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Abstract 
The key aim was to characterise Nuclear factor-κB (NF-κB) inhibitors in 

four multiple myeloma (MM) cell lines to evaluate their use as potential 

therapeutic agents in this incurable haematological malignancy. The NF-κB 

inhibitors were characterised in terms of their effects on cytotoxicity, nuclear 

NF-κB activity, global gene expression changes and the survival protein Mcl-1. 

Using this workflow, the following inhibitors were investigated: the 

commercial non-specific NF-κB inhibitor BAY 11-7082; a series of first-in-class 

putative IKKα inhibitors (SU compounds); and a novel putative NIK inhibitor 

(CW15337) in MM cell lines. 

BAY 11-7082, CW15337 and most of the SU compounds induced dose-

dependent cytotoxicity in the MM cell lines. For BAY 11-7082 and CW15337, 

cytotoxicity was associated with dose-dependent changes in NF-κB activity, 

although BAY 11-7082 inhibited both the canonical and the non-canonical NF-

κB pathway, whereas CW15337 specifically inhibited the non-canonical NF-κB 

activity. In addition, the apoptosis induced by CW15337 was accompanied by 

a dose-dependent decrease in Mcl-1 expression in all tested MM cell lines.  

In contrast, the cytotoxicity of the SU compounds did not correlate with 

the dose-dependent down-regulation of Mcl-1 expression or NF-κB activity, 

and could not be completely explained by the SU compounds IKKα, IKKβ and 

CDK9 inhibitory profiles. Microarray analysis indicated a large disparity 

between the numbers of genes differentially regulated by some of the SU 

compounds; the number altered and the magnitude of the changes was 

associated with their cytotoxicity. Therefore, it seems likely that the increased 

potency of some of the SU compounds was caused by off-target effects.  

Overall, this work supports the concept of NF-κB as a molecular target 

in MM and suggests that NIK inhibition may present the most promising 

therapeutic option for specific non-canonical NF-κB targeting in MM. 

However, a more detailed investigation of CW15337 across the kinome is 

merited. 
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Chapter 1- Introduction 
1.1. Multiple myeloma (MM) 

Multiple myeloma (MM) accounts for approximately 10% of 

haematological malignancies and is predominantly a disease of the elderly, 

where two thirds of newly diagnosed individuals are 65 years or more (CRUK 

2014; HMRN 2014). Overall, there are approximately 4,000 new cases of MM 

in the UK per year and the disease is more common in males relative to 

females, with a male:female ratio of 1.3:1 (CRUK 2014; HMRN 2014). Despite 

the recent advances in treatments for MM, the disease remains incurable, 

although patients are now predicted to live for approximately 5 years 

following diagnosis (Bergsagel et al. 2013).  

1.1.1. MM biology 
MM is a B-cell malignancy in which the accumulation and infiltration 

of malignant plasma cells in the bone marrow (BM) is the key characteristic 

(Kyle et al. 2003; Greipp et al. 2005). Plasma cells are terminally 

differentiated B-cells and these cells have a crucial role in the adaptive 

immune system because plasma cells are involved in the production of 

antibodies. B-cells are derived from haematopoietic stem cells and undergo 

immunoglobulin (Ig) rearrangement in their early stages to generate a large 

antigen recognition repertoire. B-cells differentiate to plasma cells in 

response to stimulation and activation by exogenous antigens through both 

T-cell independent and T-cell dependent pathways. The activation of B-cells 

triggers extensive somatic hypermutation of the variable region of 

immunoglobulin genes, which allows the production of antigen-specific 

antibodies. 

The resulting plasma cells then localise to the BM where they can 

survive as long-lived plasma cells (Brieva et al. 1991; Slifka et al. 1995; Manz 

et al. 1997). The process of bone marrow homing is prompted by the reduced 

expression of the CXC chemokine receptor 5 (CXCR5) and the increased 

expression of CXCR4, CXCR3, CXCR6 and α4β1-integrin on the surface of 

plasma cells (Hargreaves et al. 2001; Hauser et al. 2002; Kunkel a Butcher 

2003; Odendahl et al. 2005). The BM microenvironment (BMM) then 
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provides a supportive environment to promote the survival of long-lived 

plasma cells through interleukin-6 (IL-6), B-cell-activating factor (BAFF), IL-

5 and tumour-necrosis factor (TNF) secretion, and the expression of survival 

receptors such as CXCL12, CD44 ligand and CD40 ligand (Minges Wols et 

al. 2002; Cassese et al. 2003; O'Connor et al. 2004). 

The malignant plasma cells in MM retain many similarities with their 

long-lived normal counterparts in the respect that the cells retain a strong 

BM dependence, are positive for the surface antigens CD38 and CD138, and 

usually possess extensive somatic hypermutation of immunoglobulin genes 

(Ruiz-Argüelles a San Miguel 1994; Wijdenes et al. 1996; Kuehl a Bergsagel 

2012). However, unlike normal plasma cells, malignant plasma cells produce 

excess amounts of damaging proteins with no useful function in the place of 

normal monoclonal immunoglobulin (mIg), known as paraproteins. 

Furthermore, MM plasma cells retain the ability to proliferate at a low rate 

(Kuehl a Bergsagel 2012). Malignant plasma cells typically lack the 

expression of the B-cell associated antigen CD19, the CD27 antigen and 

CD45, and may also aberrantly express CD56 and CD28 (San Miguel et al. 

2002; Bianchi a Anderson 2014). As a result, myeloma plasma cells can be 

differentiated from normal plasma cells through a variety of diagnostic 

techniques, such a multi-parametric flow cytometry, to allow the MM 

disease to be diagnosed and its progression monitored. 

1.1.2. Symptoms 
The majority of MM symptoms are a consequence of the 

accumulation of malignant plasma cells within the BM and the presence of 

excess paraproteins. MM patients frequently present with symptoms such as 

bone pain, hypercalcaemia, anaemia and recurrent infections. In addition, 

the presence of end-organ failure is one of the main symptoms that is 

required for MM diagnosis and the specific symptoms required can be 

abbreviated to the CRAB acronym. These specifically include hypercalcemia 

(C), renal failure (R), anemia (A), and/or bone disease (B) in the form of 

osteolytic lesions (IMWG 2003).(Group 2003).  
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Hypercalcaemia, anaemia and recurrent infections arise due to 

osteolytic bone destruction and impaired haematopoiesis. This is a result of 

the localisation of the malignant plasma cells within the BM (Bommert et al. 

2006). Normal BM structure is maintained due a balance of osteoblast and 

osteoclast cell activity. In MM, the abundance of malignant plasma cells 

within the BM leads to an imbalance in the regulation of these cells, which 

ultimately results in decreased bone construction and increased bone 

destruction (Xi et al. 2016). Increased osteoclast activity is caused as a result 

of increased levels of tumour-associated cytokines, such as IL-6 and TNFα, 

and the interaction of MM cells with the BMM through pathways such as 

receptor activator of nuclear factor-κB (RANK) and its ligand (RANKL) (Xi 

et al. 2016).  

The excess paraprotein that is produced by malignant plasma cells in 

MM leads to symptoms such as kidney injury, which can then result in renal 

failure, and in some cases peripheral neuropathy and encephalopathy 

(Bianchi a Anderson 2014). 

1.1.3. Diagnosis 
Some patients present with a pre-malignant condition before they are 

diagnosed with symptomatic MM. Monoclonal gammopathy of 

undetermined significance (MGUS) is an asymptomatic condition that in 

most cases precedes the diagnosis of MM, although not all MGUS cases will 

progress to MM (Landgren et al. 2009; Weiss et al. 2009). Moreover, 

approximately 3-4% of the population over the age of 50 years have features 

of MGUS (Dispenzieri et al. 2010). MGUS is characterised by the presence of 

mIg in the serum (<30 g/L) but in the absence of the usual CRAB clinical 

signs of malignancy (Rajkumar et al. 2014). In addition, the percentage of 

clonal plasma cells within the BM is less than 10% (Rajkumar et al. 2014). 

Before MGUS transforms to symptomatic MM, it often progresses to 

an intermediate clinical stage of the disease known as smoldering MM (or 

asymptomatic myeloma). Smoldering MM is diagnosed if there is a high 

level of paraprotein detected in serum (≥ 30 g/L) and/or the BM contains ≥ 

10% plasma cells (Rajkumar et al. 2014). However, smoldering MM is not 
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classed as symptomatic MM because it is only diagnosed in the absence of 

the usual CRAB clinical symptoms of MM. As a result, many arguments 

exist as to whether treatment for MM should be initiated in the smoldering 

MM phase of the disease or to wait to see whether progression to 

symptomatic MM arises (Dispenzieri et al. 2013). 

The next stage of disease progression is symptomatic MM and this is 

usually detected based on the appearance of a variety of clinical symptoms. 

The diagnosis of MM is achieved if three criteria are met: 

1. There must be greater than 10% plasma cells found within the 

bone marrow aspirate. In addition, more than 90% of these 

plasma cells will present with a malignant phenotype. 

2. There are excess levels of paraproteins (≥ 30 g/L) within the 

serum and/or urine. 

3. There is evidence of all the CRAB symptoms of MM. 

A more advanced stage of MM may be observed and this is known as 

plasma cell leukemia or extramedullary MM. In this stage of the disease, 

malignant plasma cells leave the BMM and enter the peripheral blood where 

they can account for more than 20% of cells present in this fraction 

(Rajkumar et al. 2014). 

1.1.4. Prognosis 
The prognosis of MM is determined based on a variety of prognostic 

factors, including tumour burden, the age and relative fitness of the patient, 

and cytogenetics (Bianchi a Anderson 2014). In addition, patients with a 

previous diagnosis of MGUS preceding MM have a better survival outcome, 

which may be consequence of increased follow-up leading to earlier 

treatment once MGUS eventually progresses to MM (Sigurdardottir et al. 

2015). 

The International Staging System (ISS) can be used to assess the level 

of tumour burden in MM patients and used to categorise patients into three 
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separate groups (Table 1.1) (Greipp et al. 2005). The measurements used for 

the three-stage ISS are serum β2-microglobulin and serum albumin, both of 

which are measured easily and inexpensively using simple laboratory tests. 

As a result, the ISS provides a highly accessible and significantly relevant 

prognostic indicator of tumour burden (Greipp et al. 2005). 

Table 1.1 The International Staging System (ISS) 
The table shows the criteria used in respect to β2 microglobulin and serum albumin 
measurements for stratifying patients into the three stages of the ISS. The overall 
survival in months that is predicted by ISS is also provided. In summary, the higher 
the ISS stage of tumour burden, the worse the predicted outcome is for the patient 
at diagnosis. Adapted from (Greipp et al. 2005; Bianchi a Anderson 2014). 
 

Stage ISS criteria 
Overall survival 
according to ISS 

(months) 

I 
Serum β2-microglobulin <3.5 mg/dL 

AND serum albumin ≥3.5 g/dL 
62 

II 
Meets criteria for neither stage I nor stage 

III 
44 

III Serum β2-microglobulin ≥5.5 mg/dL 29 

 

The use of a combination of prognosis factors, such as tumour burden 

and cytogenetics, are then used to place patients into different risk 

categories, such as standard-risk patients and high-risk patients, which can 

help to decide what treatment regime they should receive. Patients 

diagnosed with standard-risk MM can survive for 10 years or more, whereas 

the median survival for a patient who presents with high-risk MM is less 

than 2 years (Chng et al. 2014). 

20% of cases of high-risk MM arise as a consequence of specific 

cytogenetic abnormalities (Egan et al. 2016). For this reason, a revised ISS (R-

ISS) is now used to assess prognosis using a combination of the original ISS 

criteria, cytogenetic evaluation and the measurement of serum lactate 

dehydrogenase (LDH) to provided a more reliable assessment of risk 

stratification for MM patients (Palumbo et al. 2015). Serum LDH has been 

shown to be a relevant biomarker in MM and increased levels of serum LDH 
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indicate increased disease aggressiveness and MM cell proliferation (Terpos 

et al. 2010). 

The chromosomal abnormalities that are frequently detected in MM 

can be separated into two main cytogenetic categories; translocations 

involving the Ig heavy-chain (IgH) locus and genomic imbalances (Bergsagel 

et al. 2013). Table 1.2 shows the most common cytogenetic abnormalities that 

are detected in MM along with whether they are associated with a high-risk 

prognosis. The majority of these primary genetic abnormalities lead to 

deregulation of cyclin D genes (chromosome 14), which results in 

uncontrolled MM plasma cell proliferation (Bergsagel et al. 2005). 

Interestingly, these genetic abnormalities have been found to arise before the 

MGUS stage of disease and increase in number throughout MM disease 

progression, indicating their importance in tumour progression (Walker et 

al. 2014). 

Table 1.2 The most common cytogenetic abnormalities in MM and their 
association with MM prognosis. 
The cytogenetic abnormalities can be separated into two main cytogenetic 
categories; IgH translocations and genomic imbalances. Those shown in red are 
associated with a worse prognosis and can stratify MM patients into the high-risk 
category. The most commonly observed high-risk genetic abnormalities in MM are 
the t(4;14) translocation and 17p deletion. Adapted from (Bergsagel et al. 2013). 
 

IgH translocations Genomic  imbalances 

t(4;14) 

t(14;16) 

t(14;20) 

t(11;14) 

t(6;14) 

Hyperdiploid 

Non-hyperdiploid 

1q gains 

Monosomy 13 

17p deletions 

 

The cytogenetic evaluation used in the R-ISS evaluates deletions of 

chromosome 13 and 17p deletion, and IGH translocations. Based on the new 

R-ISS criteria, cytogenetic detection of deletion of 17p, translocation t(4;14) 

and/or translocation t(14;16) are considered to stratify a patient as high-risk 

(Palumbo et al. 2015). The R-ISS criteria can be found in Table 1.3 and is now 

used to assess prognosis in newly diagnosed MM patients. 
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Table 1.3 The Revised International Staging System (R-ISS) 
The table shows the criteria used in respect to original ISS criteria (see Table 1.1), 
cytogenetic evaluation and serum LDH measurement for stratifying patients into 
three stages of prognosis. Cytogenetic detection of deletion of 17p, translocation 
t(4;14) and/or translocation t(14;16) are considered to stratify a patient as high-risk. 
Adapted from (Palumbo et al. 2015). 
 

Stage R-ISS criteria 

I 
ISS stage I, standard-risk cytogenetics, and serum 

LDH < the upper limit of normal 

II Meets R-ISS criteria for neither stage I nor stage III 

III 
ISS stage III, high-risk cytogenetics, and serum LDH > the 

upper limit of normal 

 

In addition, patients may accumulate new cytogenetic abnormalities 

over time due to genomic instability and these secondary genetic events 

usually relate to pathways that drive tumour progression, such as 

proliferation and survival (Brioli et al. 2014b). The acquirement of new 

mutations as the disease progresses is known as clonal evolution and leads 

to different tumour sub-clones arising and becoming dominant at any one 

time (Brioli et al. 2014a; Paíno et al. 2015). This creates an even more complex 

level of heterogeneity in MM because the change in tumour cytogenetic 

profile can impact on a patients prognosis and response to individual 

treatments. For example, a treatment that may have previously reduced the 

tumour burden previously, may not be successful a second time due to a 

different sub-clone gaining dominance. 

1.1.5. Current therapies 
As mentioned previously, MM remains an incurable disease. 

Therefore, the main aim of current MM treatment is to achieve and then 

maintain a complete remission (CR), which should result in an increase the 

disease free survival of the MM patient. The recent increase in our 

understanding of the biology of MM has led to an increase in the treatments 

available for this disease.  

7



	  

 

The treatment of MM involves three main therapy steps: induction, 

consolidation and maintenance (Moreau et al. 2015). The induction stage of 

treatment aims to reduce the main bulk of the tumour burden, whereas 

consolidation therapy aims to eliminate all remaining tumour cells, 

including sub-clones that may have risen through clonal evolution. Finally, 

maintenance therapy acts to pressure the tumour cell selection process so 

that less aggressive malignant plasma cells are selected, to prevent or delay 

relapse. 

The current therapy for MM involves using pharmaceutical agents 

alongside autologous stem cell transplantation (ASCT). However, ASCT is 

limited to MM patients that have a good fitness score and are usually less 

than 65 years old due to the intensity of this treatment option. Therefore, for 

most MM patients, comparatively less intensive drug therapies may be the 

only available treatment option. The current therapies for MM include 

cytotoxic agents, immunomodulatory agents (IMiDs), proteasome inhibitors 

and corticosteroids, all of which may be used as a monotherapy or in 

combination. Over the last decade, a handful of novel frontline agents have 

been approved for use in MM treatment and these include the IMiDs 

thalidomide, lenalidomide and pomalidomide, and the proteasome 

inhibitors bortezomib and carfilzomib. These agents are regularly used for 

both transplant and non-transplant eligible MM patients. However, MM 

patients with high-risk disease often have a poor prognosis even with the 

conventional therapies and are frequently enrolled on clinical trials at 

diagnosis to improve their outcome (Naymagon a Abdul-Hay 2016). 

 Immunomodulatory agents 1.1.5.1.

Thalidomide and its derivative lenalidomide are two of the IMiDs 

that are used as frontline therapy for the treatment of MM. These have 

been found to be highly effective against MM, especially when used in 

combination with bortezomib and dexamethasone, and their use has 

resulted in a 50% improvement in median MM survival (Kumar et al. 2008; 

Stewart et al. 2009). Preclinical studies suggest that these agents induce cell 

cycle arrest and apoptosis in MM cells as well as interrupting the 
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interaction of malignant plasma cells with the BMM (Davies a Baz 2010). 

The immunomodulatory action of these agents involves increasing tumour 

cell killing through activation of CD8+ T cells and increasing the expression 

of death effector molecules on natural killer cells (Davies a Baz 2010). 

Despite this, the two agents possess some mechanistic differences, for 

example lenalidomide possesses greater immunomodulatory properties 

when compared to thalidomide (Davies a Baz 2010). For this reason, 

lenalidomide can be used as a second line treatment for MM regardless of 

prior response to thalidomide.  

Pomalidomide, a next generation thalidomide derivative, was 

granted accelerated approval for use in MM in 2013 and this is currently 

used a third line treatment option after the MM disease becomes resistant 

to precursor IMiDs and bortezomib (McCurdy a Lacy 2013). Pomalidomide 

has been found the be the most potent of the IMiDs and is predicted to 

have 100 times and 10 times the potency of thalidomide and lenalidomide, 

respectively (Gertz 2013). 

 Proteasome inhibitors 1.1.5.2.

Bortezomib was the first proteasome inhibitor used for the 

treatment of MM and today remains a crucial frontline agent in the 

treatment of MM. Bortezomib is mainly a reversible inhibitor of the 26S 

proteasome, which is responsible for the degradation of a wide range of 

proteins (Boccadoro et al. 2005). As a result, 26S proteasome inhibition can 

lead to apoptosis, an unfolded protein response, a heat-shock response and 

cell cycle arrest in MM cells due to the accumulation of misfolded, 

ubiquitinated and pro-apoptotic proteins (Hideshima et al. 2002; Obeng et 

al. 2006). Malignant cells on average display a higher level of proteasome 

activity so are more sensitive to the negative effects caused by proteasome 

inhibition (Dou a Li 1999). Moreover, bortezomib may also indirectly 

disrupt MM cell survival and drug resistance through inhibiting the 

interaction of MM cells with the BMM (Reddy a Czuczman 2010; Zangari 

et al. 2012). One of the main adverse events that are observed with 

bortezomib is the development of peripheral neuropathy in some patients 
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(Richardson et al. 2012). This is thought to be due to the lack of inhibitory 

specificity of bortezomib because this agent can reversibly inhibit a wide 

range of other serine proteases.  

Carfilzomib is a second-generation proteasome inhibitor that is also 

approved for the treatment of MM, although at present only as a third-line 

therapy following the use bortezomib and IMiDs (Perel et al. 2016). It is 

approved for use either as a monotherapy or in combination with 

dexamethasone (a corticosteroid) and lenalidomide (Perel et al. 2016). 

Carfilzomib is an irreversible inhibitor of the 20S proteolytic core of the 26S 

proteasome and this activity has been shown to promote apoptosis, cell 

cycle arrest and inhibition of tumourigenesis in MM cells (Kortuem a 

Stewart 2013). In addition, this proteasome inhibitor provides a more 

specific alternative to bortezomib and less adverse events relating to 

neuropathy (Dimopoulos et al. 2016). As a result, carfilzomib can be used 

as a proteasome inhibitor alternative in those patients who cannot tolerate 

bortezomib due to the development of neuropathy. Moreover, the 

difference in the molecular targeting of carfilzomib also means that this 

agent may still successfully treat MM even after the development of 

bortezomib resistance (Siegel et al. 2012). 

1.1.6. The future of MM treatment 
Despite the recent increase in novel agents for the treatment of MM 

over the last decade, the disease still remains incurable and progression-free 

survival is limited, especially in the high-risk MM patient group (Kumar et 

al. 2008; Naymagon a Abdul-Hay 2016). A limiting factor is the emergence of 

treatment resistant sub-clonal populations in MM, which leads to patient 

relapse and refractory MM (Egan et al. 2012; Magrangeas et al. 2013). At this 

point, the treatment options are limited as the frontline therapies are 

exhausted. 

As a result, targeted therapies have become an interesting alternative 

to the current therapies that exist for MM and may provide a more beneficial 

form of treatment that can remain effective even in refractory patients. Their 

clinical use in MM is further favoured due to advances in cytogenetic 
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screening and the understanding of the relevance of specific cytogenetic 

abnormalities in disease progression and risk stratification. In the future, this 

may encourage the use of more specific agents earlier in the treatment 

regime based on the outcome of patient cytogenetic screening. In addition, 

targeted therapies may also help to reduce the adverse effects of treatment, 

which would be particularly beneficial for MM patients due to their 

relatively high mean age at diagnosis and comorbidities associated with 

ageing. 

Many novel agents are currently in development for MM and these 

are targeting a wide a range of tumour mitigating factors in MM (Table 1.4). 

These include, but are not limited to, CD138 and CD38 targeting mAbs, 

cyclin-dependent kinase inhibitors, Bcl-2 inhibitors, IL-6 inhibitors, and 

BAFF and APRIL inhibitors, which are all factors that have been shown to be 

essential for malignant plasma cells so are frequently dysregulated in MM 

(Naymagon a Abdul-Hay 2016). In addition, as proteasome inhibitors are 

still used as efficacious treatments in MM, substantial effort is going into 

producing the next generation of improved proteasome inhibitors that may 

overcome bortezomib resistance (Table 1.4). 

Another example of a tumour-promoting genetic abnormality that is 

commonly expressed in MM patients involves deregulation of the nuclear 

factor-κB signalling pathways (Annunziata et al. 2007; Keats et al. 2007; 

Chapman et al. 2011). These pathways have been shown to be highly 

relevant in MM disease progression due to their role in supporting the 

growth, survival and proliferation of malignant plasma cells within the 

BMM (Hideshima et al. 2002). Moreover, there is much evidence that 

targeting this signalling pathway may provide a potential therapeutic option 

due to some of the existing MM treatments imparting some of their anti-

tumour activity through inhibition of nuclear factor-κB signalling pathways. 
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1.2. Nuclear factor-κB (NF-κB) 

Nuclear factor-κB (NF-κB) was first discovered as a transcription factor 

that transcriptionally enhances the regulation of the immunoglobulin κ light 

chain gene by binding to a highly conserved DNA sequence known as the κB 

element (Sen a Baltimore 1986). NF-κB was at first thought to be a B-cell-

specific nuclear protein but has since been found to be expressed in a number 

of cells due to its important regulatory role in a number of processes, 

including immunity and inflammation (Lawrence 2009; Hayden a Ghosh 

2011). In normal B-cells, NF-κB is required for the regulation of genes relating 

to B-cell proliferation, differentiation, activation and survival (Gasparini et al. 

2014). 

1.2.1. NF-κB subunits 
NF-κB exists as either homodimers or heterodimers of its five 

subunits; p65, p50, c-Rel, p52 and RelB. The structures of the five NF-κB 

subunits are shown in Figure 1.1. The subunits all contain the same highly 

conversed 300 amino acid region called the Rel homology domain (RHD) at 

their N-terminals and it is this region that allows subunit dimerisation, 

dimer nuclear localisation and DNA κB element binding (Zheng et al. 2011). 

The N-terminal of the RHD in NF-κB subunits interacts with DNA at the 

consensus sequence of NF-κB target genes corresponding to 5’-

GGGRNYYYCC-3’ (R = purine, Y = pyrimidine and N = any nucleotide) 

(Chen a Ghosh 1999). The nuclear localisation signals (NLS) in each NF-κB 

subunit is located at the C-terminal end of the RHD (Zheng et al. 2011).  

Although all NF-κB subunit dimers bind to DNA κB sites to 

transcriptionally regulate target genes, the different dimer combinations can 

act as transcriptional activators or repressors. One reason for this is that the 

transcription activation domain (TAD), which is required for positive 

regulation of NF-κB target genes, is expressed in only the p65, c-Rel and 

RelB subunits (Ghosh et al. 2012). Therefore, NF-κB homodimers of p50 or 

p52 are thought to act as inhibitors or repressors of target genes due to the 

absence of a TAD (Figure 1.1), although they can become transcriptional 
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activators through interaction with nuclear IκB proteins (Ghosh et al. 2012; 

Hinz et al. 2012). 

 
 
Figure 1.1 The structures of the NF-κB subunits p65, RelB, c-Rel, p105/p50 and 
p100/p52.  
The structures of the five NF-κB subunits p65, RelB, c-Rel, p50 and p52 are shown 
alongside the precursor subunits p105 and p100. The N- and C-terminals of each 
subunit protein are indicated using N and C, respectively, and the length of each 
subunit protein in amino acids (aa) is provided. On the p105 and p100 precursor 
subunits, the arrow indicates the position of cleavage to the active NF-κB subunits p50 
and p52, respectively. Adapted from (Chen a Greene 2004; Hayden a Ghosh 2012). 
ARD = ankyrin repeat domain, DD = death domain, GRR = glycine rich region, NLS = 
nuclear localisation signal, LZ = leucine zipper, RHD = Rel homology domain and 
TAD = transcription activation domain.  

 

The NF-κB subunits can be divided into two categories; subunits that 

are synthesised in their mature form and those subunits that are synthesised 

in a precursor form and require further processing. The p65, c-Rel and RelB 

subunits are synthesised in their mature forms whereas the p50 and p52 NF-

κB subunits are synthesised as precursor molecules p105 and p100, 

respectively (Hayden a Ghosh 2008; Zheng et al. 2011).  
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Each NF-κB subunit is expressed to varying extents in different cell 

types, although all five subunits are expressed in B-cells where they have 

been found to be highly relevant in modulating the differentiation, 

proliferation, survival and activation of B-cells (Gasparini et al. 2014). 

1.2.2. Inhibitory protein of NF-κB (IκB proteins) 
In unstimulated cells, NF-κB is held inactive in the cytoplasm as a 

result of interaction with inhibitory proteins of NF-κB (IκB proteins). The IκB 

proteins include the classical IκB proteins IκBα, IκBβ and IκBε, the nuclear 

IκB proteins, Bcl-3 and IκBζ, and the precursor proteins p100 and p105 (Hinz 

et al. 2012). The structures of the classical and nuclear IκB proteins are 

shown in Figure 1.2. The IκB proteins characteristically contain six to seven 

ankyrin-repeat motifs that interact with the RHD on the NF-κB subunits to 

mask the NLS and help regulate NF-κB activity by restricting it to the 

cytoplasm of the cell (Chen a Greene 2004; Zheng et al. 2011).  

For NF-κB to become activated, the IκB proteins must undergo 

phosphorylation at specific serine residues (see Figure 1.2), which 

subsequently leads to ubiquitin-dependent proteasomal degradation 

(Kanarek et al. 2010; Hinz a Scheidereit 2014). The IκB proteins are 

polyubiquitinated at specific lysine residues (see Figure 1.2) that are located 

in their N-terminal regulatory domains and the polyubiquitinated IκB 

proteins are selectively degraded by the 26S proteasome (Chen et al. 1995; 

Karin et al. 2002).  

In the case of the precursor proteins p100 and p105, the C-terminal 

protein domains are post-translationally cleaved to the smaller p52 and p50 

subunits to remove the ankyrin-repeat regions that mask the NLS (Henkel et 

al. 1992). The structure of the p105 and p100 precursor subunits also 

contains a glycine-rich domain that follows the conventional RHD (see 

Figure 1.1). The glycine-rich region (GRR) in both the p105 and p100 subunit 

prevents complete protein degradation to allow the release of the active p50 

and p52 subunits, respectively (Lin a Ghosh 1996; Heusch et al. 1999; Orian 

et al. 1999). The p105 protein is constitutively processed to the p50 subunit 

whereas p100 processing is a more closely regulated process in unstimulated 
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cells (Xiao et al. 2001). Constitutive processing of p105 and p100 is prevented 

by a C-terminal death domain downstream of the ankyrin repeat domain, 

which acts as a processing inhibitory domain (Xiao et al. 2001).  

 
 
Figure 1.2 The structures of the IκB proteins IκBα, IκBβ, IκBε, IκBζ, and BCL-3. 
The structures of the three classical IκB proteins, IκBα, IκBβ and IκBε, are shown 
alongside the atypical, nuclear IκB proteins, IκBζ, and BCL-3. The N- and C-terminals 
of each subunit protein are indicated using N and C, respectively, and the length of 
each subunit protein in amino acids (aa) is provided. The specific serine residues that 
are required for IKK phosphorylation and specific lysine residue(s) that are essential 
for ubiquitination are indicated for each classical IκB protein. The PEST regions on the 
C-terminal of IκBα and IκBβ are also indicated. The nuclear IκB protein BCL-3 can 
interact with nuclear p50 and p52 proteins to function as a transcriptional co-activator. 
Adapted from (Huxford a Ghosh 2009; Vallabhapurapu a Karin 2009; Hayden a Ghosh 
2012). ARD = ankyrin repeat domain, K = lysine residue, S = serine residue, PEST = 
proline (P), glutamic acid (E), serine (S), and threonine (T) domains are indicated as 
PEST. 
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IκBα 

IκBβ 

IκBε 

N 

N 

N 

C 

C 

C 

317 aa 

361 aa 

356 aa 

ARD 

ARD 

ARD 

K6 

K9 

K21 
K22 

S32 
S36 

S19 
S23 

S18 
S22 

PEST 

PEST 

Classical IκB proteins 

IκBζ 

BCL-3 

N 

N C 

C 629 aa 

446 aa 

ARD 

ARD 

Nuclear IκB proteins 

17



	  

 

cytoplasm (Hinz et al. 2012). Interestingly, the classical IκB proteins do not 

interact with the RelB subunit and it is the precursor protein, p100, that 

displays the highest affinity for RelB (Dobrzanski et al. 1994). 

The IκB proteins Bcl-3 and IκBζ migrate to the nucleus when they 

become overexpressed and, once localised in the nucleus, they possess 

binding specificity towards p52 and p50 homodimers (Hinz et al. 2012). 

Through interaction with the p50 and p52 homodimers, the nuclear proteins 

Bcl-3 and IκBζ can function as transcriptional co-activators (Ghosh et al. 

2012).  

1.2.3. The IκB kinase (IKK) complex  
Upon activation of NF-κB signalling, the IκBα, IκBβ or IκBε proteins 

undergo phosphorylation by the IκB kinase (IKK) complex. This is a 

complex that is composed of three proteins called IKKα, IKKβ and NF-κB 

essential modulator (NEMO), which is also known as IKKγ (Liu et al. 2012). 

Figure 1.3 shows the structures of the three IKK proteins.  

The IKKα and IKKβ proteins share approximately 51% sequence 

homology, which includes an N-terminal kinase domain consisting of two 

serine residues and a NEMO-binding domain (NBD) at the C-terminals. On 

the other hand, NEMO is structurally different from the IKKα and IKKβ 

proteins (Figure 1.3) and does not include the kinase domain that is found in 

the other IKK proteins (Liu et al. 2012; Hinz a Scheidereit 2014). For this 

reason, the NEMO protein acts as a regulatory subunit within the IKK 

complex and allows the IKK complex to interact with upstream activators 

through its C-terminal zinc finger motif (Ghosh a Karin 2002). Moreover, in 

the absence of NEMO, the IKKα and IKKβ cannot become activated through 

normal NF-κB stimulation, which indicates that NEMO is essential in NF-κB 

regulation (Yamaoka et al. 1998).  

The IKK complex is suggested to comprise of an IKKα and IKKβ 

heterodimer that binds to dimers of NEMO using the NBDs on each 

respective IKK (Rothwarf a Karin 1999; Miller a Zandi 2001). The IKKα and 
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IKKβ proteins dimerise using their leucine zipper domains and helix-loop-

helix regions (Jost a Ruland 2007; Huxford a Ghosh 2009). 

 

 
 

Figure 1.3 The structures of the IKK complex proteins IKKα, IKKβ and IKKγ 
(NEMO). 
The structures of the three IKK proteins, IKKα, IKKβ and IKKγ, also known as NEMO, 
are shown. The N- and C-terminals of each subunit protein are indicated using N and 
C, respectively, and the length of each subunit protein in amino acids (aa) is provided. 
The specific serine residues within the kinase domain are indicated for IKKα and 
IKKβ, along with the position of the leucine zipper domains and helix-loop-helix 
regions that are required for subunit dimerisation. The location of other structural 
domains such as the NBD, ubiquitin-like domain, zinc-finger domain and predicted 
coiled-coil motifs are also shown on the schematic above. Adapted from (Hayden a 
Ghosh 2004; Huxford a Ghosh 2009).  
CC1/2 = coiled-coil motifs, KD = kinase domain, HLH = helix-loop-helix, LZ = leucine 
zipper, NBD = NEMO binding domain, S =serine residue, U = ubiquitin-like domain 
and ZF = zinc-finger domain. 

 

The IKK complex is activated through phosphorylation of the IKKα 

and IKKβ proteins at two specific serine residues, which induces a 

conformational change that activates the catalytic kinase domain (Mercurio 

et al. 1997; Ling et al. 1998; Delhase et al. 1999). However, the mechanism 

through which the IKK complex is phosphorylated remains unconfirmed, 

although two general mechanisms have been suggested; transauto-

phosphorylation or specific IKK kinases (IKKK) (Liu et al. 2012; Hinz a 

Scheidereit 2014). The IKKKs recruited may differ based on the specific 

stimuli that initially induces the NF-κB activity. 

IKKα 

IKKβ 

IKKγ 

N 

N 

N 

C 

C 

C 

745 aa 

419 aa 

756 aa 

S176 

S180 

KD 

S177 

S181 

KD 

LZ 

LZ 

LZ ZF 

HLH 

HLH NBD 

NBD 

CC1 CC2 

U 

U 

19



	  

 

1.2.4. NF-κB signalling 
Bringing together the above information, the activation of NF-κB is 

generally described as occurring through two pathways; the canonical and 

non-canonical NF-κB signalling pathways. 

 The canonical signalling pathway  1.2.4.1.

Examples of cellular stimuli that can directly activate the canonical 

pathway include the pro-inflammatory cytokines TNFα and IL-1, the B-cell 

agonists, RANKL and CD40; and the danger signals provided by toll-like 

receptors and lipopolysaccharide. The antigen receptors such as the B-cell 

receptor can also activate NF-κB (Siebenlist et al. 2005; Vallabhapurapu a 

Karin 2009).  

The p65, p50 and c-Rel NF-κB subunits are typically associated with 

canonical NF-κB signalling. The IκB proteins act to sequester the canonical 

subunits in the cytoplasm and each IκB protein displays specific binding 

preferences towards the individual subunits.  

In the canonical signalling pathway, the IKK complex is predicted to 

be phosphorylated by IKKKs, such as Transforming growth factor beta-

activated kinase 1 (TAK1) (Wang et al. 2001). Activation of the IL-1 

receptor is followed by the activation of the E3 ligase TNF receptor-

associated factor 6 (TRAF6), which then facilitates the formation of Lys63-

linked polyubiquitination (K63-pUb) chains in the presence of the dimeric 

ubiquitin-conjugating Ubc13-Uev1A (Deng et al. 2000; Wang et al. 2001). 

Similarly, TNFα stimulation induces the polyubiquitination of RIP1 by 

activated cIAPs or TRAF2, allowing RIP1 to act as a scaffold for the 

recruitment of TAK1 and the IKK complex to the TNF receptor (Ea et al. 

2006; Newton et al. 2008). In both scenarios, TAK1 is then activated 

through interaction with either TRAF6 formed K63-pUb chains or K63-pUb 

chains on RIP1, which induces autophosphorylation of TAK1 (Wang et al. 

2001; Xia et al. 2009). The binding of K63-pUb chains to the NEMO domain 

of the IKK complex facilitates the activation of the IKKβ components by 

TAK1 phosphorylation (Ea et al. 2006; Wu et al. 2006). On the other hand, it 

has also been demonstrated that K63-pUb chains and linear pUb chains are 
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capable of directly activating the IKK complex through interaction with 

NEMO (Xia et al. 2009; Walczak et al. 2012).  

In the canonical NF-κB pathway, the classical IκBs are mainly 

phosphorylated by activated IKKβ, although it has also been suggested that 

IKKα may also be capable of carrying out this phosphorylation, although 

less efficiently (Adli et al. 2010). IKKβ phosphorylates IκBα at serines 32 

and 36; IκBβ at serines 19 and 23, and IκBε at serines 18 and 22 

(Vallabhapurapu a Karin 2009). The phosphorylated IκB then undergoes 

polyubiquitination by a ubiquitin ligase related to SCF and is consequently 

degraded by the proteasome (Kanarek a Ben-Neriah 2012).  

Following the degradation of IκB, the NLS is exposed on the NF-κB 

subunits and so they are no longer sequestered in the cytoplasm. However, 

IκBα is not fully effective at masking the NLS on NF-κB dimers so NF-κB-

IκBα complexes can translocate to the nucleus in the absence of canonical 

pathway stimuli (Carlotti et al. 2000; Malek et al. 2001). The existence of a 

nuclear export sequence (NES) on IκBα results in the oscillation of these 

complexes between the nucleus and cytoplasm, with nuclear export being 

dominant so as to localise the complexes mainly in the cytoplasm (Johnson 

et al. 1999; Huang et al. 2000). As a result, the degradation of IκBα shifts 

this balance to favour the nuclear localistaion of NF-κB dimers (Hayden a 

Ghosh 2008). 

In the nucleus, NF-κB subunits bind to DNA κB elements to 

transcriptionally regulate genes. During nuclear translocation, the 

canonical NF-κB subunit p65 can undergo phosphorylation by cyclic AMP-

dependent protein kinase or casein kinase II. The purpose of 

phosphorylation of p65 appears to allow the NF-κB subunit to bind DNA 

with a greater affinity than its unphosphorylated form (Ghosh a Karin 

2002).  

Figure 1.4 provides a schematic overview of the canonical NF-κB 

signalling pathway. 

21



	  

 

 
 
Figure 1.4 The canonical NF-κB signalling pathway. 
The canonical signalling pathway is activated through a variety of stimuli, which 
activates IKKK’s, such as TAK1. IKKK’s phosphorylate and activate IKKβ and IKKβ 
phosphorylates the IκB protein at the residues 18 and 22. The IκB protein is 
subsequently ubiquitinated by a SCF-family ubiquitin ligase and undergoes 
degradation by the 26S proteasome. The free NF-κB dimers translocate to the nucleus 
where they bind to DNA κB elements to regulate gene transcription. Adapted from 
(Jost a Ruland 2007; Hayden a Ghosh 2012). 
BCR = B-cell receptor, IκB = Inhibitor of κB, IKK = IκB kinase, IKKK’s = IKK kinases, 
LPS = lipopolysaccharide, P = phosphorylate, RANK = receptor activator of NF-κB, 
RANKL = RANK ligand, TLR = toll-like receptor, TNFα = Tumour necrosis factor α, 
TNFR = TNF receptor, U = ubiquitin.  

DNA κB 
elements 

Nucleus 
P"
P"

P" P"

P"P"

p50" p65"

p50" p65"
IκB"

Cytoplasm 

TNFR-TNFα, TLR-LPS, RANK-RANKL, 
BCR activation or CD40-CD40L 

IKKβ"IKKα"
IKKγ"

IKKK’s" TAK1 

p50" p65"

P"P"IκB"

U 
U 

U 
U 

U 

26S"
proteasome"

ubiqui<n"
ligase"

22



	  

 Non-canonical signalling pathway 1.2.4.2.

The non-canonical pathway can be activated by some of the same 

and some different cell stimuli, including BAFF, lymphotoxin β, RANK and 

CD40 ligand (Vallabhapurapu a Karin 2009; Kaileh a Sen 2012).  

Before it is processed to p52, the IκB-like protein p100 can inhibit the 

nuclear translocation of the RelB subunit through interaction with the RHD 

of RelB (Solan et al. 2002). Therefore, the conversion of p100 activates non-

canonical NF-κB signalling by allowing the nuclear translocation of p52 

and RelB dimers. However, under normal cellular conditions the 

generation of p52 is tightly regulated and can only occur following 

stimulation of the non-canonical pathway (Heusch et al. 1999).  

NF-κB inducing kinase (NIK) is a MAP3K-related protein kinase 

that activates NF-κB mainly through the phosphorylation of IKKα, which 

predominantly results in non-canonical NF-κB pathway signalling (Malinin 

et al. 1997; Ling et al. 1998). NIK is also capable of phosphorylating IKKβ to 

activate the canonical pathway but NIK has less affinity for this IKK so 

IKKα is the preferred substrate (Ling et al. 1998; Senftleben et al. 2001).  

In unstimulated cells, NIK undergoes constant proteasomal 

degradation due to interaction with TRAF3. Upon cellular stimulation of 

the non-canonical NF-κB pathway, the ubiquitin ligase complex TRAF2-

cIAP1/2 is recruited to TRAF3 and TRAF2 becomes activated 

(Vallabhapurapu et al. 2008). TRAF2 then carries out the ubiquitination of 

cIAP1/2, which enhances its ubiquitin ligase activity and TRAF3 in turn 

become ubiquitinated. The ubiquitinated TRAF3 dissociates from NIK and 

undergoes proteasomal degradation. Once dissociated, NIK is stabilised 

and can undergo activation through autophosphorylation (Vallabhapurapu 

et al. 2008). 

Once activated, IKKα phosphorylates the p100 precursor subunit to 

the active p52 subunit. The processing of p100 to the active p52 subunit has 

been shown to be dependent on IKKα phosphorylation and can occur in 

the absence of IKKβ and IKKγ (NEMO) (Senftleben et al. 2001). 
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Phosphorylation of p100 promotes β-TrCP binding to the IκB 

phosphopeptide region, which in turn allows polyubiquitination and 

subsequent proteasomal degradation of the multiple ankyrin repeats 

(Yaron et al. 1998; Fong a Sun 2002).  

RelB does not associate with any other IκB proteins other than the 

p100 precursor protein (Solan et al. 2002). Therefore, proteasomal 

degradation of the ankyrin-repeat domain of p100 exposes the NLS on the 

RelB and p52 subunits. RelB cannot homodimerise and commonly forms a 

heterodimer with the p52 subunit, although it may also heterodimerise 

with the p50 subunit (Ryseck et al. 1992; Dobrzanski et al. 1994). Exposure 

of the NLS allows the RelB-p52 dimer to translocate to the nucleus to bind 

to DNA κB elements and regulate gene expression. Please refer to Figure 

1.5 for a schematic summary of the non-canonical NF-κB signalling 

pathway.
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Figure 1.5 The non-canonical NF-κB signalling pathway. 
(A) In unstimulated cells, NIK undergoes constant proteasomal degradation through 
interaction with TRAF3. (B) Following cellular stimuli, TRAF2/cIAP1/2 is recruited to 
the receptor and this induces TRAF2 dependent ubiquitination of cIAP1/2. cIAP1/2 
then ubiquitinates TRAF3 and TRAF3 undergoes proteasomal degradation. Activated 
NIK mainly phosphorylates IKKα but to a lesser extent can phosphorylate IKKβ to 
activate the canonical signalling pathway. Activated IKKα phosphorylates p100 to 
promote ubiquitination and degradation of the IκB region to free activated p52. The 
p52/RelB dimers then translocate to the nucleus where they bind DNA κB elements. 
Adapted from (Jost a Ruland 2007; Hayden a Ghosh 2012). 
BAFF = B-cell activating factor, BAFF-R = BAFF receptor, cIAP1/2 = c inhibitors of 
apoptosis proteins 1/2, IKK = IκB kinase, NIK = NF-κB inducing kinase, P = 
phosphorylate, RANK = receptor activator of NF-κB, RANKL = RANK ligand, TRAF = 
TNF receptor-associated factor, U = ubiquitin. 
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1.2.5 Downstream NF-κB gene regulation 
Many genomic studies have identified DNA binding κB sites within a 

huge number of genes, which indicates that NF-κB is capable of regulating a 

large number of biological processes (Wang et al. 2012). In addition, changes 

in the base pairs that construct a target gene’s individual DNA κB site can 

alter the binding preferences of specific NF-κB subunit dimers and define 

whether the target gene is up- or down-regulated (Leung et al. 2004). As a 

result, activation of the canonical or non-canonical signalling pathways can 

regulate different target genes. Two of the main cellular processes that NF-

κB signalling is responsible for governing are cell proliferation and 

apoptosis. 

1.2.5.1. Cell proliferation 

In B-cells deletion of either the c-Rel, p65 or p105 subunit all result 

in proliferative defects (Joyce et al. 2001). This indicates that NF-κB 

signalling is important in cell proliferation and growth and in B-cells this is 

likely a consequence of activation of the canonical signalling pathway. 

More specifically, NF-κB can directly up-regulate the transcription 

of cyclin D1, which is associated with the progression into the S phase of 

the cell cycle, due to the existence of a DNA κB binding site that is present 

within the cyclin D1 promoter (Guttridge et al. 1999; Hinz et al. 1999). In 

addition, NF-κB can regulate the expression of a number of cytokines that 

can support cell growth and proliferation, including IL-6, Granulocyte-

macrophage colony-stimulating factor (GM-CSF) and BAFF (Hideshima et 

al. 2002; Fuchs 2013). In MM, IL-6 has been shown to be an essential 

growth factor and most MM cells cannot survive in its absence (Kawano et 

al. 1988; Hirata et al. 2003). Moreover, the cytokine GM-CSF can 

synergistically increase MM cell growth with IL-6 (Zhang et al. 1990; 

Villunger et al. 1998). BAFF is also important in MM cell proliferation, 

survival and BMM cell adhesion (Novak et al. 2004; Fuchs 2013).  

1.2.5.2. Cell survival and anti-apoptotic proteins 

The importance of NF-κB in the regulation of apoptosis was shown 

through several knockout experiments. For example, B-cells that lack 
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expression of the NF-κB subunits c-Rel, p65 or p50, or the protein IKKβ 

experience increased cell death (Grossmann et al. 2000; Pasparakis et al. 

2002). Moreover, in vivo mouse models show that when the canonical-

related NF-κB proteins, such as p65, IκBα and IKKβ, are deleted, cells 

undergo rapid apoptosis (Gasparini et al. 2014). In addition, constitutive 

RelB activation is observed in approximately 40% of MM cases and the 

phenotypic advantage of this is to promote MM cell survival by increasing 

the expression of anti-apoptotic NF-κB target genes such as cIAP2 (Cormier 

et al. 2013). Overall, this indicates that both the canonical and non-

canonical NF-κB pathways are critically involved in cell survival and anti-

apoptosis in MM. 

Apoptosis can be induced through two main pathways; the extrinsic 

and intrinsic pathways (Millimouno et al. 2014). The extrinsic pathway 

involves the activation of death receptors, while molecules that are released 

from the mitochondria mediate the intrinsic pathway (Ichim a Tait 2016). 

Both pathways activate caspases, which are cysteine proteases that initiate 

apoptosis or programmed cell death through the cleavage of cellular 

proteins. NF-κB can directly increase cell survival by protecting cells from 

apoptosis induced by TNF activation of the extrinsic pathway. For 

example, NF-κB induces transcriptional activation of TRAF1/2 and 

inhibitors of apoptosis proteins (IAPs) such as c-IAP1, cIAP2 and XIAP, all 

of which block caspase activation and apoptosis (Wang et al. 1998). Other 

anti-apoptotic NF-κB target genes include X-linked IAP (XIAP) and Bcl-2 

and its homologues, such as Bcl-XL and Mcl-1 (Grossmann et al. 2000; Li et 

al. 2008).  

1.2.5.3. The role of NF-κB in the progression of malignancies 

As outlined previously, NF-κB is responsible for regulating 

increased proliferation and increased cell survival. Further to this, NF-κB 

can be intrinsic to other tumourgenic processes such as metastasis, 

replicative immortality and the development of drug resistance. For 

example, tumours that possess constitutive NF-κB activity usually display 

more resistance to chemotherapy so it has been suggested that NF-κB 
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pathway activation may induce multidrug resistance through the increased 

expression of P-glycoprotein (Dolcet et al. 2005). In addition, increased NF-

κB activity in MM cells has been shown to contribute to cell adhesion 

mediated drug resistance (CAM-DR) following adhesion of MM cells with 

fibronectin within the BMM (Landowski et al. 2003). Immortality of 

malignant plasma cells may arise through increased NF-κB activation 

because NF-κB is a regulator of telomerase, which is the enzyme 

responsible for maintaining telomere length (Yin et al. 2000). 

Therefore, NF-κB is responsible for regulating several of the 

established hallmarks of cancer (Hanahan a Weinberg 2000, 2011). For this 

reason, this transcription factor is frequently dysregulated in a number of 

human cancers. 

 

1.3. Activation of NF-κB in MM 

The name of the transcription factor, NF-κB, is related to its discovery 

in B-cells and its role in enhancing immunoglobulin-κ light chain (Matthews 

et al. 2016). Therefore, NF-κB also possesses important roles in non-malignant 

plasma cells, which are fully differentiated B-cells, in terms of the production 

of antibodies. Moreover, malignant MM plasma cells express relatively high 

levels of NF-κB, which contributes to the progression and pathophysiology of 

this haematological malignancy (Annunziata et al. 2007; Keats et al. 2007; 

Demchenko et al. 2010; Chapman et al. 2011).  

1.3.1 Mutation based activation 
Deregulation of NF-κB signalling can arise as a consequence of 

overexpression or gain-of-function mutations in positive regulators of NF-κB 

and loss-of-function mutations in negative regulators (Annunziata et al. 

2007; Keats et al. 2007). Overall, genetic abnormalities leading to constitutive 

NF-κB activity have been found in approximately 20% of MM patients and 

40% of MM cell lines (Annunziata et al. 2007; Keats et al. 2007; Demchenko 

et al. 2010).  
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Frequent genetic abnormalities relating to NF-κB pathway 

deregulation in MM include aberrant expression of NIK, CD40, TRAF2, 

TRAF3, transmembrane activator and CAML interactor (TACI) and cIAP1/2 

(Annunziata et al. 2007; Keats et al. 2007). In these studies, the majority of 

MM cases possessed overexpression of the positive NF-κB regulators NIK, 

TACI and CD40, or reduced or silenced activity of the negative NF-κB 

regulators TRAF2, TRAF3 and cIAP1/2. All of these phenotypes contribute 

to increased NF-κB signalling, with a preference towards non-canonical NF-

κB signalling (Keats et al. 2007; Demchenko et al. 2010). In addition, other 

less common genetic abnormalities that also lead to constitutive NF-κB 

signalling in MM were identified. These included high expression of the 

NFKB1 gene (p105) and abnormalities within the NFKB2 gene (p100), which 

results in increased canonical and non-canonical NF-κB signalling, 

respectively (Annunziata et al. 2007; Keats et al. 2007; Demchenko et al. 

2010). 

1.3.2 Bone marrow microenvironmental activation 
Although a large number of genetic abnormalities have been 

described that explain the high NF-κB activity in some MM cell lines and 

patient samples, it is likely that a substantial portion of the NF-κB signalling 

in MM cells arises as a consequence of the BM microenvironment (BMM) (Li 

et al. 2008; Demchenko et al. 2010).  

One mechanism by which NF-κB can be activated in the BMM in MM 

is through CD40-CD40L interactions (Coope et al. 2002; Tai et al. 2003; 

Hauer et al. 2005). CD40 is a cell surface marker that is not usually expressed 

on normal plasma cells but has been shown to be present in the early stages 

of MM (Tong et al. 2000; Perez-Andres et al. 2009). CD40 is abundant in the 

BMM and is involved in the cell homing of MM cells to the BM. Moreover, 

CD40 expression is frequently increased on MM cells and blocking the 

interaction of CD40 with CD40L decreases NF-κB activation (Richardson et 

al. 2004; Annunziata et al. 2007). This results in the inhibition of IL-6 and 

vascular endothelial growth factor (VEGF) secretion, which leads to growth 

arrest and cell death of MM cells (Richardson et al. 2004). In addition, 
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inhibition of canonical and non-canonical NF-κB signalling can abolish 

CD40-induced MM cell migration (Fuchs 2013). This indicates the 

importance of the CD40-CD40L pathway in both NF-κB activation and 

subsequent MM pathogenesis. 

Furthermore, the bone marrow stromal cells (BMSC) found in the 

MM tumour microenvironment have also been found to possess high levels 

of NF-κB activation that helps to support the proliferation, survival and 

drug resistance of malignant plasma cells within the BMM (Chauhan et al. 

1995; Chauhan et al. 1996; McMillin et al. 2013). Adherence of MM cells to 

BMSCs induces NF-κB-dependent cytokine transcription and secretion of 

TNFα, IL-6, VEGF, RANKL and BAFF, to promote MM cell survival and 

growth through MM cell NF-κB activation (Chauhan et al. 1996; Landowski 

et al. 2003; Bommert et al. 2006). The production of IL-6 is one of the main 

NF-κB regulated factors that induces these effects to help to produce and 

support the malignant plasma cell population in MM (Chauhan et al. 1996). 

RANKL binds to RANK, which is usually expressed on osteoclasts. 

Although normal plasma cells do not usually express RANKL, in MM 

malignant plasma cells can gain the expression of RANKL (Sezer et al. 2002). 

Activation of, RANKL-RANK signalling in osteoclasts through interaction 

with MM cells, mediates cell differentiation and activation through 

activation of NF-κB (Xi et al. 2016). Inhibition of NF-κB signalling blocks 

osteoclastogenesis, which indicates the role of NF-κB in the RANKL-RANK 

signalling pathway and consequently the role that this transcription factor 

plays in establishing the BMM and the bone destruction that occurs in MM 

(Dai et al. 2004a; Feng et al. 2007).  

NF-κB activation in plasma cells within the BMM can also result from 

BAFF and a proliferation-inducing ligand (APRIL). For example, 

interference with BAFF signalling significantly reduces plasma cell numbers, 

which suggests that activation of NF-κB by BAFF contributes to the survival 

of plasma cells found in the BMM (O'Connor et al. 2004). The expression of 

BAFF and its receptor, BAFF-R, are essential for mature B-cell survival and 
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this is partially due to both canonical and non-canonical NF-κB activation 

(Mackay a Schneider 2008; Sasaki a Iwai 2016). In addition, BAFF, itself, is a 

target gene of NF-κB, which creates a positive feedback loop to further 

increase the activation of both molecules in MM to promote tumour cell 

survival (Novak et al. 2004). 

Normal plasma cells and MM cells highly express two receptors to 

both BAFF and APRIL, which are B-cell maturation antigen (BCMA) and 

TACI (Moreaux et al. 2005). BCMA and TACI are both overexpressed in 

MM, which indicates their importance in the pathogenesis of the disease and 

in tumour cell survival (Claudio et al. 2002b; Tarte et al. 2002; Keats et al. 

2007). However, low TACI expression on malignant plasma cells produces a 

more aggressive phenotype that leads to a worse overall prognosis in MM 

(Moreaux et al. 2005). This is predicted to indicate that MM tumour cells that 

lose expression of BAFF and APRIL receptors become independent of BMM 

activation perhaps as a result of acquiring NF-κB genetic abnormalities. 

In conclusion, the NF-κB signalling pathway plays a highly relevant 

role in many aspects of MM pathogenesis, both as a consequence of MM cell 

mediated NF-κB activity through genetic abnormalities and through NF-κB 

activation within the BMM and as a consequence of the BMM. 

1.4. NF-κB as a therapeutic target in MM 

Over more than two decades there has been increased interest in 

designing therapeutic agents that target specific signalling pathways. 

Targeting NF-κB may provide a promising therapeutic strategy for the 

treatment of MM due to the important reliance the disease has on NF-κB 

activation, as outlined above. Moreover, inhibiting NF-κB signalling through 

targeting specific proteins within the NF-κB signalling pathway would likely 

reduce overall NF-κB activity regardless of whether it was generated as a 

consequence of NF-κB genetic abnormalities or BMM activation.  

Inhibiting both canonical and non-canonical NF-κB signalling has been 

shown to reduce MM cell growth, induce cell cycle arrest and promote 

apoptosis (Ni et al. 2001; Hideshima et al. 2002; Mitsiades et al. 2002b; Bharti 
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et al. 2003). Moreover, several of the current treatments for MM impart some 

of their therapeutic activity through the inhibition of NF-κB signalling 

pathways.  

Bortezomib has been shown to induce some of its therapeutic activity 

in MM through the inhibition of the canonical NF-κB signalling pathway due 

to preventing the 26S proteasomal degradation of the IκB protein (Hideshima 

et al. 2001; Hideshima et al. 2002). NF-κB inhibition by bortezomib has been 

shown to induce cell cycle arrest and apoptosis, and reduce the expression of 

the NF-κB target genes such as IL-6 and vascular cell adhesion protein 1 

(VCAM-1) (Palombella et al. 1998; Hideshima et al. 2001; Hideshima et al. 

2002). The reduction in VCAM-1 expression interferes with the MM cell 

interaction with the BMM, which acts to further reduce overall NF-κB 

activation (Hideshima et al. 2001). 

Additionally, the success of IMiDs in MM may also be partially a 

consequence of these agents targeting NF-κB. Thalidomide has been shown to 

inhibit the DNA-binding activity of NF-κB by reducing the activity of IKK 

(Keifer et al. 2001; Mitsiades et al. 2002c). As a result, thalidomide can reduce 

the expression of NF-κB-regulated genes such as TRAF1, TRAF2 and c-IAP2, 

which likely contributes to the overall cell apoptosis that this agent induces. 

Furthermore, dexamethasone, a corticosteroid that is frequently used in 

combination with proteasome inhibitors and IMiDs in MM, also reduces NF-

κB activity (Mitsiades et al. 2002c). 

Moreover, it has been speculated that combining a specific NF-κB 

inhibitor with current therapies used for MM, such as dexamethasone or 

bortezomib, may act synergistically to induce anti-cancer effects (Mitsiades et 

al. 2002a). This may be a consequence of the overcoming the drug resistance 

that constitutive NF-κB activation often imparts in MM cells. 

In summary, NF-κB represents a prominent transcription factor that is 

critical in MM disease progression and pathogenesis. Therefore, specific 

inhibitors targeting the NF-κB signalling pathway may be of benefit as a 

future treatment for this haematological malignancy. However, as NF-κB is 
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involved in the regulation of a number of biological processes including 

inflammation, immunity, survival and proliferation, global inhibition of NF-

κB signalling gives rise to a number of toxicities related to immune 

suppression and inflammation (DiDonato et al. 2012). Therefore, the 

development NF-κB inhibitors that selectively target specific components of 

the NF-κB pathway should minimise the serious toxicities that are associated 

with global inhibition. 

1.5. Aims and objectives 

The NF-κB pathway can be specifically inhibited at several points; 

prevention of IκB protein degradation, inhibition of IKK activation and 

blockage of NF-κB DNA-binding (Godwin et al. 2013). Due to the crucial roles 

that IKK plays in the regulation of NF-κB activity, both through canonical and 

non-canonical pathway activation, inhibition of IKK activation may be a 

promising therapeutic strategy.  

Multiple IKKβ inhibitors have been evaluated in MM, but concerns 

over the their safety profiles has prevented further development. For 

example, complete ablation of the canonical pathway activity through IKKβ 

inhibition is likely to impair the function of the adaptive and innate immune 

system, lead to IL-1β induced neutrophilia and inflammation and may also 

lead to hepatic toxicity (Li et al. 1999a; Li et al. 1999b; Tanaka et al. 1999; 

Greten et al. 2007; Vallabhapurapu a Karin 2009; Hsu et al. 2011).  

This thesis investigates the use of a series of first-in-class IKKα 

inhibitors and a novel NIK inhibitor as therapeutic agents in four MM cell 

lines. The main hypothesis of this work was that specific inhibitors of IKK 

activation would induce apoptotic responses in MM cells and this would be a 

consequence of inhibition of NF-κB activation.  

The aims of this study were as follows; 

1. Characterisation of the four MM cell lines in terms of growth 

characteristics, cell surface phenotype, and overall NF-κB activity at 

baseline and in response to NF-κB stimulation or inhibition. 

33



	  

	  

2. Characterisation of a selection of novel putative IKKα inhibitors in 

the MM cell lines by investigating cytotoxicity and effects on NF-κB 

activity and gene expression. 

3. Characterisation of the use of a novel putative NIK inhibitor in the 

MM cell lines by investigating cytotoxicity and effects on NF-κB 

activity and gene expression. 
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Chapter 2 - Materials and methods 
2.1. Cell culture 

2.1.1. Cell viability analysis and cell counting 
A Vi-CELL XR Cell Viability Analyser (Beckman-Coulter) was used 

to assess cell viability and count cells to ensure cell lines were maintained at 

a suitable cell density and viability. 500µL of each multiple myeloma (MM) 

cell line was as counted twice weekly in a Vi-CELL sample cup. In some 

scenarios, cells were counted at a 1:10 dilution in which 50µL of each cell line 

was diluted in 450µL phosphate buffered saline (PBS) in a Vi-CELL sample 

cup. Viability analysis was assessed using the trypan blue dye exclusion 

method. 

2.1.2. Culture of MM cell lines 
NCI-H929 (H929), U266B1 and RPMI8226 cell lines were cultured in 

Roswell Park Memorial Institute (RPMI-1640) culture medium 

supplemented with 10% foetal bovine serum (FBS), 1% L-glutamine and 2% 

penicillin/streptomycin while the JJN3 cell line was cultured in Dulbecco's 

Modified Eagle's medium (DMEM) supplemented with 20% FBS, 1% 

pyruvate, 1% non-essential amino acids and 2% penicillin/ streptomycin. 

All cells were cultured at 37ºC with 5% CO2 and were maintained at cell 

densities between 3×105 and 1×106 cells/mL and at a viability exceeding 

85%. 

The MM cell lines used were chosen because they each represent 

different clinical features of MM (Drexler a Matsuo 2000; Annunziata et al. 

2007; Keats et al. 2007). For example, H929 was chosen because it possesses 

no known genetic abnormalities in the NF-κB pathway. On the other hand, 

U266B1, RPMI8226 and JJN3 possess activating mutations affecting the NF-

κB pathway (Annunziata et al. 2007; Keats et al. 2007). U266B1 and 

RPMI8226 possess inactivating TRAF3 mutations while JJN3 possesses an 

activating mutation in NIK. 
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2.1.3. Culture of CD40 ligand (CD40L) transfected and non-transfected 
ligand (NTL) fibroblast cell lines 

CD40L and NTL transfected fibroblast cell lines were cultured in 

DMEM culture medium supplemented with 10% FBS, 1% pyruvate and 2% 

penicillin/ streptomycin. Fibroblast cells were sustained at 37ºC with 5% 

CO2 in 15mL of culture medium within T75 culture flasks. When the 

adherent fibroblast cell layer became confluent, cell lines were passaged. 

This involved discarding used culture medium and then washing the 

adherent fibroblast cells with 8mL PBS. PBS was used to wash the cell layer 

before addition of trypsin because the FBS in the media can affect the 

enzyme reaction. Adherent cells were removed from flasks by incubation 

with 5mL of trypsin at 37ºC with 5% CO2 for 8-10 minutes. Once adherent 

cells were in suspension, the 5mL of trypsin was removed (containing 

suspended fibroblast cells) and diluted in 5mL culture medium in a 15mL 

falcon tube to stop the enzyme reaction. Cells were subsequently centrifuged 

at 300 × g for 5 minutes and the remaining pellet resuspended in 1mL of 

culture medium. 200μL fibroblasts were reseeded into new T75 flasks with 

15mL of fresh culture media. If required for experiments, the remaining 

fibroblasts were prepared for co-culture with the MM cell lines.  

2.1.4. Co-culture of MM cell lines with CD40L and NTL transfected 
fibroblasts 

The MM cell lines were co-cultured with CD40L transfected and non-

transfected fibroblast cell lines to investigate the impact of CD40L on MM 

cell line phenotype, growth, survival and NF-κB activation. Prior to co-

culture with MM cell lines, the CD40L and NTL transfected cells were 

irradiated at 75 Grays (30 minutes in the presence of Caesium-137). 

Irradiation prevents the fibroblasts from replicating but does not affect their 

viability or biological activity, including the expression of the transfected 

CD40L. Post-irradiated fibroblasts were counted and 2.5×105 cells were 

plated into each well of a 12-well plate with 2mL of culture medium. The 

cells were left to adhere to the plate overnight at 37ºC with 5% CO2. 

 The next day, the old fibroblast media was discarded, along with any 

cells that had not adhered, and replaced with 3mL of fresh MM cell line 
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culture medium. 1×106 MM cells were added to each well of the 12-well 

plate to give an optimal ratio of 1 fibroblast cell to every 4 MM cells. MM 

cells were then co-cultured with transfected and non-transfected fibroblasts 

for 24h.  

Subsequently, the media containing the non-adhering MM cells was 

carefully removed from the 12-well plates and used as appropriate in 

experiments. The adherent fibroblast cells remaining in the 12-well plates 

were then discarded. Where more than 1×106 cells were required for 

experiments, plate wells for the same co-culture condition were combined to 

produce the correct number of cells. 

 

2.2. Flow cytometry 

All flow cytometric analysis was carried out using an Accuri C6 flow 

cytometer (BD Biosciences). The flow cytometer was maintained as per 

manufacturer’s recommendations to keep the flow cytometer free of debris 

and the fluidics system free from air bubbles. The majority of flow cytometric 

data was analysed using Cflow Plus software and the Prism 6.0 statistical 

package (Graphpad Software), unless otherwise specified. 

2.2.1. Cell cycle analysis using propidium iodide (PI) 
PI is a fluorescent dye that is commonly used for cell cycle analysis. 

PI intercalates to the major groove of double stranded DNA in a 

stoichiometric manner facilitating the identification of the proportion of cells 

in each stage of the cell cycle and allowing assessment of the replicative 

capability of cell populations.  

MM cells were harvested and washed twice in PBS. The resulting cell 

pellet was resuspended in cold 70% ethanol at a cell density of 1×105 

cells/mL. To avoid clumping and cell loss due to incomplete fixation, the 

ethanol was added forcefully by dispelling from a pipette and then 

vortexing. Cells were fixed in ethanol for at least 1 hour at −20°C. Following 

this, cells were washed twice in an equal volume of PBS. At this stage of 
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ethanol fixation the cells can become more buoyant so a higher centrifuge 

speed of 700 × g for 5 minutes was used. Cells were treated with 50µL of 

10µg/mL ribonuclease A solution at 37°C for 45 minutes. This is necessary 

because PI is also capable of binding to ribonucleic acid (RNA) so digesting 

the RNA present in the samples means that specific labelling of DNA can be 

achieved. Cells were stained immediately with 500µL PI solution for 10 

minutes at 37°C before flow cytometric analysis on 20,000 events. 

2.2.1.1. Interpreting PI cell cycle analysis flow cytometric data 

For this flow cytometric measurement FlowJo V.10.1 software was 

used to analyse the data. This software will plot a computer based model of 

the cell cycle profile that relates to the collected data. Analysis of PI cell 

cycle data was carried out after first gating cells to exclude debris based on 

FSC-A and SSC-A profiles (Figure 2.1). Cells gated in P1 were used to 

create a scatter plot of FSC-H against FSC-A profile to allow a second level 

of gating to include only singlet cells (Figure 2.2). This allows exclusion of 

doublets and clumped cells that if included in analysis would give false 

results for the proportion of cells in certain regions of the cell cycle. For 

example, if a doublet occurs between two cells that are both in the G0/G1 

phase of cell cycle, then this will produce the same readout as a single cell 

that is in G2/M phase. This is a consequence of the PI binding the same 

amount of DNA in both scenarios because in the G0/G1 phase only one 

copy of DNA is present within the nucleus while at G2/M phase the DNA 

has been duplicated in preparation for cell division. 
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A histogram of the amount of PI staining in cells gated by P2 (P1 in 

all) was plotted and a gate was applied to this graph to exclude the sub G0 

phase (Figure 2.3A) to result in the final profile that the FlowJo software 

could then fit a cell cycle model to (Figure 2.3B). An example of the final 

plot produced is shown in Figure 2.4. The first peak in the histogram 

represents the cells in G0/G1 phase of the cell cycle because these cells 

possess diploid chromosome content. The last peak represents cells in 

G2/M phase because PI staining reveals that these cells have double 

diploid chromosome content. Cells in between the two prominent peaks 

are in S phase because these cells are in the transition of single to double  

 

 
Figure 2.1 The gating (P1) used to exclude debris and select cells based on their 
forward scatter-area (FSC-A) and side scatter-area (SSC-A) profiles for PI cell 
cycle flow cytometric data. 

 
 

 
Figure 2.2 The gating (P2) used to exclude doublets and clumps based on their 
FSC-A profile and forward scatter-height (FSC-H) parameter for PI cell cycle 
flow cytometric data. 
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diploid chromosome content. The FlowJo software will give an output of the 

percentages of cells in each phase of the cell cycle, which can then be input 

into Graphpad Prism 6.0 software for statistical analysis. 

 

 

A B 

  
  

Figure 2.3 An example of a histogram plot used to apply the cell cycle profile model 
to in FlowJo after gating cells using P2 (P1 in all).  
(A) A historgam of PI (area) was plotted for the cells gated by P2 (P1 in all) and a gate 
was applied to this graph to exclude the sub G0 phase. (B) The resultant PI cell cycle 
profile for the FlowJo software to fit a cell cycle model. 

 
 

 
 

Figure 2.4 The final PI cell cycle profile after FlowJo has fitted a model to calculate 
the percentage of cells in each phase of the cell cycle.  
The FlowJo software uses the Watson pragmatic model to create the Gaussian 
distributions that result in final fitted cell cycle model. The gates G1 and G2 are 
manually applied to suggest to the software the areas in which it should begin to base 
its model. The cell cycle model is then plotted for the data as shown and the software 
calculate the percentage of cells in each phase of the cell cycle. The complete model is 
the sum of the three phases. 

G2/M phase 

S phase 

G0/G1 phase 

Sum of model 
G1 G2
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2.2.2. Annexin V/ propidium iodide apoptosis assay 
Apoptosis was assessed in MM cells by dual staining with fluorescein 

isothiocyanate (FITC)-labelled Annexin V and propidium iodide (PI) (BD 

Biosciences). Briefly, 2.5×105 cells were washed in 1mL of PBS. After 

removing supernatant, cells were incubated in darkness for 10 minutes with 

190µL a 1:4 dilution of binding buffer diluted in autoclaved deionized H2O 

containing 4µL of Annexin V-FITC. Before flow cytometric analysis, 

10µg/mL of PI was added and then flow cytometric data on 25,000 events 

was collected.  

2.2.2.1. Interpreting Annexin V/PI flow cytometric data 

Annexin V/PI flow cytometric data was analysed after first gating 

cell populations to exclude debris and select cells based on forward scatter 

(FSC-A) and side scatter (SSC-A) profiles (Figure 2.5). The cells gated in P1 

were used to generate a scatter plot of Annexin V-FITC area (-A) against 

PI-A positivity and the plot was split into quadrants. Figure 2.6 illustrates 

one of the scatter plots used to calculate Annexin V/PI positivity. 

A                                                                    B 
	  	  	  	  	  

	  
	  
Figure 2.5 The gating (P1) used to exclude debris and select cells based on their 
forward scatter (FSC-A) and side scatter (SSC-A) profiles for Annexin V/PI flow 
cytometric data.  
(A) Untreated MM cells that have a high percentage of viabilty. (B) MM cells 
treated for 48h with a high concentration of a cytotoxic agent.  
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Annexin V binds to phosphatidylserine (PS), a phospholipid present 

on the cytosolic side of the plasma membrane in non-apoptotic cells. Upon 

initiation of apoptosis, PS translocates to the extracellular side of the 

plasma membrane allowing Annexin V-FITC to identify apoptotic cells 

(Andree et al. 1990; Fadok et al. 1992). PI is used in conjunction with 

Annexin V-FITC to differentiate late stage apoptotic cells from early stage 

apoptotic cells. PI is an indicator of late stage apoptotic cells because the 

cell membranes of apoptotic cells become damaged allowing PI to 

permeate cells (Vermes et al. 1995). 

Using this principle, the percentage of viable cells was calculated as 

the percentage of cells that were Annexin V- negative/ PI- negative (viable 

cell quadrant). For the example shown in Figure 2.6A, this equals 77.1%. In 

contrast, the percentage of apoptotic cells was quantified from the 

summation of the percentage of Annexin V- positive /PI- negative (early 

stage apoptotic cell quadrant) and Annexin V- positive/PI - positive (late 

stage apoptotic cell quadrant). For example, for the plot shown in Figure 

2.6B the total percentage of apoptotic cells in this population is 85.8% 

(65.3% + 20.5%). Scatter plots similar to that shown in Figure 2.6 were 

generated for each sample and the percentage of apoptotic and viable cells 

was calculated. 
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Figure 2.6 An example of the scatter plots used to calculate Annexin V/PI positivity 
with the quadrants labelled.  
Cells gated in P1 were then used to generate a scatter plot of Annexin V-FITC-H 
against propidium iodide–A (PI-H) positivity and the plot was split into quadrants to 
represent the differents stages of apoptosis that the staining identifies. (A) Untreated 
MM cells that have a higher percentage of viabilty. (B) MM cells treated for 48h with a 
high concentration of a cytotoxic agent. In this scatter plot, it is clear to see that more 
cells are appearing in the apoptotic regions. 
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2.2.3. Cell surface analysis 

2.2.3.1. CD38, CD138 and CD40 expression 

The expression of the cell surface markers CD38, CD138 and CD40 

was measured by labelling MM cells with monoclonal antibodies (mAb) 

raised against each specific antigen and conjugated to different 

fluorochromes to facilitate simultaneous analysis of multiple parameters. 

The mAbs used included CD38 mouse anti-human R-phycoerythrin (PE) 

conjugate (MHCD3804, Invitrogen), CD138 mouse anti-human 

allophycocyanin (APC) conjugate (356506, BioLegend UK Ltd) and CD40 

mouse anti-human mAb FITC conjugate (CD4001, Life Technologies), 

respectively.  

Duplicate samples of 2.5×105 MM cells were harvested and washed 

in 1mL of PBS by centrifuging at 300 × g for 5 minutes. After removing 

supernatant, one of the duplicates was incubated in darkness for 10 

minutes with 5µL of the desired mAbs while the other sample was left 

unstained to act as the negative control. 1mL of PBS was added to the 

samples and the cells were washed again to remove any unbound mAb 

that may interfere with flow cytometric measurements. The supernatant 

was aspirated and the cell pellet was re-suspended in 200µL of PBS. Flow 

cytometric analysis was then carried out and 20,000 events were collected 

for each sample after carrying out the gating shown in Figure 2.7. 

Representative histograms for a CD138-APC stained sample verses an 

unstained sample are also shown in Figure 2.7. 
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Figure 2.7 FSC-A and SSC-A scatter plots with their respective histograms to 
provide a representative demonstration of the gating strategy used for cell surface 
analysis.  
In this particular example, the top panel of graphs show an unstained sample 
whereas the bottom panel shows a sample that has been stained for cell surface 
analysis of CD138 using the CD138-APC mAb. The FSC-A and SSC-A scatter plots 
show the gating (P2) used to select a population of viable cells. 20,000 events are then 
recorded in the P2 viable cell gate and the results for CD138 expression are shown in 
the histograms that plot the level of CD138-APC-H staining against count. As can be 
seen, the unstained MM cells show minimal CD138 expression compared to MM cells 
stained with the CD138-APC mAb. An identical strategy is used for CD38 and CD40 
cell surface analysis, when cells are stained with the respective mAb. 
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2.2.4. Intracellular analysis 

2.2.4.1. Mcl-1 expression 

Mcl-1 is an intracellular protein that is a member of the Bcl-2 protein 

family and is essential for MM cell survival (Derenne et al. 2002; Zhang et 

al. 2002). As it is an intracellular protein, a FIX & PERM® Cell 

Permeabilization Kit (Invitrogen) was used to allow the anti-Mcl-1 mAb to 

access its intended target. The staining process outlined below is shown in 

Figure 2.4.  

Duplicate samples of 3×105 MM cells were harvested and washed in 

1mL of PBS by centrifuging at 300 × g for 5 minutes. After removing 

supernatant, samples were incubated for 10 minutes at room temperature 

in darkness with 60µL Reagent A. This is provided within the FIX & 

PERM® Cell Permeabilization Kit. Cells were then washed in 1mL PBS and 

the supernatant again aspirated. The cell pellets were re-suspended in 60µL 

Reagent B. Reagent B is also part of the FIX & PERM® Cell 

Permeabilization Kit. Additionally, 4µL of Mcl-1 mouse anti-human 

monoclonal IgG1 antibody (sc-12756, Santa Cruz Biotechnology) was added 

to one of the duplicate samples and the other was left unstained to act as 

the negative control. Samples were incubated in darkness for 10 minutes at 

room temperate after mixing with a vortex.  

Samples were again washed in 1mL PBS then incubated with 4µL 

goat anti-mouse IgG1 FITC-conjugated antibody (SC-2078, Insight 

Biotechnology) at room temperate for 5 minutes. The secondary antibody 

was conjugated to the fluorchrome thereby allowing fluorescence detection 

of Mcl-1 (Figure 2.8).  

Samples were washed a final time in 1mL PBS and finally re-

suspended in 200µL PBS. Flow cytometric analysis was then carried out on 

20,000 events after carrying out gating similar to that shown in Figure 2.5.  
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Figure 2.8 Intracellular analysis of Mcl-1 expression.  
(1) Cells are fixated and permeabilised using a FIX & PERM® Cell Permeabilization 
Kit. Fixation preserves cellular antigens and maintains natural cell configuration 
while permeabilisation allows the antibodies access to the intracellular proteins they 
are targeted to. (2-3) Once cells are fixed and permeabilised, the antibodies can be 
added. Mcl-1 mouse anti-human IgG1 mAb is added first and acts as the primary 
antibody in the reaction because it binds to human Mcl-1 intracellular protein in the 
MM cell lines. The secondary antibody, goat anti-mouse IgG1 antibody conjugated 
to FITC is then added. This is an isotype-specific antibody, meaning that it is 
targeted to the IgG1 mouse region of the primary antibody. The FITC-conjugated 
secondary antibody then allows detection of the protein complex formed by flow 
cytometric analysis. 
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2.3.  Analysis of NF-κB activity 

2.3.1. Preparation of nuclear extracts 
5-10×106 cells were washed in 1mL PBS and centrifuged at 16,000 × g 

for 1 minute. The supernatant was discarded to create a semi-dry pellet. 

Pellets were re-suspended in 100µL of lysis buffer (Table 2.1) for 10 minutes 

on ice after vortexing to ensure that they were completely re-suspended in 

the lysis buffer. The lysis buffer contains a detergent (NP-40) that is capable 

of breaking down the cytoplasmic membrane. The lysed samples were 

centrifuged for 5 minutes at 16,600 × g at 4ºC (Heraeus Biofuge) and the 

supernatant (cytoplasmic extract) was removed. The remaining pellets, 

mainly consisting of cell nuclei, were then re-suspended in 50µL of high salt 

buffer (Table 2.1) for 25 minutes on ice after vortexing. The high salt buffer 

breaks down the nuclear membrane and also releases the transcription 

factors bound to the DNA by disrupting their electrostatic interactions. 

Samples were centrifuged at 16,600 × g for 5 minutes at 4ºC and the 

supernatant (nuclear extract) was removed to be stored at -20ºC in a fresh 

tube.  

 

 

Table 2.1 Components of the nuclear extraction buffers.  
*These reagents were added to the buffers immediately before use. PMSF has a short 
half-life of 30 minutes in water. PMSF= phenylmethanesulfonylfluoride.  

Lysis buffer High salt buffer 
10mM Hepes pH 7.9 25% Glycerol 
1.5mM MgCl2 20mM Hepes pH 7.9 
10mM KCl 420mM NaCl 
*0.1% PMSF 1.5mM MgCl2 

*0.1% NP40 0.2mM EDTA 
 **0.1% PMSF 
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2.3.2. Nuclear extract protein quantification 
Protein concentration of all nuclear extracts was determined using a 

Bio-Rad Protein Assay (5000006, Bio-Rad), which quantifies protein using 

the Bradford method.  

Unknown nuclear extract protein was quantified using known 

protein concentrations of bovine serum albumin (BSA) solution at 

concentrations varying from 0–3.2µg/µL. 3µL of each BSA solution 

concentration was pipetted into triplicate wells of a 96-well microplate 

alongside 2.5µL/well of each nuclear extract sample. 200µL of the Bio-Rad 

protein assay dye reagent (prepared at a 1:5 dilution in H2O) was added to 

each well. This was left for approximately 5 minutes to develop at room 

temperature and then the absorbance was read at 595nm on a 

spectrophotometer. 

The absorbance readings for known concentrations of BSA solution 

was then used to plot a standard curve and the polynomial equation of the 

line was used to calculate the unknown protein concentrations of the nuclear 

extract samples (Figure 2.9). 

                           
Figure 2.9 Standard curve created with BSA solution standards for quantification of 
nuclear extracts using a Bio-Rad Protein Assay.  
A polynomial trendline was plotted which produced an equation of the line and an R2 

value using Microsoft Excel. The R2 value was used to assess linearity while the 
polynomial equation was used to calculate unknown nuclear extract protein 
concentrations.  
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2.3.3. Electrophoretic mobility shift assay (EMSA) 
EMSA is a semi-quantitative technique that can be used to investigate 

protein-DNA interactions. For the purpose of this thesis, EMSA was 

specifically used to characterise active NF-κB binding activity within cells. 

The technique relies on the principle that if a specific DNA-binding protein 

is present in the nucleus of cells, it will bind a corresponding radiolabelled 

DNA sequence. This DNA-protein complexes can then be electrophoretically 

separated because their electrophoretic mobility will be less than that of free 

radiolabelled DNA. 

2.3.3.1. Labelling NF-κB consensus oligonucleotides with 32P 

NF-κB consensus oligonucleotides were first radiolabelled with 32P. 

20µL of reaction mix was prepared as outlined in Table 2.2 and incubated 

for 30 minutes at 37°C. Subsequently, 1µL of 0.5M EDTA and 20µL of 

Phenol:Chloroform:Isoamyl Alcohol (25:24:1) was added to the reaction 

mix followed by vortexing and centrifugation for 2 minutes at 1390 × g in a 

microcentrifuge. This resulted in an aqueous top layer that was transferred 

to a fresh tube and 1µL of 5M NaCl followed by 40µL of ice cold ethanol 

was added. The mix was then placed at -20°C for 30 minutes before 

centrifugation for 5 minutes at 1390 × g. This separated the 32P labelled NF-

κB consensus oligonucleotides from the ethanol so that the ethanol could 

consequently be discarded. Any remaining ethanol was eliminated by 

evaporation when the tube containing the resulting pellet was left at room 

temperature with the lid open for 10 minutes. The 32P labelled NF-κB 

consensus oligonucleotide pellet was then resuspended in 50µL Tris-EDTA 

and stored at 20°C. 
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Table 2.2 The components of 20µL of reaction mix.  
This was used for the preparation of the 32P labelled NF-κB consensus 
oligonucleotides. 

Component Source Volume 

dH2O  10µL 

10 × kinase buffer M4101, Promega 2µL 

NF-κB consensus oligonucleotides E3292, Promega 2µL 

T4 Polynucleotide kinase M4101, Promega 1µL 

ATP [γ-32P] NEG002A250UC, Perkin Elmer 5µL 

Total: 20µL 

 

2.3.3.2. EMSA 

2µg of nuclear extract protein was incubated at room temperature for 

30 minutes with 1µL 10× DNA binding buffer (Table 2.3), 2µL of 2µg/µL 

poly deoxyinosinic-deoxycytidylic acid (P4929, Sigma) and 1µL NF-κB 

consensus oligonucleotides labelled with 32P to allow the DNA-protein 

complexes to form. 2µL of Bromophenol Blue (B3269, Sigma) was then 

added to the reaction mix containing the DNA-protein complexes and the 

reaction mix was loaded onto a 6% DNA retardation gel (EC6365BOX, Life 

Technologies). The NF-κB DNA binding complexes within samples were 

then electrophoretically separated at 75V for 1h and 30 minutes. Once 

electrophoretically separated, the gel was transferred to filter paper and 

dried for approximately 30 minutes using a gel drier (165-1746, Bio-Rad). 

Once the gel was dried, it was placed into a cassette with a phosphor 

screen and left to develop for a minimum of 3 days. The protein DNA 

binding present on the phosphor screen was visualised by 

autoradiography using a Typhoon Biomolecular Imager (Amersham). 
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2.3.4. NF-κB family enzyme linked immunosorbent assay (ELISA) 
The quantity of subunit in 1µg of MM cell line nuclear extract was 

quantified with an NF-κB family ELISA kit (Active Motif) according to the 

manufacturer’s instructions. The kit contains 96-well plates to which an 

oligonucleotide containing the NF-κB consensus site (5’-GGGACTTTCC-3’) 

has been immobilised. This allows the active NF-κB dimers to bind to the 

immobilised oligonucleotide. The optical density reading of samples was 

performed at an absorbance of 450nm (OD450) on a spectrophotometer.  

Standard curves were generated using known quantities of 

recombinant p65 protein (R2 >0.99) so that the level of p65 subunit could be 

accurately quantified in the units of ng of subunit protein in 1µg of nuclear 

extract protein (Figure 2.10). Similarly, standard curves were generated 

using known quantities of recombinant p50 protein (R2 >0.96) so were used 

to accurately quantify p50 from OD450 values. Both recombinant p65 and p50 

proteins were used in duplicate at concentrations varying from 0.039-2.5ng. 

It was also necessary to use the recombinant p65 standard curves to 

approximate the quantities of the p52, RelB and c-Rel subunit proteins from 

mean OD450 values because recombinant protein for each of these proteins 

was not available. 

Plotting a standard curve created an equation of the line (y = 1.512x + 

0.036, in Figure 2.10), which was rearranged and used to quantify subunit 

Table 2.3 The components of 870µL of 10× DNA binding buffer.  
This was prepared and then aliquoted to allow storage at -20°C. DTT= Dithiothreitol 

Component Source Volume 

40% Glycerol  400µL 

10mg/mL Nuclease free BSA B2518, Sigma 100µL 

0.5M EDTA  20µL 

1M DTT 43816, Sigma 50µL 

5M NaCl  200µL 

1M Tris pH 7.5  100µL 

Total: 870µL 
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protein (the x value) based on the recorded absorbance (the y value). The 

plotted line also produced an R2 value, which was used to assess linearity. If 

R2 was calculated as >0.95 then the p65 or p50 standard lines were 

considered adequate to accurately quantify the respective subunit protein 

levels. 

 
2.3.5 Preparation of whole cell lysates 

3×106 cells were harvested and washed in 1mL ice cold PBS by 

centrifuging at 300 × g for 5 minutes at 4°C. The supernatant was discarded 

and samples were lysed by the addition of 200µL ice cold lysis buffer 

containing phosphatase and protease inhibitors. The lysis buffer was made 

fresh immediately before use (Table 2.4). After centrifugation at 16,000 × g at 

4°C for 20 minutes, the supernatants (whole cell lysates) were transferred to a 

fresh 500µL centrifuge tube to be stored at -20°C short term or -80°C long term. 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  
Figure 2.10 Standard curves were generated using known quantities of recombinant 
p65 or p50 protein and these were used to quantify NF-κB subunit expression in 
MM cell lines from OD450 values.  
The example above shows a standard curve that was generated by assaying known 
quantities of recombinant p65 protein (ng/well) in duplicate using a p65 protein 
monoclonal antibody. The plotted line, equation and R2 value were generated using 
Microsoft Excel. 
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Table 2.4 Components required to produce 10mL phospho-protein lysis buffer.  
This lysis buffer was made immediately before use because some of the reagents 
within the buffer are not stable in aqueous solution for more than 30 minutes. 
Phosphatase Inhibitor Cocktail 2 is optimised to inhibit tyrosine protein phosphatases 
while Phosphatase Inhibitor Cocktail 3 is designed to specifically inhibit alkaline and 
serine-threonine protein phosphatases. Similarly, the Protease Inhibitor Cocktail 
inhibits enzymes that break down proteins. All three of these reagents improve the 
yield of intact proteins from the whole cell lysates.  

Component Quantity 

HEPES 500µL 
NaF 2.1mg 
Iodoacetamide 9.25mg 
NaCl 43.83mg 
10% NP40 1mL 
Protease Inhibitor Cocktail  100µL 
Phosphatase Inhibitor Cocktail 2 (P5726, Sigma-Aldrich) 100µL 
Phosphatase Inhibitor Cocktail 3 (P0044, Sigma-Aldrich) 100µL 
Na3VO4 100µL 
PMSF 100µL 
H2O Make volume up 

to 10mL 

 

2.3.5.1 Whole cell lysate protein quantification 
The protein concentration of all whole cell lysates was measured using 

a BioRad DC protein assay kit (500-0116, Bio-Rad), which quantifies protein 

using the Lowry method. This is a different method to that used for the 

quantification of nuclear extracts because the whole cell lysate solution 

contains a detergent (10% NP40), which can interfere with the Bradford 

method of protein assay.  

The BioRad DC protein assay kit was used according to the 

manufacturer’s instructions. The kit contains three reagents; Reagent A (an 

alkaline copper tartrate solution), Reagent B (dilute Folin Reagent) and 

Reagent S (surfactant solution). For every 1mL of Reagent A used, 20µL of 

Reagent S must be added beforehand to created the Working Reagent A.   

BSA solution was used as a protein standard at concentrations varying 

from 0–5µg/µL. 5µL of each BSA solution concentration was pipette into 

triplicate wells of a 96-well microplate alongside 5µL/well of each whole cell 

lysate sample. 25µL of Working Reagent A followed by 200µL Reagent B to 
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each used well of the 96-well microplate. This was left to develop for 15 

minutes at room temperature before absorbance was read at 750nm on a 

spectrophotometer. 

The absorbance readings for known concentrations of BSA solution 

were then used to plot a standard curve and the polynomial equation of the 

line was used to calculate the unknown protein quantities of the whole cell 

lysate samples (Figure 2.11). 

                                   
Figure 2.11 Standard curve created with BSA solution standards for quantification 
of whole cell lysate using a Bio-Rad DC Protein Assay Kit.  
A polynomial trendline was plotted which produced an equation of the line and an R2 

vlaue in Microsoft Excel. The R2 value was used to assess linearity while the 
polynomial equation was used to calculate unknown whole cell lysate protein 
concentrations. Absorbance was carried out at 750nm 
 

2.3.6 Sodium dodecyl sulphate polyacrylamide gel electrophoresis 
(SDS-PAGE) 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-

PAGE) is a technique that is used to separate charged proteins based on 

their molecular weight. The first step involves denaturing proteins using 

SDS. SDS is an anionic detergent that can be used to remove secondary and 

tertiary protein structures, which reduces a complex protein to a negatively 

charged polypeptide chain.  

Four micrograms of whole cell lysate were denatured by addition of 

7.5µL NuPAGE lithium dodecyl sulphate (LDS) Sample Buffer (Invitrogen) 

and 3µL NuPAGE Reducing Agent (Invitrogen), while ensuring that 
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samples were kept on ice. The Sample Buffer contained Coomassie G250 and 

Phenol Red tracking dyes that can be used to track the movement of 

polypeptides during electrophoresis. The tubes containing the whole cell 

lysates, Sample Buffer and Reducing Agent were then heated at 80°C for 10 

minutes on a pre-heated heating block before loading into pre-cast 12-well 

NuPage® Novex® 4-12% gel (Invitrogen).  

The 12-well NuPage® Novex® 4-12% gel was previously prepared by 

removing from packaging, and removing the insulating tape and the well 

comb carefully to avoid damaging the loading wells. The gel was then 

rinsed in deionised H2O before placing into the XCell SureLock Mini-Cell 

apparatus (Invitrogen). The electrophoresis running buffer was prepared by 

diluting 50mL NuPAGE MOPS SDS Running Buffer (Invitrogen) in 950mL-

deionised H2O and used to fill the central chamber of the electrophoresis 

apparatus, ensuring that the loading wells were completing submerged with 

no leaks. The first loading well was used to load 5µL of Novex SeeBlue Plus2 

Pre-stained Protein Standard (Invitrogen) to ascertain the molecular weight 

of the resolved proteins detected by western blotting. Following this, the 

previously prepared denatured whole cell lysate samples were loaded.  

The remaining running buffer was used to fill the external chamber of 

the electrophoresis apparatus and the denatured proteins within the 

samples were then electrophoretically separated at 200V for approximately 

55 minutes, or until the dye front had reached the ridge at the bottom of the 

gel. 

2.3.7 Western blotting 
While the SDS-PAGE was running, the reagents and materials for the 

western blotting were prepared. One litre of non-reduced transfer buffer 

was prepared by diluting 50mL NuPAGE Transfer Buffer (Invitrogen) in 

850mL deionised H2O and 100mL methanol. The prepared transfer buffer 

was then used to soak two pieces of filter paper and six blotting pads. The 

polyvinylidene difluoride (PVDF) membrane was pre-soaked in methanol to 

prevent unspecific binding and then also soaked in the non-reduced transfer 

buffer. 
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Following electrophoresis, the polyacrylamide gels were removed 

from cassettes and placed on top of the pre-soaked PVDF membrane. The 

gel and transfer membrane were then sandwiched between two pieces of 

pre-soaked filter paper while ensuring any air bubbles were removed. The 

assembly was then sandwiched between six pre-soaked blotting pads (three 

on either side) before being placed into an XCell II Blot Module apparatus 

(Invitrogen) with the gel layer closest to the cathode core. The blot module 

was inserted into an XCell SureLock Mini-Cell apparatus (Invitrogen) and 

the central chamber filled with transfer buffer until the gel/membrane 

assembly was completely submerged. The external buffer chambers were 

filled with deionised H2O to dissipate heat during transfer. The protein 

transfer was carried out at 30V for 1h and 30 minutes.  

2.3.8 Immunodetection 
Following transfer, the PVDF membrane was removed from the blot 

module and washed three times in PBS-Tween buffer. The membrane was 

blocked with 30mL I-Block Tween (IBT-Tween) solution (Table 2.5) for 1h at 

room temperature. The blocking agent prevents non-specific binding of 

primary and/or secondary antibodies to the membrane. 

Table 2.5 Components and method required to produce I-Block Tween (IBT-Tween) 
solution.  
The solution was prepared by placing PBS tablets into H2O with Tween-20. The PBS-
Tween was pre-heated to 80°C and then I-Block was added. The I-Block was dissolved 
in the heated PBS-Tween on a magnetic stirrer. The solution was cooled to room 
temperature and then sodium azide was added as a preservative. The IBT-Tween 
solution was stored at 4°C for up to 1 month. 

Component Quantity 

Phosphate buffered saline (PBS) tablets (Fisher Scientific) 10 tablets 
Distilled H2O 950mL 
Tween-20 (Sigma-Aldrich) 1mL 
I-Block solution (Invitrogen) 2g 
Sodium azide 4g 

 

Following blocking, the PVDF membrane was probed overnight at 

4°C on a roller with 10µL of primary antibodies (Table 2.6) diluted in 10mL 

of IBT-Tween blocking solution (1/1000). The blot was then removed from 

primary antibody solution and washed four times in PBS-Tween buffer, each 
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time for a period of 15 minutes on a rocking platform. This ensured that any 

unbound antibody was removed to decrease the likelihood of background 

staining. The blot was subsequently probed for 1h at room temperature on a 

roller with 1µL of the appropriate secondary antibody diluted in 10mL of 

IBT-Tween blocking solution (1/10,000). The blot was then removed from 

secondary antibody solution and washed four times in PBS-Tween buffer, 

each time for a period of 15 minutes on a rocking platform. 

Table 2.6 Primary antibodies used for immunodetection.  
For all western blots, anti-β-actin antibody was used as the control primary antibody.  

Target protein Source Product number 

Phospho-NF-κB2 p100 
(Ser866/870) 

Cell Signalling Technology 4810S 

IκBα Cell Signalling Technology 9242S 
Phospho-NF-κB p65 (Ser536)  Cell Signalling Technology 3031S 
NF-κB p100/p52  Merick Millipore 05-361 
β-Actin Cell Signalling Technology 3700S 

 

The PVDF membrane was washed with 10mL alkaline phosphatase 

buffer for 5 minutes before removing excess buffer and transferring the blot 

to a plastic sheet. The blot was incubated with 600µL of the substrate CDP-

Star (Invitrogen) for 5 minutes to enable detection of the protein bands 

probed for. Excess detection reagent was removed from plastic sheet and the 

plastic sheet was inserted into a film cassette case. In a darkroom, 

photographic film was exposed to the membranes for 15 minutes up to 2h. 

depending on the intensity of the bands obtained.  

 

2.4. Gene expression analysis 

2.4.1. Sample collection 
RPMI8226 cells were incubated with increasing concentrations of the 

NF-κB inhibiting agents at a density of 1×106 cells/mL of cell culture media/ 

well of a 24-well cell culture plate. At 4h, 2-4×106 cells were harvested on ice 

from untreated and 2.5µM wells only. To reach the required cell number, 

wells containing 1×106 cells were combined as appropriate. The cells were 

washed in 1mL ice cold PBS and centrifuged at 300 × g for 5 minutes. The 
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supernatant was discarded to leave a cell pellet that was thoroughly re-

suspended in 1mL of TRIzol® reagent (Invitrogen) to isolate total RNA. The 

TRIzol® lysates were stored at -80ºC. 

At 48h, cytotoxicity was assessed in the 24-well cell culture plates 

where TRIzol® lysate samples had been generated using Annexin V/PI 

positivity. This provided a way of ensuring that the NF-κB inhibiting agents 

used on RPMI8226 cells were having the desired cytotoxic effect thereby 

allowing me to assess the suitability of the collected samples. This helped to 

avoid processing inadequate samples especially when the gene expression 

analysis techniques used were time consuming and expensive. 

2.4.2. GeneChip® Human Transcriptome Array 2.0 
TRIzol® lysate samples were analysed using GeneChip® Human 

Transcriptome Array (HTA) 2.0 following RNA extraction. RNA extraction 

and GeneChip® Human Transcriptome Array (HTA) 2.0 procedures were 

both performed by Central Biotechnology Services (CBS) at Cardiff 

University.  

Briefly, the RNA was extracted from the samples and the quantity 

and quality was checked using an Agilent 2100 Bioanalyzer System (Agilent 

Technologies, Inc). 50-500ng of the resulting RNA samples was then 

analysed by GeneChip® Human Transcriptome Array 2.0 (Affymetrix, Santa 

Clara, CA) as per the manufacturers instructions. This Affymetrix 

GeneChip® is a high-resolution microarray that contains more than six 

million probes, 70% of which cover exons for coding transcripts whilst the 

remaining probes cover exon-exon splice junctions and non-coding 

transcripts. This allows complete coverage of all transcript isoforms to 

provide accurate and comprehensive gene expression profiling. 

2.4.3. Microarray data analysis 
The data from the Affymetrix GeneChip® HTA 2.0 analysis was 

returned by CBS in the form of a series of very large CEL files so all data 

analysis, calculations and statistics were carried out using the statistical 

software environment, R (R-Core-Team 2014). R is a highly versatile piece of 
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software that provides a variety of statistical and graphical techniques. The 

full R script for all of the data analysis performed throughout this thesis is 

available on request. The CEL files were imported into the R environment 

and opened using the ‘oligo’ package (Carvalho a Irizarry 2010). This 

produced a table of raw intensities of the perfect match (PM) probes. 

2.4.3.1. RMA normalisation 

The RMA normalisation, which is part of the ‘oligo’ package 

(Carvalho a Irizarry 2010), is a method that preforms three functions on the 

raw intensities PM probes: background correction, Log2 transformation 

and normalisation. The background correction eliminates ‘noise’ that has 

arisen in each microarray sample by correcting for spatial variation within 

the individual sample arrays. The Log2 transformation makes it easier to 

view the distribution and reduces skewing when visualising the data. The 

result of RMA normalisation should remove any ‘noise’ and improve the 

clarity of true biological variability between the individual sample arrays 

to allow meaningful conclusions to be drawn. 

2.4.3.2. Visualisation of differentially expressed probesets 

The individual array replicates were grouped into their respective 

treatment condition groups. The ‘limma’ package (Ritchie et al. 2015) was 

used in R Studio to fit linear models to the data to condense the Affymetrix 

HTA 2.0 probes to their corresponding probesets and calculate each 

probesets mean expression. The ‘limma’ package was then used to perform 

separate contrasts between the untreated (UT) group of arrays and each 

treatment condition group of arrays, which produced the Log2 (fold change 

(FC)) of each probeset for each contrast. Then, an empirical Bayes 

moderated t-statistics test was performed on each UT vs. treated group 

contrast to generate p values for each probeset in each UT vs. treated 

contrast. 

The results of the empirical Bayes moderated t-statistic test were 

sorted for each UT vs. treated contrast to only include only those probesets 

that experienced a significant (p ≤ 0.05) Log2 (FC) ≤ -1 or Log2 (FC) ≥ 1. This 

then became the definition for a differentially expressed (DE) probeset. 
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This was achieved using global multiple testing procedures followed by a 

Benjamini and Hochberg correction to adjust the p values generated using 

a function within the ‘limma’ package (Ritchie et al. 2015) in R Studio. This 

revealed a list of DE probesets for each of the UT vs. treated contrasts.  

2.4.3.3. Annotation of DE genes relating to DE probesets 

The identified DE probesets were converted to their respective genes 

and annotated. For this analysis, only the probesets matching human genes 

were used. The DE probesets of the UT vs. treated contrasts were 

annotated with the gene level information using the file ‘A-GEOD-

17586_comments.txt’ (Available from: 

https://www.ebi.ac.ukarrayexpress/files/A-GEOD-17586/A-GEOD-

17586_comments.txt) (Hubbard 2014), which was imported into R Studio 

using the ‘RCurl’ package (Lang a the.CRAN.team 2016). This .txt file 

contained the gene level information corresponding to all the probesets of 

the Affymetrix GeneChip® HTA 2.0 and allowed the annotation of the 

probesets based on their likelihood of an identified transcript cluster 

corresponding to a gene. 

Once the probesets were annotated with the transcript identity, the 

‘limma’ package (Ritchie et al. 2015) was then used again to locate only 

those transcripts that were DE (Log2 (FC) ≥ 1 in either direction and p ≤ 

0.05) in at least one of the UT vs. SU compound contrasts. This produced a 

list consisting of 1334 labelled DE transcripts. The majority of the 

transcripts within this list did not have a gene symbol and were either 

listed as ‘---‘, likely to be RNA transcripts, or ‘NA’ so were excluded from 

the study as it would be difficult to identify them.  

2.4.3.4. Selection of DE genes to be used for validation in qRT-PCR 

DE gene lists were generated for each UT vs. treatment condition 

group based on Log2 (FC) thresholds. The respective gene lists were then 

analysed to assess the Gene Ontology (GO) and pathway terms using the 

online tool Enrichr (http://amp.pharm.mssm.edu/Enrichr/) (Chen et al. 

2013; Kuleshov et al. 2016). Enrichr is an online tool that computes an 

enrichment analysis of a manually selected DE gene list and then provides 
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information on the gene lists based on accumulated knowledge of the 102 

gene-set libraries in the database based on the function of the DE genes. 

The enrichment analysis is carried out using three approaches; a Fisher 

exact test and a z-score that is computed based on rank and standard 

deviation, followed finally by a combined score which is formulated by the 

first two approaches. Unlike the majority of other enrichment analysis tools 

available, Enrichr provides enrichment analysis information on areas such 

as gene ontologies, transcription, signalling pathways and biological and 

pharmacological processes. This allows Enrichr to provide an in depth 

insight into the function of a selected list of DE genes. 

2.4.3.4.1. Enrichment analysis of biological Gene Ontology terms 

The enrichment analysis produced a list of biological GO terms for 

each treatment conditions DE gene list. The lists of GO terms were sorted 

into a selection of GO categories so that the lists of processes generated 

could be more readily assessed for each UT vs. treatment condition 

contrast. This was achieved using a manually designed code in R Studio 

that sorted the terms based on key words that were likely to be associated 

with a certain GO category.  

The six main GO categories used consisted of cell cycle, metabolic 

processes, development, regulation and detection/response to stimuli. 

Three additional GO sub-categories were also included (transcription, 

signalling and apoptosis) because these were areas that could be of 

particular interest in determining the mechanistic action of the SU 

compounds due to the ontologies association with NF-κB signalling. The 

designed method was thorough and successfully sorted >95% of the GO 

terms into the specified GO categories. Moreover, the small number of 

GO terms that remained unsorted belonged to GO categories not included 

in the analysis, such as sensory perception.  

2.4.3.4.2. Enrichment analysis of Pathway terms 

The enrichment analysis also produced pathway lists that each DE 

gene was responsible for regulating. The pathway information used was 

taken from a mixture of feedback from the WikiPathways 2015, BioCarta 
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2015 and Reactome 2015 gene-set libraries (Chen et al. 2013; Kuleshov et 

al. 2016) because each one produced a slightly different list of pathway 

terms that when combined gave much more detail about the DE genes 

pathway regulation. The mus muculus pathway terms were excluded so 

that only the homo sapien terms were included in the final analysis.  

2.4.3.4.3. Expression levels of the SU1438, SU1411 and SU1349 DE gene 
lists 

The list of selected DE genes was narrowed down further by 

investigating the specific Log2 expressions, Log2(FCs) and p values for 

each DE gene for its relevant treatment condition. If a DE gene was to be 

used in the qRT-PCR experiments to validate the microarray data, the DE 

gene must be expressed at a relatively high level in the RPMI8226 

myeloma cells and experience a substantially large and significant FC in 

response to the SU compound relative to UT. By adhering to these 

criteria, the qRT-PCR experiments would be more likely to successfully 

detect the DE gene and allow validation of the microarray.  

Therefore, DE genes were only selected if the Log2 expressions of 

the gene in UT RPMI8226 cells was relatively high and the respective DE 

genes experience a relatively large and highly significant down regulation 

in response to the relevant treatment condition. In addition, specific 

patterns of expression for each SU compounds regulatory profiles were 

considered. Ideally, the selected DE genes would reflect the patterns 

observed in unique DE genes and shared DE genes between the 

individual . 

2.4.4. Real-time quantitative polymerase chain reaction (qRT-PCR) 
The microarray analysis revealed a number of differentially expressed 

genes that were associated with NF-κB activity and downstream gene 

regulation. A selection of these genes were analysed using qRT-PCR to 

validate the results obtained through microarray analysis.  
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2.4.4.1. RNA extraction and quantification 

TRIzol® lysates were thawed at room temperature for 

approximately 5 minutes before the addition of 0.2 volume of chloroform. 

As samples were re-suspended in 1mL TRIzol® reagent, this equated to 

200µL chloroform. To ensure chloroform was thoroughly combined, 

samples were vortexed for approximately 15 seconds prior to 

centrifugation at 11,330 × g for 15 minutes at 4ºC. After centrifugation, 

500µL of the aqueous phase was transferred to a fresh tube, taking care not 

to touch the inter-phase layer so as to avoid RNA contamination. 500µL of 

70% ethanol was mixed well with the aqueous layer. 

The remainder of the protocol was carried out using an RNeasy mini 

kit (Qiagen), according the manufacturers instruction. Briefly, the samples 

were transferred to an RNeasy spin column suspended in a 2mL collection 

tube and centrifuged at 11,330 × g for 15 seconds at 4ºC to allow the RNA 

to bind to the RNeasy membrane. The flow-through was discarded and the 

RNA spin column membrane was washed with the two provided buffers, 

RW1 buffer and RPE buffer respectively, which efficiently removes any 

contaminants. After centrifugation at 11,330× g for 15 seconds at 4ºC, the 

flow-through was discarded between washes. Finally, 50µL of RNase-free 

water was added to the spin column and the RNA was eluted after 

centrifugation at 11,330 × g for 1 minute at 4ºC. To achieve the highest 

concentration of RNA eluted from the RNeasy spin column membrane, the 

final step was repeated using the same 50µL of eluted RNA. The eluted 

RNA was stored at -80ºC. 

Before the RNA extracts were further processed, their quantities and 

qualities was assessed to ensure that the RNA extracted was of the highest 

quality and showed no genomic DNA contamination at this stage. This 

procedure was performed by CBS at Cardiff University on RNA at 

concentrations between 50-500ng/µg using an Agilent 2100 Bioanalyzer 

System. Briefly, RNA samples are first separated electrophoretically and 

then detected via laser induced fluorescence detection which generates a 

ratio of 18S to 28S ribosomal subunits. The resultant figures generated by 
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the Bioanalyzer software are a gel-like image of the electrophoretic 

separation and an electropherogram for visualisation of the ribosomal 

subunit ratio. Both pieces of information are standardised and an 

algorithym within the software is used to calculate an RNA integrity 

number (RIN) for each RNA sample. RNA was only used for subsequent 

qRT-PCR if the RIN was above a threshold of 6 because this indicates that 

the RNA is of an adequate quality for qPCR.  

2.4.4.2. Reverse transcription reaction  

 1µg of eluted RNA was converted to single-stranded 

complementary DNA (cDNA) on ice using a high capacity cDNA reverse 

transcription kit (4368814, Applied BioSystems), according to the 

manufacturer’s protocol. The 1µg RNA was made up to a volume of 10µL 

using nuclease-free H2O. 10µL of 2× Reverse Transcription Master Mix 

(Table 2.7) was added to each sample and then placed in the thermal cycler 

under the conditions shown in Table 2.8, as specified by the manufacturer’s 

instructions for this kit. The reaction produced 20µL of single-stranded 

cDNA and this is stored at -20ºC. 

 

Table 2.7 The components of 10µL 2× Reverse Transcription Master Mix. 
Excluding, nuclease-free H2O, all components were included in the high capacity 
cDNA reverse transcription kit (Applied BioSystems). 

Component Volume 

10× RT Buffer 2.0µL 

25× dNTP Mix (100mM) 0.8µL 

10× RT Random Primers 2.0µL 

Multiscribe™ Reverse Transcriptase 1.0µL 

Nuclease-free H2O  4.2µL 

Total: 10µL 

Table 2.8 The optimal thermal cycler conditions for the high capacity cDNA 
reverse transcription kit (Applied BioSystems).  
The reaction volume was set at 20µL. 

 Step 1 Step 2 Step 3 Step 4 

Temperature (ºC) 25 37 85 4 
Time 10 min 120 min 5 sec ∞ 
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2.4.4.3. qRT-PCR primer design  

The primers specific for target genes were designed using 

NCBI/Primer-BLAST (Ye et al. 2012). This software provides a tool that is 

capable of finding primers specific to a gene of interest by creating the PCR 

primer in Primer3 and then using BLAST to screen the primer in a user-

selected databases to avoid issues such as primer dimers and non-specific 

binding.  

The target genes reference sequence was inserted into the Primer-

BLAST website and amplicon length was set to 70-200 base pairs to ensure 

that all qPCR products amplified at the highest efficiency. Additionally, the 

option of the designed primer to span an exon/exon boundary of the target 

gene mRNA was selected to ensure that the primer could distinguish 

between cDNA and potential contamination of genomic DNA. A list of 

primers is usually suggested and for each target gene the most suitable 

primer pair was selected based on properties such as compatible melting 

temperatures between the forward and reverse primers, GC content and 

complementarity between primer pairs. The primers selected and used for 

qRT-PCR are shown in Table 2.9  
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Table 2.9 The sequence of primer pairs for the endogenous control and target genes 
that were analysed using qRT-PCR.  
All primers for target genes were designed using Primer-BLAST and produced by 
Eurofins Genomics. These were supplied lyophilised and were resuspended in 
nuclease-free H2O to a concentration of 100µM. The primer for the endogenous control 
was provided by Eurogentec S.A, Belgium. 

Primer for endogenous control 

RSP14 
Forward 5’-GGC AGA CCG AGA TGA ACT CT-3’ 

Reverse 5’-CCA GGT CCA GGG GTC TTG GT-3’ 
 

Primers for target genes 

TRAF6 
Forward 5’-TGA AGG AGA GAA TCA GAG CAA GT-3’ 
Reverse 5’-GGC AGT TCC ACC CAC ACT AT-3’ 

 

RIPK1 
Forward 5’-GTG CTG AAA GCC GAG ATG AG-3’ 
Reverse 5’-TTG AGC TGT AGC CTG AAC CTT-3’ 

 

POLA2 
Forward 5’-TGA AGG CAC AAG AAG CTC CG-3’ 
Reverse 5’-GGG CTC GGA CAC AAA CTG TA-3’ 

 

SRSF7 
Forward 5’-CGA CCA AGA AGC AGT CGT-3’ 
Reverse 5’-CAC TTT ACA GAC ATC ACA AAT CCC-3’ 

 

POLR2A 
Forward 5’-ACC GAC ACT TGG CTC TCT TG-3’ 
Reverse 5’-CAC GTC CAC CGT TTC CTC AA-3’ 

 

SRSF6 
Forward 5’-TAG GAC GCC TGA GCT ACA AC-3’ 
Reverse 5’-CCA CGA AGC CGT ACC CAT TT-3’ 

 

OFD1 
Forward 5’-TGC CTT CAG TCC CTA GTG TC-3’ 
Reverse 5’-GGA ACA AAG GTG CTG AAC GT-3’ 

 

PRKCI 
Forward 5’-ACG GCA TGT GTA AGG AAG GAT-3’ 
Reverse 5’-CAA GAG CCC ACC AGT CAA CA-3’ 

 

UBA2 
Forward 5’-TTC TCC CAC ATC GAC CTG ATT G-3’ 
Reverse 5’-AAC CTG TGC CTT TGA TCT TCC A-3’ 

 

NSUN2 
Forward 5’-ACA AAA GCC ACG CAA AAG AGA T-3’ 
Reverse 5’-CAG GCA AGT TCT TCA GGA TAC C-3’ 
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2.4.4.4. Real-time quantitative polymerase chain reaction (qRT-PCR) 

Single-stranded cDNA was diluted 1:5 in nuclease-free H2O on ice 

and primer pairs were each diluted to a working stock of 10µM. A qRT-

PCR master mix was prepared for each individual primer pair (Table 2.10). 

The fluorescent qPCR chemistry used for these experiment was the SYBR® 

Green dye-based assay. SYBR® Green I dye is a fluorescent DNA-binding 

dye that binds to the minor groove of double-stranded DNA to emit a 

much higher fluorescent signal than that of unbound SYBR® Green I dye. 

Table 2.10 The components of 15µL of qRT-PCR master mix.  
This could be scaled depending on how many wells were required. 

Component Source Volume 

Power SYBR® Green PCR Master Mix 4368706, Applied 
BioSystems 10µL 

Forward primer (10µM working stock)  1µL 

Reverse primer (10µM working stock)  1µL 

DNase-free H2O  3µL 

Total: 15µL 
 

15µL of the correct qRT-PCR master mix was then loaded into the 

appropriate wells of a MicroAmp Fast Optical 96-well reaction plate 

(4346906, Applied BioSystems) whilst taking care to avoid air bubbles in 

the wells as this can disrupt the fluorescent signal. 5µL of cDNA was then 

added to the appropriate wells of the 96-well reaction plate and the plate 

was then sealed using a MicroAmp Optical Adhesive Film (4311971, 

Applied BioSystems). The plate was briefly centrifuged at 300 × g for 2 

minutes to remove any air bubbles that may be present and to concentrate 

all qRT-PCR reagents in each well. The sealed 96-well reaction plate was 

then placed in the ViiA™ 7 Real-Time PCR System (Applied BioSystems) 

and analysed under the conditions listed in Table 2.11.  
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2.4.4.5. Analysis of qRT-PCR results 

The qRT-PCR results were analysed using ExpressionSuite Software 

v1.1 (ThermoFisher Scientific) and the melt curves, amplification plots and 

threshold cycles (Ct) were calculated. The fold changes were then manually 

calculated by the comparative Ct method (2-ΔΔCt) using Equation 1 (Livak a 

Schmittgen 2001). The 2-ΔΔCt method compares the gene expression of the 

DE gene of interest between the UT and SU compound treated samples 

relative to an endogenous control gene, which in this scenario was RSP14.  

2!!!!! = [ (C!  𝐷𝐸  𝑔𝑒𝑛𝑒 − 𝐶!  𝑅𝑆𝑃14 𝑡𝑟𝑒𝑎𝑡𝑒𝑑  𝑠𝑎𝑚𝑝𝑙𝑒 −   

C!  𝐷𝐸  𝑔𝑒𝑛𝑒 − 𝐶!  𝑅𝑆𝑃14 𝑈𝑇  𝑠𝑎𝑚𝑝𝑙𝑒)]                  Equation 1 

 

2.5. Statistical analysis 

Unless otherwise stated, the majority of statistical analyses were 

produced using GraphPad Prism 6 software (Graphpad Software Inc., CA, 

USA). The analysis of the microarray and qRT-PCR data are the exceptions. In 

these scenarios R software and ExpressionSuite Software v1.1. (ThermoFisher 

Scientific) were used. The ExpressionSuite Software v1.1. was used to analyse 

amplification and melt curve plots produced through qRT-PCR. 

Table 2.11 The thermal cycler conditions for qRT-PCR using the ViiA™ 7 Real-Time 
PCR System.  

 Hold 
Stage 

PCR 
Stage 

Melt Curve  
Stage 

 Step 1 Step 1  Step 2 Step 1 Step 2 Step 3 
Cycle number 1 40 1 

Temperature (ºC) 95 95 60 95 60 95 

Time 10 min 15 secs 1 min 15 secs 1 min 15 secs 
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Chapter 3 - Characterisation of the MM cell lines at 
baseline and in response to NF-κB stimulation or 
inhibition. 
3.1. Characterisation of four multiple myeloma cell lines 

This was the first project within our research group to use the multiple 

myeloma cell lines H929, U266B1, RPMI8226 and JJN3. Therefore, the first 

step of this project was to successfully grow and characterise the new MM 

cell lines. The main factors that were of interest to the project were the 

growth characteristics, cell surface phenotype and basal NF-κB activity of 

each MM cell line. 

3.1.1. Growth characteristics of myeloma cell lines 

3.1.1.1. Growth kinetics and cell cycle 

Optimal growth conditions were established by altering the seeding 

density, passage frequency and media formulation for each MM cell line to 

ensure that the cell viability of each cell line was maintained at a level 

exceeding 85%. Whilst culturing the individual cell lines, it became 

apparent that the growth rates among the MM cell lines were not the 

same. The JJN3 cell line had the fastest doubling time of approximately 

24h, the RPMI8226 cell line had an approximate doubling time of 48h and 

the H929 and U266B1 cell lines comparatively had the slowest doubling 

times of approximately 72h.  

For this reason, the cell cycle distribution of the four cell lines was 

investigated. Cells were harvested from each MM cell line under optimal 

growth conditions and then fixed with ice cold 70% ethanol. The passage 

number used for the harvested cells was similarly low between the MM 

cell lines and was between the range of 15-25 passages. The fixed cells 

were then incubated with propidium iodide (PI) and the cell cycle 

distribution was measured by flow cytometry. PI is a fluorescent dye that 

binds in a stoichiometric manner to double stranded DNA. Therefore, it 

can be used to identify cells in different stages of the cell cycle i.e. cells 

with different DNA content. FlowJo V.10.1 software was used to analyse 

PI cell cycle in each cell line. Briefly, cells were gated to exclude debris, 
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doublets and the sub G0/G1 cell cycle phase so that the software could fit a 

cell cycle model. This allowed the calculation of the percentage of cells in 

each phase of cell cycle to be quantified. 

Figure 3.1A shows representative cell cycle profiles for each of the 

four MM cell lines used throughout this thesis and Figure 3.1B presents a 

stacked bar chart showing the collated data from three independent 

experiments. Figure 3.1A shows that the cell cycle profiles differ between 

the cell lines based on the size and shape of peaks representing each cell 

cycle phase, and the scale on which the individual profiles are plotted.  

The data in Figure 3.1B shows that overall H929 has the most cells 

in the G0/G1 phase (53.8% ± 1.0%) and a two-way ANOVA showed that 

this was significantly higher than the U266B1, RPMI8226 and JJN3 cell 

lines (p = 0.004, p < 0.001 and p < 0.001, respectively). In addition, the H929 

cell line had the least cells in S phase (41.2% ± 3.5%) when compared to the 

other cell lines and this was also calculated to be significantly lower than 

the U266B1, RPMI8226 and JJN3 cell lines (p = 0.004, p < 0.001 and p < 

0.001, respectively).  

The JJN3 cell line has the least cells in the G0/G1 cell phase (40.8% ± 

0.6%) relative to the H929 (53.8% ± 1.0%), U266B1 (48.3 ± 1.4%) and 

RPMI8226 (43.9 ± 2.3%) cell lines demonstrating that more JJN3 cells were 

actively cycling. Moreover, the JJN3 cell line showed the highest 

percentage of cells in G2/M cell phase (11.0 ± 1.0%), although H929 also 

had a similarly high level of cells in the G2/M phase (10.6 ± 1.4%) and this 

was not found to be significantly different (p = 0.99).  

The cell lines RPMI8226 and JJN3 showed the highest percentage of 

cells in the S and G2/M cell cycle phases (total of 58.4% and 60.5%, 

respectively), suggesting that these cell lines were growing more rapidly. 

Moreover, the percentages of cells in the G0/G1, S and G2/M phases were 
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Figure 3.1 The PI cell cycle profiles for each of the MM cell lines H929, U266B1, 
RPMI8226 and JJN3.  
Flow cytometric analysis was used to investigate the cell cycle profiles of each MM 
cell line. (A) Representative examples of the cell cycle profiles for each of the MM cell 
lines produced in FlowJo V.10.1. (B) The percentage of cells in each phase of cell cycle 
was input into Graphpad Prism 6.0 software and used to plot a stacked bar chart. 
Values reported represent mean ± SD where n = 3. 
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not significantly different between RPMI8226 and JJN3 cell lines (p = 0.14, 

p = 0.71 and p = 0.08, respectively) suggesting that the growth rates of 

these two cell lines were similar. 

The U266B1 cell line showed a growth rate more similar to that of 

the H929 cell line. This was supported by the cell cycle profile in Figure 

3.1, which showed that both the U266B1 and H929 cell lines had a more 

similar percentage of cells in G0/G1 (48.3 ± 1.4% and 53.8% ± 1.0%, 

respectively), although this was still significantly different (p = 0.004, two-

way ANOVA).  

Altogether, this suggests that comparatively the H929 cell line 

possesses the slowest growth rate whereas the JJN3 cell line possesses the 

fastest growth rate. Moreover, the growth rate of RPMI8226 is more 

similar to that of the JJN3 cell line suggesting that this cell line also has a 

fast doubling time. Finally, Figure 3.1 suggests that the U266B1 cell line 

has a growth rate that is more similar to that of the H929 cell line 

compared to the RPMI8226 cell line. 

3.1.1.2. Baseline cell death 

Another characteristic that was observed whilst culturing the 

individual cell lines was the variation in baseline cell viability among the 

MM cell lines. To investigate this further, the cell death occurring at 

optimal growth conditions was analysed. Cells were harvested from each 

MM cell line and the forward scatter area (FSC-A) and side scatter area 

(SSC-A) was measured using an Accuri C6 flow cytometer after any cell 

debris was excluded. Based on the FSC-A and SSC-A profiles, cells were 

gated to allow the calculation of the percentage of viable and apoptotic 

cells in normal growth cultures for each MM cell line (Figure 3.2A).  

Figure 3.2B shows a stacked bar chart showing the collated data 

from three independent experiments. At optimal growth conditions, 

U266B1 and JJN3 cells demonstrated high levels of viability (93.7% ± 1.6% 

and 91.1% ± 1.9%, respectively). In contrast, RPMI8226 cell cultures 

showed the highest level of baseline cell death under optimal growth 
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Figure 3.2 Baseline viability for each of the MM cell lines H929, U266B1, RPMI8226 
and JJN3.  
Myeloma cells were analysed on an Accuri C6 flow cytometer. (A) Representative 
examples of the forward scatter (FSC-A) and side scatter (SSC-A) profiles after cell 
debris has been excluded. The gates applied represent the populations of apoptotic 
and viable cells. (B) The percentage of viable and apoptotic cells was input into 
Graphpad Prism 6.0 software and used to plot a stacked bar chart. Values reported 
represent mean ± SD where n = 3, triplicate. 
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conditions (15.2% ± 1.2%) while H929 manifested intermediate levels of 

apoptosis (11.5% ± 2.5%). This data corresponded with observations made 

while culturing the individual MM cell lines. For example, the RPMI8226 

cell line required more frequent replacement of the cell culture medium 

because it discoloured more quickly. 

 
3.1.2. Cell surface phenotype of myeloma cell lines 

The next stage of characterisation involved examining the baseline 

cell surface expression of CD38, CD138 and CD40. CD38 and CD138 

antigens are phenotypic hallmarks associated with MM plasma cells. On the 

other hand, CD40 was investigated due to the association of its ligand 

(CD40L) with the stimulation of NF-κB activity (Coope et al. 2002; Tai et al. 

2003; Hauer et al. 2005). In addition, although little is known of this antigen 

or its ligand, it was recently suggested that the amount of soluble CD40L 

present in MM patients is an indicator of MM disease stage (Kamińska et al. 

2016). 

Cells from each cell line were harvested, washed in PBS and then 

incubated with a combination of CD138-APC, CD38-PE and CD40-FITC 

conjugated monoclonal antibodies. A final wash in PBS was carried out to 

remove any unbound antibodies followed by analysis using flow cytometry.  

A gating strategy was then applied to the collected data to ensure 

that only viable myeloma cells were selected for analysis (see Figure 3.3). 

Briefly, a population of viable cells was identified based on FSC-A and SSC-

A and the doublets within this population excluded following gating based 

on FSC-A and FSC-height (FSC-H). Figure 3.3 demonstrates that the gating 

strategies were adjusted based on the individual cell lines because variation 

was observed among their respective flow cytometric profiles. This 

included variation in cell size (FSC-A), granularity due to baseline cell death 

(SSC-A) and the presence of doublets (FSC-A vs. FSC-H) within the 

different cell lines. 

The selected population of viable single cells was then forward-gated 
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into a histogram plot for the expression of each antigen and the mean 

fluorescent intensity (MFI) values for CD38, CD138 and CD40 were 

recorded. Representative overlay histograms of each cell surface marker are 

shown in Figure 3.4A, 3.5A and 3.6A to demonstrate whether the antigens 

measured showed expression above background (unlabelled controls). 

Figure 3.4B, 3.5B and 3.6B show collated data from three separate 

phenotyping experiments carried out for each cell line. 

Figure 3.4 shows that CD38 expression varied among the myeloma 

cell lines with RPMI8226 cells showing the highest expression of CD38 

(382,022 ± 20,524) when compared to the other three cell lines. H929 (57,598 

± 4,502) and JJN3 (62,122 ± 6,585) both had relatively lower expression of 

CD38 and U266B1 had the lowest expression of CD38 (5,841 ± 935). 

Moreover, the CD38 expression observed for each MM cell was significantly 

different to that of the respective unlabelled control (p < 0.001, multiple t 

test followed by Holm-Sidak correction). However, based on the overlaid 

histogram presented in Figure 3.4A, the U266B1 cell line appeared to have a 

bimodal CD38 expression profile. This suggests that while most of the cells 

present within this cell line had a low level of CD38 expression, a small sub-

population that expressed a higher level of CD38. 

Figure 3.5 shows the CD138 expression profiles for each myeloma 

cell line; consistent with their plasma cell origin, all four cell lines analysed 

demonstrated a relatively high level of CD138 expression. However, as was 

the case for CD38, the expression of CD138 was heterogeneous between the 

cell lines. U266B1 had the highest average expression of CD138 (701,296 ± 

60,920), H929 and RPMI8226 each have intermediate expression (564,907 ± 

90,150 and 417,464 ± 66,040, respectively) and JJN3 has the lowest CD138 

expression among the cell lines (288,862 ± 49,679). In addition, for all four 

MM cell lines shown in Figure 3.5B, the error bars span a large range for 

CD138 expression suggesting that there may exist day to day variation in 

the expression of this cell surface marker within each cell line. 
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Figure 3.4 Baseline CD38 expression in the MM cell lines H929, U266B1, RPMI8226 
and JJN3.  
CD38 expression was investigated in each cell line by staining cells with an anti-
CD38-PE conjugated antibody and then using flow cytometric analysis to measure 
MFI. (A) A representative overlay histogram is shown for each MM cell line 
(unstained control = n, stained CD38-PE antibody sample = n). (B) The average 
CD38-PE MFI for each cell line (unstained control = −, stained samples = +) where 
error bars represent SD (n = 3, duplicate), experimental duplicates shown. A multiple 
t test followed by Holm-Sidak correction was performed using Graphpad Prism 6.0 
software to investigate the statistical significance values between the unlabelled 
control and CD38 stained sample for each MM cell line (n = 3, duplicates averaged). 
The results are reported above the graph (** = p < 0.001, *** = p < 0.0001). 
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Figure 3.5 Baseline CD138 expression in the MM cell lines H929, U266B1, 
RPMI8226 and JJN3.  
CD138 expression was investigated in each cell line by staining cells with an anti-
CD138-APC conjugated antibody and then using flow cytometric analysis to measure 
MFI. (A) A representative overlay histogram is shown for each MM cell line 
(unstained control = n, stained CD138-APC Ab sample = n). (B) The average CD138-
APC MFI for each cell line (unstained control = −, stained samples = +) where error 
bars represent SD (n = 3, duplicate), experiemental duplicates shown. A multiple t test 
followed by Holm-Sidak correction was performed using Graphpad Prism 6.0 
software to investigate the statistical significance values between the unlabelled 
control and CD138 stained sample for each MM cell line (n = 3, duplicates averaged). 
The results are reported above the graph (** = p < 0.001, *** = p < 0.0001). 

Gate: [P2 in all] Gate: [P2 in all]RPMI8226 JJN3 

C
ou

nt
 

Gate: [P2 in all] Gate: [P2 in all]CD138-APC (area) 

Gate: [P2 in all] Gate: [P2 in all]

Gate: [P2 in all]U266B1 Gate: [P2 in all]H929 

101 107.2102 103 104 105 106
10

90
0

50
0

Co
un

t

CD138-A

A07 N H929 
Gate: (P3 in (P2 in all))

101 107.2102 103 104 105 106

1
0

9
0
0

5
0
0

C
o
u
n
t

CD138-A

D07 N U266B1 
Gate: (P3 in (P2 in all))

101 107.2102 103 104 105 106

1
0

9
0
0

5
0
0

C
o
u
n
t

CD138-A

A10 N 8226 
Gate: (P3 in (P2 in all))

101 107.2102 103 104 105 106
0

9
0
0

5
0
0

C
o
u
n
t

CD138-A

D11 N JJN3 -
Gate: (P3 in (P2 in all))

H929 U266B1 RPMI8226 JJN3
0

100000

200000

300000

400000

500000

600000

700000

800000

900000

CD
13

8-
AP

C 
ex

pr
es

si
on

 (M
FI

)

- + - + - + - +

** *** ** **

79



	  

	  

             A	  

	  
	  

            B                	  

	  
	  

Figure 3.6 Baseline CD40 expression in the MM cell lines H929, U266B1, RPMI8226 
and JJN3.  
CD40 expression was investigated in each cell line by staining cells with an anti-
CD40-FITC conjugated antibody and then using flow cytometric analysis to measure 
MFI. (A) A representative overlay histogram is shown for each MM cell line 
(unstained control = n, stained CD40-FITC Ab sample = n). (B) The average CD40-
FITC MFI for each cell line (unstained control = −, stained samples = +) where error 
bars represent SD (n = 3, duplicate), experiemental duplicates shown. A multiple t test 
followed by Holm-Sidak correction was performed using Graphpad Prism 6.0 
software to investigate the statistical significance values between the unlabelled 
control and CD40 stained sample for each MM cell line (n = 3, duplicates averaged). 
The results are reported above the graph (NS = not significant, * = p < 0.05, ** = p < 
0.01, *** = p < 0.001). 
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Lastly, Figure 3.6 shows the CD40 expression of each myeloma cell 

line. RPMI8226 is the only one of the four cell lines analysed to express a 

relatively high level of CD40 (21,132 ± 3,857). Figure 3.6A and 3.6B show 

that U266B1 and JJN3 express CD40 at the lowest levels, although only JJN3 

expresses CD40 to a level that is significantly different (p = 0.16 and p = 0.02, 

respectively, multiples t test followed by Holm-Sidak correction) to that of 

the unstained control (1,854 ± 215 and 1822 ± 127 as opposed to 1,489 ± 300 

and 1,377 ± 166, respectively). In contrast, the overlay histogram for H929 in 

Figure 3.6A shows that the CD40-FITC antibody stained sample does not 

overlap with that of the unstained control suggesting that H929 may 

express a relatively low level of CD40. This is further confirmed by the 

collated data shown in Figure 3.6B for H929 when the CD40-FITC stained 

sample (2,840 ± 252) is compared to the unstained control (1,601 ± 138), this 

difference is significantly different (p = 0.0017, multiples t test followed by 

Holm-Sidak correction). 

3.1.3. Basal NF-κB activity of myeloma cell lines 
The final step in the characterisation of the myeloma cell lines 

involved investigating the basal NF-κB activity in each cell line. This was 

achieved using two techniques, electrophoretic mobility shift assay (EMSA) 

and enzyme linked immunosorbent assay (ELISA). For both assays, cells 

were harvested from each myeloma cell line and processed to generate 

nuclear extracts. 

EMSA is semi-quantitative method of visualising NF-κB DNA 

binding activity. Briefly, 2µg of nuclear extract protein from each cell line 

was electrophoretically separated on a DNA retardation gel in the presence 

of NF-κB consensus oligonucleotides labelled with 32P. The resultant DNA 

binding was then visualised using autoradiography. Figure 3.7A shows a 

representative EMSA that shows the NF-κB DNA binding activity within 

each cell line whereas Figure 3.7B shows the collated mean intensity of 

bands corresponding to the gel-retarded NF-κB DNA complexes derived 

from three separate EMSA experiments.  
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      B 

 
 

Figure 3.7 EMSA was performed on nuclear extract protein from the MM cell lines 
H929, U266B1, RPMI8226 and JJN3  
(A) Representative EMSA showing the amount of NF-κB DNA binding for each cell 
line. The arrows indicate the positions of the bands corresponding to the gel-
retarded NF-κB DNA complexes. (B) Image J software was used to quantify the 
mean intensity of bands corresponding to the gel-retarded NF-κB DNA complexes. 
A one-tailed, unpaired t-test was performed using Graphpad Prism 6.0 software to 
investigate the significant difference between the indicated cell lines. Values 
reported are mean intensity ± SD where n = 3. 

 

Overall, Figure 3.7 illustrates that there was variation in the level of 

NF-κB DNA binding between the four myeloma cell lines. The bands 
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low intensity (68,760 ± 12,224 and 84,666 ± 14,285, respectively), although 

the difference between the mean intensity bands was significant (p = 0.004). 

On the other hand, JJN3 had the strongest intensity band for NF-κB DNA 

binding (143,100 ± 9,425) when compared to the other three cell lines. 

RPMI8226 had an intermediate level intensity band (120,313 ± 19,019) that 

was more like the level of JJN3 than H929 and U266B1 cell lines but still 

significantly lower than the mean intensity band for the JJN3 cell line (p < 

0.001). 

An ELISA detecting active NF-κB subunits was also performed on 

the nuclear extract samples from each of the myeloma cell lines. This assay 

was a more quantitative technique than EMSA as it allowed quantification 

of active NF-κB subunit composition, therefore providing an insight as to 

which NF-κB pathway the cell lines were constitutively dependent on. The 

NF-κB family ELISA kit (Active Motif) was used and carried out according 

to the manufacturer’s instructions. H929, U266B1 and RPMI8226 were each 

assayed at 1µg nuclear extract per well while JJN3 was assayed at a lower 

quantity of 0.5µg nuclear extract per well to accommodate for the fact that 

the EMSA suggested that it could have a relatively higher amount of NF-κB. 

Standard curves were generated using known quantities of recombinant 

p65 protein (r2 >0.99) and recombinant p50 protein (r2 >0.96) to allow NF-κB 

subunit quantification in nanograms per microgram of nuclear extract 

protein. 

The results of three independent ELISA experiments are shown in 

Figure 3.8 for each MM cell line. Figure 3.8 demonstrates that p65, p50, p52, 

RelB and c-Rel NF-κB subunits were positively detected in all four myeloma 

cell lines suggesting that all cell lines possessed constitutive NF-κB activity. 

Moreover, the results reflected the pattern of heterogeneity in NF-κB 

activity that was observed by EMSA (Figure 3.7). Cumulatively, JJN3 

appeared to have the highest level of active NF-κB subunits. In comparison, 

H929 had the lowest cumulative level of NF-κB activity among the cell lines. 

Both U266B1 and RPMI8226 cell lines had a relatively intermediate 

cumulative level of NF-κB activity. 
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The ELISA also suggested that the MM cell lines did not express 

higher levels of those subunits involved in the canonical NF-κB pathway 

(p65, p50 and c-Rel) compared to subunits involved in the non-canonical 

NF-κB pathway (p52 and RelB). This indicated that the NF-κB signalling 

observed in each cell line was most likely the result of a combination of both 

canonical and non-canonical NF-κB pathways. In terms of canonical 

pathway signalling, the levels of active p50 and c-Rel protein were 

relatively higher in all four myeloma cell lines compared to the levels of the 

levels of p65 NF-κB subunit protein. Similarly, U266B1, RPMI8226 and JJN3 

expressed relatively increased levels of the non-canonical pathway subunit 

p52 in contrast to the level of RelB. H929 expressed the lowest levels of both 

non-canonical subunit proteins p52 and RelB when compared to the other 

cell lines. 
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Figure 3.8 ELISA experiments detecting active NF-κB subunits were performed on 
each of the four MM cell lines. 
ELISAs were carried out to allow p65, p50, p52 RelB and c-Rel subunit protein 
quantification. H929, U266B1 and RPMI8226 were assayed using 1µg nuclear 
extract/well and JJN3 at 0.5µg nuclear extract/well. Values reported are mean ± SD 
produced from duplicate values where n = 3. 

3.2. Manipulation of myeloma cell lines with CD40L stimulation 

Interactions of malignant plasma cells with the bone marrow 

microenvironment result in some of the hallmarks of MM pathophysiology 

e.g. the development of osteolytic bone lesions (Hideshima et al. 2007; Podar 

et al. 2007; Kuehl a Bergsagel 2012). Plasma cells expressing CD40 can 

interact with CD40L within this environment and CD40L has previously 

been shown to stimulate NF-κB activation, mainly via the non-canonical 

signalling pathway (Coope et al. 2002; Tai et al. 2003; Hauer et al. 2005). 

Therefore, the effect of CD40L stimulation on the cell surface phenotype and 
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NF-κB activity was investigated in the MM cell lines by co-culturing MM 

cells with fibroblasts expressing the CD40L. 

3.2.1. Effect of CD40L stimulation on myeloma cell surface 
phenotype 

Cells from each of the four cell lines were co-cultured with either 

CD40L or NTL transfected fibroblasts for 24h. An additional condition was 

added called ‘LIQ’ to act as a further control; this involved culturing MM 

cells in liquid monoculture as a comparator for the two co-culture 

conditions. At 24h, MM cells were removed from co-culture and LIQ 

conditions and washed in PBS. Subsequently, MM cells with incubated with 

CD38-PE and CD138-APC conjugated monoclonal antibodies before a final 

wash in PBS. CD38 and CD138 cell surface expression were analysed using 

flow cytometry to investigate whether CD40L stimulation altered the 

myeloma phenotype. 

The gating strategy shown in Figure 3.3 was applied to the collected 

flow cytometric data to select viable myeloma cells and the MFI values for 

CD38 and CD138 determined. Figure 3.9 shows dot plots presenting the 

collated data from three separate phenotyping experiments carried out for 

all cell lines after 24h CD40L stimulation. Figure 3.9A shows that CD38 

expression in the H929, U266B1, RPMI8226 and JJN3 cell lines was not 

significantly (p = 0.52, p = 0.99, p = 0.63 and p = 0.99, respectively) altered by 

co-culture with CD40L transfected fibroblasts.  

Figure 3.9B shows the CD138 expression after 24h co-culture with 

and without fibroblasts transfected with NTL or CD40L. Similarly, H929, 

U266B1, RPMI8226 and JJN3 cells were again not significantly effected by 

NTL or CD40L fibroblast co-culture compared to baseline LIQ expression 

levels (p = 0.25, p = 0.70, p = 0.18 and p = 0.30, respectively). However, 

although not significant, H929 and RPMI8226 cells appeared to show a 

minor decrease in CD138 expression after co-culture with CD40L 

transfected fibroblasts compared to LIQ cultures (397,911 ± 99,606 and 

289,459 ± 110,846 compared to 515,319 ± 49,662 and 421,179 ± 23,791, 

respectively). 
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Figure 3.9 Effect of 24h CD40L stimulation on CD38 and CD138 cell surface 
expression on the MM cell lines H929, U266B1, RPMI8226 and JJN3.  
At 24h, CD38 (A) and CD138 (B) expression was investigated using flow cytometric 
analysis after the MM cell lines H929, U266B1, RPMI8226 and JJN3 were co-cultured 
with and without CD40L or NTL transfected fibroblasts (n = 3, individual duplicates 
and overall mean shown). A two-way ANOVA followed by a Tukey’s multiple 
comparisons test was performed using Graphpad Prism 6.0 software to investigate 
the statistical significance values between specific conditions for each MM cell line (n 
= 3, duplicates averaged). The results are reported above the graph (NS = not 
significant). (CD40L= cells co-cultured with CD40L transfected fibroblasts, NTL= cells 
co-cultured with NTL transfected fibroblasts, LIQ= MM cells cultured alone). 
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Overall, Figure 3.9 indicates that CD40L stimulation for 24h did not 

significantly alter the myeloma cell surface phenotype in the myeloma cell 

lines H929, U266B1, RPMI8226 and JJN3. 

 

3.2.2. Effect of CD40L stimulation on NF-κB activity in MM cell lines 
MM cell lines were co-cultured with and without CD40L or NTL 

transfected fibroblasts. After 24h, MM cells were removed from each 

condition and used to generate nuclear extracts. NF-κB family subunit 

ELISAs were then carried out on the nuclear extracts to investigate whether 

CD40L, in comparison to NTL, had increased NF-κB activity in the MM cell 

lines.  

As with the previous experiments, H929, U266B1 and RPMI8226 

were each assayed at 1µg nuclear extract per well while JJN3 cells were 

assayed using 0.5µg nuclear extract per well to reflect the increased basal 

NF-κB observed in these cells. Standard curves were generated using 

known quantities of recombinant p65 protein (r2 >0.99) and recombinant 

p50 protein (r2 >0.96) to allow NF-κB subunit quantification in ng/µg of 

nuclear extract protein. The results of these experiments are shown in 

Figures 3.11 and 3.12. One experiment in duplicate was performed to 

investigate the cell lines U266B1 and JJN3 because it was assumed that these 

cell lines were unlikely to respond to CD40L stimulation due to low level of 

CD40 expression. On the other hand, three separate experiments were 

performed for the H929 and RPMI8226 cell lines as these cell lines expressed 

higher levels of CD40. For each cell line, nuclear extract samples were 

assayed in duplicate in the NF-κB ELISA assays. 

Figure 3.10 indicates that p65, p50, p52, RelB and c-Rel subunit 

activity were not significantly affected by 24h CD40L stimulation in H929 

cells (p > 0.05). However, although not significant, the levels of p52 were 

decreased following 24h co-culture with CD40L transfected fibroblasts 

when compared to LIQ culture (0.620 ± 0.15 and 0.750 ± 0.24, respectively). 

However, a similar decrease was also observed after 24h co-culture with 
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         RPMI8226 

	  
	  
Figure 3.10 Effect of CD40L on NF-κB activity in the MM cell lines H929 and 
RPMI8226.  
ELISAs detecting NF-κB subunits were performed 1µg/well on H929 and RPMI8226 
nuclear extracts after 24h co-culture with and without CD40L or NTL transfected 
fibroblasts (n = 3, experimental duplicates shown and the mean of individual 
experiments are mapped with a line). A two-way ANOVA followed by a Tukey’s 
multiple comparisons test was performed using Graphpad Prism 6.0 software to 
investigate the statistical significance values between specific conditions for each MM 
cell line (n = 3, duplicates averaged). The results are reported above each graph (NS = 
not significant). (CD40L= cells co-cultured with CD40L transfected fibroblasts, NTL= 
cells co-cultured with NTL transfected fibroblasts, LIQ= cells cultured alone).  
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NTL transfected fibroblasts when compared to LIQ culture conditions (0.561 

± 0.15 and 0.750 ± 0.24, respectively), suggesting that the decrease in p52 

subunit activity was not caused by CD40L stimulation. 

Figure 3.10 shows that NF-κB subunit expression in the nucleus of 

RPMI8226 cells was increased by 24h co-culture with CD40L transfected 

fibroblasts. All five NF-κB subunits showed a substantial increase in their 

active protein levels in response to co-culture with CD40L transfected 

fibroblasts. The most pronounced and significant increases were seen in the 

nuclear expression of p65 (p = 0.02) and RelB (p = 0.03) NF-κB subunits. As 

all NF-κB subunits were increased by 24h CD40L stimulation in RPMI8226 

cells, this would suggest that both canonical and non-canonical NF-κB 

signalling were stimulated by CD40L. 

Figure 3.11 shows the effect CD40L on NF-κB in the cell lines U266B1 

and JJN3. The level of p65 in both JJN3 and U266B1 cells was not altered by 

co-culture with NTL or CD40L transfected fibroblasts when compared to 

the LIQ condition. However, in these cell lines p52, RelB and c-Rel NF-κB 

subunits all showed a slight increase in protein quantity after CD40L 

stimulation for 24h with p52 showing the most pronounced increase relative 

to RelB and c-Rel. On the other hand, p50 subunit protein was decreased 

after 24h co-culture with both NTL and CD40L transfected fibroblasts in 

both U266B1 and JJN3 cell lines. 

90



	  

	  

        U266B1 

	  
	  

        JJN3	  

	  
	  

Figure 3.11 Effect of CD40L on NF-κB activity in the MM cell lines U266B1 and 
JJN3.  
ELISAs detecting active NF-κB subunits were performed U266B1 and JJN3 nuclear 
extracts after 24h co-culture with and without CD40L or NTL transfected fibroblasts. 
U266B1 was assayed at 1µg/well and JJN3 at 0.5µg/well of nuclear extract protein 
where n = 1, duplicate. The graph shows n = 1, with individual experimental 
duplicates and overall mean. (CD40L= cells co-cultured with CD40L transfected 
fibroblasts, NTL= cells co-cultured with NTL transfected fibroblasts, LIQ= cells 
cultured alone).  
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3.3. The use of the non-specific NF-κB inhibitor BAY 11-7082 in 
myeloma cell lines 

3.3.1. Cytotoxicity of BAY 11-7082 in MM cell lines 
The first step in exploring the use of the non-specific NF-κB inhibitor 

BAY 11-7082 in MM cell lines involved assessing its cytotoxic potential. To 

investigate cytotoxicity, each MM cell line was treated within increasing 

concentrations of BAY 11-7082 ranging from 0.25µM to 15µM. After 48h, 

cells from each cell line were harvested and washed in PBS before staining 

with Annexin V-FITC and propidium iodide (PI). Cells were then analysed 

using flow cytometry to determine the percentage of apoptosis (Annexin 

V+/PI- + Annexin V+/PI+). 

The raw data plots measured by the flow cytometer for the cell line 

H929 after 48h treatment with increasing concentrations of BAY 11-7082 are 

shown in Figure 3.12. Cells were first gated based on FSC-A and side SSC-A 

to exclude debris and these events were forward gated into bivariate plots 

of Annexin V (Annexin V-FITC-H) against propidium iodide (PI-H) (Figure 

3.12). The scatter plots were split into quadrants so that the populations 

could be clearly identified and the percentage of apoptotic cells at each 

concentration of BAY 11-7082 were used to construct dose-response curves. 

Figure 3.13 presents the dose-response curves for each MM cell line and 

each graph was created from three separate experiments. The interpolated 

LD50 values and their respective 95% confidence intervals (CI) are reported 

for each cell line. 

Figure 3.12 and 3.14 illustrate that BAY 11-7082 is cytotoxic in all the 

myeloma cell lines tested. Comparison of the LD50 values for each cell line 

indicated that the JJN3 cell line was relatively more resistant to apoptosis in 

response to BAY 11-7082 (LD50 = 3.38µM, 95% CI [2.71µM, 4.21µM]). 

However, the sensitivity of RPMI8226 cells to BAY 11-7082 was more 

similar to that of JJN3 than H929 and U266B1 cell lines (LD50 = 3.19µM, 95% 

CI [2.19µM, 4.64µM]). Conversely, Figure 3.13 shows that H929 and U266B1 
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were the relatively most sensitive to apoptosis induced by BAY 11-7082. 

H929 and U266B1 had similar sensitivity as demonstrated by their LD50 

values of 1.37µM (95% CI [1.16µM, 1.62µM]) and 1.93µM (95% CI [1.48µM, 

2.52µM]), respectively. 

 

 

Figure 3.13 The cytotoxicity of BAY 11-7082 at 48h in the MM cell lines H929, 
U266B1, RPMI8226 and JJN3.  
The cell lines H929, U266B1, RPMI8226 and JJN3 were treated with increasing 
concentrations of BAY 11-7082 between 0.25µM and 15µM. At 48h, cell death was 
measured using Annexin V/PI positivity on an Accuri C6 flow cytometer. The 
percentage of apoptotic cells at each concentration of BAY 11-7082 was then 
calculated and dose-response curves were constructed using GraphPad Prism 6.0. 
LD50 values were interpolated and are reported for each cell line alongside 95% CI. 
Error bars represent mean ± SD, where n = 3, triplicate. 
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3.3.2. Inhibition of NF-κB activity by BAY 11-7082  
As BAY 11-7082 was cytotoxic at 48h in all four MM cell lines, the 

effect of this agent on NF-κB activity was assessed in the cell line RPMI8226 

to investigate whether there was a correlation between apoptosis and the 

effect on NF-κB activity.  

RPMI8226 cells were treated with increasing concentrations of BAY 

11-7082 ranging from 0µM to 10µM in 2µM increments. At 4h, RPMI8226 

cells from each concentration were harvested, washed in PBS to remove any 

BAY 11-7082 and nuclear extracts were derived from the washed cell 

pellets. This experiment was repeated three times and once all nuclear 

extracts were generated, they were assayed in duplicate at 1µg per well using 

NF-κB family subunit ELISA assays. This was carried out as per the 

manufacturer’s instructions and standard curves were generated using 

known quantities of recombinant p65 protein (r2 >0.99) and recombinant 

p50 protein (r2 >0.96) to allow NF-κB subunit quantification. The subunit 

quantities were then normalised compared to the values at 0µM and data of 

these experiments are presented in Figures 3.15.  

Figure 3.14 demonstrates that the quantities of all five NF-κB 

subunits were decreased in a dose-dependent manner after 4h exposure to 

increasing concentrations of BAY 11-7082. The p52 subunit showed the most 

significant decrease after 4h exposure to 10µM BAY 11-7082 (22.4% ± 4.9%, p 

< 0.001) when compared to 0µM. The p50 and RelB NF-κB subunits 

experienced the largest decrease in protein quantity (7.1% ± 10.4% at 10µM, 

p=0.003 and 8.6% ± 12.0% at 10µM, p = 0.003, respectively) compared to 

untreated levels. While p65 and c-Rel subunits experienced a significant 

decrease in protein level in response to 10µM BAY 11-7082, relatively the 

decrease in activity was the lowest observed among the NF-κB subunits 

(43.8% ± 9.2%, p = 0.005 and 46.2% ± 24.5%, p = 0.04, respectively).  
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Figure 3.14 Effect of BAY 11-7082 on NF-κB activity in the MM cell line RPMI8226. 
RPMI8226 cells were incubated with increasing concentrations of BAY 11-7082 for 4h. 
RPMI8226 was then assayed at 1µg/well of nuclear extract protein using ELISAs 
detecting active NF-κB subunits. Quantified protein values were normalised 
compared to 0µM BAY 11-7082 to give the relative percentage of each NF-κB subunit. 
The percentages reported correspond to n = 3, duplicate with mean shown. A one-
tailed unpaired t-test was performed using Graphpad Prism 6.0 software to 
investigate the statistical significance values between 0µM and 10µM BAY 11-7082 for 
each NF-κB subunit (n = 3, duplicates averaged). 
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Alongside the three experiments shown in Figure 3.14, the 

cytotoxicity induced by BAY 11-7082 in RPMI8226 cells was investigated at 

24h. Briefly, cells were harvested, washed in PBS before staining with 

Annexin V-FITC and propidium iodide (PI). Annexin V/PI positivity was 

then analysed in triplicate by flow cytometer and the percentage of 

apoptotic cells at each concentration of BAY 11-7082 was calculated. The 

NF-κB ELISA data in Figure 3.14 was then plotted alongside the percentage 

of apoptosis at each concentration for each of the three experiments. The 

correlation between these two measurements was investigated by 

performing linear regression analysis. 

Figure 3.15 displays the correlation between individual subunit 

quantities (ng/µg) and the percentage of apoptosis at each increasing dose 

of BAY 11-7082. The linear regression analysis for all five NF-κB subunits 

produced negative correlations that were all highly significant (p < 0.001). A 

pattern similar to that observed in Figure 3.14 for fold change and 

significance is observed when the linearity of each subunits linear 

regression was considered. For example, the correlation between apoptosis 

and the quantity of p50, p52 and RelB subunits produced the highest 

linearity (r2 = 0.74, r2 = 0.72 and r2 = 0.61, respectively) whereas the negative 

correlation between the quantity of p65 and c-Rel subunits and apoptosis 

was relatively weaker (r2 = 0.57 and r2 = 0.30, respectively)  

Overall, Figure 3.14 and Figure 3.15 suggest that BAY 11-7082 is 

dose-dependently inhibiting NF-κB activity generated through both the 

canonical and non-canonical pathways because this agent is significantly 

decreasing all active NF-κB subunits in RPMI8226 cells at 4h. The strong 

correlations seen between increasing concentrations of BAY 11-7082, 

inhibition of overall NF-κB activity at 4h and subsequent apoptosis at 24h 

implies that apoptosis in response to BAY 11-7082 in RPMI8226 cells may be 

a consequence of inhibition of NF-κB activity.  
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Figure 3.15 Correlation of BAY 11-7082 induced cytotoxicity at 24h with NF-κB 
activity at 4h in RPMI8226 cells.  
RPMI8226 cells were incubated with increasing concentrations of BAY 11-7082. At 4h, 
nuclear extracts were generated and NF-κB subunit ELISAs were performed. 
Subsequently, at 24h the percentage of apoptotic cells was measured using Annexin 
V/ PI positivity for the corresponding conditions. The correlation between these 
measurements was investigated by linear regression using Graphpad Prism 6.0 
software. The linearity (r2) and p value are reported for each NF-κB subunit. The 
points plotted represent mean ± SEM for each experiment (n = 3).	  
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3.4. Discussion 

3.4.1. Characterisation of four multiple myeloma cell lines 
The MM cell lines used throughout this thesis were chosen because 

they each represent distinct clinical features (and different NF-κB 

mutational profiles) manifested in MM (Drexler a Matsuo 2000; Annunziata 

et al. 2007; Keats et al. 2007). For example, H929 was selected because it 

possesses no known genetic abnormalities in the NF-κB pathway. On the 

other hand, U266B1, RPMI8226 and JJN3 are characterised by activating 

mutations affecting the NF-κB pathway (Annunziata et al. 2007; Keats et al. 

2007). U266B1 and RPMI8226 possess inactivating TRAF3 mutations while 

JJN3 manifests an activating mutation in NF-κB inducing kinase (NIK).  

Additionally, the cell lines were each derived from plasma cells 

originating from different anatomical niches of the disease, secrete different 

classes of immunoglobulin and even differ in the clinical stage of MM that 

they are derived from. For example, H929, U266B1 and RPMI8226 were 

obtained from patients diagnosed with MM and were derived from pleural 

effusion or peripheral blood samples (Matsuoka et al. 1967; Nilsson et al. 

1970; Gazdar et al. 1986). Conversely, JJN3 is considered to be a more 

advanced stage of MM because it is derived from the bone marrow of a 

patient diagnosed with plasma cell leukaemia (Jackson et al. 1989). 

As a result, it was predicted that each cell line would possess its own 

individual characteristics in terms of growth, phenotype and NF-κB activity. 

Therefore, to gain a better understanding of the MM cell lines, the first aim 

of this project was to characterise them. 

It was noticed during the culture of each cell line that the apparent 

growth rates differed between the MM cell lines. The RPMI8226 and JJN3 

cell lines showed the fastest growth rates as evidenced by the requirement 

to split the cultures more frequently than H929 and U266B1 cell lines. 

Therefore, the first step of cell line characterisation was to investigate the 

growth kinetics of each cell line by measuring cell cycle distributions and 

basal levels of apoptosis.  
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The data shown in Figure 3.1 suggested that RPMI8226 and JJN3 

were the fastest growing myeloma cell lines because they had more cells in 

S phase and G2/M phase of the cell cycle and a significantly lower 

percentage of cells in G0/G1 phase than H929 and U266B1 cell lines (p < 0.05, 

two-way ANOVA). Moreover, the percentages of cells in the G0/G1, S and 

G2/M phases were not significantly different between RPMI8226 and JJN3 

cell lines (p = 0.14, p = 0.71 and p = 0.08, respectively) suggesting that the 

growth rates of these two cell lines were similar. 

H929 possesses the slowest growth rate and concordantly manifested 

significantly more cells within G0/G1 phase of cell cycle than U266B1, 

RPMI8226 and JJN3 cell lines (p = 0.004, p < 0.001 and p < 0.001, 

respectively). This suggests that at any one time more H929 cells were not 

actively cycling. In addition, U266B1 showed a similar growth rate to that of 

the H929 cell line and this was supported by the cell cycle profile, which 

showed that both the U266B1 and H929 cell lines had a similar percentage 

of cells in G0/G1, although this was still significantly different (p = 0.004, 

two-way ANOVA).  

H929 has been previously reported to possess a doubling time of 50h 

(Gazdar et al. 1986), U266B1 a doubling time of 40-45h (Hellman et al. 1988) 

and a doubling time of 33.5h and 20-35h for RPMI8226 and JJN3 cell lines, 

respectively (Collins 2015; DSMZ 2016). The average doubling time of a MM 

cell line is 54h ± 36h (Drexler a Matsuo 2000) so the four cell lines that were 

characterised here reflect the expected spectrum of growth kinetics. As 

such, the data in Figure 3.1 supports my personal observations made whilst 

culturing the respective cell lines and also previous observations reported in 

the literature and within cell line databases. 

Figure 3.2 suggests that all the MM cell lines experienced relatively 

low baseline apoptosis when cultured under standardised culture 

conditions. The U266B1 and JJN3 cell lines experienced the lowest levels of 

natural cell death whereas the H929 and RPMI8226 cell lines experienced 

more baseline apoptosis. RPMI8226 cells experienced the most baseline cell 
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death under optimal growth conditions and it was observed during cell 

culture that the medium that these cells were grown in was required to be 

replaced more regularly that the other cell lines due to discolouration. This 

did not appear to be associated with the growth kinetics of the cell line as 

RPMI8226 cells were not the most proliferative. It therefore remains 

possible that the growth conditions used for this cell line were sub-optimal. 

Furthermore, plasma cells are antibody-producing cells and the 

RPMI8226 cell line has been previously shown to actively synthesise and 

secrete higher levels of immunoglobulin than the other MM cell lines 

(Matsuoka et al. 1968). In the same study, it was found that baseline cell 

death was associated with the higher levels of immunoglobulin synthesis. 

In theory, the increased immunoglobulin synthesis of the RPMI8226 cells 

may have a higher demand for nutrients, which could be responsible for the 

elevated cell apoptosis observed. 

Overall, the growth characteristics of the four MM cell lines show 

heterogeneity both in terms of growth kinetics and baseline cell death under 

standardised growth conditions. Moreover, there did not seem to be an 

association between the level of baseline cell death and the rate of cell 

proliferation in each cell line. The cell proliferation of RPMI8226 and JJN3 

cell lines were both relatively high but JJN3 cells experienced a low level of 

baseline cell death while RPMI8226 experienced the highest levels of cell 

death.  

The phenotype of each myeloma cell line was also investigated by 

measuring the cell surface expression of three antigens; CD38, CD138 and 

CD40. CD38 and CD138 are common cell surface markers in MM and, as 

such, are used to identify malignant plasma cells in MM due to their 

consistent and relatively high expression (Lin et al. 2004). In vivo, CD38 is 

an activation marker that can function both enzymatically and through 

ligation to the adhesion molecule CD31, which is highly expressed on 

endothelial cells and B cells, to control MM cell migration, proliferation, 

differentiation and survival (Cesano et al. 1998; Deaglio et al. 1998; 
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Fernàndez et al. 1998; Horenstein et al. 2015). CD138, also known as 

syndecan-1, is expressed mainly on terminally differentiated B cells, making 

it a marker for plasma cells, although it is readily shed from the cell surface 

spontaneously or because of apoptosis induction (Jourdan et al. 1998; Yang 

et al. 2002; Ikeda et al. 2009). CD138 is an adhesion molecule that regulates 

cell, growth, proliferation and survival (Gharbaran 2015). CD40 is a cell 

surface marker that is not usually expressed on normal plasma cells but has 

been shown to be present in the early stages of MM, although its expression 

does not correlate to overall survival (Tong et al. 2000; Perez-Andres et al. 

2009). In B cells, CD40 is required for B cell activation and terminal 

differentiation to plasma cells (O'Connor et al. 2003). The ligand of CD40 is 

CD40L (also called CD154) and interactions have previously been shown to 

stimulate NF-κB activity, mainly via the non-canonical signalling pathway 

(Coope et al. 2002; Tai et al. 2003; Hauer et al. 2005).  

CD38, CD138 and CD40 cell surface antigens each contribute to the 

myeloma phenotype and it has been reported that 100% of existing MM cell 

lines express CD138, 89% positively express CD38 and 59% express CD40, 

(Drexler a Matsuo 2000). This study revealed variable expression of CD38 

within the four cells lines. CD38 was most highly expressed in RPMI8226 

cells, followed by H929 and JJN3, with the lowest level found in U266B1, 

which is in line with previous reports (Hata et al. 1994; Lagging et al. 1996; 

Deckert et al. 2014). However, the data were in slight contrast with a report 

published by (Gooding et al. 1999) where CD38 expression was lowest in 

JJN3, and U266B1 expressed an intermediate level of CD38. Furthermore, 

my results indicated that the U266B1 cell line contained a sub-population 

that expressed a higher level of CD38. It has previously been reported that 

the U266B1 cell line contained two sub-populations expressing different 

levels of the cell surface antigen CD38 (Lagging et al. 1996; Mahmoud et al. 

1998). However, it is possible that at different passage numbers and under 

specific growth conditions, the U266B1 cells can express a higher or lower 

proportion of CD38hi cells thereby altering the overall MFI for this antigen. 

This could explain why Gooding et al. observed a higher expression of 

CD38 (Gooding et al. 1999). 
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The data in Figure 3.4 implies that U266B1 expressed the highest 

levels of CD138, H929 and RPMI8226 expressed intermediate levels, and 

JJN3 expressed the lowest levels of CD138. Although it can be concluded 

that CD138 expression was heterogeneous in these MM cell lines, the 

expression of this cell surface marker was relatively high in all cell lines. 

This is in slight contrast to previous data in which RPMI8226 was the cell 

line that expressed the most CD138 (Gooding et al. 1999; Ikeda et al. 2009). 

Moreover, it was suggested that the expression in JJN3 was more similar to 

that of RPMI8226 and H929 (Gooding et al. 1999). This difference may be 

the result of the gating used for measuring CD138 expression in JJN3 

because it can be seen in Figure 3.4A that small sub-populations of cells are 

present with a lower level of CD138. When this is considered within the 

average MFI of CD138, it may lower the overall expression. The large error 

bars displayed alongside the data in Figure 3.4 also suggests that the level 

of CD138 expression in the cell lines was variable. CD138 is easily shed 

from the surface of MM cells and this may explain the variability in 

expression within an individual cell line (Jourdan et al. 1998; Yang et al. 

2002; Ikeda et al. 2009).  

In this thesis, the RPMI8226 cell line was the only MM cell line 

analysed that expressed a relatively high level of CD40. H929, U266B1 and 

JJN3 also expressed a lower level of CD40, but only H929 and JJN3 were 

significantly different to unstained control (p < 0.01, multiples t test). In 

keeping with these findings, RPMI8226 was previously shown to express 

relatively high levels of CD40 while U266B1 was shown to express a much 

lower level of this antigen (Tong et al. 1994; Fernandes et al. 2009).  

In conclusion, the expression of CD38, CD138 and CD40 were found 

to be heterogeneous among the myeloma cell lines H929, U266B1, 

RPMI8226 and JJN3. Therefore, as CD38 (Kang et al. 2006; Tirumurugaan et 

al. 2008) and CD40 (Hinz et al. 2001) are both NF-κB regulated target genes, 

heterogeneous expression off these cell surface markers may suggest that 

NF-κB activity may also be differentially regulated in each MM cell line.  
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Consequently, baseline NF-κB activity was measured in each MM 

cell line and the NF-κB activity within the myeloma cell lines was also 

found to be heterogeneous. Based on EMSA and ELISA data, H929 

possessed the lowest level of NF-κB activity, JJN3 was found to have the 

highest level of NF-κB activity, and both U266B1 and RPMI8226 possessed 

an intermediate level. These observations correlate with the genetic 

abnormalities associated with the respective cell lines and support previous 

findings (Annunziata et al. 2007; Keats et al. 2007; Demchenko et al. 2010) 

but contrast with previous EMSA data that showed U266B1 to have higher 

NF-κB DNA binding activity than RPMI8226 (Hideshima et al. 2006; 

Hideshima et al. 2009). 

The results from the ELISAs confirm that the MM cell lines all 

possess constitutive NF-κB activity that arises as a combination of both the 

canonical and non-canonical NF-κB signalling pathways. This is in 

accordance with previously published data where it was reported that 

U266B1, RPMI8226 and JJN3 all rely on both NF-κB signalling pathways 

(Annunziata et al. 2007; Keats et al. 2007; Hideshima et al. 2009; Demchenko 

et al. 2010).  

However, the ELISAs may not have been an appropriate tool to 

quantify the baseline levels of the NF-κB subunits p52, RelB and c-Rel in the 

MM cell lines. This is because their quantification in these experiments 

relied on using a p65 recombinant protein as a protein standard since a 

specific recombinant protein was not available for p52, RelB or c-Rel. For 

this reason, the levels of these subunits measured can only be assumed to be 

approximate quantities rather than specific quantities of each subunit. The 

ELISA’s also showed variability between individual experiments and this 

was mainly a consequence of the quality of the standard curves generated 

from the p65 or p50 recombinant proteins for each experiment. As a result, 

this may add further error to the exact NF-κB subunit levels quantified in 

the ELISA’s.  
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Furthermore, there may potentially be issues with the specificity of 

the antibodies provided in the NF-κB ELISA kits, as well as issues with the 

binding of specific NF-κB subunit dimers to the immobilised 

oligonucleotide. For these reasons, it has been discussed that the ELISA kits 

may be missing p52 homodimer binding (personal communication with 

Professor Neil Perkins). Consequently, there is a possibility that the ELISA’s 

used may inaccurately under quantify the levels of some NF-κB subunits, 

especially those derived from the non-canonical pathway. 

For the reasons discussed above, western blots could have been used 

in the place of the EMSA and ELISA techniques to more accurately 

determine the level of canonical and non-canonical pathway signalling in 

the MM cell line H929, U266B1, RPMI8226 and JJN3. Overall, with the use 

of the right combination of antibodies, this technique could have provided 

in depth information regarding the specific NF-κB pathway processing in 

each of the four MM cell lines. Antibodies targeting phosphorylated p100, 

p100 and p52 proteins could have provided information regarding non-

canonical processing, whereas antibodies specific to IκBα, p65 and 

phosphorylated IκBα proteins could have given information on canonical 

pathway processing. 

Finally, the main conclusion that can be drawn from the cell cycle, 

phenotype and NF-κB activity characterisation is that the MM cell lines 

H929, U266B1, RPMI8226 and JJN3 reflect the heterogeneity that is 

commonly observed in multiple myeloma. 

3.4.2. Manipulation of myeloma cell lines with CD40L stimulation 
The interaction of CD40 on malignant plasma cells with CD40L 

within the bone marrow microenvironment is an important interaction that 

can promote MM cell survival mainly through activation of non-canonical 

NF-κB signalling (Coope et al. 2002; Tai et al. 2003; Hauer et al. 2005). In 

addition, CD38 is a NF-κB regulated target gene so an increase in NF-κB 

activity through CD40L stimulation may alter the myeloma phenotype 

(Kang et al. 2006; Tirumurugaan et al. 2008). Therefore, the cell surface 
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phenotype and NF-κB activity was investigated in each MM cell line 

following co-culture of the MM cells with CD40L expressing fibroblasts.  

The RPMI8226 cell line was found to possess the highest level of 

CD40 cell surface expression whereas the H929 cell line had minimal CD40 

expression. For this reason, it was predicted that the RPMI8226 and H929 

MM cell lines were more likely to respond to CD40L stimulation in terms of 

cell surface CD38 and CD138 expression and NF-κB activity compared to 

the U266B1 and JJN3 cell lines. Moreover, previous work has shown that 

CD40L stimulation increased CD38 expression in CLL B cells (Willimott et 

al. 2007; Patten et al. 2008). In contrast, at 24h, CD40L stimulation did not 

significantly alter cell surface CD38 or CD138 expression in H929, U266B1, 

RPMI8226 and JJN3 cells relative to unstimulated cells. Although not 

significant, the H929 and RPMI8226 cell lines did experience a minor 

decrease in CD138 expression following 24h CD40L stimulation. However, 

as CD138 is easily shed from the surface of MM cells (Jourdan et al. 1998; 

Yang et al. 2002; Ikeda et al. 2009), it is possible that the force used to extract 

the MM cell lines from the CD40L transfected fibroblasts may have 

contributed to the minor decrease observed.  

Figure 3.10 showed that NF-κB activity was increased through CD40 

activation in the RPMI8226 cell line because the levels of all active NF-κB 

subunits were increased following 24h CD40L stimulation, with the most 

prominent increases seen in the p65 and RelB subunits (p = 0.02 and p = 

0.03, respectively). This indicates that CD40L stimulation is positively 

regulating NF-κB activity generated through both canonical and non-

canonical signalling. This effect was not mirrored in the H929 cell line 

following CD40L stimulation and the active NF-κB subunit levels remained 

unchanged. The phenotype characterisation showed that RPMI8226 cells 

possess significantly higher levels of CD40 cell surface expression compared 

to H929 cells. Therefore, this may explain why the RPMI8226 cell line was 

more susceptible to an increase in NF-κB subunit levels in response to CD40 

activation. 
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The results replicate previous findings that CD40 activation induced 

NF-κB activity generated through both the canonical and non-canonical 

signalling pathways (Coope et al. 2002; Tai et al. 2003; Hauer et al. 2005).  

In conclusion, only NF-κB activity was significantly altered as a 

consequence of CD40L stimulation in the CD40 expressing MM cell line 

RPMI8226.  

3.4.3. The use of the non-specific NF-κB inhibitor BAY 11-7082 in 
myeloma cell lines 

One of the main aims of this thesis was to explore the use of NF-κB 

inhibitors in MM. As a first step, the effect of a commercially available non-

specific NF-κB inhibitor, BAY 11-7082, was investigated in the myeloma cell 

lines. BAY 11-7082 has been shown to non-sepcifically inhibit NF-κB 

signalling by irreversibly inhibiting IκBα phosphorylation through the 

inhibition of IKK activation and this subsequently induced apoptosis in 

leukaemia cells (Pierce et al. 1997; Mori et al. 2002; Strickson et al. 2013). 

Therefore, as all the myeloma cell lines were shown to display constitutive 

NF-κB activity, it was predicted that inhibition of NF-κB would induce 

apoptosis but that the sensitivity of the MM cell lines may be 

heterogeneous. 

The cytotoxicity of BAY 11-7082 was first investigated and it was 

found to induce dose-dependent cytotoxicity in all four MM cell lines 

tested, which replicates the previous studies showing that BAY 11-7082 was 

cytotoxic to MM cell lines (Dai et al. 2004b; Rauert-Wunderlich et al. 2013). 

As predicted, sensitivity to the NF-κB inhibitor varied among the cell lines. 

H929 was the most sensitive cell line to apoptosis induced by BAY 11-7082 

and JJN3 was the most resistant cell line. U266B1 and RPMI8226 both 

displayed intermediate sensitivity to the agent but U266B1 showed 

sensitivity more similar to that of H929 whereas RPMI8226 was almost as 

resistant as JJN3.  

The pattern observed in cytotoxicity inversely correlated with the 

level of constitutive NF-κB activity in each MM cell line. For example, JJN3 
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possessed the most NF-κB activity but was the most resistant myeloma cell 

line to BAY 11-7082 induced apoptosis. An explanation for this could relate 

to the function of NF-κB because the transcription factor regulates genes 

involved in anti-apoptosis and drug resistance (Gilmore 2007; Demchenko a 

Kuehl 2010). Therefore, cells with more NF-κB activity may be able to resist 

the inhibition caused by BAY 11-7082. However, this is contrast with other 

published data that suggests the inverse in which MM cell lines with a 

higher level of baseline activity of p65 and p52 subunits were more sensitive 

to apoptosis induced by IKK inhibition, although this was specific to IKKβ 

inhibition (Annunziata et al. 2007). As a result, Annunziata et al. reported 

that the JJN3 cell line was more sensitive to apoptosis induced through 

IKKβ inhibition when compared to the H929 cell line. 

The correlation between apoptosis and the level of NF-κB inhibition 

by BAY 11-7082 was then investigated in the MM cell line RPMI8226, a MM 

cell line that possessed a comparatively intermediate NF-κB activity and a 

demonstrated a relatively intermediate sensitivity to BAY 11-7082. NF-κB 

subunit ELISA assays showed that p65, p50, p52, RelB and c-Rel active NF-

κB subunits experienced a significant dose-dependent decrease in response 

to 10µM BAY 11-7082 (p = 0.005, p = 0.003, p < 0.001, p = 0.003 and p = 0.04, 

respectively). The largest fold changes were observed for p50 and RelB 

subunits, which are canonical and non-canonical associated NF-κB subunits, 

respectively. This suggests that BAY 11-7082 regulates NF-κB subunits 

involved in both NF-κB pathways and implies that BAY 11-7082 is an 

inhibitor of both canonical and non-canonical signalling pathways, which 

replicates previous findings (Jayandharan et al. 2011; Rauert-Wunderlich et 

al. 2013). As BAY 11-7082 is predicted to be an inhibitor of IKK activation, 

this would suggest that it is capable of inhibiting both IKKα and IKKβ 

activation, which would explain the dual inhibition observed for canonical 

and non-canonical NF-κB activity.  

Moreover, Figure 3.15 shows that a highly significant negative 

correlation existed between NF-κB inhibition and the induction of apoptosis 

in response to BAY 11-7082. This suggests that inhibition of NF-κB activity 
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generated as a consequence of both canonical and non-canonical pathway 

signalling may contribute to the apoptotic effect induced by BAY 11-7082 in 

the MM cell lines. However, several studies have shown that BAY 11-7082 

possesses other molecular targets and it is a possibility that this is 

contributing to the cytotoxicity of BAY 11-7082 in the MM cell lines (Lee et 

al. 2012; Rauert-Wunderlich et al. 2013; Strickson et al. 2013). For example, 

Stickson et al. 2013 showed that BAY 11-7082 is not a direct inhibitor of 

IKKα and IKKβ, but instead inhibits their activation by targeting 

components of the ubiquitin system, such as TRAF6, to prevent the 

formation of K63-pUb and linear-pUb chains. Moreover, as ubiquitination is 

involved in a wide range of signalling pathways, including proteasomal 

degradation and DNA damage, BAY 11-7082 inhibition of multiple 

ubiquitination events is more likely the cause of the concentration-

dependent apoptosis measured in the MM cell lines (Strickson et al. 2013).  
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Chapter 4 – Evaluation of a series of novel IKKα 
inhibitors for the treatment of multiple myeloma 

NF-κB signalling is generally described as occurring through two 

distinct pathways; the canonical and non-canonical NF-κB signalling 

pathways. The canonical pathway is mainly activated through IKKβ-mediated 

phosphorylation of the IκB proteins, which allows activated dimers of p65, 

p50 and c-Rel to translocate to the nucleus and then bind DNA κB elements 

(Adli et al. 2010). On the other hand, the non-canonical NF-κB pathway is 

mainly activated through NF-κB inducing kinase (NIK)-mediated 

phosphorylation of IKKα (Malinin et al. 1997; Ling et al. 1998). Activated IKKα 

then phosphorylates the precursor subunit p100, which leads to proteolytic 

processing of the p52 NF-κB subunit, which can form homo- or hetero-dimers 

with the RelB NF-κB subunit (Senftleben et al. 2001; Solan et al. 2002). The 

activated NF-κB p52/RelB dimers then translocate to the nucleus where they 

bind DNA κB elements to induce a transcriptional response.  

Several studies have documented that MM tumours and cell lines 

possess a large number of genetic aberrations that lead to constitutive NF-κB 

activity, preferentially through activation of the non-canonical NF-κB 

pathway (Annunziata et al. 2007; Keats et al. 2007; Demchenko et al. 2010). 

Furthermore, constitutive RelB activation is observed in approximately 40% of 

MM cases and the phenotypic advantage of this has been found to be to 

promote MM cell survival by increasing the expression of anti-apoptotic NF-

κB target genes such as cIAP2 (Cormier et al. 2013). Therefore, the dependence 

of MM cells on the non-canonical NF-κB pathway indicates its importance in 

MM disease progression and that inhibition of this NF-κB pathway may 

provide a promising therapeutic option in MM.  

The NF-κB pathways can be specifically inhibited at several points; 

prevention of IκB protein degradation, inhibition of IKK activation and 

blockade of NF-κB DNA-binding (Godwin et al. 2013). Due to the crucial roles 

that IKK plays in the regulation of NF-κB activity, both through canonical and 

non-canonical pathway activation, inhibition of IKK activation may provide a 

promising therapeutic strategy.  
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Multiple IKKβ inhibitors have been evaluated in MM and these have 

been found to induce a number of anti-tumour effects, mainly through 

canonical NF-κB pathway inhibition. These include inhibiting cell 

proliferation and cell growth, inducing apoptosis and cell cycle arrest, 

overcoming IL-6 medicated cell growth and drug resistance, and down-

regulating a number of NF-κB canonical pathway regulated genes, including 

IκBα, Bcl-2 and cyclin D1 (Hideshima et al. 2002; Bharti et al. 2003; Hideshima 

et al. 2006; Annunziata et al. 2007; Jourdan et al. 2007; Hideshima et al. 2009).  

However, concerns over the safety profile of IKKβ inhibitors have 

prevented further development of these specific agents in MM. For example, 

complete ablation of the canonical pathway activity through IKKβ inhibition 

is likely to impair the function of the adaptive and innate immune system, 

due to the complexity through which NF-κB signalling can regulate 

immunity, and may also lead to IL-1β induced neutrophilia and inflammation 

(Greten et al. 2007; Vallabhapurapu a Karin 2009; Hsu et al. 2011). In addition, 

hepatic toxicity is a possible adverse event of IKKβ inhibitors because IKKβ 

knockout mouse models indicate that the embryonic lethality of this 

phenotype is a result of hepatocyte apoptosis (Li et al. 1999b; Tanaka et al. 

1999).  

Specific inhibitors of IKKα may be beneficial in overcoming some of the 

adverse events that are associated with canonical pathway inhibition 

(DiDonato et al. 2012). IKKα mainly governs the activation of the non-

canonical NF-κB pathway so specific pharmacological inhibitors of IKKα 

would be expected to inhibit non-canonical NF-κB pathway activation in MM 

as opposed to canonical pathway activation (Senftleben et al. 2001; Solan et al. 

2002). 

In mice, deletion of IKKα induces perinatal lethality due to defects in 

skeletal and epidermal development, although this has been shown to be 

independent of NF-κB activation (Li et al. 1999a; Gerondakis et al. 2006). 

Replacing the kinase activation serine residues in IKKα with alanine residues 

to prevent the activation of IKKα, can overcome lethality by still allowing 
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expression of the protein itself (Cao et al. 2001). This produces a phenotype 

that is similar to that which arises in the absence of NIK or nfkb2, which 

encodes the p100 protein, in that defects are present in lymphoid 

organogenesis, germinal centre formation and generation of mature follicular 

dendritic cells (Senftleben et al. 2001; Bonizzi et al. 2004; Gerondakis et al. 

2006). Moreover, these effects have been shown to arise because these 

processes are regulated by p52/RelB dimers through non-canonical NF-κB 

pathway activation (Bonizzi et al. 2004). In B-cells, IKKα has been shown to be 

essential for normal B-cell development and immature B-cells experience 

increased turnover due to apoptosis (Kaisho et al. 2001). The apoptosis has 

been demonstrated to be a consequence of decreased transcription of the anti-

apoptotic protein Bcl-2 through ablation of BAFF-induced NF-κB non-

canonical activation (Claudio et al. 2002a). Overall, this indicates a role for the 

non-canonical pathway in B-cell proliferation, maturation and apoptosis. In 

addition, dual IKK inhibition has been shown induce a more potent cytotoxic 

effect in MM cells when compared to IKKβ inhibition alone, which indicates 

that non-canonical pathway inhibition may be contributing to their overall 

apoptotic effect (Rauert-Wunderlich et al. 2013).  

Therefore, my hypothesis was that the use of a novel IKKα inhibitor 

may represent a promising strategy for the treatment of MM. The specific 

aims of this chapter were to evaluate a series of pharmacological agents 

designed to inhibit IKKα in terms of their cytotoxicity, regulation of Mcl-1 

expression and effect on NF-κB activity in the MM cell line, RPMI8226.  

 

4.1. The kinase inhibitory profiles of the IKKα inhibitory agents 

Prof. Simon MacKay at the University of Strathclyde kindly provided 

nine novel IKKα inhibitory pharmacological agents and these agents will be 

referred to from here on as the SU series of compounds. Table 4.1 shows the 

predicted inhibitory concentrations that induce 50% reduced function (IC50) 

in the kinases IKKα, IKKβ and CDK9 for each of the nine SU compounds. 

Table 4.1 shows that each SU compound possesses a different kinase 
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inhibitory profile. SU1257 has a relatively unique inhibitory profile because it 

has been designed to be a structural analogue of the SU series but the 

compound does not possess IKKα, IKKβ or CDK9 inhibitory properties. For 

this reason, SU1257 represents an ideal control compound throughout the 

evaluation of the other SU series compounds. 

Table 4.1 The predicted mechanistic data for the IKKα inhibitory SU series. 
The IC50 value for the kinases IKKα, IKKβ and CDK9 for each of the nine SU 
compounds. A summary for each compound is also provided. 

 IKKα IKKβ CDK9 Summary 

SU1257 - - - 
A structural analogue of the other 
SU compounds but without IKKα 
or IKKβ properties. 

SU1053 28nM 4190nM ~1000nM 
>140 times preferential inhibition 
of IKKα over IKKβ. A weak 
inhibitor of CDK9. 

SU1261 10nM 680nM 16nM 
>65 times preferential inhibition of 
IKKα over IKKβ. A potent inhibitor 
of CDK9.  

SU1349 16nM 3352nM 13nM 
An IKKα inhibitor with some weak 
inhibition of IKKβ. A potent 
inhibitor of CDK9. 

SU1361 8nM 964nM 20nM 
A dual IKKα and CDK9 inhibitor 
with weak IKKβ inhibitory 
properties 

SU1365 26nM 1500nM ~20nM 
A dual IKKα and CDK9 inhibitor 
with weak IKKβ inhibitory 
properties 

SU1372 7nM 587nM 18nM 
>80 times preferential inhibition of 
IKKα over IKKβ. A potent inhibitor 
of CDK9. 

SU1411 ~10nM ~500nM ~700nM 
50 times preferential inhibition of 
IKKα over IKKβ. A weak inhibitor 
of CDK9. 

SU1438 10nM 511nM ~700nM 
>50 times preferential inhibition of 
IKKα over IKKβ. A weak inhibitor 
of CDK9. 

 

Table 4.1 shows that SU1349 was the most potent inhibitor of CDK9 

(IC50 = 13nM) and a potent inhibitor of IKKα (IC50 = 16nM). Similarly, SU1372 

was the most potent IKKα inhibitor (IC50 = 7nM) but was also a relatively 

potent inhibitor of CDK9 (IC50 = 18nM). The compounds SU1261, SU1361 and 

SU1365 possessed comparable kinase inhibitory profiles. For example, all 

three compounds were potent inhibitors of IKKα (10nM, 8nM and 26nM, 
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respectively) and CDK9 (16nM, 20nM and ~20nM, respectively), but 

demonstrated weak inhibitory action against IKKβ (680nM, 964nM and 

1500nM, respectively). SU1411 and SU1438 were both shown to be 

preferential IKKα inhibitors (IC50 = ~10nM) with weak inhibition of IKKβ 

(IC50 = ~500nM and IC50 = 511nM, respectively) and CDK9 (IC50 = ~700nM). 

Moreover, Table 4.1 shows that SU1053 was a weak inhibitor of both the 

IKKβ (IC50 = 4190nM) and CDK9 (IC50 = ~1000nM) kinases but was a 

relatively potent inhibitor of IKKα (IC50 =28nM). 

 

4.2. Cytotoxicity of the SU series of IKKα inhibitory agents in the 
MM cell line RPMI8226 

The high frequency of genetic abnormalities in MM that induce 

constitutive NF-κB activation, mainly through abnormalities affecting the 

non-canonical pathway, indicates a role for the non-canonical NF-κB 

signalling pathway in MM cell survival and disease progression (Annunziata 

et al. 2007; Keats et al. 2007; Demchenko et al. 2010).  Moreover, it is predicted 

that the apoptotic effect induced by dual IKK inhibitors is a consequence of 

both canonical and non-canonical pathway inhibition (Rauert-Wunderlich et 

al. 2013).Therefore, the cytotoxicity of the nine novel IKKα inhibitors was 

compared in the RPMI8226 MM cell line. The RPMI8226 cell line was chosen 

as the MM cell line to investigate the SU series in because this MM cell line 

was found to possess an intermediate level of baseline NF-κB activity as a 

consequence of an inactivating TRAF3 mutation (Annunziata et al. 2007; 

Keats et al. 2007; Demchenko et al. 2010). Similarly, the RPMI8226 cell line 

was found to be intermediately sensitive to cytotoxicity induced by the non-

specific NF-κB inhibitor BAY 11-7082 when compared to the H929, U266B1 

and JJN3 MM cell lines.  

RPMI8226 cells were incubated with increasing concentrations of each 

SU compound ranging from 0.5µM to 20µM. At 48h, the cells were harvested 

and washed in PBS before being labelled with Annexin V-FITC and 

propidium iodide (PI). The labelled cells were then analysed using flow 
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cytometry to determine the percentage of apoptosis (Annexin V+/PI- + 

Annexin V+/PI+ + Annexin V-/PI+) occurring at each concentration. Figure 

4.1 shows the cytotoxicity of each IKKα inhibitory agent at 48h in the 

RPMI8226 cell line and the results shown are collated from two independent 

experiments. 

Figure 4.1 shows that SU1257, SU1053 and SU1372 were the least 

cytotoxic compounds at 48h in the RPMI8226 cells and it was not possible to 

interpolate an accurate LD50 value from the data. For this reason, the LD50 

value were described as >20µM. In addition, Figure 4.1 shows that the 

remaining six IKKα inhibitory agents induced cytotoxicity in a concentration-

dependent manner in RPMI8226 cells at 48h. Comparison of the LD50 values 

for each SU compound indicates that SU1349 was the most cytotoxic agent 

(LD50 = 1.15µM) whereas SU1261 was the least cytotoxic of these agents (LD50 

= 3.92µM). SU1361 and SU1365 both induce a relatively similar level of 

apoptosis in RPMI8226 cells at 48h, as evidenced by their comparable LD50 

values (LD50 = 2.25µM and LD50 = 1.96µM, respectively). Although Table 4.1 

indicates that SU1438 and SU1411 both possess similar kinase profiles in 

relation to IKKα, IKKβ and CDK9, Figure 4.1 shows that SU1411 was 

comparatively more cytotoxic than SU1438 in the RPMI8226 MM cell line at 

48h (LD50 = 3.60µM and LD50 = 2.26µM, respectively). 

Based on the kinase inhibitory data in Table 4.1 and the initial 

cytotoxicity screening profiles in Figure 4.1, six of the nine SU compounds 

were chosen for further characterisation concerning cytotoxicity, Mcl-1 

expression and NF-κB activity. The chosen SU compounds were SU1257, 

SU1053, SU1349, SU1372, SU1411 and SU1438. SU1261, SU1361 and SU1365 

were omitted from further investigation due to Table 4.1 suggesting that they 

each had a kinase inhibitory profile that was comparable to SU1349 and 

SU1372. For example, these compounds were potent inhibitors of CDK9 and 

IKKα, but weak inhibitors of IKKβ. Moreover, SU1349 was the most potent 

inhibitor of CDK9 whereas SU1372 was conversely the most potent inhibitor 

of IKKα. 
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Therefore, the cytotoxicity of SU1257, SU1053, SU1349, SU1372, 

SU1411 and SU1438 in the RPMI8226 cell line was further investigated to 

allow the collated results to include a total of four independent experiments. 

This would allow a more robust calculation of the LD50 values as well as the 

95% CI. Figure 4.2 shows the cytotoxicity profiles of each of the six chosen 

IKKα inhibitory agents at 48h in the RPMI8226 cell line and the results now 

represent four independent experiments. 

Figure 4.2 indicates that it was still not possible to calculate accurate 

LD50 values for the least cytotoxic SU compounds SU1257, SU1053 and 

SU1372 and their predicted LD50 values were designed to be >20µM. 

Comparison of the remaining three SU compounds’ LD50 values showed that 

SU1349 was the most cytotoxic compound in the RPMI8226 cells at 48h (LD50 

= 1.92µM, 95% CI [1.32µM – 2.89µM]). Furthermore, SU1411 was 

comparatively more cytotoxic than SU1438, despite the similarity in their 

kinase inhibitory profiles (LD50 = 3.15µM, 95% CI [2.87µM – 3.46µM] and 

LD50 = 5.56µM, 95% CI [4.85µM – 6.38µM], respectively). The cytotoxicity of 

the three most cytotoxic SU series compounds in RPMI8226 cells at 48h is 

summarised in Figure 4.3. Figure 4.3 shows the mean LD50 values alongside 

95% CI generated through Annexin-V/PI positivity (n = 4). In addition, an 

unpaired one-tailed t-test was performed on the data to investigate the 

statistical difference between the LD50 values calculated for each SU series 

compound in the RPMI8226 cell line. 

Figure 4.3 shows that the SU1349 and SU1411 compounds did not 

induce significantly different cytotoxic effects in the RPMI8226 cell line (p = 

0.821). On the other hand, the LD50 value interpolated for SU1438 was 

significantly higher than the LD50 value interpolated for SU1349 (p = 0.026) in 

the RPMI8226 cell line. Conversely, the LD50 value interpolated for SU1438 

was not significantly different from the LD50 value interpolated for SU1411 in 

RPMI8226 cells (p = 0.066). In summary, the cytotoxicity of SU1349 was 

significantly greater than SU1438 but the cytotoxicity of SU1411 was 

relatively similar to both SU1349 and SU1418 in RPMI8226 cells. 
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Figure 4.2 The cytotoxicity profiles of SU1257, SU1053, SU1349, SU1372, SU1411 
and SU1438 at 48h in RPMI8226 cells. 
To fully investigate the cytotoxicity profiles of each SU compound in RPMI8226 cells 
RPMI8226 cells were incubated with a more specific range of concentrations of SU 
compounds. At 48h, the percentage of apoptosis was measured using Annexin V/PI 
positivity on an Accuri C6 flow cytometer. The percentage of apoptotic cells at each 
concentration of SU compound was calculated and dose-response curves were 
constructed using Graphpad Prim 6.0. LD50 values were interpolated and are reported 
for each SU compound alongside 95% CI. Error bars represent mean ± SD, where n = 
4. 
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Figure 4.3 A summary of the relative cytotoxicity of SU1349, SU1411 and SU1438 in 
RPMI8226 cells at 48h. 
The mean LD50 values generated through Annexin V/PI positivity are shown for 
increasing concentrations of SU1349, SU1411 and SU1438 in RPMI8226 cells at 48h. 
The results shown were interpolated using the dose-response curves in Figure 4.2 
using Graphpad Prism 6.0. The values reported represent mean LD50 values ± 95% CI 
(µM) where n = 4. A one-way ANOVA followed by a Tukey’s multiple comparison 
test was performed using Graphpad Prism 6.0 software to investigate the significant 
difference between the LD50 values calculated for the indicated SU series compounds 
in the RPMI8226 cell line. 
	  
	  
	  
4.3. Regulation of Mcl-1 expression in the MM cell line 

RPMI8226 by the SU series of IKKα inhibitory agents 

In myeloma cells, Mcl-1 expression plays a critical role in maintaining 

cell viability (Derenne et al. 2002; Zhang et al. 2002). Furthermore, high 

expression of Mcl-1 in cancer cell lines has been linked to constitutively high 

NF-κB activity (Liu et al. 2014). In addition, previous studies have 

demonstrated that inhibition of NF-κB activity is accompanied by the down 

regulation of Mcl-1 expression in MM cell lines and may precede the 

activation of apoptotic pathways (Meinel et al. 2010). Therefore, Mcl-1 

expression was quantified in the RPMI8226 cell line following 4h incubation 

(prior to any evidence of apoptosis induction) with increasing concentrations 

of each SU compound to investigate whether IKKα inhibition modulated the 

expression of Mcl-1. 
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RPMI8226 cells were treated separately with each of the IKKα 

inhibitory agents SU1257, SU1053, SU1349, SU1372, SU1411 and SU1438 at 

concentrations of 0.5µM, 1µM, 2.5µM and 5µM. At 4h, cells were harvested 

and then fixed and permeabilised before staining with an anti-Mcl-1-IgG1 

antibody (Santa Cruz Biotechnology) followed by secondary labelling with a 

goat anti-mouse IgG1-FITC antibody (Santa Cruz Biotechnology). The stained 

RPMI8226 cells were then analysed using flow cytometry to quantify the 

intracellular Mcl-1 expression in cells treated with each concentration of SU 

compound. 

A gating strategy was applied to the collected flow cytometry data to 

ensure that only viable, single cells were analysed. The serially gated cell 

populations were then assessed for Mcl-1 expression (MFI values) at each 

concentration of each SU compound. Figure 4.4 shows the representative 

overlaid histograms for Mcl-1 expression in untreated RPMI8226 cells and 

RPMI8226 cells treated with a 5µM of each SU compound for 4h.  

Figure 4.4 shows that following 4h incubation with 5µM SU1257, Mcl-1 

expression was not significantly altered in RPMI8226 cells relative to 

untreated cells. In contrast, the other SU compounds induced a decrease in 

Mcl-1 expression at 4h in RPMI8226 cells. Figure 4.4 shows that when used at 

a concentration of 5µM for 4h, SU1372 induced the greatest overall decrease in 

Mcl-1 expression in RPMI8226 cells.  

To further investigate the regulation of Mcl-1 expression by the 

selected SU compounds, the Mcl-1-FITC MFI at each concentration of each 

IKKα inhibitor was determined and then expressed as a percentage of the 

untreated controls. Figure 4.5 shows the collated data from three separate 

experiments for RPMI8226 cells, outlining the dose-dependent regulation of 

Mcl-1 expression by the agents SU1257, SU1053, SU1349, SU1372, SU1411 and 

SU1438 at 4h.  

Figure 4.5 shows that all six IKKα inhibitory agents analysed did not 

induce a significant decrease in Mcl-1 expression at 5µM relative to untreated 

cells following 4h treatment in RPMI8226 cells.  

120



	  

	  

	  
 
Figure 4.4 Representative overlay histograms of Mcl-1 expression in RPMI8226 cells 
at 4h after exposure to SU1257, SU1053, SU1349, SU1372, SU1411 and SU1438. 
Mcl-1 expression was investigated in RPMI8226 cells after treatment with increasing 
concentrations of each of SU compound. At 4h, intracellular Mcl-1 expression was 
investigated by staining cells with an anti-Mcl-1-FITC conjugated antibody and the 
average MFI was measured by flow cytometry. To gain an accurate MFI for each cell 
surface marker, gating was applied to gate viable myeloma cells (P1) and exclude any 
doublets (P2). The resultant gating was used to create overlay histograms from which 
the MFI of Mcl-1 expression at each concentration could be determined. A 
representative overlay histogram is shown for each SU compound in RPMI8226 cells 
after 4h (untreated = n, 5µM SU compound = n). 
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Figure 4.5 indicates that 5µM SU1053 and SU1372 induced the largest 

average decrease in Mcl-1 expression compared to untreated RPMI8226 cells 

(76.4% ± 16.3% and 75.6% ± 7.4%, respectively) relative to the other SU agents, 

although the decrease in Mcl-1 expression was not significant for either agent 

(p = 0.24 and p = 0.12, respectively). For both SU1053 and SU1372, Figure 4.5 

shows that this was accompanied by a dose-dependent decrease in Mcl-1 

expression in RPMI8226 cells at 4h from concentrations of 1µM onwards, with 

respect to untreated RPMI8226 cells.  

In addition, increasing concentrations of SU1349 induced a dose-

dependent decrease in Mcl-1 expression in RPMI8226 cells at 4h from 

concentrations of 1µM onwards, that plateaued following exposure to 2.5µM 

and 5µM SU1349 (78.5% ± 7.8% and 80.4% ± 10.1%, respectively) when 

compared to untreated cells. However, the decrease in Mcl-1 expression 

induced by 5 µM SU1349 compared to untreated RPMI8226 cells was not 

significant (p = 0.18).  

Figure 4.5 also shows that 5µM SU1257, SU1411 and SU1438 did not 

significantly (p = 0.40, p = 0.40 and p = 0.33, respectively) alter Mcl-1 

expression at 4h compared to untreated RPMI8226 cells (93.3% ± 10.8%, 94.1% 

± 11.8% and 88.2% ± 6.6%, respectively) and the three agents did not induce a 

dose-dependent reduction in Mcl-1 expression.  

Overall, Figure 4.5 highlighted the potential inconsistency between the 

dose-dependent decrease and maximum decrease in normalised Mcl-1 

expression at 5µM, and the calculated p values, especially for the SU 

compounds SU1349, SU1372 and SU1053.  

In conclusion, Mcl-1 expression was decreased in a dose-dependent 

manner by SU1349 and SU1372 at 4h in RPMI8226 cells. In addition, SU1053, 

SU1411 and SU1438 induced a relatively weaker dose-dependent decrease in 

Mcl-1 expression in RPMI8226 cells whereas SU1257 did not affect Mcl-1 

expression. 
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Figure 4.5 The dose-dependent regulation of Mcl-1 expression in RPMI8226 cells at 
4h following treatment with SU1257, SU1053, SU1349, SU1372, SU1411 and SU1438. 
Mcl-1 expression was investigated in RPMI8226 cells after treatment with increasing 
concentrations of each of SU compound ranging from 0µM to 5µM. At 4h, intracellular 
Mcl-1 expression was investigated by staining RPMI8226 cells with an anti-Mcl-1-FITC 
conjugated antibody following fixation and permeabilisation. The average Mcl-1-FITC 
MFI at each concentration of SU compound was measured using an Accuri flow 
cytometer and normalised to the untreated control. A one-tailed unpaired t-test was 
performed using Graphpad Prism 6.0 software to investigate the statistical significance 
values between 0µM to 5µM for each SU compound in RPMI8226 cells at 4h (n = 3, 
duplicates averaged). The results are reported for each graph (NS = not significant, p > 
0.05). Error bars represent mean ± SD where n = 3, experimental duplicates plotted.  
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4.4. Inhibition of NF-κB activity in the MM cell line RPMI8226 by 

the SU series of IKKα inhibitory agents 

5. The association between cytotoxicity and the inhibition of 

constitutive NF-κB activity induced by the six SU compounds was 

investigated in more detail using an ELISA-based assay to detect the active 

NF-κB subunits p65, p50, p52 and RelB in nuclear extracts. These four 

subunits were selected to provide information on whether IKKα inhibition 

was effecting the canonical and/or the non-canonical NF-κB signalling 

pathway(s) in RPMI8226 cells. 

6. RPMI8226 cells were incubated separately with each SU compound: 

SU1257 SU1053, SU1349, SU1372, SU1411 and SU1438, at concentrations of 

0µM, 1µM, 2.5µM and 5µM. At 4h, cells were harvested and nuclear extracts 

generated. 1µg of RPMI8226 nuclear extract protein was assayed using the 

NF-κB family ELISA kit (Active Motif), as per the manufacturer’s instructions. 

Standard curves were generated alongside the assay using known quantities 

of recombinant p65 protein (r2 > 0.99) and recombinant p50 protein (r2 > 0.96) 

to allow NF-κB subunit quantification in nanograms per microgram of 

nuclear extract protein.  

7. Figures 4.7, 4.8, 4.9, 4.10, 4.11 and 4.12 show the quantities of active 

p65, p50, p52 and RelB NF-κB subunit proteins in the nucleus of RPMI8226 

cells following 4h treatment with increasing concentrations of SU1257, 

SU1053, SU1349, SU1372, SU1411 and SU1438, respectively. For each Figure, 

the data shown consists of the collated data from three separate experiments 

where the individual nuclear extract samples were assayed in duplicate.  

4.4.1. Inhibition of NF-κB activity in RPMI8226 cells by SU1257 
Figure 4.6 shows that 5µM SU1257 significantly decreased the levels 

of p65 (p = 0.034) in the nuclear extracts of RPMI8226 cells relative to the 

untreated control samples. Figure 4.6 also shows that this was accompanied 

by a dose-dependent decrease in active p65 protein. 
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Conversely, Figure 4.6 demonstrates that the p50, p52 and RelB NF-

κB subunits showed no significant decrease in nuclear protein levels 

following 4h with 5µM SU1257 relative to the untreated group (p = 0.053, p = 

0.128 and p = 0.144, respectively). However, all three NF-κB subunits 

appeared to show a dose-dependent decrease in active protein level. 

 
SU1257 

	   	  
	   	  

	   	  
	   	  
Figure 4.6 Effect of SU1257 on NF-κB activity in RPMI8226 MM cells at 4h. 
RPMI8226 cells were exposed to increasing concentrations of the SU compound 
SU1257 for 4h. RPMI8226 cells were then harvested and used to generate nuclear 
extract samples. The MM cell line was then assayed at 1µg/well of nuclear extract 
protein using ELISAs detecting the active NF-κB subunits p50, p65, p52 and RelB. A 
one-tailed unpaired t-test was performed using Graphpad Prism 6.0 software to 
investigate the statistical significance values between 0µM to 5µM for SU1257 in 
RPMI8226 cells for each NF-κB subunit (n = 3, duplicates averaged). The results are 
reported above the graph (NS = not significant, p > 0.05). Values reported are mean ± 
SD produced from duplicate measurements where n = 3, experimental duplicates 
shown.	  
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4.4.2. Inhibition of NF-κB activity in RPMI8226 cells by SU1053 
Figure 4.7 demonstrates that 5µM SU1053 significantly decreased the 

levels of p50, p52 and RelB in RPMI8226 cells relative to the untreated 

samples (p = 0.035, p = 0.007 and p = 0.016, respectively). As can be seen in 

Figure 4.7, SU1053 induced a dose-dependent inhibition of p50, p52 and 

RelB nuclear protein levels in RPMI8226 cells, although the dose-dependent 

decrease was relatively stronger for p52 activity following SU1053 

treatment. In contrast, Figure 4.7 shows that the level of nuclear p65 was not 

significantly different in RPMI8226 cells treated with SU1053 when 

compared to untreated controls (p = 0.305). 

4.4.3. Inhibition of NF-κB activity in RPMI8226 cells by SU1349 
Figure 4.8 shows that 5µM SU1349 significantly decreased the levels 

of active p65 (p = 0.024) and p52 (p = 0.021) in RPMI8226 cells relative to the 

untreated samples in a dose-dependent manner. Figure 4.8 also shows that 

the level of active p50 protein was significantly decreased following 

treatment with SU1349 (p = 0.038), although not in a dose-dependent 

manner, but instead the p50 level plateaued at concentrations of 1µM, 2.5µM 

and 5µM (0.54 ± 0.04ng/µg, 0.68 ± 0.01ng/µg and 0.61 ± 0.09ng/µg) 

compared to untreated RPMI8226 cells (1.04 ± 0.22ng/µg). Conversely, 

Figure 4.8 indicates that the average level of active RelB protein was 

increased by 5µM SU1349 in RPMI8226 cells relative to the untreated 

samples, although this was not significant (p = 0.111). However, this increase 

could be a result of one set of duplicate measurements skewing the overall 

average of RelB protein measured at 5µM SU1349. 
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Figure 4.7 Effect of SU1053 on NF-κB activity in RPMI8226 MM cells at 4h. 
RPMI8226 cells were exposed to increasing concentrations of the SU compound 
SU1053 for 4h. RPMI8226 cells were then harvested and used to generate nuclear 
extract samples. The MM cell line was then assayed at 1µg/well of nuclear extract 
protein using ELISAs detecting the active NF-κB subunits p50, p65, p52 and RelB. A 
one-tailed unpaired t-test was performed using Graphpad Prism 6.0 software to 
investigate the statistical significance values between 0µM to 5µM for SU1053 in 
RPMI8226 cells for each NF-κB subunit (n = 3, duplicates averaged). The results are 
reported above the graph (NS = not significant, p > 0.05). Values reported are mean ± 
SD produced from duplicate measurements where n = 3, experimental duplicates 
shown.	  
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Figure 4.8 Effect of SU1349 on NF-κB activity in RPMI8226 MM cells at 4h. 
RPMI8226 cells were exposed to increasing concentrations of the SU compound 
SU1349 for 4h. RPMI8226 cells were then harvested and used to generate nuclear 
extract samples. The MM cell line was then assayed at 1µg/well of nuclear extract 
protein using ELISAs detecting the active NF-κB subunits p50, p65, p52 and RelB. A 
one-tailed unpaired t-test was performed using Graphpad Prism 6.0 software to 
investigate the statistical significance values between 0µM to 5µM for SU1349 in 
RPMI8226 cells for each NF-κB subunit (n = 3, duplicates averaged). The results are 
reported above the graph (NS = not significant, p > 0.05). Values reported are mean ± 
SD produced from duplicate measurements where n = 3, experimental duplicates 
shown. 	  
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4.4.4. Inhibition of NF-κB activity in RPMI8226 cells by SU1372 
Figure 4.9 demonstrates that 5µM SU1372 significantly decreased the 

levels of p65, p50 and p52 in RPMI8226 cells relative to the untreated 

samples (p = 0.018, p = 0.023 and p = 0.049, respectively). For the active levels 

of p65 and p50 proteins in RPMI8226 cells, Figure 4.9 shows that there was a 

comparatively strong dose-dependent decrease. On the other hand, Figure 

4.9 demonstrates that 5µM SU1372 increased the amount of nuclear RelB 

protein in RPMI8226 cells relative to the untreated samples, although this 

was not significant (p = 0.059). The pattern shown suggests that although 

1µM SU1372 initially decreased RelB activity relative to the untreated 

sample (0.07 ± 0.04ng/µg compared to 0.11 ± 0.04ng/µg, respectively), a 

dose-dependent increase in nuclear RelB protein was observed with 

concentrations of 2.5µM and 5µM SU1372 (0.15 ± 0.07ng/µg and 0.19 ± 

0.05ng/µg, respectively). However, Figure 4.9 again shows that this may be 

due to one set of duplicate measurements at each concentration skewing the 

overall average of RelB protein measured at 5µM SU1372. 
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Figure 4.9 Effect of SU1372 on NF-κB activity in RPMI8226 MM cells at 4h. 
RPMI8226 cells were exposed to increasing concentrations of the SU compound 
SU1372 for 4h. RPMI8226 cells were then harvested and used to generate nuclear 
extract samples. The MM cell line was then assayed at 1µg/well of nuclear extract 
protein using ELISAs detecting the active NF-κB subunits p50, p65, p52 and RelB. A 
one-tailed unpaired t-test was performed using Graphpad Prism 6.0 software to 
investigate the statistical significance values between 0µM to 5µM for SU1372 in 
RPMI8226 cells for each NF-κB subunit (n = 3, duplicates averaged). The results are 
reported above the graph (NS = not significant, p > 0.05). Values reported are mean ± 
SD produced from duplicate measurements where n = 3, experimental duplicates 
shown.	  
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4.4.5. Inhibition of NF-κB activity in RPMI8226 cells by SU1411 
Figure 4.10 shows that 5µM SU1411 significantly decreased the levels 

of p65, p50 and p52 activity (p = 0.014, p = 0.014 and p = 0.015, respectively) 

in RPMI8226 cells relative to the untreated samples. For all three NF-κB 

subunits, Figure 4.10 shows that SU1411 induced a relatively strong dose-

dependent decrease in RPMI8226 cells.  

4. In Figure 4.10, the level of nuclear RelB protein was also decreased 

in a dose-dependent manner in RPMI8226 cells following 4h treatment with 

SU1411, although to a weaker extent than that observed for p65, p50 and p52 

activity. However, the decrease that SU1411 induced in RelB activity at 5µM 

was significantly different to the untreated level of nuclear RelB protein (p = 

0.039). 

4.4.6. Inhibition of NF-κB activity in RPMI8226 cells by SU1438 
Figure 4.11 demonstrates that 5µM SU1438 significantly decreased the 

levels of p65 and RelB activity in RPMI8226 cells when compared to 

untreated nuclear protein levels (p = 0.027 and p = 0.002, respectively). 

Moreover, both significant changes in p65 and RelB activity that were 

induced by 5µM SU1438 were accompanied by dose-dependent decreases.  

In contrast, the levels of active p50 and p52 subunit were not 

significantly altered by treatment for 4h with 5µM SU1438 when compared 

to untreated RPMI8226 cells (p =0.126 and p = 0.472, respectively). Figure 

4.11 shows that nuclear p50 protein was not dose-dependently decreased by 

SU1438, but instead the decrease plateaued following treatment with 1µM, 

2.5µM and 5µM (0.32 ± 0.12ng/µg, 0.34 ± 0.11ng/µg and 0.35 ± 0.17ng/µg, 

respectively) relative to untreated controls (0.54 ± 0.11ng/µg). Figure 4.11 

also shows that, although the level of active p52 subunit decreased following 

treatment with 1µM SU1438 when compared to the untreated control, the 

level of p52 activity then increased with 2.5µM and 5µM SU1438 (0.79 ± 

0.16ng/µg, 0.85 ± 0.15ng/µg, respectively).  
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Figure 4.10 Effect of SU1411 on NF-κB activity in RPMI8226 MM cells at 4h. 
RPMI8226 cells were exposed to increasing concentrations of the SU compound 
SU1411 for 4h. RPMI8226 cells were then harvested and used to generate nuclear 
extract samples. The MM cell line was then assayed at 1µg/well of nuclear extract 
protein using ELISAs detecting the active NF-κB subunits p50, p65, p52 and RelB. A 
one-tailed unpaired t-test was performed using Graphpad Prism 6.0 software to 
investigate the statistical significance values between 0µM to 5µM for SU1411 in 
RPMI8226 cells for each NF-κB subunit (n = 3, duplicates averaged). The results are 
reported above the graph (NS = not significant, p > 0.05). Values reported are mean ± 
SD produced from duplicate measurements where n = 3, experimental duplicates 
shown. 
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Figure 4.11 Effect of SU1438 on NF-κB activity in RPMI8226 MM cells at 4h. 
RPMI8226 cells were exposed to increasing concentrations of the SU compound 
SU1438 for 4h. RPMI8226 cells were then harvested and used to generate nuclear 
extract samples. The MM cell line was then assayed at 1µg/well of nuclear extract 
protein using ELISAs detecting the active NF-κB subunits p50, p65, p52 and RelB. A 
one-tailed unpaired t-test was performed using Graphpad Prism 6.0 software to 
investigate the statistical significance values between 0µM to 5µM for SU1438 in 
RPMI8226 cells for each NF-κB subunit (n = 3, duplicates averaged). The results are 
reported above the graph (NS = not significant, p > 0.05). Values reported are mean ± 
SD produced from duplicate measurements where n = 3, experimental duplicates 
shown.	  
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4.4.7. Summary of inhibition of NF-κB activity in RPMI8226 cells by 
the SU series of IKKα inhibitory agents as measured by ELISA 

Table 4.2 summarises the data presented in Figures 4.7-4.12, which 

showed the inhibition of NF-κB subunit activity induced by the IKKα 

inhibitory agents SU1257, SU1053, SU1349, SU1372, SU1411 and SU1438 at 

4h in RPMI8226 cells. As a result, Table 4.2 outlines the statistical 

significance between 5µM of each IKKα inhibitory agent and untreated 

sample for the active NF-κB subunits p65, p50, p52 and RelB and, if relevant, 

the general direction of the alteration in subunit activity. 

Table 4.2 shows that when used at a concentration of 5µM in 

RPMI8226 cells for 4h, five of the six selected IKKα inhibitory agents 

significantly decreased the levels of at least one NF-κB subunit classically 

associated with both the canonical and non-canonical NF-κB pathways. This 

indicates that the IKKα inhibitory agents SU1053, SU1349, SU1372, SU1411 

and SU1438 induced an inhibitory effect on both the canonical and non-

canonical NF-κB pathways.  

The only SU agent that did not induce significant regulation of 

canonical and non-canonical NF-κB pathway associated subunits was 

SU1257. This agent significantly decreased the activity of only the p65 NF-κB 

subunit, although this was only just within the boundary for significance (p 

= 0.04). This indicates that SU1257 did not significantly inhibit the non-

canonical NF-κB pathway, but may be inhibiting p65 mediated canonical 

pathway activity. 
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4.4.8. Inhibition of NF-κB activity in RPMI8226 cells by SU1257, 
SU1349 and SU1411 as measured by western blot analysis 

The association between cytotoxicity and the inhibition of 

constitutive NF-κB activity induced by the SU compounds SU1257, SU1349, 

and SU1411 was also briefly investigated using western blot analysis 

detecting the NF-κB proteins phosphorylated p100 (p-p100), total p100, 

IκBα, phosphorylated p65 (p-p65) and total p52. Theses proteins were 

detected to provide information on whether SU1257, SU1349 and SU1411 

were effecting the processing of canonical and/or the non-canonical NF-κB 

subunits in RPMI8226 cells. As IKKα is responsible for phosphorylating 

p100 to the active subunit p52, the level of p-p100, total p100 and total p52 

protein was analysed as an output of non-canonical NF-κB activity. 

Conversely, p-p65 and IκBα were measured to assess canonical pathway 

activity. IκBα is also known to be downstream gene product of NF-κB 

activity. 

RPMI8226 cells were incubated separately with each SU compound: 

SU1257, SU1349 and SU1411, at concentrations of 0µM, 1µM, 2.5µM and 

5µM. At 4h, cells were harvested and whole cell lysates were generated. 4µg 

of RPMI8226 whole cell lysate protein from each condition was assayed 

using western blot analysis. The levels of p-p100, total p100, p-p65, total p52 

and IκBα were evaluated in each sample. In all experiments, β-actin protein 

was assessed as a control. 

Figure 4.12 shows a representative western blot showing the 

quantities of active p-p100, total p100, p-p65, total p52 and IκBα NF-κB 

proteins in RPMI8226 cells following 4h treatment with increasing 

concentrations of SU1257, SU1349 and SU1411.  

Figure 4.12 demonstrates that SU1411 and SU1349 both substantially 

decreased levels of p-p100, p-p65 and IκBα in a dose-dependent manner in 

RPMI8226 cells. Figure 4.12 also indicates that the SU compound SU1411 

also decreased the level of β-actin across increasing concentrations in 

RPMI8226, indicating the possibility of unequal protein loading. However, 

the decrease in β-actin across increasing concentrations of SU1411 was not 
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as prominent as the decrease p-p100, p-p65 and IκBα proteins, suggesting 

that unequal protein loading was not fully responsible for the decrease in 

the proteins visualised.  

	  
	   	  
Figure 4.12 Representative western blot showing the effect of SU1257, SU1349, and 
SU1411 on NF-κB activity in RPMI8226 MM cells at 4h. 
RPMI8226 cells were exposed to increasing concentrations of the SU compounds 
SU1257, SU1349 and SU1411 for 4h at the concentrations of 0µM, 1µM, 2.5µM and 
5µM. RPMI8226 cells were then harvested and used to generate whole cell lysates. 
SDS-PAGE and western blot analysis was used to investigate the level of NF-κB 
pathway proteins in 4µg whole cell lysates from RPMI8226 cells generated from each 
condition. The levels of phospho (p)-p100, total (T) p100, p-p65, T p52 and IκBα were 
evaluated in each sample. In all experiments, β-actin was used as a control. Protein 
bands are labelled for corresponding NF-κB protein and molecular weight. UT = 
untreated (0µM).	  

 

Figure 4.12 also shows that total p100 protein decreased while total 

p52 increased following treatment with increasing concentrations of SU1349 

and SU1411 for 4h in RPMI8226 cells. This indicates that the two SU agents 

are not specifically inhibiting the non-canonical NF-κB pathway because the 
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changes in the levels of these proteins suggest that p100 processing is 

continuing.  

Figure 4.12 shows that SU1257 also induced a decrease in p-p65 in a 

dose-dependent manner in RPMI8226 cells. In contrast to SU1349 and 

SU1411, Figure 4.12 also shows that SU1257 induced a dose-dependent 

decrease in total p52 protein but did not appear to effect the levels of total 

p-p100, total p100, IκBα or β-actin in RPMI8226 cells. 

In summary, western blot analysis showed a dose-dependent 

decrease in both canonical and non-canonical NF-κB activity after treatment 

with increasing concentrations of the SU compounds SU1349 and SU1411 in 

RPMI8226 cells, although the results indicate that the agents may be more 

specifically effecting the canonical NF-κB pathway. In addition, Figure 4.12 

suggests that SU1257 seemingly decreased only canonical NF-κB activity. 
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4.5. The effect of increasing concentrations of SU1257 and 
SU1053 on cytotoxicity and Mcl-1 expression in RPMI8226 cells 

The data so far suggested that the IKKα inhibitory agents SU1257 and 

SU1053 were the least cytotoxic inhibitors when compared to SU1349, 

SU1372, SU1411 and SU1438. Moreover, when SU1257 and SU1053 were 

investigated for cytotoxicity at 48h at the maximum concentration of 20µM 

(Figure 4.2), the percentage of apoptosis induced was well below 50% (24.1% 

± 1.8% and 40.9% ± 7.2%, respectively). Therefore, it was not initially possible 

to interpolate an LD50 value for cytotoxicity for these two SU inhibitory 

agents so these two compounds were re-assessed for cytotoxicity at two 

higher concentrations of 50µM and 100µM to allow an accurate assessment of 

their respective LD50 values.  

Alongside these experiments, Mcl-1 expression was also investigated 

at 4h using 10µM and 20µM of SU1257 and SU1053. This was performed to 

confirm the results of Figure 4.5, in which both SU1257 and SU1053 did not 

significantly alter Mcl-1 expression at the maximum concentration of 5µM, 

and investigate whether Mcl-1 remained unchanged at higher concentrations 

of each agent. 

RPMI8226 cells were treated separately with SU1257 and SU1053 at 

concentrations of 0.1µM, 0.5µM, 1µM, 2.5µM, 5µM, 10µM, 20µM, 50µM and 

100µM. At 4h, RPMI8226 cells were harvested from the concentrations of 

0.5µM, 1µM, 2.5µM, 5µM, 10µM and 20µM and then fixated and 

permeabilised before staining with an anti-Mcl-1-IgG1 antibody (Santa Cruz 

Biotechnology) followed by secondary labelling with a goat anti-mouse IgG1-

FITC antibody (Santa Cruz Biotechnology). The stained RPMI8226 cells were 

then analysed using flow cytometry to quantify the intracellular Mcl-1 

expression at each concentration of each compound. 

A gating strategy was applied to the collected flow cytometric data to 

ensure that only viable, single RPMI8226 cells were analysed. The serially 

gated cell populations were then assessed for Mcl-1 expression (MFI values) 

at each concentration. The Mcl-1-FITC MFI values at each concentration for 
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each SU agent was determined and normalised to the untreated MFI for 

RPMI8226 cells. Figure 4.13A shows the collated data from three separate 

experiments for RPMI8226 cells (n = 1, duplicate for 10µM and 20µM SU1257 

only), outlining the dose-dependent regulation of Mcl-1 expression by the 

agents SU1257 and SU1053 at 4h when used at increased concentrations. 

The same experiments were continued to 48h, at which point 

RPMI8226 cells were harvested from all concentrations used and washed in 

PBS before being labelled with Annexin V-FITC and PI. The labelled cells 

were then analysed using flow cytometry to determine the percentage of 

apoptosis (Annexin V+/PI- + Annexin V+/PI+ + Annexin V-/PI+) occurring at 

each concentration. Figure 4.13B shows the cytotoxicity of SU1257 and 

SU1053 at 48h in the RPMI8226 cell line with the two increased 

concentrations of 50µM and 100µM analysed and the results shown were 

collated from four independent experiments. 

Figure 4.13A shows that when used at two increased concentrations of 

10µM and 20µM, SU1257 induced a modest decrease in Mcl-1 expression in 

RPMI8226 cells (81.4% ± 2.5% and 85.7% ± 0.9%, respectively) relative to the 

normalised untreated sample, although no statistical evaluation was 

performed as the experiment was n =1 in duplicate. In contrast, SU1053 

induced a moderate dose-dependent decrease with increasing concentrations 

that continued past 5µM. At the highest concentration of 20µM, SU1053 

decreased Mcl-1 expression at 4h in RPMI8226 cells to 63.6% ± 18.0%, 

although this was still not significantly different from the untreated control 

sample (p = 0.085).  

Figure 4.13B shows the dose-response curve for SU1257 when the 

higher concentrations of 50µM and 100µM were added. It was still not 

possible to accurately interpolate an LD50 value as the maximum percentage 

apoptosis induced at 100µM SU1257 was 57.1% ± 1.5% in RPMI8226 cells. 

This suggests that SU1257 was relatively non-cytotoxic in RPMI8226 cells. 
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A 	  

	   	  
	   	  
B	   	  

	   	  
	   	  
 
Figure 4.13 The cytotoxicity profiles and regulation of Mcl-1 expression in 
RPMI8226 cells after exposure to SU1257 and SU1053 at increased concentrations. 
To fully investigate SU1257 and SU1053 in RPMI8226 cells, these two SU compounds 
were incubated with RPMI8226 cells at higher increasing concentrations. (A) At 4h, 
intracellular Mcl-1 expression was measured on an Accuri C6 flow cytometer and 
normalised to the untreated control. A one-tailed unpaired t-test was performed 
using Graphpad Prism 6.0 software to investigate the statistical significance values 
between 0µM to 20µM for SU1053 in RPMI8226 cells (n = 3, duplicates averaged). The 
results are reported above the graph (NS = non-significant, p < 0.05). Error bars 
represent SD where n = 3, duplicate (n = 1, duplicate for 10µM and 20µM SU1257), 
experimental duplicates plotted. (B) At 48h, cytotoxicity was investigated using 
Annexin V/PI positivity on an Accuri C6 flow cytometer. The percentage of apoptotic 
cells at each concentration of SU compound was calculated and dose-response curves 
were constructed using Graphpad Prim 6.0. Where possible, LD50 values were 
interpolated and are reported alongside 95% CI. Error bars represent mean ± SD, 
where n = 4, experimental duplicates shown. 
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On the other hand, Figure 4.13B shows that at increased 

concentrations of 50µM and 100µM, SU1053 continued to induce a dose-

dependent increase in cytotoxicity following a concentration of 5µM and an 

LD50 value was positively interpolated (LD50 = 32.4µM, 95% CI [26.5µM, 

39.6µM]). Overall Figure 4.13B suggests that while SU1053 is relatively less 

cytotoxic than some of the other SU compounds, it does become cytotoxic at 

higher concentrations. 

 

4.6. Discussion 

In this chapter, a series of novel IKKα inhibitory compounds were 

evaluated in the MM cell line RPMI8226. The RPMI8226 cell line was chosen 

because this MM cell line was found to possess an intermediate level of 

baseline NF-κB activity in Chapter 3 and possesses an inactivating TRAF3 

mutation, so it was hypothesised that this MM cell line would be susceptible 

to IKKα inhibition by virtue of constitutive activation of the non-canonical 

NF-κB pathway (Annunziata et al. 2007; Keats et al. 2007; Demchenko et al. 

2010). Overall, nine novel IKKα inhibitory compounds were evaluated 

(kindly provided by Prof. Simon MacKay, University of Strathclyde). Each of 

the SU compounds used were specifically designed to target IKKα, although 

each had a unique kinase inhibitory profile.  

4.6.1. Cytotoxicity of the SU agents in RPMI8226 cells 
The cytotoxicity of all nine SU agents was first screened in RPMI8226 

cells following 48h incubation with increasing concentrations of each agent 

(n =2) and it was hypothesised that the cytotoxicity of each SU compound 

would correlate with their respective IKKα, IKKβ and CDK9 kinase 

inhibitory profiles. Therefore, the aim was that the pairing of the available 

kinase inhibitory data with initial cytotoxicity in RPMI8226 cells, would 

allow a decision on a smaller selection of IKKα inhibitory agents to take 

forward for further investigation. 

Three of the SU compounds, SU1257, SU1053 and SU1372, induced a 

low level of cytotoxicity in RPMI8226 cells such that accurate LD50 values 
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could not be calculated. Conversely, the remaining six SU agents, SU1261, 

SU1349, SU1361, SU1365, SU1411 and SU1438, were more potent and 

induced cytotoxicity in a concentration-dependent manner in RPMI8226 

cells. However, the conclusion was that the kinase inhibitory profiles did 

not completely correlate with the cytotoxicity induced in the initial 

screening. For example, both SU1349 and SU1372 had similar kinase 

inhibitory profiles with respect to CDK9 and IKKα and IKKβ, but their 

respective cytotoxicity profiles in RPMI8226 cells were markedly different. 

Based on initial LD50 values, SU1349 was the most cytotoxic agent whereas 

SU1372 was relatively one of least cytotoxic agents. This suggests that the 

cytotoxicity induced by these agents may not be a consequence of their 

inhibition of CDK9, IKKα and IKKβ, and the SU compounds may be 

inducing their effects through off-target kinase inhibition, particularly in the 

case of SU1349. 

Similarly, the kinase profile data suggested that SU1411 and SU1438 

had similar inhibitory profiles because they both preferentially inhibited 

IKKα over IKKβ and CDK9. However, the initial cytotoxicity data for LD50 

values suggested that SU1411 was more cytotoxic than SU1438. For this 

reason, these four SU compounds were included in the selection of agents 

for further analysis. SU1257 and SU1053 were also chosen; SU1257 due to its 

unique inhibitory profile and SU1053 because it showed the weakest 

inhibition of both the IKKβ and CDK9 kinases but was a relatively potent 

inhibitor of IKKα.  

In conclusion, the chosen SU compounds included SU1257, SU1053, 

SU1349, SU1372, SU1411 and SU1438 and the cytotoxicity of these six agents 

was further investigated to allow a more robust comparison of the variation 

in cytotoxicity (n = 4). SU1257, SU1053 and SU1372 remained the least 

cytotoxic compounds in RPMI8226 cells and it was not possible to 

interpolate an accurate LD50 value for these agents. However, when SU1053 

was reassessed at two increased concentrations of 50µM and 100µM, an 

LD50 value was successfully interpolated. This indicated that although 

SU1053 was relatively non-cytotoxic, it become more cytotoxic at higher 
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concentrations. The same was not true for increased concentrations of 50µM 

and 100µM SU1257 so this agent was classified as essentially non-cytotoxic 

in RPMI8226 MM cells. 

Further investigation revealed that the pattern of cytotoxicity for 

SU1349, SU1411 and SU1438 was consistent with the initial screening. 

SU1438 was significantly less cytotoxic than SU1349, whereas SU1349 and 

SU1411 induced a comparatively similar level of cytotoxicity in RPMI8226 

cells, although SU1411 was also comparatively similar in cytotoxicity to 

SU1438. Overall, except for SU1257, this suggested that the kinase inhibitory 

profiles did not completely explain the cytotoxicity induced by the SU 

compounds. 

Although the use of specific IKKα inhibitors in MM has not yet been 

described elsewhere, it has been demonstrated that knockdown or depletion 

of IKKα in MM cells does not effect their overall survival or viability 

(Annunziata et al. 2007; Rauert-Wunderlich et al. 2013), but may instead 

impact on MM cell growth and proliferation (Hideshima et al. 2009). In 

addition, knockdown of IKKα in B-cells has been shown to be non-toxic 

(Senftleben et al. 2001). This correlates with the pattern observed in terms of 

SU compound cytotoxicity and the relationship with their IKKα kinase 

inhibitory profile. For example, the lack of cytotoxicity induced by SU1053 

and SU1372, both of which are selective potent inhibitors of IKKα, suggests 

that IKKα inhibition is not the dominant cause of apoptosis in the RPMI8226 

MM cell line. 

CDK9, unlike other Cdc2-like kinases, does not participate in cell 

cycle regulation but is instead involved in cell differentiation through 

regulation of RNA transcription (de Falco a Giordano 1998; Napolitano et 

al. 2000). Inhibition of CDK9 has been shown to induce cytotoxicity in MM 

cells through inhibition of transcription and Mcl-1 protein levels, although 

the CDK9 inhibitors used in these studies were more potent towards CDK9 

than the SU agents (Manohar et al. 2011; Dolloff et al. 2012; Jorda et al. 

2014). In contrast, the data for the SU compounds suggests that CDK9 
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inhibition does not seem to be one of the main contributing causes of 

apoptosis in RPMI8226 cells. This is evident in the disparity in cytotoxicity 

between SU1349 and SU1372, both of which have kinase inhibitory profiles 

indicating that they are similarly potent inhibitors of CDK9. 

4.6.2. Mcl-1 regulation by the SU agents in RPMI8226 cells 
To begin exploring the effect of IKKα inhibition on NF-κB activity, 

the dose-dependent regulation of Mcl-1 expression at 4h was quantified in 

RPMI8226 cells for each of the six selected SU IKKα inhibitory agents. Mcl-1 

is an important anti-apoptotic protein that is relevant in the survival and 

progression of MM (Derenne et al. 2002; Zhang et al. 2002; Meinel et al. 

2010). Moreover, a constitutive level of NF-κB activity correlates with the 

expression of Mcl-1 in MM cell lines (Liu et al. 2014). Therefore, it was 

hypothesised that the regulation of Mcl-1 expression in RPMI8226 cells by 

the SU agents would correlate with their cytotoxicity. 

At all of the concentrations of SU1257 tested, the level of Mcl-1 

expression remained comparable to the untreated controls, which was 

consistent with the lack of cytotoxicity observed with this agent in 

RPMI8226 MM cells. On the other hand, SU1053, SU1349, SU1372 and 

SU1438 all decreased Mcl-1 expression in a dose-dependent manner, 

although the level of down-regulation was variable among the SU 

compounds and did not directly correlate with cytotoxicity. The largest 

overall decrease in Mcl-1 expression (at 5µM) was seen with SU1053, 

although this was not significant. The dose-dependent decrease in Mcl-1 

expression by SU1053 continued when higher concentrations of 10µM and 

20µM were analysed, although this was still not significant (p = 0.24). 

SU1349 and SU1372 showed a similar down-regulation pattern in 

terms of Mcl-1 expression with increasing concentrations. Several studies 

have shown that CDK9 inhibition significantly decreases Mcl-1 expression, 

which contributes to cell apoptosis (Manohar et al. 2011; Dolloff et al. 2012; 

Jorda et al. 2014). SU1349 and SU1372 are both potent inhibitors of CDK9 

and both induced a strong dose-dependent down-regulation in Mcl-1 
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expression at 4h, which may suggest that CDK9 inhibition is contributing to 

this effect.  

Both SU1411 and SU1438 did not decrease Mcl-1 expression in a 

dose-dependent manner but did induce a relatively weak decrease in Mcl-1 

expression at 5µM when compared to the untreated controls. Similar to 

their cytotoxic effects, SU1411 and SU1438 induced different decreases in 

Mcl-1 expression, despite the similarity in their kinase inhibitory profiles. 

Overall, this shows that the apoptosis induced by most of the SU IKKα 

inhibitors does not correlate with the level of down-regulation of Mcl-1 

expression so Mcl-1 down-regulation is unlikely to be the main cause of 

apoptosis. In addition, neither do the kinase inhibitory profiles of most of 

the SU compounds correlate with the level of down-regulation in Mcl-1 

expression that was induced in RPMI8226 MM cells. 

4.6.3. NF-κB activity regulation by the SU agents in RPMI8226 cells 
In order to further characterise the IKKα inhibitory pharmacological 

agents, the dose-dependent effect of each agent on NF-κB activity was 

investigated in more detail using an ELISA-based method for detecting the 

active NF-κB subunits p65, p50, p52 and RelB in the MM cell line RPMI8226.  

The results demonstrated that five of the six selected IKKα inhibitory 

agents significantly decreased the levels of at least one NF-κB subunit 

classically associated with both the canonical and non-canonical NF-κB 

pathways. This suggests that SU1053, SU1349, SU1372, SU1411 and SU1438 

inhibited both the canonical and non-canonical NF-κB pathways. The 

remaining SU agent, SU1257, only significantly decreased p65 activity, 

indicating that SU1257 was not significantly inhibiting the non-canonical 

pathway activation. 

As mentioned previously, the ELISA possessed caveats that meant 

that it may not have been an appropriate tool to quantify the effect that the 

SU compounds induced on NF-κB activity. For example, there were 

potential issues with method of subunit quantification used for the ELISA’s, 

the specificity of the antibodies provided in the NF-κB ELISA kit and issues 
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with the binding of specific NF-κB subunit dimers to the immobilised 

oligonucleotide (personal communication with Professor Neil Perkins). 

Therefore, western blot analysis was also used to visualise the dose-

dependent effect of SU1257, SU1411 and SU1349 on NF-κB proteins. This 

technique also showed that SU1349 and SU1411 induced a does-dependent 

decrease in canonical and non-canonical NF-κB associated proteins, 

although inhibition of the canonical pathway seemed the most prominent. 

In addition, similar to ELISA, western blot analysis also revealed that 

SU1257 dose-dependently decreased p-p65 protein, indicating that SU1257 

inhibits the canonical NF-κB pathway. 

However, western blotting was only used to visualise the effect that 

the SU compounds SU1257, SU1349 and SU1411 had on NF-κB activity in 

the MM cell line RPMI8226. Therefore, to fully explore the SU compounds 

effect on NF-κB activity more western blotting could have been utilised to 

investigate the effect that the SU compounds SU1053, SU1438 and SU1372 

had on NF-κB pathway processing in RPMI8226 cells. Furthermore, with the 

use of the right combination of antibodies (such as those used in Figure 

4.12), western blotting could have provided more in depth information 

regarding the specific NF-κB pathway processing following treatment with 

these IKKα inhibitory compounds. For example, antibodies targeting 

phosphorylated p100, and total p100 and p52 proteins could have provided 

definitive proof of non-canonical pathway inhibition by SU1053, SU1438 

and SU1372 as p100 functions as both the precursor of p52 and a RelB-

specific inhibitor.  

The five SU agents that regulated both canonical and non-canonical 

associated NF-κB subunits were all potent inhibitors of IKKα, with at least a 

50-fold preference towards IKKα inhibition when compared to IKKβ. IKKα 

is mainly responsible for the phosphorylation of the precursor subunit p100 

to the activated p52 NF-κB subunit, which can form homo- or hetero-dimers 

with the RelB NF-κB subunit (Senftleben et al. 2001; Solan et al. 2002). In 

addition, knockdown of IKKα in B-cells substantially decreased the level of 

p52 subunit while conversely increasing p100 protein (Senftleben et al. 
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2001). For this reason, it was hypothesised that IKKα inhibition by these five 

SU agents would preferentially inhibit the non-canonical associated NF-κB 

subunits, resulting in a dose-dependent decrease in nuclear p52 and RelB 

protein.  

However, the variable inhibition of non-canonical NF-κB subunits 

induced by the SU agents did not readily relate to the IKKα inhibition 

profiles for each agent. For example, although SU1438 was as potent an 

IKKα inhibitor as SU1411, ELISA indicated that it did not significantly 

inhibit p52 activity whereas SU1411 did. Furthermore, SU1053, the least 

potent IKKα inhibitor, induced the most significant overall decrease in p52 

activity (p = 0.007). Moreover, ELISA showed that all five agents induced a 

significant dose-dependent down-regulation of at least one of the canonical 

NF-κB pathway proteins, p65 or p50. This was regulatory pattern was 

confirmed using western blot analysis, which showed that both SU1349 and 

SU1411 induced a substantial dose-dependent decrease in p-p65, IκBα and 

p-p100 proteins. Conversely, total p52 protein was dose-dependently 

increased by SU1349 and SU1411 in RPMI8226 cells, which may indicate 

lack of specificity towards non-canonical NF-κB inhibition by these SU 

agents. 

Therefore, the presence of canonical pathway inhibition by the SU 

agents may indicate that inhibition of IKKα in the MM cell line RPMI8226 

may also be inhibiting canonical pathway activity generated through p65 

and p50 activation. Several studies have demonstrated that both IKKα and 

IKKβ can carry out phosphorylation of IκBα, although IKKα is the least 

efficient kinase and cannot replace IKKβ (DiDonato et al. 1997; Mercurio et 

al. 1997; Régnier et al. 1997; Lam et al. 2008). Additionally, it has been 

reported that both IKKα and IKKβ can phosphorylate the p65 subunit to 

promote transactivation potential (Perkins 2006). However, the lack of 

correlation in effect on NF-κB activity and IKKα inhibitory potential may 

indicate the possibility of additional kinase targets for the SU agents that 

may regulate NF-κB activity.  
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Another irregularity that emerged when considering the effects of 

the SU compounds on the non-canonical pathway was the increase in RelB 

activity induced by SU1349 and SU1372. These two agents have similar 

kinase inhibitory profiles and differ from the other SU agents in the respect 

that they each possess potent inhibitory action against CDK9. This may 

indicate that CDK9 inhibition is involved in the inhibition of the non-

canonical NF-κB pathway, especially through inhibition of RelB activity. 

However, it is more likely that variation between ELISA experiments for 

these two SU compounds is the reason because for both the RelB ELISA 

results for these compounds, outliers can be identified that may have 

skewed the statistical result. 

4.6.4. Conclusion 
The aim of this chapter was to evaluate a series of pharmacological 

agents designed to inhibit IKKα in terms of their cytotoxicity, regulation of 

Mcl-1 expression and effect on NF-κB activity in the MM cell line, 

RPMI8226. This chapter has shown that the majority of IKKα inhibitory SU 

agents were dose-dependently cytotoxic in RPMI8226 cells, although the 

level of cytotoxicity did not correlate with dose-dependent down-regulation 

of the anti-apoptotic protein Mcl-1 or NF-κB activity. This suggests that 

another mechanism exists by which the IKKα inhibitors induce their 

cytotoxicity. Moreover, the effects induced by these agents could not be 

explained completely by their kinase inhibitory profiles. 

The exception to this was SU1257, an agent that been designed to be 

a structural analogue of the other compounds but has no IKKα or IKKβ 

inhibitory properties. SU1257 was shown to be relatively non-toxic even 

when used at increased concentrations, did not alter Mcl-1 expression, and 

did not significantly inhibit the non-canonical NF-κB pathway. Therefore, 

the kinase inhibitory profile for this agent matches the effects that this agent 

induces in MM and warrants its use as a control compound in experiments 

investigating these agents. 
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In conclusion, these agents may provide a promising strategy for 

MM treatment but the specific cause of apoptosis will need to be further 

investigated. 
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Chapter 5 – The effect of the SU series of IKKα 
inhibitory agents on global gene expression in MM cells. 

Microarray-based techniques are capable of simultaneously assessing 

the gene expression of thousands of different genes through the measurement 

of mRNA expression in a single reaction (Slonim a Yanai 2009). This removes 

the difficulty of pre-selecting and measuring putative genes of interest, 

including specific tumour suppressor genes and/or oncogenes, for analysis as 

microarray-based techniques allow for global gene expression to be quantified 

in a single experiment. In addition, the completion of multiple gene 

sequencing projects has provided the information required for the specific 

annotation of arrays and improvements to the actual design of the individual 

gene probes on the microarray chips (Hubank 2004). Microarrays can 

therefore provide in-depth information on the underlying biological pathways 

that are altered both in disease and by pharmacological agents. Moreover, the 

data generated through microarray-based techniques is usually highly 

reproducible and quantitative.  

Microarray-based techniques have been used to investigate global gene 

expression in several haematological malignancies to clarify the specific 

expression abnormalities that give rise to cancer biology and to sub-stratify 

specific tumour types. Examples include chronic lymphocytic leukaemia and 

various B-cell lymphomas (Dürig et al. 2003; Jelinek et al. 2003; Staudt a Dave 

2005). In MM, microarray-based techniques have been used to reveal the 

specific gene expression profiles that are responsible for differentiating MM 

cells from normal plasma cells and identify the transcriptional characteristics 

associated with poor prognosis (Zhan et al. 2002; Shaughnessy et al. 2005). In 

addition, global gene expression profiling has also been shown to provide 

predictive prognostic markers and identify new therapeutic targets within 

relevant signalling pathways in MM (Decaux et al. 2008; Hose et al. 2011). 

Moreover, several studies have specifically used microarray-based techniques 

to understand the role of the NF-κB pathways in MM through analysis of 

aberrant gene expression (Annunziata et al. 2007; Keats et al. 2007; 

Demchenko et al. 2010). 
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The previous chapter characterised the SU series of pharmacological 

agents in terms of their cytotoxicity and altered nuclear NF-κB expression. The 

next step was to develop a deeper understanding of the mode of action of the 

SU series. The SU series was designed to target the NF-κB pathway through 

inhibition of IKKα. For this reason, the effect of these compounds on global 

gene expression was investigated using Affymetrix GeneChip® HTA 2.0 gene 

expression analysis.  

The overall aim of this experiment was to investigate whether the 

individual agents targeted distinct sets of genes or whether a common set of 

genes was altered by the SU compounds, but perhaps in a quantitatively 

different fashion. Therefore, this chapter will cover the following key steps: 

1. Experimental design and sample generation.  

2. Quality control of the Affymetrix Gene Chips 

3. Comparison of altered gene expression 

4. Selection of genes for qRT-PCR validation 

5. qRT-PCR results 

6. Comparison of qRT-PCR and Affymetrix Gene Chips 

 

5.1. Affymetrix GeneChip® HTA 2.0 gene expression analysis 

5.1.1. Experimental design and sample generation 
Five compounds from the SU series were chosen for global gene 

expression analysis. These were SU1257, SU1053, SU1438, SU1411 and 

SU1349. SU1257 does not possess IKKα, IKKβ or CDK9 inhibitory properties 

(Table 4.1) and was found to be non-cytotoxic in the RPMI8226 cell line. 

SU1349 was shown to be a potent inhibitor of both CDK9 and IKKα (Table 

4.1), and was the most cytotoxic SU series compound in RPMI8226 cells. 

SU1411 and SU1438 preferentially inhibited IKKα with weak inhibition of 

IKKβ and CDK9 (Table 4.1). Nevertheless, SU1411 was found to be more 

cytotoxic than SU1438 in RPMI8226 cells following exposure for 48h. 

Of the cytotoxic compounds, SU1053 was the weakest inhibitor of 

both the IKKβ and CDK9 kinases but was a relatively potent inhibitor of 
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IKKα (Table 4.1); SU1053 was significantly less cytotoxic than SU1411 and 

SU1438.  

The RPMI8226 MM cell line was selected for the global gene 

expression analysis because this MM cell line was found to possess an 

intermediate level of NF-κB activity so was used to characterise the SU 

series compounds in the previous chapter. Three treatments of each 

pharmacological agent were performed and samples were generated with 

doses-response experiments performed in parallel. 

RPMI8226 cells were incubated alone and in the presence of 

increasing concentrations of the SU compounds SU1257, SU1053, SU1438, 

SU1411 and SU1349. At 4h, cells were harvested from untreated and from 

cells treated with 2.5µM of each SU compound to generate TRIzol® lysates. 

Samples were subsequently processed for RNA extraction once three 

replicate sets for each treatment were collected. Each SU compound was 

used at a concentration of 2.5µM because this was found to be a 

concentration where most of the SU series compounds effected viability, 

Mcl-1 expression and NF-κB activity in the RPMI8226 cell line. 

Prior to RNA extraction, dose-dependent cytotoxicity in the parallel 

samples was measured at 48h by flow cytometry using Annexin V/PI 

positivity for all experiments in which a 4h TRIzol® lysate was generated. 

The aim of this was to ensure that the SU compounds were inducing the 

expected cytotoxic effect prior to commitment to undertaking the 

microarray analysis. The cytotoxicity dose-response curves for all samples 

used in the microarray analysis are shown in Appendix Figure I. It shows 

that all samples treated with SU compound samples induced the expected 

cytotoxicity at 48h.  

Following RNA extraction, RNA quality was assessed using an 

Agilent 2100 Bioanalyzer System. All the RNA extracts generated for the 

microarray analysis achieved an RNA integrity value of 10, which is the 

highest quality value possible. Thus, high quality samples were available 

for global gene expression analysis. 
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Once all the samples were validated, the resulting RNA extracts were 

analysed by Affymetrix GeneChip® Human Transcriptome Array (HTA) 2.0 

as per the manufacturer’s instructions by Dr Amanda Redfern, Central 

Biotechnology Services (CBS), Cardiff University. This particular type of 

microarray was chosen due to the high level of information it delivers; not 

just gene expression levels, but also alternate splicing events. For the 

purposes of this study, the focus of analysis revolved around the alteration 

of gene expression that each individual SU compound induced at 4h in the 

RPMI8226 cell line. 

In summary, 18 individual samples were analysed using Affymetrix 

GeneChip® HTA 2.0 corresponding to n = 3 for each treatment condition. 

Overall, six treatment conditions were analysed. These were untreated (UT) 

RPMI8226 cells and RPMI8226 cells treated with 2.5µM of SU1257, SU1053, 

SU1438, SU1411 or SU1349 for 4h.  

5.1.2. Quality control and normalisation of the Affymetrix GeneChip® 
HTA 2.0 microarray data 

The data from the Affymetrix GeneChip® HTA 2.0 analysis was 

returned by CBS in the form of a series of CEL files. These were opened and 

analysed using the statistical software environment, R. An assessment of the 

quality of the raw data from each of the individual Affymetrix GeneChips 

was performed.  

A histogram of distribution of the Log2 transformed perfect match 

(PM) probe intensities for each sample array analysed was plotted to 

compare the variation in PM probe intensity between the 18 individual 

sample arrays (Figure 5.1A). This shows the overall signal from the 

individual sample arrays and can indicate one or a subset of arrays has 

given a different signal across the chip. Figure 5.1A demonstrates that the 

general shape of all 18 sample arrays was similar, which would be expected 

for replicate arrays derived from a cell line. However, the centre of the 

distribution histogram for each sample array differed slightly suggesting 

that the dataset would benefit from normalisation. 
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Therefore, the PM probe intensities for all 18 sample arrays were 

normalised using RMA normalisation. To check that the RMA 

normalisation was effective, a histogram of the distribution of Log2 PM 

probe intensities for each individual sample array was plotted using the 

RMA normalised data (Figure 5.1B). Figure 5.1B shows that following 

normalisation the distribution of signals follows a Gaussian bell-shaped 

curve. 

A boxplot of the RMA normalised sample arrays (Figure 5.1C) 

demonstrates that the median, lower quartile and upper quartile of RMA 

normalised Log2 PM probe intensities were comparable across all 18 

individual sample arrays. This indicates that the RMA normalisation for the 

18 individual sample arrays had been effective. 
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Figure 5.1 Quality control of the Affymetrix HTA 2.0 individual sample arrays. 
(A) A histogram was plotted of the microarray data to compare the distribution of 
Log2 transformed PM probe intensities between individual sample arrays. A 
histogram (B) and a boxplot (C) demonstrating the effect RMA normalisation had on 
the distribution on Log2 intensities between different sample arrays. The data shown 
represent n = 3 for each condition. (UT = untreated). 
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5.1.3. Investigating the global gene expression effects of the SU series 
Following RMA normalisation of data from the 18 Affymetrix 

GeneChips, an analysis on the global effects of the SU compounds was 

performed. The objective of this analysis was to determine how the 

pharmacological agents grouped by their effects on overall gene expression 

across the whole GeneChip. This allowed an investigation of whether the 

individual sample arrays reflected their treatment condition and whether 

group replicates were homogenous. Two methods were used: (1) the 

generation of a distance matrix followed by clustering and (2) a principal 

component analysis. 

5.1.3.1. Distance matrix and hierarchical cluster analysis of microarrays 

The Log2 PM probe intensities were used to calculate the Euclidean 

distance between each sample and plotted using the ‘corrplot’ package 

(Wei a Simko 2016). The distances were assembled into a matrix to 

produce Figure 5.2A. The most distant set of arrays from untreated cells 

was found in cells treated with SU1349, with most of the SU1349 replicates 

having a distance greater than 100 when compared to the other 

GeneChips. 

Figure 5.2A shows that changes between 60 and 100 were caused by 

both SU1438 and SU1411-treated arrays. In comparison, UT, SU1257 and 

SU1053-treated arrays all showed lower distance matrix values (typically 

ranging from 50 to 80). One exception to this pattern was the SU1257 

(array 2), which indicates that this sample was an outlier. 

The distance matrix was then used to generate a hierarchical cluster 

diagram using the complete linkage cluster method (Figure 5.2B). 

Hierarchical clustering is a technique that can identify and represent 

different patterns within the data. The clustering used in Figure 5.2B was 

unsupervised clustering because no previous information was assumed 

about the data and the samples were arranged based on sample variation 

in the PM probe intensities. The cluster analysis initially produced two 

main branches that were subsequently split into two sub-branches each. 
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Figure 5.2 Distance matrix and hierarchical cluster analysis of the microarray data.  
The RMA normalised microarray data was used to produce a distance matrix using 
the Euclidean method (A). The distance matrix was then subjected to a hierarchical 
cluster analysis using the complete linkage clustering method (B). The four main 
branches within the hierarchical cluster analysis are highlighted. The data shown 
represents n=3 for each condition. 
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The four branches are highlighted in Figure 5.2B by the coloured boxes. 

Similar to Figure 5.2A, SU1349 treated samples were identified as most 

different and distinct from the other treatments because they clustered 

together in one of the four branches. In addition, Figure 5.2B shows that 

eight of the nine arrays for UT, SU1257 and SU1053 clustered on the same 

branch demonstrating that these groups showed a similar global gene 

expression signatures that were distinct from the SU1349-treated branch. 

An exception was one of the SU1257 treated arrays, SU1257 (array 2), 

which clustered on the other of the two main cluster branches, indicating 

that it showed a distinct global gene expression signature. This again 

suggests that SU1257 (array 2) was an outlier.  

Figure 5.2B also shows that four of SU1438 and SU1411-treated 

arrays clustered on the same branch as the SU1349-treated samples 

suggesting a degree of similarity in global gene expression. The SU1438 

(array 1) and SU1411 (array 1)-treated sample arrays clustered closer to the 

UT, SU1053 and SU1257-treated arrays. This indicates that these two 

arrays possessed some additional variation in global gene expression.  

5.1.3.2. Principal component analysis of arrays 

A principal component analysis (PCA) was performed on the RMA 

normalised sample data to extend the assessment of the global changes in 

gene expression. This method identifies patterns within the PM probe 

intensities and uses these to transform the data into its principal 

components. The principal components are then used to express the data 

in such a way that highlights the similarities and differences among the 18 

individual sample arrays.  

Table 5.1 and Figure 5.3A show the top 10 principal components 

produced from analysis of the 18 sample arrays using PCA. Figure 5.3A 

and Table 5.1 demonstrate that cumulatively, principal components 1 to 10 

contributed to a total of 82.5% of the variance between the individual 

microarrays. Overall, principal component 1 and 2 were cumulatively 

responsible for 45.4% of the variability within the data. 
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Table 5.1 Results of the principal component analysis on the microarray data 
The variances of the 10 largest principal components produced by PCA of the 
microarray data are shown in the table below.  

Principal 
Component 

Standard 
deviation 

Proportion of 
Variance 

Cumulative 
Proportion 

1 154.0 33.6% 33.6% 

2 91.3 11.8% 45.4% 

3 84.5 10.1% 55.5% 

4 65.7 6.1% 61.6% 

5 54.0 4.1% 65.7% 

6 52.94 4.0% 69.7% 

7 49.9 3.5% 73.2% 

8 48.1 3.3% 76.5% 

9 46.7 3.1% 79.6% 

10 45.3 2.9% 82.5% 
 

Therefore, the PCA was visualised by principal components 1 and 2 

(Figure 5.3B). Generally, the arrays can be grouped based on their 

respective treatment group as indicated in Figure 5.3B using the ovals. 

Based on the visualisation by principal components 1 and 2, the three 

SU1349-treated arrays were distinct from the other sets of SU compound 

treated arrays. Similarly, SU1438 and SU1411-treated arrays are presented 

in a manner that suggests that both compounds induced comparable 

alterations in global gene expression. Visualisation of both UT and SU1053 

treated samples by principal components 1 and 2 showed that these six 

arrays are closely related and can be grouped together. In contrast, the 

three SU1257 arrays were difficult to cluster as a comparable group of 

similarly treated arrays. This is a consequence of one array appearing quite 

distant when visualised by the principal components 1 and 2, which 

supports the observation from hierarchical cluster analysis with regards to 

SU1257 (array2). 
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  B 
	  

	  
 

Figure 5.3 Principal component analysis of Affymetrix HTA 2.0 data.  
A PCA was performed on the RMA normalised data to investigate the overall 
variability between the individual sample arrays. (A) A plot of the variances 
associated with each principal component was produced from the results of the PCA. 
(B) A scatter graph showing the grouping of individual sample arrays based on 
principal component 1 and 2, which contributed to the most variability within the 
data. Individual sample arrays within the same treatment group were circled where 
possible. The data shown represents n = 3 for each condition. 
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In conclusion, the distance matrix and PCA revealed three groups 

of distinct gene expression changes caused by the SU series of compounds: 

1. SU1349 had the most distinct set of changes indicating a 

qualitative difference from UT and the other compounds in the changes 

caused.  

2. SU1438 and SU1411 caused changes in gene expression when 

compared to UT but these were distinct to those induced by SU1349 

treatment.  

3. Both SU1053 and SU1257 caused more subtle changes in global 

gene expression with some extra variation in one of the SU1257 

samples. 

 
5.1.4. Visualisation of differentially expressed probesets 

The next step of the analysis involved the visualisation of 

differentially expressed (DE) probesets. The treatment group replicates 

were averaged, the array probes were condensed to their respective 

probesets and DE probesets were identified within each UT vs. treated 

comparison. Two different methods were used for the visualisation of the 

DE probesets; (1) Volcano plots and (2) Venn diagrams.  

5.1.4.1. Visualising changes with Volcano plots 

The DE probesets were first visualised using volcano plots showing 

fold change (Log2 (FC)) and statistical significance (-Log10 (p value)) for each 

treated contrast compared to UT (Figure 5.4). Lines at x = 1 and x = -1 were 

added to highlight those probesets that had a two-fold change (Log2 (FC) ≥ 

1) in either direction. 

The volcano plots in Figure 5.4 have been arranged based on the 

cytotoxicity of that SU compound in RPMI8226 cells with SU1257 being the 

least cytotoxic and SU1349 being the most cytotoxic. Overall, Figure 5.4 

demonstrates that as the cytotoxicity of the SU compound increased so did 

the number of probesets breaching the threshold of a Log2 (FC) ≥ 1 with a 

significance of p ≤ 0.05.  
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Figure 5.4 shows that the UT vs. SU1257 contrast has the fewest 

probesets experiencing a Log2 (FC) ≥ 1 paired with p ≥ 0.05, which produced 

a relatively flat shape. In contrast, SU1349 induced the most significant 

changes in probeset expression relative to UT. Compared with the other 

four SU compounds, the volcano plot for UT vs. SU1349 showed the most 

probesets with a Log2 (FC) ≥ 1 in both directions and the most probesets 

with a significant (p ≤ 0.05) alteration in expression. The UT vs. SU1053 

contrast generated a volcano plot that has more probesets showing 

significant changes than that of UT vs. SU1257. Moreover, UT vs. SU1438 

and UT vs. SU1411 produce volcano plots that were relatively similar in 

shape and size. This suggests that the quantitative nature of the changes 

induced by SU1438 and SU1411 were comparable.  
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Figure 5.4 Volcano plots of the contrasts for UT sample arrays vs. treated arrays to 
identify differentially expressed (DE) probesets. 
The individual arrays corresponding to UT and treated were grouped (where n = 3) 
and then multiple linear models were fitted to each group to condense Affymetrix 
HTA 2.0 probesets. Once in this state, empirical Bayes moderated t-statistics test was 
performed for each contrast (UT vs. SU1257, UT vs. SU1053, UT vs. SU1438, UT vs. 
SU1411 and UT vs. SU1349) to investigate the difference between treated arrays and 
UT arrays. Volcano plots of the results of the test were plotted to help in identification 
of DE probesets. Lines at x = 1 and x = -1 were plotted to show those probesets with a 
Log2 (FC) of one or greater in either direction.	  
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5.1.4.2. Visualising gene expression changes using Venn diagrams 

The overlaps in altered probesets were visualised by plotting a 

Venn diagram of the significantly (p ≤ 0.05) upregulated and down-

regulated probesets (Figure 5.5). UT vs. SU1349 possesses the highest 

number of altered probesets in total (426 upregulated; 756 down-

regulated). UT vs. SU1438 and UT vs. SU1411 specifically shared 42 

upregulated and 22 down-regulated DE probesets. However, in total, they 

had 88 upregulated and 25 down-regulated DE probesets in common 

because 49 (46 upregulated and 3 down-regulated DE probesets) were 

shared with SU1349. Figure 5.5 also shows that UT vs. SU1257 possessed 

the fewest altered probesets (4 upregulated) and UT vs. SU1053 also has 

relatively few DE probesets (5 upregulated, 17 down-regulated). 

In conclusion, DE probesets, defined as Log2 (FC) ≥ 1 in either 

direction and p ≤ 0.05, were present for all treated samples when 

compared with UT controls although the number of DE probesets varied 

depending on the SU compound. The variation in the number of DE 

probesets appeared to parallel the level of cytotoxicity; SU1257 induced 

the least altered probesets and SU1349 induced the most. 
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Figure 5.5 Venn diagram showing the number of differentially expressed (DE) 
probesets for each compound when using Log2 (FC) > 1 and p < 0.05 thresholds. 
The results of the empirical Bayes moderated t-statistics test was sorted to include 
only those probesets that experienced a two-fold change in either direction (down-
regulated = Log2 (FC) ≤ -1, upregulated = Log2 (FC) ≥ 1) and a p ≤ 0.05. A multiple 
comparison test was performed followed by Benjamini and Hochberg correction to 
investigate the similarities in the DE probesets between the UT and treated contrasts 
and used to plot a Venn diagram. The number of probesets that were upregulated 
(Log2 (FC) ≥ 1) are shown in green and down-regulated probesets (Log2 (FC) ≤ 1) are 
shown in red. Zero values have been omitted for clarity. 

 

 

5.1.5. Annotation of differentially expressed (DE) genes relating to 
DE probesets 

With the identification of the DE probesets, the next step involved 

converting the probesets to their respective gene names and annotating the 

genes. The Affymetrix GeneChip® HTA 2.0 includes probesets that 

correspond to gene expression changes and alternate splicing events. For 

this analysis, only the probesets matching human genes were used.  
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The identification pipeline generated a gene list that contained 556 

annotated genes and the ‘gplots’ package (Warnes et al. 2016) in R was used 

to generate the heat map of the global gene alterations shown in Figure 5.6. 

Figure 5.6 shows that the annotated genes followed the same pattern that 

was observed for the probesets in Figure 5.4 and Figure 5.5. For example, 

SU1257 showed the lowest number of altered genes with a Log2 (FC) ≥ 1 in 

either direction whereas SU1349 differentially regulated the most annotated 

genes. 

For this reason, only SU1438, SU1411 and SU1349 were analysed 

further as these caused more gene alteration and more cytotoxicity in the 

RPMI8226 MM cell line. The gene lists for these SU compounds are 

visualised in the Venn diagram (Figure 5.7). The data indicates that the SU 

compounds down-regulated more genes than they upregulated in 

RPMI8226 myeloma cells.  

The list of DE genes specific for the UT vs. SU1349 contrast was too 

long (83 upregulated and 419 down DE genes) to be placed in the Venn 

diagram in Figure 5.7; a list of these DE genes is available in Appendix 

Tables I and II. Eight genes (6 upregulated and 2 down-regulated DE genes) 

were shared by all three of compounds. SU1438 and SU1411 shared 24 DE 

genes (10 upregulated and 14 down-regulated DE genes). In addition, the 

SU1349 shared more DE genes with SU1438 (2 upregulated and 8 down-

regulated DE genes) than with SU1411 (1 upregulated and 1 down-

regulated DE genes).  

Overall, each SU compound showed some unique characteristics in 

terms of gene regulation but they also shared common regulatory 

pathways. 
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Figure 5.6 Global gene alterations in 556 differentially expressed (DE) genes 
induced by the SU compounds when compared to UT controls 
The probesets of the empirical Bayes moderated t-statistics were labelled with gene 
symbols and the DE genes located (p ≤ 0.05 and Log2 (FC) ≥ 1, in either direction). This 
generated a list of 556 genes that were DE in at least one of the SU-treated samples 
when compared to UT controls. The heat map was generated using the ‘gplots’ 
package in R Studio and shows the global gene alterations in 556 DE genes.	  
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5.1.6. Selection of DE genes to be used for validation in qRT-PCR 
The microarray analysis to date revealed qualitative and quantitative 

changes in gene expression as a result of exposure to the SU compounds. 

Therefore, DE genes were selected for validation by quantitative RT-PCR 

using a four-step process: 

1. Enrichment analysis of Gene Ontology (GO) terms 

2. Pathway enrichment analysis of DE genes 

3. Expression levels of the DE genes 

4. Specific association of DE genes with the SU compounds, 

SU1438, SU1411 and SU1349. 

5.1.6.1. Enrichment analysis of biological Gene Ontology terms 

First, an enrichment analysis of the DE regulated gene lists for 

SU1438, SU1411 and SU1349 was carried out using the online enrichment 

tool Enrichr (Chen et al. 2013; Kuleshov et al. 2016). To retrieve the gene 

lists used in this analysis, the DE genes were separated based on Log2 (FC). 

For SU1438 and SU1411, this was a Log2 (FC) ≥ 1 in either direction but this 

threshold produced 522 genes for SU1349. This list of DE genes was too 

long to be used for the enrichment analysis in Enrichr so for SU1349 a cut-

off of Log2 (FC) ≥ 1.5 in either direction was applied. This produced 

manageable gene lists of 52, 52 and 92 genes for SU1438, SU1411 and 

SU1349, respectively. The new SU1349 gene list consisting of 92 DE genes 

can be found in Appendix Table III. 

The Gene Ontology (GO) terms for the above lists of genes was 

analysed using the online tool Enrichr (Chen et al. 2013; Kuleshov et al. 

2016). Appendix Figure II shows the number of DE genes associated with 

the eight GO categories for each treatment condition following sorting of 

the GO terms using R. Appendix Tables IV, V and VI show the identity of 

the DE genes for each treatment condition and the number of GO 

categories each DE gene is involved in. Based on this information, smaller 

lists of DE genes were selected based on involvement in >7 GO terms or if 

they were associated with the GO terms: cell cycle, transcription, 
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signalling or apoptosis. These GO terms were specifically chosen due to 

their association with NF-κB signalling. This reduced the genes lists to 21, 

25 and 41 genes for SU1438, SU1411 and SU1349 respectively. The new DE 

gene lists are shown in Appendix Table VII for each of the more cytotoxic 

SU compounds. 

5.1.6.2. Pathway profiles for the SU1438, SU1411 and SU1349 GO gene 
lists 

These revised DE gene lists for SU1438, SU1411 and SU1349 were 

re-inserted into the Enrichr analysis tool and a pathway enrichment 

analysis was performed. The Appendix Tables VIII, IX and X display the 

full list of the results for the pathway enrichment analysis for the SU1438, 

SU1411 and SU1349 DE gene lists, respectively. DE genes were selected for 

further analysis based on whether they regulated pathways connected to 

transcription, apoptosis, cell cycle or directly modulated NF-κB signalling. 

This reduced the gene lists to 8, 6 and 9 genes for SU1438, SU1411 and 

SU1349, respectively (Appendix Tables XI, XII and XIII).  

5.1.6.3. Expression levels of the SU1438, SU1411 and SU1349 DE gene lists 

Finally, 10 DE genes that would be used for microarray validation 

using qRT-PCR were chosen from the final gene lists for these SU 

compounds. For this, genes were identified based on high expression and 

fold change (Appendix Tables XI, XII and XIII), and specific association 

with the SU compounds, SU1438, SU1411 and SU1349. Only those genes 

that were expressed to a relatively high level in both UT and treated 

samples were considered for qRT-PCR because this would ensure that 

these genes would be positively detected. 

Figure 5.8 presents a summary of the Log2 expression of each of the 

10 final DE genes that were used for validation of the microarray in the 

qRT-PCR experiments for all the array groups, including the UT, SU1257 

and SU1053 array groups. As can be seen in Figure 5.8, all 10 selected DE 

genes were highly expressed in UT RPMI8226 cells. 
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TRAF6, RIPK1, POLA2 and SRSF7 are DE genes specifically 

associated with the action of SU1349 (Figure 5.7). Figure 5.8 also 

demonstrates that down regulation of TRAF6 and RIPK1 was specifically 

related to the action of SU1349, whereas both SU1438 and SU1411 down-

regulate POLA2 and SRSF7 genes but to a lesser extent. Although POLR2A 

was previously shown to be a unique DE gene for SU1438 (Figure 5.7), 

Figure 5.8 shows that SU1053, SU1411 and SU1349 also down-regulate 

POLR2A. SRSF6 expression was altered by both SU1438 and SU1349 

(when Log2 (FC) ≥ 1 and p ≤ 0.05) (Figure 5.7), this is also reiterated in 

Figure 5.8 where SRSF6 transcription was markedly repressed by SU1438 

and SU1349. Treatment with SU1053 and SU1411 also caused a reduction 

in SRSF6 transcription but to a lesser extent. 

PRKCI, OFD1 and UBA2 were differentially down-regulated in 

response to both SU1438 and SU1411 (Figure 5.7). Figure 5.8 confirms that 

OFD1, PRKCI and UBA2 were all substantially down-regulated by both 

SU1438 and SU1411 but remained relatively unaffected following 

treatment with SU1053 and SU1349. The final selected DE gene was 

NSUN2, which was found to be a DE gene unique to SU1411 (Figure 5.7). 

Figure 5.8 shows that SU1411 induced the highest level of down-

regulation in NSUN2 transcription but also suggests that SU1438 

substantially down-regulated NSUN2 relative to UT controls. 

Table 5.2 lists the transcriptional product of each of the 10 chosen 

DE genes, along with the function of the subsequent protein. Table 5.2 

demonstrates that all DE genes chosen have a role in regulating NF-κB 

activation, apoptotic pathways, DNA replication, transcription or protein 

modification. 
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5.2. Validation of the microarray data using qRT-PCR 

Primer pairs specific for the 10 target DE genes and an additional 

endogenous control gene (RSP14) were designed using NCBI/Primer-BLAST 

(Ye et al. 2012). A representative example of the melting curve and 

amplification plot for the endogenous control gene and each of the target DE 

genes are shown in Appendix Figures III – XIII. 

The samples used in the qRT-PCR experiments were created from the 

identical experiments used to generate the TRIzol® lysates for the Affymetrix 

GeneChip® HTA 2.0. Therefore, they should provide a robust means of 

validating the microarray data because they were collected from the same 

RPMI8226 cells under the same treatment conditions at the same time. The 

TRIzol® lysates were processed to RNA extracts and the RNA integrity of the 

eluted RNA was checked by CBS at Cardiff University using an Agilent 2100 

Bioanalyzer System. Appendix Figure XIV shows that all the processed 

samples had a RIN ≥ 9.7, which suggests the eluted RNA was of a high 

quality. The eluted RNA was subsequently reverse transcribed into cDNA 

and then analysed using specific primers by qRT-PCR. 

Figure 5.9 and Figure 5.10 show the fold changes for each of the 10 DE 

genes following exposure to the five compounds in the SU series: SU1257, 

SU1053, SU1438, SU1411 and SU1349. Figure 5.9 and Figure 5.10 both show 

that SU1257 did not significantly alter any of the 10 genes analysed using 

qRT-PCR. In addition, SU1053 treatment was responsible for significantly 

down-regulating only SRSF7 expression (p = 0.021). 

Figures 5.9 and 5.10 shows that qRT-PCR measured a relatively large 

decrease in TRAF6, RIPK1, POLA2, SRSF7 and SRSF6 expression following 

treatment with SU1349, although only the down-regulation of TRAF6 

expression was significant (p = 0.034). An explanation for this may be the 

large variation between the replicates for SU1349 treatment, which is 

indicated by the relatively large error bars shown for these genes in Figure 

5.10. In addition, Figure 5.10 shows that SU1438 similarly significantly down-

regulated TRAF6 expression (p = 0.041). 
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Figures 5.9 and 5.10 suggest that SU1438 treatment was also 

responsible for significantly decreasing the expression of OFD1 (p = 0.040) 

and NSUN2 (p = 0.041), the latter of which was also significantly down-

regulated by SU1411 treatment (p = 0.003). In addition, Figure 5.9 and 5.10 

show that SU1411 was also responsible for significantly down-regulating 

POLA2 (p = 0.005), POLR2A (p = 0.043), SRSF7 (p = 0.018), PRKCI (p = 0.022) 

and UBA2 (p = 0.008). 

The relationship between the microarray gene expression levels and 

qRT-PCR gene expression levels among the UT and SU compound treated 

samples was explored to allow validation of the microarray data. Figure 5.11 

plots the microarray gene expression (Log2 expression) and qRT-PCR fold 

change (Log2 (2-ΔΔCt)) for each sample group and DE gene.  

Figure 5.11 shows that there was a correlation in nine of the 10 genes. 

The exception was TRAF6 where qRT-PCR did not replicate the expression 

changes observed in the microarray for the SU series compounds SU1411 

and SU1438, and SU1053. This may be due to the difference in the relative 

sensitivities of the two assays or the differences in the normalisation 

methods that each assay employs (Morey et al. 2006). 
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5.3. Discussion 

The aim of this chapter was to investigate whether individual agents 

targeted distinct sets of genes or whether a common set of genes was altered 

by the SU compounds, but perhaps in a quantitatively different fashion. To 

achieve this, the Affymetrix GeneChip® HTA 2.0 was used to assess global 

gene expression in untreated RPMI8226 cells and RPMI8226 cells following 

treatment with SU1257, SU1053, SU1349, SU1411 and SU1438.  

5.3.1. Quality control of the microarray experiment 
A potential pitfall in microarray-based techniques is the small 

number of replicates because these experiments are often time-consuming 

and expensive. Therefore, throughout the process of carrying out the 

microarray analysis in this thesis, multiple quality control assessments were 

performed to ensure that variability in the gene expression analysis was 

minimised. The aim was that this would allow a robust global gene 

expression analysis to be performed, where any alterations in gene 

expression identified would be unlikely to have arisen through accidental 

associations or due to inherent variation caused by poorly controlled 

experimental conditions. 

Variability can arise through three main sources in a microarray-

based gene expression analysis: experimental, technical or analytical 

(Hubank 2004). The Affymetrix GeneChip® HTA 2.0 was carried out on 

RNA samples from the untreated and treated RPMI8226 cells. The 

experimental design of a microarray experiment is an important step that is 

often overlooked in microarray-based studies (Slonim a Yanai 2009). For 

this reason, careful consideration was given to the selection of the MM cell 

line to be used and the concentration and exposure time chosen for each SU 

compound. In addition, all microarray samples were taken on the same day 

from one MM cell line, ensuring equal passage number, and all samples 

were prepared at the same time. 

To reduce experimental variability, prior to RNA extraction, dose-

dependent cytotoxicity in parallel samples was measured at 48h. This was 
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performed to ensure that the SU compounds were inducing the expected 

cytotoxic effects so that samples not responding as previously observed 

were not included in the microarray analysis. This ensured validation of the 

samples used in the microarray analysis to guarantee that any alterations in 

gene expression were representative of the inhibitory action of the SU 

compounds. Appendix Figure I demonstrated that all samples used in the 

microarray analysis induced the expected cytotoxicity in RPMI8226 cells, 

based on the characterisation described in Chapter 4.  

In addition, the quality of the RNA was measured to ensure that 

poor RNA quality was not a factor that contributed to technical variation 

within the microarray analysis. RNA is inherently less stable than DNA and 

can be affected by many factors, including poor sample preparation and 

pre-analysis storage. All RNA extracts used in the Affymetrix GeneChip® 

HTA 2.0 analysis were of the highest quality (RNA integrity = 10), which 

minimised technical variability.  

Once the Affymetrix GeneChip® HTA 2.0 had been performed and 

the resulting data retrieved as CEL files, all subsequent analysis was 

performed using the statistical software environment, R (R-Core-Team 

2014). R is a highly versatile piece of software that provides a variety of 

statistical and graphical techniques, and is constantly being developed and 

refined by leading statisticians. Many packages that are useful in 

microarray data analysis are available for use in R through Bioconductor, 

another open-source platform that offers a collection of software packages 

scripted in the R language for computational biology and bioinformatics 

(Gentleman et al. 2004). For this reason, R remains one of the most 

advanced tools for the analysis of microarray-based techniques such as 

Affymetrix GeneChip® HTA 2.0. However, one disadvantage of R is that it 

does not have a graphical user interface and instead relies on an 

understanding of the R programming language to write R scripts to 

perform statistical and graphical analysis, which can prove to be time 

consuming. 
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R was used to first assess the quality of the raw data produced by 

each of the individual Affymetrix GeneChips to ensure that the measures 

took to reduce experimental and technical variability had been a success. 

This confirmed that the 18 separate GeneChip arrays were similar and 

comparable, which would be expected for arrays derived from an identical 

cell line. Therefore, this indicated that technical variability had been 

successfully minimised and the individual sample arrays were comparable, 

which further validated the microarray-based experiment.  

In conclusion, all quality control techniques applied confirmed that 

experimental and technical variability was minimised appropriately, and 

verified the use of further graphical and statistical manipulation of the 

microarray data. 

5.3.2. Assessing qualitative and quantitative alterations in gene 
expression measured by the microarray analysis 

6. The initial step of the microarray analysis in R investigated the 

global effects of the SU compounds in RPMI8226 cells and determined how 

the transcriptional effects of the pharmacological agents grouped based on 

overall gene expression across the whole GeneChip. This indicated that 

three groups of distinct gene expression changes caused by the SU series of 

compounds could be clearly identified; (1) SU1349 had the most distinct set 

of changes indicating a qualitative difference from UT and the other 

compounds in the gene changes caused, (2) SU1438 and SU1411 caused a 

change in gene expression when compared to UT but in a distinct way to 

SU1349 treatment, and (3) SU1053 and SU1257 caused more subtle changes 

in gene expression with some extra variation in one of the SU1257 samples.  

Initial visualisation of the qualitative changes in probesets showed 

that each SU IKKα inhibitory agent was responsible for indicating DE 

probesets in RPMI8226 cells, when compared to the untreated group. 

Moreover, the number of DE probesets correlated with the cytotoxicity of 

the SU agent in RPMI8226 cells. For example, SU1257 induced the least DE 

probesets and was relatively non-cytotoxic in RPMI8226 cells. On the other 

hand, the most cytotoxic SU agent, SU1349, induced the greatest number of 
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DE probesets in RMPI8226 cells. Overall, this may suggest that some of the 

DE probesets may be related to genes that contribute to the apoptosis 

induced by these agents in MM cells despite the samples being taken after 

just 4h of exposure to SU compound. However, Figure 5.4 showed that 

SU1438 and SU1411 produce DE volcano plots that were relatively similar 

in shape and size, which suggests that the quantitative nature of the 

changes induced by SU1438 and SU1411 may be comparable. Conversely, 

this may indicate that the DE probesets do not relate to DE genes that are 

involved in the induction of apoptosis by the SU agents because the 

cytotoxicity of SU1438 and SU1411 was shown to be significantly different 

in Chapter 4.  

The quantitative nature of the DE probesets induced by each SU 

agent compared to the untreated group were visualised by plotting a Venn 

diagram of the number of upregulated and down-regulated probesets 

(Figure 5.5). As was suggested by the volcano plots, the Venn diagram 

indicated that the number of DE expressed probesets correlates with the 

cytotoxicity of the SU compound in RPMI8226 cells. Interestingly, the three 

most cytotoxic agents, SU1438, SU1411 and SU1349, shared a significant 

number of the same DE probesets. Moreover, each SU compound possessed 

unique DE probesets. Therefore, identification of the possible DE genes 

relating to the DE probesets could indicate specific genes that are involved 

in the mechanism of action of these agents.  

For this reason, the probesets were annotated to their respective 

human genes. Once annotated, 556 annotated genes were identified as DE 

by at least one SU compound and Figure 5.6 was plotted to qualitatively 

assess the global gene alterations induced by the five SU compounds in 

RPMI8226 cells. Qualitatively, the pattern shown mirrored the pattern 

observed for the DE probesets in Figure 5.4, in that the number of DE genes 

increased with the increasing cytotoxicity of the SU compounds.  

The number of DE genes induced by the three more cytotoxic SU 

compounds was assessed in more detail to quantitatively determine the 
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exact number of DE genes and their identities (Figure 5.7). Quantitatively, 

these SU compounds down-regulated more genes and DE genes were both 

shared and unique for each SU compound. Moreover, the most DE genes 

were shared by both the SU1438 and SU1411. Chapter 4 showed that both 

agents possessed a relatively similar inhibitory profile so the fact that they 

shared a relatively high number of DE genes could be indicative of their 

shared mechanism of action. Interestingly, SU1438 relative to SU1411 

shared more DE genes with SU1349, although these compounds have 

significantly different cytotoxic potential and inhibitory profiles.  

The number of genes that were differentially regulated by SU1349 

was significantly much higher than the number regulated individually by 

both SU1438 and SU1411. Quantitatively, this may indicate that the 

increased kinase inhibitory potency for CDK9, shown in Chapter 4, could be 

responsible for inducing a higher number of DE genes. However, it is more 

likely that the increased number of DE genes may also be explained by 

SU1349 having more off-target effects than predicted in the inhibitory 

profile, which contributes to its increased cytotoxic potential in MM cells. 

SU1053 was shown in Chapter 4 to possess a similar inhibitory profile to 

SU1349, although it induced substantially less cytotoxicity in RPMI8226 

cells. This chapter has shown that number of genes that were differentially 

regulated by SU1349 was significantly much higher than the number 

regulated individually by SU1053. Therefore, it seems likely that the 

relatively increased cytotoxicity of some of the SU compounds is likely to 

arise because of off-target inhibitory effects. 

In conclusion, the gene expression analysis revealed qualitative and 

quantitative changes in gene expression that were both shared among the 

SU agents and that were unique to each SU agent. Overall, the pattern that 

emerged was that an increase in the number of DE probesets or the number 

of DE genes, correlated with the cytotoxicity of that SU agent in RPMI8226 

cells. However, it is likely that the cytotoxicity induced by these agents is 

caused, at least in part, because of off-target kinase inhibitory effects. 
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5.3.3. Assessing qualitative and quantitative alterations in gene 
expression measured by the microarray analysis 

The quantitative and qualitative changes in global gene expression 

that were revealed by the analysis required validation using a smaller and 

more reproducible technique. The technique that was chosen to validate the 

microarray analysis was quantitative RT-PCR. Data verification using a 

method such as qRT-PCR is recommended for use with microarray analysis 

(Hubank 2004). Therefore, to validate the microarray analysis using qRT-

PCR, a small selection of 10 representative DE genes belonging to the 

SU1438, SU1411 and SU1349 contrasts were selected. 

The DE genes to be used in the qRT-PCR validation were chosen 

based on four main factors; gene ontology, pathway profiles, expression 

levels and association with specific SU compounds. The online enrichment 

tool, Enrichr, was chosen to be used in the microarray analysis because this 

tool is relatively newer than other available enrichment tools and has a 

database that is frequently updated (Kuleshov et al. 2016). In addition, 

Enrichr provides a variety of in depth enrichment information on the gene 

lists inserted and has a relatively friendly user interface. One of the 

drawbacks of using this tool was that the SU1349 vs. untreated contrast (522 

genes) was too large to be used to select qRT-PCR genes due to the list 

being too comprehensive to insert into the Enrichr tool. Therefore, further 

filtering (Log2 (FC) ≥ 1.5, in either direction) was required to reduce the 

SU1349-regulated gene list. Although this allowed creation of a more 

manageable list (92 genes), it resulted in the exclusion of many DE genes. 

Shortening the SU1349 DE gene list also reduced the comparability with the 

SU1438 and SU1411 compounds’ DE gene lists, which were created using 

the initial filtering (Log2 (FC) ≥ 1, in either direction) and were of a more 

manageable size (52 and 52 genes, respectively). 

The 10 selected DE genes were used in qRT-PCR experiments that 

analysed the level of these genes in RPMI8226 cells, following treatment 

with SU1257, SU1053, SU1411, SU1438 and SU1349. To reduce experimental 

and technical variation the samples used in the qRT-PCR experiments were 

created from the identical experiments used to generate the TRIzol® lysates 
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for the Affymetrix GeneChip® HTA 2.0. Therefore, ensuring a robust 

validation of the microarray analysis using matched samples. As a further 

quality assurance, the quality of the RNA was checked and this was found 

to be of a high quality, where RIN ≥ 9.7. This was slightly less than the 

quality of the RNA used within the microarray analysis (RIN = 10). This 

may be a consequence of the longer storage time of the RNA whilst the 

microarray computational analysis was taking place, which may have 

resulted in a slight loss in RNA stability and quality. 

Overall, the results of the qRT-PCR indicated that this technique 

successfully validated the microarray analysis because similar gene 

expression changes were observed for the same set of 10 DE microarray 

genes in both experiments. Moreover, when the relationship between the 

microarray gene expression levels and qRT-PCR gene expression levels 

among the UT and SU compound treated samples was explored, this 

indicated that there was a correlation in nine of the 10 genes. The exception 

was TRAF6 where qRT-PCR did not replicate the expression changes 

observed in the microarray for the SU series compounds SU1411 and 

SU1438, and SU1053.  

In conclusion, the qRT-PCR successfully validated the microarray 

analysis and demonstrated that variability in gene expression following 

treatment with the SU agents in RPMI8226 cells was most likely due real 

biological regulation by these agents. Therefore, this study has produced 

the first high quality microarray dataset analysing the use of novel IKKα 

inhibitors in MM. 

5.3.4. Final conclusions 
This chapter has successfully highlighted that the SU compounds 

differentially regulate the expression of multiple genes; some which were 

shared and some were unique to specific agents. In addition, it was shown 

that an increased amount of DE genes was associated with the increase in 

cytotoxicity of an SU agent in RPMI8226 MM cells. However, the data 

presented in this chapter has also indicated that the effects of the SU 
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compounds is more likely to be due to off-target kinase inhibition rather than 

direct NF-κB inhibition. 

The quality control carried out throughout the course of the 

microarray analysis has also been successful in reducing variability and was 

shown to have contributed to producing a high-quality microarray dataset. 

The selection of 10 DE genes from the microarray data were validated using 

qRT-PCR and this further verified the quality of the dataset. As a result, this 

study has produced the first high quality microarray dataset analysing the 

use of novel IKKα inhibitors in MM. Therefore, the work undertaken in this 

thesis chapter lays the groundwork for further research into the global gene 

expression regulation of the SU IKKα inhibitory agents SU1257, SU1053, 

SU1438, SU1411 and SU1349 in the MM cell line RPMI8226. 
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Chapter 6 – Evaluation of a novel NIK inhibitor for the 
treatment of multiple myeloma 

NF-κB inducing kinase (NIK) is a MAP3K-related protein kinase that 

activates NF-κB mainly through the phosphorylation of IKKα, which 

predominantly results in non-canonical NF-κB pathway signalling (Malinin et 

al. 1997; Ling et al. 1998). NIK is also capable of phosphorylating IKKβ to 

activate the canonical pathway but NIK has less affinity for this IKK so IKKα 

is the preferred substrate (Ling et al. 1998; Senftleben et al. 2001). In normal 

cells, NIK is present at undetectable levels due to TRAF3, which is a negative 

regulator of NIK (Liao et al. 2004). TRAF3 interacts with NIK to induce the 

proteasomal degradation of NIK, which mainly inhibits non-canonical NF-κB 

pathway signalling but may additionally negatively regulate canonical 

pathway signalling (Liao et al. 2004; Zarnegar et al. 2008). 

Several studies have documented that MM tumours and cell lines 

possess a high number of genetic aberrations leading to NIK overexpression 

and stabilisation (Annunziata et al. 2007; Keats et al. 2007; Demchenko et al. 

2010). This is a result of inactivating mutations in negative regulators of NIK, 

such as TRAF3, and activating mutations in NIK and positive regulators of 

NIK, such as CD40. The overexpression of NIK in MM contributes to the 

increased NF-κB signalling observed because higher constitutive levels of NIK 

allows the phosphorylation of both IKKα and IKKβ resulting in both non-

canonical and canonical NF-κB pathway signalling (Annunziata et al. 2007; 

Keats et al. 2007; Demchenko et al. 2010). 

TRAF3 deficiency has been shown to substantially enhance the survival 

of B cells (Xie et al. 2007; Gardam et al. 2008). Furthermore, the enhancement 

in survival was associated with the stabilisation and subsequent 

overexpression of NIK that allows constitutive activation of non-canonical 

pathway signalling independent of external stimuli (He et al. 2006).  

Moreover, the knockdown of NIK expression in MM cell lines that 

expressed a high level of NIK protein induced cell apoptosis; the same effect 

was not observed in those cell lines that contained a low level of NIK 
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expression (Annunziata et al. 2007). This supports the concept that NIK 

overexpression contributes to increased survival and tumourigenesis in MM 

cells and MM cells with high NIK levels are dependent on NIK. The survival 

signals induced by NIK are likely to be through activation of both the 

canonical and non-canonical NF-κB pathway signalling (Annunziata et al. 

2007; Demchenko et al. 2010). 

Deletion or inactivating mutations of the TRAF3 gene are common 

events in MM and are a characteristic of the RPMI8226 and U266B1 MM cell 

lines (Annunziata et al. 2007; Keats et al. 2007; Demchenko et al. 2010). U266B1 

cells possess a frame-shift mutation in TRAF3 that results in the transcribed 

TRAF3 protein lacking the functioning NIK-binding domain. On the other 

hand, the TRAF3 protein is undetectable in RPMI8226 cells due to a bi-allelic 

deletion of TRAF3. The TRAF3 deficiency present in both of these MM cell 

lines has been shown to contribute to their relatively high level of NF-κB 

activity (Annunziata et al. 2007; Keats et al. 2007; Demchenko et al. 2010). 

Furthermore, the JJN3 cell line possesses an activating unbalanced 

rearrangement of NIK that results in a NIK protein that lacks the TRAF3-

binding domain (Annunziata et al. 2007; Keats et al. 2007; Demchenko et al. 

2010). This means that, although TRAF3 is still expressed to a high level in 

JJN3 cells, the mutant NIK protein is unable to interact with TRAF3 and this 

gives rise to both NIK overexpression and increased NF-κB activity 

(Annunziata et al. 2007; Keats et al. 2007; Sasaki et al. 2008; Demchenko et al. 

2010). 

The over expression of NIK in U266B1, RPMI8226 and JJN3 MM cell 

lines likely contributes to their relatively increased NF-κB activity when 

compared to H929 as this is a MM cell line that does not possess NIK 

activating mutations (Annunziata et al. 2007; Keats et al. 2007; Demchenko et 

al. 2010). 

Therefore, my hypothesis was that the use of a novel NIK inhibitor, 

CW15337, may represent a promising strategy for the treatment of MM, 

particularly in the context of NIK activation. The specific aims of this chapter 
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were to evaluate the use of this pharmacological agent in terms of cytotoxicity, 

regulation of Mcl-1 expression and effect on NF-κB activity in the four MM 

cell lines, each representing different clinical features of MM. In addition, the 

relative effects of CW15337 on the transcription of genes that were 

significantly altered following exposure to the IKKα inhibiting SU compounds 

were also investigated. 

6.1. Cytotoxicity of CW15337 in MM cell lines 

NIK overexpression as a result of TRAF3 deficiency has been shown to 

enhance B cell survival through constitutive activation of the non-canonical 

NF-κB pathway that is independent of ligand activation (He et al. 2006; Xie et 

al. 2007; Gardam et al. 2008). Moreover, Annunziata et al. demonstrated that 

MM cell lines that overexpress NIK were sensitive to apoptosis induced by 

knockout of NIK (Annunziata et al. 2007). This suggests that NIK 

overexpression contributes to MM cell survival and MM cells with NIK 

overexpression become dependent on NIK for their survival. Additionally, 

several studies have demonstrated that NIK inhibition induces apoptosis in 

MM cell lines (Demchenko et al. 2014; Takeda et al. 2016). Therefore, the 

cytotoxicity of the novel NIK inhibitor, CW15337, was investigated in the 

four MM cell lines, H929, U266B1, RPMI8226 and JJN3, to investigate 

whether sensitivity to apoptosis would vary according to the TRAF3 and 

NIK status of each MM cell line.  

Each MM cell line was incubated with increasing concentrations of 

CW15337 ranging from 0.5µM to 10µM. At 48h, MM cells were harvested and 

washed in PBS before being labelled with Annexin V-FITC and PI. The 

labelled cells were then analysed using flow cytometry to determine the 

percentage of apoptosis (Annexin V+/PI- + Annexin V+/PI+ + Annexin V-

/PI+) occurring at each CW15337 concentration. Figure 6.1 shows the 

cytotoxicity of CW15337 at 48h in each MM cell line and the results shown 

are collated from three independent experiments. 

Figure 6.1 shows that the novel NIK inhibitor induced cytotoxicity in a 

concentration-dependent manner in all of the MM cell lines analysed. 
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Figure 6.1 The cytotoxicity of the NIK inhibitor CW15337 at 48h in MM cell lines.  
The MM cell lines H929, U266B1, RPMI8226 and JJN3 were treated with increasing 
concentrations of CW15337 between 0.5µM and 10µM. At 48h, cell death was 
measured using Annexin V/PI positivity on an Accuri C6 flow cytometer. The 
percentage of apoptotic cells at each concentration of CW15337 was then calculated 
and dose-response curves were constructed using GraphPad Prism 6.0. LD50 values 
were interpolated and are reported for each cell line alongside 95% CI. Error bars 
represent mean ± SD, where n = 3, triplicate.	  

 

Comparison of the LD50 values for each MM cell line shows that JJN3 was the 

most resistant cell line to apoptosis induced by CW15337 (LD50 = 2.38µM, 

95% CI [2.25µM, 2.52µM]). The LD50 values for H929 (LD50 = 1.44µM, 95% CI 

[1.34µM, 1.55µM]) and RPMI8226 (LD50 = 1.88µM, 95% CI [1.82µM, 1.94µM]) 
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are relatively similar and represent a relatively intermediate level of 

sensitivity to apoptosis in response to CW15337. 

Based on LD50 value alone, U266B1 (LD50 = 1.04µM, 95% CI [887nM, 

1.24µM]) was the most sensitive MM cell line to cytotoxicity induced by 

CW15337. However, Figure 6.1 shows that the dose-response curve for 

U266B1 plateaued at a level of apoptosis of 57.6% ± 7.52% at 10µM compared 

to the peak apoptosis for H929, RPMI8226 and JJN3 at 10µM (99.8% ± 0.1%, 

95.8% ± 2.0% and 99.4% ± 0.4%, respectively). This could either suggest a 

subset of cells within the U266B1 cell line that are inherently resistant to 

cytotoxicity induced by CW15337 or that there was a technical issue with the 

Annexin-V/PI labelling of this cell line. 

Therefore, to further explore this phenomenon, the raw flow 

cytometric data plots were investigated in more detail. Figure 6.2 shows a 

representative example of the collected raw data used to create the dose-

response curve shown for U266B1 in Figure 6.1. The first panel of scatter 

plots in Figure 6.2 shows the gating that was used to identify viable and 

apoptotic U266B1 cells based on their FSC-A and SSC-A profiles. The second 

panel shows the corresponding scatter plots of Annexin-V-FITC-H and PI-H 

that are used to more specifically evaluate cytotoxicity (Annexin V+/PI- (Q2-

LR) + Annexin V+/PI+ (Q2-UR) + Annexin V-/PI+ (Q1-UL)).  

Figure 6.2 highlights the inconsistency between the FSC-A and SSC-A 

profiles and the corresponding scatter plots of Annexin-V-FITC-H and PI-H 

in the U266B1 cell line following treatment with CW15337. The FSC-A and 

SSC-A profiles shown in Figure 6.2 indicate that U266B1 cells experience a 

more prominent dose-dependent increase in apoptosis induced by CW15337 

than was shown in Figure 6.1. The FSC-A and SSC-A profile for U266B1 cells 

treated with 10µM CW15337 shows that 94.1% of U266B1 cells had 

undergone FSC-A and SSC-A changes consistent with the induction of 

apoptosis. In contrast, the corresponding scatter plot of Annexin-V-FITC-H 

and PI-H in Figure 6.2 indicates that only 55.7% of U266B1 cells were 

apoptotic after 48h treatment with 10µM CW15337. 
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In conclusion, Figure 6.2 suggests that it was more likely an issue with 

the Annexin V-FITC and PI staining used to assess cell apoptosis in the 

U266B1, which resulted in an underestimation of the cytotoxicity of CW15337 

as calculated in Figure 6.1. There was no evidence to support the notion of a 

resistant sub-population of U266B1 cells. 

For this reason, the cytotoxicity of CW15337 in all MM cell lines was 

reassessed by calculating the percentage of apoptotic cells at 48h based on the 

FSC-A and SSC-A profiles measured by flow cytometry. The data used for 

calculating FSC-A and SSC-A apoptosis corresponds to the same three 

independent experiments that were used to create Figure 6.1. 

Overall, the LD50 values obtained through both the FSC-A and SSC-A 

viability method and the Annexin-V/PI positivity method were similar for 

the MM cell lines H929, RPMI8226 and JJN3 (Table 6.1). In addition, Figure 

6.3 shows that a linear regression analysis of LD50 values calculated using 

Annexin V/PI positivity and FSC-A and SSC-A apoptosis produced a 

correlation with a high linearity (r2 = 0.79). This indicates that both methods 

show strong concordance and it was appropriate to evaluate the cytotoxic 

effects if CW15337 using the FSC-A and SSC-A method. 

Therefore, Figure 6.4 shows the resulting dose-response curves plotted 

for each MM cell line using the FSC-A and SSC-A method of calculating 

apoptosis at each concentration of CW15337. Figure 6.4 shows that CW15337 

was cytotoxic in all the MM cell lines after 48h treatment in a dose-dependent 

manner. Figure 6.4 shows that in H929, U266B1, RPMI8226 and JJN3 cells, 

CW15337 induces a relatively similar maximum apoptosis at 10µM (99.5% ± 

0.1%, 94.9% ± 2.7%, 98.1% ± 0.9% and 99.5% ± 0.1%, respectively).  
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Table 6.1 Comparison between the LD50 values calculated using the FSC-A and 
SSC-A apoptosis method and the Annexin-V/PI positivity method of assessing 
apoptosis. The LD50 values for each of the two methods are shown for the H929, 
U266B1, RPMI8226 and JJN3 MM cell lines alongside 95% CI. 

 Annexin V/PI positivity FSC-A and SSC-A apoptosis  

H929 
LD50 = 1.44µM 

95% CI [1.43µM - 1.55µM] 

LD50 = 1.49µM 

95% CI [1.39µM - 1.60µM] 

U266B1 
LD50 = 1.04µM 

95% CI [877nM - 1.24µM] 

LD50 = 1.52µM 

95% CI [1.35µM - 1.71µM] 

RPMI8226 
LD50 = 1.88µM 

95% CI [1.83µM - 1.95µM] 

LD50 = 1.87µM 

95% CI [1.80µM - 1.95µM] 

JJN3 
LD50 = 2.38µM 

95% CI [2.25µM - 2.52µM] 

LD50 = 2.73µM 

95% CI [2.60µM - 2.87µM] 
	  
	  
	  
	  
	  
	  
	  
	  

   
 

Figure 6.3 Correlation of the LD50 values calculated using the Annexin-V/PI 
positivity and the FSC-A and SSC-A apoptosis method.  
The correlation between the LD50 values calculated using the Annexin-V/PI positivity 
and those calculated using the FSC-A and SSC-A apoptosis method was explored for 
the MM cell lines H929, U266B1, RPMI8226 and JJN3 using a linear regression 
analysis in Graphpad Prism 6.0. The points plotted represent the LD50 values 
calculated for each cell line using each method (n = 3). The resulting linearity (r2) is 
reported alongside the graph. 
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Figure 6.4 The cytotoxicity of CW15337 at 48h in the MM cell lines H929, U266B1, 
RPMI8226 and JJN3 when FSC-A and SSC-A are used to calculate apoptosis. 
The data shown in Figure 6.1 was re-analysed so that cell death was measured as a 
percentage of apoptotic cells at each concentration based on FSC-A and SSC-A gating. 
The percentage of apoptotic cells at each concentration of CW15337 was input into 
GraphPad Prism 6.0 and dose-response curves were constructed. LD50 values were 
interpolated and are reported for each cell line alongside 95% CI. Error bars represent 
mean ± SD, where n = 3, triplicate.	  
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apoptosis induced by CW15337. The LD50 value shown in Figure 6.4 for the 

JJN3 cell line (LD50 = 2.73µM, 95% CI [2.60µM - 2.87µM]) suggests that this 

MM cell line is the most resistant to apoptosis induced by CW15337.  

The relative sensitivity of each MM cell line to CW15337 is 

summarised in Figure 6.5, which shows the mean LD50 values alongside 95% 

CI generated using FSC-A and SSC-A method of calculating apoptosis for 

each MM cell line. In addition, a one-way ANOVA followed by a Tukey’s 

multiple comparison test was performed on the data to investigate the 

statistical difference between the LD50 values calculated for each MM cell 

line. Figure 6.5 shows that H929 and U266B1 cells do not experience a 

significantly different sensitivity to apoptosis induced by CW15337 (p = 

0.921). Furthermore, the LD50 value interpolated for the RPMI8226 cell line 

compared to that of the U266B1 cell line was also not significantly different (p 

= 0.125). However, Figure 6.5 also shows that the LD50 value calculated for 

the JJN3 cell line is significantly higher than the LD 50 value of the RPMI8226 

cell line in response to CW15337 treatment (p = 0.023). 

In conclusion, CW15337 was cytotoxic at 48h in all MM cell lines 

tested. For the MM cell lines H929, RPMI8226 and JJN3, the level of apoptosis 

calculated by both Annexin V-FITC and PI staining (Figure 6.1) and FSC-A 

and SSC-A profiles (Figure 6.4) showed a strong correlation (r2 = 0.84) (Figure 

6.3). However, Figure 6.1, 6.2 and 6.4 indicate that there was an issue with the 

Annexin V-FITC and PI staining used to calculate the cytotoxicity specifically 

in the U266B1 cell line in response to CW15337. To more accurately assess the 

cytotoxicity of the NIK inhibitor in U266B1 cells, and to more reliably 

compare the relative cytotoxic effects on the four cell lines, the FSC-A and 

SSC-A profiles were used to calculate apoptosis. By this method it was 

revealed that the H929, U266B1 and RPMI8226 MM cell lines shared a similar 

sensitivity to apoptosis induced by CW15337 (Figure 6.4 and Figure 6.5). 
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Figure 6.5 A summary of the relative sensitivity of each MM cell line to apoptosis 
induced by CW15337. 
The mean LD50 values generated through the FSC-A and SSC-A method of assessing 
apoptosis are shown for the MM cell lines H929, U266B1, RPMI8226 and JJN3 in 
response to increasing concentration of CW15337 for 48h. The results shown were 
interpolated using the dose-response curves in Figure 6.4 using Graphpad Prism 6.0. 
The values reported represent mean LD50 values ± 95% CI (µM) where n = 3, triplicate. 
A one-way ANOVA followed by a Tukey’s multiple comparison test was performed 
using Graphpad Prism 6.0 software to investigate the significant difference between 
the LD50 values calculated for the indicated cell lines. 
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6.2. CW15337 regulation of Mcl-1 expression in MM cell lines 

In myeloma cells, Mcl-1 expression plays a critical role in maintaining 

cell viability (Derenne et al. 2002; Zhang et al. 2002). Furthermore, high 

expression of Mcl-1 in cancer cell lines has been linked to constitutively high 

NF-κB activity (Liu et al. 2014). In addition, previous studies have 

demonstrated that inhibition of NF-κB activity is accompanied by the down 

regulation of Mcl-1 expression in MM cell lines and may precede the 

activation of apoptotic pathways (Meinel et al. 2010). Therefore, Mcl-1 

expression was quantified in MM cell lines after 4h incubation (prior to any 

evidence of apoptosis induction) with increasing concentrations of the NIK 

inhibitor, CW15337 to investigate whether NIK inhibition modulated the 

expression of Mcl-1 in the MM cell lines. 

MM cells from the MM cell lines H929, U266B1, RPMI8226 and JJN3 

were treated with CW15337 at concentrations of 0.5µM, 1µM, 2.5µM and 5µM. 

At 4h, cells from each MM cell line were harvested and then fixated and 

permeabilised before staining with an anti-Mcl-1-IgG1 antibody (Santa Cruz 

Biotechnology) followed by secondary labelling with a goat anti-mouse IgG1-

FITC antibody (Santa Cruz Biotechnology). The stained cells were then 

analysed using flow cytometry to quantify the intracellular Mcl-1 expression 

at each concentration of CW15337 in each MM cell line. 

A gating strategy was applied to the collected flow cytometric data to 

ensure that only viable, single MM cells were analysed. The serially gated 

MM cell populations were then assessed for Mcl-1 expression (MFI values) at 

each concentration of CW15337. Figure 6.6 shows the representative overlay 

histograms of Mcl-1 expression in each MM cell line for the untreated and 

5µM CW15337 treated MM cells at 4h. Figure 6.6 shows that all of the MM 

cell lines used have a relatively high baseline level of Mcl-1 expression. 

Moreover, all MM cell lines experience a similar decrease in Mcl-1 expression 

following 4h incubation with 5µM CW15337 relative to the untreated baseline 

level. 
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As all MM cell lines have a high expression of Mcl-1, the relationship 

between the specific baseline Mcl-1 expression and sensitivity to apoptosis 

induced by CW15337 treatment was investigated in each MM cell line. The 

aim of this was to evaluate whether baseline Mcl-1 expression could be a 

predictor of a MM cell lines response to NIK inhibition. The Mcl-1-FITC MFI 

in untreated MM cells was calculated and plotted against the mean LD50 

value interpolated for each MM cell line. A linear regression analysis was 

performed and the results are shown in Figure 6.7.  

Figure 6.7 shows that the H929 cell line possesses the highest average 

level of baseline Mcl-1 expression compared to the other three cell lines, 

although the error calculated was large. Figure 6.7 also shows that U266B1 

cells have the second highest level of average Mcl-1 expression that is 

relatively more similar to Mcl-1 expression in the H929 cell line. The 

RPMI8226 and JJN3 cell lines relatively have lower levels of average Mcl-1 

expression in untreated cells. Overall, the RPMI8226 cell line has the lowest 

baseline Mcl-1 expression of all the MM cell lines. The linear regression 

analysis indicates that there is a low negative correlation between the average 

baseline Mcl-1 expression and the calculated LD50 value in response to 

CW15337 for each MM cell line (r2 = 0.21), which indicates that baseline Mcl-1 

expression weakly determines MM cell line sensitivity to apoptosis induced 

through NIK inhibition. 
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Figure 6.6 Representative overlay histograms of Mcl-1 expression in MM cell lines 
after 4h exposure to the NIK inhibitor CW15337. 
Mcl-1 expression was investigated in H929, U266B1, RPMI8226 and JJN3 cells after 
treatment with increasing concentrations of CW15337. At 4h, intracellular Mcl-1 
expression was investigated by staining cells with an anti-Mcl-1-FITC conjugated 
antibody and the average MFI was measured by flow cytometry. To gain an accurate 
MFI for each cell surface marker, gating was applied to gate viable myeloma cells 
(P1) and exclude any doublets (P2). The resultant gating was used to create overlay 
histograms from which the MFI of Mcl-1 expression at each concentration could be 
determined. A representative overlay histogram is shown for each MM cell line after 
4h treatment with 5µM CW15337 (untreated = n, 5µM CW15337 = n). 
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Figure 6.7 Correlation between baseline Mcl-1 expression and the LD50 values 
calculated for apoptosis induced by CW15337 in each MM cell line.  
The relationship between the specific baseline Mcl-1 expression and sensitivity to 
apoptosis induced by CW15337 treatment was investigated in each MM cell line. The 
points plotted represent Mcl-1-FITC expression (MFI) (mean ± SD) against the LD50 
values calculated for apoptosis induced by CW15337 (LD50 value ± 95% CI) for each 
MM cell line (n = 3). A linear regression analysis was performed in Graphpad Prism 6 
and the resulting linearity (r2) is reported alongside the graph. 
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most consistent dose-dependent down-regulation of Mcl-1 expression 

compared to the other cell lines.  

Figure 6.8 shows that both U266B1 and JJN3 MM cells underwent a 

dose-dependent down-regulation of Mcl-1 expression, although this decrease 

was not significant when the highest concentration of CW15337 (5µM) was 

compared to untreated MM cells (p = 0.124 and p = 0.105, respectively). The 

dose-dependent decrease in Mcl-1 expression induced by CW15337 in JJN3 

cells is shown in Figure 6.8 to plateau following exposure to 2.5µM and 5µM 

CW15337 (58.6% ± 6.8% and 58.1% ± 6.4%, respectively) relative to untreated 

JJN3 cells. Figure 6.8 also indicates that the U266B1 cell line experienced a 

maximum decrease in Mcl-1 expression at 5µM similar to that of the JJN3 cell 

line, when compared to untreated Mcl-1 expression in each cell line (57.4% ± 

13.2% and 58.1% ± 6.4%, respectively). 

In conclusion, the NIK inhibitor significantly down-regulated Mcl-1 

expression in a dose-dependent manner in the MM cell lines H929 and 

RPMI8226 after 4h treatment. Moreover, the normalised change in overall 

Mcl-1 expression measured at 5µM CW15337 was relatively similar for each 

of the four MM cell lines. Therefore, Figure 6.6 and 6.8 suggest that NF-κB 

activity may be inhibited by CW15337 in each MM cell line at 4h in a dose-

dependent manner. 
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Figure 6.8 The dose-dependent regulation of Mcl-1 expression in MM cell lines 
after 4h treatment with CW15337. 
Mcl-1 expression was investigated in the H929, U266B1, RPMI8226 and JJN3 cell lines 
after treatment with increasing concentrations of CW15337 ranging from 0µM to 5µM. 
At 4h, intracellular Mcl-1 expression was investigated by staining cells with an anti-
Mcl-1-FITC conjugated antibody following fixation and permeabilisation. The Mcl-1-
FITC MFI at each concentration of SU compound was measured using an Accuri flow 
cytometer and normalised to the untreated control. A one-tailed unpaired t-test was 
performed using Graphpad Prism 6.0 software to investigate the statistical 
significance values between 0µM to 5µM of CW15337 in each MM cell line at 4h (n = 3, 
duplicates averaged). The results are reported above the graph (NS = not significant, p 
> 0.05).. Error bars represent SD where n = 3, duplicate and experimental duplicates 
are shown. 
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6.3. Inhibition of NF-κB activity by CW15337 

The association between cytotoxicity and the inhibition of constitutive 

NF-κB activity induced by CW15337 was investigated in more detail using an 

ELISA detecting the active NF-κB subunits p65, p50, p52 and RelB. These four 

subunits were specifically chosen because they would provide information as 

to whether NIK inhibition was effecting canonical or non-canonical 

generated NF-κB activity. The RPMI8226 MM cell line was used for these 

experiments because it had an intermediate level of constitutive NF-κB 

activity and also possessed a bi-allelic mutation in TRAF3 resulting in NIK 

activation. 

RPMI8226 cells were incubated with the NIK inhibitor at 

concentrations of 1µM, 2.5µM and 5µM. At 4h, RPMI8226 cells from each 

concentration of CW15337 were harvested and converted to nuclear extracts. 

1µg of RPMI8226 nuclear extract protein was assayed using the NF-κB family 

ELISA kit (Active Motif), as per the manufacturers instructions. Standard 

curves were generated alongside the assay using know quantities of 

recombinant p65 protein (r2 > 0.99) and recombinant p50 protein (r2 > 0.96) to 

allow NF-κB subunit quantification in nanograms per microgram of nuclear 

extract protein.  

Figure 6.9 shows the quantities of active p65, p50, p52 and RelB NF-κB 

subunit proteins in RPMI8226 cells following 4h treatment with CW15337 at 

concentrations of 1µM, 2.5µM and 5µM. The data shown consists of the 

collated data from three separate experiments where the individual nuclear 

extract samples were assayed in duplicate.  

Figure 6.9 shows that both the p52 and RelB subunits experienced a 

dose-dependent inhibition across all increasing concentrations of CW15337 in 

RPMI8226 cells, although only the RelB subunit experienced a significant 

decrease by 5µM CW15337 when compared to the untreated samples (p = 

0.002). 
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Conversely, the p65 and p50 NF-κB subunits did not show a 

significant change in nuclear protein levels following 5µM CW15337 relative 

to the untreated group (p = 0.269 and p = 0.224, respectively). Furthermore, 

no dose-dependent regulation of p65 and p50 was observed.  

Overall, Figure 6.9 demonstrates that 5µM CW15337 preferentially 

decreased the levels of p52 and RelB NF-κB subunits in a dose-dependent 

manner in RPMI8226 cells. The specific dose-dependent decrease of these 

subunits suggests that CW15337 predominantly inhibited the non-canonical 

NF-κB signalling pathway. 
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Figure 6.9 Effect of CW15337 on NF-κB activity in RPMI8226 MM cells at 4h. 
RPMI8226 cells were exposed to increasing concentrations of CW15337 for 4h. 
RPMI8226 cells were then harvested and used to generate nuclear extract samples. 
The MM cell line was then assayed at 1µg/well of nuclear extract protein using 
ELISAs detecting the active NF-κB subunits p50, p65, p52 and RelB. A one-tailed 
unpaired t-test was performed using Graphpad Prism 6.0 software to investigate the 
statistical significance values between 0µM to 5µM for CW15337 in RPMI8226 cells for 
each NF-κB subunit (n = 3, duplicates averaged). The results are reported above the 
graph (NS = not significant, p > 0.05). Values reported are mean ± SD produced from 
duplicate measurements where n = 3, experimental duplicates shown. 
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6.4. Gene expression following CW15337 treatment using qRT-
PCR 

NIK mainly regulates NF-κB activity through the activation of IKKα, 

which subsequently activates the non-canonical signalling pathway (Ling et 

al. 1998; Senftleben et al. 2001). Therefore, the effect of the NIK inhibitor on 

previously validated IKKα-regulated genes was compared with the IKKα 

inhibitory SU compounds using qRT-PCR analysis.  

The genes analysed included those identified as significantly altered 

following exposure to the SU compounds in the previous chapter (TRAF6, 

RIPK1, POLA2, SRSF7, POLR2A, SRSF6, OFD1, PRKCI, UBA2 and NSUN2). 

The effect of CW15337 (2.5µM) on specific gene transcription was assessed in 

RPMI8226 cells and the results compared with those obtained with SU1257, 

SU1053, SU1411, SU1438 and SU1349.  

Briefly, RPMI8226 cells were incubated alone and in the presence of 

2.5µM of CW15337. At 4h, cells were harvested from untreated and 2.5µM 

treated conditions to generate TRIzol® lysates that were subsequently 

processed to RNA extracts using an RNeasy mini kit (Qiagen), according to 

the manufacturers instructions. The eluted RNA was reverse transcribed into 

cDNA using a high capacity cDNA reverse transcription kit (Applied 

Biosystems). A reaction master mix was prepared for each primer pair 

containing the cDNA, primer pairs and SYBR® Green I dye and this was 

loaded into the wells of a 96-well reaction plate. The reaction plate was then 

analysed using ViiA™ 7 Real-Time PCR System (Applied BioSystems). The 

qRT-PCR results were used to generate the relative fold change in each target 

gene using the 2-ΔΔCt method (Livak a Schmittgen 2001) where the 

endogenous control gene was RSP14. 

The 2-ΔΔCt fold change for each of the 10 genes analysed using qRT-

PCR following treatment with 2.5µM CW15337 for 4h in RPMI8226 cells are 

shown in the heatmap in Figure 6.10. The results are shown alongside the 

qRT-PCR data previously produced for the SU compounds SU1257, 

209



	  

	  

	  Fi
gu

re
 

6.
10

 
q

R
T

-P
C

R
 

an
al

ys
is

 
of

 
th

e 
10

 
D

E
 

m
ic

ro
ar

ra
y 

ge
n

es
 

in
 

R
P

M
I8

22
6 

ce
ll

s 
af

te
r 

4h
 

tr
ea

tm
en

t 
w

it
h

 
2.

5µ
M

 
C

W
15

33
7.

 
T

he
 

10
 

D
E

 
ge

ne
s 

pi
ck

ed
 

fr
om

 
th

e 
re

su
lt

s 
of

 
th

e 
m

ic
ro

ar
ra

y 
an

al
ys

is
 

w
er

e 
qu

an
ti

fi
ed

 u
si

ng
 q

R
T

-P
C

R
 

fo
llo

w
in

g 
tr

ea
tm

en
t 

w
it

h 
2.

5µ
M

 C
W

15
33

7 
fo

r 
4h

 i
n 

R
PM

I8
22

6 
ce

lls
. 

T
he

 
fo

ld
 

ch
an

ge
s 

re
po

rt
ed

 
w

er
e 

ca
lc

ul
at

ed
 

us
in

g 
2-
ΔΔ

C
t  

m
et

ho
d

. 
T

he
 

en
d

og
en

ou
s 

co
nt

ro
l 

us
ed

 
fo

r 
th

e 
ca

lc
ul

at
io

n 
w

as
 

R
SP

14
. 

A
 

he
at

m
ap

 w
as

 p
lo

tt
ed

 o
f 

th
e 

fo
ld

 
ch

an
ge

 
w

he
re

 
n=

3,
 

d
up

lic
at

e.
 

T
he

 
re

su
lt

s 
sh

ow
n 

pr
ev

io
us

ly
 

fo
r 

th
e 

SU
 

co
m

po
un

d
s 

SU
12

57
, 

SU
10

53
, 

SU
14

38
, 

SU
14

11
 

an
d

 
SU

13
49

 
ha

ve
 

be
en

 
pl

ac
ed

 a
lo

ng
si

d
e 

C
W

15
33

7 
fo

r 
co

m
pa

ri
so

n.
 

210



	  

	  

SU1053, SU1438, SU1411 and SU1349 in RPMI8226 cells to allow for a side-

by-side comparison of the effect of each compound on specific gene 

regulation. The results shown for the NIK inhibitor represent three separate 

experiments that were analysed in duplicate in the qRT-PCR.  

Figure 6.10 shows that CW15337 has a regulatory profile that 

possesses the most similarities with the three most cytotoxic SU compounds 

(SU1438, SU1411 and SU1349). Moreover, CW15337 appeared to encompass a 

combination of all three of the SU compounds’ regulatory profiles. For this 

reason, the statistical significance values were investigated using a Two-way 

ANOVA to compare the fold change in gene transcription that CW15337 

treatment induced with the fold changes induced by SU1438, SU1411 and 

SU1349 treatment for each of the 10 genes measured using qRT-PCR. Table 

6.2 displays the results of this analysis. 

Figure 6.10 shows that CW15337 treatment caused a similar down 

regulation in RIPK1, POLA2, SRSF7 and SRSF6 as that induced by SU1349. 

However, the average fold change in RIPK1, POLA2 and SRSF6 induced by 

CW15337 (-9.6 ± 3.2, -18.3 ± 8.1 and -10.7 ± 2.8, respectively) was relatively 

higher than that induced by SU1349 (-7.1 ± 6.0, -11.1 ± 12.2 and -6.1 ± 1.5, 

respectively), although Table 6.2 shows that only POLA2 was significantly (p 

= 0.0031) altered by CW15337 compared to SU1349. In contrast, CW15337 

induced significantly less change in the transcription of SRSF7 when 

compared to SU1349 down regulation (-5.8 ± 2.5 and -13.7 ± 13.3, 

respectively, p = 0.0009). However, this could be due to the relatively large 

variation in SU1349 qRT-PCR replicate samples skewing the average fold 

change. Moreover, TRAF6 gene transcription was most markedly decreased 

following treatment with SU1349 (-6.3 ± 1.7), although this was not 

significantly different when compared to CW15337 (p = 0.74). Moreover, the 

changes in TRAF6 induced by CW15337 were more similar to the fold change 

observed with SU1438 (-3.7 ± 0.5 and -3.8 ± 1.2, respectively, p > 0.99). 
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Table 6.2 Two-way ANOVA comparing the fold change in the transcription of each 
gene induced by CW15337 with fold change induced by SU1438, SU1411 and 
SU1349. 
A two-way ANOVA followed by Tukey’s multiple comparisons test was performed 
in Graphpad Prism to investigate the statistical significance values between the fold 
change in gene transcription that CW15337 treatment induced compared with the fold 
changes induced by SU1438, SU1411 and SU1349 as measured using qRT-PCR (n = 3). 
The adjusted p value and the resulting significance summary (p ≤ 0.05 = *, p ≤ 0.01 = 
**, p ≤ 0.001 = *** and p ≤ 0.0001 = ****) are reported for each comparison. 

  Adjusted p value Summary 

TRAF6 
CW15337 vs. SU1438 > 0.9999 ns 
CW15337 vs. SU1411 0.9668 ns 
CW15337 vs. SU1349 0.7393 ns 

 

RIPK1 
CW15337 vs. SU1438 0.1936 ns 
CW15337 vs. SU1411 0.0016 ** 
CW15337 vs. SU1349 0.7476 ns 

 

POLA2 
CW15337 vs. SU1438 < 0.0001 **** 
CW15337 vs. SU1411 < 0.0001 **** 
CW15337 vs. SU1349 0.0031 ** 

 

SRSF7 
CW15337 vs. SU1438 0.9963 ns 
CW15337 vs. SU1411 0.9516 ns 
CW15337 vs. SU1349 0.0009 *** 

 

POLR2A 
CW15337 vs. SU1438 0.8916 ns 
CW15337 vs. SU1411 0.174 ns 
CW15337 vs. SU1349 0.906 ns 

 

SRSF6 
CW15337 vs. SU1438 0.0653 ns 
CW15337 vs. SU1411 0.0032 ** 
CW15337 vs. SU1349 0.1596 ns 

 

OFD1 
CW15337 vs. SU1438 0.9753 ns 
CW15337 vs. SU1411 > 0.9999 ns 
CW15337 vs. SU1349 > 0.9999 ns 

 

PRKCI 
CW15337 vs. SU1438 0.9158 ns 
CW15337 vs. SU1411 0.7417 ns 
CW15337 vs. SU1349 0.6092 ns 

 

UBA2 
CW15337 vs. SU1438 0.9995 ns 
CW15337 vs. SU1411 > 0.9999 ns 
CW15337 vs. SU1349 0.9998 ns 

 

NSUN2 
CW15337 vs. SU1438 0.9994 ns 
CW15337 vs. SU1411 > 0.9999 ns 
CW15337 vs. SU1349 0.7418 ns 
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In addition, Figure 6.10 shows that CW15337 decreased the expression 

of POLR2A, OFD1, PRKCI, UBA2 and NSUN2, which were previously found 

to be genes that were repressed by treatment with SU1438 and SU1411. 

Moreover, Table 6.2 shows that the magnitude of the fold changes induced 

by CW15337 in these five genes was not significantly different to those 

induced by SU1438 and SU1411 gene regulation. The fold change in POLR2A 

that CW15337 induced (-7.02 ± 2.2) was marginally higher than that induced 

by SU1438 (-5.0 ± 2.3) and SU1411 (-2.6 ± 0.4) in RPMI8226 cells. The average 

fold change of OFD1, UBA2 and NSUN2 genes induced by CW15337 (-3.0 ± 

0.8, -3.4 ± 0.8 and -5.0 ± 1.4, respectively) were more similar to those caused 

by treatment with SU1411 (-3.3 ± 0.8, -3.6 ± 0.3 and -5.1 ± 0.9, respectively). 

The relative transcription of PRKCI showed an average fold change in 

response to CW15337 (-4.4 ± 2.1) that was relatively smaller than that induced 

by both SU1438 (-6.3 ± 3.9) and SU1411 (-7.0 ± 2.2). 

In conclusion, Figure 6.10 suggests that CW15337 is a potent regulator 

of the 10 SU compound associated genes. The CW15337 down regulated both 

SU1349 and SU1438/SU1411 associated genes and for the RIPK1, POLA2, 

POLR2A and SRSF6 genes the down regulation measured was relatively 

more pronounced. Taken together, these data indicate that CW15337 has a 

similar effect on the transcriptional programme of a selected subset of genes 

in RPMI8226 cells when compared with the IKKα inhibitors SU1438, SU1411 

and SU1349. 

6.5. Discussion 

The use of a novel NIK inhibitor, CW15337 was evaluated in four MM 

cell lines, each representing different NF-κB signatures due to the lack or 

presence of genetic abnormalities effecting NIK. Cytotoxicity was first 

assessed in all MM cell lines after 48h incubation with increasing 

concentrations of CW15337. The U266B1, RPMI8226 and JJN3 MM cell lines 

manifest constitutive NF-κB activity and possess increased expression of 

NIK, either due to activating mutations of NIK itself or due to the loss of a 

TRAF3 binding domain. Consequently, it was hypothesised that these three 
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MM cell lines may be more susceptible to cytotoxicity induced by NIK 

inhibition. 

CW15337 was cytotoxic in all four MM cell lines at 48h in a 

concentration-dependent manner, although the sensitivity to apoptosis 

induced by the NIK inhibitor was heterogeneous between the MM cell lines. 

Contrary to the proposed hypothesis, the H929 cell line was the most 

sensitive to the cytotoxic effects of the NIK inhibitor CW15337 whereas the 

JJN3 cell line was relatively more resistant. The U266B1 and RPMI8226 cell 

lines showed intermediate sensitivity to CW15337-induced apoptosis. 

Overall, this indicates that those MM cell lines containing TRAF3 inactivating 

or NIK activating mutations, which give rise to NIK dependency, were 

comparatively more resistant to cytotoxicity induced by CW15337 NIK 

inhibition. Moreover, NIK inhibition is more cytotoxic in the NIK 

independent MM cell line H929. 

This correlates with the study by Demchenko et al. who also showed 

that NIK inhibition by two novel NIK inhibitors in MM cell lines possessing 

more NIK protein were less sensitive to cytotoxicity induced by NIK 

inhibition compared to those MM cell lines that contained less NIK protein 

(Demchenko et al. 2014). In contrast, the same study demonstrated that NIK 

independent MM cell lines, such as H929, did not experience a decrease in 

viability in response to NIK inhibition. In addition, the cytotoxicity results for 

CW15337 also contrast with those obtained by Annunziata et al. who 

determined that NIK silencing in the NIK dependent MM cell line JJN3 was 

cytotoxic but did not induce cytotoxicity in the H929 MM cell line 

(Annunziata et al. 2007). Therefore, the finding that H929 was the most 

sensitive MM cell line to cytotoxicity induced by the NIK inhibitor is contrary 

to previous studies. However, the dichotomy between the data in this thesis 

and the existing literature may be a consequence of the off-target effects of 

CW15337. For example, the kinome screening data shown in Appendix 

Figure XV demonstrates that CW15337 has many kinase targets, including 

JAK2 and MAP4K2.  
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The results in Chapter 3 revealed that H929 had the lowest 

constitutive level of NF-κB activity, whereas U266B1 and RPMI8226 

possessed intermediate levels although U266B1 cells showed NF-κB activity 

closer to that of the H929 cell line. The JJN3 cell line possessed the highest 

level of NF-κB activity of the four cell lines and was the most resistant to the 

effects of CW15337. Therefore, the pattern of CW15337 cytotoxicity was 

inversely correlated with the level of NF-κB activity possessed by each MM 

cell line. An explanation for this could relate to the function of NF-κB because 

the transcription factor regulates genes involved in anti-apoptosis (Gilmore 

2007; Demchenko a Kuehl 2010). Therefore, cells with more NF-κB activity 

may be able to resist the inhibition caused by CW15337 by first depleting its 

increased reserves that act to buffer the induced cell death. However, this 

does not fully explain why the results for H929 differ from previous findings. 

To begin exploring the effect of NIK inhibition on NF-κB activity, the 

CW15337 dose-dependent regulation of Mcl-1 expression at 4h was 

quantified in each MM cell line. Mcl-1 is an anti-apoptotic protein that must 

be maintained in MM cells to sustain viability (Derenne et al. 2002; Zhang et 

al. 2002). In addition, inhibition of NF-κB activity is accompanied by the 

down-regulation of Mcl-1 expression and may contribute to the activation of 

apoptotic pathways (Meinel et al. 2010).  

The baseline Mcl-1 expression was quantified in the MM cell lines and 

was shown to be expressed in all four cell lines. This was consistent with each 

MM cell line possessing a constitutive level of NF-κB activity (Liu et al. 2014). 

Moreover, all MM cell lines experienced a dose-dependent decrease in Mcl-1 

expression relative to untreated myeloma cells in response to 4h incubation 

with CW15337. This was accompanied by a highly significant decrease in 

Mcl-1 expression in the H929 and RPMI8226 MM cell lines at the highest 

concentration of CW15337 (5µM) relative to the untreated control. However, 

the percentage of change in Mcl-1 expression at 5µM was relatively similar 

between the MM cell lines and did not correlate with the cell line specific 

pattern of sensitivity to apoptosis induced by CW15337. Nevertheless, linear 

regression analysis revealed a weak negative correlation between baseline 
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Mcl-1 expression and LD50 value calculated through apoptosis induced by 

CW15337 in the MM cell lines. This suggests that baseline Mcl-1 expression 

may be a predictor of cytotoxic sensitivity to NIK inhibition, although more 

data would be required to make a robust conclusion, preferably in primary 

MM cells rather than cell lines. 

The levels of other anti-apoptotic proteins, such as Bcl-XL, have also 

been shown to correlate with constitutive NF-κB activity induced by NIK 

overexpression in B cells (Sasaki et al. 2008). Similar to the results obtained 

for Mcl-1 in response to CW15337, Bcl-XL was down regulated by NIK 

inhibition in MM cell lines and this corresponded with apoptosis and a 

decrease in NF-κB activity (Takeda et al. 2016). Bcl-XL expression was not 

measured in this present study so it remains unclear whether CW15337 also 

induces a decrease in the expression of this anti-apoptotic protein. However, 

the significant dose-dependent decrease in Mcl-1 expression observed 

suggests that CW15337 NIK inhibition may correspond with a decrease in 

NF-κB activity in the MM cell lines tested, which may contribute to the 

cytotoxicity of CW15337. 

For this reason, the dose-dependent effect of CW15337 on NF-κB 

activity was investigated in more detail using an ELISA detecting the active 

NF-κB subunits p65, p50, p52 and RelB in the MM cell line RPMI8226. The 

results demonstrated that only the non-canonical NF-κB pathway 

experienced a concentration-dependent decrease, although only the RelB 

subunit was significantly affected by NIK inhibition by CW15337. However, 

as already discussed, the ELISA possessed caveats that meant that it might 

not have been an appropriate tool to quantify CW15337 inhibition of NF-κB 

activity. Therefore, western blotting could have been used as an additional 

tool to fully characterise the effect that CW15337 induced on NF-κB 

pathway processing in RPMI8226 cells. More specifically, by quantifying 

phosphorylated p100, and total p100 and p52 proteins following treatment 

with CW15337, this technique could have provided definitive proof of non-

canonical pathway inhibition because p100 functions as both the precursor 

of p52 and a RelB-specific inhibitor.  
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NIK mainly regulates the activation of the non-canonical NF-κB 

pathway (Ling et al. 1998; He et al. 2006) so it is consistent that only p52 and 

RelB subunits would be down regulated by NIK inhibition. On the other 

hand, it has been suggested that NIK silencing or inhibition decreases the 

level of overall NF-κB activity generated through both canonical and non-

canonical signalling (Annunziata et al. 2007; Demchenko et al. 2014). At least 

in the RPMI8226 MM cell line used in this study, CW15337 did not 

significantly effect the canonical NF-κB pathway because the levels of p65 

and p50 are not significantly altered by NIK inhibition. 

Several studies have shown that the non-canonical pathway is the 

main NF-κB pathway that regulates anti-apoptotic pathways (He et al. 2006; 

Xie et al. 2007; Gardam et al. 2008). Therefore, it seems possible that 

CW15337-mediated inhibition of NIK, and hence the depletion of non-

canonical NF-κB signalling, may contribute to the induction of apoptosis in 

the MM cell lines. 

NIK is responsible for phosphorylating IKKα to activate the non-

canonical NF-κB pathway (Ling et al. 1998; Senftleben et al. 2001). Given that 

CW15337 inhibited only non-canonical NF-κB pathway activity, it was 

hypothesised that CW15337 may share mechanistic similarities with the SU 

compounds explored in this thesis, as they also inhibit non-canonical 

signalling through IKKα inhibition. To investigate this, the transcriptional 

inhibition pattern caused by exposure to the SU compounds were compared 

with CW15337 using qRT-PCR analysis. The qRT-PCR analysis suggested 

that CW15337 was also a potent regulator of the 10 SU compound associated 

genes. Furthermore, the gene expression profile for CW15337 was most 

similar to the three most cytotoxic SU compounds, SU1349, SU1411 and 

SU1438. However, four of the SU compound differentially regulated genes 

experienced a more marked down regulation in response to CW15337 

compared to their associated SU compounds. These genes included the 

SU1349 associated genes RIPK1 and POLA2 and also differentially expressed 

genes POLR2A and SRSF6 that are differentially regulated by both SU1349 

and SU1438.  
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To maintain experimental consistency and allow adequate 

comparison, gene expression was investigated in the RPMI8226 cell line 

following 4h 2.5µM CW15337. This concentration was chosen based on the 

average LD50 values obtained for the SU compounds in the RPMI8226, which 

were comparatively less cytotoxic than CW15337. This may contribute to the 

relatively more potent down regulation of the four genes observed following 

treatment with CW15337 but this is unlikely as other genes, such as TRAF6, 

SRSF7 and PRKCI, experienced a smaller fold change than that the gene 

associated SU compound. 

Overall, the comparison of CW15337 regulated gene expression with 

that of the SU compounds suggests that CW15337 had a similar gene 

expression profile to SU1349, SU1411 and SU1438. These were the three most 

cytotoxic SU compounds tested in this series and so this could suggest that 

all the pharmacological agents regulated similar pathways that contributed 

to their cytotoxic nature. However, CW15337 had a quantitatively distinct 

pattern of gene regulation to the SU compounds, suggesting that its 

mechanism of action may differ slightly from that of the IKKα inhibitors.  

The aim of this chapter was to investigate the use of a novel NIK 

inhibitor, CW15337, in four MM cell lines with different clinical features of 

MM to evaluate the potential of a NIK inhibitor as a therapeutic agent. This 

chapter has successfully shown that CW15337 was potently, and dose-

dependently, cytotoxic in all the MM cell lines tested and this was coupled 

with a dose-dependent down-regulation of the expression of the anti-

apoptotic protein Mcl-1. CW15337 dose-dependently inhibited only the non-

canonical NF-κB pathway, which likely contributes to the cytotoxic effect of 

the pharmacological agent.  
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Chapter 7 – Conclusions and final discussion 
7.1. Summary of key findings 

1. The commercially available non-specific NF-κB inhibitor BAY 11-7082 

was cytotoxic in all four MM cell lines tested, H929, U266B1, RPMI8226 

and JJN3, and the cytotoxicity of this agent was associated with 

inhibition of both the canonical and non-canonical NF-κB pathways. 

2. Most of the novel IKKα inhibitory SU compounds were dose-

dependently cytotoxic in RPMI8226 cells but their potency was not 

obviously related to either the inhibition of NF-κB or the down-

regulation of the anti-apoptotic protein Mcl-1. 

3. Characterisation of the SU compounds, excluding SU1257, showed that 

the effects induced by these agents could not be entirely explained by 

their kinase inhibitory profiles for IKKα, IKKβ and CDK9. 

4. Microarray analysis revealed qualitative and quantitative changes in 

gene expression induced by the individual SU compounds. Some of the 

genes affected were common to all the SU compounds tested and some 

were unique to individual SU compounds.  

5. 10 genes that were altered by treatment with the SU compounds were 

selected for qRT-PCR validation. 9/10 of the genes showed the same 

pattern of expression as that observed in the microarray analysis. 

6. The NIK inhibitor, CW15337, was dose-dependently cytotoxic in all four 

MM cell lines, although the apoptotic responses were heterogeneous. 

Cytotoxicity of CW15337 correlated with a dose-dependent decrease in 

both Mcl-1 expression and non-canonical NF-κB pathway in MM cell 

lines. Gene expression analysis using qRT-PCR showed that CW15337 

had a similar gene expression profile to the SU1349, SU1411 and SU1438 

IKKα inhibitory SU compounds, suggesting the possibility of a shared 

mechanism of action. 
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7.2. Final discussion 

7.2.1. Characterisation of NF-κB inhibitors in MM cell lines  
The work carried out in this thesis was the first project within our 

research group to use the four MM cell lines H929, U266B1, RPMI8226 and 

JJN3. Therefore, the initial step of this project involved characterisation of the 

MM cell lines in terms of growth characteristics, cell surface phenotype and 

NF-κB activity profiling. The aim was to gain an understanding of the 

individual characteristics of each MM cell line to allow planning of future 

experiments using these cell lines. The main finding of this section of work 

was that heterogeneity was observed between the four MM cell lines in all 

the characteristics evaluated; this was important as it reflected the 

heterogeneity that is commonly observed in MM.  

The key aim of this thesis was to characterise NF-κB inhibitors in the 

MM cell lines with a view to evaluate their use as therapeutic agents in this 

hematological malignancy. To achieve this, over the course of this thesis, a 

workflow was developed for characterising potential NF-κB inhibitors in MM 

cell lines. This workflow included assessment of cytotoxicity, NF-κB activity, 

the expression of the survival protein Mcl-1 and selected gene expression 

changes by qRT-PCR. A key step in this workflow was the investigation of a 

possible correlation between cytotoxicity and NF-κB activity. Using this 

workflow, the following inhibitors were investigated: the commercial non-

specific NF-κB inhibitor BAY 11-7082; a series of first-in-class IKKα inhibitors; 

and a novel NIK inhibitor in MM cell lines.  

8. When looked at together, this work supports the concept of NF-κB 

as a promising therapeutic target in MM. The non-specific NF-κB inhibitor 

BAY 11-7082, NIK inhibitor CW15337 and most of the SU compounds 

induced dose-dependent cytotoxicity in the MM cell lines. For BAY 11-7082 

and CW15337, the cytotoxicity correlated with significant and dose-

dependent changes in NF-κB activity. With respect to BAY 11-7082, a 

significant negative correlation existed between inhibition of all five nuclear 

NF-κB subunits and the induction of apoptosis, suggesting that inhibition of 

both the canonical and the non-canonical NF-κB pathways may contribute to 
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the apoptotic effect induced by BAY 11-7082 in the MM cell lines. However, it 

is more than likely that off-target inhibitory effects are responsible for the 

dose-dependent cytotoxicity of this agent as opposed to NF-κB inhibition 

(Lee et al. 2012; Rauert-Wunderlich et al. 2013; Strickson et al. 2013). By way 

of contrast, the NIK inhibitor, CW15337, significantly and dose-dependently 

down-regulated non-canonical NF-κB subunit activity in RPMI8226 cells, 

whereas canonical NF-κB subunits were not significantly affected by NIK 

inhibition. In addition, the apoptosis induced by CW15337 was accompanied 

by a dose-dependent decrease in Mcl-1 expression in all four MM cell lines. 

An interesting finding was that sensitivity of the MM cell lines to apoptosis 

induced by both BAY 11-7082 and CW15337 was heterogeneous, and was 

inversely associated with the baseline level of overall constitutive NF-κB 

activity that each MM cell line possessed. 

9. Characterisation of the SU compounds in the MM cell line 

RPMI8226 suggested that, unlike BAY 11-7082 and CW15337, the cytotoxicity 

of these agents did not correlate with the dose-dependent down-regulation of 

NF-κB activity or expression of the anti-apoptotic protein Mcl-1. 

Furthermore, the cytotoxicity of each compound could not be completely 

explained by their respective inhibitory profiles with regards to IKKα, IKKβ 

and CDK9 inhibition. For example, an interesting finding was that SU 

compounds that appeared to have comparable kinase inhibitory profiles, 

such as the potent IKKα inhibitors SU1053 and SU1349, were shown in 

Chapter 4 to induce contrasting levels of cytotoxicity in RPMI8226 cells. This 

suggested that the SU compounds, especially those with higher potency, 

inhibited other molecular targets, which contributed to their cytotoxicity. 

Moreover, the fact that SU1053 was one of the least cytotoxic SU compounds, 

despite its potency as an IKKα inhibitor, may suggest that targeting IKKα 

alone may not be sufficient for the effective treatment of MM. 

10. Therefore, to gain a deeper understanding of the mode of action of 

the SU compounds, global gene expression was investigated using an 

Affymetrix GeneChip® HTA 2.0 gene chips. The microarray analysis of the 

SU compounds tested revealed qualitative and quantitative changes in gene 
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expression. Some of the genes affected were common to all compounds and 

others were unique to each SU agent. Another key finding was that the 

number of genes that were differentially regulated by SU1349 was 

significantly much higher than the number regulated individually by 

SU1053, SU1438 and SU1411. Moreover, the pattern that emerged was that an 

increase in the number of differentially regulated genes correlated with the 

cytotoxicity of that SU agent in RPMI8226 cells. Therefore, it seems likely that 

the relatively increased cytotoxicity of some of the SU compounds, similar to 

BAY 11-7082 (Lee et al. 2012; Rauert-Wunderlich et al. 2013; Strickson et al. 

2013), is likely to arise as a consequence of off-target inhibitory effects.  

11. A selection of 10 genes were chosen based on their biological 

regulation by the SU compounds in RPMI8226 cells. These genes were used 

to successfully validate the microarray data using qRT-PCR and were also 

used to assess the relative effects of CW15337 in the same cell line. 

Comparative analysis of these 10 genes showed that CW15337 had a similar 

effect to SU1349, SU1411 and SU1438, which were the three more cytotoxic 

SU compounds. However, CW15337 had a quantitatively distinct pattern of 

gene regulation when compared to the SU compounds, suggesting that its 

mechanism of action may differ slightly from that of the IKKα inhibitors. This 

was confirmed by the fact that CW15337 only inhibited the non-canonical 

pathway signalling, whereas the SU compounds inhibited both the canonical 

and non-canonical NF-κB pathways. On the other hand, Supplementary 

Figure XV demonstrates that CW15337 has many kinase targets, including 

JAK2 and MAP4K2, which may contribute to the comparatively different 

regulation of the 10 genes selected from the microarray analysis. For this 

reason, a genome-wide investigation of the effects of CW15337 is merited to 

investigate whether, similar to BAY 11-7082 (Lee et al. 2012; Rauert-

Wunderlich et al. 2013; Strickson et al. 2013) and SU1349, more off-target 

inhibition is evident. 

12. Overall, the data in this thesis shows that the novel NIK inhibitor 

CW15337 was comparatively more potent at inducing cytotoxicity in the MM 

cell lines when compared to the non-specific pan IKK inhibitor BAY 11-7082 
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and the novel IKKα inhibitors evaluated in this project. Moreover, relative to 

the SU compounds, CW15337 was a more potent inhibitor of Mcl-1 

expression and induced more selective inhibition of the non-canonical NF-κB 

pathway in MM cell lines, which likely contributes to the apoptotic effect of 

this agent. Therefore, the data presented in this thesis would suggest that 

NIK inhibition represents a promising therapeutic strategy for targeting MM. 

7.2.2. Limitations of this study and suggested future work 
The initial hypothesis for the work surrounding the evaluation of NF-

κB inhibitors in MM, was that the MM cell lines that possessed a high-level of 

NF-κB activity would be inherently more dependent on these signalling 

pathways for survival. Therefore, NF-κB inhibition would selectively target 

MM cells that relied more heavily on constitutive NF-κB activity. This is 

sometimes referred to as oncogene addiction (Torti a Trusolino 2011). An 

interesting finding of this thesis was that MM cell lines that possessed a 

relatively high level of constitutive NF-κB activity were comparatively more 

resistant to apoptosis induced by the non-specific NF-κB inhibitor BAY 11-

7082 and the NIK inhibitor CW15337. This could potentially present a flaw in 

the rationale for targeting MM using specific NF-κB inhibitors and may 

indicate that cells that possess lower levels of NF-κB activity, such as non-

malignant cells, may be sensitive to NF-κB inhibition, resulting in adverse 

toxicity. For this reason, one of the next steps for this work would be to 

evaluate the use of the novel SU compounds and CW15337 in normal B-cells 

to determine whether a positive therapeutic index exists between malignant 

cells and normal cells. 

A more complete structure activity analysis would also be important; 

this was not possible in the present study as the chemical structures of the 

individual SU compounds were not divulged due to outstanding intellectual 

property issues. Furthermore, the kinase inhibitory profile data, kindly 

provided by Prof. Simon Mackay, only included information on IKKα, IKKβ 

and CDK9. This means that it is possible that these agents may potently 

inhibit other targets, including other kinases, which might explain the 

findings reported in this thesis.  
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A critique of the work carried in this thesis would be the dominant use 

of MM cell lines as opposed to primary material. Initially, I planned to use 

primary MM cells derived from patients to provide a more realistic 

evaluation of the NF-κB inhibitors. However, it became apparent in the 

earlier stages of this project that the experiments used to characterise the NF-

κB inhibitors used a relatively large number of cells, which made routine use 

of clinical samples impossible.  

Consequently, the RPMI8226 cell line was used for the characterisation 

of the SU compounds. I would have liked to also evaluate the SU compounds 

in the other MM cell lines to allow a comparison of their sensitivity and to 

investigate whether, like BAY 11-7082 and CW15337, the sensitivity to 

apoptosis induced by the SU compounds varied between these cell lines. 

However, the time constraints of this project pressed me into selecting a 

‘representative’ MM cell line to allow appropriate evaluation of the nine 

novel SU compounds. RPMI8226 was chosen because this cell line was found 

to possess an intermediate level of constitutive NF-κB activity (Chapter 3) 

and possessed genetic abnormalities associated with constitutive non-

canonical NF-κB signalling (Annunziata et al. 2007; Keats et al. 2007; 

Demchenko et al. 2010). Another reason why the RPMI8226 cell line was 

chosen for the SU compound characterisation was that this MM cell line was 

found to express CD40, and CD40L stimulation induced a significant increase 

in both the canonical and non-canonical NF-κB activity. Interaction of 

malignant plasma cells with the BMM provides a supportive tumour 

environment, and CD40L stimulation is one factor that contributes to this 

effect in vivo (Coope et al. 2002; Tai et al. 2003; Hauer et al. 2005). Therefore, 

further work could include investigating the role that prior CD40L 

stimulation has on the sensitivity of the RPMI8226 cell line to apoptosis 

induced by the NF-κB inhibitors evaluated throughout this thesis. This 

would address the question as to whether increased NF-κB activity could 

increase the resistance of this cell line to cytotoxicity induced by the NF-κB 

inhibitors, and may highlight the role of the tumour microenvironment in 

protecting MM cells from potential therapies targeting the NF-κB pathway. 
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Another limitation of the work carried out in this thesis is the 

dependence on the techniques EMSA and ELISA to characterise NF-κB 

activity in the four MM cell lines, and the dependence mainly on ELISA to 

quantify the effect of the NF-κB inhibitors in the MM cell line RPMI8226. As 

discussed throughout this thesis, the ELISA potentially possessed caveats 

that meant that the sole use of this technique might not have been 

appropriate to fully answer the research questions posed. As shown briefly in 

Chapter 4, by using the right combination of antibodies (p-p100, p100, p52, 

IκBα and p-p65), western blotting could have provided more in depth 

information about specific NF-κB pathway processing. For this reason, it 

would have been more appropriate to have used western blotting as an 

additional or replacement technique for more definitively determining both 

canonical and non-canonical NF-κB pathway processing in the MM cell lines 

at baseline, and following treatment with the NF-κB inhibitors.  

Despite the limitations already described, this study produced the first 

genome-wide microarray dataset analysing the use of novel IKKα inhibitors 

in MM. The analysis performed in this thesis focused on the DE gene 

expression induced by the SU compounds. Therefore, many other parts of the 

dataset could be analysed including alternate splicing events, various 

microRNA and more analysis of the pathways indicated by regulation of DE 

genes. This would potentially allow a greater understanding of the effects of 

the SU compounds in MM.  

7.2.3. The future of NF-κB targeting in the treatment of MM 
Overall, my final thoughts are that targeting the NF-κB pathways in 

MM could be described as a double-edged sword. Although targeting NF-κB 

may provide a promising therapeutic strategy for the treatment of MM due 

to the reliance that this disease has on NF-κB activation, NF-κB is involved in 

the regulation of a number of biological processes and global inhibition of 

NF-κB has been shown to induce a number of toxicities related to immune 

suppression and inflammation (DiDonato et al. 2012). Therefore, the 

development of NF-κB inhibitors that selectively target specific components 
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of the NF-κB pathway could potentially minimise the serious toxicities that 

are associated with global inhibition.  

In keeping with this concept, multiple IKKβ inhibitors have been 

shown to be moderately successful in targeting MM (Hideshima et al. 2002; 

Bharti et al. 2003; Hideshima et al. 2006; Annunziata et al. 2007; Jourdan et al. 

2007; Hideshima et al. 2009). However, concerns over their safety profiles has 

prevented further development of these specific agents (Li et al. 1999a; Li et 

al. 1999b; Tanaka et al. 1999; Greten et al. 2007; Vallabhapurapu a Karin 2009; 

Hsu et al. 2011). For this reason, specific inhibition of the non-canonical NF-

κB pathway may provide an alternative method for therapeutically targeting 

MM.  

On the other hand, this thesis indicates that targeting IKKα alone may 

not provide a suitable treatment for MM, and instead inhibiting the non-

canonical NF-κB pathway using specific NIK inhibitors, such as CW15337, 

may be more beneficial. However, more work is required to understand the 

effects that NIK inhibition may have on non-malignant cells, to avoid adverse 

toxicities, and explore the protective role that the tumour microenvironment 

may play in protecting MM cells from the anti-tumour effects of NIK 

inhibition. Due to the heterogenic nature of MM, the use of NIK inhibitors 

should be evaluated in a larger selection of MM cell lines and MM patient 

samples to determine the range of responses to NIK inhibition. This could 

help to identify patient characteristics, stage and/or genetic abnormalities 

that identify patients who might benefit from frontline treatment with a NIK 

inhibiting agent. This would be particularly beneficial if NIK inhibition was 

found to be effective in the high-risk MM patient group because in this 

patient population progression-free survival is limited (Kumar et al. 2008; 

Naymagon a Abdul-Hay 2016). 

Further to the above, the use of a both IKKα and NIK inhibitors should 

be explored in combination with the current MM treatments such as 

bortezomib, pomalidomide and dexamethasone, all of which have been 

suggested to act synergistically with specific NF-κB inhibitors (Keifer et al. 
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2001; Mitsiades et al. 2002a; Mitsiades et al. 2002c). Bortezomib and IKKα or 

NIK inhibitors would be particularly interesting combinations to investigate 

in MM because Bortezomib has been shown to induce some of its therapeutic 

activity through the inhibition of the canonical NF-κB signalling pathway 

(Hideshima et al. 2001; Hideshima et al. 2002). Therefore, this combination 

may inhibit global NF-κB inhibition in MM to induce the most extreme anti-

cancer effects while providing the potential to minimise adverse events. This 

may provide the most efficacious treatment combination to eradicate MM 

cells and prevent the emergence of treatment resistant sub-clonal populations 

in MM, which usually leads to patient relapse or refractory disease (Egan et 

al. 2012; Magrangeas et al. 2013).  
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Table I Down-regulated DE genes unique to the UT vs. SU1349 contrast. 
The genes represented in this list correspond to the 419 DE genes referred to in Figure 
5.7. 

ADSS CASP2 DHX57 GNL2 
AHCTF1 CASP3 DIMT1 GOLPH3L 
AIMP2 CCDC101 DNAJA1 GPAM 
AKAP9 CCDC117 DNAJB1 GPATCH1 
AKTIP CCDC138 DOLK GPR135 
ALAS1 CCNE2 DOLPP1 GRWD1 
AMD1 CCNF DPH2 GTF2A1 
ANKRD10-IT1 CCP110 DYNC1LI1 GTPBP8 
ANKRD13C CCR2 E2F6 GXYLT1 
ANKRD32 CDC23 E2F7 H3F3B 
ANLN CDC25A E2F8 HCFC2 
APEX2 CDC40 EEA1 HCP5 
ARHGAP11A CDC5L EFNA4 HEATR6 
ARHGAP11B CDC6 EIF2AK3 HELB 
ARL13B CDC7 EPC2 HEXIM1 
ASNSD1 CDCA7 ERRFI1 HMGCR 
ASTE1 CDK12 ESF1 HMGCS1 
ASXL2 CDK17 ETAA1 HSF2 
ASXL3 CDS1 EXO1 HSPA1A 
ATG14 CEBPZ F8A2 HSPA1B 
ATMIN CENPC1 FAM111B HSPA8 
ATP6V1B2 CEP152 FAM116A ICT1 
AURKA CEP350 FAM122A ID2 
B4GALT5 CEP85 FAM54A ID2B 
BAG2 CHD1 FAM59A IKZF5 
BCAS2 CHKA FAM72A IMP3 
BIRC3 CHML FAM72B INTS6 
BLZF1 CKAP2L FAM72C INTS7 
BORA CKS2 FAM72D ISCA1P1 
BRCA2 CLSPN FANCL IVNS1ABP 
BRWD1 CNTRL FANCM JMY 
C11orf82 COIL FASTKD1 KAT7 
C12orf29 COMMD2 FASTKD2 KBTBD8 
C12orf35 CREB1 FBXL3 KCNQ5-IT1 
C12orf4 CRNKL1 FBXO21 KCTD12 
C14orf135 CRY1 FBXO32 KDM4A 
C15orf23 CRYBG3 FERMT1 KIAA1731 
C15orf42 CXCR4 FIGNL1 KIF11 
C16orf70 DBR1 FLJ27352 KIF18A 
C18orf54 DCLRE1A FTSJ3 KIF20B 
C1orf135 DDX10 GCLC KIF21A 
C21orf91 DDX20 GDPGP1 KIF23 
C2orf44 DDX3X GEN1 KIF2C 
C2orf69 DDX52 GLMN KIF5B 
C7orf26 DENND4C GMNN KLHL11 
CAMSAP2 DHX36 GMPS KLHL12 
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KLHL20 MTERFD1 PRDM4 SMEK1 
KRIT1 MTF2 PRIM1 SMG8 
LDLR MTIF2 PRPF39 SMURF2 
LEO1 MYB PRRG4 SMYD5 
LMTK2 MYNN PTCD2 SNORA81 
LOC100190986 NABP1 RAD17 SNORD1B 
LOC100288842 NBN RBBP5 SNORD75 
LOC100506294 NBPF1 RBL1 SPAST 
LOC643837 NBPF16 RBM25 SPOPL 
LONRF1 NBPF24 RBM28 SPTLC3 
LRIF1 NBPF8 RBM34 SRSF7 
LRIG2 NBPF9 RFWD3 STAG3L4 
LRIG3 NDUFAF4 RIOK1 STAM2 
LSG1 NKAP RIPK1 STIL 
MADD NLK RIPK2 SUCNR1 
MALT1 NOC3L RN5S82 SYNJ1 
MAP3K1 NOL11 RND3 SYNRG 
MARS2 NPAT RNF122 TACO1 
MAT2A NR1D1 RNU7-40P TADA1 
MB21D1 NRARP ROCK2 TAF1A 
MED19 NT5DC3 RPAP3 TAF4B 
MED21 NUAK2 RPF1 TAF5 
MED8 NUFIP1 RPF2 TAGAP 
MEPCE NUP153 RPP40 TDG 
METTL1 ORC5 RRP15 TFB2M 
METTL13 OSBPL11 RSBN1L TFRC 
METTL14 PANX1 RUNX1-IT1 TGFBR2 
METTL18 PAPOLG RYBP THOC1 
MGA PDP2 SAP130 THUMPD2 
MGC27345 PELI1 SASS6 TIMM22 
MGC57346 PGBD4 SELRC1 TIPIN 
MIER3 PHAX SETDB2 TLR4 
MINA PHLPP2 SGOL1 TMCO7 
MIR1184-1 PI4K2A SH2D4A TMEM138 
MIR1184-2 PIGA SHQ1 TMEM184C 
MIR1281 PIK3CB SIRT1 TMEM185B 
MIR186 PIK3R1 SKIL TMEM39A 
MIR4427 PLEKHA3 SLC19A2 TMEM60 
MIR4659A PLK4 SLC20A1 TMTC3 
MIR4737 PNRC2 SLC25A19 TNFRSF1B 
MIS18BP1 POC5 SLC25A33 TRAF6 
MLLT10 POGK SLC29A3 TRAFD1 
MORC3 POLA2 SLC35A1 TRIM59 
MOSPD1 POLR1B SLC35A5 TSC22D2 
MPV17L2 POLR1E SLC38A2 TTF1 
MRPL39 POLR3B SLC4A1AP TTK 
MSANTD4 POLR3C SLK TTPAL 
MSH6 PPIF SMARCAD1 TUBB4B 
MSMO1 PPWD1 PTCD2 SNORA81 
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MT1X PRAMEF2 RAD17 SNORD1B 
TUBD1 VANGL1 ZBTB41 ZNF518A 
TULP3 VEZF1 ZCCHC10 ZNF556 
UPF3B WDR47 ZCCHC8 ZNF600 
URB2 WDR76 ZFP36L2 ZNF614 
USP1 WDR89 ZNF10 ZNF770 
USP12 WEE1 ZNF184 ZNF776 
USP31 WSB1 ZNF280C ZNF93 
UTP11L YARS2 ZNF322 ZNHIT6 
UTP15 YEATS4 ZNF322P1 ZRANB1 
UTP18 ZBTB40 ZNF468 ZNF518A 
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
Table II Up-regulated DE genes unique to the UT vs. SU1349 contrast. 
The genes represented in this list correspond to the 83 DE genes referred to in Figure 
5.7. 

ACOT12 CSAD LAMB2P1 NEXN-AS1 
ACRC CTLA4 LAMB4 NPR3 
ADAM20P1 DDR2 LHFPL3-AS2 OMG 
ARL9 DIO2 LOC100128288 OOEP 
AVIL EFCAB8 LOC100506606 OR11H12 
BAAT EPHX3 LOC100506855 OR2AE1 
BCAR4 ERP27 LOC200726 OR2K2 
BCL2L10 FGF7 LOC339894 OR9A1P 
BTLA FNDC7 LOC348120 OR9A3P 
C12orf5 GOLGA6C LOC93432 PLAC8L1 
C14orf178 HMP19 LRGUK PLCL2-AS1 
C1orf138 HTR1D LRRTM2 PNLDC1 
C1orf162 ICOS LY6G5B PYGM 
C1orf189 IDI2 MGAM RFPL3-AS1 
C5orf47 IDI2-AS1 MGARP SERPINC1 
CASS4 IGKV4-1 MICALCL SLC22A1 
CCDC62 IGKV5-2 MIR4514 SLC23A1 
CDKL2 ITGA1 MSH4 SLC9C2 
COL14A1 ITGB1BP2 MSTN TMED6 
CPB2 KIAA0825 MYO5C VHLL 
CPLX4 KLRAP1 NEB  
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Table III Alternate DE genes for the UT vs. SU1349 contrast where Log2 (FC) ≥ 1.5 in 
both directions, and p ≤ 0.05. 
The genes represented in this list correspond to the 92 DE genes used in the Enrichr 
analysis for the UT vs. SU1349 contrast. The 58 down regulated DE genes (Log2 (FC) ≤ 
-1.5 and p ≤ 0.05) are shown on the left and the 34 up regulated DE genes (Log2 (FC) ≥ 
1.5 and p ≤ 0.05) are shown on the right.	  

Log2 (FC) ≤ -1.5 Log2 (FC) ≥ 1.5 
BLZF1 MED21 ACOT12 PLCL2-AS1 
C15orf42 MIER3 ACRC PNLDC1 
C2orf44 MIR4500 ADAM20P1 SLC10A5 
CCNE2 MIR4737 ARL9 TMED6 
CEP85 MTF2 BAAT VHLL 
CHKA MYNN C12orf5  
CKAP2L PAPOLG C1orf162  
CLSPN PIK3R1 C1orf189  
DIMT1 POC5 C5orf47  
DNAJB1 POLA2 CASS4  
EFNA4 POLR3B CPB2  
EPC2 RFXAP CPLX4  
EXO1 RIOK1 CTLA4  
FAM111B RIPK1 ERP27  
FAM72D RND3 ICOS  
GDPGP1 RPF2 IDI2-AS1  
HEATR3 RPP40 ITGA1  
HEATR6 SAP130 LHFPL3-AS2  
HELB SIRT1 LOC100128288  
HMGCR SLC25A19 LOC100506606  
HMGCS1 SLC38A2 LOC100506855  
HSPA1B SRSF7 LOC339894  
INTS7 TAF5 LRRTM2  
KCNQ5-IT1 TMEM185B MGAM  
KDM4A TRAF6 MSH4  
KIF20B VEZF1 MSTN  
KIF23 ZNF280C OMG  
LDLR ZNF322 OR11H1  
MB21D1 ZNF322P1 OR9A3P  
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     SU1438 

 
 

     SU1411 

 
 

     SU1349 

 
 

Figure II The number of DE genes associated with each GO category for the 
comparisons UT vs. SU1438, UT vs. SU1411 and UT vs. SU1349. 
The DE gene lists for UT vs. SU1438 and UT vs. SU1411 (Log2 (FC) ≥ 1 and p ≤ 0.05.) 
and UT vs. SU1349 (Log2 (FC) ≥ 1.5 and p ≤ 0.05.) were inserted into Enrichr separately 
to retrieve a list of GO terms associated with each list of DE genes. The GO terms were 
sorted into GO categories using R Studio and the number of DE genes appearing in 
each GO category is shown for each SU compound in the bar graphs. 
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Table VII The resulting DE gene lists for SU1438, SU1411 and SU1349 contrasts 
based on their GO category relevance. 
The 21, 25 and 41 selected DE genes selected based on their enrichment analysis result 
for GO category for SU1438, SU1411 and SU1349. A DE gene for SU1438 and SU1411 
is Log2 (FC) ≥ 1 and p ≤ 0.05, whereas for SU1349 it is Log2 (FC) ≥ 1.5 and p ≤ 0.05.	  

UT vs. SU1438 UT vs. SU1411 UT vs. SU1349 
ANXA1 UBR5 SIRT1 
ATP7A RASA1 ITGA1 
PRKCI PRKCI HMGCR 
RASA1 ATRX PIK3R1 
CMYA5 UBR2 RIPK1 
GCNT4 RGS2 TRAF6 
OFD1 ATP7A CLSPN 
SRSF6 PDE5A EXO1 
BCL9 OFD1 KDM4A 
BCLAF1 IQGAP2 KIF23 
CLPX CMYA5 LDLR 
POLR2A SOX30 MSH4 
SOX30 CLPX MTF2 
DAAM1 BCLAF1 CPB2 
CTNND1 SMEK2 DNAJB1 
NOL8 NOL8 POLA2 
SLC20A1 NSUN2 POLR3B 
UBA2 CTNND1 CTLA4 
ARL17A AKAP5 EPC2 
METTL4 UBA2 HMGCS1 
STAG1 IGF2BP3 INTS7 
 CSE1L KIF20B 
 PDS5B LRRTM2 
 NUF2 MSTN 
 ARL17A OMG 
  HELB 
  SAP130 
  SRSF7 
  TAF5 
  VEZF1 
  BLZF1 
  MB21D1 
  RND3 
  CPLX4 
  DIMT1 
  EFNA4 
  ERP27 
  SLC38A2 
  CCNE2 
  CASS4 
  ARL9 
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Table XI The quantitative expression data UT vs. SU1438 (p ≤ 0.05, Log2FC ≥ 1) 
selected DE genes based on the pathway enrichment analysis results. 
The table presents the Log2 expression (mean ± SEM), Log2 (FC) and the adjusted p 
value where n = 3 of the 8 DE genes selected based on pathway enrichment analysis 
results for UT vs. SU1438. Down regulated DE genes are shown in red and up 
regulated are in green. 

  
 RMA normalised 

Log2 expression 
Log2 (FC) 

Adjusted p 
value 

PRKCI 
UT 7.98 ± 0.14 

-1.332 4.79×10-4 
SU1438 6.65 ± 0.01 

 

OFD1 
UT 7.32 ± 0.18 

-1.151 1.02×10-3 
SU1438 6.17 ± 0.25 

 

SRSF6 
UT 8.92 ± 0.12 

-1.006 5.40×10-4 
SU1438 7.91 ± 0.05 

 

BCL9 
UT 6.94 ± 0.25 

-1.005 1.05×10-2 
SU1438 5.94 ± 0.12 

 

POLR2A 
UT 8.79 ± 0.04 

-1.137 1.61×10-3 
SU1438 7.65 ± 0.05 

 

UBA2 
UT 8.34 ± 0.11 

-1.057 9.87×10-4 
SU1438 7.28 ± 0.08 

 

STAG1 
UT 7.17 ± 0.16 

-1.018 5.28×10-3 
SU1438 6.15 ± 0.07 

 

DAAM1 
UT 5.15 ± 0.23 

-1.156 8.19×10-4 
SU1438 4.00 ± 0.07 
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Table XII The quantitative expression data UT v.s. SU1411 (p ≤ 0.05, Log2FC ≥ 1) 
selected DE genes based on the pathway enrichment analysis results. 
The table presents the Log2 expression (mean ± SEM), Log2 (FC) and the adjusted p 
value where n = 3 of the 6 DE genes selected based on pathway enrichment analysis 
results for UT vs. SU1411. Down regulated DE genes are shown in red and up 
regulated are in green. 

  
 RMA normalised 

Log2 expression 
Log2 (FC) 

Adjusted p 
value 

PRKCI 
UT 7.98 ± 0.11 -1.797 3.58×10-5 
SU1411 6.18 ± 0.17 

 

OFD1 
UT 7.32 ± 0.15 -1.096 1.58×10-3 
SU1411 6.23 ± 0.13 

 

UBA2 
UT 8.34 ± 0.11 

-1.201 3.71×10-4 
SU1411 7.14 ± 0.12 

 

PDS5B 
UT 6.88 ± 0.17 -1.170 6.01×10-3 
SU1411 5.71 ± 0.14 

 

NUF2 
UT 6.63 ± 0.34 -1.227 4.88×10-2 
SU1411 5.40 ± 0.16 

 

NSUN2 
UT 7.64 ± 0.03 

-1.124 1.54×10-4 
SU1411 6.52 ± 0.13 
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Table XIII The quantitative expression data UT v.s. SU1349 (p ≤ 0.05, Log2FC ≥ 1.5) 
selected DE genes based on the pathway enrichment analysis results. 
The table presents the Log2 expression (mean ± SEM), Log2 (FC) and the adjusted p 
value where n = 3 of the 9 DE genes selected based on pathway enrichment analysis 
results for UT vs. SU1349. Down regulated DE genes are shown in red and up 
regulated are in green. 

  
 RMA normalised 

Log2 expression 
Log2 (FC) 

Adjusted p 
value 

PIK3R1 
UT 6.11 ± 0.16 

-1.556 1.73×10-6 
SU1349 4.56 ± 0.19 

 

TRAF6 
UT 6.53 ± 0.08 

-1.537 1.06×10-7 
SU1349 5.00 ± 0.23 

 

RIPK1 
UT 7.27 ± 0.06 

-1.568 1.80×10-8 
SU1349 5.70 ± 0.13 

 

CLSPN 
UT 7.25 ± 0.10 

-1.771 2.87×10-5 
SU1349 5.48 ± 0.36 

 

POLA2 
UT 8.33 ± 0.10 

-1.629 8.35×10-5 
SU1349 6.70 ± 0.37 

 

POLR3B 
UT 6.74 ± 0.05 

-1.567 2.46×10-7 
SU1349 5.17 ± 0.14 

 

SRSF7 
UT 7.53 ± 0.07 

-1.707 3.18×10-6 
SU1349 5.82 ± 0.18 

 

TAF5 
UT 6.05 ± 0.16 

-1.876 2.12×10-7 
SU1349 4.17 ± 0.11 

 

CCNE2 
UT 5.86 ± 0.06 

-1.817 4.72×10-7 
SU1349 4.04 ± 0.03 
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RPS14 
A  

	  

B 

	  
	  
Figure III Representative examples of a melting curve and an amplification plot 
produced when the RPS14 primer pair is used in qRT-PCR as an endogenous 
control.  
qRT-PCR was used to validate the DE genes identified through microarray analysis. 
RPS14 was used as an endogenous control gene in all qRT-PCR experiments. 
Representative examples of a RPS14 melting curve (A) and amplification plot (B) are 
shown for untreated RPMI8226 cells (n) and RPMI8226 cells treated for 4h with 
SU1411 (n). The data shown represents n = 3, duplicate. 
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TRAF6 
A  

	  
 

B 

	  
	  
Figure IV Representative examples of a melting curve and an amplification plot 
produced when the TRAF6 primer pair was used in qRT-PCR.  
qRT-PCR was used to validate the DE genes identified through microarray analysis. 
TRAF6 was one of those DE genes validated using qRT-QPCR experiments. 
Representative examples of a TRAF6 melting curve (A) and amplification plot (B) are 
shown for untreated RPMI8226 cells (n) and RPMI8226 cells treated for 4h with 
SU1411 (n). The data shown represents n = 3, duplicate. 
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RIPK1 
A  

	  
 

B 

	  
	  
Figure V Representative examples of a melting curve and an amplification plot 
produced when the RIPK1 primer pair was used in qRT-PCR.  
qRT-PCR was used to validate the DE genes identified through microarray analysis. 
RIPK1 was one of those DE genes validated using qRT-QPCR experiments. 
Representative examples of a RIPK1 melting curve (A) and amplification plot (B) are 
shown for untreated RPMI8226 cells (n) and RPMI8226 cells treated for 4h with 
SU1411 (n). The data shown represents n = 3, duplicate. 
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POLA2 
A  

	  
 

B 

	  
	  
Figure VI Representative examples of a melting curve and an amplification plot 
produced when the POLA2 primer was used in qRT-PCR.  
qRT-PCR was used to validate the DE genes identified through microarray analysis. 
POLA2 was one of those DE genes validated using qRT-QPCR experiments. 
Representative examples of a POLA2 melting curve (A) and amplification plot (B) are 
shown for untreated RPMI8226 cells (n) and RPMI8226 cells treated for 4h with 
SU1411 (n).The data shown represents n = 3, duplicate. 
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SRSF7 
A  

	  
 

B 

	  
	  
Figure VII Representative examples of a melting curve and an amplification plot 
produced when the SRSF7 primer was used in qRT-PCR.  
qRT-PCR was used to validate the DE genes identified through microarray analysis. 
SRSF7 was one of those DE genes validated using qRT-QPCR experiments. 
Representative examples of a SRSF7 melting curve (A) and amplification plot (B) are 
shown for untreated RPMI8226 cells (n) and RPMI8226 cells treated for 4h with 
SU1411 (n). The data shown represents n = 3, duplicate. 
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POLR2A 
A  

	  
 

B 

	  
	  
Figure VIII Representative examples of a melting curve and an amplification plot 
produced when the POLR2A primer was used in qRT-PCR.  
qRT-PCR was used to validate the DE genes identified through microarray analysis. 
POLR2A was one of those DE genes validated using qRT-QPCR experiments. 
Representative examples of a POLR2A melting curve (A) and amplification plot (B) 
are shown for untreated RPMI8226 cells (n) and RPMI8226 cells treated for 4h with 
SU1411 (n). The data shown represents n = 3, duplicate. 
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SRSF6 
A  

	  
 

B 

	  
	  
Figure IX Representative examples of a melting curve and an amplification plot 
produced when the SRSF6 primer was used in qRT-PCR.  
qRT-PCR was used to validate the DE genes identified through microarray analysis. 
SRSF6 was one of those DE genes validated using qRT-QPCR experiments. 
Representative examples of a SRSF6 melting curve (A) and amplification plot (B) are 
shown for untreated RPMI8226 cells (n) and RPMI8226 cells treated for 4h with 
SU1411 (n). The data shown represents n = 3, duplicate. 
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PRKCI 
A  

	  
 

B 

	  
	  
Figure X Representative examples of a melting curve and an amplification plot 
produced when the PRKCI primer was used in qRT-PCR.  
qRT-PCR was used to validate the DE genes identified through microarray analysis. 
PRKCI was one of those DE genes validated using qRT-QPCR experiments. 
Representative examples of a PRKCI melting curve (A) and amplification plot (B) are 
shown for untreated RPMI8226 cells (n) and RPMI8226 cells treated for 4h with 
SU1411 (n). The data shown represents n = 3, duplicate. 
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OFD1 
A  

	  
 

B 

	  
	  
Figure XI Representative examples of a melting curve and an amplification plot 
produced when the OFD1 primer was used in qRT-PCR.  
qRT-PCR was used to validate the DE genes identified through microarray analysis. 
OFD1 was one of those DE genes validated using qRT-QPCR experiments. 
Representative examples of a OFD1 melting curve (A) and amplification plot (B) are 
shown for untreated RPMI8226 cells (n) and RPMI8226 cells treated for 4h with 
SU1411 (n). The data shown represents n = 3, duplicate. 
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UBA2 
A  

	  
 

B 

	  
	  
Figure XII Representative examples of a melting curve and an amplification plot 
produced when the UBA2 primer was used in qRT-PCR.  
qRT-PCR was used to validate the DE genes identified through microarray analysis. 
UBA2 was one of those DE genes validated using qRT-QPCR experiments. 
Representative examples of a UBA2 melting curve (A) and amplification plot (B) are 
shown for untreated RPMI8226 cells (n) and RPMI8226 cells treated for 4h with 
SU1411 (n). The data shown represents n = 3, duplicate. 
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NSUN2 
A  

	  
 

B 

	  
	  
Figure XIII Representative examples of a melting curve and an amplification plot 
produced when the NSUN2 primer was used in qRT-PCR.  
qRT-PCR was used to validate the DE genes identified through microarray analysis. 
NSUN2 was one of those DE genes validated using qRT-QPCR experiments. 
Representative examples of a NSUN2 melting curve (A) and amplification plot (B) are 
shown for untreated RPMI8226 cells (n) and RPMI8226 cells treated for 4h with 
SU1411 (n). The data shown represents n = 3, duplicate. 
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