNEUROSCI.2641-14.2015 

Genovese, G., Fromer, M., Stahl, E. A., Ruderfer, D. M., Chambert, K., Landén, M., … McCarroll, S. A. (2016). 
Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia. 
Nature Neuroscience, 19(11), 1433–1441. http://doi.org/10.1038/nn.4402 

George-hyslop, P. H. S. (2000). Molecular Genetics of Alzheimer ’ s Disease. 

Germain, N. D., Chen, P.-F., Plocik, A. M., Glatt-Deeley, H., Brown, J., Fink, J. J., … Chamberlain, S. J. (2014). 
Gene expression analysis of human induced pluripotent stem cell-derived neurons carrying copy 
number variants of chromosome 15q11-q13.1. Molecular Autism, 5(1), 44. 
http://doi.org/10.1186/2040-2392-5-44 

Ghosh, R. N., Debiasio, R., Hudson, C. C., Ramer, E. R., Cowan, C. L., & Oakley, R. H. (2005). Quantitative Cell-
Based High-Content Screening for Vasopressin Receptor Agonists Using Transfluor(R) Technology. J 
Biomol Screen, 1087057105274896. http://doi.org/10.1177/1087057105274896 

Giulivi, C., Zhang, Y.-F., Omanska-Klusek, A., Ross-Inta, C., Hertz-Picciotto, I., Tassone, F., & Pessah, I. N. 
(2010). Mitochondrial Dysfunction in Autism Spectrum Disorders. JAMA, 6(4), 2389–2396. 
http://doi.org/doi:10.1001/jama.2010.1706 

Gleeson, J. G., Peter T, L., Flanagan, L. A., & Walsh, C. A. (1999). Doublecortin is a microtubule-associated 
protein and is expressed widely by migrating neurons. Neuron, 23(2), 257–271. 
http://doi.org/10.1016/S0896-6273(00)80778-3 

Glessner, J. T., Wang, K., Cai, G., Korvatska, O., Kim, C. E., Wood, S., … Hakonarson, H. (2009a). Autism 
genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature, 459(7246), 569–
573. http://doi.org/10.1038/nature07953 

Glessner, J. T., Wang, K., Cai, G., Korvatska, O., Kim, C. E., Wood, S., … Hakonarson, H. (2009b). Autism 
genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature, 459(7246), 569–
573. http://doi.org/10.1038/nature07953 

Gong, X., & Wang, H. (2015). SHANK1 and autism spectrum disorders. Science China Life Sciences, 58(10), 
985–990. http://doi.org/10.1007/s11427-015-4892-6 

González, F., Zhu, Z., Shi, Z. D., Lelli, K., Verma, N., Li, Q. V., & Huangfu, D. (2014). An iCRISPR platform for 
rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell, 15, 
215–226. http://doi.org/10.1016/j.stem.2014.05.018 

Götz, M., Stoykova, A., & Gruss, P. (1998). Pax6 controls radial glia differentiation in the cerebral cortex. 
Neuron, 21(5), 1031–1044. http://doi.org/10.1016/S0896-6273(00)80621-2 

Goytain, A., Hines, R., El-Husseini, A., & Quamme, G. (2007). NIPA1(SPG6), the basis for autosomal 
dominant form of hereditary spastic paraplegia, encodes a functional Mg2+ transporter. Journal of 
Biological Chemistry, 282(11), 8060–8068. http://doi.org/10.1074/jbc.M610314200 

Goytain, A., Hines, R., & Quamme, G. (2008). Functional characterization of NIPA2 , a selective Mg 2 ϩ 
transporter, 944–953. http://doi.org/10.1152/ajpcell.00091.2008. 

Grabrucker, A. M. (2013). Environmental factors in autism. Frontiers in Psychiatry, 3(JAN), 1–13. 
http://doi.org/10.3389/fpsyt.2012.00118 

Gratten, J. (2016). news and views Rare variants are common in schizophrenia. Nature Publishing Group, 
19(11), 1426–1428. http://doi.org/10.1038/nn.4422 

Gratten, J., Wray, N. R., Keller, M. C., & Visscher, P. M. (2014). Large-scale genomics unveils the genetic 



118 
 

architecture of psychiatric disorders. Nature Neuroscience, 17(6), 782–790. 
http://doi.org/10.1038/nn.3708 

Greig, L. C., Woodworth, M. B., Galazo, M. J., Padmanabhan, H., & Macklis, J. D. (2013). Molecular logic of 
neocortical projection neuron specification, development and diversity. Nature Reviews Neuroscience, 
14(11), 755–769. http://doi.org/10.1038/nrn3586 

Griesi-Oliveira, K., Acab, A., Gupta,  a R., Sunaga, D. Y., Chailangkarn, T., Nicol, X., … Muotri,  a R. (2014). 
Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons. Molecular 
Psychiatry, 20(March), 1–16. http://doi.org/10.1038/mp.2014.141 

Gross, C., Nakamoto, M., Yao, X., Chan, C.-B., Yim, S. Y., Ye, K., … Bassell, G. J. (2010). Excess 
Phosphoinositide 3-Kinase Subunit Synthesis and Activity as a Novel Therapeutic Target in Fragile X 
Syndrome. Journal of Neuroscience, 30(32), 10624–10638. http://doi.org/10.1523/JNEUROSCI.0402-
10.2010 

Grozeva, D., Conrad, D. F., Barnes, C. P., Hurles, M., Owen, M. J., O’Donovan, M. C., … Kirov, G. (2012). 
Independent estimation of the frequency of rare CNVs in the UK population confirms their role in 
schizophrenia. Schizophrenia Research, 135(1–3), 1–7. http://doi.org/10.1016/j.schres.2011.11.004 

Gu, F., Chauhan, V., & Chauhan, A. (2013). Impaired synthesis and antioxidant defense of glutathione in the 
cerebellum of autistic subjects: Alterations in the activities and protein expression of glutathione-
related enzymes. Free Radical Biology and Medicine, 65, 488–496. 
http://doi.org/10.1016/j.freeradbiomed.2013.07.021 

Gu, W., Zhang, F., & Lupski, J. R. (2008). Mechanisms for human genomic rearrangements. PathoGenetics, 
1(1), 4. http://doi.org/10.1186/1755-8417-1-4 

Hirabayashi, Y., Itoh, Y., Tabata, H., Nakajima, K., Akiyama, T., Masuyama, N., & Gotoh, Y. (2004). The 
Wnt/beta-catenin pathway directs neuronal differentiation of cortical neural precursor cells. 
Development, 131(12), 2791–801. http://doi.org/10.1242/dev.01165 

Hirano, S., & Takeichi, M. (2012). Cadherins in Brain Morphogenesis and Wiring. Physiological Reviews, 
92(2), 597–634. http://doi.org/10.1152/physrev.00014.2011 

Hosak, L. (2013). New findings in the genetics of schizophrenia. World Journal of Psychiatry, 3(3), 57–61. 
http://doi.org/10.5498/wjp.v3.i3.57 

Hsu, L. C.-L., Nam, S., Cui, Y., Chang, C.-P., Wang, C.-F., Kuo, H.-C., … Chou, S.-J. (2015). Lhx2 regulates the 
timing of β-catenin-dependent cortical neurogenesis. Proceedings of the National Academy of 
Sciences, 112(39), 12199–12204. http://doi.org/10.1073/pnas.1507145112 

Hu, K. (2014). All Roads Lead to Induced Pluripotent Stem Cells: The Technologies of iPSC Generation. Stem 
Cells and Development, 23(12), 1285–1300. http://doi.org/10.1089/scd.2013.0620 

Hu, W., Qiu, B., Guan, W., Wang, Q., Wang, M., Li, W., … Pei, G. (2015). Direct Conversion of Normal and 
Alzheimer’s Disease Human Fibroblasts into Neuronal Cells by Small Molecules. Cell Stem Cell, 17(2), 
204–212. http://doi.org/10.1016/j.stem.2015.07.006 

Huang, S.-M. A., Mishina, Y. M., Liu, S., Cheung, A., Stegmeier, F., Michaud, G. A., … Cong, F. (2009). 
Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature, 461(7264), 614–620. 
http://doi.org/10.1038/nature08356 

Huangfu, D., Maehr, R., Guo, W., Eijkelenboom, A., Snitow, M., Chen, A. E., & Melton, D. a. (2008). Induction 
of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nature 
Biotechnology, 26(7), 795–7. http://doi.org/10.1038/nbt1418 

Hutsler, J. J., & Zhang, H. (2010). Increased dendritic spine densities on cortical projection neurons in autism 
spectrum disorders. Brain Research, 1309, 83–94. http://doi.org/10.1016/j.brainres.2009.09.120 

Iefremova, V., Manikakis, G., Krefft, O., Jabali, A., Weynans, K., Wilkens, R., … Ladewig, J. (2017). An 
Organoid-Based Model of Cortical Development Identifies Non-Cell-Autonomous Defects in Wnt 
Signaling Contributing to Miller-Dieker Syndrome. Cell Reports, 19(1), 50–59. 



119 
 

http://doi.org/10.1016/j.celrep.2017.03.047 

Ikeda, M., Iwata, N., Suzuki, T., Kitajima, T., Yamanouchi, Y., Kinoshita, Y., … Ozaki, N. (2004). Association of 
AKT1 with schizophrenia confirmed in a Japanese population. Biological Psychiatry, 56(9), 698–700. 
http://doi.org/10.1016/j.biopsych.2004.07.023 

Imayoshi, I., Sakamoto, M., Yamaguchi, M., Mori, K., & Kageyama, R. (2010). Essential Roles of Notch 
Signaling in Maintenance of Neural Stem Cells in Developing and Adult Brains. Journal of 
Neuroscience, 30(9), 3489–3498. http://doi.org/10.1523/JNEUROSCI.4987-09.2010 

Inan, M., Zhao, M., Manuszak, M., Karakaya, C., Rajadhyaksha, A. M., Pickel, V. M., … Manfredi, G. (2016). 
Energy deficit in parvalbumin neurons leads to circuit dysfunction, impaired sensory gating and social 
disability. Neurobiology of Disease, 93, 35–46. http://doi.org/10.1016/j.nbd.2016.04.004 

Ingason, A., Rujescu, D., Cichon, S., Sigurdsson, E., Sigmundsson, T., Pietiläinen, O. P. H., … Clair, D. M. S. 
(2011). Copy number variations of chromosome 16p13.1 region associated with schizophrenia. 
Molecular Psychiatry, 16(1), 17–25. http://doi.org/10.1038/mp.2009.101 

Insolera, R., Chen, S., & Shi, S.-H. (2011). Par proteins and neuronal polarity. Developmental Neurobiology, 
42(1), 115–125. http://doi.org/10.1086/498510.Parasitic 

Iossifov, I., Ronemus, M., Levy, D., Wang, Z., Hakker, I., Rosenbaum, J., … Wigler, M. (2012). De Novo Gene 
Disruptions in Children on the Autistic Spectrum. Neuron, 74(2), 285–299. 
http://doi.org/10.1016/j.neuron.2012.04.009 

Itsara, A., Cooper, G. M., Baker, C., Girirajan, S., Li, J., Absher, D., … Eichler, E. E. (2009). Population Analysis 
of Large Copy Number Variants and Hotspots of Human Genetic Disease. The American Journal of 
Human Genetics, 84(2), 148–161. http://doi.org/10.1016/j.ajhg.2008.12.014 

Jaeger, I., Arber, C., Risner-Janiczek, J. R., Kuechler, J., Pritzsche, D., Chen, I.-C., … Li, M. (2011). Temporally 
controlled modulation of FGF/ERK signaling directs midbrain dopaminergic neural progenitor fate in 
mouse and human pluripotent stem cells. Development (Cambridge, England), 138(20), 4363–74. 
http://doi.org/10.1242/dev.066746 

James, S. J., Rose, S., Melnyk, S., Jernigan, S., Blossom, S., Pavliv, O., & Gaylor, D. W. (2009). Cellular and 
mitochondrial glutathione redox imbalance in lymphoblastoid cells derived from children with autism. 
The FASEB Journal, 23(8), 2374–2383. http://doi.org/10.1096/fj.08-128926 

Jaworski, J. (2005). Control of Dendritic Arborization by the Phosphoinositide-3’-Kinase-Akt-Mammalian 
Target of Rapamycin Pathway. Journal of Neuroscience, 25(49), 11300–11312. 
http://doi.org/10.1523/JNEUROSCI.2270-05.2005 

Jerkovich, A. M., & Butler, M. G. (2014). Further phenotypic expansion of 15q11.2 BP1-BP2 microdeletion 
(Burnside-Butler) syndrome. Journal of Pediatric Genetics, 3(1), 41–44. http://doi.org/10.3233/PGE-
14082 

Jevtić, P., Edens, L. J., Vuković, L. D., & Levy, D. L. (2014). Sizing and shaping the nucleus: Mechanisms and 
significance. Current Opinion in Cell Biology, 28(1), 16–27. http://doi.org/10.1016/j.ceb.2014.01.003 

Jia, S., Mou, C., Ma, Y., Han, R., & Li, X. (2016). Magnesium regulates neural stem cell proliferation in the 
mouse hippocampus by altering mitochondrial function. Cell Biology International, 40(4), 465–471. 
http://doi.org/10.1002/cbin.10569 

Jiang, Y., Zhang, Y., Zhang, P., Sang, T., Zhang, F., Ji, T., … Wu, X. (2012). NIPA2 located in 15q11.2 is mutated 
in patients with childhood absence epilepsy. Human Genetics, 131(7), 1217–1224. 
http://doi.org/10.1007/s00439-012-1149-3 

Jiang, Y., Zhang, Y., Zhang, P., Zhang, F., Xie, H., Chan, P., & Wu, X. (2014). NIPA2 mutations are correlative 
with childhood absence epilepsy in the Han Chinese population. Human Genetics, 133(5), 675–676. 
http://doi.org/10.1007/s00439-014-1428-2 

Jiao, Z., Zhang, Z. G., Hornyak, T. J., Hozeska, A., Zhang, R. L., Wang, Y., … Chopp, M. (2006). Dopachrome 
tautomerase (Dct) regulates neural progenitor cell proliferation. Developmental Biology, 296(2), 396–



120 
 

408. http://doi.org/10.1016/j.ydbio.2006.06.006 

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A Programmable Dual-
RNA – Guided, 337(August), 816–822. http://doi.org/10.1126/science.1225829 

Jinek, M., East, A., Cheng, A., Lin, S., Ma, E., & Doudna, J. (2013). RNA-programmed genome editing in 
human cells. eLife, 2013(2), 1–9. http://doi.org/10.7554/eLife.00471 

Jones, C., Watson, D., & Fone, K. (2011). Animal models of schizophrenia. British Journal of Pharmacology, 
164(4), 1162–1194. http://doi.org/10.1111/j.1476-5381.2011.01386.x 

Kageyama, R., Ohtsuka, T., Shimojo, H., & Imayoshi, I. (2008). Dynamic Notch signaling in neural progenitor 
cells and a revised view of lateral inhibition. Nature Neuroscience, 11(11), 1247–1251. 
http://doi.org/10.1038/nn.2208 

Kalkman, H. O. (2006). The role of the phosphatidylinositide 3-kinase-protein kinase B pathway in 
schizophrenia. Pharmacology and Therapeutics, 110(1), 117–134. 
http://doi.org/10.1016/j.pharmthera.2005.10.014 

Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., & Tanabe, M. (2012). KEGG for integration and 
interpretation of large-scale molecular data sets. Nucleic Acids Research, 40(D1), 109–114. 
http://doi.org/10.1093/nar/gkr988 

Kann, O., Papageorgiou, I. E., & Draguhn, A. (2014). Highly energized inhibitory interneurons are a central 
element for information processing in cortical networks. Journal of Cerebral Blood Flow and 
Metabolism, 34(8), 1270–1282. http://doi.org/10.1038/jcbfm.2014.104 

Kato, T. (2015). Whole genome/exome sequencing in mood and psychotic disorders. Psychiatry and Clinical 
Neurosciences, 69(2), 65–76. http://doi.org/10.1111/pcn.12247 

Khacho, M., Clark, A., Svoboda, D. S., Azzi, J., MacLaurin, J. G., Meghaizel, C., … Slack, R. S. (2015). 
Mitochondrial Dynamics Impacts Stem Cell Identity and Fate Decisions by Regulating a Nuclear 
Transcriptional Program. Cell Stem Cell, 19(2), 232–247. http://doi.org/10.1016/j.stem.2016.04.015 

Kim, K. Y., Hysolli, E., & Park, I. H. (2011). Neuronal maturation defect in induced pluripotent stem cells from 
patients with Rett syndrome. Proc Natl Acad Sci U S A, 108(34), 14169–14174. 
http://doi.org/10.1073/pnas.1018979108 

Kim, Y. S., & Leventhal, B. L. (2015). Genetic epidemiology and insights into interactive genetic and 
environmental effects in autism spectrum disorders. Biological Psychiatry, 77(1), 66–74. 
http://doi.org/10.1016/j.biopsych.2014.11.001 

Kirkeby, A., Grealish, S., Wolf, D. A., Nelander, J., Wood, J., Lundblad, M., … Parmar, M. (2012). Generation 
of Regionally Specified Neural Progenitors and Functional Neurons from Human Embryonic Stem Cells 
under Defined Conditions. Cell Reports, 1(6), 703–714. http://doi.org/10.1016/j.celrep.2012.04.009 

Kirov, G. (2015). CNVs in neuropsychiatric disorders. Human Molecular Genetics, 24(R1), R45–R49. 
http://doi.org/10.1093/hmg/ddv253 

Kirov, G., Grozeva, D., Norton, N., Ivanov, D., Mantripragada, K. K., Holmans, P., … O’Donovan, M. C. (2009). 
Support for the involvement of large copy number variants in the pathogenesis of schizophrenia. 
Human Molecular Genetics, 18(8), 1497–1503. http://doi.org/10.1093/hmg/ddp043 

Kirov, G., Rees, E., Walters, J. T. R., Escott-Price, V., Georgieva, L., Richards, A. L., … Owen, M. J. (2014a). The 
penetrance of copy number variations for schizophrenia and developmental delay. Biological 
Psychiatry, 75(5), 378–385. http://doi.org/10.1016/j.biopsych.2013.07.022 

Kirov, G., Rees, E., Walters, J. T. R., Escott-Price, V., Georgieva, L., Richards, A. L., … Owen, M. J. (2014b). The 
penetrance of copy number variations for schizophrenia and developmental delay. Biological 
Psychiatry, 75(5), 378–385. http://doi.org/10.1016/j.biopsych.2013.07.022 

Kirwan, P., Turner-Bridger, B., Peter, M., Momoh,  a., Arambepola, D., Robinson, H. P. C., & Livesey, F. J. 
(2015). Development and function of human cerebral cortex neural networks from pluripotent stem 



121 
 

cells in vitro. Development, 142(18), 3178–3187. http://doi.org/10.1242/dev.123851 

Kobayashi, K., Kuroda, S., Fukata, M., Nakamura, T., Nagase, T., Nomura, N., … Kaibuchi, K. (1998). p140Sra-
1 (specifically Rac1-associated protein) is a novel specific target for Rac1 small GTPase. Journal of 
Biological Chemistry, 273(1), 291–295. http://doi.org/10.1074/jbc.273.1.291 

Kriks, S., Shim, J. W., Piao, J., Ganat, Y. M., Wakeman, D. R., Xie, Z., … Studer, L. (2011). Dopamine neurons 
derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature, 
480(7378), 547–551. http://doi.org/10.1038/nature10648; 10.1038/nature10648 

Kwon, J., & Goate, A. (2000). The candidate gene approach. Alcohol Res Health, 24(3), 164–168. 
http://doi.org/10.1177/004057368303900411 

La Fata, G., Gärtner, A., Domínguez-Iturza, N., Dresselaers, T., Dawitz, J., Poorthuis, R. B., … Bagni, C. (2014). 
FMRP regulates multipolar to bipolar transition affecting neuronal migration and cortical circuitry. 
Nature Neuroscience, 17(12), 1693–1700. http://doi.org/10.1038/nn.3870 

Ladewig, J., Mertens, J., Kesavan, J., Doerr, J., Poppe, D., Glaue, F., … Brüstle, O. (2012). Small molecules 
enable highly efficient neuronal conversion of human fibroblasts. Nature Methods, 9(6), 575–578. 
http://doi.org/10.1038/nmeth.1972 

Laguesse, S., Peyre, E., & Nguyen, L. (2014). Progenitor genealogy in the developing cerebral cortex. Cell and 
Tissue Research, 359(1), 17–32. http://doi.org/10.1007/s00441-014-1979-5 

Lancaster, M. A., & Knoblich, J. A. (2014). Generation of cerebral organoids from human pluripotent stem 
cells. Nature Protocols, 9(10), 2329–2340. http://doi.org/10.1038/nprot.2014.158 

Lander, E., & Kruglyak, L. (1995). Genetic dissection of complex traits: guidelines for interpreting and 
reporting linkage results. Nature Genetics, 11(3), 241–247. http://doi.org/10.1038/ng1195-241 

Lauritsen, M., Mors, O., Mortensen, P. B., & Ewald, H. (1999). Infantile autism and associated autosomal 
chromosome abnormalities: a register-based study and a literature survey. Lauritsen, M., Mors, O., 
Mortensen, P. B., & Ewald, H. (1999). Infantile Autism and Associated Autosomal Chromosome 
Abnormalities: A Register-Based Study and a Literature Survey. Journal of Child Psychology and 
Psychiatry, and Allied Disciplines, 40(3), 3, 40(3), 335–45. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/10190335 

Le Belle, J., Orozco, N. M., Paucar, A., Saxe, J. P., Mottahedeh, J., Pyle, A. D., … Kornblum, H. (2011). 
Proliferative Neural Stem Cells Have High Endogenous ROS Levels that Regulate Self-Renewal and 
Neurogenesis in a PI3K/ Akt-Dependant Manner. Cell Stem Cell, 8(1), 59–71. 
http://doi.org/10.1016/j.stem.2010.11.028. 

Lee, H.-C., & Wei, Y.-H. (2005). Mitochondrial biogenesis and mitochondrial DNA maintenance of 
mammalian cells under oxidative stress. The International Journal of Biochemistry & Cell Biology, 
37(4), 822–834. http://doi.org/10.1016/j.biocel.2004.09.010 

Leonard, A. P., Cameron, R. B., Speiser, J. L., Wolf, B. J., Peterson, Y. K., Schnellmann, R. G., … Rohrer, B. 
(2015). Quantitative analysis of mitochondrial morphology and membrane potential in living cells 
using high-content imaging, machine learning, and morphological binning. Biochimica et Biophysica 
Acta - Molecular Cell Research, 1853(2), 348–360. http://doi.org/10.1016/j.bbamcr.2014.11.002 

Levchenko, A., Davtian, S., Freylichman, O., Zagrivnaya, M., Kostareva, A., & Malashichev, Y. (2015). Beta-
catenin in schizophrenia: Possibly deleterious novel mutation. Psychiatry Research, 228(3), 843–848. 
http://doi.org/10.1016/j.psychres.2015.05.014 

Levinson, D. F., Duan, J., Oh, S., Wang, K., Sanders, A. R., Shi, J., … Gejman, P. V. (2011). Copy number 
variants in schizophrenia: Confirmation of five previous finding sand new evidence for 3q29 
microdeletions and VIPR2 duplications. American Journal of Psychiatry, 168(3), 302–316. 
http://doi.org/10.1176/appi.ajp.2010.10060876 

Lewis, D. a, Curley, A. a, Glausier, J. R., & Volk, D. W. (2012). Cortical parvalbumin interneurons and 
cognitive dysfunction in schizophrenia. Trends in Neurosciences, 35(1), 57–67. 
http://doi.org/10.1016/j.tins.2011.10.004 



122 
 

Li, B., Woo, R. S., Mei, L., & Malinow, R. (2007). The Neuregulin-1 Receptor ErbB4 Controls Glutamatergic 
Synapse Maturation and Plasticity. Neuron, 54(4), 583–597. 
http://doi.org/10.1016/j.neuron.2007.03.028 

Li, X.-J., Zhang, X., Johnson, M. A., Wang, Z.-B., Lavaute, T., & Zhang, S.-C. (2009). Coordination of sonic 
hedgehog and Wnt signaling determines ventral and dorsal telencephalic neuron types from human 
embryonic stem cells. Development (Cambridge, England), 136(23), 4055–4063. 
http://doi.org/10.1242/dev.036624 

Liao, W., Jiang, M., Li, M., Jin, C., Xiao, S., Fan, S., … Liu, J. (2017). Magnesium elevation promotes neuronal 
differentiation while suppressing glial differentiation of primary cultured adult mouse neural 
progenitor cells through ERK/CREB activation. Frontiers in Neuroscience, 11(FEB). 
http://doi.org/10.3389/fnins.2017.00087 

Liao, Y., Smyth, G. K., & Shi, W. (2014). FeatureCounts: An efficient general purpose program for assigning 
sequence reads to genomic features. Bioinformatics, 30(7), 923–930. 
http://doi.org/10.1093/bioinformatics/btt656 

Liew, C.-G., Draper, J. S., Walsh, J., Moore, H., & Andrews, P. W. (2007). Transient and Stable Transgene 
Expression in Human Embryonic Stem Cells. Stem Cells, 25(6), 1521–1528. 
http://doi.org/10.1634/stemcells.2006-0634 

Lin-Hendel, E. G., McManus, M. J., Wallace, D. C., Anderson, S. A., & Golden, J. A. (2016). Differential 
Mitochondrial Requirements for Radially and Non-radially Migrating Cortical Neurons: Implications for 
Mitochondrial Disorders. Cell Reports, 15(2), 1–9. http://doi.org/10.1016/j.celrep.2016.03.024 

Lin, M., Pedrosa, E., Hrabovsky, A., Chen, J., Puliafito, B. R., Gilbert, S. R., … Lachman, H. M. (2016). 
Integrative transcriptome network analysis of iPSC-derived neurons from schizophrenia and 
schizoaffective disorder patients with 22q11.2 deletion. BMC Systems Biology, 10(1), 105. 
http://doi.org/10.1186/s12918-016-0366-0 

Liu, C., Li, Y., Semenov, M., Han, C., Baeg, G., Tan, Y., … Signaling, C. (2002). Control of beta-Catenin 
Phosphorylation / Degradation by a Dual-Kinase Mechanism, 108, 837–847. 

Liu, X., Shimada, T., Otowa, T., Wu, Y.-Y., Kawamura, Y., Tochigi, M., … Gau, S. S.-F. (2015). Genome-wide 
association study of autism spectrum disorder in the east asian populations. Autism Research Aug, 
(Pagination), No Pagination Specified. http://doi.org/10.1002/aur.1536 

Liu, Y., Liu, H., Sauvey, C., Yao, L., Zarnowska, E. D., & Zhang, S.-C. (2013). Directed differentiation of 
forebrain GABA interneurons from human pluripotent stem cells. Nature Protocols, 8(9), 1670–9. 
http://doi.org/10.1038/nprot.2013.106 

Liu, Y., Weick, J. P., Liu, H., Krencik, R., Zhang, X., Ma, L., … Zhang, S.-C. (2013). Medial ganglionic eminence-
like cells derived from human embryonic stem cells correct learning and memory deficits. Nature 
Biotechnology, 31(5), 440–7. http://doi.org/10.1038/nbt.2565 

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time 
Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402–408. 
http://doi.org/10.1006/meth.2001.1262 

Locke, D. P., Segraves, R., Nicholls, R. D., Schwartz, S., Pinkel, D., Albertson, D. G., & Eichler, E. E. (2004). BAC 
microarray analysis of 15q11-q13 rearrangements and the impact of segmental duplications. Journal 
of Medical Genetics, 41(3), 175–182. http://doi.org/10.1136/jmg.2003.013813 

Loh, Y., Agarwal, S., Park, I., Urbach, A., Huo, H., Heffner, G. C., … Daley, G. Q. (2009). Generation of induced 
pluripotent stem cells from human blood. Hematopoiesis and Stem Cells, 113(22), 1–3. 
http://doi.org/10.1182/blood-2009-02-204800.The 

Luo, Y., Shan, G., Guo, W., Smrt, R. D., Johnson, E. B., Li, X., … Zhao, X. (2010). Fragile X mental retardation 
protein regulates proliferation and differentiation of adult neural stem/progenitor cells. PLoS 
Genetics, 6(4). http://doi.org/10.1371/journal.pgen.1000898 

Ma, D., Salyakina, D., Jaworski, J. M., Konidari, I., Whitehead, P. L., Andersen, A. N., … Pericak-Vance, M. A. 



123 
 

(2009). A genome-wide association study of autism reveals a common novel risk locus at 5p14.1. 
Annals of Human Genetics, 73(3), 263–273. http://doi.org/10.1111/j.1469-1809.2009.00523.x 

Ma, L., Hu, B., Liu, Y., Vermilyea, S. C., Liu, H., Gao, L., … Zhang, S. C. (2012). Human embryonic stem cell-
derived GABA neurons correct locomotion deficits in quinolinic acid-lesioned mice. Cell Stem Cell, 
10(4), 455–464. http://doi.org/10.1016/j.stem.2012.01.021 

MacArthur, C. C., Fontes, A., Ravinder, N., Kuninger, D., Kaur, J., Bailey, M., … Lieu, P. T. (2012). Generation 
of human-induced pluripotent stem cells by a nonintegrating RNA Sendai virus vector in feeder-free 
or xeno-free conditions. Stem Cells International, 2012. http://doi.org/10.1155/2012/564612 

Madrigal, I., Rodríguez-Revenga, L., Xunclà, M., & Milà, M. (2012). 15q11.2 microdeletion and FMR1 
premutation in a family with intellectual disabilities and autism. Gene, 508(1), 92–95. 
http://doi.org/10.1016/j.gene.2012.07.023 

Maggio, I., Holkers, M., Liu, J., Janssen, J. M., Chen, X., & Gonçalves, M. a F. V. (2014). Adenoviral vector 
delivery of RNA-guided CRISPR/Cas9 nuclease complexes induces targeted mutagenesis in a diverse 
array of human cells. Scientific Reports, 4, 5105. http://doi.org/10.1038/srep05105 

Malhotra, D., & Sebat, J. (2012). CNVs: Harbingers of a rare variant revolution in psychiatric genetics. Cell, 
148(6), 1223–1241. http://doi.org/10.1016/j.cell.2012.02.039 

Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., … Church, G. M. (2013). RNA-Guided Human 
Genome Engineering via Cas9_Sup. Science, 339(February), 823–6. 
http://doi.org/10.1126/science.1232033 

Marchetto, M. C., Belinson, H., Tian, Y., Freitas, B. C., Fu, C., Vadodaria, K. C., … Muotri, A. R. (2016). Altered 
proliferation and networks in neural cells derived from idiopathic autistic individuals. Molecular 
Psychiatry, (May 2016), 820–835. http://doi.org/10.1038/mp.2016.95 

Marchetto, M. C. N., Carromeu, C., Acab, A., Yu, D., Yeo, G. W., Mu, Y., … Muotri, A. R. (2010). A model for 
neural development and treatment of rett syndrome using human induced pluripotent stem cells. 
Cell, 143(4), 527–539. http://doi.org/10.1016/j.cell.2010.10.016 

Mariani, J., Coppola, G., Zhang, P., Abyzov, A., Provini, L., Tomasini, L., … Vaccarino, F. M. (2015). FOXG1-
Dependent Dysregulation of GABA/Glutamate Neuron Differentiation in Autism Spectrum Disorders. 
Cell, 162(2), 375–390. http://doi.org/10.1016/j.cell.2015.06.034 

Mariani, J., Vittoria, M., Palejev, D., & Tomasini, Livia; Coppola, G.; Szekely, A.M.; Horvath, T.L.; Vaccarino, 
M. V. (2012). Modeling human cortical development in vitro using induced pluripotent stem cells. 
Proceedings of the National Academy of Sciences, 109(31), 12770–12775. 
http://doi.org/10.1073/pnas.1202944109/-
/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1202944109 

Marín, O. (2012). Interneuron dysfunction in psychiatric disorders. Nature Reviews Neuroscience, 13(2), 
107–120. http://doi.org/10.1038/nrn3155 

Marín, O., & Müller, U. (2014). Lineage origins of GABAergic versus glutamatergic neurons in the neocortex. 
Current Opinion in Neurobiology, 26(Figure 1), 132–141. http://doi.org/10.1016/j.conb.2014.01.015 

Markou, A., Chiamulera, C., Geyer, M. A., Tricklebank, M., & Steckler, T. (2009). Removing obstacles in 
neuroscience drug discovery: The future path for animal models. Neuropsychopharmacology, 
34173(1), 74–89. http://doi.org/10.1038/npp.2008.173 

Maroof, A. M., Keros, S., Tyson, J. a, Ying, S.-W., Ganat, Y. M., Merkle, F. T., … Studer, L. (2013). Directed 
differentiation and functional maturation of cortical interneurons from human embryonic stem cells. 
Cell Stem Cell, 12(5), 559–72. http://doi.org/10.1016/j.stem.2013.04.008 

Marshall, C. R., Noor, A., Vincent, J. B., Lionel, A. C., Feuk, L., Skaug, J., … Scherer, S. W. (2008a). Structural 
variation of chromosomes in autism spectrum disorder. Journal of Human Genetics, (February), 477–
488. http://doi.org/10.1016/j.ajhg.2007.12.009. 

Marshall, C. R., Noor, A., Vincent, J. B., Lionel, A. C., Feuk, L., Skaug, J., … Scherer, S. W. (2008b). Structural 



124 
 

variation of chromosomes in autism spectrum disorder. Journal of Human Genetics, (February), 477–
488. http://doi.org/10.1016/j.ajhg.2007.12.009. 

Martin, P.-M., Yang, X., Robin, N., Lam, E., Rabinowitz, J. S., Erdman, C. A., … Cheyette, B. N. R. (2013). A rare 
WNT1 missense variant overrepresented in ASD leads to increased Wnt signal pathway activation. 
Translational Psychiatry, 3(9), e301. http://doi.org/10.1038/tp.2013.75 

Martynoga, B., Drechsel, D., Guillemot, F., Ochoa-espinosa, A., Affolter, M., Fedoriw, A., & Mugford, J. 
(2012). Molecular Control of Neurogenesis : A View from the Mammalian Cerebral Cortex Molecular 
Control of Neurogenesis : AView from the Mammalian Cerebral Cortex. Cold Spring Harbor 
Perspectives in Biology, 4, 1–14. http://doi.org/10.1101/cshperspect.a008359 

Marui, T., Funatogawa, I., Koishi, S., Yamamoto, K., Matsumoto, H., Hashimoto, O., … Kato, N. (2010). 
Association between autism and variants in the wingless-type MMTV integration site family member 
2 ( WNT2) gene. The International Journal of Neuropsychopharmacology, 13(4), 443. 
http://doi.org/10.1017/S1461145709990903 

Masui, S., Nakatake, Y., Toyooka, Y., Shimosato, D., Yagi, R., Takahashi, K., … Niwa, H. (2007). Pluripotency 
governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol, 
9(6), 625-U26. http://doi.org/Doi 10.1038/Ncb1589 

Mattar, P., Langevin, L. M., Markham, K., Klenin, N., Shivji, S., Zinyk, D., & Schuurmans, C. (2008). Basic 
Helix-Loop-Helix Transcription Factors Cooperate To Specify a Cortical Projection Neuron Identity. 
Molecular and Cellular Biology, 28(5), 1456–1469. http://doi.org/10.1128/MCB.01510-07 

McCarroll, S. A. (2008). Extending genome-wide association studies to copy-number variation. Human 
Molecular Genetics, 17(R2), 135–142. http://doi.org/10.1093/hmg/ddn282 

McCarthy, S. E., Makarov, V., Kirov, G., Addington, A. M., McClellan, J., Yoon, S., … Sebat, J. (2009). 
Microduplications of 16p11.2 are associated with schizophrenia. Nature Genetics, 41(11), 1223–1227. 
http://doi.org/10.1038/ng.474 

McCauley, J. L., Li, C., Jiang, L., Olson, L. M., Crockett, G., Gainer, K., … Sutcliffe, J. S. (2005). Genome-wide 
and Ordered-Subset linkage analyses provide support for autism loci on 17q and 19p with evidence of 
phenotypic and interlocus genetic correlates. Lauritsen, M., Mors, O., Mortensen, P. B., & Ewald, H. 
(1999). Infantile Autism and Associated Autosomal Chromosome Abnormalities: A Register-Based 
Study and a Literature Survey. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 40(3), 
3, 6, 1. http://doi.org/10.1186/1471-2350-6-1 

McKavanagh, R., Buckley, E., & Chance, S. A. (2015). Wider minicolumns in autism: A neural basis for altered 
processing? Brain, 138(7), 2034–2045. http://doi.org/10.1093/brain/awv110 

Mckenna, W. L., Betancourt, J., Larkin, K. A., Abrams, B., Guo, C., Rubenstein, J. L. R., & Chen, B. (2011). Tbr1 
and Fezf2 Regulate Alternate Corticofugal Neuronal Identities during Neocortical Development, 31(2), 
549–564. http://doi.org/10.1523/JNEUROSCI.4131-10.2011 

McLysaght, A., Makino, T., Grayton, H. M., Tropeano, M., Mitchell, K. J., Vassos, E., & Collier, D. a. (2014). 
Ohnologs are overrepresented in pathogenic copy number mutations. Proceedings of the National 
Academy of Sciences of the United States of America, 111(1), 361–6. 
http://doi.org/10.1073/pnas.1309324111 

Mendoza, M. C. (2013). Phosphoregulation of the WAVE regulatory complex and signal integration. 
Seminars in Cell and Developmental Biology, 24(4), 272–279. 
http://doi.org/10.1016/j.semcdb.2013.01.007 

Merla, G., Brunetti-Pierri, N., Micale, L., & Fusco, C. (2010). Copy number variants at Williams-Beuren 
syndrome 7q11.23 region. Human Genetics, 128(1), 3–26. http://doi.org/10.1007/s00439-010-0827-2 

Mertens, J., Wang, Q.-W., Kim, Y., Yu, D. X., Pham, S., Yang, B., … Yao, J. (2015). Differential responses to 
lithium in hyperexcitable neurons from patients with bipolar disorder. Nature, 527(7576), 95–99. 
http://doi.org/10.1038/nature15526 

Millar, J. K., Wilson-Annan, J. C., Anderson, S., Christie, S., Taylor, M. S., Semple, C. a, … Porteous, D. J. 



125 
 

(2000). Disruption of two novel genes by a translocation co-segregating with schizophrenia. Human 
Molecular Genetics, 9(9), 1415–1423. http://doi.org/10.1093/hmg/9.9.1415 

Miyamoto, Y., Sakane, F., & Hashimoto, K. (2015). N-cadherin-based adherens junction regulates the 
maintenance, proliferation, and  differentiation of neural progenitor cells during development. Cell 
Adhesion & Migration, 9(3), 183–192. http://doi.org/10.1080/19336918.2015.1005466 

Miyaoka, T., Seno, H., & Ishino, H. (1999). Increased expression of Wnt-1 in schizophrenic brains. 
Schizophrenia Research, 38(1), 1–6. http://doi.org/10.1016/S0920-9964(98)00179-0 

Moises, H. ., Yang, L., Kristbjarnarson, H., Wiese, C., Kidd, K. K., & Helgason, T. (1995). An international two-
stage genome-wide search for schizophrenia susceptibility genes. Nature Genetics, 10, 196–201. 
http://doi.org/10.1038/ng0595-111 

Montserrat, N., Garreta, E., González, F., Gutiérrez, J., Eguizábal, C., Ramos, V., … Belmonte, J. C. I. (2011). 
Simple generation of human induced pluripotent stem cells using poly-??-amino esters as the non-
viral gene delivery system. Journal of Biological Chemistry, 286(14), 12417–12428. 
http://doi.org/10.1074/jbc.M110.168013 

Moon, R. T., Kohn, A. D., De Ferrari, G. V, & Kaykas, A. (2004). WNT and beta-catenin signalling: diseases 
and therapies. Nature Reviews. Genetics, 5(9), 691–701. http://doi.org/10.1038/nrg1427 

Mulle, J. G., Dodd, A. F., McGrath, J. A., Wolyniec, P. S., Mitchell, A. A., Shetty, A. C., … Warren, S. T. (2010). 
Microdeletions of 3q29 confer high risk for schizophrenia. American Journal of Human Genetics, 87(2), 
229–236. http://doi.org/10.1016/j.ajhg.2010.07.013 

Murphy, K. C., Jones, L. A., & Owen, M. J. (1999). High Rates of Schizophrenia in Adults With Velo-Cardio-
Facial Syndrome. Archives of General Psychiatry, 56(10), 940. 
http://doi.org/10.1001/archpsyc.56.10.940 

Murphy, S. M., Preble,  a M., Patel, U. K., O’Connell, K. L., Dias, D. P., Moritz, M., … Stearns, T. (2001). GCP5 
and GCP6: two new members of the human gamma-tubulin complex. Molecular Biology of the Cell, 
12(11), 3340–52. http://doi.org/10.1091/mbc.12.11.3340 

Murthy, S. K., Nygren, A. O. H., El Shakankiry, H. M., Schouten, J. P., Al Khayat, A. I., Ridha, A., & Al Ali, M. T. 
(2007). Detection of a novel familial deletion of four genes between BP1 and BP2 of the Prader-
Willi/Angelman syndrome critical region by oligo-array CGH in a child with neurological disorder and 
speech impairment. Cytogenetic and Genome Research, 116(1–2), 135–140. 
http://doi.org/10.1159/000097433 

Nadarajah, B., Brunstrom, J. E., Grutzendler, J., Wong, R. O., & Pearlman,  a L. (2001). Two modes of radial 
migration in early development of the cerebral cortex. Nature Neuroscience, 4(2), 143–150. 
http://doi.org/10.1038/83967 

Nakanishi, M., & Otsu, M. (2012). Development of Sendai virus vectors and their potential applications in 
gene therapy and regenerative medicine. Current Gene Therapy, 12(5), 410–6. 
http://doi.org/10.2174/156652312802762518 

Napoli, I., Mercaldo, V., Boyl, P. P., Eleuteri, B., Zalfa, F., De Rubeis, S., … Bagni, C. (2008). The Fragile X 
Syndrome Protein Represses Activity-Dependent Translation through CYFIP1, a New 4E-BP. Cell, 
134(6), 1042–1054. http://doi.org/10.1016/j.cell.2008.07.031 

Nebel, R. A., Zhao, D., Pedrosa, E., Kirschen, J., Lachman, H. M., Zheng, D., & Abrahams, B. S. (2016). 
Reduced CYFIP1 in Human Neural Progenitors Results in Dysregulation of Schizophrenia and Epilepsy 
Gene Networks. Plos One, 11(1), e0148039. http://doi.org/10.1371/journal.pone.0148039 

Nelson, S. B., Sugino, K., & Hempel, C. M. (2006). The problem of neuronal cell types: a physiological 
genomics approach. Trends in Neurosciences, 29(6), 339–345. 
http://doi.org/10.1016/j.tins.2006.05.004 

Nelson, W. J. (2004). Convergence of Wnt,  -Catenin, and Cadherin Pathways. Science, 303(5663), 1483–
1487. http://doi.org/10.1126/science.1094291 



126 
 

Nestler, E., & Hyman, S. (2010). Animal models of neuropsychiatric disorders. Nature Neuroscience, 13(10), 
1161–1169. http://doi.org/10.1038/nn.2647.Animal 

Nguyen, L., Besson, A., Heng, J. I., Schuurmans, C., Teboul, L., Parras, C., … Guillemot, F. (2006). p27kip1 
independently promotes neuronal differentiation and migration in the cerebral cortex. Genes and 
Development, 1511–1524. http://doi.org/10.1101/gad.377106.Cyclin-dependent 

Nicholas, C. R., Chen, J., Tang, Y., Southwell, D. G., Chalmers, N., Vogt, D., … Kriegstein, A. R. (2013). 
Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and 
mimics human neural development. Cell Stem Cell, 12(5), 573–586. 
http://doi.org/10.1016/j.stem.2013.04.005 

Nicholls, R. D., & Knepper, J. L. (2001). G ENOME O RGANIZATION , F UNCTION , AND I MPRINTING IN P 
RADER -W ILLI AND, (10). 

Nicoleau, C., Varela, C., Bonnefond, C., Maury, Y., Bugi, A., Aubry, L., … Perrier, A. L. (2013). Embryonic stem 
cells neural differentiation qualifies the role of Wnt/??-Catenin signals in human telencephalic 
specification and regionalization. Stem Cells, 31(9), 1763–1774. http://doi.org/10.1002/stem.1462 

Nieto, M., Monuki, E. S., Tang, H. U. A., Imitola, J., Haubst, N., Khoury, S. J., … Gotz, M. (2004). Expression of 
Cux-1 and Cux-2 in the Subventricular Zone and Upper Layers II – IV of the Cerebral Cortex, 180(April), 
168–180. http://doi.org/10.1002/cne.20322 

Noctor, S. C., Martinez-Cerdeno, V., Ivic, L., Kriegstein, A. R., Martínez-Cerdeño, V., Ivic, L., … Kriegstein, A. 
R. (2004). Cortical neurons arise in symmetric and asymmetric division zones and migrate through 
specific phases. Nat Neurosci, 7(2), 136–144. http://doi.org/10.1038/nn1172 

Nuriya, M., & Huganir, R. L. (2006). Regulation of AMPA receptor trafficking by N-cadherin. Journal of 
Neurochemistry, 97(3), 652–661. http://doi.org/10.1111/j.1471-4159.2006.03740.x 

O’Donovan, M. C., Craddock, N., Norton, N., Williams, H., Peirce, T., Moskvina, V., … Owen, M. J. (2008). 
Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nature 
Genetics, 40(9), 1053–1055. http://doi.org/10.1038/ng.201 

O’Roak, B. J., Deriziotis, P., Lee, C., Vives, L., Schwartz, J. J., Girirajan, S., … Eichler, E. E. (2011). Exome 
sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nature 
Genetics, 44(4), 471–471. http://doi.org/10.1038/ng0412-471 

O’Shea, K. S., & McInnis, M. G. (2016). Neurodevelopmental origins of bipolar disorder: IPSC models. 
Molecular and Cellular Neuroscience, 73, 63–83. http://doi.org/10.1016/j.mcn.2015.11.006 

Oguro-Ando,  a, Rosensweig, C., Herman, E., Nishimura, Y., Werling, D., Bill, B. R., … Geschwind, D. H. 
(2014). Increased CYFIP1 dosage alters cellular and dendritic morphology and dysregulates mTOR. 
Molecular Psychiatry, (April), 1–10. http://doi.org/10.1038/mp.2014.124 

Ohtsuka, T., Ishibashi, M., Rald Gradwohl, G., Nakanishi, S., Guillemot, F. O., & Kageyama, R. (1999). Hes1 
and Hes5 as Notch effectors in mammalian neuronal differentiation. The EMBO Journal, 18(8), 2196–
2207. http://doi.org/10.1093/emboj/18.8.2196 

Oikawa, T., Yamaguchi, H., Itoh, T., Kato, M., Ijuin, T., Yamazaki, D., … Takenawa, T. (2004). PtdIns(3,4,5)P3 
binding is necessary for WAVE2-induced formation of lamellipodia. Nature Cell Biology, 6(5), 420–426. 
http://doi.org/10.1038/ncb1125 

Otani, T., Marchetto, M. C., Gage, F. H., Simons, B. D., & Livesey, F. J. (2016). 2D and 3D Stem Cell Models of 
Primate Cortical Development Identify Species-Specific Differences in Progenitor Behavior 
Contributing to Brain Size. Cell Stem Cell, 18(4), 467–480. http://doi.org/10.1016/j.stem.2016.03.003 

Padrick, S. B., Cheng, H. C., Ismail, A. M., Panchal, S. C., Doolittle, L. K., Kim, S., … Rosen, M. K. (2008). 
Hierarchical Regulation of WASP/WAVE Proteins. Molecular Cell, 32(3), 426–438. 
http://doi.org/10.1016/j.molcel.2008.10.012 

Pagnamenta, A. T., Khan, H., Walker, S., Gerrelli, D., Wing, K., Bonaglia, M. C., … Monaco, A. P. (2011). Rare 
familial 16q21 microdeletions under a linkage peak implicate cadherin 8 (CDH8) in susceptibility to 



127 
 

autism and learning disability. Journal of Medical Genetics, 48(1), 48–54. 
http://doi.org/10.1136/jmg.2010.079426 

Paik, J. hye, Ding, Z., Narurkar, R., Ramkissoon, S., Muller, F., Kamoun, W. S., … DePinho, R. A. (2009). FoxOs 
Cooperatively Regulate Diverse Pathways Governing Neural Stem Cell Homeostasis. Cell Stem Cell, 
5(5), 540–553. http://doi.org/10.1016/j.stem.2009.09.013 

Pan, G., Li, J., Zhou, Y., Zheng, H., & Pei, D. (2006). A negative feedback loop of transcription factors that 
controls stem cell pluripotency and self-renewal. The FASEB Journal : Official Publication of the 
Federation of American Societies for Experimental Biology, 20(10), 1730–1732. 
http://doi.org/10.1096/fj.05-5543fje 

Pang, Z. P., Yang, N., Vierbuchen, T., Ostermeier, A., Fuentes, D. R., Yang, T. Q., … Wernig, M. (2011). 
Induction of human neuronal cells by defined transcription factors. Nature, 476(7359), 220–223. 
http://doi.org/10.1038/nature10202 

Pardiñas, A. F., Holmans, P., Pocklington, A. J., Escott-Price, V., Ripke, S., Carrera, N., … Walters, J. T. R. 
(2016). Common schizophrenia alleles are enriched in mutation-intolerant genes and maintained by 
background selection. bioRxiv, 68593. http://doi.org/10.1101/068593 

Park, I.-H. (2008). Disease-Specific Induced Pluripotent Stem Cells. Cell, 134(5), 877–886. 
http://doi.org/10.1016/j.cell.2008.07.041 

Patel, K. R., Cherian, J., Gohil, K., & Atkinson, D. (2014). Schizophrenia: overview and treatment options. P & 
T : A Peer-Reviewed Journal for Formulary Management, 39(9), 638–45. 

Pathania, M., Davenport, E. C., Muir, J., Sheehan, D. F., López-Doménech, G., & Kittler, J. T. (2014). The 
autism and schizophrenia associated gene CYFIP1 is critical for the maintenance of dendritic 
complexity and the stabilization of mature spines. Translational Psychiatry, 4(February), e374. 
http://doi.org/10.1038/tp.2014.16 

Persico,  a M., D’Agruma, L., Maiorano, N., Totaro,  a, Militerni, R., Bravaccio, C., … Keller, F. (2001). Reelin 
gene alleles and haplotypes as a factor predisposing to autistic disorder. Molecular Psychiatry, 6(2), 
150–159. http://doi.org/10.1038/sj.mp.4000850 

Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic 
Acids Research, 29(9), 45e–45. http://doi.org/10.1093/nar/29.9.e45 

Pfisterer, U., Kirkeby, A., Torper, O., Wood, J., Nelander, J., Dufour, A., … Parmar, M. (2011). Direct 
conversion of human fibroblasts to dopaminergic neurons. PNAS, 108 no.25(June 2011). 
http://doi.org/10.1073/pnas.1105135108 

Picinelli, C., Lintas, C., Piras, I. S., Gabriele, S., Sacco, R., Brogna, C., & Persico, A. M. (2016). Recurrent 
15q11.2 BP1-BP2 microdeletions and microduplications in the etiology of neurodevelopmental 
disorders. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 
http://doi.org/10.1002/ajmg.b.32480 

Pinto, D., Pagnamenta, A. T., Klei, L., Anney, R., Merico, D., Regan, R., … Betancur, C. (2010a). Functional 
impact of global rare copy number variation in autism spectrum disorders. Nature, 466(7304), 368–
372. http://doi.org/10.1038/nature09146 

Pinto, D., Pagnamenta, A. T., Klei, L., Anney, R., Merico, D., Regan, R., … Betancur, C. (2010b). Functional 
impact of global rare copy number variation in autism spectrum disorders. Nature, 466(7304), 368–
372. http://doi.org/10.1038/nature09146 

Pollen, A. A., Nowakowski, T. J., Chen, J., Retallack, H., Sandoval-Espinosa, C., Nicholas, C. R., … Kriegstein, A. 
R. (2015). Molecular Identity of Human Outer Radial Glia during Cortical Development. Cell, 163(1), 
55–67. http://doi.org/10.1016/j.cell.2015.09.004 

Pöschl, J., Grammel, D., Dorostkar, M. M., Kretzschmar, H. A., & Schüller, U. (2013). Constitutive activation 
of Β-Catenin in neural progenitors results in disrupted proliferation and migration of neurons within 
the central nervous system. Developmental Biology, 374(2), 319–332. 
http://doi.org/10.1016/j.ydbio.2012.12.001 



128 
 

Power, R. A., Kyaga, S., Uher, R., MacCabe, J. H., Långström, N., Landen, M., … Svensson, A. C. (2013). 
Fecundity of Patients With Schizophrenia, Autism, Bipolar Disorder, Depression, Anorexia Nervosa, or 
Substance Abuse vs Their Unaffected Siblings. JAMA Psychiatry, 70(1), 22. 
http://doi.org/10.1001/jamapsychiatry.2013.268 

Prabakaran, S., Swatton, J. E., Ryan, M. M., Huffaker, S. J., Huang, J. T. J., Griffin, J. L., … Bahn, S. (2004). 
Mitochondrial dysfunction in schizophrenia: Evidence for compromised brain metabolism and 
oxidative stress. Molecular Psychiatry, 9(7), 643. http://doi.org/10.1038/sj.mp.4001532 

Pratt, J., Winchester, C., Dawson, N., & Morris, B. (2012). Advancing schizophrenia drug discovery: 
optimizing rodent models to bridge the translational gap. Nature Reviews. Drug Discovery, 11(7), 560–
79. http://doi.org/10.1038/nrd3649 

Purcell, S. M., Moran, J. L., Fromer, M., Ruderfer, D., Solovieff, N., Roussos, P., … Sklar, P. (2014). A polygenic 
burden of rare disruptive mutations in schizophrenia. Nature, 506(7487), 185–190. 
http://doi.org/10.1038/nature12975 

Purcell, S. M., Wray, N. R., Stone, J. L., Visscher, P. M., O’Donovan, M. C., Sullivan, P. F., … Sklar, P. (2009). 
Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, (April), 
1–46. http://doi.org/10.1038/nature08185 

Purohit, A., Sadanandam, A., Myneni, P., & Singh, R. K. (2014). Semaphorin 5A mediated cellular navigation: 
Connecting nervous system and cancer. Biochimica et Biophysica Acta - Reviews on Cancer, 1846(2), 
485–493. http://doi.org/10.1016/j.bbcan.2014.09.006 

Qian, X., Nguyen, H. N., Song, M. M., Hadiono, C., Ogden, S. C., Hammack, C., … Ming, G. L. (2016). Brain-
Region-Specific Organoids Using Mini-bioreactors for Modeling ZIKV Exposure. Cell, 165(5), 1238–
1254. http://doi.org/10.1016/j.cell.2016.04.032 

Qu, Q., Sun, G., Murai, K., Ye, P., Li, W., Asuelime, G., … Shi, Y. (2013). Wnt7a Regulates Multiple Steps of 
Neurogenesis. Molecular and Cellular Biology, 33(13), 2551–2559. 
http://doi.org/10.1128/MCB.00325-13 

Ran, F., Hsu, P., Wright, J., & Agarwala, V. (2013). Genome engineering using the CRISPR-Cas9 system. 
Nature Protocols, 8(11), 2281–308. http://doi.org/10.1038/nprot.2013.143 

Rees, E., Walters, J. T. R., Georgieva, L., Isles, A. R., Chambert, K. D., Richards, A. L., … Kirov, G. (2014). 
Analysis of copy number variations at 15 schizophrenia-associated loci. British Journal of Psychiatry, 
204(2), 108–114. http://doi.org/10.1192/bjp.bp.113.131052 

Reichelt,  a C., Rodgers, R. J., & Clapcote, S. J. (2012). The role of neurexins in schizophrenia and autistic 
spectrum disorder. Neuropharmacology, 62(3), 1519–26. 
http://doi.org/10.1016/j.neuropharm.2011.01.024 

Reinecke, F., Smeitink, J. a M., & van der Westhuizen, F. H. (2009). OXPHOS gene expression and control in 
mitochondrial disorders. Biochimica et Biophysica Acta, 1792(12), 1113–21. 
http://doi.org/10.1016/j.bbadis.2009.04.003 

Renault, V. M., Rafalski, V. A., Morgan, A. A., Salih, D. A. M., Brett, J. O., Webb, A. E., … Brunet, A. (2009). 
FoxO3 Regulates Neural Stem Cell Homeostasis. Cell Stem Cell, 5(5), 527–539. 
http://doi.org/10.1016/j.stem.2009.09.014 

Rice, M. W., Smith, K. L., Roberts, R. C., Perez-Costas, E., & Melendez-Ferro, M. (2014). Assessment of 
cytochrome C oxidase dysfunction in the substantia nigra/ventral tegmental area in schizophrenia. 
PLoS ONE, 9(6). http://doi.org/10.1371/journal.pone.0100054 

Richter, J. D., & Sonenberg, N. (2005). Regulation of cap-dependent translation by eIF4E inhibitory proteins. 
Nature, 433(7025), 477–480. http://doi.org/10.1038/nature03205 

Ripke, S., Neale, B. M., Corvin, A., Walters, J. T. R., Farh, K.-H., Holmans, P. a., … O’Donovan, M. C. (2014). 
Biological insights from 108 schizophrenia-associated genetic loci. Nature. 
http://doi.org/10.1038/nature13595 



129 
 

Ripke, S., O’Dushlaine, C., Chambert, K., Moran, J. L., Kähler, A. K., Akterin, S., … Sullivan, P. F. (2013). 
Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nature Genetics, 
45(10), 1150–1159. http://doi.org/10.1038/ng.2742 

Ripke, S., Sanders, A. R., Kendler, K. S., Levinson, D. F., Sklar, P., Holmans, P. A., … Gejman, P. V. (2011). 
Genome-wide association study identifies five new schizophrenia loci. Nature Genetics, 43(10), 969–
976. http://doi.org/10.1038/ng.940 

Roak, B. J. O., Vives, L., Girirajan, S., Karakoc, E., Krumm, N., Coe, P., … Eichler, E. E. (2012). Sporadic autism 
exomes reveal a highly interconnected protein network of de novo mutations, 485(7397), 246–250. 
http://doi.org/10.1038/nature10989.Sporadic 

Roberts, R., Barksdale, K., Roche, J., & Lahti, A. (2015). Decreased synaptic and mitochondrial density in the 
postmortem anterior cingulate cortex in schizophrenia. Schizophr Res., 14(11), 871–882. 
http://doi.org/10.1111/obr.12065.Variation 

Robicsek, O., Karry, R., Petit, I., Salman-Kesner, N., Müller, F.-J., Klein, E., … Ben-Shachar, D. (2013). 
Abnormal neuronal differentiation and mitochondrial dysfunction in hair follicle-derived induced 
pluripotent stem cells of schizophrenia patients. Molecular Psychiatry, 18(10), 1067–76. 
http://doi.org/10.1038/mp.2013.67 

Robinson, E. B., Neale, B. M., & Hyman, S. E. (2015). Genetic research in autism spectrum disorders. Current 
Opinion in Pediatrics, 27(6), 685–691. http://doi.org/10.1097/MOP.0000000000000278 

Rosa, A., Fananas, L., Cuesta, M. J., Peralta, V., & Sham, P. (2002). 1Q21-Q22 Locus Is Associated With 
Susceptibility To the Reality-Distortion Syndrome of Schizophrenia Spectrum Disorders. Am J Med 
Genet, 114(5), 516–518. http://doi.org/10.1002/ajmg.10526 

Rosenfeld, J. A., Coe, B. P., Eichler, E. E., Cuckle, H., & Shaffer, L. G. (2013). Estimates of penetrance for 
recurrent pathogenic copy-number variations. Genetics in Medicine, 15(6), 478–481. 
http://doi.org/10.1038/gim.2012.164 

Rossignol, D. A., & Frye, R. E. (2012). Mitochondrial dysfunction in autism spectrum disorders: a systematic 
review and meta-analysis. Molecular Psychiatry, 17(3), 290–314. http://doi.org/10.1038/mp.2010.136 

Sacco, R., Gabriele, S., & Persico, A. M. (2015). Head circumference and brain size in autism spectrum 
disorder: A systematic review and meta-analysis. Psychiatry Research - Neuroimaging, 234(2), 239–
251. http://doi.org/10.1016/j.pscychresns.2015.08.016 

Saha, S., Chant, D., Welham, J., & McGrath, J. (2005). A systematic review of the prevalence of 
schizophrenia. PLoS Medicine, 2(5), 0413–0433. http://doi.org/10.1371/journal.pmed.0020141 

Salic, A., & Mitchison, T. J. (2008). A chemical method for fast and sensitive detection of DNA synthesis in 
vivo. Proceedings of the National Academy of Sciences of the United States of America, 105(7), 2415–
2420. http://doi.org/10.1073/pnas.0712168105 

Salinas, P. C., & Zou, Y. (2008). Wnt Signaling in Neural Circuit Assembly. Annual Review of Neuroscience, 
31(1), 339–358. http://doi.org/10.1146/annurev.neuro.31.060407.125649 

Saller, E., Tom, E., Brunori, M., Otter, M., Estreicher, A., Mack, D. H., & Iggo, R. (1999). Increased apoptosis 
induction by 121F mutant p53. The EMBO Journal, 18(16), 4424–37. 
http://doi.org/10.1093/emboj/18.16.4424 

Sanders, S. J., Ercan-Sencicek, A. G., Hus, V., Luo, R., Murtha, M. T., Moreno-De-Luca, D., … State, M. W. 
(2011). Multiple Recurrent De Novo CNVs, Including Duplications of the 7q11.23 Williams Syndrome 
Region, Are Strongly Associated with Autism. Neuron, 70(5), 863–885. 
http://doi.org/10.1016/j.neuron.2011.05.002 

Sanders, S. J., Murtha, M. T., Gupta, A. R., Murdoch, J. D., Geschwind, D. H., Devlin, B., & State, M. W. 
(2013). De novo mutations revealed by whole exome sequencing are strongly associated with autism. 
Nature, 485(7397), 237–241. http://doi.org/10.1038/nature10945.De 

Sandoe, J., & Eggan, K. (2013). Opportunities and challenges of pluripotent stem cell neurodegenerative 



130 
 

disease models. Nature Neuroscience, 16(7), 780–9. http://doi.org/10.1038/nn.3425 

Santini, E., Turner, K. L., Ramaraj, A. B., Murphy, M. P., Klann, E., & Kaphzan, H. (2015). Mitochondrial 
Superoxide Contributes to Hippocampal Synaptic Dysfunction and Memory Deficits in Angelman 
Syndrome Model Mice. The Journal of Neuroscience : The Official Journal of the Society for 
Neuroscience, 35(49), 16213–16220. http://doi.org/10.1523/JNEUROSCI.2246-15.2015 

Schaaf, C. P., & Zoghbi, H. Y. (2011). Solving the Autism Puzzle a Few Pieces at a Time. Neuron, 70(5), 806–
808. http://doi.org/10.1016/j.neuron.2011.05.025 

Schellenberg, G. D., Bird, T. D., Wijsman, E. M., Orr, H. T., Anderson, L., Nemens, E., … Alonso, M. E. (1992). 
Genetic linkage evidence for a familial Alzheimer’s disease locus on chromosome 14. Science, 
258(5082), 668–671. http://doi.org/10.1126/science.1411576 

Schenck,  a, Bardoni, B., Moro,  a, Bagni, C., & Mandel, J. L. (2001). A highly conserved protein family 
interacting with the fragile X mental retardation protein (FMRP) and displaying selective interactions 
with FMRP-related proteins FXR1P and FXR2P. Proceedings of the National Academy of Sciences of the 
United States of America, 98(15), 8844–9. http://doi.org/10.1073/pnas.151231598 

Scholzen, T., & Gerdes, J. (2000). The Ki-67 Protein : From the Known and the Unknown. Journal of Cellular 
Physiology, 322(August 1999), 311–322. http://doi.org/10.1002/(SICI)1097-
4652(200003)182:3<311::AID-JCP1>3.0.CO;2-9 

Schroeter, E. H., Kisslinger, J. A., & Kopan, R. (1998). Notch-1 signaling requires ligand-induced proteolytic 
release of intracellular domain. Nature, 393(May), 382–386. 

Schwab, S. G., Hallmayer, J., Albus, M., Lerer, B., Eckstein, G. N., Borrmann, M., … Wildenauer, D. B. (2000). 
A genome-wide autosomal screen for schizophrenia susceptibility loci in 71 families with affected 
siblings: support for loci on chromosome 10p and 6. Molecular Psychiatry, 5(6), 638–649. 
http://doi.org/10.1038/sj.mp.4000791 

Schwab, S. G., Hoefgen, B., Hanses, C., Hassenbach, M. B., Albus, M., Lerer, B., … Wildenauer, D. B. (2005). 
Further evidence for association of variants in the AKT1 gene with schizophrenia in a sample of 
european sib-pair families. Biological Psychiatry, 58(6), 446–450. 
http://doi.org/10.1016/j.biopsych.2005.05.005 

Schwab, S. G., & Wildenauer, D. B. (2013). Genetics of psychiatric disorders in the GWAS era: An update on 
schizophrenia. European Archives of Psychiatry and Clinical Neuroscience, 263(SUPPL.2). 
http://doi.org/10.1007/s00406-013-0450-z 

Sebat, J., Lakshmi, B., Malhotra, D., Troge, J., Lese-, C., Walsh, T., … Wigler, M. (2010). NIH Public Access. 
Science, 316(5823), 445–449. http://doi.org/10.1126/science.1138659.Strong 

Sener, E. F., Canatan, H., & Ozkul, Y. (2016). Recent advances in autism spectrum disorders: Applications of 
whole exome sequencing technology. Psychiatry Investigation, 13(3), 255–264. 
http://doi.org/10.4306/pi.2016.13.3.255 

Shalem, O., Sanjana, N. E., Hartenian, E., Shi, X., Scott, D. A., Heckl, D., … Doench, J. G. (2014). Genome - 
scale CRISPR - Cas9 knockout screening in human cells. Science, 343(6166), 84–87. 
http://doi.org/10.1126/science.1247005.Genome-Scale 

Shcheglovitov, A., Shcheglovitova, O., Yazawa, M., Portmann, T., Shu, R., Sebastiano, V., … Dolmetsch, R. E. 
(2013a). SHANK3 and IGF1 restore synaptic deficits in neurons from 22q13 deletion syndrome 
patients. Nature, 503(7475), 267–71. http://doi.org/10.1038/nature12618 

Shcheglovitov, A., Shcheglovitova, O., Yazawa, M., Portmann, T., Shu, R., Sebastiano, V., … Dolmetsch, R. E. 
(2013b). SHANK3 and IGF1 restore synaptic deficits in neurons from 22q13 deletion syndrome 
patients. Nature, 503(7475), 267–71. http://doi.org/10.1038/nature12618 

Sherrington, R., Rogaev, E. I., Liang, Y., Rogaeva, E. A., Levesque, G., Ikeda, M., … St George-Hyslop, P. H. 
(1995). Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. 
Nature. http://doi.org/10.1038/375754a0 



131 
 

Shi, Y., Desponts, C., Do, J. T., Hahm, H. S., Schöler, H. R., & Ding, S. (2008). Induction of Pluripotent Stem 
Cells from Mouse Embryonic Fibroblasts by Oct4 and Klf4 with Small-Molecule Compounds. Cell Stem 
Cell, 3(5), 568–574. http://doi.org/10.1016/j.stem.2008.10.004 

Shi, Y., Kirwan, P., & Livesey, F. J. (2012). Directed differentiation of human pluripotent stem cells to 
cerebral cortex neurons and neural networks. Nature Protocols, 7(10), 1836–1846. 
http://doi.org/10.1038/nprot.2012.116 

Simpson, E. H., Kellendonk, C., & Kandel, E. (2010). A Possible Role for the Striatum in the Pathogenesis of 
the Cognitive Symptoms of Schizophrenia. Neuron, 65(5), 585–596. 
http://doi.org/10.1016/j.neuron.2010.02.014 

Singh, T., Kurki, M. I., Curtis, D., Purcell, S. M., Crooks, L., McRae, J., … Barrett, J. C. (2016). Rare loss-of-
function variants in SETD1A are associated with schizophrenia and developmental disorders. Nature 
Neuroscience, 19(4), 571–577. http://doi.org/10.1038/nn.4267 

Sklar, P., Smoller, J. W., Fan, J., Ferreira, M. A. R., Perlis, R. H., Chambert, K., … Purcell, S. M. (2008). Whole-
genome association study of bipolar disorder. Molecular Psychiatry, 13(6), 558–569. 
http://doi.org/10.1038/sj.mp.4002151 

Soronen, P., Ollila, H. M., Antila, M., Silander, K., Palo, O. M., Kieseppä, T., … Paunio, T. (2010). Replication 
of GWAS of bipolar disorder: Association of SNPs near CDH7 with bipolar disorder and visual 
processing. Molecular Psychiatry, 15(1), 4–6. http://doi.org/10.1038/mp.2009.86 

Srikanth, P., Han, K., Callahan, D. G., Makovkina, E., Muratore, C. R., Lalli, M. A., … Young-Pearse, T. L. 
(2015). Genomic DISC1 Disruption in hiPSCs Alters Wnt Signaling and Neural Cell Fate. Cell Reports, 
12(9), 1414–1429. http://doi.org/10.1016/j.celrep.2015.07.061 

Stefansson, H., Meyer-Lindenberg, A., Steinberg, S., Magnusdottir, B., Morgen, K., Arnarsdottir, S., … 
Stefansson, K. (2014). CNVs conferring risk of autism or schizophrenia affect cognition in controls. 
Nature, 505(7483), 361–6. http://doi.org/10.1038/nature12818 

Stefansson, H., Ophoff, R. A., Steinberg, S., Andreassen, O. A., Cichon, S., Rujescu, D., … Myin-Germeys, I. 
(2009). Common variants conferring risk of schizophrenia. Nature, 460(August), 3–7. 
http://doi.org/10.1038/nature08186 

Stefansson, H., Rujescu, D., Cichon, S., Pietiläinen, O. P. H., Ingason, A., Steinberg, S., … Stefansson, K. 
(2008). Large recurrent microdeletions associated with schizophrenia. Nature, 455(7210), 232–6. 
http://doi.org/10.1038/nature07229 

Stefansson, H., Sigurdsson, E., Steinthorsdottir, V., Bjornsdottir, S., Sigmundsson, T., Ghosh, S., … 
Stefansson, K. (2002). Neuregulin 1 and susceptibility to schizophrenia. American Journal of Human 
Genetics, 71, 877–892. http://doi.org/10.1086/342734 

Steffen, A., Rottner, K., Ehinger, J., Innocenti, M., Scita, G., Wehland, J., & Stradal, T. E. B. (2004). Sra-1 and 
Nap1 link Rac to actin assembly driving lamellipodia formation. The EMBO Journal, 23(4), 749–759. 
http://doi.org/10.1038/sj.emboj.7600084 

Steinberg, S., Mors, O., Børglum, A. D., Gustafsson, O., Werge, T., Mortensen, P. B., … Stefansson, K. (2011). 
Expanding the range of ZNF804A variants conferring risk of psychosis. Molecular Psychiatry, 16(1), 59–
66. http://doi.org/10.1038/mp.2009.149 

Stocker, A. M., & Chenn, A. (2009). Focal reduction of αE-catenin causes premature differentiation and 
reduction of β-catenin signaling during cortical development. Developmental Biology, 328(1), 66–77. 
http://doi.org/10.1016/j.ydbio.2009.01.010 

Stocker, A. M., & Chenn, A. (2015). The role of adherens junctions in the developing neocortex. Cell 
Adhesion and Migration, 9(3), 167–174. http://doi.org/10.1080/19336918.2015.1027478 

Straub. (1995). A potential vulnerability locus 6p. Nature Genetics, 10, 196–201. 
http://doi.org/10.1038/ng0595-111 

Straub, R. E., Jiang, Y., MacLean, C. J., Ma, Y., Webb, B. T., Myakishev, M. V., … Kendler, K. S. (2002). Genetic 



132 
 

Variation in the 6p22.3 Gene DTNBP1, the Human Ortholog of the Mouse Dysbindin Gene, Is 
Associated with Schizophrenia. The American Journal of Human Genetics, 71(2), 337–348. 
http://doi.org/10.1086/341750 

Su, H., Fan, W., Coskun, P. E., Vesa, J., Gold, J. A., Jiang, Y. H., … Kimonis, V. E. (2011). Mitochondrial 
dysfunction in CA1 hippocampal neurons of the UBE3A deficient mouse model for Angelman 
syndrome. Neuroscience Letters, 487(2), 129–133. http://doi.org/10.1016/j.neulet.2009.06.079 

Sullivan, P. F. (2005). The genetics of schizophrenia. PLoS Medicine, 2(7), 0614–0618. 
http://doi.org/10.1371/journal.pmed.0020212 

Sun, A. X., Yuan, Q., Tan, S., Xiao, Y., Wang, D., Khoo, A. T. T., … Je, H. S. (2016). Direct Induction and 
Functional Maturation of Forebrain GABAergic Neurons from Human Pluripotent Stem Cells. Cell 
Reports, 16(7), 1929–1941. http://doi.org/10.1016/j.celrep.2016.07.035 

Suzuki, S. C., & Takeichi, M. (2008). Cadherins in neuronal morphogenesis and function. Development 
Growth and Differentiation, 50(SUPPL. 1). http://doi.org/10.1111/j.1440-169X.2008.01002.x 

Sztainberg, Y., & Zoghbi, H. Y. (2016). Lessons learned from studying syndromic autism spectrum disorders. 
Nature Neuroscience, 19(11), 1408–1417. http://doi.org/10.1038/nn.4420 

Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction 
of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell, 131(5), 861–872. 
http://doi.org/10.1016/j.cell.2007.11.019 

Takahashi, K., & Yamanaka, S. (2006). Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult 
Fibroblast Cultures by Defined Factors. Cell, 126(4), 663–676. 
http://doi.org/10.1016/j.cell.2006.07.024 

Takenawa, T., & Suetsugu, S. (2007). The WASP–WAVE protein network: connecting the membrane to the 
cytoskeleton. Nature Reviews Molecular Cell Biology, 8(1), 37–48. http://doi.org/10.1038/nrm2069 

Tam, G. W. C., Redon, R., Carter, N. P., & Grant, S. G. N. (2009). The Role of DNA Copy Number Variation in 
Schizophrenia. Biological Psychiatry, 66(11), 1005–1012. 
http://doi.org/10.1016/j.biopsych.2009.07.027 

Tam, G. W. C., van de Lagemaat, L. N., Redon, R., Strathdee, K. E., Croning, M. D. R., Malloy, M. P., … Grant, 
S. G. N. (2010). Confirmed rare copy number variants implicate novel genes in schizophrenia. 
Biochemical Society Transactions, 38(2), 445–51. http://doi.org/10.1042/BST0380445 

Tamaoki, N., Takahashi, K., Tanaka, T., Ichisaka, T., Aoki, H., Takeda-Kawaguchi, T., … Tezuka, K. (2010). 
Dental pulp cells for induced pluripotent stem cell banking. J Dent Res, 89(8), 773–778. 
http://doi.org/10.1177/0022034510366846 

Tamburini, C., & Li, M. (2017). Understanding neurodevelopmental disorders using human pluripotent stem 
cell-derived neurons. Brain Pathology, 27(4), 508–517. http://doi.org/10.1111/bpa.12517 

Tarabykin, V., Stoykova, A., Usman, N., & Gruss, P. (2001). Cortical upper layer neurons derive from the 
subventricular zone as indicated by Svet1 gene expression, 1993, 1983–1993. 

Taverna, E., Götz, M., & Huttner, W. B. (2014). The Cell Biology of Neurogenesis: Toward an Understanding 
of the Development and Evolution of the Neocortex. Annual review of cell and developmental biology. 
http://doi.org/10.1146/annurev-cellbio-101011-155801 

Taverna, E., & Huttner, W. B. (2010). Neural progenitor nuclei IN motion. Neuron, 67(6), 906–914. 
http://doi.org/10.1016/j.neuron.2010.08.027 

Telias, M., Kuznitsov-Yanovsky, L., Segal, M., & Ben-Yosef, D. (2015). Functional Deficiencies in Fragile X 
Neurons Derived from Human Embryonic Stem Cells. Journal of Neuroscience, 35(46), 15295–15306. 
http://doi.org/10.1523/JNEUROSCI.0317-15.2015 

Telias, M., Mayshar, Y., Amit, A., & Ben-Yosef, D. (2015). Molecular Mechanisms Regulating Impaired 
Neurogenesis of Fragile X Syndrome Human Embryonic Stem Cells. Stem Cells and Development, 



133 
 

24(20), 2353–65. http://doi.org/10.1089/scd.2015.0220 

Telias, M., Segal, M., & Ben-Yosef, D. (2013). Neural differentiation of fragile X human embryonic stem cells 
reveals abnormal patterns of development despite successful neurogenesis. Developmental Biology, 
374(1), 32–45. http://doi.org/10.1016/j.ydbio.2012.11.031 

The International Schizophrenia Consortium. (2008). Rare chromosomal deletions and duplications increase 
risk of schizophrenia. Nature, 455(7210), 237–41. http://doi.org/10.1038/nature07239 

Thumkeo, D., Shinohara, R., Watanabe, K., Takebayashi, H., Toyoda, Y., Tohyama, K., … Narumiya, S. (2011). 
Deficiency of mDia, an actin nucleator, disrupts integrity of neuroepithelium and causes 
periventricular dysplasia. PLoS ONE, 6(9). http://doi.org/10.1371/journal.pone.0025465 

Tiberi, L., Vanderhaeghen, P., & van den Ameele, J. (2012). Cortical neurogenesis and morphogens: Diversity 
of cues, sources and functions. Current Opinion in Cell Biology, 24(2), 269–276. 
http://doi.org/10.1016/j.ceb.2012.01.010 

Togashi, H., Abe, K., Mizoguchi, A., Takaoka, K., Chisaka, O., & Takeichi, M. (2002). Cadherin regulates 
dendritic spine morphogenesis. Neuron, 35(1), 77–89. http://doi.org/10.1016/S0896-6273(02)00748-
1 

Topol, A., Zhu, S., Tran, N., Simone, A., Fang, G., & Brennand, K. J. (2015). Altered WNT Signaling in Human 
Induced Pluripotent Stem Cell Neural Progenitor Cells Derived from Four Schizophrenia Patients. 
Biological Psychiatry, 29–34. http://doi.org/10.1016/j.biopsych.2014.12.028 

Tucci, V., Kleefstra, T., Hardy, A., Heise, I., Maggi, S., Willemsen, M. H., … Nolan, P. M. (2014). Dominant β-
catenin mutations cause intellectual disability with recognizable syndromic features. Journal of 
Clinical Investigation, 124(4), 1468–1482. http://doi.org/10.1172/JCI70372 

Tucker, B. A., Anfinson, K. R., Mullins, R. F., Stone, E. M., & Young, M. J. (2013). Use of a Synthetic Xeno-Free 
Culture Substrate for Induced Pluripotent Stem Cell Induction and Retinal Differentiation. Stem Cells 
Transl Med., 255–264. http://doi.org/10.1002/stem.1607 

Ulfarsson, M. O., Walters, G. B., Gustafsson, O., Steinberg, S., Silva, A., Doyle, O. M., … Stefansson, K. (2017). 
15q11.2 CNV affects cognitive, structural and functional correlates of dyslexia and dyscalculia. 
Translational Psychiatry, 7(4), e1109. http://doi.org/10.1038/tp.2017.77 

Vacic, V., McCarthy, S., Malhotra, D., Murray, F., Chou, H.-H., Peoples, A., … Sebat, J. (2011a). Duplications 
of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia. Nature, 471(7339), 
499–503. http://doi.org/10.1038/nature09884 

Vacic, V., McCarthy, S., Malhotra, D., Murray, F., Chou, H.-H., Peoples, A., … Sebat, J. (2011b). Duplications 
of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia. Nature, 471(7339), 
499–503. http://doi.org/10.1038/nature09884 

van der Zwaag, B., Staal, W. G., Hochstenbach, R., Poot, M., Spierenburg, H. a, de Jonge, M. V, … Burbach, J. 
P. H. (2010). A co-segregating microduplication of chromosome 15q11.2 pinpoints two risk genes for 
autism spectrum disorder. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics : 
The Official Publication of the International Society of Psychiatric Genetics, 153B(4), 960–6. 
http://doi.org/10.1002/ajmg.b.31055 

van Waveren, C., & Moraes, C. T. (2008). Transcriptional co-expression and co-regulation of genes coding 
for components of the oxidative phosphorylation system. BMC Genomics, 9(1), 18. 
http://doi.org/10.1186/1471-2164-9-18 

Vanlerberghe, C., Petit, F., Malan, V., Vincent-Delorme, C., Bouquillon, S., Boute, O., … Andrieux, J. (2015). 
15q 11.2 microdeletion (BP1-BP2) and developmental delay, behaviour issues, epilepsy and congenital 
heart disease: A series of 52 patients. European Journal of Medical Genetics, 58(3), 140–147. 
http://doi.org/10.1016/j.ejmg.2015.01.002 

Vezzali, R., Weise, S. C., Hellbach, N., Machado, V., Heidrich, S., & Vogel, T. (2016). The FOXG1/FOXO/SMAD 
network balances proliferation and differentiation of cortical progenitors and activates Kcnh3 
expression in mature neurons. Oncotarget, 7(25), 37436–37455. 



134 
 

http://doi.org/10.18632/oncotarget.9545 

Victor, M. B., Richner, M., Hermanstyne, T. O., Ransdell, J. L., Sobieski, C., Deng, P. Y., … Yoo, A. S. (2014). 
Generation of Human Striatal Neurons by MicroRNA-Dependent Direct Conversion of Fibroblasts. 
Neuron, 84(2), 311–323. http://doi.org/10.1016/j.neuron.2014.10.016 

Vieland VJ, D. M. A. R. R. S. A. V. G. J. H. P. H. H. K. L. L. P. M. S. N. B. R. E. W. L. Z. L. Y. T. W. K. W. A. W. E. W. 
T. W. T. W. R. W. C. W. S. V. J. (2017). Meta-analysis of GWAS of over 16,000 individuals with autism 
spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia. 
Molecular Autism, 8(1), 21. http://doi.org/10.1186/s13229-017-0137-9 

von der Lippe, C., Rustad, C., Heimdal, K., & Rødningen, O. K. (2011). 15Q11.2 Microdeletion - Seven New 
Patients With Delayed Development and/or Behavioural Problems. European Journal of Medical 
Genetics, 54(3), 357–60. http://doi.org/10.1016/j.ejmg.2010.12.008 

Wang, K., Zhang, H., Ma, D., Bucan, M., Glessner, J. T., Abrahams, B. S., … Hakonarson, H. (2009). Common 
genetic variants on 5p14.1 associate with autism spectrum disorders. Nature, 459(7246), 528–533. 
http://doi.org/10.1038/nature07999 

Wang, P., Lin, M., Pedrosa, E., Hrabovsky, A., Zhang, Z., Guo, W., … Zheng, D. (2015). CRISPR/Cas9-mediated 
heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks 
in neurodevelopment. Molecular Autism, 6, 55. http://doi.org/10.1186/s13229-015-0048-6 

Wang, P., Mokhtari, R., Pedrosa, E., Hrabovsky, A., Zhang, Z., Guo, W., … Zheng, D. (2015). CRISPR/Cas9-
mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional 
networks in neurodevelopment. Molecular Autism, 6, 55. http://doi.org/10.1186/s13229-015-0048-6 

Wang, X., Wang, Y., Wu, X., Wang, J., Wang, Y., Qiu, Z., … Yee, J. (2015). Unbiased detection of off-target 
cleavage by CRISPR-Cas9 and TALENs using integrase- defective lentiviral vectors, 33(2). 
http://doi.org/10.1038/nbt.3127 

Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nature 
Reviews. Genetics, 10(1), 57–63. 

Warren, L., Manos, P. D., Ahfeldt, T., Loh, Y. H., Li, H., Lau, F., … Rossi, D. J. (2010). Highly efficient 
reprogramming to pluripotency and directed differentiation of human cells with synthetic modified 
mRNA. Cell Stem Cell, 7(5), 618–630. http://doi.org/10.1016/j.stem.2010.08.012 

Wassink, T. H., Piven, J., Vieland, V. J., Huang, J., Swiderski, R. E., Pietila, J., … Sheffield, V. C. (2001). Rapid 
publication: Evidence supporting WNT2 as an autism susceptibility gene. American Journal of Medical 
Genetics - Neuropsychiatric Genetics, 105(5), 406–413. http://doi.org/10.1002/ajmg.1401 

Weiss, L., Arking, D., & The Gene Discovery Project of John Hophins the Autism Consortium. (2009). A 
genome-wide linkage and association scan reveal novel loci for autism. Nature, 461(7265), 802–808. 
http://doi.org/10.1038/nature08490.A 

Wen, Z., Nguyen, H. N., Guo, Z., Lalli, M. a., Wang, X., Su, Y., … Ming, G. (2014a). Synaptic dysregulation in a 
human iPS cell model of mental disorders. Nature. http://doi.org/10.1038/nature13716 

Wen, Z., Nguyen, H. N., Guo, Z., Lalli, M. A., Wang, X., Su, Y., … Ming, G. (2014b). Synaptic dysregulation in a 
human iPS cell model of mental disorders. Nature, 515(7527), 414–418. 
http://doi.org/10.1038/nature13716 

Whitfield-Gabrieli, S., Thermenos, H. W., Milanovic, S., Tsuang, M. T., Faraone, S. V, McCarley, R. W., … 
Seidman, L. J. (2009). Hyperactivity and hyperconnectivity of the default network in schizophrenia and 
in first-degree relatives of persons with schizophrenia. Proceedings of the National Academy of 
Sciences of the United States of America, 106(4), 1279–84. http://doi.org/10.1073/pnas.0809141106 

Williams, H. J., Norton, N., Dwyer, S., Moskvina, V., Nikolov, I., Carroll, L., … O’Donovan, M. C. (2011). Fine 
mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and 
bipolar disorder. Molecular Psychiatry, 16(4), 429–441. http://doi.org/10.1038/mp.2010.36 

Woodhead, G. J., Mutch, C. A., Olson, E. C., & Chenn, A. (2006). Cell-Autonomous beta-Catenin Signaling 



135 
 

Regulates Cortical Precursor Proliferation. Journal of Neuroscience, 26(48), 12620–12630. 
http://doi.org/10.1523/JNEUROSCI.3180-06.2006 

Wu, S., Jia, M., Ruan, Y., Liu, J., Guo, Y., Shuang, M., … Zhang, D. (2005). Positive association of the oxytocin 
receptor gene (OXTR) with autism in the Chinese Han population. Biological Psychiatry, 58(1), 74–77. 
http://doi.org/10.1016/j.biopsych.2005.03.013 

Xi, J., Liu, Y., Liu, H., Chen, H., Emborg, M. E., & Zhang, S. C. (2012). Specification of midbrain dopamine 
neurons from primate pluripotent stem cells. Stem Cells, 30(8), 1655–1663. 
http://doi.org/10.1002/stem.1152 

Xie, H., Zhang, Y., Zhang, P., Wang, J., Wu, Y., Wu, X., … Jiang, Y. (2014). Functional study of NIPA2 mutations 
identified from the patients with childhood absence epilepsy. PLoS ONE, 9(10), 1–6. 
http://doi.org/10.1371/journal.pone.0109749 

Xu, B., Roos, J. L., Levy, S., van Rensburg, E. J., Gogos, J. A., & Karayiorgou, M. (2008). Strong association of 
de novo copy number mutations with sporadic schizophrenia. Nature Genetics, 40(7), 880–885. 
http://doi.org/10.1038/ng.162 

Xu, Z., Jinag, H., Zhong, P., Yan, Z., Chen, S., & Feng, J. (2016). Direct conversion of human fibroblasts to 
dopaminergic neurons. Molecular Psychiatry, 21(February 2015), 62–70. 
http://doi.org/10.1073/pnas.1105135108 

Yagi, T., & Takeichi, M. (2000). Cadherin superfamily genes: Functions, genomic organization, and 
neurologic diversity. Genes and Development, 14(10), 1169–1180. 
http://doi.org/10.1101/gad.14.10.1169 

Yamazaki, S., Yamamoto, K., de Lanerolle, P., & Harata, M. (2016). Nuclear F-actin enhances the 
transcriptional activity of β-catenin by increasing its nuclear localization and binding to chromatin. 
Histochemistry and Cell Biology, 145(4), 389–399. http://doi.org/10.1007/s00418-016-1416-9 

Yan, X., Qin, H., Qu, C., Tuan, R. S., Shi, S., & Huang, G. T.-J. (2010). iPS Cells Reprogrammed From Human 
Mesenchymal-Like Stem/Progenitor Cells of Dental Tissue Origin. Stem Cells and Development, 19(4), 
469–480. http://doi.org/10.1089/scd.2009.0314 

Yang, L., Dan, H. C., Sun, M., Liu, Q., Sun, X., Feldman, R. I., … Cheng, J. Q. (2004). Advances in Brief Akt / 
Protein Kinase B Signaling Inhibitor-2 , a Selective Small Molecule Inhibitor of Akt Signaling with 
Antitumor Activity in Cancer Cells Overexpressing Akt, 4394–4399. 

Ylisaukko-Oja, T., Alarcón, M., Cantor, R. M., Auranen, M., Vanhala, R., Kempas, E., … Peltonen, L. (2006). 
Search for autism loci by combined analysis of Autism Genetic Resource Exchange and finnish 
families. Lauritsen, M., Mors, O., Mortensen, P. B., & Ewald, H. (1999). Infantile Autism and Associated 
Autosomal Chromosome Abnormalities: A Register-Based Study and a Literature Survey. Journal of 
Child Psychology and Psychiatry, and Allied Disciplines, 40(3), 3, 59(1), 145–155. 
http://doi.org/10.1002/ana.20722 

Yoo, A. S., Sun, A. X., Li, L., Shcheglovitov, A., Portmann, T., Li, Y., … Crabtree, G. R. (2011). MicroRNA-
mediated conversion of human fibroblasts to neurons. Nature, 476(7359), 228–231. 
http://doi.org/10.1038/nature10323 

Yoo, H. (2015). Genetics of Autism Spectrum Disorder: Current Status and Possible Clinical Applications. 
Experimental Neurobiology, 24(4), 257–72. http://doi.org/10.5607/en.2015.24.4.257 

Yoon, K.-J., Nguyen, H. N., Ursini, G., Zhang, F., Kim, N.-S., Wen, Z., … Ming, G.-L. (2014). Modeling a Genetic 
Risk for Schizophrenia in iPSCs and Mice Reveals Neural Stem Cell Deficits Associated with Adherens 
Junctions and Polarity. Cell Stem Cell, 15(1), 79–91. http://doi.org/10.1016/j.stem.2014.05.003 

Yoshida, Y. (2012). Semaphorin Signaling in Vertebrate Neural Circuit Assembly. Frontiers in Molecular 
Neuroscience, 5(June), 1–16. http://doi.org/10.3389/fnmol.2012.00071 

Yu, D. X., Di Giorgio, F. P., Yao, J., Marchetto, M. C., Brennand, K., Wright, R., … Gage, F. H. (2014). Modeling 
hippocampal neurogenesis using human pluripotent stem cells. Stem Cell Reports, 2(3), 295–310. 
http://doi.org/10.1016/j.stemcr.2014.01.009 



136 
 

Yu, G., Wang, L.-G., Han, Y., & He, Q.-Y. (2012a). clusterProfiler: an R Package for Comparing Biological 
Themes Among Gene Clusters. OMICS: A Journal of Integrative Biology, 16(5), 284–287. 
http://doi.org/10.1089/omi.2011.0118 

Yu, G., Wang, L.-G., Han, Y., & He, Q.-Y. (2012b). clusterProfiler: an R Package for Comparing Biological 
Themes Among Gene Clusters. OMICS: A Journal of Integrative Biology, 16(5), 284–287. 
http://doi.org/10.1089/omi.2011.0118 

Yu, H., Yan, H., Li, J., Li, Z., Zhang, X., Ma, Y., … Yue, W. (2016). Common variants on 2p16.1, 6p22.1 and 
10q24.32 are associated with schizophrenia in Han Chinese population. Molecular Psychiatry, 
(March), 1–7. http://doi.org/10.1038/mp.2016.212 

Zhang, J., Shemezis, J. R., McQuinn, E. R., Wang, J., Sverdlov, M., & Chenn, A. (2013). AKT activation by N-
cadherin regulates beta-catenin signaling and neuronal differentiation during cortical development. 
Neural Development, 8(1), 7. http://doi.org/10.1186/1749-8104-8-7 

Zhang, J., Woodhead, G. J., Swaminathan, S. K., Noles, S. R., McQuinn, E. R., Pisarek, A. J., … Chenn, A. 
(2010). Cortical neural precursors inhibit their own differentiation via N-cadherin maintenance of 
beta-catenin signaling. Developmental Cell, 18(3), 472–479. 
http://doi.org/10.1016/j.devcel.2009.12.025 

Zhao, D., Lin, M., Chen, J., Pedrosa, E., Hrabovsky, A., Fourcade, H. M., … Lachman, H. M. (2015). MicroRNA 
profiling of neurons generated using induced pluripotent stem cells derived from patients with 
schizophrenia and schizoaffective disorder, and 22q11.2 del. PLoS ONE, 10(7), 1–24. 
http://doi.org/10.1371/journal.pone.0132387 

Zheng, W., Wang, H., Zeng, Z., Lin, J., Little, P. J., Srivastava, L. K., & Quirion, R. (2012). The possible role of 
the Akt signaling pathway in schizophrenia. Brain Research, 1470, 145–158. 
http://doi.org/10.1016/j.brainres.2012.06.032 

Zhou Hongyan, Wu Shili, Joo Jin Young, Zhu Saiyong, Han Dong Wook, D. S. (2009). Generation of Induced 
Pluripotent Stem cells using recombinant proteins. Cell Stem Cell, 381–384. 
http://doi.org/10.1016/j.stem.2009.04.005 

Ziats, M. N., & Rennert, O. M. (2016). The evolving diagnostic and genetic landscapes of autism spectrum 
disorder. Frontiers in Genetics, 7(APR), 1–6. http://doi.org/10.3389/fgene.2016.00065 

Ziv, O., Zaritsky, A., Yaffe, Y., Mutukula, N., Edri, R., & Elkabetz, Y. (2015). Quantitative Live Imaging of 
Human Embryonic Stem Cell Derived Neural Rosettes Reveals Structure-Function Dynamics Coupled 
to Cortical Development. PLoS Computational Biology, 11(10), 1–21. 
http://doi.org/10.1371/journal.pcbi.1004453 

 

 

 


