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Abstract— This paper presents pathChirp, a new active
probing tool for estimating the available bandwidth on a
communication network path. Based on the concept of
“self-induced congestion,” pathChirp features an exponen-
tial flight pattern of probes we call a chirp. Packet chips
offer several significant advantages over current probing
schemes based on packet pairs or packet trains. By rapidly
increasing the probing rate within each chirp, pathChirp
obtains a rich set of information from which to dynami-
cally estimate the available bandwidth. Since it uses only
packet interarrival times for estimation, pathChirp does
not require synchronous nor highly stable clocks at the
sender and receiver. We test pathChirp with simulations
and Internet experiments and find that it provides good
estimates of the available bandwidth while using only a
fraction of the number of probe bytes that current state-
of-the-art techniques use.
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I. INTRODUCTION

Inferring the unused capacity or available bandwidth
is of great importance for various network applications.
Knowledge of the available bandwidth on an end-to-end
path can improve rate-based streaming applications [1],
end-to-end admission control [2], server selection [3],
optimal route selection in overlay networks [4], conges-
tion control [5] as well as service level agreement veri-
fication [6]. Obtaining useful estimates of the available
bandwidth from routers is often not possible due to var-
ious technical and privacy issues or due to an insuffi-
cient level of measurement resolution or accuracy. Thus,
it becomes necessary to infer the required information
from the network edge via an active or passive probing
scheme. Ideally, a probing scheme should provide an ac-
curate estimate of a path’s available bandwidth in as short
a time as possible, preferably over only a few round trip
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times (RTTs), while imposing as light a load as possible
on the network.

Current schemes for available bandwidth estimation
fall into two broad classes. The first class of schemes
is based on statistical cross-traffic models, such as Del-
phi [7] and the methods proposed in [8]. While these
schemes can potentially provide accurate estimates of
cross-traffic, to date they have been designed for single
hop (bottleneck) scenarios and as such may not be ro-
bust in multi-hop networks which are more common in
practice.

The second class of schemes is based on the concept of
self-induced congestion, which relies on a simple heuris-
tic: If the probing rate exceeds the available bandwidth
over the path, then the probe packets become queued at
some router, resulting in an increased transfer time. On
the other hand, if the probing rate is below the available
bandwidth, the packets face no queuing delay. The avail-
able bandwidth can then be estimated as the probing rate
at the onset of congestion. Such schemes are equally
suited to single and multiple hop paths, since they rely
only on whether the probe packets make it across the path
with an unusual delay or not.

Two examples of the self-induced congestion ap-
proach are pathload [9] and TOPP [10]. Pathload em-
ploys long constant bit-rate (CBR) packet trains and
adaptively varies the rates of successive packet trains in
an effort to converge to the available bandwidth rate. Be-
cause of its adaptive search, pathload can have long con-
vergence times (on the order of 100s of RTTs) [9] and
use several MB of probe traffic per estimate. TOPP [10]
uses packet pairs of different spacings well-separated in
time and estimates available bandwidth from the time-
averaged spacing of packets at the receiver. As a result
TOPP does not make use of delay correlation informa-
tion obtainable from packet trains with closely spaced
packets.

In this paper, we propose a new self-induced con-
gestion available bandwidth estimation scheme we call
pathChirp. Unique to pathChirp is an exponentially
spaced chirp probing train (see Fig. 1). Chirp trains
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Fig. 1. Chirp probe train, with exponential packet flight pat-
tern.

are highly efficient. First a chirp of N packets has
N − 1 packet spacings that would normally require
2N − 2 packets using packet pairs. Second by expo-
nentially increasing the packet spacing, chirps probe the
network over the range of rates [G1, G2]Mbps using just
log(G2) − log(G1) packets. One other advantage of
chirps (or any other packet train) over packet pairs is that
they capture critical delay correlation information that
packet pairs do not. PathChirp exploits these advanta-
geous properties of chirps to rapidly estimate available
bandwidth using few packets.

To avoid confusion, we emphasize that the only com-
monality between pathChirp and our Delphi algorithm
[7] is the chirping packet train. Delphi uses chirps to
estimate the available bandwidth at a range of different
time scales based on a multifractal tree model for the
bandwidth over time. It does not use the self-induced
congestion principle.

We present the pathChirp concept and algorithm
in Section II and analyze its performance as a func-
tion of its parameters in Section III. After testing
pathChirp in multi-hop scenarios in Section IV we com-
pare it to TOPP and pathload in Sections V and VI
respectively. Section VII overviews experiments on
the real Internet. We conclude in Section VIII with
a discussion and directions for future research. The
pathChirp tool is available as open-source freeware at
spin.rice.edu/Software/pathChirp.

II. PATHCHIRP

In this paper we are concerned with a single sender
– single receiver path of a communication network. We
explicitly permit multiple queues; to this end we model a
path as a series of store-and-forward nodes each with its
own constant service rate, equipped with FIFO queues.
This is an accurate model for today’s Internet. We fo-
cus on estimating the available bandwidth over the path
based on queuing delays of probe packets transmitted
from the sender to the receiver. We use information only
on the relative delays between probe packets; this al-
lows us to not require clock synchronization between the
sender and receiver.

A. Available bandwidth

Denote the capacity of the output queue of router node
i as Ci, and the total traffic (other than probes) entering
it between times a and b as Ai[a, b]. Define the path’s
available bandwidth in time interval [t − τ, t] as

B[t − τ, t] = min
i

(
Ci −

Ai[t − τ + pi, t + pi]

τ

)
, (1)

where pi is the minimum time a packet sent from the
sender could take to reach router i. The delay pi includes
the speed-of-light propagation delay and packet service
times1 at intermediate queues.

In reality probe packets suffer queuing delays in addi-
tion to the minimum delay pi. Thus probes transmitted
during [t−τ, t] can arrive at router i outside time interval
[t−τ +pi, t+pi] and do not exactly measure B[t−τ, t].
For large τ (� RTT), however, the effect of queuing de-
lay becomes inconsequential.

B. pathChirp overview

PathChirp estimates the available bandwidth along a
path by launching a number of packet chirps (numbered
m = 1, 2, . . .) from sender to receiver and then conduct-
ing a statistical analysis at the receiver.

First some notation for chirps (see Fig. 1). Consider
chirp m consisting of N exponentially spaced packets,
each of size P bytes. Define the ratio of successive
packet inter-spacing times within a chirp as the spread

factor γ, the queuing delay of packet k as q
(m)
k ,2 the

sender transmission time of packet k as t
(m)
k , the inter-

spacing time between packets k and k + 1 as ∆
(m)
k , and

the instantaneous chirp rate at packet k as

R
(m)
k = P/∆

(m)
k . (2)

Since ∆
(m)
k and R

(m)
k are the same for all chirps, we drop

their superscripts in the subsequent discussion.
In a CBR fluid cross-traffic scenario, we have

q
(m)
k = 0, if B

[
t
(m)
1 , t

(m)
N

]
≥ Rk

q
(m)
k > q

(m)
k−1, otherwise (3)

which leads to a simple estimate: B̂
[
t
(m)
1 , t

(m)
N

]
= Rk∗ ,

where k∗ is the packet at which the queuing delay begins
increasing.

1We assume a constant probe packet size which implies a constant
packet service time.

2If the clocks at the sender and receiver are unsynchronized but
stable, then the difference between receiver and sender time stamps
is the queuing delay plus a constant.
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Fig. 2. A typical chirp queuing delay signature.

The assumption of CBR cross-traffic clearly oversim-
plifies reality. In particular, due to bursty traffic, queuing
delays will typically not increase monotonically within
a chirp, or any probing train for that matter. Fig. 2 de-
picts the queuing delays of a typical chirp train. We
refer to such a plot as a queuing delay signature. Typ-
ically a signature consists of excursions from the zero
axis (q(m)

k > 0 for several consecutive packets) caused
by bursts of cross-traffic. The first few excursions end
with the queuing delays returning to zero. This is be-
cause the chirp rate Rk is less than the bottleneck link
speed (Cmin := min{Ci}) on the path, which allows the
queues to relax in the absence of cross-traffic. The last
excursion usually ends with increasing queuing delays
because Rk > Cmin, which causes the chirp packets to
fill up intermediate queues.

PathChirp uses the shape of the signature, to make
an estimate E

(m)
k of the per-packet available bandwidth

B
[
t
(m)
k , t

(m)
k+1

]
. It then takes a weighted average of

the E
(m)
k ’s corresponding to each chirp m to obtain

estimates D(m) of the per-chirp available bandwidth
B

[
t
(m)
1 , t

(m)
N

]
:

D(m) =

∑N−1
k=1 E

(m)
k ∆k∑N−1

k=1 ∆k

. (4)

Finally it makes estimates ρ[t − τ, t] of the available
bandwidth B[t − τ, t] by averaging the estimates D(m)

obtained in the time interval [t − τ, t].

C. Excursion segmentation

In order to accurately compute E
(m)
k , pathChirp seg-

ments each signature into regions belonging to excur-
sions and regions not belonging to excursions.

Based on the principle of self-induced congestion, we
assume that increasing queuing delays signify less avail-
able bandwidth than the instantaneous chirp rate at that
moment while decreasing delays signify the opposite,

that is,

E
(m)
k ≥ Rk, if q

(m)
k ≥ q

(m)
k+1 (5)

E
(m)
k ≤ Rk, otherwise. (6)

In a single-hop scenario, (5) is exactly true while (6) need
not always be true. For example if packets k and k+1 are
spaced very far apart (say by 1 hour), then the fact that
q
(m)
k < q

(m)
k+1 tells us little about E

(m)
k . This is because

the packets k and k + 1 cannot possibly induce conges-
tion in the network and rather only provide independent
samples of the path queuing delay.

To make correct use of (6), we segment each signa-
ture into excursion regions and apply (6) only to these re-
gions. The basic idea behind pathChirp’s excursion seg-
mentation algorithm is quite simple. Intuitively if q

(m)
k

increases and remains larger than 0 for several consec-
utive packets, then it is likely that these packets are all
part of the same busy period3 at a congested queue along
the path. In this case we expect q

(m)
k < q

(m)
k+1 to corre-

spond to self-induced congestion, thus validating (6). We
would thus like to find regions in the signature for which
q
(m)
k > 0 for several consecutive packets.

In practice we do not necessarily know the clock off-
set between the end hosts running pathChirp. This com-
bined with the machine added noise to the time stamps
makes it infeasible to use q

(m)
k > 0 for excursion detec-

tion. PathChirp instead uses the relative queuing delay
within a chirp to detect excursions. It also avoids using
hard queuing delay thresholds, since the magnitude of
queuing delay is heavily dependent on link speeds that
vary from path to path. For example, from basic queu-
ing theory a 10Mbps link loaded at 50% utilization by
a Poisson traffic source (with constant packet size) will
have a larger average queuing delay than a similarly uti-
lized 100Mbps link fed with Poisson traffic.

The details of pathChirp’s excursion segmentation al-
gorithm are as follows. The goal is to identify potential
starting and ending packet numbers i and j respectively
for an excursion. Every packet i where q

(m)
i < q

(m)
i+1 is

a potential starting point of an excursion. We define the
end of the excursion j as the first packet where

q(j) − q(i) <
maxi≤k≤j[q(k) − q(i)]

F
, (7)

where F is a parameter called the decrease factor. At
j the queuing delay relative to q(i) has decreased by a
factor of F from the maximum queuing delay increase

3A busy period is a time interval during which the queue is never
idle.
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after i and up to j. If j − i > L, that is the signature
region is long enough, then all packets between i and j
form an excursion.

The last excursion of a signature usually does not ter-
minate; that is, there is some packet l with q

(m)
l < q

(m)
l+1

such that there is no j > l for which (7) holds (replacing
i by l in (7)). This excursion is treated differently to the
others while setting E

(m)
k which we describe next.

D. Computing the per-packet estimates E
(m)
k

Now it only remains to compute the per-packet avail-
able bandwidth estimates E

(m)
k . Each chirp packet k

falls into one of the following three categories that de-
cide E

(m)
k .

Case (a): If k belongs to an excursion that terminates
and q

(m)
k ≤ q

(m)
k+1, then set

E
(m)
k = Rk. (8)

This satisfies (6).
Case (b): If k belongs to an excursion that does not ter-
minate, then set

E
(m)
k = Rl, ∀ k > l, (9)

where l is the start of the excursion.
The reason that we do not use (8) for case (b) is that the

chirp rate during this particular excursion can be much
higher than Cmin. Since the available bandwidth is al-
ways less than Cmin, we must have E

(m)
k < Rk.

We note however that according to (5) we must have
E

(m)
k > Rk > Rl if q

(m)
k > q

(m)
k+1, k > l. Hence (9)

leads to a conservative estimate of E
(m)
k for such k.

Case (c): For all k not belonging to the above cases we
set E

(m)
k = Rl. This includes all those k not belonging

to excursions as well as those with decreasing queuing
delay belonging to excursions. In case the last excursion
of the signature does terminate, we choose l = N − 1.

For the pseudo-code of the pathChirp algorithm see
Figs. 3 and 4. Since the pseudo code uses delay informa-
tion of only a single chirp, we drop superscript (m) in all
quantities.

E. Implementation details

PathChirp infers available bandwidth online using
UDP chirp packet probes. PathChirp’s parameters are
the probe packet size P , the spread factor γ, the decrease
factor F , the busy period threshold L, and the time in-
terval τ over which the Dm instantaneous estimates are
smoothed. The average probe load on the network and

pathChirp Algorithm
procedure estimate D(q){

/* q denotes the vector of a single chirp train’s
queuing delays */

for (k = 1 to N − 1) Ek = 0; /*initialize*/

i = 1; /* Denotes current packet number */

l = N − 1; /* N=number of chirp packets*/

while(i ≤ N − 1){

if (qi < qi+1){
j = excursion(q,i,F ,L)

choose case(j):
Case(a): (j > i) and (j ≤ N )

for (s = i to j − 1)

if (qs < qs+1) Es = Rs;

Case(b): j = N + 1

for (s = i to N − 1) Es = Ri;

l = i;

/* end choose case */

if (j = i) j = j + 1;

i = j;

} /* end if */

else

i = i + 1;

} /* end while*/

D = 0;

for (i = 1 to N − 1){ /*computing D*/

if (Ei == 0)

D+ = Rl∆i; /* Case (c) */

else

D+ = Ei∆i;

}; /* end of for loop */

D = D/
∑

1≤i≤N−1(∆i);

return D;

}

Fig. 3. The pathChirp algorithm

the range of instantaneous rates within each chirp are
user specified options. PathChirp spaces the chirps apart
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procedure excursion(q,i,F ,L){

j = i + 1;

max q= 0;

while((j ≤ N ) and (q(j) − q(i) > max q/F ))

{

max q=maximum(max q,q(j) − q(i));

j = j + 1;

}

if ((j ≥ N)) return j;

if (j − i ≥ L)

return j;

else

return i;

}

Fig. 4. The excursion segmentation algorithm.

in time to achieve the specified average probing rate.
Each UDP packet carries a sender timestamp which the
receiver uses along with its own local timestamp in the
delay estimation process.

In pathChirp, probe packets travel one-way from
sender to receiver, and the receiver performs the estima-
tion. We prefer to not merely echo back information to
the sender to avoid the problem of echo probe traffic in-
terfering with the sender-to-receiver chirp probes. This
can occur on links that are not full-duplex, for example
those in shared LANs.

PathChirp addresses the practical problem of con-
text switching. When a context switch takes place at a
host receiving probe packets, the packets are temporarily
buffered while the CPU handles other processes. This
introduces delays between packets reaching the applica-
tion layer just before the context switch and after it. In
addition, the buffered packets rapidly reach the applica-
tion layer after the context switch. These delays may be
mistakenly construed as router queuing delays and thus
corrupt pathChirp’s network inference. When the differ-
ence between two consecutive receive time stamps is less
than a threshold d, we detect a context switch and dis-
card the concerned chirp. We note that a d value of 30µs
is lower than the transmission time of a 1000 byte packet
on an OC-3 link (50µs). Thus one would expect packet
arrival times at the receiver to exceed 50µs if the last link
is of OC-3 or lower speed. Currently d is hardcoded in
the program. In future d will be adaptively chosen to suit
the machine in question.

We are currently studying other ways of circumvent-

ing time stamp corruption due to context switching. One
of them is to use time stamps generated by NIC cards
rather than application layer ones.

PathChirp discards all chirps with dropped packets.

III. PERFORMANCE AND PARAMETER CHOICE

In this section, we use simulations to better understand
the role of the various pathChirp parameters. In the ex-
periments, we use a single queue with capacity 10Mbps
fed with Poisson packet arrivals. The cross-traffic packet
sizes were randomly chosen to be 1500 or 40 bytes with
equal probability. Internet traffic has been shown to have
weak correlations over time lags less than 100ms [11] in
spite of stronger correlations (or long-range dependence
(LRD)) at time lags greater than 1s. Since the duration
of a chirp is typically less than 100ms a Poisson cross-
traffic model which does not possess LRD suffices.

We varied the packet size P , spread factor γ, decrease
factor F and busy period threshold L while keeping τ
and the total probing load constant at 500kbps. Recall
that we can maintain any average low probing rate by
spacing the chirp trains far enough apart. Our choice for
the performance metric is the mean squared error (MSE)
of the estimate ρ[0, τ ] normalized by the second moment
of the true B[0, τ ]. All experiments report 90% confi-
dence intervals.
Probe packet size P : First we assess the impact of probe
packet size P on estimation performance. Obviously
the number of bytes transmitted per chirp decreases with
P . Thus by reducing P we can send more chirps for
the same average probing rate, giving us more estimates
D(m) per time interval τ . However from (2) we observe
that for the same set of probing rates Rk, a small P re-
sults in a proportionately small ∆k. Intuitively the cross-
traffic arriving over a time interval ∆k is more bursty for
smaller ∆k. For instance when ∆k → 0 the cross-traffic
process is far from smooth and to the contrary is a binary
process: we either have one packet arriving or none at
all. Thus shorter chirps will exhibit more erratic signa-
tures and give less accurate estimates.

Fig. 5 demonstrates the effect of the probe packet size
P on estimation performance. We set γ = 1.2 and vary
the parameters F and L as well as the link utilization.
Observe that in most cases larger P values give better
performance. In a few cases in Fig. 5(a) the MSE in-
creases slightly with P .

The results show that pathChirp generally performs
better with larger packet sizes. In Internet experiments
we thus use P ≥ 1000 bytes.
Spread Factor γ: The spread factor γ controls the spec-
trum of probing rates in a chirp. A smaller γ leads
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Fig. 5. Normalized mean squared error vs. probe packet size
P for two utilizations: (a) 30% and (b) 70%. In most cases the
MSE decreases with increasing packet size. The experiment
used γ = 1.2.
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Fig. 6. Normalized MSE vs. spread factor γ for two utiliza-
tions: (a) 30% and (b) 70%. The MSE decreases with decreas-
ing γ.

to a dense spectrum of rates Rk, potentially increasing
the accuracy of estimates D(m). It also leads to a finer
sampling of network delay, thus potentially improving
pathChirp’s ability to identify excursions. However it
also increases the number of packets per chirp and hence
reduces the number of estimates D(m) per time interval
τ , possibly degrading the estimate ρ[t − τ, t].

Fig. 6 demonstrates the effect of the spread factor γ
on estimation performance. We observe that the MSE
decreases (that is, improves) with decreasing γ. This ex-
periment uses P = 1300 byte packets. Since γ > 2 can
give errors as high as 100% even in CBR scenarios, we
have excluded them in the experiments.

PathChirp uses γ = 1.2 by default.
Busy period threshold L and decrease factor F : The
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Fig. 7. Normalized MSE vs. busy period threshold L for two
utilizations: (a) 30% and (b) 70%. The error improves with
decreasing L.

busy period threshold L and decrease factor F influence
pathChirp’s excursion segmentation algorithm. Recall
that the E

(m)
k estimates corresponding to an excursion

region are always less than what they would be if the
region was not marked as belonging to one (compare
cases (a) and (c) in Section II-D). Increasing L or de-
creasing F makes it harder for bumps in signatures to
qualify as valid excursions thus leading to over-estimates
of the available bandwidth. Conversely, decreasing L
or increasing F will lead to under-estimation of avail-
able bandwidth. The optimal choice for the busy period
threshold L and decrease factor F will depend on the
cross-traffic statistics at queues on the path.

From Figs. 7 and 8 observe that for our single queue
Poisson cross-traffic scenario small values of L and large
values of F give better performance.

Internet experiments indicate that the optimum values
of L = 3 and F = 6 obtained from the above exper-
iments provide overly conservative estimates of avail-
able bandwidth. This could possibly be due to the noise
present in real experiments that is absent in simulations.
The pathChirp tool instead uses L = 5 and F = 1.5 as
default.

IV. MULTI-HOP SCENARIOS

Real Internet paths almost always are multi-hop. Al-
though we are unaware of any rigorous study of the num-
ber of congested queues on typical Internet paths, we hy-
pothesize that congestion largely occurs at the edge of
the network close to the source or receiver. Thus data
packets might likely encounter two congested queues,
one on each end of their paths. One fact that supports
the argument that congestion occurs at the edge is that
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Fig. 8. Normalized MSE vs. decrease factor F for two uti-
lizations: (a) 30% and (b) 70%. The error improves with in-
creasing F .
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Fig. 9. Multi-hop experiment.

backbone ISPs have reported very low packet loss and
queuing delay on their networks [12]. While it is pos-
sible for paths to have no congested queues or possibly
one, it is important for tools like pathChirp to be robust
to the presence of at least two congested queues along
the end-to-end path.

This section tests pathChirp in a two-hop scenario as
depicted in Fig. 9. As before, competing cross-traffic
packet arrivals are Poisson and the packet sizes are cho-
sen at random to be 1500 or 40 bytes with equal probabil-
ity. The parameters we use are γ = 1.2, L = 5, F = 2,
P = 1500 and τ = 3s.

Each experiment consists of two scenarios. In the
first, we load both queues with cross-traffic such that one
queue has less available bandwidth (the tight queue) than
the other (the slack queue). The slack queue essentially
adds noise to the chirp packet delays. In the second, we
set the cross-traffic rate at the slack queue to zero. An
error of comparable magnitude in the two scenarios im-
plies that pathChirp is robust to the noise of the slack
queue in the first case.

In the first experiment the cross-traffic rate at the first
queue is 30Mbps and that at the second queue 5Mbps.
This sets the available bandwidth at the first queue (the
tight one) to 10Mbps and that at the second (the slack
one) to 15Mbps. From Fig. 10(a) we observe that the
MSE is practically indistinguishable between the cases
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Fig. 10. Performance in multi-hop experiments. The MSE
in the case of both queues being loaded is comparable to that
when only one is loaded implying that pathChirp is robust to
multi-hop paths.

where the slack queue has 5Mbps cross-traffic and no
cross-traffic at all.

In the second experiment both queues are fed with
10Mbps cross-traffic which sets the available bandwidth
at the first queue to 30Mbps and that at the second to
10Mbps. From Fig. 10(b) to our surprise we observe that
the MSE is marginally smaller when the slack queue is
loaded that when it is not.

The results show that pathChirp is robust in multi-hop
scenarios.

V. COMPARISON WITH TOPP

This section compares pathChirp with TOPP [10] us-
ing simulations when both use the same probing bit rate
and probe packet spacings.

A. TOPP

TOPP sends out several packet pairs well-separated in
time [10]. Denote the set of unique packet-pair spacings
at the sender arranged in decreasing order as δk, k =
1, . . . , N − 1 and the corresponding average spacings
at the receiver as ηk, k = 1, . . . , N − 1. Then un-
der the assumption of proportional sharing (see [10]
for details) of bandwidth at all queues on the path, the
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plot of ηk/δk vs. P/δk is piecewise linear with increas-
ing slope. The very first linear segment equals 1 for
P/δk ∈ (0, B[−∞,∞]), implying that the first break-
point gives the available bandwidth B[−∞,∞]. In prac-
tice the measured values of ηk/δk will be noisy, mak-
ing a statistical estimation of available bandwidth neces-
sary. We employ the regression-based statistical estima-
tion described in [13].

To compare pathChirp with TOPP, we keep probing
loads the same and compute the MSE of the available
bandwidth estimates over time intervals of length τ sec-
onds, that is, B[nτ, (n + 1)τ ], n = 0, 1, . . . ,∞. We ob-
tain TOPP’s estimate of B[nτ, (n + 1)τ ] using only the
probes transmitted during [nτ, (n + 1)τ ]. PathChirp’s
estimates ρ[nτ, (n + 1)τ ] are obtained as described in
Section II-B.

For pathChirp we fix the spread factor γ and separate
the chirps in time to maintain the desired average prob-
ing rate. For TOPP we use packet-pairs with the same
inter-spacing times as the chirp packets, that is δk = ∆k.
The separation times between consecutive packet-pairs
are chosen as independent exponentially distributed ran-
dom variables.

B. Single-hop scenarios

This experiment uses a single queue with link speed
20Mbps fed with Poisson cross-traffic. The probe rate
is 1Mbps and the pathChirp parameters are set to P =
1500 bytes, γ = 1.2, F = 5, and L = 3.

Fig. 11 displays the MSE for experiments with two
different utilizations. Observe that the pathChirp outper-
forms TOPP by about an order of magnitude.

C. Multi-hop scenarios

We next compare pathChirp and TOPP in the multi-
hop scenario depicted in Fig. 9 with average probing rate
500kbps. In the first experiment we set the Poisson cross-
traffic rates so that the first queue has 10Mbps available
while the second has 15Mbps available. The first queue
is thus the tight one. In the second experiment the rates
are set so the the first queue has 20Mbps available and the
second has 10Mbps available, thus making the second
queue the tight one.

From Fig. 12 observe that again pathChirp outper-
forms TOPP like in the single-hop scenarios.

Since pathChirp uses queuing delay correlation infor-
mation present in signatures and not just the average de-
lay increase between packet pairs, the above results are
not surprising. A theoretical analysis supporting these
empirical findings is part of our future research.
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Fig. 11. Comparison of pathChirp and TOPP in a single-hop
scenario for two utilizations: (a) 30% and (b) 70%. Observe
that pathChirp performs far better than TOPP.

VI. COMPARISON WITH PATHLOAD

We now compare pathChirp with pathload (version
pathload 1.0.2) [9] using a simple test bed at Rice Uni-
versity depicted in Fig. 13. The goal is to compare their
efficiency in terms of number of bytes used to obtain
available bandwidth estimates of equal accuracy.

PathChirp and pathload differ in their measure-
ment methodology as well as their output quantities.
PathChirp provides a single estimate of available band-
width per specified time interval τ . Pathload instead
provides minimum and maximum bounds on the avail-
able bandwidth while taking a variable amount of time
to make the estimate.

We perform two sets of experiments to compare the
tools. To measure the efficiency of the tools, in each ex-
periment we compute the average number of bytes over
25 runs that each tool takes to provide estimates accurate
to 10Mbps.

To obtain the bytes used by pathload, we set its band-
width resolution parameter to 10Mbps and take the aver-
age number of bytes used to make 25 estimates.

To count the bytes used by pathChirp, we employ the
following procedure. Denoting the start of the experi-
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Fig. 12. Comparison of pathChirp and TOPP in multi-hop
scenarios. In (a) the first queue has less available bandwidth
than the second while in (b) the second has the least available
bandwidth. Observe that pathChirp performs far better than
TOPP.
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Fig. 13. Testbed setup at Rice University.

ment as time 0, we compute the estimate ρ[0, τ ] for dif-
ferent values of τ . We define τ ∗ as that value of τ for
which the difference between the 90 and 10 percentiles
of ρ[0, τ ] (obtained from 25 experiments) is less than
10Mbps. We then compute the number of probing bytes
that pathChirp sends in a time interval of length τ ∗.

In this experiment pathChirp used default parameter
values: γ = 1.2, P = 1000 bytes, F = 1.5, and L = 5
packets.

In the first set of experiments, we set the available

bandwidth to a constant value using iperf CBR UDP traf-
fic [14] while in the second set of experiments we employ
Poisson UDP traffic [15]. The iperf packet size is 1470
bytes while that of the Poisson traffic is 1000 bytes. The
results in Tables I and II indicate that pathChirp needs
less than 10% of the bytes that pathload uses. In addi-
tion to the average number of bytes the two tools use
to achieve the desired accuracy, Tables I and II provide
the 10%-90% values of pathChirp estimates and the av-
erage of pathload’s minimum and maximum bounds of
available bandwidth. Observe that pathChirp’s estimates
have a consistent negative bias, implying that its mea-
surements are conservative.

These results demonstrate pathChirp’s utility, espe-
cially for applications requiring rapid estimates of the
available bandwidth using only a light probing load.

VII. INTERNET EXPERIMENTS

This section describes Internet experiments with
pathChirp. The experiments use the Y topology depicted
in Fig. 14(a). PathChirp is employed over a path from the
Stanford Linear Accelerator Center (SLAC) to Rice Uni-
versity. To provide some control on the estimated band-
width, we introduce Poisson traffic along a path from ei-
ther Caltech or StarLight (Chicago) to Rice. At the time
of the experiments, the Caltech-Rice path consisted of 14
layer-3 hops (from traceroute), the SLAC-Rice path con-
sisted of 12 hops, and 4 of the links were shared. The
StarLight-Rice path consisted of 9 hops of which 3 were
common to the SLAC-Rice path.

For this experiment, the pathChirp parameters are set
as follows: P = 1000 bytes, γ = 1.2, L = 5 and
F = 1.5. We choose τ to correspond to 11 chirp trans-
missions. The Poisson traffic packets are of size 1000
bytes.

In the experiment we sent bursts of Poisson traffic at
different rates to study pathChirp’s ability to track the re-
sulting changes in available bandwidth. The success is
demonstrated in Figs. 14(b) and 14(c). Observe that the
estimates decrease in proportion to the rate of the Poisson
traffic, with stronger dips corresponding to larger Pois-
son rates. Note that we have subtracted the Poisson rates
from an indicated arbitrary reference value for the sake
of clarity. This is because available bandwidth is nega-
tively proportional to the introduced cross-traffic.

We have not compared pathChirp with pathload over
the real Internet since we have not obtained enough
router data to know the true available bandwidth to eval-
uate their accuracy.
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TABLE I
Efficiency comparison of pathChirp and pathload with iperf CBR cross-traffic.

Available Efficiency Accuracy
Bandwidth pathChirp pathload pathChirp pathload

(10-90%) avg. of min-max bounds
30Mbps 0.41MB 4.3MB 14-25Mbps 16-34Mbps
50Mbps 0.32MB 5.5MB 49-56Mbps 40-49Mbps
70Mbps 0.26MB 9.9MB 59-68Mbps 63-70Mbps

TABLE II
Efficiency comparison of pathChirp and pathload with Poisson cross-traffic.

Available Efficiency Accuracy
Bandwidth pathChirp pathload pathChirp pathload

(10-90%) avg. of min-max bounds
30Mbps 0.35MB 3.9MB 19-29Mbps 16-31Mbps
50Mbps 0.75MB 5.6MB 39-48Mbps 39-52Mbps
70Mbps 0.6MB 8.6MB 54-63Mbps 63-74Mbps

VIII. DISCUSSION AND CONCLUSIONS

We have presented pathChirp, an active probing
scheme that uses a novel “packet chirp” strategy to dy-
namically estimate the available bandwidth along an end-
to-end network path. Internet and testbed experiments
as well as simulations reveal that pathChirp provides ac-
curate, though somewhat conservative, estimates of the
available bandwidth. In addition, pathChirp outperforms
existing tools in terms of estimation accuracy and effi-
ciency.

The current algorithm of pathChirp for available band-
width estimation mainly uses information about whether
delays are increasing or decreasing in the signatures.
In future work we will investigate algorithms that more
fully exploit the rich information contained in chirp delay
signatures. We will also investigate ways to adaptively
vary the range of chirp probing rates so as to reduce the
probing load on the network.

To facilitate applications like server selection, we will
modify the existing tool to provide fast estimates (within
a few RTTs) of the available bandwidth without congest-
ing the network.
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