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Abstract 

The Wnt pathway is at the heart of organoid technology, which is set to revolutionize the cancer 

field. We can now predetermine a patient’s response to any given anti-cancer therapy by exposing 

tumor organoids established from the patient’s own tumor. This cutting-edge biomedical platform 

translates to patients being treated with the correct drug at the correct dose from the outset, a truly 

personalized and precise medical approach. A high throughput drug screen on organoids also allows 

drugs to be tested in limitless combinations. More recently, the tumor cells that are resistant to the 

therapy given to a patient were selected in culture using the patient’s organoids. The resistant tumor 

organoids were then screened empirically to identify drugs that will kill the resistant cells. This 

information allows diagnosis in real-time to either prevent tumor recurrence or effectively treat the 

recurring tumor. Furthermore, the ability to culture stem cell-derived epithelium as organoids has 

enabled us to begin to understand how a stem cell becomes a cancer cell or to pin-point the genetic 

alteration that underlies a given genetic syndrome. Here we summarize these advances and the 

central role of Wnt signaling, and identify the next challenges for organoid technology. 

  



1. Introduction 

Stem cell derived three-dimensional (3D) replicas of organs grown in tissue culture, termed 

organoids, have led to remarkable advances in stem cell and developmental biology, human disease 

and regenerative medicine1. “Organoid” is a term originally used by developmental biologists 

working with tissue explants to unravel the mechanisms of organogenesis. The term literally means 

“organ-like”. More recent use of the term organoid is defined as a 3D structure established from 

stem cells and consisting of organ-specific cell types that self-organize to mimic their tissue of 

origin2,3. Organoids can be initiated from two main types of stem cells (summarized in Table I). The 

first stem cell type is the pluripotent embryonic stem (ES) cell or the induced pluripotent stem cell 

(iPS). For iPS, adult cells are artificially reprogrammed to pluripotency4, and then differentiated 

towards different organ cell types using cues that have been identified to orchestrate the 

development of those organs during embryogenesis and organogenesis3,5. Diverse tissue and organ 

cell types can be derived from a pluripotent stem cell.  

 

[Table I here, vertically]  

 

By contrast, the second type of stem cells, the tissue restricted adult stem cells, have a 

“memory” of their tissue of origin and self-organize and differentiate into structures that contain the 

different tissue-specific cell types; they recapitulate the characteristics of tissue function and 

architecture1. The culture conditions that were developed to establish adult tissue stem cell-derived 

organoids were then adapted to growing organoids from diseased tissues such as cancers (Table I). 

This innovation has led to one of the most important advances in cancer research – high throughput 

drug prescreening, in a clinically relevant time frame, on patient-derived tumor organoids to 

personalize treatment6,7. In this chapter we briefly summarize the discoveries that led to adult stem-

cell-derived organoid technology, the central role of Wnt signaling in this advance and how this 

advance is poised to revolutionize anti-cancer treatment. We also highlight the next challenges for 



patient-derived tumor organoid technology in the quest for curative anti-cancer treatment. Improved 

survival is clearly a great outcome for anti-cancer treatment, but the ultimate goal is curative 

treatment where the tumor cells are eliminated. 

 

2. Wnt signaling pathway 

The Wnt signal transduction pathway has several branches that are β-catenin-dependent and β-

catenin-independent (i.e. the calcium and planar cell polarity pathways) and the core components of 

these are highly conserved through evolution8,9. Here we give a brief overview of the Wnt/β-catenin 

branch10 as it is critical to stem cell function and organoid formation. In the absence of a Wnt 

ligand, β-catenin is primarily engaged in cell-cell adherens junctions. Any free newly synthesized β-

catenin is rapidly recruited to a cytoplasmic destruction complex that contains several proteins 

including adenomatous polyposis coli (APC), Axin and two kinases, casein kinase-1 (CK1) and 

glycogen synthase kinase-3 (GSK-3) that phosphorylate the recruited β-catenin. Subsequently, 

phosphorylated β-catenin is ubiquitylated by β-transduction repeat-containing protein (β-TrCP) 

targeting it for proteasomal degradation (Figure 1A). Upon Wnt binding to Frizzled (Fz) and its co-

receptor LRP (low-density lipoprotein-related protein), the intracellular domain of LRP is 

phosphorylated and the destruction complex relocates to the receptor complex to transduce the 

signal. The mechanisms are still unclear, but ubiquitylation of β-catenin is inhibited and β-catenin 

escapes degradation. It accumulates in the cytoplasm and eventually translocates to the nucleus 

where it forms a transcriptionally active complex with T-cell factor (TCF)/lymphoid enhancer 

factor (LEF) transcription factors. β-catenin-mediated activation of transcription replaces Groucho 

(or TLE) – mediated repression of TCF/LEF to initiate the expression of Wnt/β-catenin target genes 

(Figure 1B)11.  

 

 



The Wnt/β-catenin target genes that are induced are context-dependent and can mediate diverse 

outcomes in different cell types, even if the cell types are within the same tissue. For example, in 

the intestinal epithelium, active TCF/β-catenin transcription leads to the differentiation of Paneth 

cells12 but it is also necessary for the proliferation of stem cells and early progenitors13, thus 

highlighting distinct target gene repertoires within the same tissue14. An emerging theme in the field 

is that it is the fold change in the level of nuclear β-catenin rather than the absolute amount of β-

catenin in the nucleus dictating activation of Wnt signaling15. Also, the pathway is not as simple as 

an “ON-OFF” switch; the level of Wnt activation dictates the ultimate cellular outcome. The latter 

led to the proposal of the “just right” or Goldilocks model of Wnt signaling16 with extensive 

regulation of the signaling cascade at each step of the pathway, especially in cancer cells8,17. 

 

Indeed, tight regulation of events at the plasma membrane certainly come to the fore in cancer. This 

is perhaps not surprising given that the tumor cell microenvironment influences cell behavior and 

the Wnt pathway plays a key role in this regulation. This has been particularly well documented for 

colon cancer18,19 (addressed further in section 5 below). Several types of inhibitors of Wnt signaling 

are bone fide tumor suppressors in diverse cancers, including colon cancer20. Wnt pathway 

inhibitors that directly bind Wnt ligands, such as the Frizzled-related proteins (sFRPs) and Wnt 

inhibitory factor (WIF), can potentially affect any branch of the Wnt pathway. While other 

inhibitors like the DKK family act specifically on the Wnt/β-catenin branch as they block Wnt 

binding to LRP. sFRPs21-23, WIF (Wnt inhibitory factor)24 and DKK (Dickkopf)25 are epigentically 

silenced in colon cancer for example, implicating a role for active Wnt signaling from the receptor 

complex20.  

 

[Figure 1 here, horizontally, full page] 

 

3. Organoids derived from adult epithelium 



 

Adult stem cell-derived organoids were first established from the epithelium lining the mouse 

intestine26. Several discoveries led to this game-changing achievement. The first was the 

demonstration in 1998 by Korinek and colleagues that Wnt signaling is critical for intestinal stem 

cells. Deletion of the gene that codes for Tcf4, the downstream effector of Wnt signaling (Figure 

1), from the developing mouse intestine led to a depletion of the putative epithelial stem cell 

compartment and post-natal death13. A similar depletion of the stem cell compartment was observed 

when other components of the Wnt pathway, for example β-catenin27, were depleted from the 

epithelium or the Wnt-inhibitor Dkk-1 was overexpressed28,29.  

 

The next important discovery almost a decade later was identifying Lgr5 (leucine-rich-

repeat-containing G-protein-coupled receptor 5), a highly expressed Wnt target gene in the 

intestinal crypt progenitor compartment30, as an exclusive marker of adult intestinal stem cells14. 

The epithelial lining of the intestine has the fastest turnover of any tissue in the adult, with the entire 

lining being replaced every several days. Using mice engineered to track Lgr5 positive (Lgr5+) stem 

cells and their progeny led to the demonstration that this turnover of the epithelium is indeed 

maintained by Lgr5+ stem cells that reside at the base of invaginations within the epithelium called 

the crypts of Lieberkuhn14 (Figure 2A).  

 

The third important advance was the demonstration that, given the correct growth factors 

and environment, a single Lgr5+ stem cell can self-renew and give rise to daughter cells that self-

assemble to form a complex three dimensional (3D) structure containing all known intestinal 

epithelial cell types, thus forming ever-expanding 3D intestinal organoids in tissue culture26 

(represented in Figure 2D). To demonstrate this, Lgr5+ intestinal stem cells were purified using 

Lgr5-promoter driven EGFP expression and FACS sorting. The ability to grow “mini-guts” in 

tissue culture has enabled the identification and characterization of the stem cell niche factors31,32, 



and an understanding of the molecular mechanisms of Wnt signaling in stem cell maintenance, 

epithelial cell differentiation33 and aberrant Wnt signaling at the initiation of cancer34.  

 

 

[Figure 2 here, horizontally, full page] 

 

Lgr5 stem cells generate 3D organoids  

 

To establish intestinal organoids, the crypts of the epithelium (Figure 2A, B) are isolated 

and re-suspended in a solubilized basement membrane preparation rich in extracellular matrix 

proteins (called Matrigel), which is liquid at 4°C but sets as a gel at 37°C. This provides the 3D 

matrix for the crypts to form organoids. Once the gel has set, it is overlaid with medium containing 

growth factors that recapitulate the in vivo crypt niche. Just three factors are necessary to maintain 

ever-expanding intestinal organoids: R-spondin to potentiate endogenous Wnt signals; the BMP 

inhibitor Noggin and epidermal growth factor (EGF)26. Within 24 hr of plating, the crypts form 

cysts that are already polarized with stem cells to one pole (Figure 2C); after several days in 

culture, organoids are formed with defined crypt and villus domains (Figure 2D); the different 

epithelial cell types are represented in roughly equivalent relative proportions to the normal 

epithelium26. The organoids shed dead cells into the lumen and will eventually burst open, releasing 

dead cells, if not passaged. The intestinal organoids continue expanding and require fresh growth 

factors every other day, and passaging each week26. The organoids are genetically stable with 

continuous passage35, can be manipulated genetically using current genetic tools such as 

CRISPR/Cas9 genetic editing36,37, Cre-LoxP mediated gene manipulation38 or 

transfection/transduction39. Intriguingly, when embedded within contracting collagen gels, intestinal 

organoids fuse to form macroscopic intestinal tubes that have a continuous lumen lined by villus 

cell types and crypt-like structures budding from the tube into the collagen40. Thus, lengths of 



intestine can be generated in tissue culture without the need for complex tissue-engineering 

scaffolds.  

 

Organoids also hold great promise for regenerative medicine and transplantation, but one 

drawback is the cost of recombinant growth factors and animal cell line derived matrix (Matrigel is 

derived from mouse sarcoma cell line). The cost of reagents was partly alleviated using conditioned 

media from cell lines that secrete the growth factors (e.g. Wnt3a, R-spondin, noggin producing cell 

lines41). However, conditioned medium is not defined as it contains unknown components and thus 

is not applicable for generating tissue for transplantation and other clinical applications. To this end, 

several avenues are being investigated to overcome these barriers. For example, stabilizing Wnt in 

serum free medium. Unlike intestinal organoids, several other organoid types require Wnt in the 

growth factor cocktail. However, Wnt ligands are hydrophobic and require serum for optimal 

activity; recombinant Wnts perform poorly compared to conditioned medium. A glycoprotein called 

afamin was recently identified as a component of serum that stabilizes Wnt and purified afamin 

improves the performance of recombinant Wnt42. Other groups have used phospholipids and 

cholesterol carriers to stabilize Wnt43 or water soluble surrogate Wnt agonists that activate Wnt/β-

catenin signaling44. Also, advances in bioengineering45 has seen the development of modular 

synthetic hydrogel matrices that replace the need for Matrigel. Extracellular proteins were 

incorporated into the hydrogel networks and the components necessary for organoid formation, 

stem cell maintenance and cell differentiation have been defined46. Furthermore, these synthetic 

matrices allow the “stiffness” of the matrix to be varied, as the physical properties of the cellular 

microenvironment also affects cell behavior46. This is reminiscent of the well-documented effects of 

matrix “stiffness” on cancer cell behavior47.     

 

4. Organoids derived from patient tumors 

Once the culture techniques for growing intestinal organoids were established, variations on 



the same culture protocol led to the establishment of organoids from several other gastrointestinal 

tissues41,48 as well as many other stem-cell maintained adult tissues (several comprehensive recent 

reviews49-51). Clevers and colleagues also adapted the organoid protocols to grow patient-derived 

colon cancer tumor organoids. The mini-tumor organoids similarly recapitulate the features of 

actively growing colon cancers and can accurately predict the patient’s response to treatment6. 

Consequently, mini-gut and mini-tumor organoid platforms provide powerful tools for drug 

discovery and predictive drug-response diagnostics for cancer treatment. Generally, about 60% of 

colon cancer patients respond to any particular therapeutic regimen. The non-responders are then 

treated with alternative drug regimens. The ability to pre-screen the drugs on an individual patient’s 

tumor cells, both singly and in limitless combinations with other drugs, means that the patient is 

treated with the drug regimen that will work on their tumor from the outset6. This not only saves 

time between diagnosis and effective treatment but also eliminates unnecessary treatment and the 

consequent side effects. Here we focus on colon cancer to highlight the advances and the next 

challenges of organoid technology in the cancer field. 

 

Wnt signaling in colon cancer 

 

Colon cancer starts in the simple epithelium that lines the colon. Most colon cancers in 

humans, including somatic cancers, arise from adenomas (non-cancerous tumors or polyps) that 

harbor truncating mutations in the Adenomatous Polyposis Coli (APC) tumor suppressor gene52,53. 

These mutations in the APC gene lead to constitutive activation of the Wnt/β-catenin pathway54,55 

and the formation of adenomas in the epithelium of the colon. The adenomas can then progress to 

cancerous tumors through the accumulation of mutations to activate oncogenes and inactivate tumor 

suppressors56. Human colon cancers that do not harbor APC gene mutations often have oncogenic 

mutations in the β-catenin gene (CTNNB1)53. Thus, the vast majority of colon cancers have 

mutations in the intracellular pathway components that activate Wnt/β-catenin signaling.  



 

APC facilitates the phosphorylation and subsequent targeting of β-catenin for proteasomal 

degradation (Figure 1). In colon cancer, mutations to the APC gene lead to a truncated APC protein 

and this facilitative function is lost, and consequently, the constitutive activation of the pathway54,55. 

Oncogenic mutations to CTNNB1 alter the negative regulatory domain of β-catenin at the N-

terminus, and again, lead to constitutive activation of the Wnt pathway57. Transgenic mice 

harboring these alterations to APC58,59 or β-catenin60 genes develop multiple intestinal adenomas 

with active Wnt signaling.  

 

In addition to these mutations that activate the pathway, Wnt signaling is further regulated 

through multiple mechanisms in colon cancer8. The Frizzled (FZD) receptors and Wnt ligands are 

over-expressed in colon cancer and can modulate the pathway61,62, while naturally occurring 

inhibitors of Wnt-FZD interaction (e.g. sFRP) are epigenetically silenced and are bona fide tumor 

suppressors in human colon cancer 20,21,23. Curiously, the net effect is to “constrain” the Wnt 

signaling pathway in the cancer cells to a sub-maximal level of activation as signaling can be 

decreased23 and increased experimentally63 and is hyper-activated in cancer cells engaged in tumor 

invasion64,65. 

 

Genetic dissection of colon cancer development using organoids  

 

In addition to constitutively active Wnt signaling at the initiation of colon cancer, 

progression from adenoma to carcinoma requires mutations in genes in other oncogenic pathways. 

The adenoma-carcinoma sequence was originally proposed by Vogelstein56 and colleagues based on 

the analysis of mutations present at each stage of tumor progression. Sequential acquisition of 

mutations that lead to functional loss of function of other tumor suppressors such as TP53 and 

SMAD4, as well as activating mutations in other oncogenes such as KRAS. Intriguingly, the 



introduction of these mutations sequentially and in combination into normal epithelial cells using 

organoids and gene editing (CRISPR/Cas9) has not only identified the minimal mutations necessary 

for cancer development but has also provided an explanation of the growth factor requirements for 

organoid growth66. That is, each genetic mutation alleviates the need for a growth factor. Mutations 

to activate Wnt signaling alleviate the need for R-spondin and Wnt, mutation in KRAS alleviate the 

need for EGF and inactivating mutation in SMAD4 alleviate the need for Noggin to inhibit BMP 

signaling. With the additional mutation of TP53, the quadruple mutant organoids grew without the 

need for growth factors and formed invasive subcutaneous tumors66. Using a similar strategy, 

Matano and colleagues showed that mutation in PI3K pathway (PIK3CA) can substitute for KRAS 

mutation67. These initial studies have been expanded upon to demonstrate that quadruple mutant 

organoids (i.e. APC, KRAS, p53, SMAD4) yield invasive tumors in an orthotopic mouse model68. 

These findings indicate that the loss of niche dependency leads to the ability to metastasize to 

secondary organs, at least in an experimental metastasis model.  

 

Patient-derived tumor organoids for drug pre-screen and Biobanking 

 

An important application of organoid technology has been the ability to establish tumor 

organoids from resected and biopsy samples and to adapt the mini-tumor organoids to high-

throughput drug screens. This was first achieved by the Clevers lab in a retrospective study where 

patient drug response was compared to the response of the corresponding patient-derived organoids, 

and coupling this with genomics to identify gene-drug associations6. The patient-derived tumor 

organoids are a faithful replica of the patient’s tumor and can be established from primary tumors 

and metastases69. Patient-derived organoids and the “omic” analyses of these (genomic, 

epigenomic, transcriptomic, proteomic), have revealed that normal organoids are more stable in 

culture than malignant tissues70,71, which might have been expected given that chromosomal 

instability is a common feature of cancer, but needed formal demonstration. Furthermore, by 



establishing a biobank of patient-derived tumor and normal tissue organoids, drug discovery and 

“clinical trials” are expedited. Novel drugs can be tested by simply thawing out a panel of tumor 

organoids and the high-throughput format allows for multiple combinations, titrations etc. A not-

for-profit foundation (HUB) has been established by the Clevers group to advance this technology 

(see http://hub4organoids.eu/).  

 

Patient-derived xenografts (PDX) have become the gold standard for “personalized anti-

cancer treatment” (numerous recent reviews e.g. Byrne and colleagues72). However, PDX models 

are limited in their application to personalized medicine for several seasons. The success rate of 

establishing xenograft tumors from patient material is low, the time to establish tumor xenografts is 

slow, and the cost of mouse models are just a few of the caveats. PDX also does not lend itself to 

high throughput. Delivering information in a clinically relevant timeframe is a real hindrance to 

using PDX models as a diagnostic tool. Patient-derived organoids fulfil this unmet need for 

personalizing anti-cancer diagnosis and treatment. Biobanks like the HUB are being established 

around the world, for example the nonprofit organization ALOA (Australian Living Organoid 

Alliance).  

 

DasGupta and colleagues recently took the high-throughput screen on patient-derived organoids 

to a new dimension73. They generated a library of patient derived organoids and PDX models from 

head and neck squamous cell carcinomas (HNSCCs) and used these to select for tumor cells that are 

resistant to the standard treatment given to the patient. The resistant organoids were then 

comprehensively interrogated to identify patient-specific gene signatures that could potentially 

underlie the resistance to therapy. Using this strategy they identified that selection for YAP-1 (Yes-

associated protein-1) positive cells paralleled failed therapy; implicating YAP-1 is a putative 

biomarker for resistance73. Tumors are heterogeneous and the ability to select resistant cells using 

organoid culture coupled with the power of “omics” analyses allows diagnosis in real-time. Such a 



high throughput drug screen is not possible with any other patient-derived model. Numerous other 

cancers and tissues have been effectively modelled using organoids and these have been covered by 

a number of comprehensive recent reviews74. Next we will highlight the new challenges for patient-

derived organoids. 

 

5. Modelling dormant tumor cells: the next frontier for tumor organoids 

 

One limitation for mini-tumor organoids as a drug screen is that the ever-expanding tumor 

organoids mimic the actively growing tumor cells. The mini-tumor organoids do not mimic the 

dormant tumor cell state. The key to curative cancer treatment is to therapeutically target and 

eliminate the disseminated dormant tumor cells that eventually re-establish tumors at secondary 

sites and are ultimately the cause of death. Some therapies will target actively dividing as well as 

dormant tumor cells but we need to be able to establish “dormant” organoid cells from the patient’s 

mini-tumor organoids to screen for these. This is the next challenge for the organoid platform but 

we have clues about how to do this from other model systems. 

 

Reversible phenotype transitions underlie metastasis 

 

Although most human colon cancers are relatively well differentiated with an epithelial 

phenotype, in localized areas, termed the “invasive front”, the tumor cells take on a more 

mesenchymal phenotype that is associated with migratory and invasive properties, and the cells 

shut-down cell proliferation18. This phenotypic change, termed epithelial-to-mesenchymal transition 

(EMT), is thought to enable the tumor cells to dissociate from the tumor mass and disseminate to 

other organs in the body. The disseminated tumor cells are dormant and acquire resistance to 

therapies, particularly therapies that target actively dividing cells such as chemotherapy and 

radiation therapy. The EMT program also induces stem cell-specific gene expression, thus 



promoting self-renewal properties19. Dissemination can occur early in the disease process, and 

tumor cells can sit dormant for many years. However, for the tumor cells to re-instate tumor growth 

at the secondary site, the cells must undergo the reverse transition, mesenchymal-to-epithelial 

transition (MET), because the secondary tumors recapitulate the differentiated epithelial phenotype 

of the primary tumor18,75. 

 

 

An in vitro model of tumor morphogenesis 

 

Modelling dormant tumor cells 

These reversible phenotype transitions have recently been modelled in a human colon cancer 

cell line that grows as an organoid sphere in tissue culture63,76. The parental cell line LIM186377 

grows as spheres of epithelial cells that are highly polarized along the baso-lateral axis and are 

organized around a central lumen. These spheres can spontaneously anchor to the tissue culture 

plastic and form an adherent monolayer patch. After 3 to 4 days in culture, cells in the monolayer 

patches re-organize to reform the spheres that eventually float freely in the tissue culture medium 

and the whole process starts again. The parental cell line was adapted to efficiently undergo this 

spontaneous, reversible transition between monolayer and organoid sphere and the adapted cell line 

is called LIM1863-Mph (for morphogenetic)63 (Figure 3A). Immunofluorescence confocal 

microscopy for the junctional protein ZO-1 clearly shows the transition between monolayer and 

organoid sphere (Figure 3B)78. Molecular and phenotypic analysis of the cells during these 

transitions revealed that the features of EMT and MET that underscore colon cancer metastasis are 

faithfully recapitulated in this model system63,76,78,79. Importantly, the monolayer cells (EMT state) 

decrease cell proliferation and are resistant to agents that block cell proliferation (e.g. Mitomycin 

C)63 and thus mimic the properties of chemo resistant mesenchymal invasive front cells. The 

epithelial spheres can be induced to undergo EMT with TGFβ and TNFα treatment; however, this 



transition is not reversible76. Nonetheless cytokine-induced, and spontaneous, monolayer formation 

and the reverse transition in the LIM1983-Mph cells provide clues about the underlying 

mechanisms of dormancy which could be adopted for the tumor mini-organoid platforms. Notably, 

the monolayer cells are resistant to the PI3K inhibitor LY49002. As noted above, PI3K is one of the 

genetic insults that converts normal cells to cancer cells in an organoid model67, yet the LIM1863-

Mph cells are resistant to a PI3K inhibitor when in the mesenchymal state even though they are 

sensitive to it in the epithelial state63.  

 

[Figure 3 here, vertically, half page] 

 

The LIM1863-Mph tumor morphogenesis model highlights one caveat for patient-derived 

tumor organoids – modeling reversible tumor dormancy. Indeed, studies to date reveal that 

metastasis relies on subtle changes rather than “driver” gene mutations. For example, in one study 

mutant organoids engineered from human normal epithelium to carry the driver mutations seen in 

colon cancer formed micrometastases when injected into the spleen of mice but failed to colonize 

the liver, the usual metastatic site for colon cancer. In contrast, mutant organoids derived from 

human adenomas formed liver metastases when the same drivers were introduced67. Similarly, 

tumor organoids derived from colon metastases metastasize better than their matched primary 

tumor, despite having indistinguishable genetic mutations and niche requirements7. Consequently, 

human genomics needs to be coupled to epigenomics and phenomics if we are to unravel the 

mechanisms of tumor dormancy and mechanisms of metastasis.  

 

Acute high Wnt/β-catenin signaling in MET 

 

Another intriguing feature of the LIM1863-Mph is the dynamic regulation of the levels of 

nuclear β-catenin, the hallmark of active Wnt/β-catenin signaling (Figure 1B). The organoid cells 



and the monolayer cells have very low but detectable levels of nuclear β-catenin63. This is not 

surprising as the LIM1863 cells harbor truncating mutations in the APC gene80. However, as the 

monolayer cells start to transition back to epithelial morphology and start to lift off the tissue 

culture plastic and re-organize themselves into spheres, there is a dramatic transient increase in 

nuclear β-catenin, which is concomitant with a sharp increase in cell division (Ki-67 staining)63. 

Cells in the organoid spheres continue to divide (maintain strong Ki-67 staining) but the level of 

nuclear β-catenin decreases to just detectable levels. As expected, the organoid sphere cells are 

susceptible to agents that target cell proliferation (Mitomycin C)63 and the PI3K inhibitor LY49002 

(data not shown). Collectively, this indicates that emergence from a mesenchymal monolayer 

(“dormant”) state (i.e. MET) requires a sharp burst of Wnt/β-catenin signaling63. This was 

confirmed recently by an independent study that showed lithium chloride (LiCl), a known activator 

of Wnt/β-catenin signaling63,81, induced MET in primary colon cancer cell cultures82. 

 

This requirement for Wnt/β-catenin signaling for MET provides several novel avenues to 

combat the formation of metastases. Experimentally it was shown that Wnt is necessary for MET in 

the LIM1863-Mph cells78 and the Wnt receptor Frizzled-7 was identified as the necessary Wnt 

receptor63; thus therapeutic targeting of Frizzled-7 would target both actively dividing and dormant 

tumor cells. Indeed, inhibition of Frizzled-7 mediated signaling in colon cancer cells potently 

blocked colon cancer xenograft growth83.  

 

Another avenue might be to activate Wnt/β-catenin signaling in the dormant tumor cells to 

induce MET and render them susceptible to conventional chemotherapy and radiotherapy. 

Activating Wnt signaling may sound risky, but lithium could potentially serve this purpose. Lithium 

is an FDA-approved and preferred drug for the treatment of mood disorders, and evidence is 

emerging about its potential use as an anti-cancer drug in colon84-86 and other cancers87. 

Importantly, there is no increased risk, in fact a slight decrease, of cancer in psychiatric patients 



treated with lithium88. Re-purposing lithium to activate the Wnt/β-catenin pathway immediately 

before administering conventional chemotherapy and radiotherapy might have a beneficial effect in 

colon cancer.  

 

6. Conclusions 

In this chapter we have tried to highlight the current state of the tumor organoid field, which is 

advancing at an astronomical rate. Mini-gut and mini-tumor organoids have revolutionized our 

understanding of the molecular mechanisms that underlie transition from normal epithelial stem cell 

to cancer cell, identify the molecular drivers of cancer cells and predict their susceptibility to anti-

cancer drugs. The ability to conduct drug screens on dormant patient tumor cells is the next frontier 

and vital to our quest to improve cancer patient survival rates towards a cure.  

 

Indeed, we propose that the most important challenge for organoid technology and high 

throughput drug screens is to model patient-derived dormant tumor cells, because the barrier to 

curative treatment is metastasis, the cause of death in most cases. Tumor cells can spread to other 

organs early in the disease, long before diagnosis, and can lay dormant in the secondary organs for 

years89. Organoids with dormant tumor cells have the potential to identify therapies to eliminate 

these cells. We have clues from model systems such as LIM1863-Mph described above but also 

possibly from Lgr5+ stem cells. It was recently shown that Lgr5+ stem cells can be made quiescent 

in vitro, and that the quiescent state is reversible90. We already know that Lgr5+ colon cancer cells 

maintain tumor growth and progression91,92, akin to the role of Lgr5+ intestinal stem cells 

maintaining the intestinal epithelium. Thus, Lgr5+ cancer cells behave like cancer stem cells. 

Notably, cancer stem cell plasticity, where Lgr5 negative cells can revert to being Lgr5+, has also 

been recently demonstrated in a mouse model92, again reminiscent of intestinal stem cell plasticity 

where daughter cells can revert to the Lgr5+ state to repopulate the crypt93-95. Perhaps the Lgr5+ 

cancer cells will also provide the clues to tumor dormancy.  



 

In 1960s Gurdon demonstrated that an adult nucleus can be the blueprint for an organism96, and 

the eventual adoption of this knowledge in 2006 to induce pluripotency in adult cells by Yamanaka 

and colleagues4, and the ability to derive organoids from these pluripotent stem cells, has led to a 

steady stream of organoid-based publications. However, the demonstration in 2009 that adult stem 

cells can be coerced to generate their tissue of origin in vitro has led to an exponential increase in 

organoid-based publications1. This explosion in knowledge is set to be fueled by combining the two 

varieties of stem cell-derived organoids (Table I). Adult tissue stem cell-derived organoids do not 

contain other cell types in the organ e.g. no immune cells, neuronal cells or stromal cells for 

example. However, by adding patient iPS-derived cell types to patient adult stem cell-derived 

organoids, we can start to build more complex tissues or even organs, because autologous iPS cells 

can provide cells types that are present in the organ but are not derived from the adult tissue-

restricted stem cell. For example, recently iPS and adult stem cell derived organoids have been 

combined to generate stem-cell derived intestinal tissue with a functional enteric nervous system97. 

This is just the beginning - very exciting times ahead.   
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